]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/compaction.c
mm: compaction: clean up comment for sched contention
[thirdparty/linux.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a 28#ifdef CONFIG_COMPACTION
31ca72fa
CTK
29/*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
33
010fc29a
MK
34static inline void count_compact_event(enum vm_event_item item)
35{
36 count_vm_event(item);
37}
38
39static inline void count_compact_events(enum vm_event_item item, long delta)
40{
41 count_vm_events(item, delta);
42}
43#else
44#define count_compact_event(item) do { } while (0)
45#define count_compact_events(item, delta) do { } while (0)
46#endif
47
ff9543fd
MN
48#if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
b7aba698
MG
50#define CREATE_TRACE_POINTS
51#include <trace/events/compaction.h>
52
06b6640a
VB
53#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
55#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
56#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
57
facdaa91
NG
58/*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63#if defined CONFIG_TRANSPARENT_HUGEPAGE
64#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
25788738 65#elif defined CONFIG_HUGETLBFS
facdaa91
NG
66#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
67#else
68#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69#endif
70
748446bb
MG
71static unsigned long release_freepages(struct list_head *freelist)
72{
73 struct page *page, *next;
6bace090 74 unsigned long high_pfn = 0;
748446bb
MG
75
76 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 77 unsigned long pfn = page_to_pfn(page);
748446bb
MG
78 list_del(&page->lru);
79 __free_page(page);
6bace090
VB
80 if (pfn > high_pfn)
81 high_pfn = pfn;
748446bb
MG
82 }
83
6bace090 84 return high_pfn;
748446bb
MG
85}
86
4469ab98 87static void split_map_pages(struct list_head *list)
ff9543fd 88{
66c64223
JK
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
91 LIST_HEAD(tmp_list);
92
93 list_for_each_entry_safe(page, next, list, lru) {
94 list_del(&page->lru);
95
96 order = page_private(page);
97 nr_pages = 1 << order;
66c64223 98
46f24fd8 99 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
100 if (order)
101 split_page(page, order);
ff9543fd 102
66c64223
JK
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
105 page++;
106 }
ff9543fd 107 }
66c64223
JK
108
109 list_splice(&tmp_list, list);
ff9543fd
MN
110}
111
bb13ffeb 112#ifdef CONFIG_COMPACTION
24e2716f 113
bda807d4
MK
114int PageMovable(struct page *page)
115{
116 struct address_space *mapping;
117
118 VM_BUG_ON_PAGE(!PageLocked(page), page);
119 if (!__PageMovable(page))
120 return 0;
121
122 mapping = page_mapping(page);
123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 return 1;
125
126 return 0;
127}
128EXPORT_SYMBOL(PageMovable);
129
130void __SetPageMovable(struct page *page, struct address_space *mapping)
131{
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135}
136EXPORT_SYMBOL(__SetPageMovable);
137
138void __ClearPageMovable(struct page *page)
139{
bda807d4
MK
140 VM_BUG_ON_PAGE(!PageMovable(page), page);
141 /*
142 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143 * flag so that VM can catch up released page by driver after isolation.
144 * With it, VM migration doesn't try to put it back.
145 */
146 page->mapping = (void *)((unsigned long)page->mapping &
147 PAGE_MAPPING_MOVABLE);
148}
149EXPORT_SYMBOL(__ClearPageMovable);
150
24e2716f
JK
151/* Do not skip compaction more than 64 times */
152#define COMPACT_MAX_DEFER_SHIFT 6
153
154/*
155 * Compaction is deferred when compaction fails to result in a page
860b3272 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up
24e2716f
JK
157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158 */
2271b016 159static void defer_compaction(struct zone *zone, int order)
24e2716f
JK
160{
161 zone->compact_considered = 0;
162 zone->compact_defer_shift++;
163
164 if (order < zone->compact_order_failed)
165 zone->compact_order_failed = order;
166
167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170 trace_mm_compaction_defer_compaction(zone, order);
171}
172
173/* Returns true if compaction should be skipped this time */
2271b016 174static bool compaction_deferred(struct zone *zone, int order)
24e2716f
JK
175{
176 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178 if (order < zone->compact_order_failed)
179 return false;
180
181 /* Avoid possible overflow */
62b35fe0 182 if (++zone->compact_considered >= defer_limit) {
24e2716f 183 zone->compact_considered = defer_limit;
24e2716f 184 return false;
62b35fe0 185 }
24e2716f
JK
186
187 trace_mm_compaction_deferred(zone, order);
188
189 return true;
190}
191
192/*
193 * Update defer tracking counters after successful compaction of given order,
194 * which means an allocation either succeeded (alloc_success == true) or is
195 * expected to succeed.
196 */
197void compaction_defer_reset(struct zone *zone, int order,
198 bool alloc_success)
199{
200 if (alloc_success) {
201 zone->compact_considered = 0;
202 zone->compact_defer_shift = 0;
203 }
204 if (order >= zone->compact_order_failed)
205 zone->compact_order_failed = order + 1;
206
207 trace_mm_compaction_defer_reset(zone, order);
208}
209
210/* Returns true if restarting compaction after many failures */
2271b016 211static bool compaction_restarting(struct zone *zone, int order)
24e2716f
JK
212{
213 if (order < zone->compact_order_failed)
214 return false;
215
216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218}
219
bb13ffeb
MG
220/* Returns true if the pageblock should be scanned for pages to isolate. */
221static inline bool isolation_suitable(struct compact_control *cc,
222 struct page *page)
223{
224 if (cc->ignore_skip_hint)
225 return true;
226
227 return !get_pageblock_skip(page);
228}
229
02333641
VB
230static void reset_cached_positions(struct zone *zone)
231{
232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 234 zone->compact_cached_free_pfn =
06b6640a 235 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
236}
237
21dc7e02 238/*
2271b016 239 * Compound pages of >= pageblock_order should consistently be skipped until
b527cfe5
VB
240 * released. It is always pointless to compact pages of such order (if they are
241 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 242 */
b527cfe5 243static bool pageblock_skip_persistent(struct page *page)
21dc7e02 244{
b527cfe5 245 if (!PageCompound(page))
21dc7e02 246 return false;
b527cfe5
VB
247
248 page = compound_head(page);
249
250 if (compound_order(page) >= pageblock_order)
251 return true;
252
253 return false;
21dc7e02
DR
254}
255
e332f741
MG
256static bool
257__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258 bool check_target)
259{
260 struct page *page = pfn_to_online_page(pfn);
6b0868c8 261 struct page *block_page;
e332f741
MG
262 struct page *end_page;
263 unsigned long block_pfn;
264
265 if (!page)
266 return false;
267 if (zone != page_zone(page))
268 return false;
269 if (pageblock_skip_persistent(page))
270 return false;
271
272 /*
273 * If skip is already cleared do no further checking once the
274 * restart points have been set.
275 */
276 if (check_source && check_target && !get_pageblock_skip(page))
277 return true;
278
279 /*
280 * If clearing skip for the target scanner, do not select a
281 * non-movable pageblock as the starting point.
282 */
283 if (!check_source && check_target &&
284 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285 return false;
286
6b0868c8
MG
287 /* Ensure the start of the pageblock or zone is online and valid */
288 block_pfn = pageblock_start_pfn(pfn);
a2e9a5af
VB
289 block_pfn = max(block_pfn, zone->zone_start_pfn);
290 block_page = pfn_to_online_page(block_pfn);
6b0868c8
MG
291 if (block_page) {
292 page = block_page;
293 pfn = block_pfn;
294 }
295
296 /* Ensure the end of the pageblock or zone is online and valid */
a2e9a5af 297 block_pfn = pageblock_end_pfn(pfn) - 1;
6b0868c8
MG
298 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299 end_page = pfn_to_online_page(block_pfn);
300 if (!end_page)
301 return false;
302
e332f741
MG
303 /*
304 * Only clear the hint if a sample indicates there is either a
305 * free page or an LRU page in the block. One or other condition
306 * is necessary for the block to be a migration source/target.
307 */
e332f741 308 do {
859a85dd
MR
309 if (check_source && PageLRU(page)) {
310 clear_pageblock_skip(page);
311 return true;
312 }
e332f741 313
859a85dd
MR
314 if (check_target && PageBuddy(page)) {
315 clear_pageblock_skip(page);
316 return true;
e332f741
MG
317 }
318
319 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
a2e9a5af 320 } while (page <= end_page);
e332f741
MG
321
322 return false;
323}
324
bb13ffeb
MG
325/*
326 * This function is called to clear all cached information on pageblocks that
327 * should be skipped for page isolation when the migrate and free page scanner
328 * meet.
329 */
62997027 330static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 331{
e332f741 332 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 333 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
334 unsigned long reset_migrate = free_pfn;
335 unsigned long reset_free = migrate_pfn;
336 bool source_set = false;
337 bool free_set = false;
338
339 if (!zone->compact_blockskip_flush)
340 return;
bb13ffeb 341
62997027 342 zone->compact_blockskip_flush = false;
bb13ffeb 343
e332f741
MG
344 /*
345 * Walk the zone and update pageblock skip information. Source looks
346 * for PageLRU while target looks for PageBuddy. When the scanner
347 * is found, both PageBuddy and PageLRU are checked as the pageblock
348 * is suitable as both source and target.
349 */
350 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
351 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
352 cond_resched();
353
e332f741
MG
354 /* Update the migrate PFN */
355 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
356 migrate_pfn < reset_migrate) {
357 source_set = true;
358 reset_migrate = migrate_pfn;
359 zone->compact_init_migrate_pfn = reset_migrate;
360 zone->compact_cached_migrate_pfn[0] = reset_migrate;
361 zone->compact_cached_migrate_pfn[1] = reset_migrate;
362 }
bb13ffeb 363
e332f741
MG
364 /* Update the free PFN */
365 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
366 free_pfn > reset_free) {
367 free_set = true;
368 reset_free = free_pfn;
369 zone->compact_init_free_pfn = reset_free;
370 zone->compact_cached_free_pfn = reset_free;
371 }
bb13ffeb 372 }
02333641 373
e332f741
MG
374 /* Leave no distance if no suitable block was reset */
375 if (reset_migrate >= reset_free) {
376 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
377 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
378 zone->compact_cached_free_pfn = free_pfn;
379 }
bb13ffeb
MG
380}
381
62997027
MG
382void reset_isolation_suitable(pg_data_t *pgdat)
383{
384 int zoneid;
385
386 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
387 struct zone *zone = &pgdat->node_zones[zoneid];
388 if (!populated_zone(zone))
389 continue;
390
391 /* Only flush if a full compaction finished recently */
392 if (zone->compact_blockskip_flush)
393 __reset_isolation_suitable(zone);
394 }
395}
396
e380bebe
MG
397/*
398 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
399 * locks are not required for read/writers. Returns true if it was already set.
400 */
401static bool test_and_set_skip(struct compact_control *cc, struct page *page,
402 unsigned long pfn)
403{
404 bool skip;
405
406 /* Do no update if skip hint is being ignored */
407 if (cc->ignore_skip_hint)
408 return false;
409
410 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
411 return false;
412
413 skip = get_pageblock_skip(page);
414 if (!skip && !cc->no_set_skip_hint)
415 set_pageblock_skip(page);
416
417 return skip;
418}
419
420static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
421{
422 struct zone *zone = cc->zone;
423
424 pfn = pageblock_end_pfn(pfn);
425
426 /* Set for isolation rather than compaction */
427 if (cc->no_set_skip_hint)
428 return;
429
430 if (pfn > zone->compact_cached_migrate_pfn[0])
431 zone->compact_cached_migrate_pfn[0] = pfn;
432 if (cc->mode != MIGRATE_ASYNC &&
433 pfn > zone->compact_cached_migrate_pfn[1])
434 zone->compact_cached_migrate_pfn[1] = pfn;
435}
436
bb13ffeb
MG
437/*
438 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 439 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 440 */
c89511ab 441static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 442 struct page *page, unsigned long pfn)
bb13ffeb 443{
c89511ab 444 struct zone *zone = cc->zone;
6815bf3f 445
2583d671 446 if (cc->no_set_skip_hint)
6815bf3f
JK
447 return;
448
bb13ffeb
MG
449 if (!page)
450 return;
451
edc2ca61 452 set_pageblock_skip(page);
c89511ab 453
35979ef3 454 /* Update where async and sync compaction should restart */
e380bebe
MG
455 if (pfn < zone->compact_cached_free_pfn)
456 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
457}
458#else
459static inline bool isolation_suitable(struct compact_control *cc,
460 struct page *page)
461{
462 return true;
463}
464
b527cfe5 465static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
466{
467 return false;
468}
469
470static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 471 struct page *page, unsigned long pfn)
bb13ffeb
MG
472{
473}
e380bebe
MG
474
475static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
476{
477}
478
479static bool test_and_set_skip(struct compact_control *cc, struct page *page,
480 unsigned long pfn)
481{
482 return false;
483}
bb13ffeb
MG
484#endif /* CONFIG_COMPACTION */
485
8b44d279
VB
486/*
487 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
488 * very heavily contended. For async compaction, trylock and record if the
489 * lock is contended. The lock will still be acquired but compaction will
490 * abort when the current block is finished regardless of success rate.
491 * Sync compaction acquires the lock.
