]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/compaction.c
zram: remove double compression logic
[thirdparty/linux.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a 28#ifdef CONFIG_COMPACTION
31ca72fa
CTK
29/*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
33
010fc29a
MK
34static inline void count_compact_event(enum vm_event_item item)
35{
36 count_vm_event(item);
37}
38
39static inline void count_compact_events(enum vm_event_item item, long delta)
40{
41 count_vm_events(item, delta);
42}
43#else
44#define count_compact_event(item) do { } while (0)
45#define count_compact_events(item, delta) do { } while (0)
46#endif
47
ff9543fd
MN
48#if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
b7aba698
MG
50#define CREATE_TRACE_POINTS
51#include <trace/events/compaction.h>
52
06b6640a
VB
53#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
55#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
56#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
57
facdaa91
NG
58/*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63#if defined CONFIG_TRANSPARENT_HUGEPAGE
64#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
25788738 65#elif defined CONFIG_HUGETLBFS
facdaa91
NG
66#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
67#else
68#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69#endif
70
748446bb
MG
71static unsigned long release_freepages(struct list_head *freelist)
72{
73 struct page *page, *next;
6bace090 74 unsigned long high_pfn = 0;
748446bb
MG
75
76 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 77 unsigned long pfn = page_to_pfn(page);
748446bb
MG
78 list_del(&page->lru);
79 __free_page(page);
6bace090
VB
80 if (pfn > high_pfn)
81 high_pfn = pfn;
748446bb
MG
82 }
83
6bace090 84 return high_pfn;
748446bb
MG
85}
86
4469ab98 87static void split_map_pages(struct list_head *list)
ff9543fd 88{
66c64223
JK
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
91 LIST_HEAD(tmp_list);
92
93 list_for_each_entry_safe(page, next, list, lru) {
94 list_del(&page->lru);
95
96 order = page_private(page);
97 nr_pages = 1 << order;
66c64223 98
46f24fd8 99 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
100 if (order)
101 split_page(page, order);
ff9543fd 102
66c64223
JK
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
105 page++;
106 }
ff9543fd 107 }
66c64223
JK
108
109 list_splice(&tmp_list, list);
ff9543fd
MN
110}
111
bb13ffeb 112#ifdef CONFIG_COMPACTION
24e2716f 113
bda807d4
MK
114int PageMovable(struct page *page)
115{
116 struct address_space *mapping;
117
118 VM_BUG_ON_PAGE(!PageLocked(page), page);
119 if (!__PageMovable(page))
120 return 0;
121
122 mapping = page_mapping(page);
123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 return 1;
125
126 return 0;
127}
128EXPORT_SYMBOL(PageMovable);
129
130void __SetPageMovable(struct page *page, struct address_space *mapping)
131{
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135}
136EXPORT_SYMBOL(__SetPageMovable);
137
138void __ClearPageMovable(struct page *page)
139{
bda807d4
MK
140 VM_BUG_ON_PAGE(!PageMovable(page), page);
141 /*
142 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143 * flag so that VM can catch up released page by driver after isolation.
144 * With it, VM migration doesn't try to put it back.
145 */
146 page->mapping = (void *)((unsigned long)page->mapping &
147 PAGE_MAPPING_MOVABLE);
148}
149EXPORT_SYMBOL(__ClearPageMovable);
150
24e2716f
JK
151/* Do not skip compaction more than 64 times */
152#define COMPACT_MAX_DEFER_SHIFT 6
153
154/*
155 * Compaction is deferred when compaction fails to result in a page
860b3272 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up
24e2716f
JK
157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158 */
2271b016 159static void defer_compaction(struct zone *zone, int order)
24e2716f
JK
160{
161 zone->compact_considered = 0;
162 zone->compact_defer_shift++;
163
164 if (order < zone->compact_order_failed)
165 zone->compact_order_failed = order;
166
167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170 trace_mm_compaction_defer_compaction(zone, order);
171}
172
173/* Returns true if compaction should be skipped this time */
2271b016 174static bool compaction_deferred(struct zone *zone, int order)
24e2716f
JK
175{
176 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178 if (order < zone->compact_order_failed)
179 return false;
180
181 /* Avoid possible overflow */
62b35fe0 182 if (++zone->compact_considered >= defer_limit) {
24e2716f 183 zone->compact_considered = defer_limit;
24e2716f 184 return false;
62b35fe0 185 }
24e2716f
JK
186
187 trace_mm_compaction_deferred(zone, order);
188
189 return true;
190}
191
192/*
193 * Update defer tracking counters after successful compaction of given order,
194 * which means an allocation either succeeded (alloc_success == true) or is
195 * expected to succeed.
196 */
197void compaction_defer_reset(struct zone *zone, int order,
198 bool alloc_success)
199{
200 if (alloc_success) {
201 zone->compact_considered = 0;
202 zone->compact_defer_shift = 0;
203 }
204 if (order >= zone->compact_order_failed)
205 zone->compact_order_failed = order + 1;
206
207 trace_mm_compaction_defer_reset(zone, order);
208}
209
210/* Returns true if restarting compaction after many failures */
2271b016 211static bool compaction_restarting(struct zone *zone, int order)
24e2716f
JK
212{
213 if (order < zone->compact_order_failed)
214 return false;
215
216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218}
219
bb13ffeb
MG
220/* Returns true if the pageblock should be scanned for pages to isolate. */
221static inline bool isolation_suitable(struct compact_control *cc,
222 struct page *page)
223{
224 if (cc->ignore_skip_hint)
225 return true;
226
227 return !get_pageblock_skip(page);
228}
229
02333641
VB
230static void reset_cached_positions(struct zone *zone)
231{
232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 234 zone->compact_cached_free_pfn =
06b6640a 235 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
236}
237
21dc7e02 238/*
2271b016 239 * Compound pages of >= pageblock_order should consistently be skipped until
b527cfe5
VB
240 * released. It is always pointless to compact pages of such order (if they are
241 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 242 */
b527cfe5 243static bool pageblock_skip_persistent(struct page *page)
21dc7e02 244{
b527cfe5 245 if (!PageCompound(page))
21dc7e02 246 return false;
b527cfe5
VB
247
248 page = compound_head(page);
249
250 if (compound_order(page) >= pageblock_order)
251 return true;
252
253 return false;
21dc7e02
DR
254}
255
e332f741
MG
256static bool
257__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258 bool check_target)
259{
260 struct page *page = pfn_to_online_page(pfn);
6b0868c8 261 struct page *block_page;
e332f741
MG
262 struct page *end_page;
263 unsigned long block_pfn;
264
265 if (!page)
266 return false;
267 if (zone != page_zone(page))
268 return false;
269 if (pageblock_skip_persistent(page))
270 return false;
271
272 /*
273 * If skip is already cleared do no further checking once the
274 * restart points have been set.
275 */
276 if (check_source && check_target && !get_pageblock_skip(page))
277 return true;
278
279 /*
280 * If clearing skip for the target scanner, do not select a
281 * non-movable pageblock as the starting point.
282 */
283 if (!check_source && check_target &&
284 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285 return false;
286
6b0868c8
MG
287 /* Ensure the start of the pageblock or zone is online and valid */
288 block_pfn = pageblock_start_pfn(pfn);
a2e9a5af
VB
289 block_pfn = max(block_pfn, zone->zone_start_pfn);
290 block_page = pfn_to_online_page(block_pfn);
6b0868c8
MG
291 if (block_page) {
292 page = block_page;
293 pfn = block_pfn;
294 }
295
296 /* Ensure the end of the pageblock or zone is online and valid */
a2e9a5af 297 block_pfn = pageblock_end_pfn(pfn) - 1;
6b0868c8
MG
298 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299 end_page = pfn_to_online_page(block_pfn);
300 if (!end_page)
301 return false;
302
e332f741
MG
303 /*
304 * Only clear the hint if a sample indicates there is either a
305 * free page or an LRU page in the block. One or other condition
306 * is necessary for the block to be a migration source/target.
307 */
e332f741 308 do {
859a85dd
MR
309 if (check_source && PageLRU(page)) {
310 clear_pageblock_skip(page);
311 return true;
312 }
e332f741 313
859a85dd
MR
314 if (check_target && PageBuddy(page)) {
315 clear_pageblock_skip(page);
316 return true;
e332f741
MG
317 }
318
319 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
a2e9a5af 320 } while (page <= end_page);
e332f741
MG
321
322 return false;
323}
324
bb13ffeb
MG
325/*
326 * This function is called to clear all cached information on pageblocks that
327 * should be skipped for page isolation when the migrate and free page scanner
328 * meet.
329 */
62997027 330static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 331{
e332f741 332 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 333 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
334 unsigned long reset_migrate = free_pfn;
335 unsigned long reset_free = migrate_pfn;
336 bool source_set = false;
337 bool free_set = false;
338
339 if (!zone->compact_blockskip_flush)
340 return;
bb13ffeb 341
62997027 342 zone->compact_blockskip_flush = false;
bb13ffeb 343
e332f741
MG
344 /*
345 * Walk the zone and update pageblock skip information. Source looks
346 * for PageLRU while target looks for PageBuddy. When the scanner
347 * is found, both PageBuddy and PageLRU are checked as the pageblock
348 * is suitable as both source and target.
349 */
350 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
351 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
352 cond_resched();
353
e332f741
MG
354 /* Update the migrate PFN */
355 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
356 migrate_pfn < reset_migrate) {
357 source_set = true;
358 reset_migrate = migrate_pfn;
359 zone->compact_init_migrate_pfn = reset_migrate;
360 zone->compact_cached_migrate_pfn[0] = reset_migrate;
361 zone->compact_cached_migrate_pfn[1] = reset_migrate;
362 }
bb13ffeb 363
e332f741
MG
364 /* Update the free PFN */
365 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
366 free_pfn > reset_free) {
367 free_set = true;
368 reset_free = free_pfn;
369 zone->compact_init_free_pfn = reset_free;
370 zone->compact_cached_free_pfn = reset_free;
371 }
bb13ffeb 372 }
02333641 373
e332f741
MG
374 /* Leave no distance if no suitable block was reset */
375 if (reset_migrate >= reset_free) {
376 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
377 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
378 zone->compact_cached_free_pfn = free_pfn;
379 }
bb13ffeb
MG
380}
381
62997027
MG
382void reset_isolation_suitable(pg_data_t *pgdat)
383{
384 int zoneid;
385
386 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
387 struct zone *zone = &pgdat->node_zones[zoneid];
388 if (!populated_zone(zone))
389 continue;
390
391 /* Only flush if a full compaction finished recently */
392 if (zone->compact_blockskip_flush)
393 __reset_isolation_suitable(zone);
394 }
395}
396
e380bebe
MG
397/*
398 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
399 * locks are not required for read/writers. Returns true if it was already set.
400 */
401static bool test_and_set_skip(struct compact_control *cc, struct page *page,
402 unsigned long pfn)
403{
404 bool skip;
405
406 /* Do no update if skip hint is being ignored */
407 if (cc->ignore_skip_hint)
408 return false;
409
410 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
411 return false;
412
413 skip = get_pageblock_skip(page);
414 if (!skip && !cc->no_set_skip_hint)
415 set_pageblock_skip(page);
416
417 return skip;
418}
419
420static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
421{
422 struct zone *zone = cc->zone;
423
424 pfn = pageblock_end_pfn(pfn);
425
426 /* Set for isolation rather than compaction */
427 if (cc->no_set_skip_hint)
428 return;
429
430 if (pfn > zone->compact_cached_migrate_pfn[0])
431 zone->compact_cached_migrate_pfn[0] = pfn;
432 if (cc->mode != MIGRATE_ASYNC &&
433 pfn > zone->compact_cached_migrate_pfn[1])
434 zone->compact_cached_migrate_pfn[1] = pfn;
435}
436
bb13ffeb
MG
437/*
438 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 439 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 440 */
c89511ab 441static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 442 struct page *page, unsigned long pfn)
bb13ffeb 443{
c89511ab 444 struct zone *zone = cc->zone;
6815bf3f 445
2583d671 446 if (cc->no_set_skip_hint)
6815bf3f
JK
447 return;
448
bb13ffeb
MG
449 if (!page)
450 return;
451
edc2ca61 452 set_pageblock_skip(page);
c89511ab 453
35979ef3 454 /* Update where async and sync compaction should restart */
e380bebe
MG
455 if (pfn < zone->compact_cached_free_pfn)
456 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
457}
458#else
459static inline bool isolation_suitable(struct compact_control *cc,
460 struct page *page)
461{
462 return true;
463}
464
b527cfe5 465static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
466{
467 return false;
468}
469
470static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 471 struct page *page, unsigned long pfn)
bb13ffeb
MG
472{
473}
e380bebe
MG
474
475static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
476{
477}
478
479static bool test_and_set_skip(struct compact_control *cc, struct page *page,
480 unsigned long pfn)
481{
482 return false;
483}
bb13ffeb
MG
484#endif /* CONFIG_COMPACTION */
485
8b44d279
VB
486/*
487 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
488 * very heavily contended. For async compaction, trylock and record if the
489 * lock is contended. The lock will still be acquired but compaction will
490 * abort when the current block is finished regardless of success rate.
491 * Sync compaction acquires the lock.
