]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/compaction.c
mm, compaction: finish scanning the current pageblock if requested
[thirdparty/linux.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a 28#ifdef CONFIG_COMPACTION
31ca72fa
CTK
29/*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
33
010fc29a
MK
34static inline void count_compact_event(enum vm_event_item item)
35{
36 count_vm_event(item);
37}
38
39static inline void count_compact_events(enum vm_event_item item, long delta)
40{
41 count_vm_events(item, delta);
42}
43#else
44#define count_compact_event(item) do { } while (0)
45#define count_compact_events(item, delta) do { } while (0)
46#endif
47
ff9543fd
MN
48#if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
b7aba698
MG
50#define CREATE_TRACE_POINTS
51#include <trace/events/compaction.h>
52
06b6640a
VB
53#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
06b6640a 55
facdaa91
NG
56/*
57 * Page order with-respect-to which proactive compaction
58 * calculates external fragmentation, which is used as
59 * the "fragmentation score" of a node/zone.
60 */
61#if defined CONFIG_TRANSPARENT_HUGEPAGE
62#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
25788738 63#elif defined CONFIG_HUGETLBFS
facdaa91
NG
64#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
65#else
66#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
67#endif
68
748446bb
MG
69static unsigned long release_freepages(struct list_head *freelist)
70{
71 struct page *page, *next;
6bace090 72 unsigned long high_pfn = 0;
748446bb
MG
73
74 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 75 unsigned long pfn = page_to_pfn(page);
748446bb
MG
76 list_del(&page->lru);
77 __free_page(page);
6bace090
VB
78 if (pfn > high_pfn)
79 high_pfn = pfn;
748446bb
MG
80 }
81
6bace090 82 return high_pfn;
748446bb
MG
83}
84
4469ab98 85static void split_map_pages(struct list_head *list)
ff9543fd 86{
66c64223
JK
87 unsigned int i, order, nr_pages;
88 struct page *page, *next;
89 LIST_HEAD(tmp_list);
90
91 list_for_each_entry_safe(page, next, list, lru) {
92 list_del(&page->lru);
93
94 order = page_private(page);
95 nr_pages = 1 << order;
66c64223 96
46f24fd8 97 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
98 if (order)
99 split_page(page, order);
ff9543fd 100
66c64223
JK
101 for (i = 0; i < nr_pages; i++) {
102 list_add(&page->lru, &tmp_list);
103 page++;
104 }
ff9543fd 105 }
66c64223
JK
106
107 list_splice(&tmp_list, list);
ff9543fd
MN
108}
109
bb13ffeb 110#ifdef CONFIG_COMPACTION
68f2736a 111bool PageMovable(struct page *page)
bda807d4 112{
68f2736a 113 const struct movable_operations *mops;
bda807d4
MK
114
115 VM_BUG_ON_PAGE(!PageLocked(page), page);
116 if (!__PageMovable(page))
68f2736a 117 return false;
bda807d4 118
68f2736a
MWO
119 mops = page_movable_ops(page);
120 if (mops)
121 return true;
bda807d4 122
68f2736a 123 return false;
bda807d4 124}
bda807d4 125
68f2736a 126void __SetPageMovable(struct page *page, const struct movable_operations *mops)
bda807d4
MK
127{
128 VM_BUG_ON_PAGE(!PageLocked(page), page);
68f2736a
MWO
129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
bda807d4
MK
131}
132EXPORT_SYMBOL(__SetPageMovable);
133
134void __ClearPageMovable(struct page *page)
135{
bda807d4
MK
136 VM_BUG_ON_PAGE(!PageMovable(page), page);
137 /*
68f2736a
MWO
138 * This page still has the type of a movable page, but it's
139 * actually not movable any more.
bda807d4 140 */
68f2736a 141 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
bda807d4
MK
142}
143EXPORT_SYMBOL(__ClearPageMovable);
144
24e2716f
JK
145/* Do not skip compaction more than 64 times */
146#define COMPACT_MAX_DEFER_SHIFT 6
147
148/*
149 * Compaction is deferred when compaction fails to result in a page
860b3272 150 * allocation success. 1 << compact_defer_shift, compactions are skipped up
24e2716f
JK
151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152 */
2271b016 153static void defer_compaction(struct zone *zone, int order)
24e2716f
JK
154{
155 zone->compact_considered = 0;
156 zone->compact_defer_shift++;
157
158 if (order < zone->compact_order_failed)
159 zone->compact_order_failed = order;
160
161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164 trace_mm_compaction_defer_compaction(zone, order);
165}
166
167/* Returns true if compaction should be skipped this time */
2271b016 168static bool compaction_deferred(struct zone *zone, int order)
24e2716f
JK
169{
170 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172 if (order < zone->compact_order_failed)
173 return false;
174
175 /* Avoid possible overflow */
62b35fe0 176 if (++zone->compact_considered >= defer_limit) {
24e2716f 177 zone->compact_considered = defer_limit;
24e2716f 178 return false;
62b35fe0 179 }
24e2716f
JK
180
181 trace_mm_compaction_deferred(zone, order);
182
183 return true;
184}
185
186/*
187 * Update defer tracking counters after successful compaction of given order,
188 * which means an allocation either succeeded (alloc_success == true) or is
189 * expected to succeed.
190 */
191void compaction_defer_reset(struct zone *zone, int order,
192 bool alloc_success)
193{
194 if (alloc_success) {
195 zone->compact_considered = 0;
196 zone->compact_defer_shift = 0;
197 }
198 if (order >= zone->compact_order_failed)
199 zone->compact_order_failed = order + 1;
200
201 trace_mm_compaction_defer_reset(zone, order);
202}
203
204/* Returns true if restarting compaction after many failures */
2271b016 205static bool compaction_restarting(struct zone *zone, int order)
24e2716f
JK
206{
207 if (order < zone->compact_order_failed)
208 return false;
209
210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212}
213
bb13ffeb
MG
214/* Returns true if the pageblock should be scanned for pages to isolate. */
215static inline bool isolation_suitable(struct compact_control *cc,
216 struct page *page)
217{
218 if (cc->ignore_skip_hint)
219 return true;
220
221 return !get_pageblock_skip(page);
222}
223
02333641
VB
224static void reset_cached_positions(struct zone *zone)
225{
226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 228 zone->compact_cached_free_pfn =
06b6640a 229 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
230}
231
21dc7e02 232/*
2271b016 233 * Compound pages of >= pageblock_order should consistently be skipped until
b527cfe5
VB
234 * released. It is always pointless to compact pages of such order (if they are
235 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 236 */
b527cfe5 237static bool pageblock_skip_persistent(struct page *page)
21dc7e02 238{
b527cfe5 239 if (!PageCompound(page))
21dc7e02 240 return false;
b527cfe5
VB
241
242 page = compound_head(page);
243
244 if (compound_order(page) >= pageblock_order)
245 return true;
246
247 return false;
21dc7e02
DR
248}
249
e332f741
MG
250static bool
251__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
252 bool check_target)
253{
254 struct page *page = pfn_to_online_page(pfn);
6b0868c8 255 struct page *block_page;
e332f741
MG
256 struct page *end_page;
257 unsigned long block_pfn;
258
259 if (!page)
260 return false;
261 if (zone != page_zone(page))
262 return false;
263 if (pageblock_skip_persistent(page))
264 return false;
265
266 /*
267 * If skip is already cleared do no further checking once the
268 * restart points have been set.
269 */
270 if (check_source && check_target && !get_pageblock_skip(page))
271 return true;
272
273 /*
274 * If clearing skip for the target scanner, do not select a
275 * non-movable pageblock as the starting point.
276 */
277 if (!check_source && check_target &&
278 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
279 return false;
280
6b0868c8
MG
281 /* Ensure the start of the pageblock or zone is online and valid */
282 block_pfn = pageblock_start_pfn(pfn);
a2e9a5af
VB
283 block_pfn = max(block_pfn, zone->zone_start_pfn);
284 block_page = pfn_to_online_page(block_pfn);
6b0868c8
MG
285 if (block_page) {
286 page = block_page;
287 pfn = block_pfn;
288 }
289
290 /* Ensure the end of the pageblock or zone is online and valid */
a2e9a5af 291 block_pfn = pageblock_end_pfn(pfn) - 1;
6b0868c8
MG
292 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
293 end_page = pfn_to_online_page(block_pfn);
294 if (!end_page)
295 return false;
296
e332f741
MG
297 /*
298 * Only clear the hint if a sample indicates there is either a
299 * free page or an LRU page in the block. One or other condition
300 * is necessary for the block to be a migration source/target.
301 */
e332f741 302 do {
859a85dd
MR
303 if (check_source && PageLRU(page)) {
304 clear_pageblock_skip(page);
305 return true;
306 }
e332f741 307
859a85dd
MR
308 if (check_target && PageBuddy(page)) {
309 clear_pageblock_skip(page);
310 return true;
e332f741
MG
311 }
312
313 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
a2e9a5af 314 } while (page <= end_page);
e332f741
MG
315
316 return false;
317}
318
bb13ffeb
MG
319/*
320 * This function is called to clear all cached information on pageblocks that
321 * should be skipped for page isolation when the migrate and free page scanner
322 * meet.
323 */
62997027 324static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 325{
e332f741 326 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 327 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
328 unsigned long reset_migrate = free_pfn;
329 unsigned long reset_free = migrate_pfn;
330 bool source_set = false;
331 bool free_set = false;
332
333 if (!zone->compact_blockskip_flush)
334 return;
bb13ffeb 335
62997027 336 zone->compact_blockskip_flush = false;
bb13ffeb 337
e332f741
MG
338 /*
339 * Walk the zone and update pageblock skip information. Source looks
340 * for PageLRU while target looks for PageBuddy. When the scanner
341 * is found, both PageBuddy and PageLRU are checked as the pageblock
342 * is suitable as both source and target.
343 */
344 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
345 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
346 cond_resched();
347
e332f741
MG
348 /* Update the migrate PFN */
349 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
350 migrate_pfn < reset_migrate) {
351 source_set = true;
352 reset_migrate = migrate_pfn;
353 zone->compact_init_migrate_pfn = reset_migrate;
354 zone->compact_cached_migrate_pfn[0] = reset_migrate;
355 zone->compact_cached_migrate_pfn[1] = reset_migrate;
356 }
bb13ffeb 357
e332f741
MG
358 /* Update the free PFN */
359 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
360 free_pfn > reset_free) {
361 free_set = true;
362 reset_free = free_pfn;
363 zone->compact_init_free_pfn = reset_free;
364 zone->compact_cached_free_pfn = reset_free;
365 }
bb13ffeb 366 }
02333641 367
e332f741
MG
368 /* Leave no distance if no suitable block was reset */
369 if (reset_migrate >= reset_free) {
370 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
371 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
372 zone->compact_cached_free_pfn = free_pfn;
373 }
bb13ffeb
MG
374}
375
62997027
MG
376void reset_isolation_suitable(pg_data_t *pgdat)
377{
378 int zoneid;
379
380 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
381 struct zone *zone = &pgdat->node_zones[zoneid];
382 if (!populated_zone(zone))
383 continue;
384
385 /* Only flush if a full compaction finished recently */
386 if (zone->compact_blockskip_flush)
387 __reset_isolation_suitable(zone);
388 }
389}
390
e380bebe
MG
391/*
392 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
393 * locks are not required for read/writers. Returns true if it was already set.
394 */
395static bool test_and_set_skip(struct compact_control *cc, struct page *page,
396 unsigned long pfn)
397{
398 bool skip;
399
400 /* Do no update if skip hint is being ignored */
401 if (cc->ignore_skip_hint)
402 return false;
403
ee0913c4 404 if (!pageblock_aligned(pfn))
e380bebe
MG
405 return false;
406
407 skip = get_pageblock_skip(page);
408 if (!skip && !cc->no_set_skip_hint)
409 set_pageblock_skip(page);
410
411 return skip;
412}
413
414static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
415{
416 struct zone *zone = cc->zone;
417
418 pfn = pageblock_end_pfn(pfn);
419
420 /* Set for isolation rather than compaction */
421 if (cc->no_set_skip_hint)
422 return;
423
424 if (pfn > zone->compact_cached_migrate_pfn[0])
425 zone->compact_cached_migrate_pfn[0] = pfn;
426 if (cc->mode != MIGRATE_ASYNC &&
427 pfn > zone->compact_cached_migrate_pfn[1])
428 zone->compact_cached_migrate_pfn[1] = pfn;
429}
430
bb13ffeb
MG
431/*
432 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 433 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 434 */
c89511ab 435static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 436 struct page *page, unsigned long pfn)
bb13ffeb 437{
c89511ab 438 struct zone *zone = cc->zone;
6815bf3f 439
2583d671 440 if (cc->no_set_skip_hint)
6815bf3f
JK
441 return;
442
bb13ffeb
MG
443 if (!page)
444 return;
445
edc2ca61 446 set_pageblock_skip(page);
c89511ab 447
35979ef3 448 /* Update where async and sync compaction should restart */
e380bebe
MG
449 if (pfn < zone->compact_cached_free_pfn)
450 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
451}
452#else
453static inline bool isolation_suitable(struct compact_control *cc,
454 struct page *page)
455{
456 return true;
457}
458
b527cfe5 459static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
460{
461 return false;
462}
463
464static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 465 struct page *page, unsigned long pfn)
bb13ffeb
MG
466{
467}
e380bebe
MG
468
469static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
470{
471}
472
473static bool test_and_set_skip(struct compact_control *cc, struct page *page,
474 unsigned long pfn)
475{
476 return false;
477}
bb13ffeb
MG
478#endif /* CONFIG_COMPACTION */
479
8b44d279
VB
480/*
481 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
482 * very heavily contended. For async compaction, trylock and record if the
483 * lock is contended. The lock will still be acquired but compaction will
484 * abort when the current block is finished regardless of success rate.