8b44d279 492 *
cb2dcaf0 493 * Always returns true which makes it easier to track lock state in callers.
8b44d279 494 */
cb2dcaf0 495static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 496 struct compact_control *cc)
77337ede 497 __acquires(lock)
2a1402aa 498{
cb2dcaf0
MG
499 /* Track if the lock is contended in async mode */
500 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
501 if (spin_trylock_irqsave(lock, *flags))
502 return true;
503
504 cc->contended = true;
8b44d279 505 }
1f9efdef 506
cb2dcaf0 507 spin_lock_irqsave(lock, *flags);
8b44d279 508 return true;
2a1402aa
MG
509}
510
c67fe375
MG
511/*
512 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
513 * very heavily contended. The lock should be periodically unlocked to avoid
514 * having disabled IRQs for a long time, even when there is nobody waiting on
515 * the lock. It might also be that allowing the IRQs will result in
d56c1584 516 * need_resched() becoming true. If scheduling is needed, compaction schedules.
8b44d279
VB
517 * Either compaction type will also abort if a fatal signal is pending.
518 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 519 *
d56c1584
ML
520 * Returns true if compaction should abort due to fatal signal pending.
521 * Returns false when compaction can continue.
c67fe375 522 */
8b44d279
VB
523static bool compact_unlock_should_abort(spinlock_t *lock,
524 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 525{
8b44d279
VB
526 if (*locked) {
527 spin_unlock_irqrestore(lock, flags);
528 *locked = false;
529 }
1f9efdef 530
8b44d279 531 if (fatal_signal_pending(current)) {
c3486f53 532 cc->contended = true;
8b44d279
VB
533 return true;
534 }
c67fe375 535
cf66f070 536 cond_resched();
be976572
VB
537
538 return false;
539}
540
85aa125f 541/*
9e4be470
JM
542 * Isolate free pages onto a private freelist. If @strict is true, will abort
543 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
544 * (even though it may still end up isolating some pages).
85aa125f 545 */
f40d1e42 546static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 547 unsigned long *start_pfn,
85aa125f
MN
548 unsigned long end_pfn,
549 struct list_head *freelist,
4fca9730 550 unsigned int stride,
85aa125f 551 bool strict)
748446bb 552{
b7aba698 553 int nr_scanned = 0, total_isolated = 0;
d097a6f6 554 struct page *cursor;
b8b2d825 555 unsigned long flags = 0;
f40d1e42 556 bool locked = false;
e14c720e 557 unsigned long blockpfn = *start_pfn;
66c64223 558 unsigned int order;
748446bb 559
4fca9730
MG
560 /* Strict mode is for isolation, speed is secondary */
561 if (strict)
562 stride = 1;
563
748446bb
MG
564 cursor = pfn_to_page(blockpfn);
565
f40d1e42 566 /* Isolate free pages. */
4fca9730 567 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
66c64223 568 int isolated;
748446bb
MG
569 struct page *page = cursor;
570
8b44d279
VB
571 /*
572 * Periodically drop the lock (if held) regardless of its
573 * contention, to give chance to IRQs. Abort if fatal signal
d56c1584 574 * pending.
8b44d279
VB
575 */
576 if (!(blockpfn % SWAP_CLUSTER_MAX)
577 && compact_unlock_should_abort(&cc->zone->lock, flags,
578 &locked, cc))
579 break;
580
b7aba698 581 nr_scanned++;
2af120bc 582
9fcd6d2e
VB
583 /*
584 * For compound pages such as THP and hugetlbfs, we can save
585 * potentially a lot of iterations if we skip them at once.
586 * The check is racy, but we can consider only valid values
587 * and the only danger is skipping too much.
588 */
589 if (PageCompound(page)) {
21dc7e02
DR
590 const unsigned int order = compound_order(page);
591
d3c85bad 592 if (likely(order < MAX_ORDER)) {
21dc7e02
DR
593 blockpfn += (1UL << order) - 1;
594 cursor += (1UL << order) - 1;
9fcd6d2e 595 }
9fcd6d2e
VB
596 goto isolate_fail;
597 }
598
f40d1e42 599 if (!PageBuddy(page))
2af120bc 600 goto isolate_fail;
f40d1e42
MG
601
602 /*
69b7189f
VB
603 * If we already hold the lock, we can skip some rechecking.
604 * Note that if we hold the lock now, checked_pageblock was
605 * already set in some previous iteration (or strict is true),
606 * so it is correct to skip the suitable migration target
607 * recheck as well.
f40d1e42 608 */
69b7189f 609 if (!locked) {
cb2dcaf0 610 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 611 &flags, cc);
f40d1e42 612
69b7189f
VB
613 /* Recheck this is a buddy page under lock */
614 if (!PageBuddy(page))
615 goto isolate_fail;
616 }
748446bb 617
66c64223 618 /* Found a free page, will break it into order-0 pages */
ab130f91 619 order = buddy_order(page);
66c64223 620 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
621 if (!isolated)
622 break;
66c64223 623 set_page_private(page, order);
a4f04f2c 624
748446bb 625 total_isolated += isolated;
a4f04f2c 626 cc->nr_freepages += isolated;
66c64223
JK
627 list_add_tail(&page->lru, freelist);
628
a4f04f2c
DR
629 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
630 blockpfn += isolated;
631 break;
748446bb 632 }
a4f04f2c
DR
633 /* Advance to the end of split page */
634 blockpfn += isolated - 1;
635 cursor += isolated - 1;
636 continue;
2af120bc
LA
637
638isolate_fail:
639 if (strict)
640 break;
641 else
642 continue;
643
748446bb
MG
644 }
645
a4f04f2c
DR
646 if (locked)
647 spin_unlock_irqrestore(&cc->zone->lock, flags);
648
9fcd6d2e
VB
649 /*
650 * There is a tiny chance that we have read bogus compound_order(),
651 * so be careful to not go outside of the pageblock.
652 */
653 if (unlikely(blockpfn > end_pfn))
654 blockpfn = end_pfn;
655
e34d85f0
JK
656 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
657 nr_scanned, total_isolated);
658
e14c720e
VB
659 /* Record how far we have got within the block */
660 *start_pfn = blockpfn;
661
f40d1e42
MG
662 /*
663 * If strict isolation is requested by CMA then check that all the
664 * pages requested were isolated. If there were any failures, 0 is
665 * returned and CMA will fail.
666 */
2af120bc 667 if (strict && blockpfn < end_pfn)
f40d1e42
MG
668 total_isolated = 0;
669
7f354a54 670 cc->total_free_scanned += nr_scanned;
397487db 671 if (total_isolated)
010fc29a 672 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
673 return total_isolated;
674}
675
85aa125f
MN
676/**
677 * isolate_freepages_range() - isolate free pages.
e8b098fc 678 * @cc: Compaction control structure.
85aa125f
MN
679 * @start_pfn: The first PFN to start isolating.
680 * @end_pfn: The one-past-last PFN.
681 *
682 * Non-free pages, invalid PFNs, or zone boundaries within the
683 * [start_pfn, end_pfn) range are considered errors, cause function to
684 * undo its actions and return zero.
685 *
686 * Otherwise, function returns one-past-the-last PFN of isolated page
687 * (which may be greater then end_pfn if end fell in a middle of
688 * a free page).
689 */
ff9543fd 690unsigned long
bb13ffeb
MG
691isolate_freepages_range(struct compact_control *cc,
692 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 693{
e1409c32 694 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
695 LIST_HEAD(freelist);
696
7d49d886 697 pfn = start_pfn;
06b6640a 698 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
699 if (block_start_pfn < cc->zone->zone_start_pfn)
700 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 701 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
702
703 for (; pfn < end_pfn; pfn += isolated,
e1409c32 704 block_start_pfn = block_end_pfn,
7d49d886 705 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
706 /* Protect pfn from changing by isolate_freepages_block */
707 unsigned long isolate_start_pfn = pfn;
85aa125f 708
85aa125f
MN
709 block_end_pfn = min(block_end_pfn, end_pfn);
710
58420016
JK
711 /*
712 * pfn could pass the block_end_pfn if isolated freepage
713 * is more than pageblock order. In this case, we adjust
714 * scanning range to right one.
715 */
716 if (pfn >= block_end_pfn) {
06b6640a
VB
717 block_start_pfn = pageblock_start_pfn(pfn);
718 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
719 block_end_pfn = min(block_end_pfn, end_pfn);
720 }
721
e1409c32
JK
722 if (!pageblock_pfn_to_page(block_start_pfn,
723 block_end_pfn, cc->zone))
7d49d886
VB
724 break;
725
e14c720e 726 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
4fca9730 727 block_end_pfn, &freelist, 0, true);
85aa125f
MN
728
729 /*
730 * In strict mode, isolate_freepages_block() returns 0 if
731 * there are any holes in the block (ie. invalid PFNs or
732 * non-free pages).
733 */
734 if (!isolated)
735 break;
736
737 /*
738 * If we managed to isolate pages, it is always (1 << n) *
739 * pageblock_nr_pages for some non-negative n. (Max order
740 * page may span two pageblocks).
741 */
742 }
743
66c64223 744 /* __isolate_free_page() does not map the pages */
4469ab98 745 split_map_pages(&freelist);
85aa125f
MN
746
747 if (pfn < end_pfn) {
748 /* Loop terminated early, cleanup. */
749 release_freepages(&freelist);
750 return 0;
751 }
752
753 /* We don't use freelists for anything. */
754 return pfn;
755}
756
748446bb 757/* Similar to reclaim, but different enough that they don't share logic */
5f438eee 758static bool too_many_isolated(pg_data_t *pgdat)
748446bb 759{
d818fca1
MG
760 bool too_many;
761
bc693045 762 unsigned long active, inactive, isolated;
748446bb 763
5f438eee
AR
764 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
765 node_page_state(pgdat, NR_INACTIVE_ANON);
766 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
767 node_page_state(pgdat, NR_ACTIVE_ANON);
768 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
769 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 770
d818fca1
MG
771 too_many = isolated > (inactive + active) / 2;
772 if (!too_many)
773 wake_throttle_isolated(pgdat);
774
775 return too_many;
748446bb
MG
776}
777
2fe86e00 778/**
edc2ca61
VB
779 * isolate_migratepages_block() - isolate all migrate-able pages within
780 * a single pageblock
2fe86e00 781 * @cc: Compaction control structure.
edc2ca61
VB
782 * @low_pfn: The first PFN to isolate
783 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
89f6c88a 784 * @mode: Isolation mode to be used.
2fe86e00
MN
785 *
786 * Isolate all pages that can be migrated from the range specified by
edc2ca61 787 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
c2ad7a1f 788 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
369fa227 789 * -ENOMEM in case we could not allocate a page, or 0.
c2ad7a1f 790 * cc->migrate_pfn will contain the next pfn to scan.
2fe86e00 791 *
edc2ca61 792 * The pages are isolated on cc->migratepages list (not required to be empty),
c2ad7a1f 793 * and cc->nr_migratepages is updated accordingly.
748446bb 794 */
c2ad7a1f 795static int
edc2ca61 796isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
89f6c88a 797 unsigned long end_pfn, isolate_mode_t mode)
748446bb 798{
5f438eee 799 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 800 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 801 struct lruvec *lruvec;
b8b2d825 802 unsigned long flags = 0;
6168d0da 803 struct lruvec *locked = NULL;
bb13ffeb 804 struct page *page = NULL, *valid_page = NULL;
89f6c88a 805 struct address_space *mapping;
e34d85f0 806 unsigned long start_pfn = low_pfn;
fdd048e1
VB
807 bool skip_on_failure = false;
808 unsigned long next_skip_pfn = 0;
e380bebe 809 bool skip_updated = false;
c2ad7a1f
OS
810 int ret = 0;
811
812 cc->migrate_pfn = low_pfn;
748446bb 813
748446bb
MG
814 /*
815 * Ensure that there are not too many pages isolated from the LRU
816 * list by either parallel reclaimers or compaction. If there are,
817 * delay for some time until fewer pages are isolated
818 */
5f438eee 819 while (unlikely(too_many_isolated(pgdat))) {
d20bdd57
ZY
820 /* stop isolation if there are still pages not migrated */
821 if (cc->nr_migratepages)
c2ad7a1f 822 return -EAGAIN;
d20bdd57 823
f9e35b3b 824 /* async migration should just abort */
e0b9daeb 825 if (cc->mode == MIGRATE_ASYNC)
c2ad7a1f 826 return -EAGAIN;
f9e35b3b 827
c3f4a9a2 828 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
748446bb
MG
829
830 if (fatal_signal_pending(current))
c2ad7a1f 831 return -EINTR;
748446bb
MG
832 }
833
cf66f070 834 cond_resched();
aeef4b83 835
fdd048e1
VB
836 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
837 skip_on_failure = true;
838 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
839 }
840
748446bb 841 /* Time to isolate some pages for migration */
748446bb 842 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 843
fdd048e1
VB
844 if (skip_on_failure && low_pfn >= next_skip_pfn) {
845 /*
846 * We have isolated all migration candidates in the
847 * previous order-aligned block, and did not skip it due
848 * to failure. We should migrate the pages now and
849 * hopefully succeed compaction.