8b44d279 492 *
cb2dcaf0 493 * Always returns true which makes it easier to track lock state in callers.
8b44d279 494 */
cb2dcaf0 495static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 496 struct compact_control *cc)
77337ede 497 __acquires(lock)
2a1402aa 498{
cb2dcaf0
MG
499 /* Track if the lock is contended in async mode */
500 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
501 if (spin_trylock_irqsave(lock, *flags))
502 return true;
503
504 cc->contended = true;
8b44d279 505 }
1f9efdef 506
cb2dcaf0 507 spin_lock_irqsave(lock, *flags);
8b44d279 508 return true;
2a1402aa
MG
509}
510
c67fe375
MG
511/*
512 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
513 * very heavily contended. The lock should be periodically unlocked to avoid
514 * having disabled IRQs for a long time, even when there is nobody waiting on
515 * the lock. It might also be that allowing the IRQs will result in
d56c1584 516 * need_resched() becoming true. If scheduling is needed, compaction schedules.
8b44d279
VB
517 * Either compaction type will also abort if a fatal signal is pending.
518 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 519 *
d56c1584
ML
520 * Returns true if compaction should abort due to fatal signal pending.
521 * Returns false when compaction can continue.
c67fe375 522 */
8b44d279
VB
523static bool compact_unlock_should_abort(spinlock_t *lock,
524 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 525{
8b44d279
VB
526 if (*locked) {
527 spin_unlock_irqrestore(lock, flags);
528 *locked = false;
529 }
1f9efdef 530
8b44d279 531 if (fatal_signal_pending(current)) {
c3486f53 532 cc->contended = true;
8b44d279
VB
533 return true;
534 }
c67fe375 535
cf66f070 536 cond_resched();
be976572
VB
537
538 return false;
539}
540
85aa125f 541/*
9e4be470
JM
542 * Isolate free pages onto a private freelist. If @strict is true, will abort
543 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
544 * (even though it may still end up isolating some pages).
85aa125f 545 */
f40d1e42 546static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 547 unsigned long *start_pfn,
85aa125f
MN
548 unsigned long end_pfn,
549 struct list_head *freelist,
4fca9730 550 unsigned int stride,
85aa125f 551 bool strict)
748446bb 552{
b7aba698 553 int nr_scanned = 0, total_isolated = 0;
d097a6f6 554 struct page *cursor;
b8b2d825 555 unsigned long flags = 0;
f40d1e42 556 bool locked = false;
e14c720e 557 unsigned long blockpfn = *start_pfn;
66c64223 558 unsigned int order;
748446bb 559
4fca9730
MG
560 /* Strict mode is for isolation, speed is secondary */
561 if (strict)
562 stride = 1;
563
748446bb
MG
564 cursor = pfn_to_page(blockpfn);
565
f40d1e42 566 /* Isolate free pages. */
4fca9730 567 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
66c64223 568 int isolated;
748446bb
MG
569 struct page *page = cursor;
570
8b44d279
VB
571 /*
572 * Periodically drop the lock (if held) regardless of its
573 * contention, to give chance to IRQs. Abort if fatal signal
d56c1584 574 * pending.
8b44d279 575 */
c036ddff 576 if (!(blockpfn % COMPACT_CLUSTER_MAX)
8b44d279
VB
577 && compact_unlock_should_abort(&cc->zone->lock, flags,
578 &locked, cc))
579 break;
580
b7aba698 581 nr_scanned++;
2af120bc 582
9fcd6d2e
VB
583 /*
584 * For compound pages such as THP and hugetlbfs, we can save
585 * potentially a lot of iterations if we skip them at once.
586 * The check is racy, but we can consider only valid values
587 * and the only danger is skipping too much.
588 */
589 if (PageCompound(page)) {
21dc7e02
DR
590 const unsigned int order = compound_order(page);
591
d3c85bad 592 if (likely(order < MAX_ORDER)) {
21dc7e02
DR
593 blockpfn += (1UL << order) - 1;
594 cursor += (1UL << order) - 1;
9fcd6d2e 595 }
9fcd6d2e
VB
596 goto isolate_fail;
597 }
598
f40d1e42 599 if (!PageBuddy(page))
2af120bc 600 goto isolate_fail;
f40d1e42 601
85f73e6d 602 /* If we already hold the lock, we can skip some rechecking. */
69b7189f 603 if (!locked) {
cb2dcaf0 604 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 605 &flags, cc);
f40d1e42 606
69b7189f
VB
607 /* Recheck this is a buddy page under lock */
608 if (!PageBuddy(page))
609 goto isolate_fail;
610 }
748446bb 611
66c64223 612 /* Found a free page, will break it into order-0 pages */
ab130f91 613 order = buddy_order(page);
66c64223 614 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
615 if (!isolated)
616 break;
66c64223 617 set_page_private(page, order);
a4f04f2c 618
748446bb 619 total_isolated += isolated;
a4f04f2c 620 cc->nr_freepages += isolated;
66c64223
JK
621 list_add_tail(&page->lru, freelist);
622
a4f04f2c
DR
623 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
624 blockpfn += isolated;
625 break;
748446bb 626 }
a4f04f2c
DR
627 /* Advance to the end of split page */
628 blockpfn += isolated - 1;
629 cursor += isolated - 1;
630 continue;
2af120bc
LA
631
632isolate_fail:
633 if (strict)
634 break;
635 else
636 continue;
637
748446bb
MG
638 }
639
a4f04f2c
DR
640 if (locked)
641 spin_unlock_irqrestore(&cc->zone->lock, flags);
642
9fcd6d2e
VB
643 /*
644 * There is a tiny chance that we have read bogus compound_order(),
645 * so be careful to not go outside of the pageblock.
646 */
647 if (unlikely(blockpfn > end_pfn))
648 blockpfn = end_pfn;
649
e34d85f0
JK
650 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
651 nr_scanned, total_isolated);
652
e14c720e
VB
653 /* Record how far we have got within the block */
654 *start_pfn = blockpfn;
655
f40d1e42
MG
656 /*
657 * If strict isolation is requested by CMA then check that all the
658 * pages requested were isolated. If there were any failures, 0 is
659 * returned and CMA will fail.
660 */
2af120bc 661 if (strict && blockpfn < end_pfn)
f40d1e42
MG
662 total_isolated = 0;
663
7f354a54 664 cc->total_free_scanned += nr_scanned;
397487db 665 if (total_isolated)
010fc29a 666 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
667 return total_isolated;
668}
669
85aa125f
MN
670/**
671 * isolate_freepages_range() - isolate free pages.
e8b098fc 672 * @cc: Compaction control structure.
85aa125f
MN
673 * @start_pfn: The first PFN to start isolating.
674 * @end_pfn: The one-past-last PFN.
675 *
676 * Non-free pages, invalid PFNs, or zone boundaries within the
677 * [start_pfn, end_pfn) range are considered errors, cause function to
678 * undo its actions and return zero.
679 *
680 * Otherwise, function returns one-past-the-last PFN of isolated page
681 * (which may be greater then end_pfn if end fell in a middle of
682 * a free page).
683 */
ff9543fd 684unsigned long
bb13ffeb
MG
685isolate_freepages_range(struct compact_control *cc,
686 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 687{
e1409c32 688 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
689 LIST_HEAD(freelist);
690
7d49d886 691 pfn = start_pfn;
06b6640a 692 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
693 if (block_start_pfn < cc->zone->zone_start_pfn)
694 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 695 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
696
697 for (; pfn < end_pfn; pfn += isolated,
e1409c32 698 block_start_pfn = block_end_pfn,
7d49d886 699 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
700 /* Protect pfn from changing by isolate_freepages_block */
701 unsigned long isolate_start_pfn = pfn;
85aa125f 702
85aa125f
MN
703 block_end_pfn = min(block_end_pfn, end_pfn);
704
58420016
JK
705 /*
706 * pfn could pass the block_end_pfn if isolated freepage
707 * is more than pageblock order. In this case, we adjust
708 * scanning range to right one.
709 */
710 if (pfn >= block_end_pfn) {
06b6640a
VB
711 block_start_pfn = pageblock_start_pfn(pfn);
712 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
713 block_end_pfn = min(block_end_pfn, end_pfn);
714 }
715
e1409c32
JK
716 if (!pageblock_pfn_to_page(block_start_pfn,
717 block_end_pfn, cc->zone))
7d49d886
VB
718 break;
719
e14c720e 720 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
4fca9730 721 block_end_pfn, &freelist, 0, true);
85aa125f
MN
722
723 /*
724 * In strict mode, isolate_freepages_block() returns 0 if
725 * there are any holes in the block (ie. invalid PFNs or
726 * non-free pages).
727 */
728 if (!isolated)
729 break;
730
731 /*
732 * If we managed to isolate pages, it is always (1 << n) *
733 * pageblock_nr_pages for some non-negative n. (Max order
734 * page may span two pageblocks).
735 */
736 }
737
66c64223 738 /* __isolate_free_page() does not map the pages */
4469ab98 739 split_map_pages(&freelist);
85aa125f
MN
740
741 if (pfn < end_pfn) {
742 /* Loop terminated early, cleanup. */
743 release_freepages(&freelist);
744 return 0;
745 }
746
747 /* We don't use freelists for anything. */
748 return pfn;
749}
750
748446bb 751/* Similar to reclaim, but different enough that they don't share logic */
5f438eee 752static bool too_many_isolated(pg_data_t *pgdat)
748446bb 753{
d818fca1
MG
754 bool too_many;
755
bc693045 756 unsigned long active, inactive, isolated;
748446bb 757
5f438eee
AR
758 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
759 node_page_state(pgdat, NR_INACTIVE_ANON);
760 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
761 node_page_state(pgdat, NR_ACTIVE_ANON);
762 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
763 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 764
d818fca1
MG
765 too_many = isolated > (inactive + active) / 2;
766 if (!too_many)
767 wake_throttle_isolated(pgdat);
768
769 return too_many;
748446bb
MG
770}
771
2fe86e00 772/**
edc2ca61
VB
773 * isolate_migratepages_block() - isolate all migrate-able pages within
774 * a single pageblock
2fe86e00 775 * @cc: Compaction control structure.
edc2ca61
VB
776 * @low_pfn: The first PFN to isolate
777 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
89f6c88a 778 * @mode: Isolation mode to be used.
2fe86e00
MN
779 *
780 * Isolate all pages that can be migrated from the range specified by
edc2ca61 781 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
c2ad7a1f 782 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
369fa227 783 * -ENOMEM in case we could not allocate a page, or 0.
c2ad7a1f 784 * cc->migrate_pfn will contain the next pfn to scan.
2fe86e00 785 *
edc2ca61 786 * The pages are isolated on cc->migratepages list (not required to be empty),
c2ad7a1f 787 * and cc->nr_migratepages is updated accordingly.
748446bb 788 */
c2ad7a1f 789static int
edc2ca61 790isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
89f6c88a 791 unsigned long end_pfn, isolate_mode_t mode)
748446bb 792{
5f438eee 793 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 794 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 795 struct lruvec *lruvec;
b8b2d825 796 unsigned long flags = 0;
6168d0da 797 struct lruvec *locked = NULL;
bb13ffeb 798 struct page *page = NULL, *valid_page = NULL;
89f6c88a 799 struct address_space *mapping;
e34d85f0 800 unsigned long start_pfn = low_pfn;
fdd048e1
VB
801 bool skip_on_failure = false;
802 unsigned long next_skip_pfn = 0;
e380bebe 803 bool skip_updated = false;
c2ad7a1f
OS
804 int ret = 0;
805
806 cc->migrate_pfn = low_pfn;
748446bb 807
748446bb
MG
808 /*
809 * Ensure that there are not too many pages isolated from the LRU
810 * list by either parallel reclaimers or compaction. If there are,
811 * delay for some time until fewer pages are isolated
812 */
5f438eee 813 while (unlikely(too_many_isolated(pgdat))) {
d20bdd57
ZY
814 /* stop isolation if there are still pages not migrated */
815 if (cc->nr_migratepages)
c2ad7a1f 816 return -EAGAIN;
d20bdd57 817
f9e35b3b 818 /* async migration should just abort */
e0b9daeb 819 if (cc->mode == MIGRATE_ASYNC)
c2ad7a1f 820 return -EAGAIN;
f9e35b3b 821
c3f4a9a2 822 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
748446bb
MG
823
824 if (fatal_signal_pending(current))
c2ad7a1f 825 return -EINTR;
748446bb
MG
826 }
827
cf66f070 828 cond_resched();
aeef4b83 829
fdd048e1
VB
830 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
831 skip_on_failure = true;
832 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
833 }
834
748446bb 835 /* Time to isolate some pages for migration */
748446bb 836 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 837
fdd048e1
VB
838 if (skip_on_failure && low_pfn >= next_skip_pfn) {
839 /*
840 * We have isolated all migration candidates in the
841 * previous order-aligned block, and did not skip it due
842 * to failure. We should migrate the pages now and
843 * hopefully succeed compaction.
844 */
845 if (nr_isolated)
846 break;
847
848 /*
849 * We failed to isolate in the previous order-aligned
850 * block. Set the new boundary to the end of the
851 * current block. Note we can't simply increase
852 * next_skip_pfn by 1 << order, as low_pfn might have
853 * been incremented by a higher number due to skipping
854 * a compound or a high-order buddy page in the
855 * previous loop iteration.