485 * Sync compaction acquires the lock.
8b44d279 486 *
cb2dcaf0 487 * Always returns true which makes it easier to track lock state in callers.
8b44d279 488 */
cb2dcaf0 489static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 490 struct compact_control *cc)
77337ede 491 __acquires(lock)
2a1402aa 492{
cb2dcaf0
MG
493 /* Track if the lock is contended in async mode */
494 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
495 if (spin_trylock_irqsave(lock, *flags))
496 return true;
497
498 cc->contended = true;
8b44d279 499 }
1f9efdef 500
cb2dcaf0 501 spin_lock_irqsave(lock, *flags);
8b44d279 502 return true;
2a1402aa
MG
503}
504
c67fe375
MG
505/*
506 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
507 * very heavily contended. The lock should be periodically unlocked to avoid
508 * having disabled IRQs for a long time, even when there is nobody waiting on
509 * the lock. It might also be that allowing the IRQs will result in
d56c1584 510 * need_resched() becoming true. If scheduling is needed, compaction schedules.
8b44d279
VB
511 * Either compaction type will also abort if a fatal signal is pending.
512 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 513 *
d56c1584
ML
514 * Returns true if compaction should abort due to fatal signal pending.
515 * Returns false when compaction can continue.
c67fe375 516 */
8b44d279
VB
517static bool compact_unlock_should_abort(spinlock_t *lock,
518 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 519{
8b44d279
VB
520 if (*locked) {
521 spin_unlock_irqrestore(lock, flags);
522 *locked = false;
523 }
1f9efdef 524
8b44d279 525 if (fatal_signal_pending(current)) {
c3486f53 526 cc->contended = true;
8b44d279
VB
527 return true;
528 }
c67fe375 529
cf66f070 530 cond_resched();
be976572
VB
531
532 return false;
533}
534
85aa125f 535/*
9e4be470
JM
536 * Isolate free pages onto a private freelist. If @strict is true, will abort
537 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
538 * (even though it may still end up isolating some pages).
85aa125f 539 */
f40d1e42 540static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 541 unsigned long *start_pfn,
85aa125f
MN
542 unsigned long end_pfn,
543 struct list_head *freelist,
4fca9730 544 unsigned int stride,
85aa125f 545 bool strict)
748446bb 546{
b7aba698 547 int nr_scanned = 0, total_isolated = 0;
d097a6f6 548 struct page *cursor;
b8b2d825 549 unsigned long flags = 0;
f40d1e42 550 bool locked = false;
e14c720e 551 unsigned long blockpfn = *start_pfn;
66c64223 552 unsigned int order;
748446bb 553
4fca9730
MG
554 /* Strict mode is for isolation, speed is secondary */
555 if (strict)
556 stride = 1;
557
748446bb
MG
558 cursor = pfn_to_page(blockpfn);
559
f40d1e42 560 /* Isolate free pages. */
4fca9730 561 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
66c64223 562 int isolated;
748446bb
MG
563 struct page *page = cursor;
564
8b44d279
VB
565 /*
566 * Periodically drop the lock (if held) regardless of its
567 * contention, to give chance to IRQs. Abort if fatal signal
d56c1584 568 * pending.
8b44d279 569 */
c036ddff 570 if (!(blockpfn % COMPACT_CLUSTER_MAX)
8b44d279
VB
571 && compact_unlock_should_abort(&cc->zone->lock, flags,
572 &locked, cc))
573 break;
574
b7aba698 575 nr_scanned++;
2af120bc 576
9fcd6d2e
VB
577 /*
578 * For compound pages such as THP and hugetlbfs, we can save
579 * potentially a lot of iterations if we skip them at once.
580 * The check is racy, but we can consider only valid values
581 * and the only danger is skipping too much.
582 */
583 if (PageCompound(page)) {
21dc7e02
DR
584 const unsigned int order = compound_order(page);
585
d3c85bad 586 if (likely(order < MAX_ORDER)) {
21dc7e02
DR
587 blockpfn += (1UL << order) - 1;
588 cursor += (1UL << order) - 1;
9fcd6d2e 589 }
9fcd6d2e
VB
590 goto isolate_fail;
591 }
592
f40d1e42 593 if (!PageBuddy(page))
2af120bc 594 goto isolate_fail;
f40d1e42 595
85f73e6d 596 /* If we already hold the lock, we can skip some rechecking. */
69b7189f 597 if (!locked) {
cb2dcaf0 598 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 599 &flags, cc);
f40d1e42 600
69b7189f
VB
601 /* Recheck this is a buddy page under lock */
602 if (!PageBuddy(page))
603 goto isolate_fail;
604 }
748446bb 605
66c64223 606 /* Found a free page, will break it into order-0 pages */
ab130f91 607 order = buddy_order(page);
66c64223 608 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
609 if (!isolated)
610 break;
66c64223 611 set_page_private(page, order);
a4f04f2c 612
b717d6b9 613 nr_scanned += isolated - 1;
748446bb 614 total_isolated += isolated;
a4f04f2c 615 cc->nr_freepages += isolated;
66c64223
JK
616 list_add_tail(&page->lru, freelist);
617
a4f04f2c
DR
618 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
619 blockpfn += isolated;
620 break;
748446bb 621 }
a4f04f2c
DR
622 /* Advance to the end of split page */
623 blockpfn += isolated - 1;
624 cursor += isolated - 1;
625 continue;
2af120bc
LA
626
627isolate_fail:
628 if (strict)
629 break;
630 else
631 continue;
632
748446bb
MG
633 }
634
a4f04f2c
DR
635 if (locked)
636 spin_unlock_irqrestore(&cc->zone->lock, flags);
637
9fcd6d2e
VB
638 /*
639 * There is a tiny chance that we have read bogus compound_order(),
640 * so be careful to not go outside of the pageblock.
641 */
642 if (unlikely(blockpfn > end_pfn))
643 blockpfn = end_pfn;
644
e34d85f0
JK
645 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
646 nr_scanned, total_isolated);
647
e14c720e
VB
648 /* Record how far we have got within the block */
649 *start_pfn = blockpfn;
650
f40d1e42
MG
651 /*
652 * If strict isolation is requested by CMA then check that all the
653 * pages requested were isolated. If there were any failures, 0 is
654 * returned and CMA will fail.
655 */
2af120bc 656 if (strict && blockpfn < end_pfn)
f40d1e42
MG
657 total_isolated = 0;
658
7f354a54 659 cc->total_free_scanned += nr_scanned;
397487db 660 if (total_isolated)
010fc29a 661 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
662 return total_isolated;
663}
664
85aa125f
MN
665/**
666 * isolate_freepages_range() - isolate free pages.
e8b098fc 667 * @cc: Compaction control structure.
85aa125f
MN
668 * @start_pfn: The first PFN to start isolating.
669 * @end_pfn: The one-past-last PFN.
670 *
671 * Non-free pages, invalid PFNs, or zone boundaries within the
672 * [start_pfn, end_pfn) range are considered errors, cause function to
673 * undo its actions and return zero.
674 *
675 * Otherwise, function returns one-past-the-last PFN of isolated page
676 * (which may be greater then end_pfn if end fell in a middle of
677 * a free page).
678 */
ff9543fd 679unsigned long
bb13ffeb
MG
680isolate_freepages_range(struct compact_control *cc,
681 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 682{
e1409c32 683 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
684 LIST_HEAD(freelist);
685
7d49d886 686 pfn = start_pfn;
06b6640a 687 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
688 if (block_start_pfn < cc->zone->zone_start_pfn)
689 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 690 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
691
692 for (; pfn < end_pfn; pfn += isolated,
e1409c32 693 block_start_pfn = block_end_pfn,
7d49d886 694 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
695 /* Protect pfn from changing by isolate_freepages_block */
696 unsigned long isolate_start_pfn = pfn;
85aa125f 697
85aa125f
MN
698 block_end_pfn = min(block_end_pfn, end_pfn);
699
58420016
JK
700 /*
701 * pfn could pass the block_end_pfn if isolated freepage
702 * is more than pageblock order. In this case, we adjust
703 * scanning range to right one.
704 */
705 if (pfn >= block_end_pfn) {
06b6640a
VB
706 block_start_pfn = pageblock_start_pfn(pfn);
707 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
708 block_end_pfn = min(block_end_pfn, end_pfn);
709 }
710
e1409c32
JK
711 if (!pageblock_pfn_to_page(block_start_pfn,
712 block_end_pfn, cc->zone))
7d49d886
VB
713 break;
714
e14c720e 715 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
4fca9730 716 block_end_pfn, &freelist, 0, true);
85aa125f
MN
717
718 /*
719 * In strict mode, isolate_freepages_block() returns 0 if
720 * there are any holes in the block (ie. invalid PFNs or
721 * non-free pages).
722 */
723 if (!isolated)
724 break;
725
726 /*
727 * If we managed to isolate pages, it is always (1 << n) *
728 * pageblock_nr_pages for some non-negative n. (Max order
729 * page may span two pageblocks).
730 */
731 }
732
66c64223 733 /* __isolate_free_page() does not map the pages */
4469ab98 734 split_map_pages(&freelist);
85aa125f
MN
735
736 if (pfn < end_pfn) {
737 /* Loop terminated early, cleanup. */
738 release_freepages(&freelist);
739 return 0;
740 }
741
742 /* We don't use freelists for anything. */
743 return pfn;
744}
745
748446bb 746/* Similar to reclaim, but different enough that they don't share logic */
5f438eee 747static bool too_many_isolated(pg_data_t *pgdat)
748446bb 748{
d818fca1
MG
749 bool too_many;
750
bc693045 751 unsigned long active, inactive, isolated;
748446bb 752
5f438eee
AR
753 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
754 node_page_state(pgdat, NR_INACTIVE_ANON);
755 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
756 node_page_state(pgdat, NR_ACTIVE_ANON);
757 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
758 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 759
d818fca1
MG
760 too_many = isolated > (inactive + active) / 2;
761 if (!too_many)
762 wake_throttle_isolated(pgdat);
763
764 return too_many;
748446bb
MG
765}
766
2fe86e00 767/**
edc2ca61
VB
768 * isolate_migratepages_block() - isolate all migrate-able pages within
769 * a single pageblock
2fe86e00 770 * @cc: Compaction control structure.
edc2ca61
VB
771 * @low_pfn: The first PFN to isolate
772 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
89f6c88a 773 * @mode: Isolation mode to be used.
2fe86e00
MN
774 *
775 * Isolate all pages that can be migrated from the range specified by
edc2ca61 776 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
c2ad7a1f 777 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
369fa227 778 * -ENOMEM in case we could not allocate a page, or 0.
c2ad7a1f 779 * cc->migrate_pfn will contain the next pfn to scan.
2fe86e00 780 *
edc2ca61 781 * The pages are isolated on cc->migratepages list (not required to be empty),
c2ad7a1f 782 * and cc->nr_migratepages is updated accordingly.
748446bb 783 */
c2ad7a1f 784static int
edc2ca61 785isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
89f6c88a 786 unsigned long end_pfn, isolate_mode_t mode)
748446bb 787{
5f438eee 788 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 789 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 790 struct lruvec *lruvec;
b8b2d825 791 unsigned long flags = 0;
6168d0da 792 struct lruvec *locked = NULL;
bb13ffeb 793 struct page *page = NULL, *valid_page = NULL;
89f6c88a 794 struct address_space *mapping;
e34d85f0 795 unsigned long start_pfn = low_pfn;
fdd048e1
VB
796 bool skip_on_failure = false;
797 unsigned long next_skip_pfn = 0;
e380bebe 798 bool skip_updated = false;
c2ad7a1f
OS
799 int ret = 0;
800
801 cc->migrate_pfn = low_pfn;
748446bb 802
748446bb
MG
803 /*
804 * Ensure that there are not too many pages isolated from the LRU
805 * list by either parallel reclaimers or compaction. If there are,
806 * delay for some time until fewer pages are isolated
807 */
5f438eee 808 while (unlikely(too_many_isolated(pgdat))) {
d20bdd57
ZY
809 /* stop isolation if there are still pages not migrated */
810 if (cc->nr_migratepages)
c2ad7a1f 811 return -EAGAIN;
d20bdd57 812
f9e35b3b 813 /* async migration should just abort */
e0b9daeb 814 if (cc->mode == MIGRATE_ASYNC)
c2ad7a1f 815 return -EAGAIN;
f9e35b3b 816
c3f4a9a2 817 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
748446bb
MG
818
819 if (fatal_signal_pending(current))
c2ad7a1f 820 return -EINTR;
748446bb
MG
821 }
822
cf66f070 823 cond_resched();
aeef4b83 824
fdd048e1
VB
825 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
826 skip_on_failure = true;
827 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
828 }
829
748446bb 830 /* Time to isolate some pages for migration */
748446bb 831 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 832
fdd048e1
VB
833 if (skip_on_failure && low_pfn >= next_skip_pfn) {
834 /*
835 * We have isolated all migration candidates in the
836 * previous order-aligned block, and did not skip it due
837 * to failure. We should migrate the pages now and
838 * hopefully succeed compaction.
