]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/compaction.c
mm/compaction: split freepages without holding the zone lock
[thirdparty/linux.git] / mm / compaction.c
CommitLineData
748446bb
MG
1/*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
698b1b30 10#include <linux/cpu.h>
748446bb
MG
11#include <linux/swap.h>
12#include <linux/migrate.h>
13#include <linux/compaction.h>
14#include <linux/mm_inline.h>
15#include <linux/backing-dev.h>
76ab0f53 16#include <linux/sysctl.h>
ed4a6d7f 17#include <linux/sysfs.h>
194159fb 18#include <linux/page-isolation.h>
b8c73fc2 19#include <linux/kasan.h>
698b1b30
VB
20#include <linux/kthread.h>
21#include <linux/freezer.h>
748446bb
MG
22#include "internal.h"
23
010fc29a
MK
24#ifdef CONFIG_COMPACTION
25static inline void count_compact_event(enum vm_event_item item)
26{
27 count_vm_event(item);
28}
29
30static inline void count_compact_events(enum vm_event_item item, long delta)
31{
32 count_vm_events(item, delta);
33}
34#else
35#define count_compact_event(item) do { } while (0)
36#define count_compact_events(item, delta) do { } while (0)
37#endif
38
ff9543fd
MN
39#if defined CONFIG_COMPACTION || defined CONFIG_CMA
40
b7aba698
MG
41#define CREATE_TRACE_POINTS
42#include <trace/events/compaction.h>
43
06b6640a
VB
44#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
45#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
46#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
47#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
48
748446bb
MG
49static unsigned long release_freepages(struct list_head *freelist)
50{
51 struct page *page, *next;
6bace090 52 unsigned long high_pfn = 0;
748446bb
MG
53
54 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 55 unsigned long pfn = page_to_pfn(page);
748446bb
MG
56 list_del(&page->lru);
57 __free_page(page);
6bace090
VB
58 if (pfn > high_pfn)
59 high_pfn = pfn;
748446bb
MG
60 }
61
6bace090 62 return high_pfn;
748446bb
MG
63}
64
ff9543fd
MN
65static void map_pages(struct list_head *list)
66{
66c64223
JK
67 unsigned int i, order, nr_pages;
68 struct page *page, *next;
69 LIST_HEAD(tmp_list);
70
71 list_for_each_entry_safe(page, next, list, lru) {
72 list_del(&page->lru);
73
74 order = page_private(page);
75 nr_pages = 1 << order;
76 set_page_private(page, 0);
77 set_page_refcounted(page);
78
79 arch_alloc_page(page, order);
80 kernel_map_pages(page, nr_pages, 1);
81 kasan_alloc_pages(page, order);
82 if (order)
83 split_page(page, order);
ff9543fd 84
66c64223
JK
85 for (i = 0; i < nr_pages; i++) {
86 list_add(&page->lru, &tmp_list);
87 page++;
88 }
ff9543fd 89 }
66c64223
JK
90
91 list_splice(&tmp_list, list);
ff9543fd
MN
92}
93
47118af0
MN
94static inline bool migrate_async_suitable(int migratetype)
95{
96 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
97}
98
bb13ffeb 99#ifdef CONFIG_COMPACTION
24e2716f 100
bda807d4
MK
101int PageMovable(struct page *page)
102{
103 struct address_space *mapping;
104
105 VM_BUG_ON_PAGE(!PageLocked(page), page);
106 if (!__PageMovable(page))
107 return 0;
108
109 mapping = page_mapping(page);
110 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
111 return 1;
112
113 return 0;
114}
115EXPORT_SYMBOL(PageMovable);
116
117void __SetPageMovable(struct page *page, struct address_space *mapping)
118{
119 VM_BUG_ON_PAGE(!PageLocked(page), page);
120 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
121 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
122}
123EXPORT_SYMBOL(__SetPageMovable);
124
125void __ClearPageMovable(struct page *page)
126{
127 VM_BUG_ON_PAGE(!PageLocked(page), page);
128 VM_BUG_ON_PAGE(!PageMovable(page), page);
129 /*
130 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
131 * flag so that VM can catch up released page by driver after isolation.
132 * With it, VM migration doesn't try to put it back.
133 */
134 page->mapping = (void *)((unsigned long)page->mapping &
135 PAGE_MAPPING_MOVABLE);
136}
137EXPORT_SYMBOL(__ClearPageMovable);
138
24e2716f
JK
139/* Do not skip compaction more than 64 times */
140#define COMPACT_MAX_DEFER_SHIFT 6
141
142/*
143 * Compaction is deferred when compaction fails to result in a page
144 * allocation success. 1 << compact_defer_limit compactions are skipped up
145 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
146 */
147void defer_compaction(struct zone *zone, int order)
148{
149 zone->compact_considered = 0;
150 zone->compact_defer_shift++;
151
152 if (order < zone->compact_order_failed)
153 zone->compact_order_failed = order;
154
155 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
156 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
157
158 trace_mm_compaction_defer_compaction(zone, order);
159}
160
161/* Returns true if compaction should be skipped this time */
162bool compaction_deferred(struct zone *zone, int order)
163{
164 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
165
166 if (order < zone->compact_order_failed)
167 return false;
168
169 /* Avoid possible overflow */
170 if (++zone->compact_considered > defer_limit)
171 zone->compact_considered = defer_limit;
172
173 if (zone->compact_considered >= defer_limit)
174 return false;
175
176 trace_mm_compaction_deferred(zone, order);
177
178 return true;
179}
180
181/*
182 * Update defer tracking counters after successful compaction of given order,
183 * which means an allocation either succeeded (alloc_success == true) or is
184 * expected to succeed.
185 */
186void compaction_defer_reset(struct zone *zone, int order,
187 bool alloc_success)
188{
189 if (alloc_success) {
190 zone->compact_considered = 0;
191 zone->compact_defer_shift = 0;
192 }
193 if (order >= zone->compact_order_failed)
194 zone->compact_order_failed = order + 1;
195
196 trace_mm_compaction_defer_reset(zone, order);
197}
198
199/* Returns true if restarting compaction after many failures */
200bool compaction_restarting(struct zone *zone, int order)
201{
202 if (order < zone->compact_order_failed)
203 return false;
204
205 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
206 zone->compact_considered >= 1UL << zone->compact_defer_shift;
207}
208
bb13ffeb
MG
209/* Returns true if the pageblock should be scanned for pages to isolate. */
210static inline bool isolation_suitable(struct compact_control *cc,
211 struct page *page)
212{
213 if (cc->ignore_skip_hint)
214 return true;
215
216 return !get_pageblock_skip(page);
217}
218
02333641
VB
219static void reset_cached_positions(struct zone *zone)
220{
221 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
222 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 223 zone->compact_cached_free_pfn =
06b6640a 224 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
225}
226
bb13ffeb
MG
227/*
228 * This function is called to clear all cached information on pageblocks that
229 * should be skipped for page isolation when the migrate and free page scanner
230 * meet.
231 */
62997027 232static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb
MG
233{
234 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 235 unsigned long end_pfn = zone_end_pfn(zone);
bb13ffeb
MG
236 unsigned long pfn;
237
62997027 238 zone->compact_blockskip_flush = false;
bb13ffeb
MG
239
240 /* Walk the zone and mark every pageblock as suitable for isolation */
241 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
242 struct page *page;
243
244 cond_resched();
245
246 if (!pfn_valid(pfn))
247 continue;
248
249 page = pfn_to_page(pfn);
250 if (zone != page_zone(page))
251 continue;
252
253 clear_pageblock_skip(page);
254 }
02333641
VB
255
256 reset_cached_positions(zone);
bb13ffeb
MG
257}
258
62997027
MG
259void reset_isolation_suitable(pg_data_t *pgdat)
260{
261 int zoneid;
262
263 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
264 struct zone *zone = &pgdat->node_zones[zoneid];
265 if (!populated_zone(zone))
266 continue;
267
268 /* Only flush if a full compaction finished recently */
269 if (zone->compact_blockskip_flush)
270 __reset_isolation_suitable(zone);
271 }
272}
273
bb13ffeb
MG
274/*
275 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 276 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 277 */
c89511ab
MG
278static void update_pageblock_skip(struct compact_control *cc,
279 struct page *page, unsigned long nr_isolated,
edc2ca61 280 bool migrate_scanner)
bb13ffeb 281{
c89511ab 282 struct zone *zone = cc->zone;
35979ef3 283 unsigned long pfn;
6815bf3f
JK
284
285 if (cc->ignore_skip_hint)
286 return;
287
bb13ffeb
MG
288 if (!page)
289 return;
290
35979ef3
DR
291 if (nr_isolated)
292 return;
293
edc2ca61 294 set_pageblock_skip(page);
c89511ab 295
35979ef3
DR
296 pfn = page_to_pfn(page);
297
298 /* Update where async and sync compaction should restart */
299 if (migrate_scanner) {
35979ef3
DR
300 if (pfn > zone->compact_cached_migrate_pfn[0])
301 zone->compact_cached_migrate_pfn[0] = pfn;
e0b9daeb
DR
302 if (cc->mode != MIGRATE_ASYNC &&
303 pfn > zone->compact_cached_migrate_pfn[1])
35979ef3
DR
304 zone->compact_cached_migrate_pfn[1] = pfn;
305 } else {
35979ef3
DR
306 if (pfn < zone->compact_cached_free_pfn)
307 zone->compact_cached_free_pfn = pfn;
c89511ab 308 }
bb13ffeb
MG
309}
310#else
311static inline bool isolation_suitable(struct compact_control *cc,
312 struct page *page)
313{
314 return true;
315}
316
c89511ab
MG
317static void update_pageblock_skip(struct compact_control *cc,
318 struct page *page, unsigned long nr_isolated,
edc2ca61 319 bool migrate_scanner)
bb13ffeb
MG
320{
321}
322#endif /* CONFIG_COMPACTION */
323
8b44d279
VB
324/*
325 * Compaction requires the taking of some coarse locks that are potentially
326 * very heavily contended. For async compaction, back out if the lock cannot
327 * be taken immediately. For sync compaction, spin on the lock if needed.