856 */
857 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
858 }
859
8b44d279
VB
860 /*
861 * Periodically drop the lock (if held) regardless of its
670105a2
MG
862 * contention, to give chance to IRQs. Abort completely if
863 * a fatal signal is pending.
8b44d279 864 */
c036ddff 865 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
6168d0da
AS
866 if (locked) {
867 unlock_page_lruvec_irqrestore(locked, flags);
868 locked = NULL;
869 }
870
871 if (fatal_signal_pending(current)) {
872 cc->contended = true;
c2ad7a1f 873 ret = -EINTR;
6168d0da 874
6168d0da
AS
875 goto fatal_pending;
876 }
877
878 cond_resched();
670105a2 879 }
c67fe375 880
b7aba698 881 nr_scanned++;
748446bb 882
748446bb 883 page = pfn_to_page(low_pfn);
dc908600 884
e380bebe
MG
885 /*
886 * Check if the pageblock has already been marked skipped.
887 * Only the aligned PFN is checked as the caller isolates
888 * COMPACT_CLUSTER_MAX at a time so the second call must
889 * not falsely conclude that the block should be skipped.
890 */
891 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
4af12d04 892 if (!isolation_suitable(cc, page)) {
e380bebe 893 low_pfn = end_pfn;
9df41314 894 page = NULL;
e380bebe
MG
895 goto isolate_abort;
896 }
bb13ffeb 897 valid_page = page;
e380bebe 898 }
bb13ffeb 899
369fa227 900 if (PageHuge(page) && cc->alloc_contig) {
ae37c7ff 901 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
369fa227
OS
902
903 /*
904 * Fail isolation in case isolate_or_dissolve_huge_page()
905 * reports an error. In case of -ENOMEM, abort right away.
906 */
907 if (ret < 0) {
908 /* Do not report -EBUSY down the chain */
909 if (ret == -EBUSY)
910 ret = 0;
66fe1cf7 911 low_pfn += compound_nr(page) - 1;
369fa227
OS
912 goto isolate_fail;
913 }
914
ae37c7ff
OS
915 if (PageHuge(page)) {
916 /*
917 * Hugepage was successfully isolated and placed
918 * on the cc->migratepages list.
919 */
920 low_pfn += compound_nr(page) - 1;
921 goto isolate_success_no_list;
922 }
923
369fa227
OS
924 /*
925 * Ok, the hugepage was dissolved. Now these pages are
926 * Buddy and cannot be re-allocated because they are
927 * isolated. Fall-through as the check below handles
928 * Buddy pages.
929 */
930 }
931
6c14466c 932 /*
99c0fd5e
VB
933 * Skip if free. We read page order here without zone lock
934 * which is generally unsafe, but the race window is small and
935 * the worst thing that can happen is that we skip some
936 * potential isolation targets.
6c14466c 937 */
99c0fd5e 938 if (PageBuddy(page)) {
ab130f91 939 unsigned long freepage_order = buddy_order_unsafe(page);
99c0fd5e
VB
940
941 /*
942 * Without lock, we cannot be sure that what we got is
943 * a valid page order. Consider only values in the
944 * valid order range to prevent low_pfn overflow.
945 */
946 if (freepage_order > 0 && freepage_order < MAX_ORDER)
947 low_pfn += (1UL << freepage_order) - 1;
748446bb 948 continue;
99c0fd5e 949 }
748446bb 950
bc835011 951 /*
29c0dde8 952 * Regardless of being on LRU, compound pages such as THP and
1da2f328
RR
953 * hugetlbfs are not to be compacted unless we are attempting
954 * an allocation much larger than the huge page size (eg CMA).
955 * We can potentially save a lot of iterations if we skip them
956 * at once. The check is racy, but we can consider only valid
957 * values and the only danger is skipping too much.
bc835011 958 */
1da2f328 959 if (PageCompound(page) && !cc->alloc_contig) {
21dc7e02 960 const unsigned int order = compound_order(page);
edc2ca61 961
d3c85bad 962 if (likely(order < MAX_ORDER))
21dc7e02 963 low_pfn += (1UL << order) - 1;
fdd048e1 964 goto isolate_fail;
2a1402aa
MG
965 }
966
bda807d4
MK
967 /*
968 * Check may be lockless but that's ok as we recheck later.
969 * It's possible to migrate LRU and non-lru movable pages.
970 * Skip any other type of page
971 */
972 if (!PageLRU(page)) {
bda807d4
MK
973 /*
974 * __PageMovable can return false positive so we need
975 * to verify it under page_lock.
976 */
977 if (unlikely(__PageMovable(page)) &&
978 !PageIsolated(page)) {
979 if (locked) {
6168d0da
AS
980 unlock_page_lruvec_irqrestore(locked, flags);
981 locked = NULL;
bda807d4
MK
982 }
983
89f6c88a 984 if (!isolate_movable_page(page, mode))
bda807d4
MK
985 goto isolate_success;
986 }
987
fdd048e1 988 goto isolate_fail;
bda807d4 989 }
29c0dde8 990
119d6d59
DR
991 /*
992 * Migration will fail if an anonymous page is pinned in memory,
993 * so avoid taking lru_lock and isolating it unnecessarily in an
994 * admittedly racy check.
995 */
89f6c88a
HD
996 mapping = page_mapping(page);
997 if (!mapping && page_count(page) > page_mapcount(page))
fdd048e1 998 goto isolate_fail;
119d6d59 999
73e64c51
MH
1000 /*
1001 * Only allow to migrate anonymous pages in GFP_NOFS context
1002 * because those do not depend on fs locks.
1003 */
89f6c88a 1004 if (!(cc->gfp_mask & __GFP_FS) && mapping)
73e64c51
MH
1005 goto isolate_fail;
1006
9df41314
AS
1007 /*
1008 * Be careful not to clear PageLRU until after we're
1009 * sure the page is not being freed elsewhere -- the
1010 * page release code relies on it.
1011 */
1012 if (unlikely(!get_page_unless_zero(page)))
1013 goto isolate_fail;
1014
89f6c88a
HD
1015 /* Only take pages on LRU: a check now makes later tests safe */
1016 if (!PageLRU(page))
1017 goto isolate_fail_put;
1018
1019 /* Compaction might skip unevictable pages but CMA takes them */
1020 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1021 goto isolate_fail_put;
1022
1023 /*
1024 * To minimise LRU disruption, the caller can indicate with
1025 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1026 * it will be able to migrate without blocking - clean pages
1027 * for the most part. PageWriteback would require blocking.
1028 */
1029 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
9df41314
AS
1030 goto isolate_fail_put;
1031
89f6c88a
HD
1032 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1033 bool migrate_dirty;
1034
1035 /*
1036 * Only pages without mappings or that have a
1037 * ->migratepage callback are possible to migrate
1038 * without blocking. However, we can be racing with
1039 * truncation so it's necessary to lock the page
1040 * to stabilise the mapping as truncation holds
1041 * the page lock until after the page is removed
1042 * from the page cache.
1043 */
1044 if (!trylock_page(page))
1045 goto isolate_fail_put;
1046
1047 mapping = page_mapping(page);
1048 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1049 unlock_page(page);
1050 if (!migrate_dirty)
1051 goto isolate_fail_put;
1052 }
1053
9df41314
AS
1054 /* Try isolate the page */
1055 if (!TestClearPageLRU(page))
1056 goto isolate_fail_put;
1057
b1baabd9 1058 lruvec = folio_lruvec(page_folio(page));
6168d0da 1059
69b7189f 1060 /* If we already hold the lock, we can skip some rechecking */
6168d0da
AS
1061 if (lruvec != locked) {
1062 if (locked)
1063 unlock_page_lruvec_irqrestore(locked, flags);
1064
1065 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1066 locked = lruvec;
6168d0da 1067
e809c3fe 1068 lruvec_memcg_debug(lruvec, page_folio(page));
e380bebe 1069
e380bebe
MG
1070 /* Try get exclusive access under lock */
1071 if (!skip_updated) {
1072 skip_updated = true;
1073 if (test_and_set_skip(cc, page, low_pfn))
1074 goto isolate_abort;
1075 }
2a1402aa 1076
29c0dde8
VB
1077 /*
1078 * Page become compound since the non-locked check,
1079 * and it's on LRU. It can only be a THP so the order
1080 * is safe to read and it's 0 for tail pages.
1081 */
1da2f328 1082 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
d8c6546b 1083 low_pfn += compound_nr(page) - 1;
9df41314
AS
1084 SetPageLRU(page);
1085 goto isolate_fail_put;
69b7189f 1086 }
d99fd5fe 1087 }
fa9add64 1088
1da2f328
RR
1089 /* The whole page is taken off the LRU; skip the tail pages. */
1090 if (PageCompound(page))
1091 low_pfn += compound_nr(page) - 1;
bc835011 1092
748446bb 1093 /* Successfully isolated */
46ae6b2c 1094 del_page_from_lru_list(page, lruvec);
1da2f328 1095 mod_node_page_state(page_pgdat(page),
9de4f22a 1096 NR_ISOLATED_ANON + page_is_file_lru(page),
6c357848 1097 thp_nr_pages(page));
b6c75016
JK
1098
1099isolate_success:
fdd048e1 1100 list_add(&page->lru, &cc->migratepages);
ae37c7ff 1101isolate_success_no_list:
38935861
ZY
1102 cc->nr_migratepages += compound_nr(page);
1103 nr_isolated += compound_nr(page);
748446bb 1104
804d3121
MG
1105 /*
1106 * Avoid isolating too much unless this block is being
cb2dcaf0
MG
1107 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1108 * or a lock is contended. For contention, isolate quickly to
1109 * potentially remove one source of contention.
804d3121 1110 */
38935861 1111 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
cb2dcaf0 1112 !cc->rescan && !cc->contended) {
31b8384a 1113 ++low_pfn;
748446bb 1114 break;
31b8384a 1115 }
fdd048e1
VB
1116
1117 continue;
9df41314
AS
1118
1119isolate_fail_put:
1120 /* Avoid potential deadlock in freeing page under lru_lock */
1121 if (locked) {
6168d0da
AS
1122 unlock_page_lruvec_irqrestore(locked, flags);
1123 locked = NULL;
9df41314
AS
1124 }
1125 put_page(page);
1126
fdd048e1 1127isolate_fail:
369fa227 1128 if (!skip_on_failure && ret != -ENOMEM)
fdd048e1
VB
1129 continue;
1130
1131 /*
1132 * We have isolated some pages, but then failed. Release them
1133 * instead of migrating, as we cannot form the cc->order buddy
1134 * page anyway.
1135 */
1136 if (nr_isolated) {
1137 if (locked) {
6168d0da
AS
1138 unlock_page_lruvec_irqrestore(locked, flags);
1139 locked = NULL;
fdd048e1 1140 }
fdd048e1
VB
1141 putback_movable_pages(&cc->migratepages);
1142 cc->nr_migratepages = 0;
fdd048e1
VB
1143 nr_isolated = 0;
1144 }
1145
1146 if (low_pfn < next_skip_pfn) {
1147 low_pfn = next_skip_pfn - 1;
1148 /*
1149 * The check near the loop beginning would have updated
1150 * next_skip_pfn too, but this is a bit simpler.
1151 */
1152 next_skip_pfn += 1UL << cc->order;
1153 }
369fa227
OS
1154
1155 if (ret == -ENOMEM)
1156 break;
748446bb
MG
1157 }
1158
99c0fd5e
VB
1159 /*
1160 * The PageBuddy() check could have potentially brought us outside
1161 * the range to be scanned.
1162 */
1163 if (unlikely(low_pfn > end_pfn))
1164 low_pfn = end_pfn;
1165
9df41314
AS
1166 page = NULL;
1167
e380bebe 1168isolate_abort:
c67fe375 1169 if (locked)
6168d0da 1170 unlock_page_lruvec_irqrestore(locked, flags);
9df41314
AS
1171 if (page) {
1172 SetPageLRU(page);
1173 put_page(page);
1174 }
748446bb 1175
50b5b094 1176 /*
804d3121
MG
1177 * Updated the cached scanner pfn once the pageblock has been scanned
1178 * Pages will either be migrated in which case there is no point
1179 * scanning in the near future or migration failed in which case the
1180 * failure reason may persist. The block is marked for skipping if
1181 * there were no pages isolated in the block or if the block is
1182 * rescanned twice in a row.
50b5b094 1183 */
804d3121 1184 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
e380bebe
MG
1185 if (valid_page && !skip_updated)
1186 set_pageblock_skip(valid_page);
1187 update_cached_migrate(cc, low_pfn);
1188 }
bb13ffeb 1189
e34d85f0
JK
1190 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1191 nr_scanned, nr_isolated);
b7aba698 1192
670105a2 1193fatal_pending:
7f354a54 1194 cc->total_migrate_scanned += nr_scanned;
397487db 1195 if (nr_isolated)
010fc29a 1196 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1197
c2ad7a1f
OS
1198 cc->migrate_pfn = low_pfn;
1199
1200 return ret;
2fe86e00
MN
1201}
1202
edc2ca61
VB
1203/**
1204 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1205 * @cc: Compaction control structure.