839 */
840 if (nr_isolated)
841 break;
842
843 /*
844 * We failed to isolate in the previous order-aligned
845 * block. Set the new boundary to the end of the
846 * current block. Note we can't simply increase
847 * next_skip_pfn by 1 << order, as low_pfn might have
848 * been incremented by a higher number due to skipping
849 * a compound or a high-order buddy page in the
850 * previous loop iteration.
851 */
852 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
853 }
854
8b44d279
VB
855 /*
856 * Periodically drop the lock (if held) regardless of its
670105a2
MG
857 * contention, to give chance to IRQs. Abort completely if
858 * a fatal signal is pending.
8b44d279 859 */
c036ddff 860 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
6168d0da
AS
861 if (locked) {
862 unlock_page_lruvec_irqrestore(locked, flags);
863 locked = NULL;
864 }
865
866 if (fatal_signal_pending(current)) {
867 cc->contended = true;
c2ad7a1f 868 ret = -EINTR;
6168d0da 869
6168d0da
AS
870 goto fatal_pending;
871 }
872
873 cond_resched();
670105a2 874 }
c67fe375 875
b7aba698 876 nr_scanned++;
748446bb 877
748446bb 878 page = pfn_to_page(low_pfn);
dc908600 879
e380bebe
MG
880 /*
881 * Check if the pageblock has already been marked skipped.
882 * Only the aligned PFN is checked as the caller isolates
883 * COMPACT_CLUSTER_MAX at a time so the second call must
884 * not falsely conclude that the block should be skipped.
885 */
ee0913c4 886 if (!valid_page && pageblock_aligned(low_pfn)) {
4af12d04 887 if (!isolation_suitable(cc, page)) {
e380bebe 888 low_pfn = end_pfn;
9df41314 889 page = NULL;
e380bebe
MG
890 goto isolate_abort;
891 }
bb13ffeb 892 valid_page = page;
e380bebe 893 }
bb13ffeb 894
369fa227 895 if (PageHuge(page) && cc->alloc_contig) {
ae37c7ff 896 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
369fa227
OS
897
898 /*
899 * Fail isolation in case isolate_or_dissolve_huge_page()
900 * reports an error. In case of -ENOMEM, abort right away.
901 */
902 if (ret < 0) {
903 /* Do not report -EBUSY down the chain */
904 if (ret == -EBUSY)
905 ret = 0;
66fe1cf7 906 low_pfn += compound_nr(page) - 1;
369fa227
OS
907 goto isolate_fail;
908 }
909
ae37c7ff
OS
910 if (PageHuge(page)) {
911 /*
912 * Hugepage was successfully isolated and placed
913 * on the cc->migratepages list.
914 */
915 low_pfn += compound_nr(page) - 1;
916 goto isolate_success_no_list;
917 }
918
369fa227
OS
919 /*
920 * Ok, the hugepage was dissolved. Now these pages are
921 * Buddy and cannot be re-allocated because they are
922 * isolated. Fall-through as the check below handles
923 * Buddy pages.
924 */
925 }
926
6c14466c 927 /*
99c0fd5e
VB
928 * Skip if free. We read page order here without zone lock
929 * which is generally unsafe, but the race window is small and
930 * the worst thing that can happen is that we skip some
931 * potential isolation targets.
6c14466c 932 */
99c0fd5e 933 if (PageBuddy(page)) {
ab130f91 934 unsigned long freepage_order = buddy_order_unsafe(page);
99c0fd5e
VB
935
936 /*
937 * Without lock, we cannot be sure that what we got is
938 * a valid page order. Consider only values in the
939 * valid order range to prevent low_pfn overflow.
940 */
941 if (freepage_order > 0 && freepage_order < MAX_ORDER)
942 low_pfn += (1UL << freepage_order) - 1;
748446bb 943 continue;
99c0fd5e 944 }
748446bb 945
bc835011 946 /*
29c0dde8 947 * Regardless of being on LRU, compound pages such as THP and
1da2f328
RR
948 * hugetlbfs are not to be compacted unless we are attempting
949 * an allocation much larger than the huge page size (eg CMA).
950 * We can potentially save a lot of iterations if we skip them
951 * at once. The check is racy, but we can consider only valid
952 * values and the only danger is skipping too much.
bc835011 953 */
1da2f328 954 if (PageCompound(page) && !cc->alloc_contig) {
21dc7e02 955 const unsigned int order = compound_order(page);
edc2ca61 956
d3c85bad 957 if (likely(order < MAX_ORDER))
21dc7e02 958 low_pfn += (1UL << order) - 1;
fdd048e1 959 goto isolate_fail;
2a1402aa
MG
960 }
961
bda807d4
MK
962 /*
963 * Check may be lockless but that's ok as we recheck later.
964 * It's possible to migrate LRU and non-lru movable pages.
965 * Skip any other type of page
966 */
967 if (!PageLRU(page)) {
bda807d4
MK
968 /*
969 * __PageMovable can return false positive so we need
970 * to verify it under page_lock.
971 */
972 if (unlikely(__PageMovable(page)) &&
973 !PageIsolated(page)) {
974 if (locked) {
6168d0da
AS
975 unlock_page_lruvec_irqrestore(locked, flags);
976 locked = NULL;
bda807d4
MK
977 }
978
89f6c88a 979 if (!isolate_movable_page(page, mode))
bda807d4
MK
980 goto isolate_success;
981 }
982
fdd048e1 983 goto isolate_fail;
bda807d4 984 }
29c0dde8 985
829ae0f8
GS
986 /*
987 * Be careful not to clear PageLRU until after we're
988 * sure the page is not being freed elsewhere -- the
989 * page release code relies on it.
990 */
991 if (unlikely(!get_page_unless_zero(page)))
992 goto isolate_fail;
993
119d6d59
DR
994 /*
995 * Migration will fail if an anonymous page is pinned in memory,
996 * so avoid taking lru_lock and isolating it unnecessarily in an
997 * admittedly racy check.
998 */
89f6c88a 999 mapping = page_mapping(page);
829ae0f8
GS
1000 if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1001 goto isolate_fail_put;
119d6d59 1002
73e64c51
MH
1003 /*
1004 * Only allow to migrate anonymous pages in GFP_NOFS context
1005 * because those do not depend on fs locks.
1006 */
89f6c88a 1007 if (!(cc->gfp_mask & __GFP_FS) && mapping)
829ae0f8 1008 goto isolate_fail_put;
9df41314 1009
89f6c88a
HD
1010 /* Only take pages on LRU: a check now makes later tests safe */
1011 if (!PageLRU(page))
1012 goto isolate_fail_put;
1013
1014 /* Compaction might skip unevictable pages but CMA takes them */
1015 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1016 goto isolate_fail_put;
1017
1018 /*
1019 * To minimise LRU disruption, the caller can indicate with
1020 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1021 * it will be able to migrate without blocking - clean pages
1022 * for the most part. PageWriteback would require blocking.
1023 */
1024 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
9df41314
AS
1025 goto isolate_fail_put;
1026
89f6c88a
HD
1027 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1028 bool migrate_dirty;
1029
1030 /*
1031 * Only pages without mappings or that have a
9d0ddc0c 1032 * ->migrate_folio callback are possible to migrate
89f6c88a
HD
1033 * without blocking. However, we can be racing with
1034 * truncation so it's necessary to lock the page
1035 * to stabilise the mapping as truncation holds
1036 * the page lock until after the page is removed
1037 * from the page cache.
1038 */
1039 if (!trylock_page(page))
1040 goto isolate_fail_put;
1041
1042 mapping = page_mapping(page);
5490da4f 1043 migrate_dirty = !mapping ||
9d0ddc0c 1044 mapping->a_ops->migrate_folio;
89f6c88a
HD
1045 unlock_page(page);
1046 if (!migrate_dirty)
1047 goto isolate_fail_put;
1048 }
1049
9df41314
AS
1050 /* Try isolate the page */
1051 if (!TestClearPageLRU(page))
1052 goto isolate_fail_put;
1053
b1baabd9 1054 lruvec = folio_lruvec(page_folio(page));
6168d0da 1055
69b7189f 1056 /* If we already hold the lock, we can skip some rechecking */
6168d0da
AS
1057 if (lruvec != locked) {
1058 if (locked)
1059 unlock_page_lruvec_irqrestore(locked, flags);
1060
1061 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1062 locked = lruvec;
6168d0da 1063
e809c3fe 1064 lruvec_memcg_debug(lruvec, page_folio(page));
e380bebe 1065
e380bebe
MG
1066 /* Try get exclusive access under lock */
1067 if (!skip_updated) {
1068 skip_updated = true;
1069 if (test_and_set_skip(cc, page, low_pfn))
1070 goto isolate_abort;
1071 }
2a1402aa 1072
29c0dde8
VB
1073 /*
1074 * Page become compound since the non-locked check,
1075 * and it's on LRU. It can only be a THP so the order
1076 * is safe to read and it's 0 for tail pages.
1077 */
1da2f328 1078 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
d8c6546b 1079 low_pfn += compound_nr(page) - 1;
9df41314
AS
1080 SetPageLRU(page);
1081 goto isolate_fail_put;
69b7189f 1082 }
d99fd5fe 1083 }
fa9add64 1084
1da2f328
RR
1085 /* The whole page is taken off the LRU; skip the tail pages. */
1086 if (PageCompound(page))
1087 low_pfn += compound_nr(page) - 1;
bc835011 1088
748446bb 1089 /* Successfully isolated */
46ae6b2c 1090 del_page_from_lru_list(page, lruvec);
1da2f328 1091 mod_node_page_state(page_pgdat(page),
9de4f22a 1092 NR_ISOLATED_ANON + page_is_file_lru(page),
6c357848 1093 thp_nr_pages(page));
b6c75016
JK
1094
1095isolate_success:
fdd048e1 1096 list_add(&page->lru, &cc->migratepages);
ae37c7ff 1097isolate_success_no_list:
38935861
ZY
1098 cc->nr_migratepages += compound_nr(page);
1099 nr_isolated += compound_nr(page);
b717d6b9 1100 nr_scanned += compound_nr(page) - 1;
748446bb 1101
804d3121
MG
1102 /*
1103 * Avoid isolating too much unless this block is being
48731c84 1104 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
cb2dcaf0
MG
1105 * or a lock is contended. For contention, isolate quickly to
1106 * potentially remove one source of contention.
804d3121 1107 */
38935861 1108 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
48731c84 1109 !cc->finish_pageblock && !cc->contended) {
31b8384a 1110 ++low_pfn;
748446bb 1111 break;
31b8384a 1112 }
fdd048e1
VB
1113
1114 continue;
9df41314
AS
1115
1116isolate_fail_put:
1117 /* Avoid potential deadlock in freeing page under lru_lock */
1118 if (locked) {
6168d0da
AS
1119 unlock_page_lruvec_irqrestore(locked, flags);
1120 locked = NULL;
9df41314
AS
1121 }
1122 put_page(page);
1123
fdd048e1 1124isolate_fail:
369fa227 1125 if (!skip_on_failure && ret != -ENOMEM)
fdd048e1
VB
1126 continue;
1127
1128 /*
1129 * We have isolated some pages, but then failed. Release them
1130 * instead of migrating, as we cannot form the cc->order buddy
1131 * page anyway.
1132 */
1133 if (nr_isolated) {
1134 if (locked) {
6168d0da
AS
1135 unlock_page_lruvec_irqrestore(locked, flags);
1136 locked = NULL;
fdd048e1 1137 }
fdd048e1
VB
1138 putback_movable_pages(&cc->migratepages);
1139 cc->nr_migratepages = 0;
fdd048e1
VB
1140 nr_isolated = 0;
1141 }
1142
1143 if (low_pfn < next_skip_pfn) {
1144 low_pfn = next_skip_pfn - 1;
1145 /*
1146 * The check near the loop beginning would have updated
1147 * next_skip_pfn too, but this is a bit simpler.
1148 */
1149 next_skip_pfn += 1UL << cc->order;
1150 }
369fa227
OS
1151
1152 if (ret == -ENOMEM)
1153 break;
748446bb
MG
1154 }
1155
99c0fd5e
VB
1156 /*
1157 * The PageBuddy() check could have potentially brought us outside
1158 * the range to be scanned.
1159 */
1160 if (unlikely(low_pfn > end_pfn))
1161 low_pfn = end_pfn;
1162
9df41314
AS
1163 page = NULL;
1164
e380bebe 1165isolate_abort:
c67fe375 1166 if (locked)
6168d0da 1167 unlock_page_lruvec_irqrestore(locked, flags);
9df41314
AS
1168 if (page) {
1169 SetPageLRU(page);
1170 put_page(page);
1171 }
748446bb 1172
50b5b094 1173 /*
48731c84 1174 * Update the cached scanner pfn once the pageblock has been scanned.
804d3121
MG
1175 * Pages will either be migrated in which case there is no point
1176 * scanning in the near future or migration failed in which case the
1177 * failure reason may persist. The block is marked for skipping if
1178 * there were no pages isolated in the block or if the block is
1179 * rescanned twice in a row.
