]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/compaction.c
mm,hugetlb: split prep_new_huge_page functionality
[thirdparty/linux.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a
MK
28#ifdef CONFIG_COMPACTION
29static inline void count_compact_event(enum vm_event_item item)
30{
31 count_vm_event(item);
32}
33
34static inline void count_compact_events(enum vm_event_item item, long delta)
35{
36 count_vm_events(item, delta);
37}
38#else
39#define count_compact_event(item) do { } while (0)
40#define count_compact_events(item, delta) do { } while (0)
41#endif
42
ff9543fd
MN
43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
b7aba698
MG
45#define CREATE_TRACE_POINTS
46#include <trace/events/compaction.h>
47
06b6640a
VB
48#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
facdaa91
NG
53/*
54 * Fragmentation score check interval for proactive compaction purposes.
55 */
d34c0a75 56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
facdaa91
NG
57
58/*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63#if defined CONFIG_TRANSPARENT_HUGEPAGE
64#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
25788738 65#elif defined CONFIG_HUGETLBFS
facdaa91
NG
66#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
67#else
68#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69#endif
70
748446bb
MG
71static unsigned long release_freepages(struct list_head *freelist)
72{
73 struct page *page, *next;
6bace090 74 unsigned long high_pfn = 0;
748446bb
MG
75
76 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 77 unsigned long pfn = page_to_pfn(page);
748446bb
MG
78 list_del(&page->lru);
79 __free_page(page);
6bace090
VB
80 if (pfn > high_pfn)
81 high_pfn = pfn;
748446bb
MG
82 }
83
6bace090 84 return high_pfn;
748446bb
MG
85}
86
4469ab98 87static void split_map_pages(struct list_head *list)
ff9543fd 88{
66c64223
JK
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
91 LIST_HEAD(tmp_list);
92
93 list_for_each_entry_safe(page, next, list, lru) {
94 list_del(&page->lru);
95
96 order = page_private(page);
97 nr_pages = 1 << order;
66c64223 98
46f24fd8 99 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
100 if (order)
101 split_page(page, order);
ff9543fd 102
66c64223
JK
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
105 page++;
106 }
ff9543fd 107 }
66c64223
JK
108
109 list_splice(&tmp_list, list);
ff9543fd
MN
110}
111
bb13ffeb 112#ifdef CONFIG_COMPACTION
24e2716f 113
bda807d4
MK
114int PageMovable(struct page *page)
115{
116 struct address_space *mapping;
117
118 VM_BUG_ON_PAGE(!PageLocked(page), page);
119 if (!__PageMovable(page))
120 return 0;
121
122 mapping = page_mapping(page);
123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 return 1;
125
126 return 0;
127}
128EXPORT_SYMBOL(PageMovable);
129
130void __SetPageMovable(struct page *page, struct address_space *mapping)
131{
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135}
136EXPORT_SYMBOL(__SetPageMovable);
137
138void __ClearPageMovable(struct page *page)
139{
bda807d4
MK
140 VM_BUG_ON_PAGE(!PageMovable(page), page);
141 /*
142 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143 * flag so that VM can catch up released page by driver after isolation.
144 * With it, VM migration doesn't try to put it back.
145 */
146 page->mapping = (void *)((unsigned long)page->mapping &
147 PAGE_MAPPING_MOVABLE);
148}
149EXPORT_SYMBOL(__ClearPageMovable);
150
24e2716f
JK
151/* Do not skip compaction more than 64 times */
152#define COMPACT_MAX_DEFER_SHIFT 6
153
154/*
155 * Compaction is deferred when compaction fails to result in a page
860b3272 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up
24e2716f
JK
157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158 */
2271b016 159static void defer_compaction(struct zone *zone, int order)
24e2716f
JK
160{
161 zone->compact_considered = 0;
162 zone->compact_defer_shift++;
163
164 if (order < zone->compact_order_failed)
165 zone->compact_order_failed = order;
166
167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170 trace_mm_compaction_defer_compaction(zone, order);
171}
172
173/* Returns true if compaction should be skipped this time */
2271b016 174static bool compaction_deferred(struct zone *zone, int order)
24e2716f
JK
175{
176 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178 if (order < zone->compact_order_failed)
179 return false;
180
181 /* Avoid possible overflow */
62b35fe0 182 if (++zone->compact_considered >= defer_limit) {
24e2716f 183 zone->compact_considered = defer_limit;
24e2716f 184 return false;
62b35fe0 185 }
24e2716f
JK
186
187 trace_mm_compaction_deferred(zone, order);
188
189 return true;
190}
191
192/*
193 * Update defer tracking counters after successful compaction of given order,
194 * which means an allocation either succeeded (alloc_success == true) or is
195 * expected to succeed.
196 */
197void compaction_defer_reset(struct zone *zone, int order,
198 bool alloc_success)
199{
200 if (alloc_success) {
201 zone->compact_considered = 0;
202 zone->compact_defer_shift = 0;
203 }
204 if (order >= zone->compact_order_failed)
205 zone->compact_order_failed = order + 1;
206
207 trace_mm_compaction_defer_reset(zone, order);
208}
209
210/* Returns true if restarting compaction after many failures */
2271b016 211static bool compaction_restarting(struct zone *zone, int order)
24e2716f
JK
212{
213 if (order < zone->compact_order_failed)
214 return false;
215
216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218}
219
bb13ffeb
MG
220/* Returns true if the pageblock should be scanned for pages to isolate. */
221static inline bool isolation_suitable(struct compact_control *cc,
222 struct page *page)
223{
224 if (cc->ignore_skip_hint)
225 return true;
226
227 return !get_pageblock_skip(page);
228}
229
02333641
VB
230static void reset_cached_positions(struct zone *zone)
231{
232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 234 zone->compact_cached_free_pfn =
06b6640a 235 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
236}
237
21dc7e02 238/*
2271b016 239 * Compound pages of >= pageblock_order should consistently be skipped until
b527cfe5
VB
240 * released. It is always pointless to compact pages of such order (if they are
241 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 242 */
b527cfe5 243static bool pageblock_skip_persistent(struct page *page)
21dc7e02 244{
b527cfe5 245 if (!PageCompound(page))
21dc7e02 246 return false;
b527cfe5
VB
247
248 page = compound_head(page);
249
250 if (compound_order(page) >= pageblock_order)
251 return true;
252
253 return false;
21dc7e02
DR
254}
255
e332f741
MG
256static bool
257__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258 bool check_target)
259{
260 struct page *page = pfn_to_online_page(pfn);
6b0868c8 261 struct page *block_page;
e332f741
MG
262 struct page *end_page;
263 unsigned long block_pfn;
264
265 if (!page)
266 return false;
267 if (zone != page_zone(page))
268 return false;
269 if (pageblock_skip_persistent(page))
270 return false;
271
272 /*
273 * If skip is already cleared do no further checking once the
274 * restart points have been set.
275 */
276 if (check_source && check_target && !get_pageblock_skip(page))
277 return true;
278
279 /*
280 * If clearing skip for the target scanner, do not select a
281 * non-movable pageblock as the starting point.
282 */
283 if (!check_source && check_target &&
284 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285 return false;
286
6b0868c8
MG
287 /* Ensure the start of the pageblock or zone is online and valid */
288 block_pfn = pageblock_start_pfn(pfn);
a2e9a5af
VB
289 block_pfn = max(block_pfn, zone->zone_start_pfn);
290 block_page = pfn_to_online_page(block_pfn);
6b0868c8
MG
291 if (block_page) {
292 page = block_page;
293 pfn = block_pfn;
294 }
295
296 /* Ensure the end of the pageblock or zone is online and valid */
a2e9a5af 297 block_pfn = pageblock_end_pfn(pfn) - 1;
6b0868c8
MG
298 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299 end_page = pfn_to_online_page(block_pfn);
300 if (!end_page)
301 return false;
302
e332f741
MG
303 /*
304 * Only clear the hint if a sample indicates there is either a
305 * free page or an LRU page in the block. One or other condition
306 * is necessary for the block to be a migration source/target.
307 */
e332f741
MG
308 do {
309 if (pfn_valid_within(pfn)) {
310 if (check_source && PageLRU(page)) {
311 clear_pageblock_skip(page);
312 return true;
313 }
314
315 if (check_target && PageBuddy(page)) {
316 clear_pageblock_skip(page);
317 return true;
318 }
319 }
320
321 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
322 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
a2e9a5af 323 } while (page <= end_page);
e332f741
MG
324
325 return false;
326}
327
bb13ffeb
MG
328/*
329 * This function is called to clear all cached information on pageblocks that
330 * should be skipped for page isolation when the migrate and free page scanner
331 * meet.
332 */
62997027 333static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 334{
e332f741 335 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 336 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
337 unsigned long reset_migrate = free_pfn;
338 unsigned long reset_free = migrate_pfn;
339 bool source_set = false;
340 bool free_set = false;
341
342 if (!zone->compact_blockskip_flush)
343 return;
bb13ffeb 344
62997027 345 zone->compact_blockskip_flush = false;
bb13ffeb 346
e332f741
MG
347 /*
348 * Walk the zone and update pageblock skip information. Source looks
349 * for PageLRU while target looks for PageBuddy. When the scanner
350 * is found, both PageBuddy and PageLRU are checked as the pageblock
351 * is suitable as both source and target.
352 */
353 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
354 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
355 cond_resched();
356
e332f741
MG
357 /* Update the migrate PFN */
358 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
359 migrate_pfn < reset_migrate) {
360 source_set = true;
361 reset_migrate = migrate_pfn;
362 zone->compact_init_migrate_pfn = reset_migrate;
363 zone->compact_cached_migrate_pfn[0] = reset_migrate;
364 zone->compact_cached_migrate_pfn[1] = reset_migrate;
365 }
bb13ffeb 366
e332f741
MG
367 /* Update the free PFN */
368 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
369 free_pfn > reset_free) {
370 free_set = true;
371 reset_free = free_pfn;
372 zone->compact_init_free_pfn = reset_free;
373 zone->compact_cached_free_pfn = reset_free;
374 }
bb13ffeb 375 }
02333641 376
e332f741
MG
377 /* Leave no distance if no suitable block was reset */
378 if (reset_migrate >= reset_free) {
379 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
380 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
381 zone->compact_cached_free_pfn = free_pfn;
382 }
bb13ffeb
MG
383}
384
62997027
MG
385void reset_isolation_suitable(pg_data_t *pgdat)
386{
387 int zoneid;
388
389 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
390 struct zone *zone = &pgdat->node_zones[zoneid];
391 if (!populated_zone(zone))
392 continue;
393
394 /* Only flush if a full compaction finished recently */
395 if (zone->compact_blockskip_flush)
396 __reset_isolation_suitable(zone);
397 }
398}
399
e380bebe
MG
400/*
401 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
402 * locks are not required for read/writers. Returns true if it was already set.
403 */
404static bool test_and_set_skip(struct compact_control *cc, struct page *page,
405 unsigned long pfn)
406{
407 bool skip;
408
409 /* Do no update if skip hint is being ignored */
410 if (cc->ignore_skip_hint)
411 return false;
412
413 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
414 return false;
415
416 skip = get_pageblock_skip(page);
417 if (!skip && !cc->no_set_skip_hint)
418 set_pageblock_skip(page);
419
420 return skip;
421}
422
423static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
424{
425 struct zone *zone = cc->zone;
426
427 pfn = pageblock_end_pfn(pfn);
428
429 /* Set for isolation rather than compaction */
430 if (cc->no_set_skip_hint)
431 return;
432
433 if (pfn > zone->compact_cached_migrate_pfn[0])
434 zone->compact_cached_migrate_pfn[0] = pfn;
435 if (cc->mode != MIGRATE_ASYNC &&
436 pfn > zone->compact_cached_migrate_pfn[1])
437 zone->compact_cached_migrate_pfn[1] = pfn;
438}
439
bb13ffeb
MG
440/*
441 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 442 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 443 */
c89511ab 444static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 445 struct page *page, unsigned long pfn)
bb13ffeb 446{
c89511ab 447 struct zone *zone = cc->zone;
6815bf3f 448
2583d671 449 if (cc->no_set_skip_hint)
6815bf3f
JK
450 return;
451
bb13ffeb
MG
452 if (!page)
453 return;
454
edc2ca61 455 set_pageblock_skip(page);
c89511ab 456
35979ef3 457 /* Update where async and sync compaction should restart */
e380bebe
MG
458 if (pfn < zone->compact_cached_free_pfn)
459 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
460}
461#else
462static inline bool isolation_suitable(struct compact_control *cc,
463 struct page *page)
464{
465 return true;
466}
467
b527cfe5 468static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
469{
470 return false;
471}
472
473static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 474 struct page *page, unsigned long pfn)
bb13ffeb
MG
475{
476}
e380bebe
MG
477
478static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
479{
480}
481
482static bool test_and_set_skip(struct compact_control *cc, struct page *page,
483 unsigned long pfn)
484{
485 return false;
486}
bb13ffeb
MG
487#endif /* CONFIG_COMPACTION */
488
8b44d279
VB
489/*
490 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
491 * very heavily contended. For async compaction, trylock and record if the
492 * lock is contended. The lock will still be acquired but compaction will
493 * abort when the current block is finished regardless of success rate.