328 *
329 * Returns true if the lock is held
330 * Returns false if the lock is not held and compaction should abort
331 */
332static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
333 struct compact_control *cc)
2a1402aa 334{
8b44d279
VB
335 if (cc->mode == MIGRATE_ASYNC) {
336 if (!spin_trylock_irqsave(lock, *flags)) {
337 cc->contended = COMPACT_CONTENDED_LOCK;
338 return false;
339 }
340 } else {
341 spin_lock_irqsave(lock, *flags);
342 }
1f9efdef 343
8b44d279 344 return true;
2a1402aa
MG
345}
346
c67fe375
MG
347/*
348 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
349 * very heavily contended. The lock should be periodically unlocked to avoid
350 * having disabled IRQs for a long time, even when there is nobody waiting on
351 * the lock. It might also be that allowing the IRQs will result in
352 * need_resched() becoming true. If scheduling is needed, async compaction
353 * aborts. Sync compaction schedules.
354 * Either compaction type will also abort if a fatal signal is pending.
355 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 356 *
8b44d279
VB
357 * Returns true if compaction should abort due to fatal signal pending, or
358 * async compaction due to need_resched()
359 * Returns false when compaction can continue (sync compaction might have
360 * scheduled)
c67fe375 361 */
8b44d279
VB
362static bool compact_unlock_should_abort(spinlock_t *lock,
363 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 364{
8b44d279
VB
365 if (*locked) {
366 spin_unlock_irqrestore(lock, flags);
367 *locked = false;
368 }
1f9efdef 369
8b44d279
VB
370 if (fatal_signal_pending(current)) {
371 cc->contended = COMPACT_CONTENDED_SCHED;
372 return true;
373 }
c67fe375 374
8b44d279 375 if (need_resched()) {
e0b9daeb 376 if (cc->mode == MIGRATE_ASYNC) {
8b44d279
VB
377 cc->contended = COMPACT_CONTENDED_SCHED;
378 return true;
c67fe375 379 }
c67fe375 380 cond_resched();
c67fe375
MG
381 }
382
8b44d279 383 return false;
c67fe375
MG
384}
385
be976572
VB
386/*
387 * Aside from avoiding lock contention, compaction also periodically checks
388 * need_resched() and either schedules in sync compaction or aborts async
8b44d279 389 * compaction. This is similar to what compact_unlock_should_abort() does, but
be976572
VB
390 * is used where no lock is concerned.
391 *
392 * Returns false when no scheduling was needed, or sync compaction scheduled.
393 * Returns true when async compaction should abort.
394 */
395static inline bool compact_should_abort(struct compact_control *cc)
396{
397 /* async compaction aborts if contended */
398 if (need_resched()) {
399 if (cc->mode == MIGRATE_ASYNC) {
1f9efdef 400 cc->contended = COMPACT_CONTENDED_SCHED;
be976572
VB
401 return true;
402 }
403
404 cond_resched();
405 }
406
407 return false;
408}
409
85aa125f 410/*
9e4be470
JM
411 * Isolate free pages onto a private freelist. If @strict is true, will abort
412 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
413 * (even though it may still end up isolating some pages).
85aa125f 414 */
f40d1e42 415static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 416 unsigned long *start_pfn,
85aa125f
MN
417 unsigned long end_pfn,
418 struct list_head *freelist,
419 bool strict)
748446bb 420{
b7aba698 421 int nr_scanned = 0, total_isolated = 0;
bb13ffeb 422 struct page *cursor, *valid_page = NULL;
b8b2d825 423 unsigned long flags = 0;
f40d1e42 424 bool locked = false;
e14c720e 425 unsigned long blockpfn = *start_pfn;
66c64223 426 unsigned int order;
748446bb 427
748446bb
MG
428 cursor = pfn_to_page(blockpfn);
429
f40d1e42 430 /* Isolate free pages. */
748446bb 431 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
66c64223 432 int isolated;
748446bb
MG
433 struct page *page = cursor;
434
8b44d279
VB
435 /*
436 * Periodically drop the lock (if held) regardless of its
437 * contention, to give chance to IRQs. Abort if fatal signal
438 * pending or async compaction detects need_resched()
439 */
440 if (!(blockpfn % SWAP_CLUSTER_MAX)
441 && compact_unlock_should_abort(&cc->zone->lock, flags,
442 &locked, cc))
443 break;
444
b7aba698 445 nr_scanned++;
f40d1e42 446 if (!pfn_valid_within(blockpfn))
2af120bc
LA
447 goto isolate_fail;
448
bb13ffeb
MG
449 if (!valid_page)
450 valid_page = page;
9fcd6d2e
VB
451
452 /*
453 * For compound pages such as THP and hugetlbfs, we can save
454 * potentially a lot of iterations if we skip them at once.
455 * The check is racy, but we can consider only valid values
456 * and the only danger is skipping too much.
457 */
458 if (PageCompound(page)) {
459 unsigned int comp_order = compound_order(page);
460
461 if (likely(comp_order < MAX_ORDER)) {
462 blockpfn += (1UL << comp_order) - 1;
463 cursor += (1UL << comp_order) - 1;
464 }
465
466 goto isolate_fail;
467 }
468
f40d1e42 469 if (!PageBuddy(page))
2af120bc 470 goto isolate_fail;
f40d1e42
MG
471
472 /*
69b7189f
VB
473 * If we already hold the lock, we can skip some rechecking.
474 * Note that if we hold the lock now, checked_pageblock was
475 * already set in some previous iteration (or strict is true),
476 * so it is correct to skip the suitable migration target
477 * recheck as well.
f40d1e42 478 */
69b7189f
VB
479 if (!locked) {
480 /*
481 * The zone lock must be held to isolate freepages.
482 * Unfortunately this is a very coarse lock and can be
483 * heavily contended if there are parallel allocations
484 * or parallel compactions. For async compaction do not
485 * spin on the lock and we acquire the lock as late as
486 * possible.
487 */
8b44d279
VB
488 locked = compact_trylock_irqsave(&cc->zone->lock,
489 &flags, cc);
69b7189f
VB
490 if (!locked)
491 break;
f40d1e42 492
69b7189f
VB
493 /* Recheck this is a buddy page under lock */
494 if (!PageBuddy(page))
495 goto isolate_fail;
496 }
748446bb 497
66c64223
JK
498 /* Found a free page, will break it into order-0 pages */
499 order = page_order(page);
500 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
501 if (!isolated)
502 break;
66c64223 503 set_page_private(page, order);
a4f04f2c 504
748446bb 505 total_isolated += isolated;
a4f04f2c 506 cc->nr_freepages += isolated;
66c64223
JK
507 list_add_tail(&page->lru, freelist);
508
a4f04f2c
DR
509 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
510 blockpfn += isolated;
511 break;
748446bb 512 }
a4f04f2c
DR
513 /* Advance to the end of split page */
514 blockpfn += isolated - 1;
515 cursor += isolated - 1;
516 continue;
2af120bc
LA
517
518isolate_fail:
519 if (strict)
520 break;
521 else
522 continue;
523
748446bb
MG
524 }
525
a4f04f2c
DR
526 if (locked)
527 spin_unlock_irqrestore(&cc->zone->lock, flags);
528
9fcd6d2e
VB
529 /*
530 * There is a tiny chance that we have read bogus compound_order(),
531 * so be careful to not go outside of the pageblock.
532 */
533 if (unlikely(blockpfn > end_pfn))
534 blockpfn = end_pfn;
535
e34d85f0
JK
536 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
537 nr_scanned, total_isolated);
538
e14c720e
VB
539 /* Record how far we have got within the block */
540 *start_pfn = blockpfn;
541
f40d1e42
MG
542 /*
543 * If strict isolation is requested by CMA then check that all the
544 * pages requested were isolated. If there were any failures, 0 is
545 * returned and CMA will fail.
546 */
2af120bc 547 if (strict && blockpfn < end_pfn)
f40d1e42
MG
548 total_isolated = 0;
549
bb13ffeb
MG
550 /* Update the pageblock-skip if the whole pageblock was scanned */
551 if (blockpfn == end_pfn)
edc2ca61 552 update_pageblock_skip(cc, valid_page, total_isolated, false);
bb13ffeb 553
010fc29a 554 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
397487db 555 if (total_isolated)
010fc29a 556 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
557 return total_isolated;
558}
559
85aa125f
MN
560/**
561 * isolate_freepages_range() - isolate free pages.
562 * @start_pfn: The first PFN to start isolating.
563 * @end_pfn: The one-past-last PFN.
564 *
565 * Non-free pages, invalid PFNs, or zone boundaries within the
566 * [start_pfn, end_pfn) range are considered errors, cause function to
567 * undo its actions and return zero.