1206 * @start_pfn: The first PFN to start isolating.
1207 * @end_pfn: The one-past-last PFN.
1208 *
369fa227
OS
1209 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1210 * in case we could not allocate a page, or 0.
edc2ca61 1211 */
c2ad7a1f 1212int
edc2ca61
VB
1213isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1214 unsigned long end_pfn)
1215{
e1409c32 1216 unsigned long pfn, block_start_pfn, block_end_pfn;
c2ad7a1f 1217 int ret = 0;
edc2ca61
VB
1218
1219 /* Scan block by block. First and last block may be incomplete */
1220 pfn = start_pfn;
06b6640a 1221 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1222 if (block_start_pfn < cc->zone->zone_start_pfn)
1223 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1224 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1225
1226 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1227 block_start_pfn = block_end_pfn,
edc2ca61
VB
1228 block_end_pfn += pageblock_nr_pages) {
1229
1230 block_end_pfn = min(block_end_pfn, end_pfn);
1231
e1409c32
JK
1232 if (!pageblock_pfn_to_page(block_start_pfn,
1233 block_end_pfn, cc->zone))
edc2ca61
VB
1234 continue;
1235
c2ad7a1f
OS
1236 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1237 ISOLATE_UNEVICTABLE);
edc2ca61 1238
c2ad7a1f 1239 if (ret)
edc2ca61 1240 break;
6ea41c0c 1241
38935861 1242 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
6ea41c0c 1243 break;
edc2ca61 1244 }
edc2ca61 1245
c2ad7a1f 1246 return ret;
edc2ca61
VB
1247}
1248
ff9543fd
MN
1249#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1250#ifdef CONFIG_COMPACTION
018e9a49 1251
b682debd
VB
1252static bool suitable_migration_source(struct compact_control *cc,
1253 struct page *page)
1254{
282722b0
VB
1255 int block_mt;
1256
9bebefd5
MG
1257 if (pageblock_skip_persistent(page))
1258 return false;
1259
282722b0 1260 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1261 return true;
1262
282722b0
VB
1263 block_mt = get_pageblock_migratetype(page);
1264
1265 if (cc->migratetype == MIGRATE_MOVABLE)
1266 return is_migrate_movable(block_mt);
1267 else
1268 return block_mt == cc->migratetype;
b682debd
VB
1269}
1270
018e9a49 1271/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1272static bool suitable_migration_target(struct compact_control *cc,
1273 struct page *page)
018e9a49
AM
1274{
1275 /* If the page is a large free page, then disallow migration */
1276 if (PageBuddy(page)) {
1277 /*
1278 * We are checking page_order without zone->lock taken. But
1279 * the only small danger is that we skip a potentially suitable
1280 * pageblock, so it's not worth to check order for valid range.
1281 */
ab130f91 1282 if (buddy_order_unsafe(page) >= pageblock_order)
018e9a49
AM
1283 return false;
1284 }
1285
1ef36db2
YX
1286 if (cc->ignore_block_suitable)
1287 return true;
1288
018e9a49 1289 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1290 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1291 return true;
1292
1293 /* Otherwise skip the block */
1294 return false;
1295}
1296
70b44595
MG
1297static inline unsigned int
1298freelist_scan_limit(struct compact_control *cc)
1299{
dd7ef7bd
QC
1300 unsigned short shift = BITS_PER_LONG - 1;
1301
1302 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1303}
1304
f2849aa0
VB
1305/*
1306 * Test whether the free scanner has reached the same or lower pageblock than
1307 * the migration scanner, and compaction should thus terminate.
1308 */
1309static inline bool compact_scanners_met(struct compact_control *cc)
1310{
1311 return (cc->free_pfn >> pageblock_order)
1312 <= (cc->migrate_pfn >> pageblock_order);
1313}
1314
5a811889
MG
1315/*
1316 * Used when scanning for a suitable migration target which scans freelists
1317 * in reverse. Reorders the list such as the unscanned pages are scanned
1318 * first on the next iteration of the free scanner
1319 */
1320static void
1321move_freelist_head(struct list_head *freelist, struct page *freepage)
1322{
1323 LIST_HEAD(sublist);
1324
1325 if (!list_is_last(freelist, &freepage->lru)) {
1326 list_cut_before(&sublist, freelist, &freepage->lru);
d2155fe5 1327 list_splice_tail(&sublist, freelist);
5a811889
MG
1328 }
1329}
1330
1331/*
1332 * Similar to move_freelist_head except used by the migration scanner
1333 * when scanning forward. It's possible for these list operations to
1334 * move against each other if they search the free list exactly in
1335 * lockstep.
1336 */
70b44595
MG
1337static void
1338move_freelist_tail(struct list_head *freelist, struct page *freepage)
1339{
1340 LIST_HEAD(sublist);
1341
1342 if (!list_is_first(freelist, &freepage->lru)) {
1343 list_cut_position(&sublist, freelist, &freepage->lru);
d2155fe5 1344 list_splice_tail(&sublist, freelist);
70b44595
MG
1345 }
1346}
1347
5a811889
MG
1348static void
1349fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1350{
1351 unsigned long start_pfn, end_pfn;
6e2b7044 1352 struct page *page;
5a811889
MG
1353
1354 /* Do not search around if there are enough pages already */
1355 if (cc->nr_freepages >= cc->nr_migratepages)
1356 return;
1357
1358 /* Minimise scanning during async compaction */
1359 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1360 return;
1361
1362 /* Pageblock boundaries */
6e2b7044
VB
1363 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1364 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1365
1366 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1367 if (!page)
1368 return;
5a811889
MG
1369
1370 /* Scan before */
1371 if (start_pfn != pfn) {
4fca9730 1372 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
5a811889
MG
1373 if (cc->nr_freepages >= cc->nr_migratepages)
1374 return;
1375 }
1376
1377 /* Scan after */
1378 start_pfn = pfn + nr_isolated;
60fce36a 1379 if (start_pfn < end_pfn)
4fca9730 1380 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
5a811889
MG
1381
1382 /* Skip this pageblock in the future as it's full or nearly full */
1383 if (cc->nr_freepages < cc->nr_migratepages)
1384 set_pageblock_skip(page);
1385}
1386
dbe2d4e4
MG
1387/* Search orders in round-robin fashion */
1388static int next_search_order(struct compact_control *cc, int order)
1389{
1390 order--;
1391 if (order < 0)
1392 order = cc->order - 1;
1393
1394 /* Search wrapped around? */
1395 if (order == cc->search_order) {
1396 cc->search_order--;
1397 if (cc->search_order < 0)
1398 cc->search_order = cc->order - 1;
1399 return -1;
1400 }
1401
1402 return order;
1403}
1404
5a811889
MG
1405static unsigned long
1406fast_isolate_freepages(struct compact_control *cc)
1407{
b55ca526 1408 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
5a811889 1409 unsigned int nr_scanned = 0;
74e21484 1410 unsigned long low_pfn, min_pfn, highest = 0;
5a811889
MG
1411 unsigned long nr_isolated = 0;
1412 unsigned long distance;
1413 struct page *page = NULL;
1414 bool scan_start = false;
1415 int order;
1416
1417 /* Full compaction passes in a negative order */
1418 if (cc->order <= 0)
1419 return cc->free_pfn;
1420
1421 /*
1422 * If starting the scan, use a deeper search and use the highest
1423 * PFN found if a suitable one is not found.
1424 */
e332f741 1425 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1426 limit = pageblock_nr_pages >> 1;
1427 scan_start = true;
1428 }
1429
1430 /*
1431 * Preferred point is in the top quarter of the scan space but take
1432 * a pfn from the top half if the search is problematic.
1433 */
1434 distance = (cc->free_pfn - cc->migrate_pfn);
1435 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1436 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1437
1438 if (WARN_ON_ONCE(min_pfn > low_pfn))
1439 low_pfn = min_pfn;
1440
dbe2d4e4
MG
1441 /*
1442 * Search starts from the last successful isolation order or the next
1443 * order to search after a previous failure
1444 */
1445 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1446
1447 for (order = cc->search_order;
1448 !page && order >= 0;
1449 order = next_search_order(cc, order)) {
5a811889
MG
1450 struct free_area *area = &cc->zone->free_area[order];
1451 struct list_head *freelist;
1452 struct page *freepage;
1453 unsigned long flags;
1454 unsigned int order_scanned = 0;
74e21484 1455 unsigned long high_pfn = 0;
5a811889
MG
1456
1457 if (!area->nr_free)
1458 continue;
1459
1460 spin_lock_irqsave(&cc->zone->lock, flags);
1461 freelist = &area->free_list[MIGRATE_MOVABLE];
1462 list_for_each_entry_reverse(freepage, freelist, lru) {
1463 unsigned long pfn;
1464
1465 order_scanned++;
1466 nr_scanned++;
1467 pfn = page_to_pfn(freepage);
1468
1469 if (pfn >= highest)
6e2b7044
VB
1470 highest = max(pageblock_start_pfn(pfn),
1471 cc->zone->zone_start_pfn);
5a811889
MG
1472
1473 if (pfn >= low_pfn) {
1474 cc->fast_search_fail = 0;
dbe2d4e4 1475 cc->search_order = order;
5a811889
MG
1476 page = freepage;
1477 break;
1478 }
1479
1480 if (pfn >= min_pfn && pfn > high_pfn) {
1481 high_pfn = pfn;
1482
1483 /* Shorten the scan if a candidate is found */
1484 limit >>= 1;
1485 }
1486
1487 if (order_scanned >= limit)
1488 break;
1489 }
1490
1491 /* Use a minimum pfn if a preferred one was not found */
1492 if (!page && high_pfn) {
1493 page = pfn_to_page(high_pfn);
1494
1495 /* Update freepage for the list reorder below */
1496 freepage = page;
1497 }
1498
1499 /* Reorder to so a future search skips recent pages */
1500 move_freelist_head(freelist, freepage);
1501
1502 /* Isolate the page if available */
1503 if (page) {
1504 if (__isolate_free_page(page, order)) {
1505 set_page_private(page, order);
1506 nr_isolated = 1 << order;
1507 cc->nr_freepages += nr_isolated;
1508 list_add_tail(&page->lru, &cc->freepages);
1509 count_compact_events(COMPACTISOLATED, nr_isolated);
1510 } else {
1511 /* If isolation fails, abort the search */
5b56d996 1512 order = cc->search_order + 1;
5a811889
MG
1513 page = NULL;
1514 }
1515 }
1516
1517 spin_unlock_irqrestore(&cc->zone->lock, flags);
1518
1519 /*
b55ca526 1520 * Smaller scan on next order so the total scan is related
5a811889
MG
1521 * to freelist_scan_limit.
1522 */
1523 if (order_scanned >= limit)
b55ca526 1524 limit = max(1U, limit >> 1);
5a811889
MG
1525 }
1526
1527 if (!page) {
1528 cc->fast_search_fail++;
1529 if (scan_start) {
1530 /*
1531 * Use the highest PFN found above min. If one was
f3867755 1532 * not found, be pessimistic for direct compaction
5a811889
MG
1533 * and use the min mark.
1534 */
ca2864e5 1535 if (highest >= min_pfn) {
5a811889
MG
1536 page = pfn_to_page(highest);
1537 cc->free_pfn = highest;
1538 } else {
e577c8b6 1539 if (cc->direct_compaction && pfn_valid(min_pfn)) {
73a6e474 1540 page = pageblock_pfn_to_page(min_pfn,
6e2b7044
VB
1541 min(pageblock_end_pfn(min_pfn),
1542 zone_end_pfn(cc->zone)),
73a6e474 1543 cc->zone);
5a811889
MG
1544 cc->free_pfn = min_pfn;
1545 }
1546 }
1547 }
1548 }
1549
d097a6f6
MG
1550 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1551 highest -= pageblock_nr_pages;
5a811889 1552 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1553 }
5a811889
MG
1554
1555 cc->total_free_scanned += nr_scanned;
1556 if (!page)
1557 return cc->free_pfn;
1558
1559 low_pfn = page_to_pfn(page);
1560 fast_isolate_around(cc, low_pfn, nr_isolated);
1561 return low_pfn;
1562}
1563
2fe86e00 1564/*
ff9543fd
MN
1565 * Based on information in the current compact_control, find blocks
1566 * suitable for isolating free pages from and then isolate them.
2fe86e00 1567 */
edc2ca61 1568static void isolate_freepages(struct compact_control *cc)
2fe86e00 1569{
edc2ca61 1570 struct zone *zone = cc->zone;
ff9543fd 1571 struct page *page;
c96b9e50 1572 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1573 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1574 unsigned long block_end_pfn; /* end of current pageblock */
1575 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1576 struct list_head *freelist = &cc->freepages;
4fca9730 1577 unsigned int stride;
2fe86e00 1578
5a811889 1579 /* Try a small search of the free lists for a candidate */
00bc102f 1580 fast_isolate_freepages(cc);
5a811889
MG
1581 if (cc->nr_freepages)
1582 goto splitmap;
1583
ff9543fd
MN
1584 /*
1585 * Initialise the free scanner. The starting point is where we last
49e068f0 1586 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1587 * zone when isolating for the first time. For looping we also need
1588 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1589 * block_start_pfn -= pageblock_nr_pages in the for loop.