50b5b094 1180 */
48731c84 1181 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
e380bebe
MG
1182 if (valid_page && !skip_updated)
1183 set_pageblock_skip(valid_page);
1184 update_cached_migrate(cc, low_pfn);
1185 }
bb13ffeb 1186
e34d85f0
JK
1187 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1188 nr_scanned, nr_isolated);
b7aba698 1189
670105a2 1190fatal_pending:
7f354a54 1191 cc->total_migrate_scanned += nr_scanned;
397487db 1192 if (nr_isolated)
010fc29a 1193 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1194
c2ad7a1f
OS
1195 cc->migrate_pfn = low_pfn;
1196
1197 return ret;
2fe86e00
MN
1198}
1199
edc2ca61
VB
1200/**
1201 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1202 * @cc: Compaction control structure.
1203 * @start_pfn: The first PFN to start isolating.
1204 * @end_pfn: The one-past-last PFN.
1205 *
369fa227
OS
1206 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1207 * in case we could not allocate a page, or 0.
edc2ca61 1208 */
c2ad7a1f 1209int
edc2ca61
VB
1210isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1211 unsigned long end_pfn)
1212{
e1409c32 1213 unsigned long pfn, block_start_pfn, block_end_pfn;
c2ad7a1f 1214 int ret = 0;
edc2ca61
VB
1215
1216 /* Scan block by block. First and last block may be incomplete */
1217 pfn = start_pfn;
06b6640a 1218 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1219 if (block_start_pfn < cc->zone->zone_start_pfn)
1220 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1221 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1222
1223 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1224 block_start_pfn = block_end_pfn,
edc2ca61
VB
1225 block_end_pfn += pageblock_nr_pages) {
1226
1227 block_end_pfn = min(block_end_pfn, end_pfn);
1228
e1409c32
JK
1229 if (!pageblock_pfn_to_page(block_start_pfn,
1230 block_end_pfn, cc->zone))
edc2ca61
VB
1231 continue;
1232
c2ad7a1f
OS
1233 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1234 ISOLATE_UNEVICTABLE);
edc2ca61 1235
c2ad7a1f 1236 if (ret)
edc2ca61 1237 break;
6ea41c0c 1238
38935861 1239 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
6ea41c0c 1240 break;
edc2ca61 1241 }
edc2ca61 1242
c2ad7a1f 1243 return ret;
edc2ca61
VB
1244}
1245
ff9543fd
MN
1246#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1247#ifdef CONFIG_COMPACTION
018e9a49 1248
b682debd
VB
1249static bool suitable_migration_source(struct compact_control *cc,
1250 struct page *page)
1251{
282722b0
VB
1252 int block_mt;
1253
9bebefd5
MG
1254 if (pageblock_skip_persistent(page))
1255 return false;
1256
282722b0 1257 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1258 return true;
1259
282722b0
VB
1260 block_mt = get_pageblock_migratetype(page);
1261
1262 if (cc->migratetype == MIGRATE_MOVABLE)
1263 return is_migrate_movable(block_mt);
1264 else
1265 return block_mt == cc->migratetype;
b682debd
VB
1266}
1267
018e9a49 1268/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1269static bool suitable_migration_target(struct compact_control *cc,
1270 struct page *page)
018e9a49
AM
1271{
1272 /* If the page is a large free page, then disallow migration */
1273 if (PageBuddy(page)) {
1274 /*
1275 * We are checking page_order without zone->lock taken. But
1276 * the only small danger is that we skip a potentially suitable
1277 * pageblock, so it's not worth to check order for valid range.
1278 */
ab130f91 1279 if (buddy_order_unsafe(page) >= pageblock_order)
018e9a49
AM
1280 return false;
1281 }
1282
1ef36db2
YX
1283 if (cc->ignore_block_suitable)
1284 return true;
1285
018e9a49 1286 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1287 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1288 return true;
1289
1290 /* Otherwise skip the block */
1291 return false;
1292}
1293
70b44595
MG
1294static inline unsigned int
1295freelist_scan_limit(struct compact_control *cc)
1296{
dd7ef7bd
QC
1297 unsigned short shift = BITS_PER_LONG - 1;
1298
1299 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1300}
1301
f2849aa0
VB
1302/*
1303 * Test whether the free scanner has reached the same or lower pageblock than
1304 * the migration scanner, and compaction should thus terminate.
1305 */
1306static inline bool compact_scanners_met(struct compact_control *cc)
1307{
1308 return (cc->free_pfn >> pageblock_order)
1309 <= (cc->migrate_pfn >> pageblock_order);
1310}
1311
5a811889
MG
1312/*
1313 * Used when scanning for a suitable migration target which scans freelists
1314 * in reverse. Reorders the list such as the unscanned pages are scanned
1315 * first on the next iteration of the free scanner
1316 */
1317static void
1318move_freelist_head(struct list_head *freelist, struct page *freepage)
1319{
1320 LIST_HEAD(sublist);
1321
1322 if (!list_is_last(freelist, &freepage->lru)) {
1323 list_cut_before(&sublist, freelist, &freepage->lru);
d2155fe5 1324 list_splice_tail(&sublist, freelist);
5a811889
MG
1325 }
1326}
1327
1328/*
1329 * Similar to move_freelist_head except used by the migration scanner
1330 * when scanning forward. It's possible for these list operations to
1331 * move against each other if they search the free list exactly in
1332 * lockstep.
1333 */
70b44595
MG
1334static void
1335move_freelist_tail(struct list_head *freelist, struct page *freepage)
1336{
1337 LIST_HEAD(sublist);
1338
1339 if (!list_is_first(freelist, &freepage->lru)) {
1340 list_cut_position(&sublist, freelist, &freepage->lru);
d2155fe5 1341 list_splice_tail(&sublist, freelist);
70b44595
MG
1342 }
1343}
1344
5a811889 1345static void
be21b32a 1346fast_isolate_around(struct compact_control *cc, unsigned long pfn)
5a811889
MG
1347{
1348 unsigned long start_pfn, end_pfn;
6e2b7044 1349 struct page *page;
5a811889
MG
1350
1351 /* Do not search around if there are enough pages already */
1352 if (cc->nr_freepages >= cc->nr_migratepages)
1353 return;
1354
1355 /* Minimise scanning during async compaction */
1356 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1357 return;
1358
1359 /* Pageblock boundaries */
6e2b7044
VB
1360 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1361 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1362
1363 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1364 if (!page)
1365 return;
5a811889 1366
be21b32a 1367 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
5a811889
MG
1368
1369 /* Skip this pageblock in the future as it's full or nearly full */
1370 if (cc->nr_freepages < cc->nr_migratepages)
1371 set_pageblock_skip(page);
be21b32a
NA
1372
1373 return;
5a811889
MG
1374}
1375
dbe2d4e4
MG
1376/* Search orders in round-robin fashion */
1377static int next_search_order(struct compact_control *cc, int order)
1378{
1379 order--;
1380 if (order < 0)
1381 order = cc->order - 1;
1382
1383 /* Search wrapped around? */
1384 if (order == cc->search_order) {
1385 cc->search_order--;
1386 if (cc->search_order < 0)
1387 cc->search_order = cc->order - 1;
1388 return -1;
1389 }
1390
1391 return order;
1392}
1393
5a811889
MG
1394static unsigned long
1395fast_isolate_freepages(struct compact_control *cc)
1396{
b55ca526 1397 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
5a811889 1398 unsigned int nr_scanned = 0;
74e21484 1399 unsigned long low_pfn, min_pfn, highest = 0;
5a811889
MG
1400 unsigned long nr_isolated = 0;
1401 unsigned long distance;
1402 struct page *page = NULL;
1403 bool scan_start = false;
1404 int order;
1405
1406 /* Full compaction passes in a negative order */
1407 if (cc->order <= 0)
1408 return cc->free_pfn;
1409
1410 /*
1411 * If starting the scan, use a deeper search and use the highest
1412 * PFN found if a suitable one is not found.
1413 */
e332f741 1414 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1415 limit = pageblock_nr_pages >> 1;
1416 scan_start = true;
1417 }
1418
1419 /*
1420 * Preferred point is in the top quarter of the scan space but take
1421 * a pfn from the top half if the search is problematic.
1422 */
1423 distance = (cc->free_pfn - cc->migrate_pfn);
1424 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1425 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1426
1427 if (WARN_ON_ONCE(min_pfn > low_pfn))
1428 low_pfn = min_pfn;
1429
dbe2d4e4
MG
1430 /*
1431 * Search starts from the last successful isolation order or the next
1432 * order to search after a previous failure
1433 */
1434 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1435
1436 for (order = cc->search_order;
1437 !page && order >= 0;
1438 order = next_search_order(cc, order)) {
5a811889
MG
1439 struct free_area *area = &cc->zone->free_area[order];
1440 struct list_head *freelist;
1441 struct page *freepage;
1442 unsigned long flags;
1443 unsigned int order_scanned = 0;
74e21484 1444 unsigned long high_pfn = 0;
5a811889
MG
1445
1446 if (!area->nr_free)
1447 continue;
1448
1449 spin_lock_irqsave(&cc->zone->lock, flags);
1450 freelist = &area->free_list[MIGRATE_MOVABLE];
1451 list_for_each_entry_reverse(freepage, freelist, lru) {
1452 unsigned long pfn;
1453
1454 order_scanned++;
1455 nr_scanned++;
1456 pfn = page_to_pfn(freepage);
1457
1458 if (pfn >= highest)
6e2b7044
VB
1459 highest = max(pageblock_start_pfn(pfn),
1460 cc->zone->zone_start_pfn);
5a811889
MG
1461
1462 if (pfn >= low_pfn) {
1463 cc->fast_search_fail = 0;
dbe2d4e4 1464 cc->search_order = order;
5a811889
MG
1465 page = freepage;
1466 break;
1467 }
1468
1469 if (pfn >= min_pfn && pfn > high_pfn) {
1470 high_pfn = pfn;
1471
1472 /* Shorten the scan if a candidate is found */
1473 limit >>= 1;
1474 }
1475
1476 if (order_scanned >= limit)
1477 break;
1478 }
1479
1480 /* Use a minimum pfn if a preferred one was not found */
1481 if (!page && high_pfn) {
1482 page = pfn_to_page(high_pfn);
1483
1484 /* Update freepage for the list reorder below */
1485 freepage = page;
1486 }
1487
1488 /* Reorder to so a future search skips recent pages */
1489 move_freelist_head(freelist, freepage);
1490
1491 /* Isolate the page if available */
1492 if (page) {
1493 if (__isolate_free_page(page, order)) {
1494 set_page_private(page, order);
1495 nr_isolated = 1 << order;
b717d6b9 1496 nr_scanned += nr_isolated - 1;
5a811889
MG
1497 cc->nr_freepages += nr_isolated;
1498 list_add_tail(&page->lru, &cc->freepages);
1499 count_compact_events(COMPACTISOLATED, nr_isolated);
1500 } else {
1501 /* If isolation fails, abort the search */
5b56d996 1502 order = cc->search_order + 1;
5a811889
MG
1503 page = NULL;
1504 }
1505 }
1506
1507 spin_unlock_irqrestore(&cc->zone->lock, flags);
1508
1509 /*
b55ca526 1510 * Smaller scan on next order so the total scan is related
5a811889
MG
1511 * to freelist_scan_limit.
1512 */
1513 if (order_scanned >= limit)
b55ca526 1514 limit = max(1U, limit >> 1);
5a811889
MG
1515 }
1516
1517 if (!page) {
1518 cc->fast_search_fail++;
1519 if (scan_start) {
1520 /*
1521 * Use the highest PFN found above min. If one was
f3867755 1522 * not found, be pessimistic for direct compaction
5a811889
MG
1523 * and use the min mark.
1524 */
ca2864e5 1525 if (highest >= min_pfn) {
5a811889
MG
1526 page = pfn_to_page(highest);
1527 cc->free_pfn = highest;
1528 } else {
e577c8b6 1529 if (cc->direct_compaction && pfn_valid(min_pfn)) {
73a6e474 1530 page = pageblock_pfn_to_page(min_pfn,
6e2b7044
VB
1531 min(pageblock_end_pfn(min_pfn),
1532 zone_end_pfn(cc->zone)),
73a6e474 1533 cc->zone);
5a811889
MG
1534 cc->free_pfn = min_pfn;
1535 }
1536 }
1537 }
1538 }
1539
d097a6f6
MG
1540 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1541 highest -= pageblock_nr_pages;
5a811889 1542 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1543 }
5a811889
MG
1544
1545 cc->total_free_scanned += nr_scanned;
1546 if (!page)
1547 return cc->free_pfn;
1548
1549 low_pfn = page_to_pfn(page);
be21b32a 1550 fast_isolate_around(cc, low_pfn);
5a811889
MG
1551 return low_pfn;
1552}
1553
2fe86e00 1554/*
ff9543fd
MN
1555 * Based on information in the current compact_control, find blocks
1556 * suitable for isolating free pages from and then isolate them.
2fe86e00 1557 */
edc2ca61 1558static void isolate_freepages(struct compact_control *cc)
2fe86e00 1559{
edc2ca61 1560 struct zone *zone = cc->zone;
ff9543fd 1561 struct page *page;
c96b9e50 1562 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1563 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1564 unsigned long block_end_pfn; /* end of current pageblock */
1565 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1566 struct list_head *freelist = &cc->freepages;
4fca9730 1567 unsigned int stride;
2fe86e00 1568
5a811889 1569 /* Try a small search of the free lists for a candidate */
00bc102f 1570 fast_isolate_freepages(cc);
5a811889
MG
1571 if (cc->nr_freepages)
1572 goto splitmap;
1573
ff9543fd
MN
1574 /*
1575 * Initialise the free scanner. The starting point is where we last
49e068f0 1576 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1577 * zone when isolating for the first time. For looping we also need
1578 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1579 * block_start_pfn -= pageblock_nr_pages in the for loop.