568 *
569 * Otherwise, function returns one-past-the-last PFN of isolated page
570 * (which may be greater then end_pfn if end fell in a middle of
571 * a free page).
572 */
ff9543fd 573unsigned long
bb13ffeb
MG
574isolate_freepages_range(struct compact_control *cc,
575 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 576{
e1409c32 577 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
578 LIST_HEAD(freelist);
579
7d49d886 580 pfn = start_pfn;
06b6640a 581 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
582 if (block_start_pfn < cc->zone->zone_start_pfn)
583 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 584 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
585
586 for (; pfn < end_pfn; pfn += isolated,
e1409c32 587 block_start_pfn = block_end_pfn,
7d49d886 588 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
589 /* Protect pfn from changing by isolate_freepages_block */
590 unsigned long isolate_start_pfn = pfn;
85aa125f 591
85aa125f
MN
592 block_end_pfn = min(block_end_pfn, end_pfn);
593
58420016
JK
594 /*
595 * pfn could pass the block_end_pfn if isolated freepage
596 * is more than pageblock order. In this case, we adjust
597 * scanning range to right one.
598 */
599 if (pfn >= block_end_pfn) {
06b6640a
VB
600 block_start_pfn = pageblock_start_pfn(pfn);
601 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
602 block_end_pfn = min(block_end_pfn, end_pfn);
603 }
604
e1409c32
JK
605 if (!pageblock_pfn_to_page(block_start_pfn,
606 block_end_pfn, cc->zone))
7d49d886
VB
607 break;
608
e14c720e
VB
609 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
610 block_end_pfn, &freelist, true);
85aa125f
MN
611
612 /*
613 * In strict mode, isolate_freepages_block() returns 0 if
614 * there are any holes in the block (ie. invalid PFNs or
615 * non-free pages).
616 */
617 if (!isolated)
618 break;
619
620 /*
621 * If we managed to isolate pages, it is always (1 << n) *
622 * pageblock_nr_pages for some non-negative n. (Max order
623 * page may span two pageblocks).
624 */
625 }
626
66c64223 627 /* __isolate_free_page() does not map the pages */
85aa125f
MN
628 map_pages(&freelist);
629
630 if (pfn < end_pfn) {
631 /* Loop terminated early, cleanup. */
632 release_freepages(&freelist);
633 return 0;
634 }
635
636 /* We don't use freelists for anything. */
637 return pfn;
638}
639
748446bb 640/* Update the number of anon and file isolated pages in the zone */
edc2ca61 641static void acct_isolated(struct zone *zone, struct compact_control *cc)
748446bb
MG
642{
643 struct page *page;
b9e84ac1 644 unsigned int count[2] = { 0, };
748446bb 645
edc2ca61
VB
646 if (list_empty(&cc->migratepages))
647 return;
648
b9e84ac1
MK
649 list_for_each_entry(page, &cc->migratepages, lru)
650 count[!!page_is_file_cache(page)]++;
748446bb 651
edc2ca61
VB
652 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
653 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
748446bb
MG
654}
655
656/* Similar to reclaim, but different enough that they don't share logic */
657static bool too_many_isolated(struct zone *zone)
658{
bc693045 659 unsigned long active, inactive, isolated;
748446bb
MG
660
661 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
662 zone_page_state(zone, NR_INACTIVE_ANON);
bc693045
MK
663 active = zone_page_state(zone, NR_ACTIVE_FILE) +
664 zone_page_state(zone, NR_ACTIVE_ANON);
748446bb
MG
665 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
666 zone_page_state(zone, NR_ISOLATED_ANON);
667
bc693045 668 return isolated > (inactive + active) / 2;
748446bb
MG
669}
670
2fe86e00 671/**
edc2ca61
VB
672 * isolate_migratepages_block() - isolate all migrate-able pages within
673 * a single pageblock
2fe86e00 674 * @cc: Compaction control structure.
edc2ca61
VB
675 * @low_pfn: The first PFN to isolate
676 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
677 * @isolate_mode: Isolation mode to be used.
2fe86e00
MN
678 *
679 * Isolate all pages that can be migrated from the range specified by
edc2ca61
VB
680 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
681 * Returns zero if there is a fatal signal pending, otherwise PFN of the
682 * first page that was not scanned (which may be both less, equal to or more
683 * than end_pfn).
2fe86e00 684 *
edc2ca61
VB
685 * The pages are isolated on cc->migratepages list (not required to be empty),
686 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
687 * is neither read nor updated.
748446bb 688 */
edc2ca61
VB
689static unsigned long
690isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
691 unsigned long end_pfn, isolate_mode_t isolate_mode)
748446bb 692{
edc2ca61 693 struct zone *zone = cc->zone;
b7aba698 694 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 695 struct lruvec *lruvec;
b8b2d825 696 unsigned long flags = 0;
2a1402aa 697 bool locked = false;
bb13ffeb 698 struct page *page = NULL, *valid_page = NULL;
e34d85f0 699 unsigned long start_pfn = low_pfn;
fdd048e1
VB
700 bool skip_on_failure = false;
701 unsigned long next_skip_pfn = 0;
748446bb 702
748446bb
MG
703 /*
704 * Ensure that there are not too many pages isolated from the LRU
705 * list by either parallel reclaimers or compaction. If there are,
706 * delay for some time until fewer pages are isolated
707 */
708 while (unlikely(too_many_isolated(zone))) {
f9e35b3b 709 /* async migration should just abort */
e0b9daeb 710 if (cc->mode == MIGRATE_ASYNC)
2fe86e00 711 return 0;
f9e35b3b 712
748446bb
MG
713 congestion_wait(BLK_RW_ASYNC, HZ/10);
714
715 if (fatal_signal_pending(current))
2fe86e00 716 return 0;
748446bb
MG
717 }
718
be976572
VB
719 if (compact_should_abort(cc))
720 return 0;
aeef4b83 721
fdd048e1
VB
722 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
723 skip_on_failure = true;
724 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
725 }
726
748446bb 727 /* Time to isolate some pages for migration */
748446bb 728 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 729
fdd048e1
VB
730 if (skip_on_failure && low_pfn >= next_skip_pfn) {
731 /*
732 * We have isolated all migration candidates in the
733 * previous order-aligned block, and did not skip it due
734 * to failure. We should migrate the pages now and
735 * hopefully succeed compaction.
736 */
737 if (nr_isolated)
738 break;
739
740 /*
741 * We failed to isolate in the previous order-aligned
742 * block. Set the new boundary to the end of the
743 * current block. Note we can't simply increase
744 * next_skip_pfn by 1 << order, as low_pfn might have
745 * been incremented by a higher number due to skipping
746 * a compound or a high-order buddy page in the
747 * previous loop iteration.
748 */
749 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
750 }
751
8b44d279
VB
752 /*
753 * Periodically drop the lock (if held) regardless of its
754 * contention, to give chance to IRQs. Abort async compaction
755 * if contended.
756 */
757 if (!(low_pfn % SWAP_CLUSTER_MAX)
758 && compact_unlock_should_abort(&zone->lru_lock, flags,
759 &locked, cc))
760 break;
c67fe375 761
748446bb 762 if (!pfn_valid_within(low_pfn))
fdd048e1 763 goto isolate_fail;
b7aba698 764 nr_scanned++;
748446bb 765
748446bb 766 page = pfn_to_page(low_pfn);
dc908600 767
bb13ffeb
MG
768 if (!valid_page)
769 valid_page = page;
770
6c14466c 771 /*
99c0fd5e
VB
772 * Skip if free. We read page order here without zone lock
773 * which is generally unsafe, but the race window is small and
774 * the worst thing that can happen is that we skip some
775 * potential isolation targets.
6c14466c 776 */
99c0fd5e
VB
777 if (PageBuddy(page)) {
778 unsigned long freepage_order = page_order_unsafe(page);
779
780 /*
781 * Without lock, we cannot be sure that what we got is
782 * a valid page order. Consider only values in the
783 * valid order range to prevent low_pfn overflow.
784 */
785 if (freepage_order > 0 && freepage_order < MAX_ORDER)
786 low_pfn += (1UL << freepage_order) - 1;
748446bb 787 continue;
99c0fd5e 788 }
748446bb 789
bc835011 790 /*
29c0dde8
VB
791 * Regardless of being on LRU, compound pages such as THP and
792 * hugetlbfs are not to be compacted. We can potentially save
793 * a lot of iterations if we skip them at once. The check is
794 * racy, but we can consider only valid values and the only
795 * danger is skipping too much.
bc835011 796 */
29c0dde8
VB
797 if (PageCompound(page)) {
798 unsigned int comp_order = compound_order(page);
799
800 if (likely(comp_order < MAX_ORDER))
801 low_pfn += (1UL << comp_order) - 1;
edc2ca61 802
fdd048e1 803 goto isolate_fail;
2a1402aa
MG
804 }
805
bda807d4
MK
806 /*
807 * Check may be lockless but that's ok as we recheck later.
808 * It's possible to migrate LRU and non-lru movable pages.
809 * Skip any other type of page
810 */
811 if (!PageLRU(page)) {
bda807d4
MK
812 /*
813 * __PageMovable can return false positive so we need
814 * to verify it under page_lock.
815 */
816 if (unlikely(__PageMovable(page)) &&
817 !PageIsolated(page)) {
818 if (locked) {
819 spin_unlock_irqrestore(&zone->lru_lock,
820 flags);
821 locked = false;
822 }
823
824 if (isolate_movable_page(page, isolate_mode))
825 goto isolate_success;
826 }
827
fdd048e1 828 goto isolate_fail;
bda807d4 829 }
29c0dde8 830
119d6d59
DR
831 /*
832 * Migration will fail if an anonymous page is pinned in memory,
833 * so avoid taking lru_lock and isolating it unnecessarily in an
834 * admittedly racy check.