494 * Sync compaction acquires the lock.
8b44d279 495 *
cb2dcaf0 496 * Always returns true which makes it easier to track lock state in callers.
8b44d279 497 */
cb2dcaf0 498static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 499 struct compact_control *cc)
77337ede 500 __acquires(lock)
2a1402aa 501{
cb2dcaf0
MG
502 /* Track if the lock is contended in async mode */
503 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
504 if (spin_trylock_irqsave(lock, *flags))
505 return true;
506
507 cc->contended = true;
8b44d279 508 }
1f9efdef 509
cb2dcaf0 510 spin_lock_irqsave(lock, *flags);
8b44d279 511 return true;
2a1402aa
MG
512}
513
c67fe375
MG
514/*
515 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
516 * very heavily contended. The lock should be periodically unlocked to avoid
517 * having disabled IRQs for a long time, even when there is nobody waiting on
518 * the lock. It might also be that allowing the IRQs will result in
519 * need_resched() becoming true. If scheduling is needed, async compaction
520 * aborts. Sync compaction schedules.
521 * Either compaction type will also abort if a fatal signal is pending.
522 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 523 *
8b44d279
VB
524 * Returns true if compaction should abort due to fatal signal pending, or
525 * async compaction due to need_resched()
526 * Returns false when compaction can continue (sync compaction might have
527 * scheduled)
c67fe375 528 */
8b44d279
VB
529static bool compact_unlock_should_abort(spinlock_t *lock,
530 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 531{
8b44d279
VB
532 if (*locked) {
533 spin_unlock_irqrestore(lock, flags);
534 *locked = false;
535 }
1f9efdef 536
8b44d279 537 if (fatal_signal_pending(current)) {
c3486f53 538 cc->contended = true;
8b44d279
VB
539 return true;
540 }
c67fe375 541
cf66f070 542 cond_resched();
be976572
VB
543
544 return false;
545}
546
85aa125f 547/*
9e4be470
JM
548 * Isolate free pages onto a private freelist. If @strict is true, will abort
549 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
550 * (even though it may still end up isolating some pages).
85aa125f 551 */
f40d1e42 552static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 553 unsigned long *start_pfn,
85aa125f
MN
554 unsigned long end_pfn,
555 struct list_head *freelist,
4fca9730 556 unsigned int stride,
85aa125f 557 bool strict)
748446bb 558{
b7aba698 559 int nr_scanned = 0, total_isolated = 0;
d097a6f6 560 struct page *cursor;
b8b2d825 561 unsigned long flags = 0;
f40d1e42 562 bool locked = false;
e14c720e 563 unsigned long blockpfn = *start_pfn;
66c64223 564 unsigned int order;
748446bb 565
4fca9730
MG
566 /* Strict mode is for isolation, speed is secondary */
567 if (strict)
568 stride = 1;
569
748446bb
MG
570 cursor = pfn_to_page(blockpfn);
571
f40d1e42 572 /* Isolate free pages. */
4fca9730 573 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
66c64223 574 int isolated;
748446bb
MG
575 struct page *page = cursor;
576
8b44d279
VB
577 /*
578 * Periodically drop the lock (if held) regardless of its
579 * contention, to give chance to IRQs. Abort if fatal signal
580 * pending or async compaction detects need_resched()
581 */
582 if (!(blockpfn % SWAP_CLUSTER_MAX)
583 && compact_unlock_should_abort(&cc->zone->lock, flags,
584 &locked, cc))
585 break;
586
b7aba698 587 nr_scanned++;
f40d1e42 588 if (!pfn_valid_within(blockpfn))
2af120bc
LA
589 goto isolate_fail;
590
9fcd6d2e
VB
591 /*
592 * For compound pages such as THP and hugetlbfs, we can save
593 * potentially a lot of iterations if we skip them at once.
594 * The check is racy, but we can consider only valid values
595 * and the only danger is skipping too much.
596 */
597 if (PageCompound(page)) {
21dc7e02
DR
598 const unsigned int order = compound_order(page);
599
d3c85bad 600 if (likely(order < MAX_ORDER)) {
21dc7e02
DR
601 blockpfn += (1UL << order) - 1;
602 cursor += (1UL << order) - 1;
9fcd6d2e 603 }
9fcd6d2e
VB
604 goto isolate_fail;
605 }
606
f40d1e42 607 if (!PageBuddy(page))
2af120bc 608 goto isolate_fail;
f40d1e42
MG
609
610 /*
69b7189f
VB
611 * If we already hold the lock, we can skip some rechecking.
612 * Note that if we hold the lock now, checked_pageblock was
613 * already set in some previous iteration (or strict is true),
614 * so it is correct to skip the suitable migration target
615 * recheck as well.
f40d1e42 616 */
69b7189f 617 if (!locked) {
cb2dcaf0 618 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 619 &flags, cc);
f40d1e42 620
69b7189f
VB
621 /* Recheck this is a buddy page under lock */
622 if (!PageBuddy(page))
623 goto isolate_fail;
624 }
748446bb 625
66c64223 626 /* Found a free page, will break it into order-0 pages */
ab130f91 627 order = buddy_order(page);
66c64223 628 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
629 if (!isolated)
630 break;
66c64223 631 set_page_private(page, order);
a4f04f2c 632
748446bb 633 total_isolated += isolated;
a4f04f2c 634 cc->nr_freepages += isolated;
66c64223
JK
635 list_add_tail(&page->lru, freelist);
636
a4f04f2c
DR
637 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
638 blockpfn += isolated;
639 break;
748446bb 640 }
a4f04f2c
DR
641 /* Advance to the end of split page */
642 blockpfn += isolated - 1;
643 cursor += isolated - 1;
644 continue;
2af120bc
LA
645
646isolate_fail:
647 if (strict)
648 break;
649 else
650 continue;
651
748446bb
MG
652 }
653
a4f04f2c
DR
654 if (locked)
655 spin_unlock_irqrestore(&cc->zone->lock, flags);
656
9fcd6d2e
VB
657 /*
658 * There is a tiny chance that we have read bogus compound_order(),
659 * so be careful to not go outside of the pageblock.
660 */
661 if (unlikely(blockpfn > end_pfn))
662 blockpfn = end_pfn;
663
e34d85f0
JK
664 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
665 nr_scanned, total_isolated);
666
e14c720e
VB
667 /* Record how far we have got within the block */
668 *start_pfn = blockpfn;
669
f40d1e42
MG
670 /*
671 * If strict isolation is requested by CMA then check that all the
672 * pages requested were isolated. If there were any failures, 0 is
673 * returned and CMA will fail.
674 */
2af120bc 675 if (strict && blockpfn < end_pfn)
f40d1e42
MG
676 total_isolated = 0;
677
7f354a54 678 cc->total_free_scanned += nr_scanned;
397487db 679 if (total_isolated)
010fc29a 680 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
681 return total_isolated;
682}
683
85aa125f
MN
684/**
685 * isolate_freepages_range() - isolate free pages.
e8b098fc 686 * @cc: Compaction control structure.
85aa125f
MN
687 * @start_pfn: The first PFN to start isolating.
688 * @end_pfn: The one-past-last PFN.
689 *
690 * Non-free pages, invalid PFNs, or zone boundaries within the
691 * [start_pfn, end_pfn) range are considered errors, cause function to
692 * undo its actions and return zero.
693 *
694 * Otherwise, function returns one-past-the-last PFN of isolated page
695 * (which may be greater then end_pfn if end fell in a middle of
696 * a free page).
697 */
ff9543fd 698unsigned long
bb13ffeb
MG
699isolate_freepages_range(struct compact_control *cc,
700 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 701{
e1409c32 702 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
703 LIST_HEAD(freelist);
704
7d49d886 705 pfn = start_pfn;
06b6640a 706 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
707 if (block_start_pfn < cc->zone->zone_start_pfn)
708 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 709 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
710
711 for (; pfn < end_pfn; pfn += isolated,
e1409c32 712 block_start_pfn = block_end_pfn,
7d49d886 713 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
714 /* Protect pfn from changing by isolate_freepages_block */
715 unsigned long isolate_start_pfn = pfn;
85aa125f 716
85aa125f
MN
717 block_end_pfn = min(block_end_pfn, end_pfn);
718
58420016
JK
719 /*
720 * pfn could pass the block_end_pfn if isolated freepage
721 * is more than pageblock order. In this case, we adjust
722 * scanning range to right one.
723 */
724 if (pfn >= block_end_pfn) {
06b6640a
VB
725 block_start_pfn = pageblock_start_pfn(pfn);
726 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
727 block_end_pfn = min(block_end_pfn, end_pfn);
728 }
729
e1409c32
JK
730 if (!pageblock_pfn_to_page(block_start_pfn,
731 block_end_pfn, cc->zone))
7d49d886
VB
732 break;
733
e14c720e 734 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
4fca9730 735 block_end_pfn, &freelist, 0, true);
85aa125f
MN
736
737 /*
738 * In strict mode, isolate_freepages_block() returns 0 if
739 * there are any holes in the block (ie. invalid PFNs or
740 * non-free pages).
741 */
742 if (!isolated)
743 break;
744
745 /*
746 * If we managed to isolate pages, it is always (1 << n) *
747 * pageblock_nr_pages for some non-negative n. (Max order
748 * page may span two pageblocks).
749 */
750 }
751
66c64223 752 /* __isolate_free_page() does not map the pages */
4469ab98 753 split_map_pages(&freelist);
85aa125f
MN
754
755 if (pfn < end_pfn) {
756 /* Loop terminated early, cleanup. */
757 release_freepages(&freelist);
758 return 0;
759 }
760
761 /* We don't use freelists for anything. */
762 return pfn;
763}
764
748446bb 765/* Similar to reclaim, but different enough that they don't share logic */
5f438eee 766static bool too_many_isolated(pg_data_t *pgdat)
748446bb 767{
bc693045 768 unsigned long active, inactive, isolated;
748446bb 769
5f438eee
AR
770 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
771 node_page_state(pgdat, NR_INACTIVE_ANON);
772 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
773 node_page_state(pgdat, NR_ACTIVE_ANON);
774 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
775 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 776
bc693045 777 return isolated > (inactive + active) / 2;
748446bb
MG
778}
779
2fe86e00 780/**
edc2ca61
VB
781 * isolate_migratepages_block() - isolate all migrate-able pages within
782 * a single pageblock
2fe86e00 783 * @cc: Compaction control structure.
edc2ca61
VB
784 * @low_pfn: The first PFN to isolate
785 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
786 * @isolate_mode: Isolation mode to be used.
2fe86e00
MN
787 *
788 * Isolate all pages that can be migrated from the range specified by
edc2ca61 789 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
c2ad7a1f
OS
790 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
791 * or 0.
792 * cc->migrate_pfn will contain the next pfn to scan.
2fe86e00 793 *
edc2ca61 794 * The pages are isolated on cc->migratepages list (not required to be empty),
c2ad7a1f 795 * and cc->nr_migratepages is updated accordingly.
748446bb 796 */
c2ad7a1f 797static int
edc2ca61
VB
798isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
799 unsigned long end_pfn, isolate_mode_t isolate_mode)
748446bb 800{
5f438eee 801 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 802 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 803 struct lruvec *lruvec;
b8b2d825 804 unsigned long flags = 0;
6168d0da 805 struct lruvec *locked = NULL;
bb13ffeb 806 struct page *page = NULL, *valid_page = NULL;
e34d85f0 807 unsigned long start_pfn = low_pfn;
fdd048e1
VB
808 bool skip_on_failure = false;
809 unsigned long next_skip_pfn = 0;
e380bebe 810 bool skip_updated = false;
c2ad7a1f
OS
811 int ret = 0;
812
813 cc->migrate_pfn = low_pfn;
748446bb 814
748446bb
MG
815 /*
816 * Ensure that there are not too many pages isolated from the LRU
817 * list by either parallel reclaimers or compaction. If there are,
818 * delay for some time until fewer pages are isolated
819 */
5f438eee 820 while (unlikely(too_many_isolated(pgdat))) {
d20bdd57
ZY
821 /* stop isolation if there are still pages not migrated */
822 if (cc->nr_migratepages)
c2ad7a1f 823 return -EAGAIN;
d20bdd57 824
f9e35b3b 825 /* async migration should just abort */
e0b9daeb 826 if (cc->mode == MIGRATE_ASYNC)
c2ad7a1f 827 return -EAGAIN;
f9e35b3b 828
748446bb
MG
829 congestion_wait(BLK_RW_ASYNC, HZ/10);
830
831 if (fatal_signal_pending(current))
c2ad7a1f 832 return -EINTR;
748446bb
MG
833 }
834
cf66f070 835 cond_resched();
aeef4b83 836
fdd048e1
VB
837 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
838 skip_on_failure = true;
839 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
840 }
841
748446bb 842 /* Time to isolate some pages for migration */
748446bb 843 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 844
fdd048e1
VB
845 if (skip_on_failure && low_pfn >= next_skip_pfn) {
846 /*
847 * We have isolated all migration candidates in the
848 * previous order-aligned block, and did not skip it due
849 * to failure. We should migrate the pages now and
850 * hopefully succeed compaction.