1580 * For ending point, take care when isolating in last pageblock of a
a1c1dbeb 1581 * zone which ends in the middle of a pageblock.
49e068f0
VB
1582 * The low boundary is the end of the pageblock the migration scanner
1583 * is using.
ff9543fd 1584 */
e14c720e 1585 isolate_start_pfn = cc->free_pfn;
5a811889 1586 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1587 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1588 zone_end_pfn(zone));
06b6640a 1589 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1590 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1591
ff9543fd
MN
1592 /*
1593 * Isolate free pages until enough are available to migrate the
1594 * pages on cc->migratepages. We stop searching if the migrate
1595 * and free page scanners meet or enough free pages are isolated.
1596 */
f5f61a32 1597 for (; block_start_pfn >= low_pfn;
c96b9e50 1598 block_end_pfn = block_start_pfn,
e14c720e
VB
1599 block_start_pfn -= pageblock_nr_pages,
1600 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1601 unsigned long nr_isolated;
1602
f6ea3adb
DR
1603 /*
1604 * This can iterate a massively long zone without finding any
cb810ad2 1605 * suitable migration targets, so periodically check resched.
f6ea3adb 1606 */
c036ddff 1607 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1608 cond_resched();
f6ea3adb 1609
7d49d886
VB
1610 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1611 zone);
1612 if (!page)
ff9543fd
MN
1613 continue;
1614
1615 /* Check the block is suitable for migration */
9f7e3387 1616 if (!suitable_migration_target(cc, page))
ff9543fd 1617 continue;
68e3e926 1618
bb13ffeb
MG
1619 /* If isolation recently failed, do not retry */
1620 if (!isolation_suitable(cc, page))
1621 continue;
1622
e14c720e 1623 /* Found a block suitable for isolating free pages from. */
4fca9730
MG
1624 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1625 block_end_pfn, freelist, stride, false);
ff9543fd 1626
d097a6f6
MG
1627 /* Update the skip hint if the full pageblock was scanned */
1628 if (isolate_start_pfn == block_end_pfn)
1629 update_pageblock_skip(cc, page, block_start_pfn);
1630
cb2dcaf0
MG
1631 /* Are enough freepages isolated? */
1632 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1633 if (isolate_start_pfn >= block_end_pfn) {
1634 /*
1635 * Restart at previous pageblock if more
1636 * freepages can be isolated next time.
1637 */
f5f61a32
VB
1638 isolate_start_pfn =
1639 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1640 }
be976572 1641 break;
a46cbf3b 1642 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1643 /*
a46cbf3b
DR
1644 * If isolation failed early, do not continue
1645 * needlessly.
f5f61a32 1646 */
a46cbf3b 1647 break;
f5f61a32 1648 }
4fca9730
MG
1649
1650 /* Adjust stride depending on isolation */
1651 if (nr_isolated) {
1652 stride = 1;
1653 continue;
1654 }
1655 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1656 }
1657
7ed695e0 1658 /*
f5f61a32
VB
1659 * Record where the free scanner will restart next time. Either we
1660 * broke from the loop and set isolate_start_pfn based on the last
1661 * call to isolate_freepages_block(), or we met the migration scanner
1662 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1663 */
f5f61a32 1664 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1665
1666splitmap:
1667 /* __isolate_free_page() does not map the pages */
1668 split_map_pages(freelist);
748446bb
MG
1669}
1670
1671/*
1672 * This is a migrate-callback that "allocates" freepages by taking pages
1673 * from the isolated freelists in the block we are migrating to.
1674 */
1675static struct page *compaction_alloc(struct page *migratepage,
666feb21 1676 unsigned long data)
748446bb
MG
1677{
1678 struct compact_control *cc = (struct compact_control *)data;
1679 struct page *freepage;
1680
748446bb 1681 if (list_empty(&cc->freepages)) {
cb2dcaf0 1682 isolate_freepages(cc);
748446bb
MG
1683
1684 if (list_empty(&cc->freepages))
1685 return NULL;
1686 }
1687
1688 freepage = list_entry(cc->freepages.next, struct page, lru);
1689 list_del(&freepage->lru);
1690 cc->nr_freepages--;
1691
1692 return freepage;
1693}
1694
1695/*
d53aea3d
DR
1696 * This is a migrate-callback that "frees" freepages back to the isolated
1697 * freelist. All pages on the freelist are from the same zone, so there is no
1698 * special handling needed for NUMA.
1699 */
1700static void compaction_free(struct page *page, unsigned long data)
1701{
1702 struct compact_control *cc = (struct compact_control *)data;
1703
1704 list_add(&page->lru, &cc->freepages);
1705 cc->nr_freepages++;
1706}
1707
ff9543fd
MN
1708/* possible outcome of isolate_migratepages */
1709typedef enum {
1710 ISOLATE_ABORT, /* Abort compaction now */
1711 ISOLATE_NONE, /* No pages isolated, continue scanning */
1712 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1713} isolate_migrate_t;
1714
5bbe3547
EM
1715/*
1716 * Allow userspace to control policy on scanning the unevictable LRU for
1717 * compactable pages.
1718 */
c7e0b3d0 1719int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
5bbe3547 1720
70b44595
MG
1721static inline void
1722update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1723{
1724 if (cc->fast_start_pfn == ULONG_MAX)
1725 return;
1726
1727 if (!cc->fast_start_pfn)
1728 cc->fast_start_pfn = pfn;
1729
1730 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1731}
1732
1733static inline unsigned long
1734reinit_migrate_pfn(struct compact_control *cc)
1735{
1736 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1737 return cc->migrate_pfn;
1738
1739 cc->migrate_pfn = cc->fast_start_pfn;
1740 cc->fast_start_pfn = ULONG_MAX;
1741
1742 return cc->migrate_pfn;
1743}
1744
1745/*
1746 * Briefly search the free lists for a migration source that already has
1747 * some free pages to reduce the number of pages that need migration
1748 * before a pageblock is free.
1749 */
1750static unsigned long fast_find_migrateblock(struct compact_control *cc)
1751{
1752 unsigned int limit = freelist_scan_limit(cc);
1753 unsigned int nr_scanned = 0;
1754 unsigned long distance;
1755 unsigned long pfn = cc->migrate_pfn;
1756 unsigned long high_pfn;
1757 int order;
15d28d0d 1758 bool found_block = false;
70b44595
MG
1759
1760 /* Skip hints are relied on to avoid repeats on the fast search */
1761 if (cc->ignore_skip_hint)
1762 return pfn;
1763
f9d7fc1a
MG
1764 /*
1765 * If the pageblock should be finished then do not select a different
1766 * pageblock.
1767 */
1768 if (cc->finish_pageblock)
1769 return pfn;
1770
70b44595
MG
1771 /*
1772 * If the migrate_pfn is not at the start of a zone or the start
1773 * of a pageblock then assume this is a continuation of a previous
1774 * scan restarted due to COMPACT_CLUSTER_MAX.
1775 */
1776 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1777 return pfn;
1778
1779 /*
1780 * For smaller orders, just linearly scan as the number of pages
1781 * to migrate should be relatively small and does not necessarily
1782 * justify freeing up a large block for a small allocation.
1783 */
1784 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1785 return pfn;
1786
1787 /*
1788 * Only allow kcompactd and direct requests for movable pages to
1789 * quickly clear out a MOVABLE pageblock for allocation. This
1790 * reduces the risk that a large movable pageblock is freed for
1791 * an unmovable/reclaimable small allocation.
1792 */
1793 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1794 return pfn;
1795
1796 /*
1797 * When starting the migration scanner, pick any pageblock within the
1798 * first half of the search space. Otherwise try and pick a pageblock
1799 * within the first eighth to reduce the chances that a migration
1800 * target later becomes a source.
1801 */
1802 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1803 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1804 distance >>= 2;
1805 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1806
1807 for (order = cc->order - 1;
15d28d0d 1808 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
70b44595
MG
1809 order--) {
1810 struct free_area *area = &cc->zone->free_area[order];
1811 struct list_head *freelist;
1812 unsigned long flags;
1813 struct page *freepage;
1814
1815 if (!area->nr_free)
1816 continue;
1817
1818 spin_lock_irqsave(&cc->zone->lock, flags);
1819 freelist = &area->free_list[MIGRATE_MOVABLE];
1820 list_for_each_entry(freepage, freelist, lru) {
1821 unsigned long free_pfn;
1822
15d28d0d
WY
1823 if (nr_scanned++ >= limit) {
1824 move_freelist_tail(freelist, freepage);
1825 break;
1826 }
1827
70b44595
MG
1828 free_pfn = page_to_pfn(freepage);
1829 if (free_pfn < high_pfn) {
70b44595
MG
1830 /*
1831 * Avoid if skipped recently. Ideally it would
1832 * move to the tail but even safe iteration of
1833 * the list assumes an entry is deleted, not
1834 * reordered.
1835 */
15d28d0d 1836 if (get_pageblock_skip(freepage))
70b44595 1837 continue;
70b44595
MG
1838
1839 /* Reorder to so a future search skips recent pages */
1840 move_freelist_tail(freelist, freepage);
1841
e380bebe 1842 update_fast_start_pfn(cc, free_pfn);
70b44595 1843 pfn = pageblock_start_pfn(free_pfn);
bbe832b9
RY
1844 if (pfn < cc->zone->zone_start_pfn)
1845 pfn = cc->zone->zone_start_pfn;
70b44595 1846 cc->fast_search_fail = 0;
15d28d0d 1847 found_block = true;
70b44595
MG
1848 break;
1849 }
70b44595
MG
1850 }
1851 spin_unlock_irqrestore(&cc->zone->lock, flags);
1852 }
1853
1854 cc->total_migrate_scanned += nr_scanned;
1855
1856 /*
1857 * If fast scanning failed then use a cached entry for a page block
1858 * that had free pages as the basis for starting a linear scan.
1859 */
15d28d0d
WY
1860 if (!found_block) {
1861 cc->fast_search_fail++;
70b44595 1862 pfn = reinit_migrate_pfn(cc);
15d28d0d 1863 }
70b44595
MG
1864 return pfn;
1865}
1866
ff9543fd 1867/*
edc2ca61
VB
1868 * Isolate all pages that can be migrated from the first suitable block,
1869 * starting at the block pointed to by the migrate scanner pfn within
1870 * compact_control.
ff9543fd 1871 */
32aaf055 1872static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
ff9543fd 1873{
e1409c32
JK
1874 unsigned long block_start_pfn;
1875 unsigned long block_end_pfn;
1876 unsigned long low_pfn;
edc2ca61
VB
1877 struct page *page;
1878 const isolate_mode_t isolate_mode =
5bbe3547 1879 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1880 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 1881 bool fast_find_block;
ff9543fd 1882
edc2ca61
VB
1883 /*
1884 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
1885 * initialized by compact_zone(). The first failure will use
1886 * the lowest PFN as the starting point for linear scanning.
edc2ca61 1887 */
70b44595 1888 low_pfn = fast_find_migrateblock(cc);
06b6640a 1889 block_start_pfn = pageblock_start_pfn(low_pfn);
32aaf055
PL
1890 if (block_start_pfn < cc->zone->zone_start_pfn)
1891 block_start_pfn = cc->zone->zone_start_pfn;
ff9543fd 1892
70b44595
MG
1893 /*
1894 * fast_find_migrateblock marks a pageblock skipped so to avoid
1895 * the isolation_suitable check below, check whether the fast
1896 * search was successful.
1897 */
1898 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1899
ff9543fd 1900 /* Only scan within a pageblock boundary */
06b6640a 1901 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1902
edc2ca61
VB
1903 /*
1904 * Iterate over whole pageblocks until we find the first suitable.
1905 * Do not cross the free scanner.
1906 */
e1409c32 1907 for (; block_end_pfn <= cc->free_pfn;
70b44595 1908 fast_find_block = false,
c2ad7a1f 1909 cc->migrate_pfn = low_pfn = block_end_pfn,
e1409c32
JK
1910 block_start_pfn = block_end_pfn,
1911 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1912
edc2ca61
VB
1913 /*
1914 * This can potentially iterate a massively long zone with
1915 * many pageblocks unsuitable, so periodically check if we
cb810ad2 1916 * need to schedule.
edc2ca61 1917 */
c036ddff 1918 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1919 cond_resched();
ff9543fd 1920
32aaf055
PL
1921 page = pageblock_pfn_to_page(block_start_pfn,
1922 block_end_pfn, cc->zone);
7d49d886 1923 if (!page)
edc2ca61
VB
1924 continue;
1925
e380bebe
MG
1926 /*
1927 * If isolation recently failed, do not retry. Only check the
1928 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1929 * to be visited multiple times. Assume skip was checked
1930 * before making it "skip" so other compaction instances do
1931 * not scan the same block.