835 */
836 if (!page_mapping(page) &&
837 page_count(page) > page_mapcount(page))
fdd048e1 838 goto isolate_fail;
119d6d59 839
69b7189f
VB
840 /* If we already hold the lock, we can skip some rechecking */
841 if (!locked) {
8b44d279
VB
842 locked = compact_trylock_irqsave(&zone->lru_lock,
843 &flags, cc);
69b7189f
VB
844 if (!locked)
845 break;
2a1402aa 846
29c0dde8 847 /* Recheck PageLRU and PageCompound under lock */
69b7189f 848 if (!PageLRU(page))
fdd048e1 849 goto isolate_fail;
29c0dde8
VB
850
851 /*
852 * Page become compound since the non-locked check,
853 * and it's on LRU. It can only be a THP so the order
854 * is safe to read and it's 0 for tail pages.
855 */
856 if (unlikely(PageCompound(page))) {
857 low_pfn += (1UL << compound_order(page)) - 1;
fdd048e1 858 goto isolate_fail;
69b7189f 859 }
bc835011
AA
860 }
861
fa9add64
HD
862 lruvec = mem_cgroup_page_lruvec(page, zone);
863
748446bb 864 /* Try isolate the page */
edc2ca61 865 if (__isolate_lru_page(page, isolate_mode) != 0)
fdd048e1 866 goto isolate_fail;
748446bb 867
29c0dde8 868 VM_BUG_ON_PAGE(PageCompound(page), page);
bc835011 869
748446bb 870 /* Successfully isolated */
fa9add64 871 del_page_from_lru_list(page, lruvec, page_lru(page));
b6c75016
JK
872
873isolate_success:
fdd048e1 874 list_add(&page->lru, &cc->migratepages);
748446bb 875 cc->nr_migratepages++;
b7aba698 876 nr_isolated++;
748446bb 877
a34753d2
VB
878 /*
879 * Record where we could have freed pages by migration and not
880 * yet flushed them to buddy allocator.
881 * - this is the lowest page that was isolated and likely be
882 * then freed by migration.
883 */
884 if (!cc->last_migrated_pfn)
885 cc->last_migrated_pfn = low_pfn;
886
748446bb 887 /* Avoid isolating too much */
31b8384a
HD
888 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
889 ++low_pfn;
748446bb 890 break;
31b8384a 891 }
fdd048e1
VB
892
893 continue;
894isolate_fail:
895 if (!skip_on_failure)
896 continue;
897
898 /*
899 * We have isolated some pages, but then failed. Release them
900 * instead of migrating, as we cannot form the cc->order buddy
901 * page anyway.
902 */
903 if (nr_isolated) {
904 if (locked) {
905 spin_unlock_irqrestore(&zone->lru_lock, flags);
906 locked = false;
907 }
908 acct_isolated(zone, cc);
909 putback_movable_pages(&cc->migratepages);
910 cc->nr_migratepages = 0;
911 cc->last_migrated_pfn = 0;
912 nr_isolated = 0;
913 }
914
915 if (low_pfn < next_skip_pfn) {
916 low_pfn = next_skip_pfn - 1;
917 /*
918 * The check near the loop beginning would have updated
919 * next_skip_pfn too, but this is a bit simpler.
920 */
921 next_skip_pfn += 1UL << cc->order;
922 }
748446bb
MG
923 }
924
99c0fd5e
VB
925 /*
926 * The PageBuddy() check could have potentially brought us outside
927 * the range to be scanned.
928 */
929 if (unlikely(low_pfn > end_pfn))
930 low_pfn = end_pfn;
931
c67fe375
MG
932 if (locked)
933 spin_unlock_irqrestore(&zone->lru_lock, flags);
748446bb 934
50b5b094
VB
935 /*
936 * Update the pageblock-skip information and cached scanner pfn,
937 * if the whole pageblock was scanned without isolating any page.
50b5b094 938 */
35979ef3 939 if (low_pfn == end_pfn)
edc2ca61 940 update_pageblock_skip(cc, valid_page, nr_isolated, true);
bb13ffeb 941
e34d85f0
JK
942 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
943 nr_scanned, nr_isolated);
b7aba698 944
010fc29a 945 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
397487db 946 if (nr_isolated)
010fc29a 947 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 948
2fe86e00
MN
949 return low_pfn;
950}
951
edc2ca61
VB
952/**
953 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
954 * @cc: Compaction control structure.
955 * @start_pfn: The first PFN to start isolating.
956 * @end_pfn: The one-past-last PFN.
957 *
958 * Returns zero if isolation fails fatally due to e.g. pending signal.
959 * Otherwise, function returns one-past-the-last PFN of isolated page
960 * (which may be greater than end_pfn if end fell in a middle of a THP page).
961 */
962unsigned long
963isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
964 unsigned long end_pfn)
965{
e1409c32 966 unsigned long pfn, block_start_pfn, block_end_pfn;
edc2ca61
VB
967
968 /* Scan block by block. First and last block may be incomplete */
969 pfn = start_pfn;
06b6640a 970 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
971 if (block_start_pfn < cc->zone->zone_start_pfn)
972 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 973 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
974
975 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 976 block_start_pfn = block_end_pfn,
edc2ca61
VB
977 block_end_pfn += pageblock_nr_pages) {
978
979 block_end_pfn = min(block_end_pfn, end_pfn);
980
e1409c32
JK
981 if (!pageblock_pfn_to_page(block_start_pfn,
982 block_end_pfn, cc->zone))
edc2ca61
VB
983 continue;
984
985 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
986 ISOLATE_UNEVICTABLE);
987
14af4a5e 988 if (!pfn)
edc2ca61 989 break;
6ea41c0c
JK
990
991 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
992 break;
edc2ca61
VB
993 }
994 acct_isolated(cc->zone, cc);
995
996 return pfn;
997}
998
ff9543fd
MN
999#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1000#ifdef CONFIG_COMPACTION
018e9a49
AM
1001
1002/* Returns true if the page is within a block suitable for migration to */
1003static bool suitable_migration_target(struct page *page)
1004{
1005 /* If the page is a large free page, then disallow migration */
1006 if (PageBuddy(page)) {
1007 /*
1008 * We are checking page_order without zone->lock taken. But
1009 * the only small danger is that we skip a potentially suitable
1010 * pageblock, so it's not worth to check order for valid range.
1011 */
1012 if (page_order_unsafe(page) >= pageblock_order)
1013 return false;
1014 }
1015
1016 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1017 if (migrate_async_suitable(get_pageblock_migratetype(page)))
1018 return true;
1019
1020 /* Otherwise skip the block */
1021 return false;
1022}
1023
f2849aa0
VB
1024/*
1025 * Test whether the free scanner has reached the same or lower pageblock than
1026 * the migration scanner, and compaction should thus terminate.
1027 */
1028static inline bool compact_scanners_met(struct compact_control *cc)
1029{
1030 return (cc->free_pfn >> pageblock_order)
1031 <= (cc->migrate_pfn >> pageblock_order);
1032}
1033
2fe86e00 1034/*
ff9543fd
MN
1035 * Based on information in the current compact_control, find blocks
1036 * suitable for isolating free pages from and then isolate them.
2fe86e00 1037 */
edc2ca61 1038static void isolate_freepages(struct compact_control *cc)
2fe86e00 1039{
edc2ca61 1040 struct zone *zone = cc->zone;
ff9543fd 1041 struct page *page;
c96b9e50 1042 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1043 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1044 unsigned long block_end_pfn; /* end of current pageblock */
1045 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1046 struct list_head *freelist = &cc->freepages;
2fe86e00 1047
ff9543fd
MN
1048 /*
1049 * Initialise the free scanner. The starting point is where we last
49e068f0 1050 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1051 * zone when isolating for the first time. For looping we also need
1052 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1053 * block_start_pfn -= pageblock_nr_pages in the for loop.
1054 * For ending point, take care when isolating in last pageblock of a
1055 * a zone which ends in the middle of a pageblock.
49e068f0
VB
1056 * The low boundary is the end of the pageblock the migration scanner
1057 * is using.
ff9543fd 1058 */
e14c720e 1059 isolate_start_pfn = cc->free_pfn;
06b6640a 1060 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
c96b9e50
VB
1061 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1062 zone_end_pfn(zone));
06b6640a 1063 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
2fe86e00 1064
ff9543fd
MN
1065 /*
1066 * Isolate free pages until enough are available to migrate the
1067 * pages on cc->migratepages. We stop searching if the migrate
1068 * and free page scanners meet or enough free pages are isolated.