851 */
852 if (nr_isolated)
853 break;
854
855 /*
856 * We failed to isolate in the previous order-aligned
857 * block. Set the new boundary to the end of the
858 * current block. Note we can't simply increase
859 * next_skip_pfn by 1 << order, as low_pfn might have
860 * been incremented by a higher number due to skipping
861 * a compound or a high-order buddy page in the
862 * previous loop iteration.
863 */
864 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
865 }
866
8b44d279
VB
867 /*
868 * Periodically drop the lock (if held) regardless of its
670105a2
MG
869 * contention, to give chance to IRQs. Abort completely if
870 * a fatal signal is pending.
8b44d279 871 */
6168d0da
AS
872 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
873 if (locked) {
874 unlock_page_lruvec_irqrestore(locked, flags);
875 locked = NULL;
876 }
877
878 if (fatal_signal_pending(current)) {
879 cc->contended = true;
c2ad7a1f 880 ret = -EINTR;
6168d0da 881
6168d0da
AS
882 goto fatal_pending;
883 }
884
885 cond_resched();
670105a2 886 }
c67fe375 887
748446bb 888 if (!pfn_valid_within(low_pfn))
fdd048e1 889 goto isolate_fail;
b7aba698 890 nr_scanned++;
748446bb 891
748446bb 892 page = pfn_to_page(low_pfn);
dc908600 893
e380bebe
MG
894 /*
895 * Check if the pageblock has already been marked skipped.
896 * Only the aligned PFN is checked as the caller isolates
897 * COMPACT_CLUSTER_MAX at a time so the second call must
898 * not falsely conclude that the block should be skipped.
899 */
900 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
901 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
902 low_pfn = end_pfn;
9df41314 903 page = NULL;
e380bebe
MG
904 goto isolate_abort;
905 }
bb13ffeb 906 valid_page = page;
e380bebe 907 }
bb13ffeb 908
6c14466c 909 /*
99c0fd5e
VB
910 * Skip if free. We read page order here without zone lock
911 * which is generally unsafe, but the race window is small and
912 * the worst thing that can happen is that we skip some
913 * potential isolation targets.
6c14466c 914 */
99c0fd5e 915 if (PageBuddy(page)) {
ab130f91 916 unsigned long freepage_order = buddy_order_unsafe(page);
99c0fd5e
VB
917
918 /*
919 * Without lock, we cannot be sure that what we got is
920 * a valid page order. Consider only values in the
921 * valid order range to prevent low_pfn overflow.
922 */
923 if (freepage_order > 0 && freepage_order < MAX_ORDER)
924 low_pfn += (1UL << freepage_order) - 1;
748446bb 925 continue;
99c0fd5e 926 }
748446bb 927
bc835011 928 /*
29c0dde8 929 * Regardless of being on LRU, compound pages such as THP and
1da2f328
RR
930 * hugetlbfs are not to be compacted unless we are attempting
931 * an allocation much larger than the huge page size (eg CMA).
932 * We can potentially save a lot of iterations if we skip them
933 * at once. The check is racy, but we can consider only valid
934 * values and the only danger is skipping too much.
bc835011 935 */
1da2f328 936 if (PageCompound(page) && !cc->alloc_contig) {
21dc7e02 937 const unsigned int order = compound_order(page);
edc2ca61 938
d3c85bad 939 if (likely(order < MAX_ORDER))
21dc7e02 940 low_pfn += (1UL << order) - 1;
fdd048e1 941 goto isolate_fail;
2a1402aa
MG
942 }
943
bda807d4
MK
944 /*
945 * Check may be lockless but that's ok as we recheck later.
946 * It's possible to migrate LRU and non-lru movable pages.
947 * Skip any other type of page
948 */
949 if (!PageLRU(page)) {
bda807d4
MK
950 /*
951 * __PageMovable can return false positive so we need
952 * to verify it under page_lock.
953 */
954 if (unlikely(__PageMovable(page)) &&
955 !PageIsolated(page)) {
956 if (locked) {
6168d0da
AS
957 unlock_page_lruvec_irqrestore(locked, flags);
958 locked = NULL;
bda807d4
MK
959 }
960
9e5bcd61 961 if (!isolate_movable_page(page, isolate_mode))
bda807d4
MK
962 goto isolate_success;
963 }
964
fdd048e1 965 goto isolate_fail;
bda807d4 966 }
29c0dde8 967
119d6d59
DR
968 /*
969 * Migration will fail if an anonymous page is pinned in memory,
970 * so avoid taking lru_lock and isolating it unnecessarily in an
971 * admittedly racy check.
972 */
973 if (!page_mapping(page) &&
974 page_count(page) > page_mapcount(page))
fdd048e1 975 goto isolate_fail;
119d6d59 976
73e64c51
MH
977 /*
978 * Only allow to migrate anonymous pages in GFP_NOFS context
979 * because those do not depend on fs locks.
980 */
981 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
982 goto isolate_fail;
983
9df41314
AS
984 /*
985 * Be careful not to clear PageLRU until after we're
986 * sure the page is not being freed elsewhere -- the
987 * page release code relies on it.
988 */
989 if (unlikely(!get_page_unless_zero(page)))
990 goto isolate_fail;
991
c2135f7c 992 if (!__isolate_lru_page_prepare(page, isolate_mode))
9df41314
AS
993 goto isolate_fail_put;
994
995 /* Try isolate the page */
996 if (!TestClearPageLRU(page))
997 goto isolate_fail_put;
998
6168d0da
AS
999 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1000
69b7189f 1001 /* If we already hold the lock, we can skip some rechecking */
6168d0da
AS
1002 if (lruvec != locked) {
1003 if (locked)
1004 unlock_page_lruvec_irqrestore(locked, flags);
1005
1006 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1007 locked = lruvec;
6168d0da
AS
1008
1009 lruvec_memcg_debug(lruvec, page);
e380bebe 1010
e380bebe
MG
1011 /* Try get exclusive access under lock */
1012 if (!skip_updated) {
1013 skip_updated = true;
1014 if (test_and_set_skip(cc, page, low_pfn))
1015 goto isolate_abort;
1016 }
2a1402aa 1017
29c0dde8
VB
1018 /*
1019 * Page become compound since the non-locked check,
1020 * and it's on LRU. It can only be a THP so the order
1021 * is safe to read and it's 0 for tail pages.
1022 */
1da2f328 1023 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
d8c6546b 1024 low_pfn += compound_nr(page) - 1;
9df41314
AS
1025 SetPageLRU(page);
1026 goto isolate_fail_put;
69b7189f 1027 }
d99fd5fe 1028 }
fa9add64 1029
1da2f328
RR
1030 /* The whole page is taken off the LRU; skip the tail pages. */
1031 if (PageCompound(page))
1032 low_pfn += compound_nr(page) - 1;
bc835011 1033
748446bb 1034 /* Successfully isolated */
46ae6b2c 1035 del_page_from_lru_list(page, lruvec);
1da2f328 1036 mod_node_page_state(page_pgdat(page),
9de4f22a 1037 NR_ISOLATED_ANON + page_is_file_lru(page),
6c357848 1038 thp_nr_pages(page));
b6c75016
JK
1039
1040isolate_success:
fdd048e1 1041 list_add(&page->lru, &cc->migratepages);
38935861
ZY
1042 cc->nr_migratepages += compound_nr(page);
1043 nr_isolated += compound_nr(page);
748446bb 1044
804d3121
MG
1045 /*
1046 * Avoid isolating too much unless this block is being
cb2dcaf0
MG
1047 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1048 * or a lock is contended. For contention, isolate quickly to
1049 * potentially remove one source of contention.
804d3121 1050 */
38935861 1051 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
cb2dcaf0 1052 !cc->rescan && !cc->contended) {
31b8384a 1053 ++low_pfn;
748446bb 1054 break;
31b8384a 1055 }
fdd048e1
VB
1056
1057 continue;
9df41314
AS
1058
1059isolate_fail_put:
1060 /* Avoid potential deadlock in freeing page under lru_lock */
1061 if (locked) {
6168d0da
AS
1062 unlock_page_lruvec_irqrestore(locked, flags);
1063 locked = NULL;
9df41314
AS
1064 }
1065 put_page(page);
1066
fdd048e1
VB
1067isolate_fail:
1068 if (!skip_on_failure)
1069 continue;
1070
1071 /*
1072 * We have isolated some pages, but then failed. Release them
1073 * instead of migrating, as we cannot form the cc->order buddy
1074 * page anyway.
1075 */
1076 if (nr_isolated) {
1077 if (locked) {
6168d0da
AS
1078 unlock_page_lruvec_irqrestore(locked, flags);
1079 locked = NULL;
fdd048e1 1080 }
fdd048e1
VB
1081 putback_movable_pages(&cc->migratepages);
1082 cc->nr_migratepages = 0;
fdd048e1
VB
1083 nr_isolated = 0;
1084 }
1085
1086 if (low_pfn < next_skip_pfn) {
1087 low_pfn = next_skip_pfn - 1;
1088 /*
1089 * The check near the loop beginning would have updated
1090 * next_skip_pfn too, but this is a bit simpler.
1091 */
1092 next_skip_pfn += 1UL << cc->order;
1093 }
748446bb
MG
1094 }
1095
99c0fd5e
VB
1096 /*
1097 * The PageBuddy() check could have potentially brought us outside
1098 * the range to be scanned.
1099 */
1100 if (unlikely(low_pfn > end_pfn))
1101 low_pfn = end_pfn;
1102
9df41314
AS
1103 page = NULL;
1104
e380bebe 1105isolate_abort:
c67fe375 1106 if (locked)
6168d0da 1107 unlock_page_lruvec_irqrestore(locked, flags);
9df41314
AS
1108 if (page) {
1109 SetPageLRU(page);
1110 put_page(page);
1111 }
748446bb 1112
50b5b094 1113 /*
804d3121
MG
1114 * Updated the cached scanner pfn once the pageblock has been scanned
1115 * Pages will either be migrated in which case there is no point
1116 * scanning in the near future or migration failed in which case the
1117 * failure reason may persist. The block is marked for skipping if
1118 * there were no pages isolated in the block or if the block is
1119 * rescanned twice in a row.
50b5b094 1120 */
804d3121 1121 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
e380bebe
MG
1122 if (valid_page && !skip_updated)
1123 set_pageblock_skip(valid_page);
1124 update_cached_migrate(cc, low_pfn);
1125 }
bb13ffeb 1126
e34d85f0
JK
1127 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1128 nr_scanned, nr_isolated);
b7aba698 1129
670105a2 1130fatal_pending:
7f354a54 1131 cc->total_migrate_scanned += nr_scanned;
397487db 1132 if (nr_isolated)
010fc29a 1133 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1134
c2ad7a1f
OS
1135 cc->migrate_pfn = low_pfn;
1136
1137 return ret;
2fe86e00
MN
1138}
1139
edc2ca61
VB
1140/**
1141 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1142 * @cc: Compaction control structure.
1143 * @start_pfn: The first PFN to start isolating.
1144 * @end_pfn: The one-past-last PFN.