1932 */
ee0913c4 1933 if (pageblock_aligned(low_pfn) &&
e380bebe 1934 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
1935 continue;
1936
1937 /*
556162bf
ML
1938 * For async direct compaction, only scan the pageblocks of the
1939 * same migratetype without huge pages. Async direct compaction
1940 * is optimistic to see if the minimum amount of work satisfies
1941 * the allocation. The cached PFN is updated as it's possible
1942 * that all remaining blocks between source and target are
1943 * unsuitable and the compaction scanners fail to meet.
edc2ca61 1944 */
9bebefd5
MG
1945 if (!suitable_migration_source(cc, page)) {
1946 update_cached_migrate(cc, block_end_pfn);
edc2ca61 1947 continue;
9bebefd5 1948 }
edc2ca61
VB
1949
1950 /* Perform the isolation */
c2ad7a1f
OS
1951 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1952 isolate_mode))
edc2ca61
VB
1953 return ISOLATE_ABORT;
1954
1955 /*
1956 * Either we isolated something and proceed with migration. Or
1957 * we failed and compact_zone should decide if we should
1958 * continue or not.
1959 */
1960 break;
1961 }
1962
edc2ca61 1963 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1964}
1965
21c527a3
YB
1966/*
1967 * order == -1 is expected when compacting via
1968 * /proc/sys/vm/compact_memory
1969 */
1970static inline bool is_via_compact_memory(int order)
1971{
1972 return order == -1;
1973}
1974
b4a0215e
KW
1975/*
1976 * Determine whether kswapd is (or recently was!) running on this node.
1977 *
1978 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
1979 * zero it.
1980 */
facdaa91
NG
1981static bool kswapd_is_running(pg_data_t *pgdat)
1982{
b4a0215e
KW
1983 bool running;
1984
1985 pgdat_kswapd_lock(pgdat);
1986 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
1987 pgdat_kswapd_unlock(pgdat);
1988
1989 return running;
facdaa91
NG
1990}
1991
1992/*
1993 * A zone's fragmentation score is the external fragmentation wrt to the
40d7e203
CTR
1994 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1995 */
1996static unsigned int fragmentation_score_zone(struct zone *zone)
1997{
1998 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1999}
2000
2001/*
2002 * A weighted zone's fragmentation score is the external fragmentation
2003 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2004 * returns a value in the range [0, 100].
facdaa91
NG
2005 *
2006 * The scaling factor ensures that proactive compaction focuses on larger
2007 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2008 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2009 * and thus never exceeds the high threshold for proactive compaction.
2010 */
40d7e203 2011static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
facdaa91
NG
2012{
2013 unsigned long score;
2014
40d7e203 2015 score = zone->present_pages * fragmentation_score_zone(zone);
facdaa91
NG
2016 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2017}
2018
2019/*
2020 * The per-node proactive (background) compaction process is started by its
2021 * corresponding kcompactd thread when the node's fragmentation score
2022 * exceeds the high threshold. The compaction process remains active till
2023 * the node's score falls below the low threshold, or one of the back-off
2024 * conditions is met.
2025 */
d34c0a75 2026static unsigned int fragmentation_score_node(pg_data_t *pgdat)
facdaa91 2027{
d34c0a75 2028 unsigned int score = 0;
facdaa91
NG
2029 int zoneid;
2030
2031 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2032 struct zone *zone;
2033
2034 zone = &pgdat->node_zones[zoneid];
9e552271
BW
2035 if (!populated_zone(zone))
2036 continue;
40d7e203 2037 score += fragmentation_score_zone_weighted(zone);
facdaa91
NG
2038 }
2039
2040 return score;
2041}
2042
d34c0a75 2043static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
facdaa91 2044{
d34c0a75 2045 unsigned int wmark_low;
facdaa91
NG
2046
2047 /*
f0953a1b
IM
2048 * Cap the low watermark to avoid excessive compaction
2049 * activity in case a user sets the proactiveness tunable
facdaa91
NG
2050 * close to 100 (maximum).
2051 */
d34c0a75
NG
2052 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2053 return low ? wmark_low : min(wmark_low + 10, 100U);
facdaa91
NG
2054}
2055
2056static bool should_proactive_compact_node(pg_data_t *pgdat)
2057{
2058 int wmark_high;
2059
2060 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2061 return false;
2062
2063 wmark_high = fragmentation_score_wmark(pgdat, false);
2064 return fragmentation_score_node(pgdat) > wmark_high;
2065}
2066
40cacbcb 2067static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 2068{
8fb74b9f 2069 unsigned int order;
d39773a0 2070 const int migratetype = cc->migratetype;
cb2dcaf0 2071 int ret;
748446bb 2072
753341a4 2073 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 2074 if (compact_scanners_met(cc)) {
55b7c4c9 2075 /* Let the next compaction start anew. */
40cacbcb 2076 reset_cached_positions(cc->zone);
55b7c4c9 2077
62997027
MG
2078 /*
2079 * Mark that the PG_migrate_skip information should be cleared
accf6242 2080 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
2081 * flag itself as the decision to be clear should be directly
2082 * based on an allocation request.
2083 */
accf6242 2084 if (cc->direct_compaction)
40cacbcb 2085 cc->zone->compact_blockskip_flush = true;
62997027 2086
c8f7de0b
MH
2087 if (cc->whole_zone)
2088 return COMPACT_COMPLETE;
2089 else
2090 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 2091 }
748446bb 2092
facdaa91
NG
2093 if (cc->proactive_compaction) {
2094 int score, wmark_low;
2095 pg_data_t *pgdat;
2096
2097 pgdat = cc->zone->zone_pgdat;
2098 if (kswapd_is_running(pgdat))
2099 return COMPACT_PARTIAL_SKIPPED;
2100
2101 score = fragmentation_score_zone(cc->zone);
2102 wmark_low = fragmentation_score_wmark(pgdat, true);
2103
2104 if (score > wmark_low)
2105 ret = COMPACT_CONTINUE;
2106 else
2107 ret = COMPACT_SUCCESS;
2108
2109 goto out;
2110 }
2111
21c527a3 2112 if (is_via_compact_memory(cc->order))
56de7263
MG
2113 return COMPACT_CONTINUE;
2114
efe771c7
MG
2115 /*
2116 * Always finish scanning a pageblock to reduce the possibility of
2117 * fallbacks in the future. This is particularly important when
2118 * migration source is unmovable/reclaimable but it's not worth
2119 * special casing.
2120 */
ee0913c4 2121 if (!pageblock_aligned(cc->migrate_pfn))
efe771c7 2122 return COMPACT_CONTINUE;
baf6a9a1 2123
56de7263 2124 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 2125 ret = COMPACT_NO_SUITABLE_PAGE;
8fb74b9f 2126 for (order = cc->order; order < MAX_ORDER; order++) {
40cacbcb 2127 struct free_area *area = &cc->zone->free_area[order];
2149cdae 2128 bool can_steal;
8fb74b9f
MG
2129
2130 /* Job done if page is free of the right migratetype */
b03641af 2131 if (!free_area_empty(area, migratetype))
cf378319 2132 return COMPACT_SUCCESS;
8fb74b9f 2133
2149cdae
JK
2134#ifdef CONFIG_CMA
2135 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2136 if (migratetype == MIGRATE_MOVABLE &&
b03641af 2137 !free_area_empty(area, MIGRATE_CMA))
cf378319 2138 return COMPACT_SUCCESS;
2149cdae
JK
2139#endif
2140 /*
2141 * Job done if allocation would steal freepages from
2142 * other migratetype buddy lists.
2143 */
2144 if (find_suitable_fallback(area, order, migratetype,
fa599c44 2145 true, &can_steal) != -1)
baf6a9a1 2146 /*
fa599c44
ML
2147 * Movable pages are OK in any pageblock. If we are
2148 * stealing for a non-movable allocation, make sure
2149 * we finish compacting the current pageblock first
2150 * (which is assured by the above migrate_pfn align
2151 * check) so it is as free as possible and we won't
2152 * have to steal another one soon.
baf6a9a1 2153 */
fa599c44 2154 return COMPACT_SUCCESS;
56de7263
MG
2155 }
2156
facdaa91 2157out:
cb2dcaf0
MG
2158 if (cc->contended || fatal_signal_pending(current))
2159 ret = COMPACT_CONTENDED;
2160
2161 return ret;
837d026d
JK
2162}
2163
40cacbcb 2164static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
2165{
2166 int ret;
2167
40cacbcb
MG
2168 ret = __compact_finished(cc);
2169 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
2170 if (ret == COMPACT_NO_SUITABLE_PAGE)
2171 ret = COMPACT_CONTINUE;
2172
2173 return ret;
748446bb
MG
2174}
2175
ea7ab982 2176static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 2177 unsigned int alloc_flags,
97a225e6 2178 int highest_zoneidx,
86a294a8 2179 unsigned long wmark_target)
3e7d3449 2180{
3e7d3449
MG
2181 unsigned long watermark;
2182
21c527a3 2183 if (is_via_compact_memory(order))
3957c776
MH
2184 return COMPACT_CONTINUE;
2185
a9214443 2186 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
ebff3980
VB
2187 /*
2188 * If watermarks for high-order allocation are already met, there
2189 * should be no need for compaction at all.
2190 */
97a225e6 2191 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
ebff3980 2192 alloc_flags))
cf378319 2193 return COMPACT_SUCCESS;
ebff3980 2194
3e7d3449 2195 /*
9861a62c 2196 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
2197 * isolate free pages for migration targets. This means that the
2198 * watermark and alloc_flags have to match, or be more pessimistic than
2199 * the check in __isolate_free_page(). We don't use the direct
2200 * compactor's alloc_flags, as they are not relevant for freepage
97a225e6
JK
2201 * isolation. We however do use the direct compactor's highest_zoneidx
2202 * to skip over zones where lowmem reserves would prevent allocation
2203 * even if compaction succeeds.
8348faf9
VB
2204 * For costly orders, we require low watermark instead of min for
2205 * compaction to proceed to increase its chances.
d883c6cf
JK
2206 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2207 * suitable migration targets
3e7d3449 2208 */
8348faf9
VB
2209 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2210 low_wmark_pages(zone) : min_wmark_pages(zone);
2211 watermark += compact_gap(order);
97a225e6 2212 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
d883c6cf 2213 ALLOC_CMA, wmark_target))
3e7d3449
MG
2214 return COMPACT_SKIPPED;
2215
cc5c9f09
VB
2216 return COMPACT_CONTINUE;
2217}
2218
2b1a20c3
HS
2219/*
2220 * compaction_suitable: Is this suitable to run compaction on this zone now?
2221 * Returns
2222 * COMPACT_SKIPPED - If there are too few free pages for compaction
2223 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2224 * COMPACT_CONTINUE - If compaction should run now
2225 */
cc5c9f09
VB
2226enum compact_result compaction_suitable(struct zone *zone, int order,
2227 unsigned int alloc_flags,
97a225e6 2228 int highest_zoneidx)
cc5c9f09
VB
2229{
2230 enum compact_result ret;
2231 int fragindex;
2232
97a225e6 2233 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
cc5c9f09 2234 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2235 /*
2236 * fragmentation index determines if allocation failures are due to
2237 * low memory or external fragmentation
2238 *
ebff3980
VB
2239 * index of -1000 would imply allocations might succeed depending on
2240 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2241 * index towards 0 implies failure is due to lack of memory
2242 * index towards 1000 implies failure is due to fragmentation
2243 *
20311420
VB
2244 * Only compact if a failure would be due to fragmentation. Also
2245 * ignore fragindex for non-costly orders where the alternative to
2246 * a successful reclaim/compaction is OOM. Fragindex and the
2247 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2248 * excessive compaction for costly orders, but it should not be at the
2249 * expense of system stability.
3e7d3449 2250 */
20311420 2251 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
2252 fragindex = fragmentation_index(zone, order);
2253 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2254 ret = COMPACT_NOT_SUITABLE_ZONE;
2255 }
837d026d 2256
837d026d
JK
2257 trace_mm_compaction_suitable(zone, order, ret);
2258 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2259 ret = COMPACT_SKIPPED;
2260
2261 return ret;
2262}
2263
86a294a8
MH
2264bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2265 int alloc_flags)
2266{
2267 struct zone *zone;
2268 struct zoneref *z;
2269
2270 /*
2271 * Make sure at least one zone would pass __compaction_suitable if we continue
2272 * retrying the reclaim.
2273 */
97a225e6
JK
2274 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2275 ac->highest_zoneidx, ac->nodemask) {
86a294a8
MH
2276 unsigned long available;
2277 enum compact_result compact_result;
2278
2279 /*
2280 * Do not consider all the reclaimable memory because we do not
2281 * want to trash just for a single high order allocation which
2282 * is even not guaranteed to appear even if __compaction_suitable
2283 * is happy about the watermark check.
2284 */
5a1c84b4 2285 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
2286 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2287 compact_result = __compaction_suitable(zone, order, alloc_flags,
97a225e6 2288 ac->highest_zoneidx, available);
cff387d6 2289 if (compact_result == COMPACT_CONTINUE)
86a294a8
MH
2290 return true;
2291 }
2292
2293 return false;
2294}
2295
5e1f0f09
MG
2296static enum compact_result
2297compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2298{
ea7ab982 2299 enum compact_result ret;
40cacbcb
MG
2300 unsigned long start_pfn = cc->zone->zone_start_pfn;
2301 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2302 unsigned long last_migrated_pfn;
e0b9daeb 2303 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2304 bool update_cached;
84b328aa 2305 unsigned int nr_succeeded = 0;
748446bb 2306
a94b5252
YS
2307 /*
2308 * These counters track activities during zone compaction. Initialize
2309 * them before compacting a new zone.
