]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/filemap.c
mm: workingset: tell cache transitions from workingset thrashing
[thirdparty/linux.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
3f07c014 16#include <linux/sched/signal.h>
c22ce143 17#include <linux/uaccess.h>
c59ede7b 18#include <linux/capability.h>
1da177e4 19#include <linux/kernel_stat.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/mm.h>
22#include <linux/swap.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/file.h>
26#include <linux/uio.h>
27#include <linux/hash.h>
28#include <linux/writeback.h>
53253383 29#include <linux/backing-dev.h>
1da177e4
LT
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/security.h>
44110fe3 33#include <linux/cpuset.h>
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
c7df8ad2 37#include <linux/shmem_fs.h>
f1820361 38#include <linux/rmap.h>
0f8053a5
NP
39#include "internal.h"
40
fe0bfaaf
RJ
41#define CREATE_TRACE_POINTS
42#include <trace/events/filemap.h>
43
1da177e4 44/*
1da177e4
LT
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
148f948b 47#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 48
1da177e4
LT
49#include <asm/mman.h>
50
51/*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63/*
64 * Lock ordering:
65 *
c8c06efa 66 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 68 * ->swap_lock (exclusive_swap_page, others)
b93b0163 69 * ->i_pages lock
1da177e4 70 *
1b1dcc1b 71 * ->i_mutex
c8c06efa 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
73 *
74 * ->mmap_sem
c8c06efa 75 * ->i_mmap_rwsem
b8072f09 76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 77 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4
LT
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
ccad2365 82 * ->i_mutex (generic_perform_write)
82591e6e 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 84 *
f758eeab 85 * bdi->wb.list_lock
a66979ab 86 * sb_lock (fs/fs-writeback.c)
b93b0163 87 * ->i_pages lock (__sync_single_inode)
1da177e4 88 *
c8c06efa 89 * ->i_mmap_rwsem
1da177e4
LT
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
b8072f09 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 94 *
b8072f09 95 * ->page_table_lock or pte_lock
5d337b91 96 * ->swap_lock (try_to_unmap_one)
1da177e4 97 * ->private_lock (try_to_unmap_one)
b93b0163 98 * ->i_pages lock (try_to_unmap_one)
a52633d8
MG
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
1da177e4 101 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 102 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
c8c06efa 110 * ->i_mmap_rwsem
9a3c531d 111 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
112 */
113
22f2ac51
JW
114static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116{
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
b93b0163 121 error = __radix_tree_create(&mapping->i_pages, page->index, 0,
22f2ac51
JW
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
b93b0163
MW
128 p = radix_tree_deref_slot_protected(slot,
129 &mapping->i_pages.xa_lock);
22f2ac51
JW
130 if (!radix_tree_exceptional_entry(p))
131 return -EEXIST;
132
133 mapping->nrexceptional--;
d01ad197
RZ
134 if (shadowp)
135 *shadowp = p;
22f2ac51 136 }
b93b0163 137 __radix_tree_replace(&mapping->i_pages, node, slot, page,
c7df8ad2 138 workingset_lookup_update(mapping));
22f2ac51 139 mapping->nrpages++;
22f2ac51
JW
140 return 0;
141}
142
91b0abe3
JW
143static void page_cache_tree_delete(struct address_space *mapping,
144 struct page *page, void *shadow)
145{
c70b647d
KS
146 int i, nr;
147
148 /* hugetlb pages are represented by one entry in the radix tree */
149 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
91b0abe3 150
83929372
KS
151 VM_BUG_ON_PAGE(!PageLocked(page), page);
152 VM_BUG_ON_PAGE(PageTail(page), page);
153 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 154
83929372 155 for (i = 0; i < nr; i++) {
d3798ae8
JW
156 struct radix_tree_node *node;
157 void **slot;
158
b93b0163 159 __radix_tree_lookup(&mapping->i_pages, page->index + i,
d3798ae8
JW
160 &node, &slot);
161
dbc446b8 162 VM_BUG_ON_PAGE(!node && nr != 1, page);
449dd698 163
b93b0163
MW
164 radix_tree_clear_tags(&mapping->i_pages, node, slot);
165 __radix_tree_replace(&mapping->i_pages, node, slot, shadow,
c7df8ad2 166 workingset_lookup_update(mapping));
449dd698 167 }
d3798ae8 168
2300638b
JK
169 page->mapping = NULL;
170 /* Leave page->index set: truncation lookup relies upon it */
171
d3798ae8
JW
172 if (shadow) {
173 mapping->nrexceptional += nr;
174 /*
175 * Make sure the nrexceptional update is committed before
176 * the nrpages update so that final truncate racing
177 * with reclaim does not see both counters 0 at the
178 * same time and miss a shadow entry.