850 */
851 if (nr_isolated)
852 break;
853
854 /*
855 * We failed to isolate in the previous order-aligned
856 * block. Set the new boundary to the end of the
857 * current block. Note we can't simply increase
858 * next_skip_pfn by 1 << order, as low_pfn might have
859 * been incremented by a higher number due to skipping
860 * a compound or a high-order buddy page in the
861 * previous loop iteration.
862 */
863 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
864 }
865
8b44d279
VB
866 /*
867 * Periodically drop the lock (if held) regardless of its
670105a2
MG
868 * contention, to give chance to IRQs. Abort completely if
869 * a fatal signal is pending.
8b44d279 870 */
6168d0da
AS
871 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
872 if (locked) {
873 unlock_page_lruvec_irqrestore(locked, flags);
874 locked = NULL;
875 }
876
877 if (fatal_signal_pending(current)) {
878 cc->contended = true;
c2ad7a1f 879 ret = -EINTR;
6168d0da 880
6168d0da
AS
881 goto fatal_pending;
882 }
883
884 cond_resched();
670105a2 885 }
c67fe375 886
b7aba698 887 nr_scanned++;
748446bb 888
748446bb 889 page = pfn_to_page(low_pfn);
dc908600 890
e380bebe
MG
891 /*
892 * Check if the pageblock has already been marked skipped.
893 * Only the aligned PFN is checked as the caller isolates
894 * COMPACT_CLUSTER_MAX at a time so the second call must
895 * not falsely conclude that the block should be skipped.
896 */
897 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
4af12d04 898 if (!isolation_suitable(cc, page)) {
e380bebe 899 low_pfn = end_pfn;
9df41314 900 page = NULL;
e380bebe
MG
901 goto isolate_abort;
902 }
bb13ffeb 903 valid_page = page;
e380bebe 904 }
bb13ffeb 905
369fa227 906 if (PageHuge(page) && cc->alloc_contig) {
ae37c7ff 907 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
369fa227
OS
908
909 /*
910 * Fail isolation in case isolate_or_dissolve_huge_page()
911 * reports an error. In case of -ENOMEM, abort right away.
912 */
913 if (ret < 0) {
914 /* Do not report -EBUSY down the chain */
915 if (ret == -EBUSY)
916 ret = 0;
917 low_pfn += (1UL << compound_order(page)) - 1;
918 goto isolate_fail;
919 }
920
ae37c7ff
OS
921 if (PageHuge(page)) {
922 /*
923 * Hugepage was successfully isolated and placed
924 * on the cc->migratepages list.
925 */
926 low_pfn += compound_nr(page) - 1;
927 goto isolate_success_no_list;
928 }
929
369fa227
OS
930 /*
931 * Ok, the hugepage was dissolved. Now these pages are
932 * Buddy and cannot be re-allocated because they are
933 * isolated. Fall-through as the check below handles
934 * Buddy pages.
935 */
936 }
937
6c14466c 938 /*
99c0fd5e
VB
939 * Skip if free. We read page order here without zone lock
940 * which is generally unsafe, but the race window is small and
941 * the worst thing that can happen is that we skip some
942 * potential isolation targets.
6c14466c 943 */
99c0fd5e 944 if (PageBuddy(page)) {
ab130f91 945 unsigned long freepage_order = buddy_order_unsafe(page);
99c0fd5e
VB
946
947 /*
948 * Without lock, we cannot be sure that what we got is
949 * a valid page order. Consider only values in the
950 * valid order range to prevent low_pfn overflow.
951 */
952 if (freepage_order > 0 && freepage_order < MAX_ORDER)
953 low_pfn += (1UL << freepage_order) - 1;
748446bb 954 continue;
99c0fd5e 955 }
748446bb 956
bc835011 957 /*
29c0dde8 958 * Regardless of being on LRU, compound pages such as THP and
1da2f328
RR
959 * hugetlbfs are not to be compacted unless we are attempting
960 * an allocation much larger than the huge page size (eg CMA).
961 * We can potentially save a lot of iterations if we skip them
962 * at once. The check is racy, but we can consider only valid
963 * values and the only danger is skipping too much.
bc835011 964 */
1da2f328 965 if (PageCompound(page) && !cc->alloc_contig) {
21dc7e02 966 const unsigned int order = compound_order(page);
edc2ca61 967
d3c85bad 968 if (likely(order < MAX_ORDER))
21dc7e02 969 low_pfn += (1UL << order) - 1;
fdd048e1 970 goto isolate_fail;
2a1402aa
MG
971 }
972
bda807d4
MK
973 /*
974 * Check may be lockless but that's ok as we recheck later.
975 * It's possible to migrate LRU and non-lru movable pages.
976 * Skip any other type of page
977 */
978 if (!PageLRU(page)) {
bda807d4
MK
979 /*
980 * __PageMovable can return false positive so we need
981 * to verify it under page_lock.
982 */
983 if (unlikely(__PageMovable(page)) &&
984 !PageIsolated(page)) {
985 if (locked) {
6168d0da
AS
986 unlock_page_lruvec_irqrestore(locked, flags);
987 locked = NULL;
bda807d4
MK
988 }
989
89f6c88a 990 if (!isolate_movable_page(page, mode))
bda807d4
MK
991 goto isolate_success;
992 }
993
fdd048e1 994 goto isolate_fail;
bda807d4 995 }
29c0dde8 996
119d6d59
DR
997 /*
998 * Migration will fail if an anonymous page is pinned in memory,
999 * so avoid taking lru_lock and isolating it unnecessarily in an
1000 * admittedly racy check.
1001 */
89f6c88a
HD
1002 mapping = page_mapping(page);
1003 if (!mapping && page_count(page) > page_mapcount(page))
fdd048e1 1004 goto isolate_fail;
119d6d59 1005
73e64c51
MH
1006 /*
1007 * Only allow to migrate anonymous pages in GFP_NOFS context
1008 * because those do not depend on fs locks.
1009 */
89f6c88a 1010 if (!(cc->gfp_mask & __GFP_FS) && mapping)
73e64c51
MH
1011 goto isolate_fail;
1012
9df41314
AS
1013 /*
1014 * Be careful not to clear PageLRU until after we're
1015 * sure the page is not being freed elsewhere -- the
1016 * page release code relies on it.
1017 */
1018 if (unlikely(!get_page_unless_zero(page)))
1019 goto isolate_fail;
1020
89f6c88a
HD
1021 /* Only take pages on LRU: a check now makes later tests safe */
1022 if (!PageLRU(page))
1023 goto isolate_fail_put;
1024
1025 /* Compaction might skip unevictable pages but CMA takes them */
1026 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1027 goto isolate_fail_put;
1028
1029 /*
1030 * To minimise LRU disruption, the caller can indicate with
1031 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1032 * it will be able to migrate without blocking - clean pages
1033 * for the most part. PageWriteback would require blocking.
1034 */
1035 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
9df41314
AS
1036 goto isolate_fail_put;
1037
89f6c88a
HD
1038 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1039 bool migrate_dirty;
1040
1041 /*
1042 * Only pages without mappings or that have a
1043 * ->migratepage callback are possible to migrate
1044 * without blocking. However, we can be racing with
1045 * truncation so it's necessary to lock the page
1046 * to stabilise the mapping as truncation holds
1047 * the page lock until after the page is removed
1048 * from the page cache.
1049 */
1050 if (!trylock_page(page))
1051 goto isolate_fail_put;
1052
1053 mapping = page_mapping(page);
1054 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1055 unlock_page(page);
1056 if (!migrate_dirty)
1057 goto isolate_fail_put;
1058 }
1059
9df41314
AS
1060 /* Try isolate the page */
1061 if (!TestClearPageLRU(page))
1062 goto isolate_fail_put;
1063
b1baabd9 1064 lruvec = folio_lruvec(page_folio(page));
6168d0da 1065
69b7189f 1066 /* If we already hold the lock, we can skip some rechecking */
6168d0da
AS
1067 if (lruvec != locked) {
1068 if (locked)
1069 unlock_page_lruvec_irqrestore(locked, flags);
1070
1071 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1072 locked = lruvec;
6168d0da 1073
e809c3fe 1074 lruvec_memcg_debug(lruvec, page_folio(page));
e380bebe 1075
e380bebe
MG
1076 /* Try get exclusive access under lock */
1077 if (!skip_updated) {
1078 skip_updated = true;
1079 if (test_and_set_skip(cc, page, low_pfn))
1080 goto isolate_abort;
1081 }
2a1402aa 1082
29c0dde8
VB
1083 /*
1084 * Page become compound since the non-locked check,
1085 * and it's on LRU. It can only be a THP so the order
1086 * is safe to read and it's 0 for tail pages.
1087 */
1da2f328 1088 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
d8c6546b 1089 low_pfn += compound_nr(page) - 1;
9df41314
AS
1090 SetPageLRU(page);
1091 goto isolate_fail_put;
69b7189f 1092 }
d99fd5fe 1093 }
fa9add64 1094
1da2f328
RR
1095 /* The whole page is taken off the LRU; skip the tail pages. */
1096 if (PageCompound(page))
1097 low_pfn += compound_nr(page) - 1;
bc835011 1098
748446bb 1099 /* Successfully isolated */
46ae6b2c 1100 del_page_from_lru_list(page, lruvec);
1da2f328 1101 mod_node_page_state(page_pgdat(page),
9de4f22a 1102 NR_ISOLATED_ANON + page_is_file_lru(page),
6c357848 1103 thp_nr_pages(page));
b6c75016
JK
1104
1105isolate_success:
fdd048e1 1106 list_add(&page->lru, &cc->migratepages);
ae37c7ff 1107isolate_success_no_list:
38935861
ZY
1108 cc->nr_migratepages += compound_nr(page);
1109 nr_isolated += compound_nr(page);
748446bb 1110
804d3121
MG
1111 /*
1112 * Avoid isolating too much unless this block is being
cb2dcaf0
MG
1113 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1114 * or a lock is contended. For contention, isolate quickly to
1115 * potentially remove one source of contention.
804d3121 1116 */
38935861 1117 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
cb2dcaf0 1118 !cc->rescan && !cc->contended) {
31b8384a 1119 ++low_pfn;
748446bb 1120 break;
31b8384a 1121 }
fdd048e1
VB
1122
1123 continue;
9df41314
AS
1124
1125isolate_fail_put:
1126 /* Avoid potential deadlock in freeing page under lru_lock */
1127 if (locked) {
6168d0da
AS
1128 unlock_page_lruvec_irqrestore(locked, flags);
1129 locked = NULL;
9df41314
AS
1130 }
1131 put_page(page);
1132
fdd048e1 1133isolate_fail:
369fa227 1134 if (!skip_on_failure && ret != -ENOMEM)
fdd048e1
VB
1135 continue;
1136
1137 /*
1138 * We have isolated some pages, but then failed. Release them
1139 * instead of migrating, as we cannot form the cc->order buddy
1140 * page anyway.
1141 */
1142 if (nr_isolated) {
1143 if (locked) {
6168d0da
AS
1144 unlock_page_lruvec_irqrestore(locked, flags);
1145 locked = NULL;
fdd048e1 1146 }
fdd048e1
VB
1147 putback_movable_pages(&cc->migratepages);
1148 cc->nr_migratepages = 0;
fdd048e1
VB
1149 nr_isolated = 0;
1150 }
1151
1152 if (low_pfn < next_skip_pfn) {
1153 low_pfn = next_skip_pfn - 1;
1154 /*
1155 * The check near the loop beginning would have updated
1156 * next_skip_pfn too, but this is a bit simpler.
1157 */
1158 next_skip_pfn += 1UL << cc->order;
1159 }
369fa227
OS
1160
1161 if (ret == -ENOMEM)
1162 break;
748446bb
MG
1163 }
1164
99c0fd5e
VB
1165 /*
1166 * The PageBuddy() check could have potentially brought us outside
1167 * the range to be scanned.
1168 */
1169 if (unlikely(low_pfn > end_pfn))
1170 low_pfn = end_pfn;
1171
9df41314
AS
1172 page = NULL;
1173
e380bebe 1174isolate_abort:
c67fe375 1175 if (locked)
6168d0da 1176 unlock_page_lruvec_irqrestore(locked, flags);
9df41314
AS
1177 if (page) {
1178 SetPageLRU(page);
1179 put_page(page);
1180 }
748446bb 1181
50b5b094 1182 /*
804d3121
MG
1183 * Updated the cached scanner pfn once the pageblock has been scanned
1184 * Pages will either be migrated in which case there is no point
1185 * scanning in the near future or migration failed in which case the
1186 * failure reason may persist. The block is marked for skipping if
1187 * there were no pages isolated in the block or if the block is
1188 * rescanned twice in a row.
50b5b094 1189 */
804d3121 1190 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
e380bebe
MG
1191 if (valid_page && !skip_updated)
1192 set_pageblock_skip(valid_page);
1193 update_cached_migrate(cc, low_pfn);
1194 }
bb13ffeb 1195
e34d85f0
JK
1196 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1197 nr_scanned, nr_isolated);
b7aba698 1198
670105a2 1199fatal_pending:
7f354a54 1200 cc->total_migrate_scanned += nr_scanned;
397487db 1201 if (nr_isolated)
010fc29a 1202 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1203
c2ad7a1f
OS
1204 cc->migrate_pfn = low_pfn;
1205
1206 return ret;
2fe86e00
MN
1207}
1208
edc2ca61
VB
1209/**
1210 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1211 * @cc: Compaction control structure.