2310 */
2311 cc->total_migrate_scanned = 0;
2312 cc->total_free_scanned = 0;
2313 cc->nr_migratepages = 0;
2314 cc->nr_freepages = 0;
2315 INIT_LIST_HEAD(&cc->freepages);
2316 INIT_LIST_HEAD(&cc->migratepages);
2317
01c0bfe0 2318 cc->migratetype = gfp_migratetype(cc->gfp_mask);
40cacbcb 2319 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
97a225e6 2320 cc->highest_zoneidx);
c46649de 2321 /* Compaction is likely to fail */
cf378319 2322 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 2323 return ret;
c46649de 2324
d3132e4b
VB
2325 /*
2326 * Clear pageblock skip if there were failures recently and compaction
accf6242 2327 * is about to be retried after being deferred.
d3132e4b 2328 */
40cacbcb
MG
2329 if (compaction_restarting(cc->zone, cc->order))
2330 __reset_isolation_suitable(cc->zone);
d3132e4b 2331
c89511ab
MG
2332 /*
2333 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2334 * information on where the scanners should start (unless we explicitly
2335 * want to compact the whole zone), but check that it is initialised
2336 * by ensuring the values are within zone boundaries.
c89511ab 2337 */
70b44595 2338 cc->fast_start_pfn = 0;
06ed2998 2339 if (cc->whole_zone) {
c89511ab 2340 cc->migrate_pfn = start_pfn;
06ed2998
VB
2341 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2342 } else {
40cacbcb
MG
2343 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2344 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2345 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2346 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2347 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2348 }
2349 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2350 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2351 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2352 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2353 }
c8f7de0b 2354
e332f741 2355 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2356 cc->whole_zone = true;
2357 }
c8f7de0b 2358
566e54e1 2359 last_migrated_pfn = 0;
748446bb 2360
8854c55f
MG
2361 /*
2362 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2363 * the basis that some migrations will fail in ASYNC mode. However,
2364 * if the cached PFNs match and pageblocks are skipped due to having
2365 * no isolation candidates, then the sync state does not matter.
2366 * Until a pageblock with isolation candidates is found, keep the
2367 * cached PFNs in sync to avoid revisiting the same blocks.
2368 */
2369 update_cached = !sync &&
2370 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2371
abd4349f 2372 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
0eb927c0 2373
361a2a22
MK
2374 /* lru_add_drain_all could be expensive with involving other CPUs */
2375 lru_add_drain();
748446bb 2376
40cacbcb 2377 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2378 int err;
19d3cf9d 2379 unsigned long iteration_start_pfn = cc->migrate_pfn;
748446bb 2380
804d3121 2381 /*
48731c84
MG
2382 * Avoid multiple rescans of the same pageblock which can
2383 * happen if a page cannot be isolated (dirty/writeback in
2384 * async mode) or if the migrated pages are being allocated
2385 * before the pageblock is cleared. The first rescan will
2386 * capture the entire pageblock for migration. If it fails,
2387 * it'll be marked skip and scanning will proceed as normal.
804d3121 2388 */
48731c84 2389 cc->finish_pageblock = false;
804d3121 2390 if (pageblock_start_pfn(last_migrated_pfn) ==
19d3cf9d 2391 pageblock_start_pfn(iteration_start_pfn)) {
48731c84 2392 cc->finish_pageblock = true;
804d3121
MG
2393 }
2394
32aaf055 2395 switch (isolate_migratepages(cc)) {
f9e35b3b 2396 case ISOLATE_ABORT:
2d1e1041 2397 ret = COMPACT_CONTENDED;
5733c7d1 2398 putback_movable_pages(&cc->migratepages);
e64c5237 2399 cc->nr_migratepages = 0;
f9e35b3b
MG
2400 goto out;
2401 case ISOLATE_NONE:
8854c55f
MG
2402 if (update_cached) {
2403 cc->zone->compact_cached_migrate_pfn[1] =
2404 cc->zone->compact_cached_migrate_pfn[0];
2405 }
2406
fdaf7f5c
VB
2407 /*
2408 * We haven't isolated and migrated anything, but
2409 * there might still be unflushed migrations from
2410 * previous cc->order aligned block.
2411 */
2412 goto check_drain;
f9e35b3b 2413 case ISOLATE_SUCCESS:
8854c55f 2414 update_cached = false;
19d3cf9d 2415 last_migrated_pfn = iteration_start_pfn;
f9e35b3b 2416 }
748446bb 2417
d53aea3d 2418 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2419 compaction_free, (unsigned long)cc, cc->mode,
84b328aa 2420 MR_COMPACTION, &nr_succeeded);
748446bb 2421
abd4349f 2422 trace_mm_compaction_migratepages(cc, nr_succeeded);
748446bb 2423
f8c9301f
VB
2424 /* All pages were either migrated or will be released */
2425 cc->nr_migratepages = 0;
9d502c1c 2426 if (err) {
5733c7d1 2427 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2428 /*
2429 * migrate_pages() may return -ENOMEM when scanners meet
2430 * and we want compact_finished() to detect it
2431 */
f2849aa0 2432 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2433 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2434 goto out;
2435 }
fdd048e1
VB
2436 /*
2437 * We failed to migrate at least one page in the current
2438 * order-aligned block, so skip the rest of it.
2439 */
2440 if (cc->direct_compaction &&
2441 (cc->mode == MIGRATE_ASYNC)) {
2442 cc->migrate_pfn = block_end_pfn(
2443 cc->migrate_pfn - 1, cc->order);
2444 /* Draining pcplists is useless in this case */
566e54e1 2445 last_migrated_pfn = 0;
fdd048e1 2446 }
748446bb 2447 }
fdaf7f5c 2448
16b3be40
MG
2449 /* Stop if a page has been captured */
2450 if (capc && capc->page) {
2451 ret = COMPACT_SUCCESS;
2452 break;
2453 }
2454
fdaf7f5c
VB
2455check_drain:
2456 /*
2457 * Has the migration scanner moved away from the previous
2458 * cc->order aligned block where we migrated from? If yes,
2459 * flush the pages that were freed, so that they can merge and
2460 * compact_finished() can detect immediately if allocation
2461 * would succeed.
2462 */
566e54e1 2463 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c 2464 unsigned long current_block_start =
06b6640a 2465 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2466
566e54e1 2467 if (last_migrated_pfn < current_block_start) {
b01b2141 2468 lru_add_drain_cpu_zone(cc->zone);
fdaf7f5c 2469 /* No more flushing until we migrate again */
566e54e1 2470 last_migrated_pfn = 0;
fdaf7f5c
VB
2471 }
2472 }
748446bb
MG
2473 }
2474
f9e35b3b 2475out:
6bace090
VB
2476 /*
2477 * Release free pages and update where the free scanner should restart,
2478 * so we don't leave any returned pages behind in the next attempt.
2479 */
2480 if (cc->nr_freepages > 0) {
2481 unsigned long free_pfn = release_freepages(&cc->freepages);
2482
2483 cc->nr_freepages = 0;
2484 VM_BUG_ON(free_pfn == 0);
2485 /* The cached pfn is always the first in a pageblock */
06b6640a 2486 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2487 /*
2488 * Only go back, not forward. The cached pfn might have been
2489 * already reset to zone end in compact_finished()
2490 */
40cacbcb
MG
2491 if (free_pfn > cc->zone->compact_cached_free_pfn)
2492 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2493 }
748446bb 2494
7f354a54
DR
2495 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2496 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2497
abd4349f 2498 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
0eb927c0 2499
753ec50d
BW
2500 VM_BUG_ON(!list_empty(&cc->freepages));
2501 VM_BUG_ON(!list_empty(&cc->migratepages));
2502
748446bb
MG
2503 return ret;
2504}
76ab0f53 2505
ea7ab982 2506static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2507 gfp_t gfp_mask, enum compact_priority prio,
97a225e6 2508 unsigned int alloc_flags, int highest_zoneidx,
5e1f0f09 2509 struct page **capture)
56de7263 2510{
ea7ab982 2511 enum compact_result ret;
56de7263 2512 struct compact_control cc = {
56de7263 2513 .order = order,
dbe2d4e4 2514 .search_order = order,
6d7ce559 2515 .gfp_mask = gfp_mask,
56de7263 2516 .zone = zone,
a5508cd8
VB
2517 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2518 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980 2519 .alloc_flags = alloc_flags,
97a225e6 2520 .highest_zoneidx = highest_zoneidx,
accf6242 2521 .direct_compaction = true,
a8e025e5 2522 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2523 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2524 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2525 };
5e1f0f09
MG
2526 struct capture_control capc = {
2527 .cc = &cc,
2528 .page = NULL,
2529 };
2530
b9e20f0d
VB
2531 /*
2532 * Make sure the structs are really initialized before we expose the
2533 * capture control, in case we are interrupted and the interrupt handler
2534 * frees a page.
2535 */
2536 barrier();
2537 WRITE_ONCE(current->capture_control, &capc);
56de7263 2538
5e1f0f09 2539 ret = compact_zone(&cc, &capc);
e64c5237 2540
b9e20f0d
VB
2541 /*
2542 * Make sure we hide capture control first before we read the captured
2543 * page pointer, otherwise an interrupt could free and capture a page
2544 * and we would leak it.
2545 */
2546 WRITE_ONCE(current->capture_control, NULL);
2547 *capture = READ_ONCE(capc.page);
06dac2f4
CTR
2548 /*
2549 * Technically, it is also possible that compaction is skipped but
2550 * the page is still captured out of luck(IRQ came and freed the page).
2551 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2552 * the COMPACT[STALL|FAIL] when compaction is skipped.
2553 */
2554 if (*capture)
2555 ret = COMPACT_SUCCESS;
5e1f0f09 2556
e64c5237 2557 return ret;
56de7263
MG
2558}
2559
5e771905
MG
2560int sysctl_extfrag_threshold = 500;
2561
56de7263
MG
2562/**
2563 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2564 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2565 * @order: The order of the current allocation
2566 * @alloc_flags: The allocation flags of the current allocation
2567 * @ac: The context of current allocation
112d2d29 2568 * @prio: Determines how hard direct compaction should try to succeed
6467552c 2569 * @capture: Pointer to free page created by compaction will be stored here
56de7263
MG
2570 *
2571 * This is the main entry point for direct page compaction.
2572 */
ea7ab982 2573enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2574 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2575 enum compact_priority prio, struct page **capture)
56de7263 2576{
fe573327 2577 int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
56de7263
MG
2578 struct zoneref *z;
2579 struct zone *zone;
1d4746d3 2580 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2581
73e64c51
MH
2582 /*
2583 * Check if the GFP flags allow compaction - GFP_NOIO is really
2584 * tricky context because the migration might require IO
2585 */
2586 if (!may_perform_io)
53853e2d 2587 return COMPACT_SKIPPED;
56de7263 2588
a5508cd8 2589 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2590
56de7263 2591 /* Compact each zone in the list */
97a225e6
JK
2592 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2593 ac->highest_zoneidx, ac->nodemask) {
ea7ab982 2594 enum compact_result status;
56de7263 2595
a8e025e5
VB
2596 if (prio > MIN_COMPACT_PRIORITY
2597 && compaction_deferred(zone, order)) {
1d4746d3 2598 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2599 continue;
1d4746d3 2600 }
53853e2d 2601
a5508cd8 2602 status = compact_zone_order(zone, order, gfp_mask, prio,
97a225e6 2603 alloc_flags, ac->highest_zoneidx, capture);
56de7263
MG
2604 rc = max(status, rc);
2605
7ceb009a
VB
2606 /* The allocation should succeed, stop compacting */
2607 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2608 /*
2609 * We think the allocation will succeed in this zone,
2610 * but it is not certain, hence the false. The caller
2611 * will repeat this with true if allocation indeed
2612 * succeeds in this zone.
2613 */
2614 compaction_defer_reset(zone, order, false);
1f9efdef 2615
c3486f53 2616 break;
1f9efdef
VB
2617 }
2618
a5508cd8 2619 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2620 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2621 /*
2622 * We think that allocation won't succeed in this zone
2623 * so we defer compaction there. If it ends up
2624 * succeeding after all, it will be reset.
2625 */
2626 defer_compaction(zone, order);
1f9efdef
VB
2627
2628 /*
2629 * We might have stopped compacting due to need_resched() in
2630 * async compaction, or due to a fatal signal detected. In that
c3486f53 2631 * case do not try further zones
1f9efdef 2632 */
c3486f53
VB
2633 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2634 || fatal_signal_pending(current))
2635 break;
56de7263
MG
2636 }
2637
2638 return rc;
2639}
2640
facdaa91
NG
2641/*
2642 * Compact all zones within a node till each zone's fragmentation score
2643 * reaches within proactive compaction thresholds (as determined by the
2644 * proactiveness tunable).
2645 *
2646 * It is possible that the function returns before reaching score targets
2647 * due to various back-off conditions, such as, contention on per-node or
2648 * per-zone locks.