1145 *
c2ad7a1f 1146 * Returns -EAGAIN when contented, -EINTR in case of a signal pending or 0.
edc2ca61 1147 */
c2ad7a1f 1148int
edc2ca61
VB
1149isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1150 unsigned long end_pfn)
1151{
e1409c32 1152 unsigned long pfn, block_start_pfn, block_end_pfn;
c2ad7a1f 1153 int ret = 0;
edc2ca61
VB
1154
1155 /* Scan block by block. First and last block may be incomplete */
1156 pfn = start_pfn;
06b6640a 1157 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1158 if (block_start_pfn < cc->zone->zone_start_pfn)
1159 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1160 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1161
1162 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1163 block_start_pfn = block_end_pfn,
edc2ca61
VB
1164 block_end_pfn += pageblock_nr_pages) {
1165
1166 block_end_pfn = min(block_end_pfn, end_pfn);
1167
e1409c32
JK
1168 if (!pageblock_pfn_to_page(block_start_pfn,
1169 block_end_pfn, cc->zone))
edc2ca61
VB
1170 continue;
1171
c2ad7a1f
OS
1172 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1173 ISOLATE_UNEVICTABLE);
edc2ca61 1174
c2ad7a1f 1175 if (ret)
edc2ca61 1176 break;
6ea41c0c 1177
38935861 1178 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
6ea41c0c 1179 break;
edc2ca61 1180 }
edc2ca61 1181
c2ad7a1f 1182 return ret;
edc2ca61
VB
1183}
1184
ff9543fd
MN
1185#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1186#ifdef CONFIG_COMPACTION
018e9a49 1187
b682debd
VB
1188static bool suitable_migration_source(struct compact_control *cc,
1189 struct page *page)
1190{
282722b0
VB
1191 int block_mt;
1192
9bebefd5
MG
1193 if (pageblock_skip_persistent(page))
1194 return false;
1195
282722b0 1196 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1197 return true;
1198
282722b0
VB
1199 block_mt = get_pageblock_migratetype(page);
1200
1201 if (cc->migratetype == MIGRATE_MOVABLE)
1202 return is_migrate_movable(block_mt);
1203 else
1204 return block_mt == cc->migratetype;
b682debd
VB
1205}
1206
018e9a49 1207/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1208static bool suitable_migration_target(struct compact_control *cc,
1209 struct page *page)
018e9a49
AM
1210{
1211 /* If the page is a large free page, then disallow migration */
1212 if (PageBuddy(page)) {
1213 /*
1214 * We are checking page_order without zone->lock taken. But
1215 * the only small danger is that we skip a potentially suitable
1216 * pageblock, so it's not worth to check order for valid range.
1217 */
ab130f91 1218 if (buddy_order_unsafe(page) >= pageblock_order)
018e9a49
AM
1219 return false;
1220 }
1221
1ef36db2
YX
1222 if (cc->ignore_block_suitable)
1223 return true;
1224
018e9a49 1225 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1226 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1227 return true;
1228
1229 /* Otherwise skip the block */
1230 return false;
1231}
1232
70b44595
MG
1233static inline unsigned int
1234freelist_scan_limit(struct compact_control *cc)
1235{
dd7ef7bd
QC
1236 unsigned short shift = BITS_PER_LONG - 1;
1237
1238 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1239}
1240
f2849aa0
VB
1241/*
1242 * Test whether the free scanner has reached the same or lower pageblock than
1243 * the migration scanner, and compaction should thus terminate.
1244 */
1245static inline bool compact_scanners_met(struct compact_control *cc)
1246{
1247 return (cc->free_pfn >> pageblock_order)
1248 <= (cc->migrate_pfn >> pageblock_order);
1249}
1250
5a811889
MG
1251/*
1252 * Used when scanning for a suitable migration target which scans freelists
1253 * in reverse. Reorders the list such as the unscanned pages are scanned
1254 * first on the next iteration of the free scanner
1255 */
1256static void
1257move_freelist_head(struct list_head *freelist, struct page *freepage)
1258{
1259 LIST_HEAD(sublist);
1260
1261 if (!list_is_last(freelist, &freepage->lru)) {
1262 list_cut_before(&sublist, freelist, &freepage->lru);
1263 if (!list_empty(&sublist))
1264 list_splice_tail(&sublist, freelist);
1265 }
1266}
1267
1268/*
1269 * Similar to move_freelist_head except used by the migration scanner
1270 * when scanning forward. It's possible for these list operations to
1271 * move against each other if they search the free list exactly in
1272 * lockstep.
1273 */
70b44595
MG
1274static void
1275move_freelist_tail(struct list_head *freelist, struct page *freepage)
1276{
1277 LIST_HEAD(sublist);
1278
1279 if (!list_is_first(freelist, &freepage->lru)) {
1280 list_cut_position(&sublist, freelist, &freepage->lru);
1281 if (!list_empty(&sublist))
1282 list_splice_tail(&sublist, freelist);
1283 }
1284}
1285
5a811889
MG
1286static void
1287fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1288{
1289 unsigned long start_pfn, end_pfn;
6e2b7044 1290 struct page *page;
5a811889
MG
1291
1292 /* Do not search around if there are enough pages already */
1293 if (cc->nr_freepages >= cc->nr_migratepages)
1294 return;
1295
1296 /* Minimise scanning during async compaction */
1297 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1298 return;
1299
1300 /* Pageblock boundaries */
6e2b7044
VB
1301 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1302 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1303
1304 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1305 if (!page)
1306 return;
5a811889
MG
1307
1308 /* Scan before */
1309 if (start_pfn != pfn) {
4fca9730 1310 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
5a811889
MG
1311 if (cc->nr_freepages >= cc->nr_migratepages)
1312 return;
1313 }
1314
1315 /* Scan after */
1316 start_pfn = pfn + nr_isolated;
60fce36a 1317 if (start_pfn < end_pfn)
4fca9730 1318 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
5a811889
MG
1319
1320 /* Skip this pageblock in the future as it's full or nearly full */
1321 if (cc->nr_freepages < cc->nr_migratepages)
1322 set_pageblock_skip(page);
1323}
1324
dbe2d4e4
MG
1325/* Search orders in round-robin fashion */
1326static int next_search_order(struct compact_control *cc, int order)
1327{
1328 order--;
1329 if (order < 0)
1330 order = cc->order - 1;
1331
1332 /* Search wrapped around? */
1333 if (order == cc->search_order) {
1334 cc->search_order--;
1335 if (cc->search_order < 0)
1336 cc->search_order = cc->order - 1;
1337 return -1;
1338 }
1339
1340 return order;
1341}
1342
5a811889
MG
1343static unsigned long
1344fast_isolate_freepages(struct compact_control *cc)
1345{
1346 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1347 unsigned int nr_scanned = 0;
74e21484 1348 unsigned long low_pfn, min_pfn, highest = 0;
5a811889
MG
1349 unsigned long nr_isolated = 0;
1350 unsigned long distance;
1351 struct page *page = NULL;
1352 bool scan_start = false;
1353 int order;
1354
1355 /* Full compaction passes in a negative order */
1356 if (cc->order <= 0)
1357 return cc->free_pfn;
1358
1359 /*
1360 * If starting the scan, use a deeper search and use the highest
1361 * PFN found if a suitable one is not found.
1362 */
e332f741 1363 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1364 limit = pageblock_nr_pages >> 1;
1365 scan_start = true;
1366 }
1367
1368 /*
1369 * Preferred point is in the top quarter of the scan space but take
1370 * a pfn from the top half if the search is problematic.
1371 */
1372 distance = (cc->free_pfn - cc->migrate_pfn);
1373 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1374 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1375
1376 if (WARN_ON_ONCE(min_pfn > low_pfn))
1377 low_pfn = min_pfn;
1378
dbe2d4e4
MG
1379 /*
1380 * Search starts from the last successful isolation order or the next
1381 * order to search after a previous failure
1382 */
1383 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1384
1385 for (order = cc->search_order;
1386 !page && order >= 0;
1387 order = next_search_order(cc, order)) {
5a811889
MG
1388 struct free_area *area = &cc->zone->free_area[order];
1389 struct list_head *freelist;
1390 struct page *freepage;
1391 unsigned long flags;
1392 unsigned int order_scanned = 0;
74e21484 1393 unsigned long high_pfn = 0;
5a811889
MG
1394
1395 if (!area->nr_free)
1396 continue;
1397
1398 spin_lock_irqsave(&cc->zone->lock, flags);
1399 freelist = &area->free_list[MIGRATE_MOVABLE];
1400 list_for_each_entry_reverse(freepage, freelist, lru) {
1401 unsigned long pfn;
1402
1403 order_scanned++;
1404 nr_scanned++;
1405 pfn = page_to_pfn(freepage);
1406
1407 if (pfn >= highest)
6e2b7044
VB
1408 highest = max(pageblock_start_pfn(pfn),
1409 cc->zone->zone_start_pfn);
5a811889
MG
1410
1411 if (pfn >= low_pfn) {
1412 cc->fast_search_fail = 0;
dbe2d4e4 1413 cc->search_order = order;
5a811889
MG
1414 page = freepage;
1415 break;
1416 }
1417
1418 if (pfn >= min_pfn && pfn > high_pfn) {
1419 high_pfn = pfn;
1420
1421 /* Shorten the scan if a candidate is found */
1422 limit >>= 1;
1423 }
1424
1425 if (order_scanned >= limit)
1426 break;
1427 }
1428
1429 /* Use a minimum pfn if a preferred one was not found */
1430 if (!page && high_pfn) {
1431 page = pfn_to_page(high_pfn);
1432
1433 /* Update freepage for the list reorder below */
1434 freepage = page;
1435 }
1436
1437 /* Reorder to so a future search skips recent pages */
1438 move_freelist_head(freelist, freepage);
1439
1440 /* Isolate the page if available */
1441 if (page) {
1442 if (__isolate_free_page(page, order)) {
1443 set_page_private(page, order);
1444 nr_isolated = 1 << order;
1445 cc->nr_freepages += nr_isolated;
1446 list_add_tail(&page->lru, &cc->freepages);
1447 count_compact_events(COMPACTISOLATED, nr_isolated);
1448 } else {
1449 /* If isolation fails, abort the search */
5b56d996 1450 order = cc->search_order + 1;
5a811889
MG
1451 page = NULL;
1452 }
1453 }
1454
1455 spin_unlock_irqrestore(&cc->zone->lock, flags);
1456
1457 /*
1458 * Smaller scan on next order so the total scan ig related
1459 * to freelist_scan_limit.
1460 */
1461 if (order_scanned >= limit)
1462 limit = min(1U, limit >> 1);
1463 }
1464
1465 if (!page) {
1466 cc->fast_search_fail++;
1467 if (scan_start) {
1468 /*
1469 * Use the highest PFN found above min. If one was
f3867755 1470 * not found, be pessimistic for direct compaction
5a811889
MG
1471 * and use the min mark.
1472 */
1473 if (highest) {
1474 page = pfn_to_page(highest);
1475 cc->free_pfn = highest;
1476 } else {
e577c8b6 1477 if (cc->direct_compaction && pfn_valid(min_pfn)) {
73a6e474 1478 page = pageblock_pfn_to_page(min_pfn,
6e2b7044
VB
1479 min(pageblock_end_pfn(min_pfn),
1480 zone_end_pfn(cc->zone)),
73a6e474 1481 cc->zone);
5a811889
MG
1482 cc->free_pfn = min_pfn;
1483 }
1484 }
1485 }
1486 }
1487
d097a6f6
MG
1488 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1489 highest -= pageblock_nr_pages;
5a811889 1490 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1491 }
5a811889
MG
1492
1493 cc->total_free_scanned += nr_scanned;
1494 if (!page)
1495 return cc->free_pfn;
1496
1497 low_pfn = page_to_pfn(page);
1498 fast_isolate_around(cc, low_pfn, nr_isolated);
1499 return low_pfn;
1500}
1501
2fe86e00 1502/*
ff9543fd
MN
1503 * Based on information in the current compact_control, find blocks
1504 * suitable for isolating free pages from and then isolate them.
2fe86e00 1505 */
edc2ca61 1506static void isolate_freepages(struct compact_control *cc)
2fe86e00 1507{
edc2ca61 1508 struct zone *zone = cc->zone;
ff9543fd 1509 struct page *page;
c96b9e50 1510 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1511 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1512 unsigned long block_end_pfn; /* end of current pageblock */
1513 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1514 struct list_head *freelist = &cc->freepages;
4fca9730 1515 unsigned int stride;
2fe86e00 1516
5a811889
MG
1517 /* Try a small search of the free lists for a candidate */
1518 isolate_start_pfn = fast_isolate_freepages(cc);
1519 if (cc->nr_freepages)
1520 goto splitmap;
1521
ff9543fd
MN
1522 /*
1523 * Initialise the free scanner. The starting point is where we last
49e068f0 1524 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1525 * zone when isolating for the first time. For looping we also need
1526 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1527 * block_start_pfn -= pageblock_nr_pages in the for loop.
1528 * For ending point, take care when isolating in last pageblock of a
a1c1dbeb 1529 * zone which ends in the middle of a pageblock.