1069 */
f5f61a32 1070 for (; block_start_pfn >= low_pfn;
c96b9e50 1071 block_end_pfn = block_start_pfn,
e14c720e
VB
1072 block_start_pfn -= pageblock_nr_pages,
1073 isolate_start_pfn = block_start_pfn) {
f6ea3adb
DR
1074 /*
1075 * This can iterate a massively long zone without finding any
1076 * suitable migration targets, so periodically check if we need
be976572 1077 * to schedule, or even abort async compaction.
f6ea3adb 1078 */
be976572
VB
1079 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1080 && compact_should_abort(cc))
1081 break;
f6ea3adb 1082
7d49d886
VB
1083 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1084 zone);
1085 if (!page)
ff9543fd
MN
1086 continue;
1087
1088 /* Check the block is suitable for migration */
68e3e926 1089 if (!suitable_migration_target(page))
ff9543fd 1090 continue;
68e3e926 1091
bb13ffeb
MG
1092 /* If isolation recently failed, do not retry */
1093 if (!isolation_suitable(cc, page))
1094 continue;
1095
e14c720e 1096 /* Found a block suitable for isolating free pages from. */
a46cbf3b
DR
1097 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1098 freelist, false);
ff9543fd 1099
e14c720e 1100 /*
a46cbf3b
DR
1101 * If we isolated enough freepages, or aborted due to lock
1102 * contention, terminate.
e14c720e 1103 */
f5f61a32
VB
1104 if ((cc->nr_freepages >= cc->nr_migratepages)
1105 || cc->contended) {
a46cbf3b
DR
1106 if (isolate_start_pfn >= block_end_pfn) {
1107 /*
1108 * Restart at previous pageblock if more
1109 * freepages can be isolated next time.
1110 */
f5f61a32
VB
1111 isolate_start_pfn =
1112 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1113 }
be976572 1114 break;
a46cbf3b 1115 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1116 /*
a46cbf3b
DR
1117 * If isolation failed early, do not continue
1118 * needlessly.
f5f61a32 1119 */
a46cbf3b 1120 break;
f5f61a32 1121 }
ff9543fd
MN
1122 }
1123
66c64223 1124 /* __isolate_free_page() does not map the pages */
ff9543fd
MN
1125 map_pages(freelist);
1126
7ed695e0 1127 /*
f5f61a32
VB
1128 * Record where the free scanner will restart next time. Either we
1129 * broke from the loop and set isolate_start_pfn based on the last
1130 * call to isolate_freepages_block(), or we met the migration scanner
1131 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1132 */
f5f61a32 1133 cc->free_pfn = isolate_start_pfn;
748446bb
MG
1134}
1135
1136/*
1137 * This is a migrate-callback that "allocates" freepages by taking pages
1138 * from the isolated freelists in the block we are migrating to.
1139 */
1140static struct page *compaction_alloc(struct page *migratepage,
1141 unsigned long data,
1142 int **result)
1143{
1144 struct compact_control *cc = (struct compact_control *)data;
1145 struct page *freepage;
1146
be976572
VB
1147 /*
1148 * Isolate free pages if necessary, and if we are not aborting due to
1149 * contention.
1150 */
748446bb 1151 if (list_empty(&cc->freepages)) {
be976572 1152 if (!cc->contended)
edc2ca61 1153 isolate_freepages(cc);
748446bb
MG
1154
1155 if (list_empty(&cc->freepages))
1156 return NULL;
1157 }
1158
1159 freepage = list_entry(cc->freepages.next, struct page, lru);
1160 list_del(&freepage->lru);
1161 cc->nr_freepages--;
1162
1163 return freepage;
1164}
1165
1166/*
d53aea3d
DR
1167 * This is a migrate-callback that "frees" freepages back to the isolated
1168 * freelist. All pages on the freelist are from the same zone, so there is no
1169 * special handling needed for NUMA.
1170 */
1171static void compaction_free(struct page *page, unsigned long data)
1172{
1173 struct compact_control *cc = (struct compact_control *)data;
1174
1175 list_add(&page->lru, &cc->freepages);
1176 cc->nr_freepages++;
1177}
1178
ff9543fd
MN
1179/* possible outcome of isolate_migratepages */
1180typedef enum {
1181 ISOLATE_ABORT, /* Abort compaction now */
1182 ISOLATE_NONE, /* No pages isolated, continue scanning */
1183 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1184} isolate_migrate_t;
1185
5bbe3547
EM
1186/*
1187 * Allow userspace to control policy on scanning the unevictable LRU for
1188 * compactable pages.
1189 */
1190int sysctl_compact_unevictable_allowed __read_mostly = 1;
1191
ff9543fd 1192/*
edc2ca61
VB
1193 * Isolate all pages that can be migrated from the first suitable block,
1194 * starting at the block pointed to by the migrate scanner pfn within
1195 * compact_control.
ff9543fd
MN
1196 */
1197static isolate_migrate_t isolate_migratepages(struct zone *zone,
1198 struct compact_control *cc)
1199{
e1409c32
JK
1200 unsigned long block_start_pfn;
1201 unsigned long block_end_pfn;
1202 unsigned long low_pfn;
edc2ca61
VB
1203 struct page *page;
1204 const isolate_mode_t isolate_mode =
5bbe3547 1205 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
edc2ca61 1206 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
ff9543fd 1207
edc2ca61
VB
1208 /*
1209 * Start at where we last stopped, or beginning of the zone as
1210 * initialized by compact_zone()
1211 */
1212 low_pfn = cc->migrate_pfn;
06b6640a 1213 block_start_pfn = pageblock_start_pfn(low_pfn);
e1409c32
JK
1214 if (block_start_pfn < zone->zone_start_pfn)
1215 block_start_pfn = zone->zone_start_pfn;
ff9543fd
MN
1216
1217 /* Only scan within a pageblock boundary */
06b6640a 1218 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1219
edc2ca61
VB
1220 /*
1221 * Iterate over whole pageblocks until we find the first suitable.
1222 * Do not cross the free scanner.
1223 */
e1409c32
JK
1224 for (; block_end_pfn <= cc->free_pfn;
1225 low_pfn = block_end_pfn,
1226 block_start_pfn = block_end_pfn,
1227 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1228
edc2ca61
VB
1229 /*
1230 * This can potentially iterate a massively long zone with
1231 * many pageblocks unsuitable, so periodically check if we
1232 * need to schedule, or even abort async compaction.
1233 */
1234 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1235 && compact_should_abort(cc))
1236 break;
ff9543fd 1237
e1409c32
JK
1238 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1239 zone);
7d49d886 1240 if (!page)
edc2ca61
VB
1241 continue;
1242
edc2ca61
VB
1243 /* If isolation recently failed, do not retry */
1244 if (!isolation_suitable(cc, page))
1245 continue;
1246
1247 /*
1248 * For async compaction, also only scan in MOVABLE blocks.
1249 * Async compaction is optimistic to see if the minimum amount
1250 * of work satisfies the allocation.
1251 */
1252 if (cc->mode == MIGRATE_ASYNC &&
1253 !migrate_async_suitable(get_pageblock_migratetype(page)))
1254 continue;
1255
1256 /* Perform the isolation */
e1409c32
JK
1257 low_pfn = isolate_migratepages_block(cc, low_pfn,
1258 block_end_pfn, isolate_mode);
edc2ca61 1259
ff59909a
HD
1260 if (!low_pfn || cc->contended) {
1261 acct_isolated(zone, cc);
edc2ca61 1262 return ISOLATE_ABORT;
ff59909a 1263 }
edc2ca61
VB
1264
1265 /*
1266 * Either we isolated something and proceed with migration. Or
1267 * we failed and compact_zone should decide if we should
1268 * continue or not.
1269 */
1270 break;
1271 }
1272
1273 acct_isolated(zone, cc);
f2849aa0
VB
1274 /* Record where migration scanner will be restarted. */
1275 cc->migrate_pfn = low_pfn;
ff9543fd 1276
edc2ca61 1277 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1278}
1279
21c527a3
YB
1280/*
1281 * order == -1 is expected when compacting via
1282 * /proc/sys/vm/compact_memory
1283 */
1284static inline bool is_via_compact_memory(int order)
1285{
1286 return order == -1;
1287}
1288
ea7ab982 1289static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
6d7ce559 1290 const int migratetype)
748446bb 1291{
8fb74b9f 1292 unsigned int order;
5a03b051 1293 unsigned long watermark;
56de7263 1294
be976572 1295 if (cc->contended || fatal_signal_pending(current))
2d1e1041 1296 return COMPACT_CONTENDED;
748446bb 1297
753341a4 1298 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 1299 if (compact_scanners_met(cc)) {
55b7c4c9 1300 /* Let the next compaction start anew. */
02333641 1301 reset_cached_positions(zone);
55b7c4c9 1302
62997027
MG
1303 /*
1304 * Mark that the PG_migrate_skip information should be cleared
accf6242 1305 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
1306 * flag itself as the decision to be clear should be directly
1307 * based on an allocation request.
1308 */
accf6242 1309 if (cc->direct_compaction)
62997027
MG
1310 zone->compact_blockskip_flush = true;
1311
c8f7de0b
MH
1312 if (cc->whole_zone)
1313 return COMPACT_COMPLETE;
1314 else
1315 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 1316 }
748446bb 1317
21c527a3 1318 if (is_via_compact_memory(cc->order))
56de7263
MG
1319 return COMPACT_CONTINUE;
1320
3957c776
MH
1321 /* Compaction run is not finished if the watermark is not met */
1322 watermark = low_wmark_pages(zone);
3957c776 1323
ebff3980
VB
1324 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1325 cc->alloc_flags))
3957c776
MH
1326 return COMPACT_CONTINUE;
1327
56de7263 1328 /* Direct compactor: Is a suitable page free? */
8fb74b9f
MG
1329 for (order = cc->order; order < MAX_ORDER; order++) {
1330 struct free_area *area = &zone->free_area[order];
2149cdae 1331 bool can_steal;
8fb74b9f
MG
1332
1333 /* Job done if page is free of the right migratetype */
6d7ce559 1334 if (!list_empty(&area->free_list[migratetype]))
8fb74b9f
MG
1335 return COMPACT_PARTIAL;
1336
2149cdae
JK
1337#ifdef CONFIG_CMA
1338 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1339 if (migratetype == MIGRATE_MOVABLE &&
1340 !list_empty(&area->free_list[MIGRATE_CMA]))
1341 return COMPACT_PARTIAL;
1342#endif
1343 /*
1344 * Job done if allocation would steal freepages from
1345 * other migratetype buddy lists.