1212 * @start_pfn: The first PFN to start isolating.
1213 * @end_pfn: The one-past-last PFN.
1214 *
369fa227
OS
1215 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1216 * in case we could not allocate a page, or 0.
edc2ca61 1217 */
c2ad7a1f 1218int
edc2ca61
VB
1219isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1220 unsigned long end_pfn)
1221{
e1409c32 1222 unsigned long pfn, block_start_pfn, block_end_pfn;
c2ad7a1f 1223 int ret = 0;
edc2ca61
VB
1224
1225 /* Scan block by block. First and last block may be incomplete */
1226 pfn = start_pfn;
06b6640a 1227 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1228 if (block_start_pfn < cc->zone->zone_start_pfn)
1229 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1230 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1231
1232 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1233 block_start_pfn = block_end_pfn,
edc2ca61
VB
1234 block_end_pfn += pageblock_nr_pages) {
1235
1236 block_end_pfn = min(block_end_pfn, end_pfn);
1237
e1409c32
JK
1238 if (!pageblock_pfn_to_page(block_start_pfn,
1239 block_end_pfn, cc->zone))
edc2ca61
VB
1240 continue;
1241
c2ad7a1f
OS
1242 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1243 ISOLATE_UNEVICTABLE);
edc2ca61 1244
c2ad7a1f 1245 if (ret)
edc2ca61 1246 break;
6ea41c0c 1247
38935861 1248 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
6ea41c0c 1249 break;
edc2ca61 1250 }
edc2ca61 1251
c2ad7a1f 1252 return ret;
edc2ca61
VB
1253}
1254
ff9543fd
MN
1255#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1256#ifdef CONFIG_COMPACTION
018e9a49 1257
b682debd
VB
1258static bool suitable_migration_source(struct compact_control *cc,
1259 struct page *page)
1260{
282722b0
VB
1261 int block_mt;
1262
9bebefd5
MG
1263 if (pageblock_skip_persistent(page))
1264 return false;
1265
282722b0 1266 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1267 return true;
1268
282722b0
VB
1269 block_mt = get_pageblock_migratetype(page);
1270
1271 if (cc->migratetype == MIGRATE_MOVABLE)
1272 return is_migrate_movable(block_mt);
1273 else
1274 return block_mt == cc->migratetype;
b682debd
VB
1275}
1276
018e9a49 1277/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1278static bool suitable_migration_target(struct compact_control *cc,
1279 struct page *page)
018e9a49
AM
1280{
1281 /* If the page is a large free page, then disallow migration */
1282 if (PageBuddy(page)) {
1283 /*
1284 * We are checking page_order without zone->lock taken. But
1285 * the only small danger is that we skip a potentially suitable
1286 * pageblock, so it's not worth to check order for valid range.
1287 */
ab130f91 1288 if (buddy_order_unsafe(page) >= pageblock_order)
018e9a49
AM
1289 return false;
1290 }
1291
1ef36db2
YX
1292 if (cc->ignore_block_suitable)
1293 return true;
1294
018e9a49 1295 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1296 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1297 return true;
1298
1299 /* Otherwise skip the block */
1300 return false;
1301}
1302
70b44595
MG
1303static inline unsigned int
1304freelist_scan_limit(struct compact_control *cc)
1305{
dd7ef7bd
QC
1306 unsigned short shift = BITS_PER_LONG - 1;
1307
1308 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1309}
1310
f2849aa0
VB
1311/*
1312 * Test whether the free scanner has reached the same or lower pageblock than
1313 * the migration scanner, and compaction should thus terminate.
1314 */
1315static inline bool compact_scanners_met(struct compact_control *cc)
1316{
1317 return (cc->free_pfn >> pageblock_order)
1318 <= (cc->migrate_pfn >> pageblock_order);
1319}
1320
5a811889
MG
1321/*
1322 * Used when scanning for a suitable migration target which scans freelists
1323 * in reverse. Reorders the list such as the unscanned pages are scanned
1324 * first on the next iteration of the free scanner
1325 */
1326static void
1327move_freelist_head(struct list_head *freelist, struct page *freepage)
1328{
1329 LIST_HEAD(sublist);
1330
1331 if (!list_is_last(freelist, &freepage->lru)) {
1332 list_cut_before(&sublist, freelist, &freepage->lru);
d2155fe5 1333 list_splice_tail(&sublist, freelist);
5a811889
MG
1334 }
1335}
1336
1337/*
1338 * Similar to move_freelist_head except used by the migration scanner
1339 * when scanning forward. It's possible for these list operations to
1340 * move against each other if they search the free list exactly in
1341 * lockstep.
1342 */
70b44595
MG
1343static void
1344move_freelist_tail(struct list_head *freelist, struct page *freepage)
1345{
1346 LIST_HEAD(sublist);
1347
1348 if (!list_is_first(freelist, &freepage->lru)) {
1349 list_cut_position(&sublist, freelist, &freepage->lru);
d2155fe5 1350 list_splice_tail(&sublist, freelist);
70b44595
MG
1351 }
1352}
1353
5a811889
MG
1354static void
1355fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1356{
1357 unsigned long start_pfn, end_pfn;
6e2b7044 1358 struct page *page;
5a811889
MG
1359
1360 /* Do not search around if there are enough pages already */
1361 if (cc->nr_freepages >= cc->nr_migratepages)
1362 return;
1363
1364 /* Minimise scanning during async compaction */
1365 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1366 return;
1367
1368 /* Pageblock boundaries */
6e2b7044
VB
1369 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1370 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1371
1372 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1373 if (!page)
1374 return;
5a811889
MG
1375
1376 /* Scan before */
1377 if (start_pfn != pfn) {
4fca9730 1378 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
5a811889
MG
1379 if (cc->nr_freepages >= cc->nr_migratepages)
1380 return;
1381 }
1382
1383 /* Scan after */
1384 start_pfn = pfn + nr_isolated;
60fce36a 1385 if (start_pfn < end_pfn)
4fca9730 1386 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
5a811889
MG
1387
1388 /* Skip this pageblock in the future as it's full or nearly full */
1389 if (cc->nr_freepages < cc->nr_migratepages)
1390 set_pageblock_skip(page);
1391}
1392
dbe2d4e4
MG
1393/* Search orders in round-robin fashion */
1394static int next_search_order(struct compact_control *cc, int order)
1395{
1396 order--;
1397 if (order < 0)
1398 order = cc->order - 1;
1399
1400 /* Search wrapped around? */
1401 if (order == cc->search_order) {
1402 cc->search_order--;
1403 if (cc->search_order < 0)
1404 cc->search_order = cc->order - 1;
1405 return -1;
1406 }
1407
1408 return order;
1409}
1410
5a811889
MG
1411static unsigned long
1412fast_isolate_freepages(struct compact_control *cc)
1413{
b55ca526 1414 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
5a811889 1415 unsigned int nr_scanned = 0;
74e21484 1416 unsigned long low_pfn, min_pfn, highest = 0;
5a811889
MG
1417 unsigned long nr_isolated = 0;
1418 unsigned long distance;
1419 struct page *page = NULL;
1420 bool scan_start = false;
1421 int order;
1422
1423 /* Full compaction passes in a negative order */
1424 if (cc->order <= 0)
1425 return cc->free_pfn;
1426
1427 /*
1428 * If starting the scan, use a deeper search and use the highest
1429 * PFN found if a suitable one is not found.
1430 */
e332f741 1431 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1432 limit = pageblock_nr_pages >> 1;
1433 scan_start = true;
1434 }
1435
1436 /*
1437 * Preferred point is in the top quarter of the scan space but take
1438 * a pfn from the top half if the search is problematic.
1439 */
1440 distance = (cc->free_pfn - cc->migrate_pfn);
1441 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1442 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1443
1444 if (WARN_ON_ONCE(min_pfn > low_pfn))
1445 low_pfn = min_pfn;
1446
dbe2d4e4
MG
1447 /*
1448 * Search starts from the last successful isolation order or the next
1449 * order to search after a previous failure
1450 */
1451 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1452
1453 for (order = cc->search_order;
1454 !page && order >= 0;
1455 order = next_search_order(cc, order)) {
5a811889
MG
1456 struct free_area *area = &cc->zone->free_area[order];
1457 struct list_head *freelist;
1458 struct page *freepage;
1459 unsigned long flags;
1460 unsigned int order_scanned = 0;
74e21484 1461 unsigned long high_pfn = 0;
5a811889
MG
1462
1463 if (!area->nr_free)
1464 continue;
1465
1466 spin_lock_irqsave(&cc->zone->lock, flags);
1467 freelist = &area->free_list[MIGRATE_MOVABLE];
1468 list_for_each_entry_reverse(freepage, freelist, lru) {
1469 unsigned long pfn;
1470
1471 order_scanned++;
1472 nr_scanned++;
1473 pfn = page_to_pfn(freepage);
1474
1475 if (pfn >= highest)
6e2b7044
VB
1476 highest = max(pageblock_start_pfn(pfn),
1477 cc->zone->zone_start_pfn);
5a811889
MG
1478
1479 if (pfn >= low_pfn) {
1480 cc->fast_search_fail = 0;
dbe2d4e4 1481 cc->search_order = order;
5a811889
MG
1482 page = freepage;
1483 break;
1484 }
1485
1486 if (pfn >= min_pfn && pfn > high_pfn) {
1487 high_pfn = pfn;
1488
1489 /* Shorten the scan if a candidate is found */
1490 limit >>= 1;
1491 }
1492
1493 if (order_scanned >= limit)
1494 break;
1495 }
1496
1497 /* Use a minimum pfn if a preferred one was not found */
1498 if (!page && high_pfn) {
1499 page = pfn_to_page(high_pfn);
1500
1501 /* Update freepage for the list reorder below */
1502 freepage = page;
1503 }
1504
1505 /* Reorder to so a future search skips recent pages */
1506 move_freelist_head(freelist, freepage);
1507
1508 /* Isolate the page if available */
1509 if (page) {
1510 if (__isolate_free_page(page, order)) {
1511 set_page_private(page, order);
1512 nr_isolated = 1 << order;
1513 cc->nr_freepages += nr_isolated;
1514 list_add_tail(&page->lru, &cc->freepages);
1515 count_compact_events(COMPACTISOLATED, nr_isolated);
1516 } else {
1517 /* If isolation fails, abort the search */
5b56d996 1518 order = cc->search_order + 1;
5a811889
MG
1519 page = NULL;
1520 }
1521 }
1522
1523 spin_unlock_irqrestore(&cc->zone->lock, flags);
1524
1525 /*
b55ca526 1526 * Smaller scan on next order so the total scan is related
5a811889
MG
1527 * to freelist_scan_limit.
1528 */
1529 if (order_scanned >= limit)
b55ca526 1530 limit = max(1U, limit >> 1);
5a811889
MG
1531 }
1532
1533 if (!page) {
1534 cc->fast_search_fail++;
1535 if (scan_start) {
1536 /*
1537 * Use the highest PFN found above min. If one was
f3867755 1538 * not found, be pessimistic for direct compaction
5a811889
MG
1539 * and use the min mark.
1540 */
1541 if (highest) {
1542 page = pfn_to_page(highest);
1543 cc->free_pfn = highest;
1544 } else {
e577c8b6 1545 if (cc->direct_compaction && pfn_valid(min_pfn)) {
73a6e474 1546 page = pageblock_pfn_to_page(min_pfn,
6e2b7044
VB
1547 min(pageblock_end_pfn(min_pfn),
1548 zone_end_pfn(cc->zone)),
73a6e474 1549 cc->zone);
5a811889
MG
1550 cc->free_pfn = min_pfn;
1551 }
1552 }
1553 }
1554 }
1555
d097a6f6
MG
1556 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1557 highest -= pageblock_nr_pages;
5a811889 1558 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1559 }
5a811889
MG
1560
1561 cc->total_free_scanned += nr_scanned;
1562 if (!page)
1563 return cc->free_pfn;
1564
1565 low_pfn = page_to_pfn(page);
1566 fast_isolate_around(cc, low_pfn, nr_isolated);
1567 return low_pfn;
1568}
1569
2fe86e00 1570/*
ff9543fd
MN
1571 * Based on information in the current compact_control, find blocks
1572 * suitable for isolating free pages from and then isolate them.
2fe86e00 1573 */
edc2ca61 1574static void isolate_freepages(struct compact_control *cc)
2fe86e00 1575{
edc2ca61 1576 struct zone *zone = cc->zone;
ff9543fd 1577 struct page *page;
c96b9e50 1578 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1579 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1580 unsigned long block_end_pfn; /* end of current pageblock */
1581 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1582 struct list_head *freelist = &cc->freepages;
4fca9730 1583 unsigned int stride;
2fe86e00 1584
5a811889 1585 /* Try a small search of the free lists for a candidate */
00bc102f 1586 fast_isolate_freepages(cc);
5a811889
MG
1587 if (cc->nr_freepages)
1588 goto splitmap;
1589
ff9543fd
MN
1590 /*
1591 * Initialise the free scanner. The starting point is where we last
49e068f0 1592 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1593 * zone when isolating for the first time. For looping we also need
1594 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1595 * block_start_pfn -= pageblock_nr_pages in the for loop.