49e068f0
VB
1530 * The low boundary is the end of the pageblock the migration scanner
1531 * is using.
ff9543fd 1532 */
e14c720e 1533 isolate_start_pfn = cc->free_pfn;
5a811889 1534 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1535 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1536 zone_end_pfn(zone));
06b6640a 1537 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1538 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1539
ff9543fd
MN
1540 /*
1541 * Isolate free pages until enough are available to migrate the
1542 * pages on cc->migratepages. We stop searching if the migrate
1543 * and free page scanners meet or enough free pages are isolated.
1544 */
f5f61a32 1545 for (; block_start_pfn >= low_pfn;
c96b9e50 1546 block_end_pfn = block_start_pfn,
e14c720e
VB
1547 block_start_pfn -= pageblock_nr_pages,
1548 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1549 unsigned long nr_isolated;
1550
f6ea3adb
DR
1551 /*
1552 * This can iterate a massively long zone without finding any
cb810ad2 1553 * suitable migration targets, so periodically check resched.
f6ea3adb 1554 */
cb810ad2 1555 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1556 cond_resched();
f6ea3adb 1557
7d49d886
VB
1558 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1559 zone);
1560 if (!page)
ff9543fd
MN
1561 continue;
1562
1563 /* Check the block is suitable for migration */
9f7e3387 1564 if (!suitable_migration_target(cc, page))
ff9543fd 1565 continue;
68e3e926 1566
bb13ffeb
MG
1567 /* If isolation recently failed, do not retry */
1568 if (!isolation_suitable(cc, page))
1569 continue;
1570
e14c720e 1571 /* Found a block suitable for isolating free pages from. */
4fca9730
MG
1572 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1573 block_end_pfn, freelist, stride, false);
ff9543fd 1574
d097a6f6
MG
1575 /* Update the skip hint if the full pageblock was scanned */
1576 if (isolate_start_pfn == block_end_pfn)
1577 update_pageblock_skip(cc, page, block_start_pfn);
1578
cb2dcaf0
MG
1579 /* Are enough freepages isolated? */
1580 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1581 if (isolate_start_pfn >= block_end_pfn) {
1582 /*
1583 * Restart at previous pageblock if more
1584 * freepages can be isolated next time.
1585 */
f5f61a32
VB
1586 isolate_start_pfn =
1587 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1588 }
be976572 1589 break;
a46cbf3b 1590 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1591 /*
a46cbf3b
DR
1592 * If isolation failed early, do not continue
1593 * needlessly.
f5f61a32 1594 */
a46cbf3b 1595 break;
f5f61a32 1596 }
4fca9730
MG
1597
1598 /* Adjust stride depending on isolation */
1599 if (nr_isolated) {
1600 stride = 1;
1601 continue;
1602 }
1603 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1604 }
1605
7ed695e0 1606 /*
f5f61a32
VB
1607 * Record where the free scanner will restart next time. Either we
1608 * broke from the loop and set isolate_start_pfn based on the last
1609 * call to isolate_freepages_block(), or we met the migration scanner
1610 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1611 */
f5f61a32 1612 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1613
1614splitmap:
1615 /* __isolate_free_page() does not map the pages */
1616 split_map_pages(freelist);
748446bb
MG
1617}
1618
1619/*
1620 * This is a migrate-callback that "allocates" freepages by taking pages
1621 * from the isolated freelists in the block we are migrating to.
1622 */
1623static struct page *compaction_alloc(struct page *migratepage,
666feb21 1624 unsigned long data)
748446bb
MG
1625{
1626 struct compact_control *cc = (struct compact_control *)data;
1627 struct page *freepage;
1628
748446bb 1629 if (list_empty(&cc->freepages)) {
cb2dcaf0 1630 isolate_freepages(cc);
748446bb
MG
1631
1632 if (list_empty(&cc->freepages))
1633 return NULL;
1634 }
1635
1636 freepage = list_entry(cc->freepages.next, struct page, lru);
1637 list_del(&freepage->lru);
1638 cc->nr_freepages--;
1639
1640 return freepage;
1641}
1642
1643/*
d53aea3d
DR
1644 * This is a migrate-callback that "frees" freepages back to the isolated
1645 * freelist. All pages on the freelist are from the same zone, so there is no
1646 * special handling needed for NUMA.
1647 */
1648static void compaction_free(struct page *page, unsigned long data)
1649{
1650 struct compact_control *cc = (struct compact_control *)data;
1651
1652 list_add(&page->lru, &cc->freepages);
1653 cc->nr_freepages++;
1654}
1655
ff9543fd
MN
1656/* possible outcome of isolate_migratepages */
1657typedef enum {
1658 ISOLATE_ABORT, /* Abort compaction now */
1659 ISOLATE_NONE, /* No pages isolated, continue scanning */
1660 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1661} isolate_migrate_t;
1662
5bbe3547
EM
1663/*
1664 * Allow userspace to control policy on scanning the unevictable LRU for
1665 * compactable pages.
1666 */
6923aa0d
SAS
1667#ifdef CONFIG_PREEMPT_RT
1668int sysctl_compact_unevictable_allowed __read_mostly = 0;
1669#else
5bbe3547 1670int sysctl_compact_unevictable_allowed __read_mostly = 1;
6923aa0d 1671#endif
5bbe3547 1672
70b44595
MG
1673static inline void
1674update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1675{
1676 if (cc->fast_start_pfn == ULONG_MAX)
1677 return;
1678
1679 if (!cc->fast_start_pfn)
1680 cc->fast_start_pfn = pfn;
1681
1682 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1683}
1684
1685static inline unsigned long
1686reinit_migrate_pfn(struct compact_control *cc)
1687{
1688 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1689 return cc->migrate_pfn;
1690
1691 cc->migrate_pfn = cc->fast_start_pfn;
1692 cc->fast_start_pfn = ULONG_MAX;
1693
1694 return cc->migrate_pfn;
1695}
1696
1697/*
1698 * Briefly search the free lists for a migration source that already has
1699 * some free pages to reduce the number of pages that need migration
1700 * before a pageblock is free.
1701 */
1702static unsigned long fast_find_migrateblock(struct compact_control *cc)
1703{
1704 unsigned int limit = freelist_scan_limit(cc);
1705 unsigned int nr_scanned = 0;
1706 unsigned long distance;
1707 unsigned long pfn = cc->migrate_pfn;
1708 unsigned long high_pfn;
1709 int order;
15d28d0d 1710 bool found_block = false;
70b44595
MG
1711
1712 /* Skip hints are relied on to avoid repeats on the fast search */
1713 if (cc->ignore_skip_hint)
1714 return pfn;
1715
1716 /*
1717 * If the migrate_pfn is not at the start of a zone or the start
1718 * of a pageblock then assume this is a continuation of a previous
1719 * scan restarted due to COMPACT_CLUSTER_MAX.
1720 */
1721 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1722 return pfn;
1723
1724 /*
1725 * For smaller orders, just linearly scan as the number of pages
1726 * to migrate should be relatively small and does not necessarily
1727 * justify freeing up a large block for a small allocation.
1728 */
1729 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1730 return pfn;
1731
1732 /*
1733 * Only allow kcompactd and direct requests for movable pages to
1734 * quickly clear out a MOVABLE pageblock for allocation. This
1735 * reduces the risk that a large movable pageblock is freed for
1736 * an unmovable/reclaimable small allocation.
1737 */
1738 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1739 return pfn;
1740
1741 /*
1742 * When starting the migration scanner, pick any pageblock within the
1743 * first half of the search space. Otherwise try and pick a pageblock
1744 * within the first eighth to reduce the chances that a migration
1745 * target later becomes a source.
1746 */
1747 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1748 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1749 distance >>= 2;
1750 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1751
1752 for (order = cc->order - 1;
15d28d0d 1753 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
70b44595
MG
1754 order--) {
1755 struct free_area *area = &cc->zone->free_area[order];
1756 struct list_head *freelist;
1757 unsigned long flags;
1758 struct page *freepage;
1759
1760 if (!area->nr_free)
1761 continue;
1762
1763 spin_lock_irqsave(&cc->zone->lock, flags);
1764 freelist = &area->free_list[MIGRATE_MOVABLE];
1765 list_for_each_entry(freepage, freelist, lru) {
1766 unsigned long free_pfn;
1767
15d28d0d
WY
1768 if (nr_scanned++ >= limit) {
1769 move_freelist_tail(freelist, freepage);
1770 break;
1771 }
1772
70b44595
MG
1773 free_pfn = page_to_pfn(freepage);
1774 if (free_pfn < high_pfn) {
70b44595
MG
1775 /*
1776 * Avoid if skipped recently. Ideally it would
1777 * move to the tail but even safe iteration of
1778 * the list assumes an entry is deleted, not
1779 * reordered.
1780 */
15d28d0d 1781 if (get_pageblock_skip(freepage))
70b44595 1782 continue;
70b44595
MG
1783
1784 /* Reorder to so a future search skips recent pages */
1785 move_freelist_tail(freelist, freepage);
1786
e380bebe 1787 update_fast_start_pfn(cc, free_pfn);
70b44595
MG
1788 pfn = pageblock_start_pfn(free_pfn);
1789 cc->fast_search_fail = 0;
15d28d0d 1790 found_block = true;
70b44595
MG
1791 set_pageblock_skip(freepage);
1792 break;
1793 }
70b44595
MG
1794 }
1795 spin_unlock_irqrestore(&cc->zone->lock, flags);
1796 }
1797
1798 cc->total_migrate_scanned += nr_scanned;
1799
1800 /*
1801 * If fast scanning failed then use a cached entry for a page block
1802 * that had free pages as the basis for starting a linear scan.
1803 */
15d28d0d
WY
1804 if (!found_block) {
1805 cc->fast_search_fail++;
70b44595 1806 pfn = reinit_migrate_pfn(cc);
15d28d0d 1807 }
70b44595
MG
1808 return pfn;
1809}
1810
ff9543fd 1811/*
edc2ca61
VB
1812 * Isolate all pages that can be migrated from the first suitable block,
1813 * starting at the block pointed to by the migrate scanner pfn within
1814 * compact_control.
ff9543fd 1815 */
32aaf055 1816static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
ff9543fd 1817{
e1409c32
JK
1818 unsigned long block_start_pfn;
1819 unsigned long block_end_pfn;
1820 unsigned long low_pfn;
edc2ca61
VB
1821 struct page *page;
1822 const isolate_mode_t isolate_mode =
5bbe3547 1823 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1824 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 1825 bool fast_find_block;
ff9543fd 1826
edc2ca61
VB
1827 /*
1828 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
1829 * initialized by compact_zone(). The first failure will use
1830 * the lowest PFN as the starting point for linear scanning.
edc2ca61 1831 */
70b44595 1832 low_pfn = fast_find_migrateblock(cc);
06b6640a 1833 block_start_pfn = pageblock_start_pfn(low_pfn);
32aaf055
PL
1834 if (block_start_pfn < cc->zone->zone_start_pfn)
1835 block_start_pfn = cc->zone->zone_start_pfn;
ff9543fd 1836
70b44595
MG
1837 /*
1838 * fast_find_migrateblock marks a pageblock skipped so to avoid
1839 * the isolation_suitable check below, check whether the fast
1840 * search was successful.
1841 */
1842 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1843
ff9543fd 1844 /* Only scan within a pageblock boundary */
06b6640a 1845 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1846
edc2ca61
VB
1847 /*
1848 * Iterate over whole pageblocks until we find the first suitable.
1849 * Do not cross the free scanner.
1850 */
e1409c32 1851 for (; block_end_pfn <= cc->free_pfn;
70b44595 1852 fast_find_block = false,
c2ad7a1f 1853 cc->migrate_pfn = low_pfn = block_end_pfn,
e1409c32
JK
1854 block_start_pfn = block_end_pfn,
1855 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1856
edc2ca61
VB
1857 /*
1858 * This can potentially iterate a massively long zone with
1859 * many pageblocks unsuitable, so periodically check if we
cb810ad2 1860 * need to schedule.
edc2ca61 1861 */
cb810ad2 1862 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1863 cond_resched();
ff9543fd 1864
32aaf055
PL
1865 page = pageblock_pfn_to_page(block_start_pfn,
1866 block_end_pfn, cc->zone);
7d49d886 1867 if (!page)
edc2ca61
VB
1868 continue;
1869
e380bebe
MG
1870 /*
1871 * If isolation recently failed, do not retry. Only check the
1872 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1873 * to be visited multiple times. Assume skip was checked
1874 * before making it "skip" so other compaction instances do
1875 * not scan the same block.