1590 * For ending point, take care when isolating in last pageblock of a
a1c1dbeb 1591 * zone which ends in the middle of a pageblock.
49e068f0
VB
1592 * The low boundary is the end of the pageblock the migration scanner
1593 * is using.
ff9543fd 1594 */
e14c720e 1595 isolate_start_pfn = cc->free_pfn;
5a811889 1596 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1597 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1598 zone_end_pfn(zone));
06b6640a 1599 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1600 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1601
ff9543fd
MN
1602 /*
1603 * Isolate free pages until enough are available to migrate the
1604 * pages on cc->migratepages. We stop searching if the migrate
1605 * and free page scanners meet or enough free pages are isolated.
1606 */
f5f61a32 1607 for (; block_start_pfn >= low_pfn;
c96b9e50 1608 block_end_pfn = block_start_pfn,
e14c720e
VB
1609 block_start_pfn -= pageblock_nr_pages,
1610 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1611 unsigned long nr_isolated;
1612
f6ea3adb
DR
1613 /*
1614 * This can iterate a massively long zone without finding any
cb810ad2 1615 * suitable migration targets, so periodically check resched.
f6ea3adb 1616 */
c036ddff 1617 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1618 cond_resched();
f6ea3adb 1619
7d49d886
VB
1620 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1621 zone);
1622 if (!page)
ff9543fd
MN
1623 continue;
1624
1625 /* Check the block is suitable for migration */
9f7e3387 1626 if (!suitable_migration_target(cc, page))
ff9543fd 1627 continue;
68e3e926 1628
bb13ffeb
MG
1629 /* If isolation recently failed, do not retry */
1630 if (!isolation_suitable(cc, page))
1631 continue;
1632
e14c720e 1633 /* Found a block suitable for isolating free pages from. */
4fca9730
MG
1634 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1635 block_end_pfn, freelist, stride, false);
ff9543fd 1636
d097a6f6
MG
1637 /* Update the skip hint if the full pageblock was scanned */
1638 if (isolate_start_pfn == block_end_pfn)
1639 update_pageblock_skip(cc, page, block_start_pfn);
1640
cb2dcaf0
MG
1641 /* Are enough freepages isolated? */
1642 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1643 if (isolate_start_pfn >= block_end_pfn) {
1644 /*
1645 * Restart at previous pageblock if more
1646 * freepages can be isolated next time.
1647 */
f5f61a32
VB
1648 isolate_start_pfn =
1649 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1650 }
be976572 1651 break;
a46cbf3b 1652 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1653 /*
a46cbf3b
DR
1654 * If isolation failed early, do not continue
1655 * needlessly.
f5f61a32 1656 */
a46cbf3b 1657 break;
f5f61a32 1658 }
4fca9730
MG
1659
1660 /* Adjust stride depending on isolation */
1661 if (nr_isolated) {
1662 stride = 1;
1663 continue;
1664 }
1665 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1666 }
1667
7ed695e0 1668 /*
f5f61a32
VB
1669 * Record where the free scanner will restart next time. Either we
1670 * broke from the loop and set isolate_start_pfn based on the last
1671 * call to isolate_freepages_block(), or we met the migration scanner
1672 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1673 */
f5f61a32 1674 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1675
1676splitmap:
1677 /* __isolate_free_page() does not map the pages */
1678 split_map_pages(freelist);
748446bb
MG
1679}
1680
1681/*
1682 * This is a migrate-callback that "allocates" freepages by taking pages
1683 * from the isolated freelists in the block we are migrating to.
1684 */
1685static struct page *compaction_alloc(struct page *migratepage,
666feb21 1686 unsigned long data)
748446bb
MG
1687{
1688 struct compact_control *cc = (struct compact_control *)data;
1689 struct page *freepage;
1690
748446bb 1691 if (list_empty(&cc->freepages)) {
cb2dcaf0 1692 isolate_freepages(cc);
748446bb
MG
1693
1694 if (list_empty(&cc->freepages))
1695 return NULL;
1696 }
1697
1698 freepage = list_entry(cc->freepages.next, struct page, lru);
1699 list_del(&freepage->lru);
1700 cc->nr_freepages--;
1701
1702 return freepage;
1703}
1704
1705/*
d53aea3d
DR
1706 * This is a migrate-callback that "frees" freepages back to the isolated
1707 * freelist. All pages on the freelist are from the same zone, so there is no
1708 * special handling needed for NUMA.
1709 */
1710static void compaction_free(struct page *page, unsigned long data)
1711{
1712 struct compact_control *cc = (struct compact_control *)data;
1713
1714 list_add(&page->lru, &cc->freepages);
1715 cc->nr_freepages++;
1716}
1717
ff9543fd
MN
1718/* possible outcome of isolate_migratepages */
1719typedef enum {
1720 ISOLATE_ABORT, /* Abort compaction now */
1721 ISOLATE_NONE, /* No pages isolated, continue scanning */
1722 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1723} isolate_migrate_t;
1724
5bbe3547
EM
1725/*
1726 * Allow userspace to control policy on scanning the unevictable LRU for
1727 * compactable pages.
1728 */
6923aa0d
SAS
1729#ifdef CONFIG_PREEMPT_RT
1730int sysctl_compact_unevictable_allowed __read_mostly = 0;
1731#else
5bbe3547 1732int sysctl_compact_unevictable_allowed __read_mostly = 1;
6923aa0d 1733#endif
5bbe3547 1734
70b44595
MG
1735static inline void
1736update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1737{
1738 if (cc->fast_start_pfn == ULONG_MAX)
1739 return;
1740
1741 if (!cc->fast_start_pfn)
1742 cc->fast_start_pfn = pfn;
1743
1744 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1745}
1746
1747static inline unsigned long
1748reinit_migrate_pfn(struct compact_control *cc)
1749{
1750 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1751 return cc->migrate_pfn;
1752
1753 cc->migrate_pfn = cc->fast_start_pfn;
1754 cc->fast_start_pfn = ULONG_MAX;
1755
1756 return cc->migrate_pfn;
1757}
1758
1759/*
1760 * Briefly search the free lists for a migration source that already has
1761 * some free pages to reduce the number of pages that need migration
1762 * before a pageblock is free.
1763 */
1764static unsigned long fast_find_migrateblock(struct compact_control *cc)
1765{
1766 unsigned int limit = freelist_scan_limit(cc);
1767 unsigned int nr_scanned = 0;
1768 unsigned long distance;
1769 unsigned long pfn = cc->migrate_pfn;
1770 unsigned long high_pfn;
1771 int order;
15d28d0d 1772 bool found_block = false;
70b44595
MG
1773
1774 /* Skip hints are relied on to avoid repeats on the fast search */
1775 if (cc->ignore_skip_hint)
1776 return pfn;
1777
1778 /*
1779 * If the migrate_pfn is not at the start of a zone or the start
1780 * of a pageblock then assume this is a continuation of a previous
1781 * scan restarted due to COMPACT_CLUSTER_MAX.
1782 */
1783 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1784 return pfn;
1785
1786 /*
1787 * For smaller orders, just linearly scan as the number of pages
1788 * to migrate should be relatively small and does not necessarily
1789 * justify freeing up a large block for a small allocation.
1790 */
1791 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1792 return pfn;
1793
1794 /*
1795 * Only allow kcompactd and direct requests for movable pages to
1796 * quickly clear out a MOVABLE pageblock for allocation. This
1797 * reduces the risk that a large movable pageblock is freed for
1798 * an unmovable/reclaimable small allocation.
1799 */
1800 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1801 return pfn;
1802
1803 /*
1804 * When starting the migration scanner, pick any pageblock within the
1805 * first half of the search space. Otherwise try and pick a pageblock
1806 * within the first eighth to reduce the chances that a migration
1807 * target later becomes a source.
1808 */
1809 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1810 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1811 distance >>= 2;
1812 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1813
1814 for (order = cc->order - 1;
15d28d0d 1815 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
70b44595
MG
1816 order--) {
1817 struct free_area *area = &cc->zone->free_area[order];
1818 struct list_head *freelist;
1819 unsigned long flags;
1820 struct page *freepage;
1821
1822 if (!area->nr_free)
1823 continue;
1824
1825 spin_lock_irqsave(&cc->zone->lock, flags);
1826 freelist = &area->free_list[MIGRATE_MOVABLE];
1827 list_for_each_entry(freepage, freelist, lru) {
1828 unsigned long free_pfn;
1829
15d28d0d
WY
1830 if (nr_scanned++ >= limit) {
1831 move_freelist_tail(freelist, freepage);
1832 break;
1833 }
1834
70b44595
MG
1835 free_pfn = page_to_pfn(freepage);
1836 if (free_pfn < high_pfn) {
70b44595
MG
1837 /*
1838 * Avoid if skipped recently. Ideally it would
1839 * move to the tail but even safe iteration of
1840 * the list assumes an entry is deleted, not
1841 * reordered.
1842 */
15d28d0d 1843 if (get_pageblock_skip(freepage))
70b44595 1844 continue;
70b44595
MG
1845
1846 /* Reorder to so a future search skips recent pages */
1847 move_freelist_tail(freelist, freepage);
1848
e380bebe 1849 update_fast_start_pfn(cc, free_pfn);
70b44595
MG
1850 pfn = pageblock_start_pfn(free_pfn);
1851 cc->fast_search_fail = 0;
15d28d0d 1852 found_block = true;
70b44595
MG
1853 set_pageblock_skip(freepage);
1854 break;
1855 }
70b44595
MG
1856 }
1857 spin_unlock_irqrestore(&cc->zone->lock, flags);
1858 }
1859
1860 cc->total_migrate_scanned += nr_scanned;
1861
1862 /*
1863 * If fast scanning failed then use a cached entry for a page block
1864 * that had free pages as the basis for starting a linear scan.
1865 */
15d28d0d
WY
1866 if (!found_block) {
1867 cc->fast_search_fail++;
70b44595 1868 pfn = reinit_migrate_pfn(cc);
15d28d0d 1869 }
70b44595
MG
1870 return pfn;
1871}
1872
ff9543fd 1873/*
edc2ca61
VB
1874 * Isolate all pages that can be migrated from the first suitable block,
1875 * starting at the block pointed to by the migrate scanner pfn within
1876 * compact_control.
ff9543fd 1877 */
32aaf055 1878static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
ff9543fd 1879{
e1409c32
JK
1880 unsigned long block_start_pfn;
1881 unsigned long block_end_pfn;
1882 unsigned long low_pfn;
edc2ca61
VB
1883 struct page *page;
1884 const isolate_mode_t isolate_mode =
5bbe3547 1885 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1886 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 1887 bool fast_find_block;
ff9543fd 1888
edc2ca61
VB
1889 /*
1890 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
1891 * initialized by compact_zone(). The first failure will use
1892 * the lowest PFN as the starting point for linear scanning.
edc2ca61 1893 */
70b44595 1894 low_pfn = fast_find_migrateblock(cc);
06b6640a 1895 block_start_pfn = pageblock_start_pfn(low_pfn);
32aaf055
PL
1896 if (block_start_pfn < cc->zone->zone_start_pfn)
1897 block_start_pfn = cc->zone->zone_start_pfn;
ff9543fd 1898
70b44595
MG
1899 /*
1900 * fast_find_migrateblock marks a pageblock skipped so to avoid
1901 * the isolation_suitable check below, check whether the fast
1902 * search was successful.
1903 */
1904 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1905
ff9543fd 1906 /* Only scan within a pageblock boundary */
06b6640a 1907 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1908
edc2ca61
VB
1909 /*
1910 * Iterate over whole pageblocks until we find the first suitable.
1911 * Do not cross the free scanner.
1912 */
e1409c32 1913 for (; block_end_pfn <= cc->free_pfn;
70b44595 1914 fast_find_block = false,
c2ad7a1f 1915 cc->migrate_pfn = low_pfn = block_end_pfn,
e1409c32
JK
1916 block_start_pfn = block_end_pfn,
1917 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1918
edc2ca61
VB
1919 /*
1920 * This can potentially iterate a massively long zone with
1921 * many pageblocks unsuitable, so periodically check if we
cb810ad2 1922 * need to schedule.
edc2ca61 1923 */
c036ddff 1924 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1925 cond_resched();
ff9543fd 1926
32aaf055
PL
1927 page = pageblock_pfn_to_page(block_start_pfn,
1928 block_end_pfn, cc->zone);
7d49d886 1929 if (!page)
edc2ca61
VB
1930 continue;
1931
e380bebe
MG
1932 /*
1933 * If isolation recently failed, do not retry. Only check the
1934 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1935 * to be visited multiple times. Assume skip was checked
1936 * before making it "skip" so other compaction instances do
1937 * not scan the same block.