1596 * For ending point, take care when isolating in last pageblock of a
a1c1dbeb 1597 * zone which ends in the middle of a pageblock.
49e068f0
VB
1598 * The low boundary is the end of the pageblock the migration scanner
1599 * is using.
ff9543fd 1600 */
e14c720e 1601 isolate_start_pfn = cc->free_pfn;
5a811889 1602 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1603 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1604 zone_end_pfn(zone));
06b6640a 1605 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1606 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1607
ff9543fd
MN
1608 /*
1609 * Isolate free pages until enough are available to migrate the
1610 * pages on cc->migratepages. We stop searching if the migrate
1611 * and free page scanners meet or enough free pages are isolated.
1612 */
f5f61a32 1613 for (; block_start_pfn >= low_pfn;
c96b9e50 1614 block_end_pfn = block_start_pfn,
e14c720e
VB
1615 block_start_pfn -= pageblock_nr_pages,
1616 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1617 unsigned long nr_isolated;
1618
f6ea3adb
DR
1619 /*
1620 * This can iterate a massively long zone without finding any
cb810ad2 1621 * suitable migration targets, so periodically check resched.
f6ea3adb 1622 */
cb810ad2 1623 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1624 cond_resched();
f6ea3adb 1625
7d49d886
VB
1626 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1627 zone);
1628 if (!page)
ff9543fd
MN
1629 continue;
1630
1631 /* Check the block is suitable for migration */
9f7e3387 1632 if (!suitable_migration_target(cc, page))
ff9543fd 1633 continue;
68e3e926 1634
bb13ffeb
MG
1635 /* If isolation recently failed, do not retry */
1636 if (!isolation_suitable(cc, page))
1637 continue;
1638
e14c720e 1639 /* Found a block suitable for isolating free pages from. */
4fca9730
MG
1640 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1641 block_end_pfn, freelist, stride, false);
ff9543fd 1642
d097a6f6
MG
1643 /* Update the skip hint if the full pageblock was scanned */
1644 if (isolate_start_pfn == block_end_pfn)
1645 update_pageblock_skip(cc, page, block_start_pfn);
1646
cb2dcaf0
MG
1647 /* Are enough freepages isolated? */
1648 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1649 if (isolate_start_pfn >= block_end_pfn) {
1650 /*
1651 * Restart at previous pageblock if more
1652 * freepages can be isolated next time.
1653 */
f5f61a32
VB
1654 isolate_start_pfn =
1655 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1656 }
be976572 1657 break;
a46cbf3b 1658 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1659 /*
a46cbf3b
DR
1660 * If isolation failed early, do not continue
1661 * needlessly.
f5f61a32 1662 */
a46cbf3b 1663 break;
f5f61a32 1664 }
4fca9730
MG
1665
1666 /* Adjust stride depending on isolation */
1667 if (nr_isolated) {
1668 stride = 1;
1669 continue;
1670 }
1671 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1672 }
1673
7ed695e0 1674 /*
f5f61a32
VB
1675 * Record where the free scanner will restart next time. Either we
1676 * broke from the loop and set isolate_start_pfn based on the last
1677 * call to isolate_freepages_block(), or we met the migration scanner
1678 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1679 */
f5f61a32 1680 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1681
1682splitmap:
1683 /* __isolate_free_page() does not map the pages */
1684 split_map_pages(freelist);
748446bb
MG
1685}
1686
1687/*
1688 * This is a migrate-callback that "allocates" freepages by taking pages
1689 * from the isolated freelists in the block we are migrating to.
1690 */
1691static struct page *compaction_alloc(struct page *migratepage,
666feb21 1692 unsigned long data)
748446bb
MG
1693{
1694 struct compact_control *cc = (struct compact_control *)data;
1695 struct page *freepage;
1696
748446bb 1697 if (list_empty(&cc->freepages)) {
cb2dcaf0 1698 isolate_freepages(cc);
748446bb
MG
1699
1700 if (list_empty(&cc->freepages))
1701 return NULL;
1702 }
1703
1704 freepage = list_entry(cc->freepages.next, struct page, lru);
1705 list_del(&freepage->lru);
1706 cc->nr_freepages--;
1707
1708 return freepage;
1709}
1710
1711/*
d53aea3d
DR
1712 * This is a migrate-callback that "frees" freepages back to the isolated
1713 * freelist. All pages on the freelist are from the same zone, so there is no
1714 * special handling needed for NUMA.
1715 */
1716static void compaction_free(struct page *page, unsigned long data)
1717{
1718 struct compact_control *cc = (struct compact_control *)data;
1719
1720 list_add(&page->lru, &cc->freepages);
1721 cc->nr_freepages++;
1722}
1723
ff9543fd
MN
1724/* possible outcome of isolate_migratepages */
1725typedef enum {
1726 ISOLATE_ABORT, /* Abort compaction now */
1727 ISOLATE_NONE, /* No pages isolated, continue scanning */
1728 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1729} isolate_migrate_t;
1730
5bbe3547
EM
1731/*
1732 * Allow userspace to control policy on scanning the unevictable LRU for
1733 * compactable pages.
1734 */
6923aa0d
SAS
1735#ifdef CONFIG_PREEMPT_RT
1736int sysctl_compact_unevictable_allowed __read_mostly = 0;
1737#else
5bbe3547 1738int sysctl_compact_unevictable_allowed __read_mostly = 1;
6923aa0d 1739#endif
5bbe3547 1740
70b44595
MG
1741static inline void
1742update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1743{
1744 if (cc->fast_start_pfn == ULONG_MAX)
1745 return;
1746
1747 if (!cc->fast_start_pfn)
1748 cc->fast_start_pfn = pfn;
1749
1750 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1751}
1752
1753static inline unsigned long
1754reinit_migrate_pfn(struct compact_control *cc)
1755{
1756 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1757 return cc->migrate_pfn;
1758
1759 cc->migrate_pfn = cc->fast_start_pfn;
1760 cc->fast_start_pfn = ULONG_MAX;
1761
1762 return cc->migrate_pfn;
1763}
1764
1765/*
1766 * Briefly search the free lists for a migration source that already has
1767 * some free pages to reduce the number of pages that need migration
1768 * before a pageblock is free.
1769 */
1770static unsigned long fast_find_migrateblock(struct compact_control *cc)
1771{
1772 unsigned int limit = freelist_scan_limit(cc);
1773 unsigned int nr_scanned = 0;
1774 unsigned long distance;
1775 unsigned long pfn = cc->migrate_pfn;
1776 unsigned long high_pfn;
1777 int order;
15d28d0d 1778 bool found_block = false;
70b44595
MG
1779
1780 /* Skip hints are relied on to avoid repeats on the fast search */
1781 if (cc->ignore_skip_hint)
1782 return pfn;
1783
1784 /*
1785 * If the migrate_pfn is not at the start of a zone or the start
1786 * of a pageblock then assume this is a continuation of a previous
1787 * scan restarted due to COMPACT_CLUSTER_MAX.
1788 */
1789 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1790 return pfn;
1791
1792 /*
1793 * For smaller orders, just linearly scan as the number of pages
1794 * to migrate should be relatively small and does not necessarily
1795 * justify freeing up a large block for a small allocation.
1796 */
1797 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1798 return pfn;
1799
1800 /*
1801 * Only allow kcompactd and direct requests for movable pages to
1802 * quickly clear out a MOVABLE pageblock for allocation. This
1803 * reduces the risk that a large movable pageblock is freed for
1804 * an unmovable/reclaimable small allocation.
1805 */
1806 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1807 return pfn;
1808
1809 /*
1810 * When starting the migration scanner, pick any pageblock within the
1811 * first half of the search space. Otherwise try and pick a pageblock
1812 * within the first eighth to reduce the chances that a migration
1813 * target later becomes a source.
1814 */
1815 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1816 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1817 distance >>= 2;
1818 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1819
1820 for (order = cc->order - 1;
15d28d0d 1821 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
70b44595
MG
1822 order--) {
1823 struct free_area *area = &cc->zone->free_area[order];
1824 struct list_head *freelist;
1825 unsigned long flags;
1826 struct page *freepage;
1827
1828 if (!area->nr_free)
1829 continue;
1830
1831 spin_lock_irqsave(&cc->zone->lock, flags);
1832 freelist = &area->free_list[MIGRATE_MOVABLE];
1833 list_for_each_entry(freepage, freelist, lru) {
1834 unsigned long free_pfn;
1835
15d28d0d
WY
1836 if (nr_scanned++ >= limit) {
1837 move_freelist_tail(freelist, freepage);
1838 break;
1839 }
1840
70b44595
MG
1841 free_pfn = page_to_pfn(freepage);
1842 if (free_pfn < high_pfn) {
70b44595
MG
1843 /*
1844 * Avoid if skipped recently. Ideally it would
1845 * move to the tail but even safe iteration of
1846 * the list assumes an entry is deleted, not
1847 * reordered.
1848 */
15d28d0d 1849 if (get_pageblock_skip(freepage))
70b44595 1850 continue;
70b44595
MG
1851
1852 /* Reorder to so a future search skips recent pages */
1853 move_freelist_tail(freelist, freepage);
1854
e380bebe 1855 update_fast_start_pfn(cc, free_pfn);
70b44595
MG
1856 pfn = pageblock_start_pfn(free_pfn);
1857 cc->fast_search_fail = 0;
15d28d0d 1858 found_block = true;
70b44595
MG
1859 set_pageblock_skip(freepage);
1860 break;
1861 }
70b44595
MG
1862 }
1863 spin_unlock_irqrestore(&cc->zone->lock, flags);
1864 }
1865
1866 cc->total_migrate_scanned += nr_scanned;
1867
1868 /*
1869 * If fast scanning failed then use a cached entry for a page block
1870 * that had free pages as the basis for starting a linear scan.
1871 */
15d28d0d
WY
1872 if (!found_block) {
1873 cc->fast_search_fail++;
70b44595 1874 pfn = reinit_migrate_pfn(cc);
15d28d0d 1875 }
70b44595
MG
1876 return pfn;
1877}
1878
ff9543fd 1879/*
edc2ca61
VB
1880 * Isolate all pages that can be migrated from the first suitable block,
1881 * starting at the block pointed to by the migrate scanner pfn within
1882 * compact_control.
ff9543fd 1883 */
32aaf055 1884static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
ff9543fd 1885{
e1409c32
JK
1886 unsigned long block_start_pfn;
1887 unsigned long block_end_pfn;
1888 unsigned long low_pfn;
edc2ca61
VB
1889 struct page *page;
1890 const isolate_mode_t isolate_mode =
5bbe3547 1891 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1892 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 1893 bool fast_find_block;
ff9543fd 1894
edc2ca61
VB
1895 /*
1896 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
1897 * initialized by compact_zone(). The first failure will use
1898 * the lowest PFN as the starting point for linear scanning.
edc2ca61 1899 */
70b44595 1900 low_pfn = fast_find_migrateblock(cc);
06b6640a 1901 block_start_pfn = pageblock_start_pfn(low_pfn);
32aaf055
PL
1902 if (block_start_pfn < cc->zone->zone_start_pfn)
1903 block_start_pfn = cc->zone->zone_start_pfn;
ff9543fd 1904
70b44595
MG
1905 /*
1906 * fast_find_migrateblock marks a pageblock skipped so to avoid
1907 * the isolation_suitable check below, check whether the fast
1908 * search was successful.
1909 */
1910 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1911
ff9543fd 1912 /* Only scan within a pageblock boundary */
06b6640a 1913 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1914
edc2ca61
VB
1915 /*
1916 * Iterate over whole pageblocks until we find the first suitable.
1917 * Do not cross the free scanner.
1918 */
e1409c32 1919 for (; block_end_pfn <= cc->free_pfn;
70b44595 1920 fast_find_block = false,
c2ad7a1f 1921 cc->migrate_pfn = low_pfn = block_end_pfn,
e1409c32
JK
1922 block_start_pfn = block_end_pfn,
1923 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1924
edc2ca61
VB
1925 /*
1926 * This can potentially iterate a massively long zone with
1927 * many pageblocks unsuitable, so periodically check if we
cb810ad2 1928 * need to schedule.
edc2ca61 1929 */
cb810ad2 1930 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1931 cond_resched();
ff9543fd 1932
32aaf055
PL
1933 page = pageblock_pfn_to_page(block_start_pfn,
1934 block_end_pfn, cc->zone);
7d49d886 1935 if (!page)
edc2ca61
VB
1936 continue;
1937
e380bebe
MG
1938 /*
1939 * If isolation recently failed, do not retry. Only check the
1940 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1941 * to be visited multiple times. Assume skip was checked
1942 * before making it "skip" so other compaction instances do
1943 * not scan the same block.
1944 */
1945 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1946 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
1947 continue;
1948
1949 /*
9bebefd5
MG
1950 * For async compaction, also only scan in MOVABLE blocks
1951 * without huge pages. Async compaction is optimistic to see
1952 * if the minimum amount of work satisfies the allocation.