1876 */
1877 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1878 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
1879 continue;
1880
1881 /*
9bebefd5
MG
1882 * For async compaction, also only scan in MOVABLE blocks
1883 * without huge pages. Async compaction is optimistic to see
1884 * if the minimum amount of work satisfies the allocation.
1885 * The cached PFN is updated as it's possible that all
1886 * remaining blocks between source and target are unsuitable
1887 * and the compaction scanners fail to meet.
edc2ca61 1888 */
9bebefd5
MG
1889 if (!suitable_migration_source(cc, page)) {
1890 update_cached_migrate(cc, block_end_pfn);
edc2ca61 1891 continue;
9bebefd5 1892 }
edc2ca61
VB
1893
1894 /* Perform the isolation */
c2ad7a1f
OS
1895 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1896 isolate_mode))
edc2ca61
VB
1897 return ISOLATE_ABORT;
1898
1899 /*
1900 * Either we isolated something and proceed with migration. Or
1901 * we failed and compact_zone should decide if we should
1902 * continue or not.
1903 */
1904 break;
1905 }
1906
edc2ca61 1907 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1908}
1909
21c527a3
YB
1910/*
1911 * order == -1 is expected when compacting via
1912 * /proc/sys/vm/compact_memory
1913 */
1914static inline bool is_via_compact_memory(int order)
1915{
1916 return order == -1;
1917}
1918
facdaa91
NG
1919static bool kswapd_is_running(pg_data_t *pgdat)
1920{
1921 return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1922}
1923
1924/*
1925 * A zone's fragmentation score is the external fragmentation wrt to the
40d7e203
CTR
1926 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1927 */
1928static unsigned int fragmentation_score_zone(struct zone *zone)
1929{
1930 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1931}
1932
1933/*
1934 * A weighted zone's fragmentation score is the external fragmentation
1935 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1936 * returns a value in the range [0, 100].
facdaa91
NG
1937 *
1938 * The scaling factor ensures that proactive compaction focuses on larger
1939 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1940 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1941 * and thus never exceeds the high threshold for proactive compaction.
1942 */
40d7e203 1943static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
facdaa91
NG
1944{
1945 unsigned long score;
1946
40d7e203 1947 score = zone->present_pages * fragmentation_score_zone(zone);
facdaa91
NG
1948 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1949}
1950
1951/*
1952 * The per-node proactive (background) compaction process is started by its
1953 * corresponding kcompactd thread when the node's fragmentation score
1954 * exceeds the high threshold. The compaction process remains active till
1955 * the node's score falls below the low threshold, or one of the back-off
1956 * conditions is met.
1957 */
d34c0a75 1958static unsigned int fragmentation_score_node(pg_data_t *pgdat)
facdaa91 1959{
d34c0a75 1960 unsigned int score = 0;
facdaa91
NG
1961 int zoneid;
1962
1963 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1964 struct zone *zone;
1965
1966 zone = &pgdat->node_zones[zoneid];
40d7e203 1967 score += fragmentation_score_zone_weighted(zone);
facdaa91
NG
1968 }
1969
1970 return score;
1971}
1972
d34c0a75 1973static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
facdaa91 1974{
d34c0a75 1975 unsigned int wmark_low;
facdaa91
NG
1976
1977 /*
1978 * Cap the low watermak to avoid excessive compaction
1979 * activity in case a user sets the proactivess tunable
1980 * close to 100 (maximum).
1981 */
d34c0a75
NG
1982 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1983 return low ? wmark_low : min(wmark_low + 10, 100U);
facdaa91
NG
1984}
1985
1986static bool should_proactive_compact_node(pg_data_t *pgdat)
1987{
1988 int wmark_high;
1989
1990 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1991 return false;
1992
1993 wmark_high = fragmentation_score_wmark(pgdat, false);
1994 return fragmentation_score_node(pgdat) > wmark_high;
1995}
1996
40cacbcb 1997static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 1998{
8fb74b9f 1999 unsigned int order;
d39773a0 2000 const int migratetype = cc->migratetype;
cb2dcaf0 2001 int ret;
748446bb 2002
753341a4 2003 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 2004 if (compact_scanners_met(cc)) {
55b7c4c9 2005 /* Let the next compaction start anew. */
40cacbcb 2006 reset_cached_positions(cc->zone);
55b7c4c9 2007
62997027
MG
2008 /*
2009 * Mark that the PG_migrate_skip information should be cleared
accf6242 2010 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
2011 * flag itself as the decision to be clear should be directly
2012 * based on an allocation request.
2013 */
accf6242 2014 if (cc->direct_compaction)
40cacbcb 2015 cc->zone->compact_blockskip_flush = true;
62997027 2016
c8f7de0b
MH
2017 if (cc->whole_zone)
2018 return COMPACT_COMPLETE;
2019 else
2020 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 2021 }
748446bb 2022
facdaa91
NG
2023 if (cc->proactive_compaction) {
2024 int score, wmark_low;
2025 pg_data_t *pgdat;
2026
2027 pgdat = cc->zone->zone_pgdat;
2028 if (kswapd_is_running(pgdat))
2029 return COMPACT_PARTIAL_SKIPPED;
2030
2031 score = fragmentation_score_zone(cc->zone);
2032 wmark_low = fragmentation_score_wmark(pgdat, true);
2033
2034 if (score > wmark_low)
2035 ret = COMPACT_CONTINUE;
2036 else
2037 ret = COMPACT_SUCCESS;
2038
2039 goto out;
2040 }
2041
21c527a3 2042 if (is_via_compact_memory(cc->order))
56de7263
MG
2043 return COMPACT_CONTINUE;
2044
efe771c7
MG
2045 /*
2046 * Always finish scanning a pageblock to reduce the possibility of
2047 * fallbacks in the future. This is particularly important when
2048 * migration source is unmovable/reclaimable but it's not worth
2049 * special casing.
2050 */
2051 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2052 return COMPACT_CONTINUE;
baf6a9a1 2053
56de7263 2054 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 2055 ret = COMPACT_NO_SUITABLE_PAGE;
8fb74b9f 2056 for (order = cc->order; order < MAX_ORDER; order++) {
40cacbcb 2057 struct free_area *area = &cc->zone->free_area[order];
2149cdae 2058 bool can_steal;
8fb74b9f
MG
2059
2060 /* Job done if page is free of the right migratetype */
b03641af 2061 if (!free_area_empty(area, migratetype))
cf378319 2062 return COMPACT_SUCCESS;
8fb74b9f 2063
2149cdae
JK
2064#ifdef CONFIG_CMA
2065 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2066 if (migratetype == MIGRATE_MOVABLE &&
b03641af 2067 !free_area_empty(area, MIGRATE_CMA))
cf378319 2068 return COMPACT_SUCCESS;
2149cdae
JK
2069#endif
2070 /*
2071 * Job done if allocation would steal freepages from
2072 * other migratetype buddy lists.
2073 */
2074 if (find_suitable_fallback(area, order, migratetype,
baf6a9a1
VB
2075 true, &can_steal) != -1) {
2076
2077 /* movable pages are OK in any pageblock */
2078 if (migratetype == MIGRATE_MOVABLE)
2079 return COMPACT_SUCCESS;
2080
2081 /*
2082 * We are stealing for a non-movable allocation. Make
2083 * sure we finish compacting the current pageblock
2084 * first so it is as free as possible and we won't
2085 * have to steal another one soon. This only applies
2086 * to sync compaction, as async compaction operates
2087 * on pageblocks of the same migratetype.
2088 */
2089 if (cc->mode == MIGRATE_ASYNC ||
2090 IS_ALIGNED(cc->migrate_pfn,
2091 pageblock_nr_pages)) {
2092 return COMPACT_SUCCESS;
2093 }
2094
cb2dcaf0
MG
2095 ret = COMPACT_CONTINUE;
2096 break;
baf6a9a1 2097 }
56de7263
MG
2098 }
2099
facdaa91 2100out:
cb2dcaf0
MG
2101 if (cc->contended || fatal_signal_pending(current))
2102 ret = COMPACT_CONTENDED;
2103
2104 return ret;
837d026d
JK
2105}
2106
40cacbcb 2107static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
2108{
2109 int ret;
2110
40cacbcb
MG
2111 ret = __compact_finished(cc);
2112 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
2113 if (ret == COMPACT_NO_SUITABLE_PAGE)
2114 ret = COMPACT_CONTINUE;
2115
2116 return ret;
748446bb
MG
2117}
2118
ea7ab982 2119static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 2120 unsigned int alloc_flags,
97a225e6 2121 int highest_zoneidx,
86a294a8 2122 unsigned long wmark_target)
3e7d3449 2123{
3e7d3449
MG
2124 unsigned long watermark;
2125
21c527a3 2126 if (is_via_compact_memory(order))
3957c776
MH
2127 return COMPACT_CONTINUE;
2128
a9214443 2129 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
ebff3980
VB
2130 /*
2131 * If watermarks for high-order allocation are already met, there
2132 * should be no need for compaction at all.
2133 */
97a225e6 2134 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
ebff3980 2135 alloc_flags))
cf378319 2136 return COMPACT_SUCCESS;
ebff3980 2137
3e7d3449 2138 /*
9861a62c 2139 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
2140 * isolate free pages for migration targets. This means that the
2141 * watermark and alloc_flags have to match, or be more pessimistic than
2142 * the check in __isolate_free_page(). We don't use the direct
2143 * compactor's alloc_flags, as they are not relevant for freepage
97a225e6
JK
2144 * isolation. We however do use the direct compactor's highest_zoneidx
2145 * to skip over zones where lowmem reserves would prevent allocation
2146 * even if compaction succeeds.
8348faf9
VB
2147 * For costly orders, we require low watermark instead of min for
2148 * compaction to proceed to increase its chances.
d883c6cf
JK
2149 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2150 * suitable migration targets
3e7d3449 2151 */
8348faf9
VB
2152 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2153 low_wmark_pages(zone) : min_wmark_pages(zone);
2154 watermark += compact_gap(order);
97a225e6 2155 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
d883c6cf 2156 ALLOC_CMA, wmark_target))
3e7d3449
MG
2157 return COMPACT_SKIPPED;
2158
cc5c9f09
VB
2159 return COMPACT_CONTINUE;
2160}
2161
2b1a20c3
HS
2162/*
2163 * compaction_suitable: Is this suitable to run compaction on this zone now?
2164 * Returns
2165 * COMPACT_SKIPPED - If there are too few free pages for compaction
2166 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2167 * COMPACT_CONTINUE - If compaction should run now
2168 */
cc5c9f09
VB
2169enum compact_result compaction_suitable(struct zone *zone, int order,
2170 unsigned int alloc_flags,
97a225e6 2171 int highest_zoneidx)
cc5c9f09
VB
2172{
2173 enum compact_result ret;
2174 int fragindex;
2175
97a225e6 2176 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
cc5c9f09 2177 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2178 /*
2179 * fragmentation index determines if allocation failures are due to
2180 * low memory or external fragmentation
2181 *
ebff3980
VB
2182 * index of -1000 would imply allocations might succeed depending on
2183 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2184 * index towards 0 implies failure is due to lack of memory
2185 * index towards 1000 implies failure is due to fragmentation
2186 *
20311420
VB
2187 * Only compact if a failure would be due to fragmentation. Also
2188 * ignore fragindex for non-costly orders where the alternative to
2189 * a successful reclaim/compaction is OOM. Fragindex and the
2190 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2191 * excessive compaction for costly orders, but it should not be at the
2192 * expense of system stability.
3e7d3449 2193 */
20311420 2194 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
2195 fragindex = fragmentation_index(zone, order);
2196 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2197 ret = COMPACT_NOT_SUITABLE_ZONE;
2198 }
837d026d 2199
837d026d
JK
2200 trace_mm_compaction_suitable(zone, order, ret);
2201 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2202 ret = COMPACT_SKIPPED;
2203
2204 return ret;
2205}
2206
86a294a8
MH
2207bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2208 int alloc_flags)
2209{
2210 struct zone *zone;
2211 struct zoneref *z;
2212
2213 /*
2214 * Make sure at least one zone would pass __compaction_suitable if we continue
2215 * retrying the reclaim.
2216 */
97a225e6
JK
2217 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2218 ac->highest_zoneidx, ac->nodemask) {
86a294a8
MH
2219 unsigned long available;
2220 enum compact_result compact_result;
2221
2222 /*
2223 * Do not consider all the reclaimable memory because we do not
2224 * want to trash just for a single high order allocation which
2225 * is even not guaranteed to appear even if __compaction_suitable
2226 * is happy about the watermark check.