1938 */
1939 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1940 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
1941 continue;
1942
1943 /*
556162bf
ML
1944 * For async direct compaction, only scan the pageblocks of the
1945 * same migratetype without huge pages. Async direct compaction
1946 * is optimistic to see if the minimum amount of work satisfies
1947 * the allocation. The cached PFN is updated as it's possible
1948 * that all remaining blocks between source and target are
1949 * unsuitable and the compaction scanners fail to meet.
edc2ca61 1950 */
9bebefd5
MG
1951 if (!suitable_migration_source(cc, page)) {
1952 update_cached_migrate(cc, block_end_pfn);
edc2ca61 1953 continue;
9bebefd5 1954 }
edc2ca61
VB
1955
1956 /* Perform the isolation */
c2ad7a1f
OS
1957 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1958 isolate_mode))
edc2ca61
VB
1959 return ISOLATE_ABORT;
1960
1961 /*
1962 * Either we isolated something and proceed with migration. Or
1963 * we failed and compact_zone should decide if we should
1964 * continue or not.
1965 */
1966 break;
1967 }
1968
edc2ca61 1969 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1970}
1971
21c527a3
YB
1972/*
1973 * order == -1 is expected when compacting via
1974 * /proc/sys/vm/compact_memory
1975 */
1976static inline bool is_via_compact_memory(int order)
1977{
1978 return order == -1;
1979}
1980
facdaa91
NG
1981static bool kswapd_is_running(pg_data_t *pgdat)
1982{
b03fbd4f 1983 return pgdat->kswapd && task_is_running(pgdat->kswapd);
facdaa91
NG
1984}
1985
1986/*
1987 * A zone's fragmentation score is the external fragmentation wrt to the
40d7e203
CTR
1988 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1989 */
1990static unsigned int fragmentation_score_zone(struct zone *zone)
1991{
1992 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1993}
1994
1995/*
1996 * A weighted zone's fragmentation score is the external fragmentation
1997 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1998 * returns a value in the range [0, 100].
facdaa91
NG
1999 *
2000 * The scaling factor ensures that proactive compaction focuses on larger
2001 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2002 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2003 * and thus never exceeds the high threshold for proactive compaction.
2004 */
40d7e203 2005static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
facdaa91
NG
2006{
2007 unsigned long score;
2008
40d7e203 2009 score = zone->present_pages * fragmentation_score_zone(zone);
facdaa91
NG
2010 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2011}
2012
2013/*
2014 * The per-node proactive (background) compaction process is started by its
2015 * corresponding kcompactd thread when the node's fragmentation score
2016 * exceeds the high threshold. The compaction process remains active till
2017 * the node's score falls below the low threshold, or one of the back-off
2018 * conditions is met.
2019 */
d34c0a75 2020static unsigned int fragmentation_score_node(pg_data_t *pgdat)
facdaa91 2021{
d34c0a75 2022 unsigned int score = 0;
facdaa91
NG
2023 int zoneid;
2024
2025 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2026 struct zone *zone;
2027
2028 zone = &pgdat->node_zones[zoneid];
40d7e203 2029 score += fragmentation_score_zone_weighted(zone);
facdaa91
NG
2030 }
2031
2032 return score;
2033}
2034
d34c0a75 2035static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
facdaa91 2036{
d34c0a75 2037 unsigned int wmark_low;
facdaa91
NG
2038
2039 /*
f0953a1b
IM
2040 * Cap the low watermark to avoid excessive compaction
2041 * activity in case a user sets the proactiveness tunable
facdaa91
NG
2042 * close to 100 (maximum).
2043 */
d34c0a75
NG
2044 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2045 return low ? wmark_low : min(wmark_low + 10, 100U);
facdaa91
NG
2046}
2047
2048static bool should_proactive_compact_node(pg_data_t *pgdat)
2049{
2050 int wmark_high;
2051
2052 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2053 return false;
2054
2055 wmark_high = fragmentation_score_wmark(pgdat, false);
2056 return fragmentation_score_node(pgdat) > wmark_high;
2057}
2058
40cacbcb 2059static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 2060{
8fb74b9f 2061 unsigned int order;
d39773a0 2062 const int migratetype = cc->migratetype;
cb2dcaf0 2063 int ret;
748446bb 2064
753341a4 2065 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 2066 if (compact_scanners_met(cc)) {
55b7c4c9 2067 /* Let the next compaction start anew. */
40cacbcb 2068 reset_cached_positions(cc->zone);
55b7c4c9 2069
62997027
MG
2070 /*
2071 * Mark that the PG_migrate_skip information should be cleared
accf6242 2072 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
2073 * flag itself as the decision to be clear should be directly
2074 * based on an allocation request.
2075 */
accf6242 2076 if (cc->direct_compaction)
40cacbcb 2077 cc->zone->compact_blockskip_flush = true;
62997027 2078
c8f7de0b
MH
2079 if (cc->whole_zone)
2080 return COMPACT_COMPLETE;
2081 else
2082 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 2083 }
748446bb 2084
facdaa91
NG
2085 if (cc->proactive_compaction) {
2086 int score, wmark_low;
2087 pg_data_t *pgdat;
2088
2089 pgdat = cc->zone->zone_pgdat;
2090 if (kswapd_is_running(pgdat))
2091 return COMPACT_PARTIAL_SKIPPED;
2092
2093 score = fragmentation_score_zone(cc->zone);
2094 wmark_low = fragmentation_score_wmark(pgdat, true);
2095
2096 if (score > wmark_low)
2097 ret = COMPACT_CONTINUE;
2098 else
2099 ret = COMPACT_SUCCESS;
2100
2101 goto out;
2102 }
2103
21c527a3 2104 if (is_via_compact_memory(cc->order))
56de7263
MG
2105 return COMPACT_CONTINUE;
2106
efe771c7
MG
2107 /*
2108 * Always finish scanning a pageblock to reduce the possibility of
2109 * fallbacks in the future. This is particularly important when
2110 * migration source is unmovable/reclaimable but it's not worth
2111 * special casing.
2112 */
2113 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2114 return COMPACT_CONTINUE;
baf6a9a1 2115
56de7263 2116 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 2117 ret = COMPACT_NO_SUITABLE_PAGE;
8fb74b9f 2118 for (order = cc->order; order < MAX_ORDER; order++) {
40cacbcb 2119 struct free_area *area = &cc->zone->free_area[order];
2149cdae 2120 bool can_steal;
8fb74b9f
MG
2121
2122 /* Job done if page is free of the right migratetype */
b03641af 2123 if (!free_area_empty(area, migratetype))
cf378319 2124 return COMPACT_SUCCESS;
8fb74b9f 2125
2149cdae
JK
2126#ifdef CONFIG_CMA
2127 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2128 if (migratetype == MIGRATE_MOVABLE &&
b03641af 2129 !free_area_empty(area, MIGRATE_CMA))
cf378319 2130 return COMPACT_SUCCESS;
2149cdae
JK
2131#endif
2132 /*
2133 * Job done if allocation would steal freepages from
2134 * other migratetype buddy lists.
2135 */
2136 if (find_suitable_fallback(area, order, migratetype,
fa599c44 2137 true, &can_steal) != -1)
baf6a9a1 2138 /*
fa599c44
ML
2139 * Movable pages are OK in any pageblock. If we are
2140 * stealing for a non-movable allocation, make sure
2141 * we finish compacting the current pageblock first
2142 * (which is assured by the above migrate_pfn align
2143 * check) so it is as free as possible and we won't
2144 * have to steal another one soon.
baf6a9a1 2145 */
fa599c44 2146 return COMPACT_SUCCESS;
56de7263
MG
2147 }
2148
facdaa91 2149out:
cb2dcaf0
MG
2150 if (cc->contended || fatal_signal_pending(current))
2151 ret = COMPACT_CONTENDED;
2152
2153 return ret;
837d026d
JK
2154}
2155
40cacbcb 2156static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
2157{
2158 int ret;
2159
40cacbcb
MG
2160 ret = __compact_finished(cc);
2161 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
2162 if (ret == COMPACT_NO_SUITABLE_PAGE)
2163 ret = COMPACT_CONTINUE;
2164
2165 return ret;
748446bb
MG
2166}
2167
ea7ab982 2168static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 2169 unsigned int alloc_flags,
97a225e6 2170 int highest_zoneidx,
86a294a8 2171 unsigned long wmark_target)
3e7d3449 2172{
3e7d3449
MG
2173 unsigned long watermark;
2174
21c527a3 2175 if (is_via_compact_memory(order))
3957c776
MH
2176 return COMPACT_CONTINUE;
2177
a9214443 2178 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
ebff3980
VB
2179 /*
2180 * If watermarks for high-order allocation are already met, there
2181 * should be no need for compaction at all.
2182 */
97a225e6 2183 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
ebff3980 2184 alloc_flags))
cf378319 2185 return COMPACT_SUCCESS;
ebff3980 2186
3e7d3449 2187 /*
9861a62c 2188 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
2189 * isolate free pages for migration targets. This means that the
2190 * watermark and alloc_flags have to match, or be more pessimistic than
2191 * the check in __isolate_free_page(). We don't use the direct
2192 * compactor's alloc_flags, as they are not relevant for freepage
97a225e6
JK
2193 * isolation. We however do use the direct compactor's highest_zoneidx
2194 * to skip over zones where lowmem reserves would prevent allocation
2195 * even if compaction succeeds.
8348faf9
VB
2196 * For costly orders, we require low watermark instead of min for
2197 * compaction to proceed to increase its chances.
d883c6cf
JK
2198 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2199 * suitable migration targets
3e7d3449 2200 */
8348faf9
VB
2201 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2202 low_wmark_pages(zone) : min_wmark_pages(zone);
2203 watermark += compact_gap(order);
97a225e6 2204 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
d883c6cf 2205 ALLOC_CMA, wmark_target))
3e7d3449
MG
2206 return COMPACT_SKIPPED;
2207
cc5c9f09
VB
2208 return COMPACT_CONTINUE;
2209}
2210
2b1a20c3
HS
2211/*
2212 * compaction_suitable: Is this suitable to run compaction on this zone now?
2213 * Returns
2214 * COMPACT_SKIPPED - If there are too few free pages for compaction
2215 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2216 * COMPACT_CONTINUE - If compaction should run now
2217 */
cc5c9f09
VB
2218enum compact_result compaction_suitable(struct zone *zone, int order,
2219 unsigned int alloc_flags,
97a225e6 2220 int highest_zoneidx)
cc5c9f09
VB
2221{
2222 enum compact_result ret;
2223 int fragindex;
2224
97a225e6 2225 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
cc5c9f09 2226 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2227 /*
2228 * fragmentation index determines if allocation failures are due to
2229 * low memory or external fragmentation
2230 *
ebff3980
VB
2231 * index of -1000 would imply allocations might succeed depending on
2232 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2233 * index towards 0 implies failure is due to lack of memory
2234 * index towards 1000 implies failure is due to fragmentation
2235 *
20311420
VB
2236 * Only compact if a failure would be due to fragmentation. Also
2237 * ignore fragindex for non-costly orders where the alternative to
2238 * a successful reclaim/compaction is OOM. Fragindex and the
2239 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2240 * excessive compaction for costly orders, but it should not be at the
2241 * expense of system stability.
3e7d3449 2242 */
20311420 2243 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
2244 fragindex = fragmentation_index(zone, order);
2245 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2246 ret = COMPACT_NOT_SUITABLE_ZONE;
2247 }
837d026d 2248
837d026d
JK
2249 trace_mm_compaction_suitable(zone, order, ret);
2250 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2251 ret = COMPACT_SKIPPED;
2252
2253 return ret;
2254}
2255
86a294a8
MH
2256bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2257 int alloc_flags)
2258{
2259 struct zone *zone;
2260 struct zoneref *z;
2261
2262 /*
2263 * Make sure at least one zone would pass __compaction_suitable if we continue
2264 * retrying the reclaim.
2265 */
97a225e6
JK
2266 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2267 ac->highest_zoneidx, ac->nodemask) {
86a294a8
MH
2268 unsigned long available;
2269 enum compact_result compact_result;
2270
2271 /*
2272 * Do not consider all the reclaimable memory because we do not
2273 * want to trash just for a single high order allocation which
2274 * is even not guaranteed to appear even if __compaction_suitable
2275 * is happy about the watermark check.
2276 */
5a1c84b4 2277 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
2278 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2279 compact_result = __compaction_suitable(zone, order, alloc_flags,
97a225e6 2280 ac->highest_zoneidx, available);
cff387d6 2281 if (compact_result == COMPACT_CONTINUE)
86a294a8
MH
2282 return true;
2283 }
2284
2285 return false;
2286}
2287
5e1f0f09
MG
2288static enum compact_result
2289compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2290{
ea7ab982 2291 enum compact_result ret;
40cacbcb
MG
2292 unsigned long start_pfn = cc->zone->zone_start_pfn;
2293 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2294 unsigned long last_migrated_pfn;
e0b9daeb 2295 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2296 bool update_cached;
84b328aa 2297 unsigned int nr_succeeded = 0;
748446bb 2298
a94b5252
YS
2299 /*
2300 * These counters track activities during zone compaction. Initialize
2301 * them before compacting a new zone.