1953 * The cached PFN is updated as it's possible that all
1954 * remaining blocks between source and target are unsuitable
1955 * and the compaction scanners fail to meet.
edc2ca61 1956 */
9bebefd5
MG
1957 if (!suitable_migration_source(cc, page)) {
1958 update_cached_migrate(cc, block_end_pfn);
edc2ca61 1959 continue;
9bebefd5 1960 }
edc2ca61
VB
1961
1962 /* Perform the isolation */
c2ad7a1f
OS
1963 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1964 isolate_mode))
edc2ca61
VB
1965 return ISOLATE_ABORT;
1966
1967 /*
1968 * Either we isolated something and proceed with migration. Or
1969 * we failed and compact_zone should decide if we should
1970 * continue or not.
1971 */
1972 break;
1973 }
1974
edc2ca61 1975 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1976}
1977
21c527a3
YB
1978/*
1979 * order == -1 is expected when compacting via
1980 * /proc/sys/vm/compact_memory
1981 */
1982static inline bool is_via_compact_memory(int order)
1983{
1984 return order == -1;
1985}
1986
facdaa91
NG
1987static bool kswapd_is_running(pg_data_t *pgdat)
1988{
b03fbd4f 1989 return pgdat->kswapd && task_is_running(pgdat->kswapd);
facdaa91
NG
1990}
1991
1992/*
1993 * A zone's fragmentation score is the external fragmentation wrt to the
40d7e203
CTR
1994 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1995 */
1996static unsigned int fragmentation_score_zone(struct zone *zone)
1997{
1998 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1999}
2000
2001/*
2002 * A weighted zone's fragmentation score is the external fragmentation
2003 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2004 * returns a value in the range [0, 100].
facdaa91
NG
2005 *
2006 * The scaling factor ensures that proactive compaction focuses on larger
2007 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2008 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2009 * and thus never exceeds the high threshold for proactive compaction.
2010 */
40d7e203 2011static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
facdaa91
NG
2012{
2013 unsigned long score;
2014
40d7e203 2015 score = zone->present_pages * fragmentation_score_zone(zone);
facdaa91
NG
2016 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2017}
2018
2019/*
2020 * The per-node proactive (background) compaction process is started by its
2021 * corresponding kcompactd thread when the node's fragmentation score
2022 * exceeds the high threshold. The compaction process remains active till
2023 * the node's score falls below the low threshold, or one of the back-off
2024 * conditions is met.
2025 */
d34c0a75 2026static unsigned int fragmentation_score_node(pg_data_t *pgdat)
facdaa91 2027{
d34c0a75 2028 unsigned int score = 0;
facdaa91
NG
2029 int zoneid;
2030
2031 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2032 struct zone *zone;
2033
2034 zone = &pgdat->node_zones[zoneid];
40d7e203 2035 score += fragmentation_score_zone_weighted(zone);
facdaa91
NG
2036 }
2037
2038 return score;
2039}
2040
d34c0a75 2041static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
facdaa91 2042{
d34c0a75 2043 unsigned int wmark_low;
facdaa91
NG
2044
2045 /*
f0953a1b
IM
2046 * Cap the low watermark to avoid excessive compaction
2047 * activity in case a user sets the proactiveness tunable
facdaa91
NG
2048 * close to 100 (maximum).
2049 */
d34c0a75
NG
2050 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2051 return low ? wmark_low : min(wmark_low + 10, 100U);
facdaa91
NG
2052}
2053
2054static bool should_proactive_compact_node(pg_data_t *pgdat)
2055{
2056 int wmark_high;
2057
2058 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2059 return false;
2060
2061 wmark_high = fragmentation_score_wmark(pgdat, false);
2062 return fragmentation_score_node(pgdat) > wmark_high;
2063}
2064
40cacbcb 2065static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 2066{
8fb74b9f 2067 unsigned int order;
d39773a0 2068 const int migratetype = cc->migratetype;
cb2dcaf0 2069 int ret;
748446bb 2070
753341a4 2071 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 2072 if (compact_scanners_met(cc)) {
55b7c4c9 2073 /* Let the next compaction start anew. */
40cacbcb 2074 reset_cached_positions(cc->zone);
55b7c4c9 2075
62997027
MG
2076 /*
2077 * Mark that the PG_migrate_skip information should be cleared
accf6242 2078 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
2079 * flag itself as the decision to be clear should be directly
2080 * based on an allocation request.
2081 */
accf6242 2082 if (cc->direct_compaction)
40cacbcb 2083 cc->zone->compact_blockskip_flush = true;
62997027 2084
c8f7de0b
MH
2085 if (cc->whole_zone)
2086 return COMPACT_COMPLETE;
2087 else
2088 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 2089 }
748446bb 2090
facdaa91
NG
2091 if (cc->proactive_compaction) {
2092 int score, wmark_low;
2093 pg_data_t *pgdat;
2094
2095 pgdat = cc->zone->zone_pgdat;
2096 if (kswapd_is_running(pgdat))
2097 return COMPACT_PARTIAL_SKIPPED;
2098
2099 score = fragmentation_score_zone(cc->zone);
2100 wmark_low = fragmentation_score_wmark(pgdat, true);
2101
2102 if (score > wmark_low)
2103 ret = COMPACT_CONTINUE;
2104 else
2105 ret = COMPACT_SUCCESS;
2106
2107 goto out;
2108 }
2109
21c527a3 2110 if (is_via_compact_memory(cc->order))
56de7263
MG
2111 return COMPACT_CONTINUE;
2112
efe771c7
MG
2113 /*
2114 * Always finish scanning a pageblock to reduce the possibility of
2115 * fallbacks in the future. This is particularly important when
2116 * migration source is unmovable/reclaimable but it's not worth
2117 * special casing.
2118 */
2119 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2120 return COMPACT_CONTINUE;
baf6a9a1 2121
56de7263 2122 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 2123 ret = COMPACT_NO_SUITABLE_PAGE;
8fb74b9f 2124 for (order = cc->order; order < MAX_ORDER; order++) {
40cacbcb 2125 struct free_area *area = &cc->zone->free_area[order];
2149cdae 2126 bool can_steal;
8fb74b9f
MG
2127
2128 /* Job done if page is free of the right migratetype */
b03641af 2129 if (!free_area_empty(area, migratetype))
cf378319 2130 return COMPACT_SUCCESS;
8fb74b9f 2131
2149cdae
JK
2132#ifdef CONFIG_CMA
2133 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2134 if (migratetype == MIGRATE_MOVABLE &&
b03641af 2135 !free_area_empty(area, MIGRATE_CMA))
cf378319 2136 return COMPACT_SUCCESS;
2149cdae
JK
2137#endif
2138 /*
2139 * Job done if allocation would steal freepages from
2140 * other migratetype buddy lists.
2141 */
2142 if (find_suitable_fallback(area, order, migratetype,
baf6a9a1
VB
2143 true, &can_steal) != -1) {
2144
2145 /* movable pages are OK in any pageblock */
2146 if (migratetype == MIGRATE_MOVABLE)
2147 return COMPACT_SUCCESS;
2148
2149 /*
2150 * We are stealing for a non-movable allocation. Make
2151 * sure we finish compacting the current pageblock
2152 * first so it is as free as possible and we won't
2153 * have to steal another one soon. This only applies
2154 * to sync compaction, as async compaction operates
2155 * on pageblocks of the same migratetype.
2156 */
2157 if (cc->mode == MIGRATE_ASYNC ||
2158 IS_ALIGNED(cc->migrate_pfn,
2159 pageblock_nr_pages)) {
2160 return COMPACT_SUCCESS;
2161 }
2162
cb2dcaf0
MG
2163 ret = COMPACT_CONTINUE;
2164 break;
baf6a9a1 2165 }
56de7263
MG
2166 }
2167
facdaa91 2168out:
cb2dcaf0
MG
2169 if (cc->contended || fatal_signal_pending(current))
2170 ret = COMPACT_CONTENDED;
2171
2172 return ret;
837d026d
JK
2173}
2174
40cacbcb 2175static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
2176{
2177 int ret;
2178
40cacbcb
MG
2179 ret = __compact_finished(cc);
2180 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
2181 if (ret == COMPACT_NO_SUITABLE_PAGE)
2182 ret = COMPACT_CONTINUE;
2183
2184 return ret;
748446bb
MG
2185}
2186
ea7ab982 2187static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 2188 unsigned int alloc_flags,
97a225e6 2189 int highest_zoneidx,
86a294a8 2190 unsigned long wmark_target)
3e7d3449 2191{
3e7d3449
MG
2192 unsigned long watermark;
2193
21c527a3 2194 if (is_via_compact_memory(order))
3957c776
MH
2195 return COMPACT_CONTINUE;
2196
a9214443 2197 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
ebff3980
VB
2198 /*
2199 * If watermarks for high-order allocation are already met, there
2200 * should be no need for compaction at all.
2201 */
97a225e6 2202 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
ebff3980 2203 alloc_flags))
cf378319 2204 return COMPACT_SUCCESS;
ebff3980 2205
3e7d3449 2206 /*
9861a62c 2207 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
2208 * isolate free pages for migration targets. This means that the
2209 * watermark and alloc_flags have to match, or be more pessimistic than
2210 * the check in __isolate_free_page(). We don't use the direct
2211 * compactor's alloc_flags, as they are not relevant for freepage
97a225e6
JK
2212 * isolation. We however do use the direct compactor's highest_zoneidx
2213 * to skip over zones where lowmem reserves would prevent allocation
2214 * even if compaction succeeds.
8348faf9
VB
2215 * For costly orders, we require low watermark instead of min for
2216 * compaction to proceed to increase its chances.
d883c6cf
JK
2217 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2218 * suitable migration targets
3e7d3449 2219 */
8348faf9
VB
2220 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2221 low_wmark_pages(zone) : min_wmark_pages(zone);
2222 watermark += compact_gap(order);
97a225e6 2223 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
d883c6cf 2224 ALLOC_CMA, wmark_target))
3e7d3449
MG
2225 return COMPACT_SKIPPED;
2226
cc5c9f09
VB
2227 return COMPACT_CONTINUE;
2228}
2229
2b1a20c3
HS
2230/*
2231 * compaction_suitable: Is this suitable to run compaction on this zone now?
2232 * Returns
2233 * COMPACT_SKIPPED - If there are too few free pages for compaction
2234 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2235 * COMPACT_CONTINUE - If compaction should run now
2236 */
cc5c9f09
VB
2237enum compact_result compaction_suitable(struct zone *zone, int order,
2238 unsigned int alloc_flags,
97a225e6 2239 int highest_zoneidx)
cc5c9f09
VB
2240{
2241 enum compact_result ret;
2242 int fragindex;
2243
97a225e6 2244 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
cc5c9f09 2245 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2246 /*
2247 * fragmentation index determines if allocation failures are due to
2248 * low memory or external fragmentation
2249 *
ebff3980
VB
2250 * index of -1000 would imply allocations might succeed depending on
2251 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2252 * index towards 0 implies failure is due to lack of memory
2253 * index towards 1000 implies failure is due to fragmentation
2254 *
20311420
VB
2255 * Only compact if a failure would be due to fragmentation. Also
2256 * ignore fragindex for non-costly orders where the alternative to
2257 * a successful reclaim/compaction is OOM. Fragindex and the
2258 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2259 * excessive compaction for costly orders, but it should not be at the
2260 * expense of system stability.
3e7d3449 2261 */
20311420 2262 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
2263 fragindex = fragmentation_index(zone, order);
2264 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2265 ret = COMPACT_NOT_SUITABLE_ZONE;
2266 }
837d026d 2267
837d026d
JK
2268 trace_mm_compaction_suitable(zone, order, ret);
2269 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2270 ret = COMPACT_SKIPPED;
2271
2272 return ret;
2273}
2274
86a294a8
MH
2275bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2276 int alloc_flags)
2277{
2278 struct zone *zone;
2279 struct zoneref *z;
2280
2281 /*
2282 * Make sure at least one zone would pass __compaction_suitable if we continue
2283 * retrying the reclaim.
2284 */
97a225e6
JK
2285 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2286 ac->highest_zoneidx, ac->nodemask) {
86a294a8
MH
2287 unsigned long available;
2288 enum compact_result compact_result;
2289
2290 /*
2291 * Do not consider all the reclaimable memory because we do not
2292 * want to trash just for a single high order allocation which
2293 * is even not guaranteed to appear even if __compaction_suitable
2294 * is happy about the watermark check.
2295 */
5a1c84b4 2296 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
2297 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2298 compact_result = __compaction_suitable(zone, order, alloc_flags,
97a225e6 2299 ac->highest_zoneidx, available);
cc5c9f09 2300 if (compact_result != COMPACT_SKIPPED)
86a294a8
MH
2301 return true;
2302 }
2303
2304 return false;
2305}
2306
5e1f0f09
MG
2307static enum compact_result
2308compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2309{
ea7ab982 2310 enum compact_result ret;
40cacbcb
MG
2311 unsigned long start_pfn = cc->zone->zone_start_pfn;
2312 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2313 unsigned long last_migrated_pfn;
e0b9daeb 2314 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2315 bool update_cached;
84b328aa 2316 unsigned int nr_succeeded = 0;
748446bb 2317
a94b5252
YS
2318 /*
2319 * These counters track activities during zone compaction. Initialize
2320 * them before compacting a new zone.