179 */
180 smp_wmb();
181 }
182 mapping->nrpages -= nr;
91b0abe3
JW
183}
184
5ecc4d85
JK
185static void unaccount_page_cache_page(struct address_space *mapping,
186 struct page *page)
1da177e4 187{
5ecc4d85 188 int nr;
1da177e4 189
c515e1fd
DM
190 /*
191 * if we're uptodate, flush out into the cleancache, otherwise
192 * invalidate any existing cleancache entries. We can't leave
193 * stale data around in the cleancache once our page is gone
194 */
195 if (PageUptodate(page) && PageMappedToDisk(page))
196 cleancache_put_page(page);
197 else
3167760f 198 cleancache_invalidate_page(mapping, page);
c515e1fd 199
83929372 200 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
201 VM_BUG_ON_PAGE(page_mapped(page), page);
202 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
203 int mapcount;
204
205 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
206 current->comm, page_to_pfn(page));
207 dump_page(page, "still mapped when deleted");
208 dump_stack();
209 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
210
211 mapcount = page_mapcount(page);
212 if (mapping_exiting(mapping) &&
213 page_count(page) >= mapcount + 2) {
214 /*
215 * All vmas have already been torn down, so it's
216 * a good bet that actually the page is unmapped,
217 * and we'd prefer not to leak it: if we're wrong,
218 * some other bad page check should catch it later.
219 */
220 page_mapcount_reset(page);
6d061f9f 221 page_ref_sub(page, mapcount);
06b241f3
HD
222 }
223 }
224
4165b9b4 225 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
226 if (PageHuge(page))
227 return;
09612fa6 228
5ecc4d85
JK
229 nr = hpage_nr_pages(page);
230
231 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
232 if (PageSwapBacked(page)) {
233 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
234 if (PageTransHuge(page))
235 __dec_node_page_state(page, NR_SHMEM_THPS);
236 } else {
237 VM_BUG_ON_PAGE(PageTransHuge(page), page);
800d8c63 238 }
5ecc4d85
JK
239
240 /*
241 * At this point page must be either written or cleaned by
242 * truncate. Dirty page here signals a bug and loss of
243 * unwritten data.
244 *
245 * This fixes dirty accounting after removing the page entirely
246 * but leaves PageDirty set: it has no effect for truncated
247 * page and anyway will be cleared before returning page into
248 * buddy allocator.
249 */
250 if (WARN_ON_ONCE(PageDirty(page)))
251 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
252}
253
254/*
255 * Delete a page from the page cache and free it. Caller has to make
256 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 257 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
258 */
259void __delete_from_page_cache(struct page *page, void *shadow)
260{
261 struct address_space *mapping = page->mapping;
262
263 trace_mm_filemap_delete_from_page_cache(page);
264
265 unaccount_page_cache_page(mapping, page);
76253fbc 266 page_cache_tree_delete(mapping, page, shadow);
1da177e4
LT
267}
268
59c66c5f
JK
269static void page_cache_free_page(struct address_space *mapping,
270 struct page *page)
271{
272 void (*freepage)(struct page *);
273
274 freepage = mapping->a_ops->freepage;
275 if (freepage)
276 freepage(page);
277
278 if (PageTransHuge(page) && !PageHuge(page)) {
279 page_ref_sub(page, HPAGE_PMD_NR);
280 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
281 } else {
282 put_page(page);
283 }
284}
285
702cfbf9
MK
286/**
287 * delete_from_page_cache - delete page from page cache
288 * @page: the page which the kernel is trying to remove from page cache
289 *
290 * This must be called only on pages that have been verified to be in the page
291 * cache and locked. It will never put the page into the free list, the caller
292 * has a reference on the page.