2227 */
5a1c84b4 2228 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
2229 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2230 compact_result = __compaction_suitable(zone, order, alloc_flags,
97a225e6 2231 ac->highest_zoneidx, available);
cc5c9f09 2232 if (compact_result != COMPACT_SKIPPED)
86a294a8
MH
2233 return true;
2234 }
2235
2236 return false;
2237}
2238
5e1f0f09
MG
2239static enum compact_result
2240compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2241{
ea7ab982 2242 enum compact_result ret;
40cacbcb
MG
2243 unsigned long start_pfn = cc->zone->zone_start_pfn;
2244 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2245 unsigned long last_migrated_pfn;
e0b9daeb 2246 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2247 bool update_cached;
748446bb 2248
a94b5252
YS
2249 /*
2250 * These counters track activities during zone compaction. Initialize
2251 * them before compacting a new zone.
2252 */
2253 cc->total_migrate_scanned = 0;
2254 cc->total_free_scanned = 0;
2255 cc->nr_migratepages = 0;
2256 cc->nr_freepages = 0;
2257 INIT_LIST_HEAD(&cc->freepages);
2258 INIT_LIST_HEAD(&cc->migratepages);
2259
01c0bfe0 2260 cc->migratetype = gfp_migratetype(cc->gfp_mask);
40cacbcb 2261 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
97a225e6 2262 cc->highest_zoneidx);
c46649de 2263 /* Compaction is likely to fail */
cf378319 2264 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 2265 return ret;
c46649de
MH
2266
2267 /* huh, compaction_suitable is returning something unexpected */
2268 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 2269
d3132e4b
VB
2270 /*
2271 * Clear pageblock skip if there were failures recently and compaction
accf6242 2272 * is about to be retried after being deferred.
d3132e4b 2273 */
40cacbcb
MG
2274 if (compaction_restarting(cc->zone, cc->order))
2275 __reset_isolation_suitable(cc->zone);
d3132e4b 2276
c89511ab
MG
2277 /*
2278 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2279 * information on where the scanners should start (unless we explicitly
2280 * want to compact the whole zone), but check that it is initialised
2281 * by ensuring the values are within zone boundaries.
c89511ab 2282 */
70b44595 2283 cc->fast_start_pfn = 0;
06ed2998 2284 if (cc->whole_zone) {
c89511ab 2285 cc->migrate_pfn = start_pfn;
06ed2998
VB
2286 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2287 } else {
40cacbcb
MG
2288 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2289 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2290 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2291 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2292 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2293 }
2294 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2295 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2296 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2297 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2298 }
c8f7de0b 2299
e332f741 2300 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2301 cc->whole_zone = true;
2302 }
c8f7de0b 2303
566e54e1 2304 last_migrated_pfn = 0;
748446bb 2305
8854c55f
MG
2306 /*
2307 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2308 * the basis that some migrations will fail in ASYNC mode. However,
2309 * if the cached PFNs match and pageblocks are skipped due to having
2310 * no isolation candidates, then the sync state does not matter.
2311 * Until a pageblock with isolation candidates is found, keep the
2312 * cached PFNs in sync to avoid revisiting the same blocks.
2313 */
2314 update_cached = !sync &&
2315 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2316
16c4a097
JK
2317 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2318 cc->free_pfn, end_pfn, sync);
0eb927c0 2319
748446bb
MG
2320 migrate_prep_local();
2321
40cacbcb 2322 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2323 int err;
19d3cf9d 2324 unsigned long iteration_start_pfn = cc->migrate_pfn;
748446bb 2325
804d3121
MG
2326 /*
2327 * Avoid multiple rescans which can happen if a page cannot be
2328 * isolated (dirty/writeback in async mode) or if the migrated
2329 * pages are being allocated before the pageblock is cleared.
2330 * The first rescan will capture the entire pageblock for
2331 * migration. If it fails, it'll be marked skip and scanning
2332 * will proceed as normal.
2333 */
2334 cc->rescan = false;
2335 if (pageblock_start_pfn(last_migrated_pfn) ==
19d3cf9d 2336 pageblock_start_pfn(iteration_start_pfn)) {
804d3121
MG
2337 cc->rescan = true;
2338 }
2339
32aaf055 2340 switch (isolate_migratepages(cc)) {
f9e35b3b 2341 case ISOLATE_ABORT:
2d1e1041 2342 ret = COMPACT_CONTENDED;
5733c7d1 2343 putback_movable_pages(&cc->migratepages);
e64c5237 2344 cc->nr_migratepages = 0;
f9e35b3b
MG
2345 goto out;
2346 case ISOLATE_NONE:
8854c55f
MG
2347 if (update_cached) {
2348 cc->zone->compact_cached_migrate_pfn[1] =
2349 cc->zone->compact_cached_migrate_pfn[0];
2350 }
2351
fdaf7f5c
VB
2352 /*
2353 * We haven't isolated and migrated anything, but
2354 * there might still be unflushed migrations from
2355 * previous cc->order aligned block.
2356 */
2357 goto check_drain;
f9e35b3b 2358 case ISOLATE_SUCCESS:
8854c55f 2359 update_cached = false;
19d3cf9d 2360 last_migrated_pfn = iteration_start_pfn;
f9e35b3b 2361 }
748446bb 2362
d53aea3d 2363 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2364 compaction_free, (unsigned long)cc, cc->mode,
7b2a2d4a 2365 MR_COMPACTION);
748446bb 2366
f8c9301f
VB
2367 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2368 &cc->migratepages);
748446bb 2369
f8c9301f
VB
2370 /* All pages were either migrated or will be released */
2371 cc->nr_migratepages = 0;
9d502c1c 2372 if (err) {
5733c7d1 2373 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2374 /*
2375 * migrate_pages() may return -ENOMEM when scanners meet
2376 * and we want compact_finished() to detect it
2377 */
f2849aa0 2378 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2379 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2380 goto out;
2381 }
fdd048e1
VB
2382 /*
2383 * We failed to migrate at least one page in the current
2384 * order-aligned block, so skip the rest of it.
2385 */
2386 if (cc->direct_compaction &&
2387 (cc->mode == MIGRATE_ASYNC)) {
2388 cc->migrate_pfn = block_end_pfn(
2389 cc->migrate_pfn - 1, cc->order);
2390 /* Draining pcplists is useless in this case */
566e54e1 2391 last_migrated_pfn = 0;
fdd048e1 2392 }
748446bb 2393 }
fdaf7f5c 2394
fdaf7f5c
VB
2395check_drain:
2396 /*
2397 * Has the migration scanner moved away from the previous
2398 * cc->order aligned block where we migrated from? If yes,
2399 * flush the pages that were freed, so that they can merge and
2400 * compact_finished() can detect immediately if allocation
2401 * would succeed.
2402 */
566e54e1 2403 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c 2404 unsigned long current_block_start =
06b6640a 2405 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2406
566e54e1 2407 if (last_migrated_pfn < current_block_start) {
b01b2141 2408 lru_add_drain_cpu_zone(cc->zone);
fdaf7f5c 2409 /* No more flushing until we migrate again */
566e54e1 2410 last_migrated_pfn = 0;
fdaf7f5c
VB
2411 }
2412 }
2413
5e1f0f09
MG
2414 /* Stop if a page has been captured */
2415 if (capc && capc->page) {
2416 ret = COMPACT_SUCCESS;
2417 break;
2418 }
748446bb
MG
2419 }
2420
f9e35b3b 2421out:
6bace090
VB
2422 /*
2423 * Release free pages and update where the free scanner should restart,
2424 * so we don't leave any returned pages behind in the next attempt.
2425 */
2426 if (cc->nr_freepages > 0) {
2427 unsigned long free_pfn = release_freepages(&cc->freepages);
2428
2429 cc->nr_freepages = 0;
2430 VM_BUG_ON(free_pfn == 0);
2431 /* The cached pfn is always the first in a pageblock */
06b6640a 2432 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2433 /*
2434 * Only go back, not forward. The cached pfn might have been
2435 * already reset to zone end in compact_finished()
2436 */
40cacbcb
MG
2437 if (free_pfn > cc->zone->compact_cached_free_pfn)
2438 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2439 }
748446bb 2440
7f354a54
DR
2441 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2442 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2443
16c4a097
JK
2444 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2445 cc->free_pfn, end_pfn, sync, ret);
0eb927c0 2446
748446bb
MG
2447 return ret;
2448}
76ab0f53 2449
ea7ab982 2450static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2451 gfp_t gfp_mask, enum compact_priority prio,
97a225e6 2452 unsigned int alloc_flags, int highest_zoneidx,
5e1f0f09 2453 struct page **capture)
56de7263 2454{
ea7ab982 2455 enum compact_result ret;
56de7263 2456 struct compact_control cc = {
56de7263 2457 .order = order,
dbe2d4e4 2458 .search_order = order,
6d7ce559 2459 .gfp_mask = gfp_mask,
56de7263 2460 .zone = zone,
a5508cd8
VB
2461 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2462 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980 2463 .alloc_flags = alloc_flags,
97a225e6 2464 .highest_zoneidx = highest_zoneidx,
accf6242 2465 .direct_compaction = true,
a8e025e5 2466 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2467 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2468 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2469 };
5e1f0f09
MG
2470 struct capture_control capc = {
2471 .cc = &cc,
2472 .page = NULL,
2473 };
2474
b9e20f0d
VB
2475 /*
2476 * Make sure the structs are really initialized before we expose the
2477 * capture control, in case we are interrupted and the interrupt handler
2478 * frees a page.
2479 */
2480 barrier();
2481 WRITE_ONCE(current->capture_control, &capc);
56de7263 2482
5e1f0f09 2483 ret = compact_zone(&cc, &capc);
e64c5237
SL
2484
2485 VM_BUG_ON(!list_empty(&cc.freepages));
2486 VM_BUG_ON(!list_empty(&cc.migratepages));
2487
b9e20f0d
VB
2488 /*
2489 * Make sure we hide capture control first before we read the captured
2490 * page pointer, otherwise an interrupt could free and capture a page
2491 * and we would leak it.
2492 */
2493 WRITE_ONCE(current->capture_control, NULL);
2494 *capture = READ_ONCE(capc.page);
5e1f0f09 2495
e64c5237 2496 return ret;
56de7263
MG
2497}
2498
5e771905
MG
2499int sysctl_extfrag_threshold = 500;
2500
56de7263
MG
2501/**
2502 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2503 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2504 * @order: The order of the current allocation
2505 * @alloc_flags: The allocation flags of the current allocation
2506 * @ac: The context of current allocation
112d2d29 2507 * @prio: Determines how hard direct compaction should try to succeed
6467552c 2508 * @capture: Pointer to free page created by compaction will be stored here
56de7263
MG
2509 *
2510 * This is the main entry point for direct page compaction.
2511 */
ea7ab982 2512enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2513 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2514 enum compact_priority prio, struct page **capture)
56de7263 2515{
56de7263 2516 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
2517 struct zoneref *z;
2518 struct zone *zone;
1d4746d3 2519 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2520
73e64c51
MH
2521 /*
2522 * Check if the GFP flags allow compaction - GFP_NOIO is really
2523 * tricky context because the migration might require IO
2524 */
2525 if (!may_perform_io)
53853e2d 2526 return COMPACT_SKIPPED;
56de7263 2527
a5508cd8 2528 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2529
56de7263 2530 /* Compact each zone in the list */
97a225e6
JK
2531 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2532 ac->highest_zoneidx, ac->nodemask) {
ea7ab982 2533 enum compact_result status;
56de7263 2534
a8e025e5
VB
2535 if (prio > MIN_COMPACT_PRIORITY
2536 && compaction_deferred(zone, order)) {
1d4746d3 2537 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2538 continue;
1d4746d3 2539 }
53853e2d 2540
a5508cd8 2541 status = compact_zone_order(zone, order, gfp_mask, prio,
97a225e6 2542 alloc_flags, ac->highest_zoneidx, capture);
56de7263
MG
2543 rc = max(status, rc);
2544
7ceb009a
VB
2545 /* The allocation should succeed, stop compacting */
2546 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2547 /*
2548 * We think the allocation will succeed in this zone,
2549 * but it is not certain, hence the false. The caller
2550 * will repeat this with true if allocation indeed
2551 * succeeds in this zone.
2552 */
2553 compaction_defer_reset(zone, order, false);
1f9efdef 2554
c3486f53 2555 break;
1f9efdef
VB
2556 }
2557
a5508cd8 2558 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2559 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2560 /*
2561 * We think that allocation won't succeed in this zone
2562 * so we defer compaction there. If it ends up
2563 * succeeding after all, it will be reset.