2649 */
2650static void proactive_compact_node(pg_data_t *pgdat)
2651{
2652 int zoneid;
2653 struct zone *zone;
2654 struct compact_control cc = {
2655 .order = -1,
2656 .mode = MIGRATE_SYNC_LIGHT,
2657 .ignore_skip_hint = true,
2658 .whole_zone = true,
2659 .gfp_mask = GFP_KERNEL,
2660 .proactive_compaction = true,
2661 };
2662
2663 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2664 zone = &pgdat->node_zones[zoneid];
2665 if (!populated_zone(zone))
2666 continue;
2667
2668 cc.zone = zone;
2669
2670 compact_zone(&cc, NULL);
1bfb7684
BW
2671
2672 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2673 cc.total_migrate_scanned);
2674 count_compact_events(KCOMPACTD_FREE_SCANNED,
2675 cc.total_free_scanned);
facdaa91
NG
2676 }
2677}
56de7263 2678
76ab0f53 2679/* Compact all zones within a node */
791cae96 2680static void compact_node(int nid)
76ab0f53 2681{
791cae96 2682 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 2683 int zoneid;
76ab0f53 2684 struct zone *zone;
791cae96
VB
2685 struct compact_control cc = {
2686 .order = -1,
2687 .mode = MIGRATE_SYNC,
2688 .ignore_skip_hint = true,
2689 .whole_zone = true,
73e64c51 2690 .gfp_mask = GFP_KERNEL,
791cae96
VB
2691 };
2692
76ab0f53 2693
76ab0f53 2694 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
2695
2696 zone = &pgdat->node_zones[zoneid];
2697 if (!populated_zone(zone))
2698 continue;
2699
791cae96 2700 cc.zone = zone;
76ab0f53 2701
5e1f0f09 2702 compact_zone(&cc, NULL);
76ab0f53 2703 }
76ab0f53
MG
2704}
2705
2706/* Compact all nodes in the system */
7964c06d 2707static void compact_nodes(void)
76ab0f53
MG
2708{
2709 int nid;
2710
8575ec29
HD
2711 /* Flush pending updates to the LRU lists */
2712 lru_add_drain_all();
2713
76ab0f53
MG
2714 for_each_online_node(nid)
2715 compact_node(nid);
76ab0f53
MG
2716}
2717
facdaa91
NG
2718/*
2719 * Tunable for proactive compaction. It determines how
2720 * aggressively the kernel should compact memory in the
2721 * background. It takes values in the range [0, 100].
2722 */
d34c0a75 2723unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
facdaa91 2724
65d759c8
CTR
2725int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2726 void *buffer, size_t *length, loff_t *ppos)
2727{
2728 int rc, nid;
2729
2730 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2731 if (rc)
2732 return rc;
2733
2734 if (write && sysctl_compaction_proactiveness) {
2735 for_each_online_node(nid) {
2736 pg_data_t *pgdat = NODE_DATA(nid);
2737
2738 if (pgdat->proactive_compact_trigger)
2739 continue;
2740
2741 pgdat->proactive_compact_trigger = true;
8fff8b6f
BW
2742 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2743 pgdat->nr_zones - 1);
65d759c8
CTR
2744 wake_up_interruptible(&pgdat->kcompactd_wait);
2745 }
2746 }
2747
2748 return 0;
2749}
2750
fec4eb2c
YB
2751/*
2752 * This is the entry point for compacting all nodes via
2753 * /proc/sys/vm/compact_memory
2754 */
76ab0f53 2755int sysctl_compaction_handler(struct ctl_table *table, int write,
32927393 2756 void *buffer, size_t *length, loff_t *ppos)
76ab0f53
MG
2757{
2758 if (write)
7964c06d 2759 compact_nodes();
76ab0f53
MG
2760
2761 return 0;
2762}
ed4a6d7f
MG
2763
2764#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
17adb230
Y
2765static ssize_t compact_store(struct device *dev,
2766 struct device_attribute *attr,
2767 const char *buf, size_t count)
ed4a6d7f 2768{
8575ec29
HD
2769 int nid = dev->id;
2770
2771 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2772 /* Flush pending updates to the LRU lists */
2773 lru_add_drain_all();
2774
2775 compact_node(nid);
2776 }
ed4a6d7f
MG
2777
2778 return count;
2779}
17adb230 2780static DEVICE_ATTR_WO(compact);
ed4a6d7f
MG
2781
2782int compaction_register_node(struct node *node)
2783{
10fbcf4c 2784 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2785}
2786
2787void compaction_unregister_node(struct node *node)
2788{
10fbcf4c 2789 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2790}
2791#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2792
698b1b30
VB
2793static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2794{
65d759c8
CTR
2795 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2796 pgdat->proactive_compact_trigger;
698b1b30
VB
2797}
2798
2799static bool kcompactd_node_suitable(pg_data_t *pgdat)
2800{
2801 int zoneid;
2802 struct zone *zone;
97a225e6 2803 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
698b1b30 2804
97a225e6 2805 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
698b1b30
VB
2806 zone = &pgdat->node_zones[zoneid];
2807
2808 if (!populated_zone(zone))
2809 continue;
2810
2811 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
97a225e6 2812 highest_zoneidx) == COMPACT_CONTINUE)
698b1b30
VB
2813 return true;
2814 }
2815
2816 return false;
2817}
2818
2819static void kcompactd_do_work(pg_data_t *pgdat)
2820{
2821 /*
2822 * With no special task, compact all zones so that a page of requested
2823 * order is allocatable.
2824 */
2825 int zoneid;
2826 struct zone *zone;
2827 struct compact_control cc = {
2828 .order = pgdat->kcompactd_max_order,
dbe2d4e4 2829 .search_order = pgdat->kcompactd_max_order,
97a225e6 2830 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
698b1b30 2831 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2832 .ignore_skip_hint = false,
73e64c51 2833 .gfp_mask = GFP_KERNEL,
698b1b30 2834 };
698b1b30 2835 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
97a225e6 2836 cc.highest_zoneidx);
7f354a54 2837 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2838
97a225e6 2839 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
698b1b30
VB
2840 int status;
2841
2842 zone = &pgdat->node_zones[zoneid];
2843 if (!populated_zone(zone))
2844 continue;
2845
2846 if (compaction_deferred(zone, cc.order))
2847 continue;
2848
2849 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2850 COMPACT_CONTINUE)
2851 continue;
2852
172400c6
VB
2853 if (kthread_should_stop())
2854 return;
a94b5252
YS
2855
2856 cc.zone = zone;
5e1f0f09 2857 status = compact_zone(&cc, NULL);
698b1b30 2858
7ceb009a 2859 if (status == COMPACT_SUCCESS) {
698b1b30 2860 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 2861 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
2862 /*
2863 * Buddy pages may become stranded on pcps that could
2864 * otherwise coalesce on the zone's free area for
2865 * order >= cc.order. This is ratelimited by the
2866 * upcoming deferral.
2867 */
2868 drain_all_pages(zone);
2869
698b1b30
VB
2870 /*
2871 * We use sync migration mode here, so we defer like
2872 * sync direct compaction does.
2873 */
2874 defer_compaction(zone, cc.order);
2875 }
2876
7f354a54
DR
2877 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2878 cc.total_migrate_scanned);
2879 count_compact_events(KCOMPACTD_FREE_SCANNED,
2880 cc.total_free_scanned);
698b1b30
VB
2881 }
2882
2883 /*
2884 * Regardless of success, we are done until woken up next. But remember
97a225e6
JK
2885 * the requested order/highest_zoneidx in case it was higher/tighter
2886 * than our current ones
698b1b30
VB
2887 */
2888 if (pgdat->kcompactd_max_order <= cc.order)
2889 pgdat->kcompactd_max_order = 0;
97a225e6
JK
2890 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2891 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2892}
2893
97a225e6 2894void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
698b1b30
VB
2895{
2896 if (!order)
2897 return;
2898
2899 if (pgdat->kcompactd_max_order < order)
2900 pgdat->kcompactd_max_order = order;
2901
97a225e6
JK
2902 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2903 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
698b1b30 2904
6818600f
DB
2905 /*
2906 * Pairs with implicit barrier in wait_event_freezable()
2907 * such that wakeups are not missed.
2908 */
2909 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2910 return;
2911
2912 if (!kcompactd_node_suitable(pgdat))
2913 return;
2914
2915 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
97a225e6 2916 highest_zoneidx);
698b1b30
VB
2917 wake_up_interruptible(&pgdat->kcompactd_wait);
2918}
2919
2920/*
2921 * The background compaction daemon, started as a kernel thread
2922 * from the init process.
2923 */
2924static int kcompactd(void *p)
2925{
68d68ff6 2926 pg_data_t *pgdat = (pg_data_t *)p;
698b1b30 2927 struct task_struct *tsk = current;
e1e92bfa
CTR
2928 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2929 long timeout = default_timeout;
698b1b30
VB
2930
2931 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2932
2933 if (!cpumask_empty(cpumask))
2934 set_cpus_allowed_ptr(tsk, cpumask);
2935
2936 set_freezable();
2937
2938 pgdat->kcompactd_max_order = 0;
97a225e6 2939 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2940
2941 while (!kthread_should_stop()) {
eb414681
JW
2942 unsigned long pflags;
2943
65d759c8
CTR
2944 /*
2945 * Avoid the unnecessary wakeup for proactive compaction
2946 * when it is disabled.
2947 */
2948 if (!sysctl_compaction_proactiveness)
2949 timeout = MAX_SCHEDULE_TIMEOUT;
698b1b30 2950 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
facdaa91 2951 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
65d759c8
CTR
2952 kcompactd_work_requested(pgdat), timeout) &&
2953 !pgdat->proactive_compact_trigger) {
facdaa91
NG
2954
2955 psi_memstall_enter(&pflags);
2956 kcompactd_do_work(pgdat);
2957 psi_memstall_leave(&pflags);
e1e92bfa
CTR
2958 /*
2959 * Reset the timeout value. The defer timeout from
2960 * proactive compaction is lost here but that is fine
2961 * as the condition of the zone changing substantionally
2962 * then carrying on with the previous defer interval is
2963 * not useful.
2964 */
2965 timeout = default_timeout;
facdaa91
NG
2966 continue;
2967 }
698b1b30 2968
e1e92bfa
CTR
2969 /*
2970 * Start the proactive work with default timeout. Based
2971 * on the fragmentation score, this timeout is updated.
2972 */
2973 timeout = default_timeout;
facdaa91
NG
2974 if (should_proactive_compact_node(pgdat)) {
2975 unsigned int prev_score, score;
2976
facdaa91
NG
2977 prev_score = fragmentation_score_node(pgdat);
2978 proactive_compact_node(pgdat);
2979 score = fragmentation_score_node(pgdat);
2980 /*
2981 * Defer proactive compaction if the fragmentation
2982 * score did not go down i.e. no progress made.
2983 */
e1e92bfa
CTR
2984 if (unlikely(score >= prev_score))
2985 timeout =
2986 default_timeout << COMPACT_MAX_DEFER_SHIFT;
facdaa91 2987 }
65d759c8
CTR
2988 if (unlikely(pgdat->proactive_compact_trigger))
2989 pgdat->proactive_compact_trigger = false;
698b1b30
VB
2990 }
2991
2992 return 0;
2993}
2994
2995/*
2996 * This kcompactd start function will be called by init and node-hot-add.
2997 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2998 */
024c61ea 2999void kcompactd_run(int nid)
698b1b30
VB
3000{
3001 pg_data_t *pgdat = NODE_DATA(nid);
698b1b30
VB
3002
3003 if (pgdat->kcompactd)
024c61ea 3004 return;
698b1b30
VB
3005
3006 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3007 if (IS_ERR(pgdat->kcompactd)) {
3008 pr_err("Failed to start kcompactd on node %d\n", nid);
698b1b30
VB
3009 pgdat->kcompactd = NULL;
3010 }
698b1b30
VB
3011}
3012
3013/*
3014 * Called by memory hotplug when all memory in a node is offlined. Caller must
e8da368a 3015 * be holding mem_hotplug_begin/done().
698b1b30
VB
3016 */
3017void kcompactd_stop(int nid)
3018{
3019 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3020
3021 if (kcompactd) {
3022 kthread_stop(kcompactd);
3023 NODE_DATA(nid)->kcompactd = NULL;
3024 }
3025}
3026
3027/*
3028 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3029 * not required for correctness. So if the last cpu in a node goes
3030 * away, we get changed to run anywhere: as the first one comes back,
3031 * restore their cpu bindings.
3032 */
e46b1db2 3033static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
3034{
3035 int nid;
3036
e46b1db2
AMG
3037 for_each_node_state(nid, N_MEMORY) {
3038 pg_data_t *pgdat = NODE_DATA(nid);
3039 const struct cpumask *mask;
698b1b30 3040
e46b1db2 3041 mask = cpumask_of_node(pgdat->node_id);
698b1b30 3042
e46b1db2
AMG
3043 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3044 /* One of our CPUs online: restore mask */
3109de30
ML
3045 if (pgdat->kcompactd)
3046 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 3047 }
e46b1db2 3048 return 0;
698b1b30
VB
3049}
3050
3051static int __init kcompactd_init(void)
3052{
3053 int nid;
e46b1db2
AMG
3054 int ret;
3055
3056 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3057 "mm/compaction:online",
3058 kcompactd_cpu_online, NULL);
3059 if (ret < 0) {
3060 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3061 return ret;
3062 }
698b1b30
VB
3063
3064 for_each_node_state(nid, N_MEMORY)
3065 kcompactd_run(nid);
698b1b30
VB
3066 return 0;
3067}
3068subsys_initcall(kcompactd_init)
3069
ff9543fd 3070#endif /* CONFIG_COMPACTION */