2321 */
2322 cc->total_migrate_scanned = 0;
2323 cc->total_free_scanned = 0;
2324 cc->nr_migratepages = 0;
2325 cc->nr_freepages = 0;
2326 INIT_LIST_HEAD(&cc->freepages);
2327 INIT_LIST_HEAD(&cc->migratepages);
2328
01c0bfe0 2329 cc->migratetype = gfp_migratetype(cc->gfp_mask);
40cacbcb 2330 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
97a225e6 2331 cc->highest_zoneidx);
c46649de 2332 /* Compaction is likely to fail */
cf378319 2333 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 2334 return ret;
c46649de
MH
2335
2336 /* huh, compaction_suitable is returning something unexpected */
2337 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 2338
d3132e4b
VB
2339 /*
2340 * Clear pageblock skip if there were failures recently and compaction
accf6242 2341 * is about to be retried after being deferred.
d3132e4b 2342 */
40cacbcb
MG
2343 if (compaction_restarting(cc->zone, cc->order))
2344 __reset_isolation_suitable(cc->zone);
d3132e4b 2345
c89511ab
MG
2346 /*
2347 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2348 * information on where the scanners should start (unless we explicitly
2349 * want to compact the whole zone), but check that it is initialised
2350 * by ensuring the values are within zone boundaries.
c89511ab 2351 */
70b44595 2352 cc->fast_start_pfn = 0;
06ed2998 2353 if (cc->whole_zone) {
c89511ab 2354 cc->migrate_pfn = start_pfn;
06ed2998
VB
2355 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2356 } else {
40cacbcb
MG
2357 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2358 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2359 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2360 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2361 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2362 }
2363 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2364 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2365 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2366 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2367 }
c8f7de0b 2368
e332f741 2369 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2370 cc->whole_zone = true;
2371 }
c8f7de0b 2372
566e54e1 2373 last_migrated_pfn = 0;
748446bb 2374
8854c55f
MG
2375 /*
2376 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2377 * the basis that some migrations will fail in ASYNC mode. However,
2378 * if the cached PFNs match and pageblocks are skipped due to having
2379 * no isolation candidates, then the sync state does not matter.
2380 * Until a pageblock with isolation candidates is found, keep the
2381 * cached PFNs in sync to avoid revisiting the same blocks.
2382 */
2383 update_cached = !sync &&
2384 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2385
abd4349f 2386 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
0eb927c0 2387
361a2a22
MK
2388 /* lru_add_drain_all could be expensive with involving other CPUs */
2389 lru_add_drain();
748446bb 2390
40cacbcb 2391 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2392 int err;
19d3cf9d 2393 unsigned long iteration_start_pfn = cc->migrate_pfn;
748446bb 2394
804d3121
MG
2395 /*
2396 * Avoid multiple rescans which can happen if a page cannot be
2397 * isolated (dirty/writeback in async mode) or if the migrated
2398 * pages are being allocated before the pageblock is cleared.
2399 * The first rescan will capture the entire pageblock for
2400 * migration. If it fails, it'll be marked skip and scanning
2401 * will proceed as normal.
2402 */
2403 cc->rescan = false;
2404 if (pageblock_start_pfn(last_migrated_pfn) ==
19d3cf9d 2405 pageblock_start_pfn(iteration_start_pfn)) {
804d3121
MG
2406 cc->rescan = true;
2407 }
2408
32aaf055 2409 switch (isolate_migratepages(cc)) {
f9e35b3b 2410 case ISOLATE_ABORT:
2d1e1041 2411 ret = COMPACT_CONTENDED;
5733c7d1 2412 putback_movable_pages(&cc->migratepages);
e64c5237 2413 cc->nr_migratepages = 0;
f9e35b3b
MG
2414 goto out;
2415 case ISOLATE_NONE:
8854c55f
MG
2416 if (update_cached) {
2417 cc->zone->compact_cached_migrate_pfn[1] =
2418 cc->zone->compact_cached_migrate_pfn[0];
2419 }
2420
fdaf7f5c
VB
2421 /*
2422 * We haven't isolated and migrated anything, but
2423 * there might still be unflushed migrations from
2424 * previous cc->order aligned block.
2425 */
2426 goto check_drain;
f9e35b3b 2427 case ISOLATE_SUCCESS:
8854c55f 2428 update_cached = false;
19d3cf9d 2429 last_migrated_pfn = iteration_start_pfn;
f9e35b3b 2430 }
748446bb 2431
d53aea3d 2432 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2433 compaction_free, (unsigned long)cc, cc->mode,
84b328aa 2434 MR_COMPACTION, &nr_succeeded);
748446bb 2435
abd4349f 2436 trace_mm_compaction_migratepages(cc, nr_succeeded);
748446bb 2437
f8c9301f
VB
2438 /* All pages were either migrated or will be released */
2439 cc->nr_migratepages = 0;
9d502c1c 2440 if (err) {
5733c7d1 2441 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2442 /*
2443 * migrate_pages() may return -ENOMEM when scanners meet
2444 * and we want compact_finished() to detect it
2445 */
f2849aa0 2446 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2447 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2448 goto out;
2449 }
fdd048e1
VB
2450 /*
2451 * We failed to migrate at least one page in the current
2452 * order-aligned block, so skip the rest of it.
2453 */
2454 if (cc->direct_compaction &&
2455 (cc->mode == MIGRATE_ASYNC)) {
2456 cc->migrate_pfn = block_end_pfn(
2457 cc->migrate_pfn - 1, cc->order);
2458 /* Draining pcplists is useless in this case */
566e54e1 2459 last_migrated_pfn = 0;
fdd048e1 2460 }
748446bb 2461 }
fdaf7f5c 2462
fdaf7f5c
VB
2463check_drain:
2464 /*
2465 * Has the migration scanner moved away from the previous
2466 * cc->order aligned block where we migrated from? If yes,
2467 * flush the pages that were freed, so that they can merge and
2468 * compact_finished() can detect immediately if allocation
2469 * would succeed.
2470 */
566e54e1 2471 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c 2472 unsigned long current_block_start =
06b6640a 2473 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2474
566e54e1 2475 if (last_migrated_pfn < current_block_start) {
b01b2141 2476 lru_add_drain_cpu_zone(cc->zone);
fdaf7f5c 2477 /* No more flushing until we migrate again */
566e54e1 2478 last_migrated_pfn = 0;
fdaf7f5c
VB
2479 }
2480 }
2481
5e1f0f09
MG
2482 /* Stop if a page has been captured */
2483 if (capc && capc->page) {
2484 ret = COMPACT_SUCCESS;
2485 break;
2486 }
748446bb
MG
2487 }
2488
f9e35b3b 2489out:
6bace090
VB
2490 /*
2491 * Release free pages and update where the free scanner should restart,
2492 * so we don't leave any returned pages behind in the next attempt.
2493 */
2494 if (cc->nr_freepages > 0) {
2495 unsigned long free_pfn = release_freepages(&cc->freepages);
2496
2497 cc->nr_freepages = 0;
2498 VM_BUG_ON(free_pfn == 0);
2499 /* The cached pfn is always the first in a pageblock */
06b6640a 2500 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2501 /*
2502 * Only go back, not forward. The cached pfn might have been
2503 * already reset to zone end in compact_finished()
2504 */
40cacbcb
MG
2505 if (free_pfn > cc->zone->compact_cached_free_pfn)
2506 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2507 }
748446bb 2508
7f354a54
DR
2509 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2510 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2511
abd4349f 2512 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
0eb927c0 2513
748446bb
MG
2514 return ret;
2515}
76ab0f53 2516
ea7ab982 2517static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2518 gfp_t gfp_mask, enum compact_priority prio,
97a225e6 2519 unsigned int alloc_flags, int highest_zoneidx,
5e1f0f09 2520 struct page **capture)
56de7263 2521{
ea7ab982 2522 enum compact_result ret;
56de7263 2523 struct compact_control cc = {
56de7263 2524 .order = order,
dbe2d4e4 2525 .search_order = order,
6d7ce559 2526 .gfp_mask = gfp_mask,
56de7263 2527 .zone = zone,
a5508cd8
VB
2528 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2529 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980 2530 .alloc_flags = alloc_flags,
97a225e6 2531 .highest_zoneidx = highest_zoneidx,
accf6242 2532 .direct_compaction = true,
a8e025e5 2533 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2534 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2535 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2536 };
5e1f0f09
MG
2537 struct capture_control capc = {
2538 .cc = &cc,
2539 .page = NULL,
2540 };
2541
b9e20f0d
VB
2542 /*
2543 * Make sure the structs are really initialized before we expose the
2544 * capture control, in case we are interrupted and the interrupt handler
2545 * frees a page.
2546 */
2547 barrier();
2548 WRITE_ONCE(current->capture_control, &capc);
56de7263 2549
5e1f0f09 2550 ret = compact_zone(&cc, &capc);
e64c5237
SL
2551
2552 VM_BUG_ON(!list_empty(&cc.freepages));
2553 VM_BUG_ON(!list_empty(&cc.migratepages));
2554
b9e20f0d
VB
2555 /*
2556 * Make sure we hide capture control first before we read the captured
2557 * page pointer, otherwise an interrupt could free and capture a page
2558 * and we would leak it.
2559 */
2560 WRITE_ONCE(current->capture_control, NULL);
2561 *capture = READ_ONCE(capc.page);
06dac2f4
CTR
2562 /*
2563 * Technically, it is also possible that compaction is skipped but
2564 * the page is still captured out of luck(IRQ came and freed the page).
2565 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2566 * the COMPACT[STALL|FAIL] when compaction is skipped.
2567 */
2568 if (*capture)
2569 ret = COMPACT_SUCCESS;
5e1f0f09 2570
e64c5237 2571 return ret;
56de7263
MG
2572}
2573
5e771905
MG
2574int sysctl_extfrag_threshold = 500;
2575
56de7263
MG
2576/**
2577 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2578 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2579 * @order: The order of the current allocation
2580 * @alloc_flags: The allocation flags of the current allocation
2581 * @ac: The context of current allocation
112d2d29 2582 * @prio: Determines how hard direct compaction should try to succeed
6467552c 2583 * @capture: Pointer to free page created by compaction will be stored here
56de7263
MG
2584 *
2585 * This is the main entry point for direct page compaction.
2586 */
ea7ab982 2587enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2588 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2589 enum compact_priority prio, struct page **capture)
56de7263 2590{
56de7263 2591 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
2592 struct zoneref *z;
2593 struct zone *zone;
1d4746d3 2594 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2595
73e64c51
MH
2596 /*
2597 * Check if the GFP flags allow compaction - GFP_NOIO is really
2598 * tricky context because the migration might require IO
2599 */
2600 if (!may_perform_io)
53853e2d 2601 return COMPACT_SKIPPED;
56de7263 2602
a5508cd8 2603 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2604
56de7263 2605 /* Compact each zone in the list */
97a225e6
JK
2606 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2607 ac->highest_zoneidx, ac->nodemask) {
ea7ab982 2608 enum compact_result status;
56de7263 2609
a8e025e5
VB
2610 if (prio > MIN_COMPACT_PRIORITY
2611 && compaction_deferred(zone, order)) {
1d4746d3 2612 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2613 continue;
1d4746d3 2614 }
53853e2d 2615
a5508cd8 2616 status = compact_zone_order(zone, order, gfp_mask, prio,
97a225e6 2617 alloc_flags, ac->highest_zoneidx, capture);
56de7263
MG
2618 rc = max(status, rc);
2619
7ceb009a
VB
2620 /* The allocation should succeed, stop compacting */
2621 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2622 /*
2623 * We think the allocation will succeed in this zone,
2624 * but it is not certain, hence the false. The caller
2625 * will repeat this with true if allocation indeed
2626 * succeeds in this zone.
2627 */
2628 compaction_defer_reset(zone, order, false);
1f9efdef 2629
c3486f53 2630 break;
1f9efdef
VB
2631 }
2632
a5508cd8 2633 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2634 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2635 /*
2636 * We think that allocation won't succeed in this zone
2637 * so we defer compaction there. If it ends up
2638 * succeeding after all, it will be reset.
2639 */
2640 defer_compaction(zone, order);
1f9efdef
VB
2641
2642 /*
2643 * We might have stopped compacting due to need_resched() in
2644 * async compaction, or due to a fatal signal detected. In that
c3486f53 2645 * case do not try further zones
1f9efdef 2646 */
c3486f53
VB
2647 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2648 || fatal_signal_pending(current))
2649 break;
56de7263
MG
2650 }
2651
2652 return rc;
2653}
2654
facdaa91
NG
2655/*
2656 * Compact all zones within a node till each zone's fragmentation score
2657 * reaches within proactive compaction thresholds (as determined by the
2658 * proactiveness tunable).
2659 *
2660 * It is possible that the function returns before reaching score targets
2661 * due to various back-off conditions, such as, contention on per-node or
2662 * per-zone locks.