2302 */
2303 cc->total_migrate_scanned = 0;
2304 cc->total_free_scanned = 0;
2305 cc->nr_migratepages = 0;
2306 cc->nr_freepages = 0;
2307 INIT_LIST_HEAD(&cc->freepages);
2308 INIT_LIST_HEAD(&cc->migratepages);
2309
01c0bfe0 2310 cc->migratetype = gfp_migratetype(cc->gfp_mask);
40cacbcb 2311 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
97a225e6 2312 cc->highest_zoneidx);
c46649de 2313 /* Compaction is likely to fail */
cf378319 2314 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 2315 return ret;
c46649de
MH
2316
2317 /* huh, compaction_suitable is returning something unexpected */
2318 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 2319
d3132e4b
VB
2320 /*
2321 * Clear pageblock skip if there were failures recently and compaction
accf6242 2322 * is about to be retried after being deferred.
d3132e4b 2323 */
40cacbcb
MG
2324 if (compaction_restarting(cc->zone, cc->order))
2325 __reset_isolation_suitable(cc->zone);
d3132e4b 2326
c89511ab
MG
2327 /*
2328 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2329 * information on where the scanners should start (unless we explicitly
2330 * want to compact the whole zone), but check that it is initialised
2331 * by ensuring the values are within zone boundaries.
c89511ab 2332 */
70b44595 2333 cc->fast_start_pfn = 0;
06ed2998 2334 if (cc->whole_zone) {
c89511ab 2335 cc->migrate_pfn = start_pfn;
06ed2998
VB
2336 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2337 } else {
40cacbcb
MG
2338 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2339 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2340 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2341 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2342 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2343 }
2344 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2345 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2346 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2347 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2348 }
c8f7de0b 2349
e332f741 2350 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2351 cc->whole_zone = true;
2352 }
c8f7de0b 2353
566e54e1 2354 last_migrated_pfn = 0;
748446bb 2355
8854c55f
MG
2356 /*
2357 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2358 * the basis that some migrations will fail in ASYNC mode. However,
2359 * if the cached PFNs match and pageblocks are skipped due to having
2360 * no isolation candidates, then the sync state does not matter.
2361 * Until a pageblock with isolation candidates is found, keep the
2362 * cached PFNs in sync to avoid revisiting the same blocks.
2363 */
2364 update_cached = !sync &&
2365 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2366
abd4349f 2367 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
0eb927c0 2368
361a2a22
MK
2369 /* lru_add_drain_all could be expensive with involving other CPUs */
2370 lru_add_drain();
748446bb 2371
40cacbcb 2372 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2373 int err;
19d3cf9d 2374 unsigned long iteration_start_pfn = cc->migrate_pfn;
748446bb 2375
804d3121
MG
2376 /*
2377 * Avoid multiple rescans which can happen if a page cannot be
2378 * isolated (dirty/writeback in async mode) or if the migrated
2379 * pages are being allocated before the pageblock is cleared.
2380 * The first rescan will capture the entire pageblock for
2381 * migration. If it fails, it'll be marked skip and scanning
2382 * will proceed as normal.
2383 */
2384 cc->rescan = false;
2385 if (pageblock_start_pfn(last_migrated_pfn) ==
19d3cf9d 2386 pageblock_start_pfn(iteration_start_pfn)) {
804d3121
MG
2387 cc->rescan = true;
2388 }
2389
32aaf055 2390 switch (isolate_migratepages(cc)) {
f9e35b3b 2391 case ISOLATE_ABORT:
2d1e1041 2392 ret = COMPACT_CONTENDED;
5733c7d1 2393 putback_movable_pages(&cc->migratepages);
e64c5237 2394 cc->nr_migratepages = 0;
f9e35b3b
MG
2395 goto out;
2396 case ISOLATE_NONE:
8854c55f
MG
2397 if (update_cached) {
2398 cc->zone->compact_cached_migrate_pfn[1] =
2399 cc->zone->compact_cached_migrate_pfn[0];
2400 }
2401
fdaf7f5c
VB
2402 /*
2403 * We haven't isolated and migrated anything, but
2404 * there might still be unflushed migrations from
2405 * previous cc->order aligned block.
2406 */
2407 goto check_drain;
f9e35b3b 2408 case ISOLATE_SUCCESS:
8854c55f 2409 update_cached = false;
19d3cf9d 2410 last_migrated_pfn = iteration_start_pfn;
f9e35b3b 2411 }
748446bb 2412
d53aea3d 2413 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2414 compaction_free, (unsigned long)cc, cc->mode,
84b328aa 2415 MR_COMPACTION, &nr_succeeded);
748446bb 2416
abd4349f 2417 trace_mm_compaction_migratepages(cc, nr_succeeded);
748446bb 2418
f8c9301f
VB
2419 /* All pages were either migrated or will be released */
2420 cc->nr_migratepages = 0;
9d502c1c 2421 if (err) {
5733c7d1 2422 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2423 /*
2424 * migrate_pages() may return -ENOMEM when scanners meet
2425 * and we want compact_finished() to detect it
2426 */
f2849aa0 2427 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2428 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2429 goto out;
2430 }
fdd048e1
VB
2431 /*
2432 * We failed to migrate at least one page in the current
2433 * order-aligned block, so skip the rest of it.
2434 */
2435 if (cc->direct_compaction &&
2436 (cc->mode == MIGRATE_ASYNC)) {
2437 cc->migrate_pfn = block_end_pfn(
2438 cc->migrate_pfn - 1, cc->order);
2439 /* Draining pcplists is useless in this case */
566e54e1 2440 last_migrated_pfn = 0;
fdd048e1 2441 }
748446bb 2442 }
fdaf7f5c 2443
fdaf7f5c
VB
2444check_drain:
2445 /*
2446 * Has the migration scanner moved away from the previous
2447 * cc->order aligned block where we migrated from? If yes,
2448 * flush the pages that were freed, so that they can merge and
2449 * compact_finished() can detect immediately if allocation
2450 * would succeed.
2451 */
566e54e1 2452 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c 2453 unsigned long current_block_start =
06b6640a 2454 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2455
566e54e1 2456 if (last_migrated_pfn < current_block_start) {
b01b2141 2457 lru_add_drain_cpu_zone(cc->zone);
fdaf7f5c 2458 /* No more flushing until we migrate again */
566e54e1 2459 last_migrated_pfn = 0;
fdaf7f5c
VB
2460 }
2461 }
2462
5e1f0f09
MG
2463 /* Stop if a page has been captured */
2464 if (capc && capc->page) {
2465 ret = COMPACT_SUCCESS;
2466 break;
2467 }
748446bb
MG
2468 }
2469
f9e35b3b 2470out:
6bace090
VB
2471 /*
2472 * Release free pages and update where the free scanner should restart,
2473 * so we don't leave any returned pages behind in the next attempt.
2474 */
2475 if (cc->nr_freepages > 0) {
2476 unsigned long free_pfn = release_freepages(&cc->freepages);
2477
2478 cc->nr_freepages = 0;
2479 VM_BUG_ON(free_pfn == 0);
2480 /* The cached pfn is always the first in a pageblock */
06b6640a 2481 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2482 /*
2483 * Only go back, not forward. The cached pfn might have been
2484 * already reset to zone end in compact_finished()
2485 */
40cacbcb
MG
2486 if (free_pfn > cc->zone->compact_cached_free_pfn)
2487 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2488 }
748446bb 2489
7f354a54
DR
2490 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2491 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2492
abd4349f 2493 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
0eb927c0 2494
748446bb
MG
2495 return ret;
2496}
76ab0f53 2497
ea7ab982 2498static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2499 gfp_t gfp_mask, enum compact_priority prio,
97a225e6 2500 unsigned int alloc_flags, int highest_zoneidx,
5e1f0f09 2501 struct page **capture)
56de7263 2502{
ea7ab982 2503 enum compact_result ret;
56de7263 2504 struct compact_control cc = {
56de7263 2505 .order = order,
dbe2d4e4 2506 .search_order = order,
6d7ce559 2507 .gfp_mask = gfp_mask,
56de7263 2508 .zone = zone,
a5508cd8
VB
2509 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2510 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980 2511 .alloc_flags = alloc_flags,
97a225e6 2512 .highest_zoneidx = highest_zoneidx,
accf6242 2513 .direct_compaction = true,
a8e025e5 2514 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2515 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2516 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2517 };
5e1f0f09
MG
2518 struct capture_control capc = {
2519 .cc = &cc,
2520 .page = NULL,
2521 };
2522
b9e20f0d
VB
2523 /*
2524 * Make sure the structs are really initialized before we expose the
2525 * capture control, in case we are interrupted and the interrupt handler
2526 * frees a page.
2527 */
2528 barrier();
2529 WRITE_ONCE(current->capture_control, &capc);
56de7263 2530
5e1f0f09 2531 ret = compact_zone(&cc, &capc);
e64c5237
SL
2532
2533 VM_BUG_ON(!list_empty(&cc.freepages));
2534 VM_BUG_ON(!list_empty(&cc.migratepages));
2535
b9e20f0d
VB
2536 /*
2537 * Make sure we hide capture control first before we read the captured
2538 * page pointer, otherwise an interrupt could free and capture a page
2539 * and we would leak it.
2540 */
2541 WRITE_ONCE(current->capture_control, NULL);
2542 *capture = READ_ONCE(capc.page);
06dac2f4
CTR
2543 /*
2544 * Technically, it is also possible that compaction is skipped but
2545 * the page is still captured out of luck(IRQ came and freed the page).
2546 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2547 * the COMPACT[STALL|FAIL] when compaction is skipped.
2548 */
2549 if (*capture)
2550 ret = COMPACT_SUCCESS;
5e1f0f09 2551
e64c5237 2552 return ret;
56de7263
MG
2553}
2554
5e771905
MG
2555int sysctl_extfrag_threshold = 500;
2556
56de7263
MG
2557/**
2558 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2559 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2560 * @order: The order of the current allocation
2561 * @alloc_flags: The allocation flags of the current allocation
2562 * @ac: The context of current allocation
112d2d29 2563 * @prio: Determines how hard direct compaction should try to succeed
6467552c 2564 * @capture: Pointer to free page created by compaction will be stored here
56de7263
MG
2565 *
2566 * This is the main entry point for direct page compaction.
2567 */
ea7ab982 2568enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2569 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2570 enum compact_priority prio, struct page **capture)
56de7263 2571{
56de7263 2572 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
2573 struct zoneref *z;
2574 struct zone *zone;
1d4746d3 2575 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2576
73e64c51
MH
2577 /*
2578 * Check if the GFP flags allow compaction - GFP_NOIO is really
2579 * tricky context because the migration might require IO
2580 */
2581 if (!may_perform_io)
53853e2d 2582 return COMPACT_SKIPPED;
56de7263 2583
a5508cd8 2584 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2585
56de7263 2586 /* Compact each zone in the list */
97a225e6
JK
2587 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2588 ac->highest_zoneidx, ac->nodemask) {
ea7ab982 2589 enum compact_result status;
56de7263 2590
a8e025e5
VB
2591 if (prio > MIN_COMPACT_PRIORITY
2592 && compaction_deferred(zone, order)) {
1d4746d3 2593 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2594 continue;
1d4746d3 2595 }
53853e2d 2596
a5508cd8 2597 status = compact_zone_order(zone, order, gfp_mask, prio,
97a225e6 2598 alloc_flags, ac->highest_zoneidx, capture);
56de7263
MG
2599 rc = max(status, rc);
2600
7ceb009a
VB
2601 /* The allocation should succeed, stop compacting */
2602 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2603 /*
2604 * We think the allocation will succeed in this zone,
2605 * but it is not certain, hence the false. The caller
2606 * will repeat this with true if allocation indeed
2607 * succeeds in this zone.
2608 */
2609 compaction_defer_reset(zone, order, false);
1f9efdef 2610
c3486f53 2611 break;
1f9efdef
VB
2612 }
2613
a5508cd8 2614 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2615 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2616 /*
2617 * We think that allocation won't succeed in this zone
2618 * so we defer compaction there. If it ends up
2619 * succeeding after all, it will be reset.
2620 */
2621 defer_compaction(zone, order);
1f9efdef
VB
2622
2623 /*
2624 * We might have stopped compacting due to need_resched() in
2625 * async compaction, or due to a fatal signal detected. In that
c3486f53 2626 * case do not try further zones
1f9efdef 2627 */
c3486f53
VB
2628 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2629 || fatal_signal_pending(current))
2630 break;
56de7263
MG
2631 }
2632
2633 return rc;
2634}
2635
facdaa91
NG
2636/*
2637 * Compact all zones within a node till each zone's fragmentation score
2638 * reaches within proactive compaction thresholds (as determined by the
2639 * proactiveness tunable).
2640 *
2641 * It is possible that the function returns before reaching score targets
2642 * due to various back-off conditions, such as, contention on per-node or
2643 * per-zone locks.