1346 */
1347 if (find_suitable_fallback(area, order, migratetype,
1348 true, &can_steal) != -1)
56de7263
MG
1349 return COMPACT_PARTIAL;
1350 }
1351
837d026d
JK
1352 return COMPACT_NO_SUITABLE_PAGE;
1353}
1354
ea7ab982
MH
1355static enum compact_result compact_finished(struct zone *zone,
1356 struct compact_control *cc,
1357 const int migratetype)
837d026d
JK
1358{
1359 int ret;
1360
1361 ret = __compact_finished(zone, cc, migratetype);
1362 trace_mm_compaction_finished(zone, cc->order, ret);
1363 if (ret == COMPACT_NO_SUITABLE_PAGE)
1364 ret = COMPACT_CONTINUE;
1365
1366 return ret;
748446bb
MG
1367}
1368
3e7d3449
MG
1369/*
1370 * compaction_suitable: Is this suitable to run compaction on this zone now?
1371 * Returns
1372 * COMPACT_SKIPPED - If there are too few free pages for compaction
1373 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1374 * COMPACT_CONTINUE - If compaction should run now
1375 */
ea7ab982 1376static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 1377 unsigned int alloc_flags,
86a294a8
MH
1378 int classzone_idx,
1379 unsigned long wmark_target)
3e7d3449
MG
1380{
1381 int fragindex;
1382 unsigned long watermark;
1383
21c527a3 1384 if (is_via_compact_memory(order))
3957c776
MH
1385 return COMPACT_CONTINUE;
1386
ebff3980
VB
1387 watermark = low_wmark_pages(zone);
1388 /*
1389 * If watermarks for high-order allocation are already met, there
1390 * should be no need for compaction at all.
1391 */
1392 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1393 alloc_flags))
1394 return COMPACT_PARTIAL;
1395
3e7d3449
MG
1396 /*
1397 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1398 * This is because during migration, copies of pages need to be
1399 * allocated and for a short time, the footprint is higher
1400 */
ebff3980 1401 watermark += (2UL << order);
86a294a8
MH
1402 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1403 alloc_flags, wmark_target))
3e7d3449
MG
1404 return COMPACT_SKIPPED;
1405
1406 /*
1407 * fragmentation index determines if allocation failures are due to
1408 * low memory or external fragmentation
1409 *
ebff3980
VB
1410 * index of -1000 would imply allocations might succeed depending on
1411 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
1412 * index towards 0 implies failure is due to lack of memory
1413 * index towards 1000 implies failure is due to fragmentation
1414 *
1415 * Only compact if a failure would be due to fragmentation.
1416 */
1417 fragindex = fragmentation_index(zone, order);
1418 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
837d026d 1419 return COMPACT_NOT_SUITABLE_ZONE;
3e7d3449 1420
3e7d3449
MG
1421 return COMPACT_CONTINUE;
1422}
1423
ea7ab982 1424enum compact_result compaction_suitable(struct zone *zone, int order,
c603844b
MG
1425 unsigned int alloc_flags,
1426 int classzone_idx)
837d026d 1427{
ea7ab982 1428 enum compact_result ret;
837d026d 1429
86a294a8
MH
1430 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1431 zone_page_state(zone, NR_FREE_PAGES));
837d026d
JK
1432 trace_mm_compaction_suitable(zone, order, ret);
1433 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1434 ret = COMPACT_SKIPPED;
1435
1436 return ret;
1437}
1438
86a294a8
MH
1439bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1440 int alloc_flags)
1441{
1442 struct zone *zone;
1443 struct zoneref *z;
1444
1445 /*
1446 * Make sure at least one zone would pass __compaction_suitable if we continue
1447 * retrying the reclaim.
1448 */
1449 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1450 ac->nodemask) {
1451 unsigned long available;
1452 enum compact_result compact_result;
1453
1454 /*
1455 * Do not consider all the reclaimable memory because we do not
1456 * want to trash just for a single high order allocation which
1457 * is even not guaranteed to appear even if __compaction_suitable
1458 * is happy about the watermark check.
1459 */
1460 available = zone_reclaimable_pages(zone) / order;
1461 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1462 compact_result = __compaction_suitable(zone, order, alloc_flags,
1463 ac_classzone_idx(ac), available);
1464 if (compact_result != COMPACT_SKIPPED &&
1465 compact_result != COMPACT_NOT_SUITABLE_ZONE)
1466 return true;
1467 }
1468
1469 return false;
1470}
1471
ea7ab982 1472static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
748446bb 1473{
ea7ab982 1474 enum compact_result ret;
c89511ab 1475 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 1476 unsigned long end_pfn = zone_end_pfn(zone);
6d7ce559 1477 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
e0b9daeb 1478 const bool sync = cc->mode != MIGRATE_ASYNC;
748446bb 1479
ebff3980
VB
1480 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1481 cc->classzone_idx);
c46649de
MH
1482 /* Compaction is likely to fail */
1483 if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED)
3e7d3449 1484 return ret;
c46649de
MH
1485
1486 /* huh, compaction_suitable is returning something unexpected */
1487 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 1488
d3132e4b
VB
1489 /*
1490 * Clear pageblock skip if there were failures recently and compaction
accf6242 1491 * is about to be retried after being deferred.
d3132e4b 1492 */
accf6242 1493 if (compaction_restarting(zone, cc->order))
d3132e4b
VB
1494 __reset_isolation_suitable(zone);
1495
c89511ab
MG
1496 /*
1497 * Setup to move all movable pages to the end of the zone. Used cached
1498 * information on where the scanners should start but check that it
1499 * is initialised by ensuring the values are within zone boundaries.
1500 */
e0b9daeb 1501 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
c89511ab 1502 cc->free_pfn = zone->compact_cached_free_pfn;
623446e4 1503 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
06b6640a 1504 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
c89511ab
MG
1505 zone->compact_cached_free_pfn = cc->free_pfn;
1506 }
623446e4 1507 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
c89511ab 1508 cc->migrate_pfn = start_pfn;
35979ef3
DR
1509 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1510 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
c89511ab 1511 }
c8f7de0b
MH
1512
1513 if (cc->migrate_pfn == start_pfn)
1514 cc->whole_zone = true;
1515
1a16718c 1516 cc->last_migrated_pfn = 0;
748446bb 1517
16c4a097
JK
1518 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1519 cc->free_pfn, end_pfn, sync);
0eb927c0 1520
748446bb
MG
1521 migrate_prep_local();
1522
6d7ce559
DR
1523 while ((ret = compact_finished(zone, cc, migratetype)) ==
1524 COMPACT_CONTINUE) {
9d502c1c 1525 int err;
748446bb 1526
f9e35b3b
MG
1527 switch (isolate_migratepages(zone, cc)) {
1528 case ISOLATE_ABORT:
2d1e1041 1529 ret = COMPACT_CONTENDED;
5733c7d1 1530 putback_movable_pages(&cc->migratepages);
e64c5237 1531 cc->nr_migratepages = 0;
f9e35b3b
MG
1532 goto out;
1533 case ISOLATE_NONE:
fdaf7f5c
VB
1534 /*
1535 * We haven't isolated and migrated anything, but
1536 * there might still be unflushed migrations from
1537 * previous cc->order aligned block.
1538 */
1539 goto check_drain;
f9e35b3b
MG
1540 case ISOLATE_SUCCESS:
1541 ;
1542 }
748446bb 1543
d53aea3d 1544 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 1545 compaction_free, (unsigned long)cc, cc->mode,
7b2a2d4a 1546 MR_COMPACTION);
748446bb 1547
f8c9301f
VB
1548 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1549 &cc->migratepages);
748446bb 1550
f8c9301f
VB
1551 /* All pages were either migrated or will be released */
1552 cc->nr_migratepages = 0;
9d502c1c 1553 if (err) {
5733c7d1 1554 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
1555 /*
1556 * migrate_pages() may return -ENOMEM when scanners meet
1557 * and we want compact_finished() to detect it
1558 */
f2849aa0 1559 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 1560 ret = COMPACT_CONTENDED;
4bf2bba3
DR
1561 goto out;
1562 }
fdd048e1
VB
1563 /*
1564 * We failed to migrate at least one page in the current
1565 * order-aligned block, so skip the rest of it.
1566 */
1567 if (cc->direct_compaction &&
1568 (cc->mode == MIGRATE_ASYNC)) {
1569 cc->migrate_pfn = block_end_pfn(
1570 cc->migrate_pfn - 1, cc->order);
1571 /* Draining pcplists is useless in this case */
1572 cc->last_migrated_pfn = 0;
1573
1574 }
748446bb 1575 }
fdaf7f5c 1576
fdaf7f5c
VB
1577check_drain:
1578 /*
1579 * Has the migration scanner moved away from the previous
1580 * cc->order aligned block where we migrated from? If yes,
1581 * flush the pages that were freed, so that they can merge and
1582 * compact_finished() can detect immediately if allocation
1583 * would succeed.