2564 */
2565 defer_compaction(zone, order);
1f9efdef
VB
2566
2567 /*
2568 * We might have stopped compacting due to need_resched() in
2569 * async compaction, or due to a fatal signal detected. In that
c3486f53 2570 * case do not try further zones
1f9efdef 2571 */
c3486f53
VB
2572 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2573 || fatal_signal_pending(current))
2574 break;
56de7263
MG
2575 }
2576
2577 return rc;
2578}
2579
facdaa91
NG
2580/*
2581 * Compact all zones within a node till each zone's fragmentation score
2582 * reaches within proactive compaction thresholds (as determined by the
2583 * proactiveness tunable).
2584 *
2585 * It is possible that the function returns before reaching score targets
2586 * due to various back-off conditions, such as, contention on per-node or
2587 * per-zone locks.
2588 */
2589static void proactive_compact_node(pg_data_t *pgdat)
2590{
2591 int zoneid;
2592 struct zone *zone;
2593 struct compact_control cc = {
2594 .order = -1,
2595 .mode = MIGRATE_SYNC_LIGHT,
2596 .ignore_skip_hint = true,
2597 .whole_zone = true,
2598 .gfp_mask = GFP_KERNEL,
2599 .proactive_compaction = true,
2600 };
2601
2602 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2603 zone = &pgdat->node_zones[zoneid];
2604 if (!populated_zone(zone))
2605 continue;
2606
2607 cc.zone = zone;
2608
2609 compact_zone(&cc, NULL);
2610
2611 VM_BUG_ON(!list_empty(&cc.freepages));
2612 VM_BUG_ON(!list_empty(&cc.migratepages));
2613 }
2614}
56de7263 2615
76ab0f53 2616/* Compact all zones within a node */
791cae96 2617static void compact_node(int nid)
76ab0f53 2618{
791cae96 2619 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 2620 int zoneid;
76ab0f53 2621 struct zone *zone;
791cae96
VB
2622 struct compact_control cc = {
2623 .order = -1,
2624 .mode = MIGRATE_SYNC,
2625 .ignore_skip_hint = true,
2626 .whole_zone = true,
73e64c51 2627 .gfp_mask = GFP_KERNEL,
791cae96
VB
2628 };
2629
76ab0f53 2630
76ab0f53 2631 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
2632
2633 zone = &pgdat->node_zones[zoneid];
2634 if (!populated_zone(zone))
2635 continue;
2636
791cae96 2637 cc.zone = zone;
76ab0f53 2638
5e1f0f09 2639 compact_zone(&cc, NULL);
75469345 2640
791cae96
VB
2641 VM_BUG_ON(!list_empty(&cc.freepages));
2642 VM_BUG_ON(!list_empty(&cc.migratepages));
76ab0f53 2643 }
76ab0f53
MG
2644}
2645
2646/* Compact all nodes in the system */
7964c06d 2647static void compact_nodes(void)
76ab0f53
MG
2648{
2649 int nid;
2650
8575ec29
HD
2651 /* Flush pending updates to the LRU lists */
2652 lru_add_drain_all();
2653
76ab0f53
MG
2654 for_each_online_node(nid)
2655 compact_node(nid);
76ab0f53
MG
2656}
2657
2658/* The written value is actually unused, all memory is compacted */
2659int sysctl_compact_memory;
2660
facdaa91
NG
2661/*
2662 * Tunable for proactive compaction. It determines how
2663 * aggressively the kernel should compact memory in the
2664 * background. It takes values in the range [0, 100].
2665 */
d34c0a75 2666unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
facdaa91 2667
fec4eb2c
YB
2668/*
2669 * This is the entry point for compacting all nodes via
2670 * /proc/sys/vm/compact_memory
2671 */
76ab0f53 2672int sysctl_compaction_handler(struct ctl_table *table, int write,
32927393 2673 void *buffer, size_t *length, loff_t *ppos)
76ab0f53
MG
2674{
2675 if (write)
7964c06d 2676 compact_nodes();
76ab0f53
MG
2677
2678 return 0;
2679}
ed4a6d7f
MG
2680
2681#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
74e77fb9 2682static ssize_t sysfs_compact_node(struct device *dev,
10fbcf4c 2683 struct device_attribute *attr,
ed4a6d7f
MG
2684 const char *buf, size_t count)
2685{
8575ec29
HD
2686 int nid = dev->id;
2687
2688 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2689 /* Flush pending updates to the LRU lists */
2690 lru_add_drain_all();
2691
2692 compact_node(nid);
2693 }
ed4a6d7f
MG
2694
2695 return count;
2696}
0825a6f9 2697static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
ed4a6d7f
MG
2698
2699int compaction_register_node(struct node *node)
2700{
10fbcf4c 2701 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2702}
2703
2704void compaction_unregister_node(struct node *node)
2705{
10fbcf4c 2706 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2707}
2708#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2709
698b1b30
VB
2710static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2711{
172400c6 2712 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
698b1b30
VB
2713}
2714
2715static bool kcompactd_node_suitable(pg_data_t *pgdat)
2716{
2717 int zoneid;
2718 struct zone *zone;
97a225e6 2719 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
698b1b30 2720
97a225e6 2721 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
698b1b30
VB
2722 zone = &pgdat->node_zones[zoneid];
2723
2724 if (!populated_zone(zone))
2725 continue;
2726
2727 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
97a225e6 2728 highest_zoneidx) == COMPACT_CONTINUE)
698b1b30
VB
2729 return true;
2730 }
2731
2732 return false;
2733}
2734
2735static void kcompactd_do_work(pg_data_t *pgdat)
2736{
2737 /*
2738 * With no special task, compact all zones so that a page of requested
2739 * order is allocatable.
2740 */
2741 int zoneid;
2742 struct zone *zone;
2743 struct compact_control cc = {
2744 .order = pgdat->kcompactd_max_order,
dbe2d4e4 2745 .search_order = pgdat->kcompactd_max_order,
97a225e6 2746 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
698b1b30 2747 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2748 .ignore_skip_hint = false,
73e64c51 2749 .gfp_mask = GFP_KERNEL,
698b1b30 2750 };
698b1b30 2751 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
97a225e6 2752 cc.highest_zoneidx);
7f354a54 2753 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2754
97a225e6 2755 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
698b1b30
VB
2756 int status;
2757
2758 zone = &pgdat->node_zones[zoneid];
2759 if (!populated_zone(zone))
2760 continue;
2761
2762 if (compaction_deferred(zone, cc.order))
2763 continue;
2764
2765 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2766 COMPACT_CONTINUE)
2767 continue;
2768
172400c6
VB
2769 if (kthread_should_stop())
2770 return;
a94b5252
YS
2771
2772 cc.zone = zone;
5e1f0f09 2773 status = compact_zone(&cc, NULL);
698b1b30 2774
7ceb009a 2775 if (status == COMPACT_SUCCESS) {
698b1b30 2776 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 2777 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
2778 /*
2779 * Buddy pages may become stranded on pcps that could
2780 * otherwise coalesce on the zone's free area for
2781 * order >= cc.order. This is ratelimited by the
2782 * upcoming deferral.
2783 */
2784 drain_all_pages(zone);
2785
698b1b30
VB
2786 /*
2787 * We use sync migration mode here, so we defer like
2788 * sync direct compaction does.
2789 */
2790 defer_compaction(zone, cc.order);
2791 }
2792
7f354a54
DR
2793 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2794 cc.total_migrate_scanned);
2795 count_compact_events(KCOMPACTD_FREE_SCANNED,
2796 cc.total_free_scanned);
2797
698b1b30
VB
2798 VM_BUG_ON(!list_empty(&cc.freepages));
2799 VM_BUG_ON(!list_empty(&cc.migratepages));
2800 }
2801
2802 /*
2803 * Regardless of success, we are done until woken up next. But remember
97a225e6
JK
2804 * the requested order/highest_zoneidx in case it was higher/tighter
2805 * than our current ones
698b1b30
VB
2806 */
2807 if (pgdat->kcompactd_max_order <= cc.order)
2808 pgdat->kcompactd_max_order = 0;
97a225e6
JK
2809 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2810 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2811}
2812
97a225e6 2813void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
698b1b30
VB
2814{
2815 if (!order)
2816 return;
2817
2818 if (pgdat->kcompactd_max_order < order)
2819 pgdat->kcompactd_max_order = order;
2820
97a225e6
JK
2821 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2822 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
698b1b30 2823
6818600f
DB
2824 /*
2825 * Pairs with implicit barrier in wait_event_freezable()
2826 * such that wakeups are not missed.
2827 */
2828 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2829 return;
2830
2831 if (!kcompactd_node_suitable(pgdat))
2832 return;
2833
2834 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
97a225e6 2835 highest_zoneidx);
698b1b30
VB
2836 wake_up_interruptible(&pgdat->kcompactd_wait);
2837}
2838
2839/*
2840 * The background compaction daemon, started as a kernel thread
2841 * from the init process.
2842 */
2843static int kcompactd(void *p)
2844{
2845 pg_data_t *pgdat = (pg_data_t*)p;
2846 struct task_struct *tsk = current;
facdaa91 2847 unsigned int proactive_defer = 0;
698b1b30
VB
2848
2849 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2850
2851 if (!cpumask_empty(cpumask))
2852 set_cpus_allowed_ptr(tsk, cpumask);
2853
2854 set_freezable();
2855
2856 pgdat->kcompactd_max_order = 0;
97a225e6 2857 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2858
2859 while (!kthread_should_stop()) {
eb414681
JW
2860 unsigned long pflags;
2861
698b1b30 2862 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
facdaa91
NG
2863 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2864 kcompactd_work_requested(pgdat),
2865 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2866
2867 psi_memstall_enter(&pflags);
2868 kcompactd_do_work(pgdat);
2869 psi_memstall_leave(&pflags);
2870 continue;
2871 }
698b1b30 2872
facdaa91
NG
2873 /* kcompactd wait timeout */
2874 if (should_proactive_compact_node(pgdat)) {
2875 unsigned int prev_score, score;
2876
2877 if (proactive_defer) {
2878 proactive_defer--;
2879 continue;
2880 }
2881 prev_score = fragmentation_score_node(pgdat);
2882 proactive_compact_node(pgdat);
2883 score = fragmentation_score_node(pgdat);
2884 /*
2885 * Defer proactive compaction if the fragmentation
2886 * score did not go down i.e. no progress made.
2887 */
2888 proactive_defer = score < prev_score ?
2889 0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2890 }
698b1b30
VB
2891 }
2892
2893 return 0;
2894}
2895
2896/*
2897 * This kcompactd start function will be called by init and node-hot-add.
2898 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2899 */
2900int kcompactd_run(int nid)
2901{
2902 pg_data_t *pgdat = NODE_DATA(nid);
2903 int ret = 0;
2904
2905 if (pgdat->kcompactd)
2906 return 0;
2907
2908 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2909 if (IS_ERR(pgdat->kcompactd)) {
2910 pr_err("Failed to start kcompactd on node %d\n", nid);
2911 ret = PTR_ERR(pgdat->kcompactd);
2912 pgdat->kcompactd = NULL;
2913 }
2914 return ret;
2915}
2916
2917/*
2918 * Called by memory hotplug when all memory in a node is offlined. Caller must
2919 * hold mem_hotplug_begin/end().
2920 */
2921void kcompactd_stop(int nid)
2922{
2923 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2924
2925 if (kcompactd) {
2926 kthread_stop(kcompactd);
2927 NODE_DATA(nid)->kcompactd = NULL;
2928 }
2929}
2930
2931/*
2932 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2933 * not required for correctness. So if the last cpu in a node goes
2934 * away, we get changed to run anywhere: as the first one comes back,
2935 * restore their cpu bindings.
2936 */
e46b1db2 2937static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
2938{
2939 int nid;
2940
e46b1db2
AMG
2941 for_each_node_state(nid, N_MEMORY) {
2942 pg_data_t *pgdat = NODE_DATA(nid);
2943 const struct cpumask *mask;
698b1b30 2944
e46b1db2 2945 mask = cpumask_of_node(pgdat->node_id);
698b1b30 2946
e46b1db2
AMG
2947 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2948 /* One of our CPUs online: restore mask */
2949 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 2950 }
e46b1db2 2951 return 0;
698b1b30
VB
2952}
2953
2954static int __init kcompactd_init(void)
2955{
2956 int nid;
e46b1db2
AMG
2957 int ret;
2958
2959 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2960 "mm/compaction:online",
2961 kcompactd_cpu_online, NULL);
2962 if (ret < 0) {
2963 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2964 return ret;
2965 }
698b1b30
VB
2966
2967 for_each_node_state(nid, N_MEMORY)
2968 kcompactd_run(nid);
698b1b30
VB
2969 return 0;
2970}
2971subsys_initcall(kcompactd_init)
2972
ff9543fd 2973#endif /* CONFIG_COMPACTION */