2644 */
2645static void proactive_compact_node(pg_data_t *pgdat)
2646{
2647 int zoneid;
2648 struct zone *zone;
2649 struct compact_control cc = {
2650 .order = -1,
2651 .mode = MIGRATE_SYNC_LIGHT,
2652 .ignore_skip_hint = true,
2653 .whole_zone = true,
2654 .gfp_mask = GFP_KERNEL,
2655 .proactive_compaction = true,
2656 };
2657
2658 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2659 zone = &pgdat->node_zones[zoneid];
2660 if (!populated_zone(zone))
2661 continue;
2662
2663 cc.zone = zone;
2664
2665 compact_zone(&cc, NULL);
2666
2667 VM_BUG_ON(!list_empty(&cc.freepages));
2668 VM_BUG_ON(!list_empty(&cc.migratepages));
2669 }
2670}
56de7263 2671
76ab0f53 2672/* Compact all zones within a node */
791cae96 2673static void compact_node(int nid)
76ab0f53 2674{
791cae96 2675 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 2676 int zoneid;
76ab0f53 2677 struct zone *zone;
791cae96
VB
2678 struct compact_control cc = {
2679 .order = -1,
2680 .mode = MIGRATE_SYNC,
2681 .ignore_skip_hint = true,
2682 .whole_zone = true,
73e64c51 2683 .gfp_mask = GFP_KERNEL,
791cae96
VB
2684 };
2685
76ab0f53 2686
76ab0f53 2687 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
2688
2689 zone = &pgdat->node_zones[zoneid];
2690 if (!populated_zone(zone))
2691 continue;
2692
791cae96 2693 cc.zone = zone;
76ab0f53 2694
5e1f0f09 2695 compact_zone(&cc, NULL);
75469345 2696
791cae96
VB
2697 VM_BUG_ON(!list_empty(&cc.freepages));
2698 VM_BUG_ON(!list_empty(&cc.migratepages));
76ab0f53 2699 }
76ab0f53
MG
2700}
2701
2702/* Compact all nodes in the system */
7964c06d 2703static void compact_nodes(void)
76ab0f53
MG
2704{
2705 int nid;
2706
8575ec29
HD
2707 /* Flush pending updates to the LRU lists */
2708 lru_add_drain_all();
2709
76ab0f53
MG
2710 for_each_online_node(nid)
2711 compact_node(nid);
76ab0f53
MG
2712}
2713
facdaa91
NG
2714/*
2715 * Tunable for proactive compaction. It determines how
2716 * aggressively the kernel should compact memory in the
2717 * background. It takes values in the range [0, 100].
2718 */
d34c0a75 2719unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
facdaa91 2720
65d759c8
CTR
2721int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2722 void *buffer, size_t *length, loff_t *ppos)
2723{
2724 int rc, nid;
2725
2726 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2727 if (rc)
2728 return rc;
2729
2730 if (write && sysctl_compaction_proactiveness) {
2731 for_each_online_node(nid) {
2732 pg_data_t *pgdat = NODE_DATA(nid);
2733
2734 if (pgdat->proactive_compact_trigger)
2735 continue;
2736
2737 pgdat->proactive_compact_trigger = true;
2738 wake_up_interruptible(&pgdat->kcompactd_wait);
2739 }
2740 }
2741
2742 return 0;
2743}
2744
fec4eb2c
YB
2745/*
2746 * This is the entry point for compacting all nodes via
2747 * /proc/sys/vm/compact_memory
2748 */
76ab0f53 2749int sysctl_compaction_handler(struct ctl_table *table, int write,
32927393 2750 void *buffer, size_t *length, loff_t *ppos)
76ab0f53
MG
2751{
2752 if (write)
7964c06d 2753 compact_nodes();
76ab0f53
MG
2754
2755 return 0;
2756}
ed4a6d7f
MG
2757
2758#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
17adb230
Y
2759static ssize_t compact_store(struct device *dev,
2760 struct device_attribute *attr,
2761 const char *buf, size_t count)
ed4a6d7f 2762{
8575ec29
HD
2763 int nid = dev->id;
2764
2765 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2766 /* Flush pending updates to the LRU lists */
2767 lru_add_drain_all();
2768
2769 compact_node(nid);
2770 }
ed4a6d7f
MG
2771
2772 return count;
2773}
17adb230 2774static DEVICE_ATTR_WO(compact);
ed4a6d7f
MG
2775
2776int compaction_register_node(struct node *node)
2777{
10fbcf4c 2778 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2779}
2780
2781void compaction_unregister_node(struct node *node)
2782{
10fbcf4c 2783 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2784}
2785#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2786
698b1b30
VB
2787static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2788{
65d759c8
CTR
2789 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2790 pgdat->proactive_compact_trigger;
698b1b30
VB
2791}
2792
2793static bool kcompactd_node_suitable(pg_data_t *pgdat)
2794{
2795 int zoneid;
2796 struct zone *zone;
97a225e6 2797 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
698b1b30 2798
97a225e6 2799 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
698b1b30
VB
2800 zone = &pgdat->node_zones[zoneid];
2801
2802 if (!populated_zone(zone))
2803 continue;
2804
2805 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
97a225e6 2806 highest_zoneidx) == COMPACT_CONTINUE)
698b1b30
VB
2807 return true;
2808 }
2809
2810 return false;
2811}
2812
2813static void kcompactd_do_work(pg_data_t *pgdat)
2814{
2815 /*
2816 * With no special task, compact all zones so that a page of requested
2817 * order is allocatable.
2818 */
2819 int zoneid;
2820 struct zone *zone;
2821 struct compact_control cc = {
2822 .order = pgdat->kcompactd_max_order,
dbe2d4e4 2823 .search_order = pgdat->kcompactd_max_order,
97a225e6 2824 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
698b1b30 2825 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2826 .ignore_skip_hint = false,
73e64c51 2827 .gfp_mask = GFP_KERNEL,
698b1b30 2828 };
698b1b30 2829 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
97a225e6 2830 cc.highest_zoneidx);
7f354a54 2831 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2832
97a225e6 2833 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
698b1b30
VB
2834 int status;
2835
2836 zone = &pgdat->node_zones[zoneid];
2837 if (!populated_zone(zone))
2838 continue;
2839
2840 if (compaction_deferred(zone, cc.order))
2841 continue;
2842
2843 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2844 COMPACT_CONTINUE)
2845 continue;
2846
172400c6
VB
2847 if (kthread_should_stop())
2848 return;
a94b5252
YS
2849
2850 cc.zone = zone;
5e1f0f09 2851 status = compact_zone(&cc, NULL);
698b1b30 2852
7ceb009a 2853 if (status == COMPACT_SUCCESS) {
698b1b30 2854 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 2855 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
2856 /*
2857 * Buddy pages may become stranded on pcps that could
2858 * otherwise coalesce on the zone's free area for
2859 * order >= cc.order. This is ratelimited by the
2860 * upcoming deferral.
2861 */
2862 drain_all_pages(zone);
2863
698b1b30
VB
2864 /*
2865 * We use sync migration mode here, so we defer like
2866 * sync direct compaction does.
2867 */
2868 defer_compaction(zone, cc.order);
2869 }
2870
7f354a54
DR
2871 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2872 cc.total_migrate_scanned);
2873 count_compact_events(KCOMPACTD_FREE_SCANNED,
2874 cc.total_free_scanned);
2875
698b1b30
VB
2876 VM_BUG_ON(!list_empty(&cc.freepages));
2877 VM_BUG_ON(!list_empty(&cc.migratepages));
2878 }
2879
2880 /*
2881 * Regardless of success, we are done until woken up next. But remember
97a225e6
JK
2882 * the requested order/highest_zoneidx in case it was higher/tighter
2883 * than our current ones
698b1b30
VB
2884 */
2885 if (pgdat->kcompactd_max_order <= cc.order)
2886 pgdat->kcompactd_max_order = 0;
97a225e6
JK
2887 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2888 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2889}
2890
97a225e6 2891void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
698b1b30
VB
2892{
2893 if (!order)
2894 return;
2895
2896 if (pgdat->kcompactd_max_order < order)
2897 pgdat->kcompactd_max_order = order;
2898
97a225e6
JK
2899 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2900 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
698b1b30 2901
6818600f
DB
2902 /*
2903 * Pairs with implicit barrier in wait_event_freezable()
2904 * such that wakeups are not missed.
2905 */
2906 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2907 return;
2908
2909 if (!kcompactd_node_suitable(pgdat))
2910 return;
2911
2912 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
97a225e6 2913 highest_zoneidx);
698b1b30
VB
2914 wake_up_interruptible(&pgdat->kcompactd_wait);
2915}
2916
2917/*
2918 * The background compaction daemon, started as a kernel thread
2919 * from the init process.
2920 */
2921static int kcompactd(void *p)
2922{
68d68ff6 2923 pg_data_t *pgdat = (pg_data_t *)p;
698b1b30 2924 struct task_struct *tsk = current;
e1e92bfa
CTR
2925 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2926 long timeout = default_timeout;
698b1b30
VB
2927
2928 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2929
2930 if (!cpumask_empty(cpumask))
2931 set_cpus_allowed_ptr(tsk, cpumask);
2932
2933 set_freezable();
2934
2935 pgdat->kcompactd_max_order = 0;
97a225e6 2936 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2937
2938 while (!kthread_should_stop()) {
eb414681
JW
2939 unsigned long pflags;
2940
65d759c8
CTR
2941 /*
2942 * Avoid the unnecessary wakeup for proactive compaction
2943 * when it is disabled.
2944 */
2945 if (!sysctl_compaction_proactiveness)
2946 timeout = MAX_SCHEDULE_TIMEOUT;
698b1b30 2947 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
facdaa91 2948 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
65d759c8
CTR
2949 kcompactd_work_requested(pgdat), timeout) &&
2950 !pgdat->proactive_compact_trigger) {
facdaa91
NG
2951
2952 psi_memstall_enter(&pflags);
2953 kcompactd_do_work(pgdat);
2954 psi_memstall_leave(&pflags);
e1e92bfa
CTR
2955 /*
2956 * Reset the timeout value. The defer timeout from
2957 * proactive compaction is lost here but that is fine
2958 * as the condition of the zone changing substantionally
2959 * then carrying on with the previous defer interval is
2960 * not useful.
2961 */
2962 timeout = default_timeout;
facdaa91
NG
2963 continue;
2964 }
698b1b30 2965
e1e92bfa
CTR
2966 /*
2967 * Start the proactive work with default timeout. Based
2968 * on the fragmentation score, this timeout is updated.
2969 */
2970 timeout = default_timeout;
facdaa91
NG
2971 if (should_proactive_compact_node(pgdat)) {
2972 unsigned int prev_score, score;
2973
facdaa91
NG
2974 prev_score = fragmentation_score_node(pgdat);
2975 proactive_compact_node(pgdat);
2976 score = fragmentation_score_node(pgdat);
2977 /*
2978 * Defer proactive compaction if the fragmentation
2979 * score did not go down i.e. no progress made.
2980 */
e1e92bfa
CTR
2981 if (unlikely(score >= prev_score))
2982 timeout =
2983 default_timeout << COMPACT_MAX_DEFER_SHIFT;
facdaa91 2984 }
65d759c8
CTR
2985 if (unlikely(pgdat->proactive_compact_trigger))
2986 pgdat->proactive_compact_trigger = false;
698b1b30
VB
2987 }
2988
2989 return 0;
2990}
2991
2992/*
2993 * This kcompactd start function will be called by init and node-hot-add.
2994 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2995 */
024c61ea 2996void kcompactd_run(int nid)
698b1b30
VB
2997{
2998 pg_data_t *pgdat = NODE_DATA(nid);
698b1b30
VB
2999
3000 if (pgdat->kcompactd)
024c61ea 3001 return;
698b1b30
VB
3002
3003 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3004 if (IS_ERR(pgdat->kcompactd)) {
3005 pr_err("Failed to start kcompactd on node %d\n", nid);
698b1b30
VB
3006 pgdat->kcompactd = NULL;
3007 }
698b1b30
VB
3008}
3009
3010/*
3011 * Called by memory hotplug when all memory in a node is offlined. Caller must
3012 * hold mem_hotplug_begin/end().
3013 */
3014void kcompactd_stop(int nid)
3015{
3016 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3017
3018 if (kcompactd) {
3019 kthread_stop(kcompactd);
3020 NODE_DATA(nid)->kcompactd = NULL;
3021 }
3022}
3023
3024/*
3025 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3026 * not required for correctness. So if the last cpu in a node goes
3027 * away, we get changed to run anywhere: as the first one comes back,
3028 * restore their cpu bindings.
3029 */
e46b1db2 3030static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
3031{
3032 int nid;
3033
e46b1db2
AMG
3034 for_each_node_state(nid, N_MEMORY) {
3035 pg_data_t *pgdat = NODE_DATA(nid);
3036 const struct cpumask *mask;
698b1b30 3037
e46b1db2 3038 mask = cpumask_of_node(pgdat->node_id);
698b1b30 3039
e46b1db2
AMG
3040 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3041 /* One of our CPUs online: restore mask */
3109de30
ML
3042 if (pgdat->kcompactd)
3043 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 3044 }
e46b1db2 3045 return 0;
698b1b30
VB
3046}
3047
3048static int __init kcompactd_init(void)
3049{
3050 int nid;
e46b1db2
AMG
3051 int ret;
3052
3053 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3054 "mm/compaction:online",
3055 kcompactd_cpu_online, NULL);
3056 if (ret < 0) {
3057 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3058 return ret;
3059 }
698b1b30
VB
3060
3061 for_each_node_state(nid, N_MEMORY)
3062 kcompactd_run(nid);
698b1b30
VB
3063 return 0;
3064}
3065subsys_initcall(kcompactd_init)
3066
ff9543fd 3067#endif /* CONFIG_COMPACTION */