1584 */
1a16718c 1585 if (cc->order > 0 && cc->last_migrated_pfn) {
fdaf7f5c
VB
1586 int cpu;
1587 unsigned long current_block_start =
06b6640a 1588 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 1589
1a16718c 1590 if (cc->last_migrated_pfn < current_block_start) {
fdaf7f5c
VB
1591 cpu = get_cpu();
1592 lru_add_drain_cpu(cpu);
1593 drain_local_pages(zone);
1594 put_cpu();
1595 /* No more flushing until we migrate again */
1a16718c 1596 cc->last_migrated_pfn = 0;
fdaf7f5c
VB
1597 }
1598 }
1599
748446bb
MG
1600 }
1601
f9e35b3b 1602out:
6bace090
VB
1603 /*
1604 * Release free pages and update where the free scanner should restart,
1605 * so we don't leave any returned pages behind in the next attempt.
1606 */
1607 if (cc->nr_freepages > 0) {
1608 unsigned long free_pfn = release_freepages(&cc->freepages);
1609
1610 cc->nr_freepages = 0;
1611 VM_BUG_ON(free_pfn == 0);
1612 /* The cached pfn is always the first in a pageblock */
06b6640a 1613 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
1614 /*
1615 * Only go back, not forward. The cached pfn might have been
1616 * already reset to zone end in compact_finished()
1617 */
1618 if (free_pfn > zone->compact_cached_free_pfn)
1619 zone->compact_cached_free_pfn = free_pfn;
1620 }
748446bb 1621
16c4a097
JK
1622 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1623 cc->free_pfn, end_pfn, sync, ret);
0eb927c0 1624
2d1e1041
VB
1625 if (ret == COMPACT_CONTENDED)
1626 ret = COMPACT_PARTIAL;
1627
748446bb
MG
1628 return ret;
1629}
76ab0f53 1630
ea7ab982 1631static enum compact_result compact_zone_order(struct zone *zone, int order,
ebff3980 1632 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
c603844b 1633 unsigned int alloc_flags, int classzone_idx)
56de7263 1634{
ea7ab982 1635 enum compact_result ret;
56de7263
MG
1636 struct compact_control cc = {
1637 .nr_freepages = 0,
1638 .nr_migratepages = 0,
1639 .order = order,
6d7ce559 1640 .gfp_mask = gfp_mask,
56de7263 1641 .zone = zone,
e0b9daeb 1642 .mode = mode,
ebff3980
VB
1643 .alloc_flags = alloc_flags,
1644 .classzone_idx = classzone_idx,
accf6242 1645 .direct_compaction = true,
56de7263
MG
1646 };
1647 INIT_LIST_HEAD(&cc.freepages);
1648 INIT_LIST_HEAD(&cc.migratepages);
1649
e64c5237
SL
1650 ret = compact_zone(zone, &cc);
1651
1652 VM_BUG_ON(!list_empty(&cc.freepages));
1653 VM_BUG_ON(!list_empty(&cc.migratepages));
1654
1655 *contended = cc.contended;
1656 return ret;
56de7263
MG
1657}
1658
5e771905
MG
1659int sysctl_extfrag_threshold = 500;
1660
56de7263
MG
1661/**
1662 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 1663 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
1664 * @order: The order of the current allocation
1665 * @alloc_flags: The allocation flags of the current allocation
1666 * @ac: The context of current allocation
e0b9daeb 1667 * @mode: The migration mode for async, sync light, or sync migration
1f9efdef
VB
1668 * @contended: Return value that determines if compaction was aborted due to
1669 * need_resched() or lock contention
56de7263
MG
1670 *
1671 * This is the main entry point for direct page compaction.
1672 */
ea7ab982 1673enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b
MG
1674 unsigned int alloc_flags, const struct alloc_context *ac,
1675 enum migrate_mode mode, int *contended)
56de7263 1676{
56de7263
MG
1677 int may_enter_fs = gfp_mask & __GFP_FS;
1678 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
1679 struct zoneref *z;
1680 struct zone *zone;
1d4746d3 1681 enum compact_result rc = COMPACT_SKIPPED;
1f9efdef
VB
1682 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1683
1684 *contended = COMPACT_CONTENDED_NONE;
56de7263 1685
4ffb6335 1686 /* Check if the GFP flags allow compaction */
c5a73c3d 1687 if (!order || !may_enter_fs || !may_perform_io)
53853e2d 1688 return COMPACT_SKIPPED;
56de7263 1689
837d026d
JK
1690 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1691
56de7263 1692 /* Compact each zone in the list */
1a6d53a1
VB
1693 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1694 ac->nodemask) {
ea7ab982 1695 enum compact_result status;
1f9efdef 1696 int zone_contended;
56de7263 1697
1d4746d3
MH
1698 if (compaction_deferred(zone, order)) {
1699 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 1700 continue;
1d4746d3 1701 }
53853e2d 1702
e0b9daeb 1703 status = compact_zone_order(zone, order, gfp_mask, mode,
1a6d53a1 1704 &zone_contended, alloc_flags,
93ea9964 1705 ac_classzone_idx(ac));
56de7263 1706 rc = max(status, rc);
1f9efdef
VB
1707 /*
1708 * It takes at least one zone that wasn't lock contended
1709 * to clear all_zones_contended.
1710 */
1711 all_zones_contended &= zone_contended;
56de7263 1712
3e7d3449 1713 /* If a normal allocation would succeed, stop compacting */
ebff3980 1714 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
93ea9964 1715 ac_classzone_idx(ac), alloc_flags)) {
53853e2d
VB
1716 /*
1717 * We think the allocation will succeed in this zone,
1718 * but it is not certain, hence the false. The caller
1719 * will repeat this with true if allocation indeed
1720 * succeeds in this zone.
1721 */
1722 compaction_defer_reset(zone, order, false);
1f9efdef
VB
1723 /*
1724 * It is possible that async compaction aborted due to
1725 * need_resched() and the watermarks were ok thanks to
1726 * somebody else freeing memory. The allocation can
1727 * however still fail so we better signal the
1728 * need_resched() contention anyway (this will not
1729 * prevent the allocation attempt).
1730 */
1731 if (zone_contended == COMPACT_CONTENDED_SCHED)
1732 *contended = COMPACT_CONTENDED_SCHED;
1733
1734 goto break_loop;
1735 }
1736
c8f7de0b
MH
1737 if (mode != MIGRATE_ASYNC && (status == COMPACT_COMPLETE ||
1738 status == COMPACT_PARTIAL_SKIPPED)) {
53853e2d
VB
1739 /*
1740 * We think that allocation won't succeed in this zone
1741 * so we defer compaction there. If it ends up
1742 * succeeding after all, it will be reset.
1743 */
1744 defer_compaction(zone, order);
1745 }
1f9efdef
VB
1746
1747 /*
1748 * We might have stopped compacting due to need_resched() in
1749 * async compaction, or due to a fatal signal detected. In that
1750 * case do not try further zones and signal need_resched()
1751 * contention.
1752 */
1753 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1754 || fatal_signal_pending(current)) {
1755 *contended = COMPACT_CONTENDED_SCHED;
1756 goto break_loop;
1757 }
1758
1759 continue;
1760break_loop:
1761 /*
1762 * We might not have tried all the zones, so be conservative
1763 * and assume they are not all lock contended.
1764 */
1765 all_zones_contended = 0;
1766 break;
56de7263
MG
1767 }
1768
1f9efdef
VB
1769 /*
1770 * If at least one zone wasn't deferred or skipped, we report if all
1771 * zones that were tried were lock contended.
1772 */
1d4746d3 1773 if (rc > COMPACT_INACTIVE && all_zones_contended)
1f9efdef
VB
1774 *contended = COMPACT_CONTENDED_LOCK;
1775
56de7263
MG
1776 return rc;
1777}
1778
1779
76ab0f53 1780/* Compact all zones within a node */
7103f16d 1781static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
76ab0f53
MG
1782{
1783 int zoneid;
76ab0f53
MG
1784 struct zone *zone;
1785
76ab0f53 1786 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
1787
1788 zone = &pgdat->node_zones[zoneid];
1789 if (!populated_zone(zone))
1790 continue;
1791
7be62de9
RR
1792 cc->nr_freepages = 0;
1793 cc->nr_migratepages = 0;
1794 cc->zone = zone;
1795 INIT_LIST_HEAD(&cc->freepages);
1796 INIT_LIST_HEAD(&cc->migratepages);
76ab0f53 1797
195b0c60
GK
1798 /*
1799 * When called via /proc/sys/vm/compact_memory
1800 * this makes sure we compact the whole zone regardless of
1801 * cached scanner positions.