2663 */
2664static void proactive_compact_node(pg_data_t *pgdat)
2665{
2666 int zoneid;
2667 struct zone *zone;
2668 struct compact_control cc = {
2669 .order = -1,
2670 .mode = MIGRATE_SYNC_LIGHT,
2671 .ignore_skip_hint = true,
2672 .whole_zone = true,
2673 .gfp_mask = GFP_KERNEL,
2674 .proactive_compaction = true,
2675 };
2676
2677 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2678 zone = &pgdat->node_zones[zoneid];
2679 if (!populated_zone(zone))
2680 continue;
2681
2682 cc.zone = zone;
2683
2684 compact_zone(&cc, NULL);
2685
2686 VM_BUG_ON(!list_empty(&cc.freepages));
2687 VM_BUG_ON(!list_empty(&cc.migratepages));
2688 }
2689}
56de7263 2690
76ab0f53 2691/* Compact all zones within a node */
791cae96 2692static void compact_node(int nid)
76ab0f53 2693{
791cae96 2694 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 2695 int zoneid;
76ab0f53 2696 struct zone *zone;
791cae96
VB
2697 struct compact_control cc = {
2698 .order = -1,
2699 .mode = MIGRATE_SYNC,
2700 .ignore_skip_hint = true,
2701 .whole_zone = true,
73e64c51 2702 .gfp_mask = GFP_KERNEL,
791cae96
VB
2703 };
2704
76ab0f53 2705
76ab0f53 2706 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
2707
2708 zone = &pgdat->node_zones[zoneid];
2709 if (!populated_zone(zone))
2710 continue;
2711
791cae96 2712 cc.zone = zone;
76ab0f53 2713
5e1f0f09 2714 compact_zone(&cc, NULL);
75469345 2715
791cae96
VB
2716 VM_BUG_ON(!list_empty(&cc.freepages));
2717 VM_BUG_ON(!list_empty(&cc.migratepages));
76ab0f53 2718 }
76ab0f53
MG
2719}
2720
2721/* Compact all nodes in the system */
7964c06d 2722static void compact_nodes(void)
76ab0f53
MG
2723{
2724 int nid;
2725
8575ec29
HD
2726 /* Flush pending updates to the LRU lists */
2727 lru_add_drain_all();
2728
76ab0f53
MG
2729 for_each_online_node(nid)
2730 compact_node(nid);
76ab0f53
MG
2731}
2732
facdaa91
NG
2733/*
2734 * Tunable for proactive compaction. It determines how
2735 * aggressively the kernel should compact memory in the
2736 * background. It takes values in the range [0, 100].
2737 */
d34c0a75 2738unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
facdaa91 2739
65d759c8
CTR
2740int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2741 void *buffer, size_t *length, loff_t *ppos)
2742{
2743 int rc, nid;
2744
2745 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2746 if (rc)
2747 return rc;
2748
2749 if (write && sysctl_compaction_proactiveness) {
2750 for_each_online_node(nid) {
2751 pg_data_t *pgdat = NODE_DATA(nid);
2752
2753 if (pgdat->proactive_compact_trigger)
2754 continue;
2755
2756 pgdat->proactive_compact_trigger = true;
2757 wake_up_interruptible(&pgdat->kcompactd_wait);
2758 }
2759 }
2760
2761 return 0;
2762}
2763
fec4eb2c
YB
2764/*
2765 * This is the entry point for compacting all nodes via
2766 * /proc/sys/vm/compact_memory
2767 */
76ab0f53 2768int sysctl_compaction_handler(struct ctl_table *table, int write,
32927393 2769 void *buffer, size_t *length, loff_t *ppos)
76ab0f53
MG
2770{
2771 if (write)
7964c06d 2772 compact_nodes();
76ab0f53
MG
2773
2774 return 0;
2775}
ed4a6d7f
MG
2776
2777#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
17adb230
Y
2778static ssize_t compact_store(struct device *dev,
2779 struct device_attribute *attr,
2780 const char *buf, size_t count)
ed4a6d7f 2781{
8575ec29
HD
2782 int nid = dev->id;
2783
2784 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2785 /* Flush pending updates to the LRU lists */
2786 lru_add_drain_all();
2787
2788 compact_node(nid);
2789 }
ed4a6d7f
MG
2790
2791 return count;
2792}
17adb230 2793static DEVICE_ATTR_WO(compact);
ed4a6d7f
MG
2794
2795int compaction_register_node(struct node *node)
2796{
10fbcf4c 2797 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2798}
2799
2800void compaction_unregister_node(struct node *node)
2801{
10fbcf4c 2802 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2803}
2804#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2805
698b1b30
VB
2806static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2807{
65d759c8
CTR
2808 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2809 pgdat->proactive_compact_trigger;
698b1b30
VB
2810}
2811
2812static bool kcompactd_node_suitable(pg_data_t *pgdat)
2813{
2814 int zoneid;
2815 struct zone *zone;
97a225e6 2816 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
698b1b30 2817
97a225e6 2818 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
698b1b30
VB
2819 zone = &pgdat->node_zones[zoneid];
2820
2821 if (!populated_zone(zone))
2822 continue;
2823
2824 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
97a225e6 2825 highest_zoneidx) == COMPACT_CONTINUE)
698b1b30
VB
2826 return true;
2827 }
2828
2829 return false;
2830}
2831
2832static void kcompactd_do_work(pg_data_t *pgdat)
2833{
2834 /*
2835 * With no special task, compact all zones so that a page of requested
2836 * order is allocatable.
2837 */
2838 int zoneid;
2839 struct zone *zone;
2840 struct compact_control cc = {
2841 .order = pgdat->kcompactd_max_order,
dbe2d4e4 2842 .search_order = pgdat->kcompactd_max_order,
97a225e6 2843 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
698b1b30 2844 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2845 .ignore_skip_hint = false,
73e64c51 2846 .gfp_mask = GFP_KERNEL,
698b1b30 2847 };
698b1b30 2848 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
97a225e6 2849 cc.highest_zoneidx);
7f354a54 2850 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2851
97a225e6 2852 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
698b1b30
VB
2853 int status;
2854
2855 zone = &pgdat->node_zones[zoneid];
2856 if (!populated_zone(zone))
2857 continue;
2858
2859 if (compaction_deferred(zone, cc.order))
2860 continue;
2861
2862 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2863 COMPACT_CONTINUE)
2864 continue;
2865
172400c6
VB
2866 if (kthread_should_stop())
2867 return;
a94b5252
YS
2868
2869 cc.zone = zone;
5e1f0f09 2870 status = compact_zone(&cc, NULL);
698b1b30 2871
7ceb009a 2872 if (status == COMPACT_SUCCESS) {
698b1b30 2873 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 2874 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
2875 /*
2876 * Buddy pages may become stranded on pcps that could
2877 * otherwise coalesce on the zone's free area for
2878 * order >= cc.order. This is ratelimited by the
2879 * upcoming deferral.
2880 */
2881 drain_all_pages(zone);
2882
698b1b30
VB
2883 /*
2884 * We use sync migration mode here, so we defer like
2885 * sync direct compaction does.
2886 */
2887 defer_compaction(zone, cc.order);
2888 }
2889
7f354a54
DR
2890 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2891 cc.total_migrate_scanned);
2892 count_compact_events(KCOMPACTD_FREE_SCANNED,
2893 cc.total_free_scanned);
2894
698b1b30
VB
2895 VM_BUG_ON(!list_empty(&cc.freepages));
2896 VM_BUG_ON(!list_empty(&cc.migratepages));
2897 }
2898
2899 /*
2900 * Regardless of success, we are done until woken up next. But remember
97a225e6
JK
2901 * the requested order/highest_zoneidx in case it was higher/tighter
2902 * than our current ones
698b1b30
VB
2903 */
2904 if (pgdat->kcompactd_max_order <= cc.order)
2905 pgdat->kcompactd_max_order = 0;
97a225e6
JK
2906 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2907 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2908}
2909
97a225e6 2910void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
698b1b30
VB
2911{
2912 if (!order)
2913 return;
2914
2915 if (pgdat->kcompactd_max_order < order)
2916 pgdat->kcompactd_max_order = order;
2917
97a225e6
JK
2918 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2919 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
698b1b30 2920
6818600f
DB
2921 /*
2922 * Pairs with implicit barrier in wait_event_freezable()
2923 * such that wakeups are not missed.
2924 */
2925 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2926 return;
2927
2928 if (!kcompactd_node_suitable(pgdat))
2929 return;
2930
2931 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
97a225e6 2932 highest_zoneidx);
698b1b30
VB
2933 wake_up_interruptible(&pgdat->kcompactd_wait);
2934}
2935
2936/*
2937 * The background compaction daemon, started as a kernel thread
2938 * from the init process.
2939 */
2940static int kcompactd(void *p)
2941{
68d68ff6 2942 pg_data_t *pgdat = (pg_data_t *)p;
698b1b30 2943 struct task_struct *tsk = current;
e1e92bfa
CTR
2944 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2945 long timeout = default_timeout;
698b1b30
VB
2946
2947 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2948
2949 if (!cpumask_empty(cpumask))
2950 set_cpus_allowed_ptr(tsk, cpumask);
2951
2952 set_freezable();
2953
2954 pgdat->kcompactd_max_order = 0;
97a225e6 2955 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2956
2957 while (!kthread_should_stop()) {
eb414681
JW
2958 unsigned long pflags;
2959
65d759c8
CTR
2960 /*
2961 * Avoid the unnecessary wakeup for proactive compaction
2962 * when it is disabled.
2963 */
2964 if (!sysctl_compaction_proactiveness)
2965 timeout = MAX_SCHEDULE_TIMEOUT;
698b1b30 2966 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
facdaa91 2967 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
65d759c8
CTR
2968 kcompactd_work_requested(pgdat), timeout) &&
2969 !pgdat->proactive_compact_trigger) {
facdaa91
NG
2970
2971 psi_memstall_enter(&pflags);
2972 kcompactd_do_work(pgdat);
2973 psi_memstall_leave(&pflags);
e1e92bfa
CTR
2974 /*
2975 * Reset the timeout value. The defer timeout from
2976 * proactive compaction is lost here but that is fine
2977 * as the condition of the zone changing substantionally
2978 * then carrying on with the previous defer interval is
2979 * not useful.
2980 */
2981 timeout = default_timeout;
facdaa91
NG
2982 continue;
2983 }
698b1b30 2984
e1e92bfa
CTR
2985 /*
2986 * Start the proactive work with default timeout. Based
2987 * on the fragmentation score, this timeout is updated.
2988 */
2989 timeout = default_timeout;
facdaa91
NG
2990 if (should_proactive_compact_node(pgdat)) {
2991 unsigned int prev_score, score;
2992
facdaa91
NG
2993 prev_score = fragmentation_score_node(pgdat);
2994 proactive_compact_node(pgdat);
2995 score = fragmentation_score_node(pgdat);
2996 /*
2997 * Defer proactive compaction if the fragmentation
2998 * score did not go down i.e. no progress made.
2999 */
e1e92bfa
CTR
3000 if (unlikely(score >= prev_score))
3001 timeout =
3002 default_timeout << COMPACT_MAX_DEFER_SHIFT;
facdaa91 3003 }
65d759c8
CTR
3004 if (unlikely(pgdat->proactive_compact_trigger))
3005 pgdat->proactive_compact_trigger = false;
698b1b30
VB
3006 }
3007
3008 return 0;
3009}
3010
3011/*
3012 * This kcompactd start function will be called by init and node-hot-add.
3013 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3014 */
024c61ea 3015void kcompactd_run(int nid)
698b1b30
VB
3016{
3017 pg_data_t *pgdat = NODE_DATA(nid);
698b1b30
VB
3018
3019 if (pgdat->kcompactd)
024c61ea 3020 return;
698b1b30
VB
3021
3022 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3023 if (IS_ERR(pgdat->kcompactd)) {
3024 pr_err("Failed to start kcompactd on node %d\n", nid);
698b1b30
VB
3025 pgdat->kcompactd = NULL;
3026 }
698b1b30
VB
3027}
3028
3029/*
3030 * Called by memory hotplug when all memory in a node is offlined. Caller must
3031 * hold mem_hotplug_begin/end().
3032 */
3033void kcompactd_stop(int nid)
3034{
3035 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3036
3037 if (kcompactd) {
3038 kthread_stop(kcompactd);
3039 NODE_DATA(nid)->kcompactd = NULL;
3040 }
3041}
3042
3043/*
3044 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3045 * not required for correctness. So if the last cpu in a node goes
3046 * away, we get changed to run anywhere: as the first one comes back,
3047 * restore their cpu bindings.
3048 */
e46b1db2 3049static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
3050{
3051 int nid;
3052
e46b1db2
AMG
3053 for_each_node_state(nid, N_MEMORY) {
3054 pg_data_t *pgdat = NODE_DATA(nid);
3055 const struct cpumask *mask;
698b1b30 3056
e46b1db2 3057 mask = cpumask_of_node(pgdat->node_id);
698b1b30 3058
e46b1db2
AMG
3059 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3060 /* One of our CPUs online: restore mask */
3061 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 3062 }
e46b1db2 3063 return 0;
698b1b30
VB
3064}
3065
3066static int __init kcompactd_init(void)
3067{
3068 int nid;
e46b1db2
AMG
3069 int ret;
3070
3071 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3072 "mm/compaction:online",
3073 kcompactd_cpu_online, NULL);
3074 if (ret < 0) {
3075 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3076 return ret;
3077 }
698b1b30
VB
3078
3079 for_each_node_state(nid, N_MEMORY)
3080 kcompactd_run(nid);
698b1b30
VB
3081 return 0;
3082}
3083subsys_initcall(kcompactd_init)
3084
ff9543fd 3085#endif /* CONFIG_COMPACTION */