1802 */
21c527a3 1803 if (is_via_compact_memory(cc->order))
195b0c60
GK
1804 __reset_isolation_suitable(zone);
1805
21c527a3
YB
1806 if (is_via_compact_memory(cc->order) ||
1807 !compaction_deferred(zone, cc->order))
7be62de9 1808 compact_zone(zone, cc);
76ab0f53 1809
7be62de9
RR
1810 VM_BUG_ON(!list_empty(&cc->freepages));
1811 VM_BUG_ON(!list_empty(&cc->migratepages));
75469345
JK
1812
1813 if (is_via_compact_memory(cc->order))
1814 continue;
1815
1816 if (zone_watermark_ok(zone, cc->order,
1817 low_wmark_pages(zone), 0, 0))
1818 compaction_defer_reset(zone, cc->order, false);
76ab0f53 1819 }
76ab0f53
MG
1820}
1821
7103f16d 1822void compact_pgdat(pg_data_t *pgdat, int order)
7be62de9
RR
1823{
1824 struct compact_control cc = {
1825 .order = order,
e0b9daeb 1826 .mode = MIGRATE_ASYNC,
7be62de9
RR
1827 };
1828
3a7200af
MG
1829 if (!order)
1830 return;
1831
7103f16d 1832 __compact_pgdat(pgdat, &cc);
7be62de9
RR
1833}
1834
7103f16d 1835static void compact_node(int nid)
7be62de9 1836{
7be62de9
RR
1837 struct compact_control cc = {
1838 .order = -1,
e0b9daeb 1839 .mode = MIGRATE_SYNC,
91ca9186 1840 .ignore_skip_hint = true,
7be62de9
RR
1841 };
1842
7103f16d 1843 __compact_pgdat(NODE_DATA(nid), &cc);
7be62de9
RR
1844}
1845
76ab0f53 1846/* Compact all nodes in the system */
7964c06d 1847static void compact_nodes(void)
76ab0f53
MG
1848{
1849 int nid;
1850
8575ec29
HD
1851 /* Flush pending updates to the LRU lists */
1852 lru_add_drain_all();
1853
76ab0f53
MG
1854 for_each_online_node(nid)
1855 compact_node(nid);
76ab0f53
MG
1856}
1857
1858/* The written value is actually unused, all memory is compacted */
1859int sysctl_compact_memory;
1860
fec4eb2c
YB
1861/*
1862 * This is the entry point for compacting all nodes via
1863 * /proc/sys/vm/compact_memory
1864 */
76ab0f53
MG
1865int sysctl_compaction_handler(struct ctl_table *table, int write,
1866 void __user *buffer, size_t *length, loff_t *ppos)
1867{
1868 if (write)
7964c06d 1869 compact_nodes();
76ab0f53
MG
1870
1871 return 0;
1872}
ed4a6d7f 1873
5e771905
MG
1874int sysctl_extfrag_handler(struct ctl_table *table, int write,
1875 void __user *buffer, size_t *length, loff_t *ppos)
1876{
1877 proc_dointvec_minmax(table, write, buffer, length, ppos);
1878
1879 return 0;
1880}
1881
ed4a6d7f 1882#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
74e77fb9 1883static ssize_t sysfs_compact_node(struct device *dev,
10fbcf4c 1884 struct device_attribute *attr,
ed4a6d7f
MG
1885 const char *buf, size_t count)
1886{
8575ec29
HD
1887 int nid = dev->id;
1888
1889 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1890 /* Flush pending updates to the LRU lists */
1891 lru_add_drain_all();
1892
1893 compact_node(nid);
1894 }
ed4a6d7f
MG
1895
1896 return count;
1897}
10fbcf4c 1898static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
ed4a6d7f
MG
1899
1900int compaction_register_node(struct node *node)
1901{
10fbcf4c 1902 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
1903}
1904
1905void compaction_unregister_node(struct node *node)
1906{
10fbcf4c 1907 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
1908}
1909#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 1910
698b1b30
VB
1911static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1912{
172400c6 1913 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
698b1b30
VB
1914}
1915
1916static bool kcompactd_node_suitable(pg_data_t *pgdat)
1917{
1918 int zoneid;
1919 struct zone *zone;
1920 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1921
6cd9dc3e 1922 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
698b1b30
VB
1923 zone = &pgdat->node_zones[zoneid];
1924
1925 if (!populated_zone(zone))
1926 continue;
1927
1928 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1929 classzone_idx) == COMPACT_CONTINUE)
1930 return true;
1931 }
1932
1933 return false;
1934}
1935
1936static void kcompactd_do_work(pg_data_t *pgdat)
1937{
1938 /*
1939 * With no special task, compact all zones so that a page of requested
1940 * order is allocatable.
1941 */
1942 int zoneid;
1943 struct zone *zone;
1944 struct compact_control cc = {
1945 .order = pgdat->kcompactd_max_order,
1946 .classzone_idx = pgdat->kcompactd_classzone_idx,
1947 .mode = MIGRATE_SYNC_LIGHT,
1948 .ignore_skip_hint = true,
1949
1950 };
1951 bool success = false;
1952
1953 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1954 cc.classzone_idx);
1955 count_vm_event(KCOMPACTD_WAKE);
1956
6cd9dc3e 1957 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
698b1b30
VB
1958 int status;
1959
1960 zone = &pgdat->node_zones[zoneid];
1961 if (!populated_zone(zone))
1962 continue;
1963
1964 if (compaction_deferred(zone, cc.order))
1965 continue;
1966
1967 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1968 COMPACT_CONTINUE)
1969 continue;
1970
1971 cc.nr_freepages = 0;
1972 cc.nr_migratepages = 0;
1973 cc.zone = zone;
1974 INIT_LIST_HEAD(&cc.freepages);
1975 INIT_LIST_HEAD(&cc.migratepages);
1976
172400c6
VB
1977 if (kthread_should_stop())
1978 return;
698b1b30
VB
1979 status = compact_zone(zone, &cc);
1980
1981 if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
1982 cc.classzone_idx, 0)) {
1983 success = true;
1984 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 1985 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
698b1b30
VB
1986 /*
1987 * We use sync migration mode here, so we defer like
1988 * sync direct compaction does.
1989 */
1990 defer_compaction(zone, cc.order);
1991 }
1992
1993 VM_BUG_ON(!list_empty(&cc.freepages));
1994 VM_BUG_ON(!list_empty(&cc.migratepages));
1995 }
1996
1997 /*
1998 * Regardless of success, we are done until woken up next. But remember
1999 * the requested order/classzone_idx in case it was higher/tighter than
2000 * our current ones
2001 */
2002 if (pgdat->kcompactd_max_order <= cc.order)
2003 pgdat->kcompactd_max_order = 0;
2004 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2005 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2006}
2007
2008void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2009{
2010 if (!order)
2011 return;
2012
2013 if (pgdat->kcompactd_max_order < order)
2014 pgdat->kcompactd_max_order = order;
2015
2016 if (pgdat->kcompactd_classzone_idx > classzone_idx)
2017 pgdat->kcompactd_classzone_idx = classzone_idx;
2018
2019 if (!waitqueue_active(&pgdat->kcompactd_wait))
2020 return;
2021
2022 if (!kcompactd_node_suitable(pgdat))
2023 return;
2024
2025 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2026 classzone_idx);
2027 wake_up_interruptible(&pgdat->kcompactd_wait);
2028}
2029
2030/*
2031 * The background compaction daemon, started as a kernel thread
2032 * from the init process.
2033 */
2034static int kcompactd(void *p)
2035{
2036 pg_data_t *pgdat = (pg_data_t*)p;
2037 struct task_struct *tsk = current;
2038
2039 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2040
2041 if (!cpumask_empty(cpumask))
2042 set_cpus_allowed_ptr(tsk, cpumask);
2043
2044 set_freezable();
2045
2046 pgdat->kcompactd_max_order = 0;
2047 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2048
2049 while (!kthread_should_stop()) {
2050 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2051 wait_event_freezable(pgdat->kcompactd_wait,
2052 kcompactd_work_requested(pgdat));
2053
2054 kcompactd_do_work(pgdat);
2055 }
2056
2057 return 0;
2058}
2059
2060/*
2061 * This kcompactd start function will be called by init and node-hot-add.
2062 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2063 */
2064int kcompactd_run(int nid)
2065{
2066 pg_data_t *pgdat = NODE_DATA(nid);
2067 int ret = 0;
2068
2069 if (pgdat->kcompactd)
2070 return 0;
2071
2072 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2073 if (IS_ERR(pgdat->kcompactd)) {
2074 pr_err("Failed to start kcompactd on node %d\n", nid);
2075 ret = PTR_ERR(pgdat->kcompactd);
2076 pgdat->kcompactd = NULL;
2077 }
2078 return ret;
2079}
2080
2081/*
2082 * Called by memory hotplug when all memory in a node is offlined. Caller must
2083 * hold mem_hotplug_begin/end().
2084 */
2085void kcompactd_stop(int nid)
2086{
2087 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2088
2089 if (kcompactd) {
2090 kthread_stop(kcompactd);
2091 NODE_DATA(nid)->kcompactd = NULL;
2092 }
2093}
2094
2095/*
2096 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2097 * not required for correctness. So if the last cpu in a node goes
2098 * away, we get changed to run anywhere: as the first one comes back,
2099 * restore their cpu bindings.
2100 */
2101static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2102 void *hcpu)
2103{
2104 int nid;
2105
2106 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2107 for_each_node_state(nid, N_MEMORY) {
2108 pg_data_t *pgdat = NODE_DATA(nid);
2109 const struct cpumask *mask;
2110
2111 mask = cpumask_of_node(pgdat->node_id);
2112
2113 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2114 /* One of our CPUs online: restore mask */
2115 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2116 }
2117 }
2118 return NOTIFY_OK;
2119}
2120
2121static int __init kcompactd_init(void)
2122{
2123 int nid;
2124
2125 for_each_node_state(nid, N_MEMORY)
2126 kcompactd_run(nid);
2127 hotcpu_notifier(cpu_callback, 0);
2128 return 0;
2129}
2130subsys_initcall(kcompactd_init)
2131
ff9543fd 2132#endif /* CONFIG_COMPACTION */