293 */
294void delete_from_page_cache(struct page *page)
1da177e4 295{
83929372 296 struct address_space *mapping = page_mapping(page);
c4843a75 297 unsigned long flags;
1da177e4 298
cd7619d6 299 BUG_ON(!PageLocked(page));
b93b0163 300 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 301 __delete_from_page_cache(page, NULL);
b93b0163 302 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 303
59c66c5f 304 page_cache_free_page(mapping, page);
97cecb5a
MK
305}
306EXPORT_SYMBOL(delete_from_page_cache);
307
aa65c29c
JK
308/*
309 * page_cache_tree_delete_batch - delete several pages from page cache
310 * @mapping: the mapping to which pages belong
311 * @pvec: pagevec with pages to delete
312 *
b93b0163
MW
313 * The function walks over mapping->i_pages and removes pages passed in @pvec
314 * from the mapping. The function expects @pvec to be sorted by page index.
315 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 316 * modified). The function expects only THP head pages to be present in the
b93b0163
MW
317 * @pvec and takes care to delete all corresponding tail pages from the
318 * mapping as well.
aa65c29c 319 *
b93b0163 320 * The function expects the i_pages lock to be held.
aa65c29c
JK
321 */
322static void
323page_cache_tree_delete_batch(struct address_space *mapping,
324 struct pagevec *pvec)
325{
326 struct radix_tree_iter iter;
327 void **slot;
328 int total_pages = 0;
329 int i = 0, tail_pages = 0;
330 struct page *page;
331 pgoff_t start;
332
333 start = pvec->pages[0]->index;
b93b0163 334 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
aa65c29c
JK
335 if (i >= pagevec_count(pvec) && !tail_pages)
336 break;
337 page = radix_tree_deref_slot_protected(slot,
b93b0163 338 &mapping->i_pages.xa_lock);
aa65c29c
JK
339 if (radix_tree_exceptional_entry(page))
340 continue;
341 if (!tail_pages) {
342 /*
343 * Some page got inserted in our range? Skip it. We
344 * have our pages locked so they are protected from
345 * being removed.
346 */
347 if (page != pvec->pages[i])
348 continue;
349 WARN_ON_ONCE(!PageLocked(page));
350 if (PageTransHuge(page) && !PageHuge(page))
351 tail_pages = HPAGE_PMD_NR - 1;
352 page->mapping = NULL;
353 /*
354 * Leave page->index set: truncation lookup relies
355 * upon it
356 */
357 i++;
358 } else {
359 tail_pages--;
360 }
b93b0163
MW
361 radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
362 __radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
c7df8ad2 363 workingset_lookup_update(mapping));
aa65c29c
JK
364 total_pages++;
365 }
366 mapping->nrpages -= total_pages;
367}
368
369void delete_from_page_cache_batch(struct address_space *mapping,
370 struct pagevec *pvec)
371{
372 int i;
373 unsigned long flags;
374
375 if (!pagevec_count(pvec))
376 return;
377
b93b0163 378 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
379 for (i = 0; i < pagevec_count(pvec); i++) {
380 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
381
382 unaccount_page_cache_page(mapping, pvec->pages[i]);
383 }
384 page_cache_tree_delete_batch(mapping, pvec);
b93b0163 385 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
386
387 for (i = 0; i < pagevec_count(pvec); i++)
388 page_cache_free_page(mapping, pvec->pages[i]);
389}
390
d72d9e2a 391int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
392{
393 int ret = 0;
394 /* Check for outstanding write errors */
7fcbbaf1
JA
395 if (test_bit(AS_ENOSPC, &mapping->flags) &&
396 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 397 ret = -ENOSPC;
7fcbbaf1
JA
398 if (test_bit(AS_EIO, &mapping->flags) &&
399 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
400 ret = -EIO;
401 return ret;
402}
d72d9e2a 403EXPORT_SYMBOL(filemap_check_errors);
865ffef3 404
76341cab
JL
405static int filemap_check_and_keep_errors(struct address_space *mapping)
406{
407 /* Check for outstanding write errors */
408 if (test_bit(AS_EIO, &mapping->flags))
409 return -EIO;
410 if (test_bit(AS_ENOSPC, &mapping->flags))
411 return -ENOSPC;
412 return 0;
413}
414
1da177e4 415/**
485bb99b 416 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
417 * @mapping: address space structure to write
418 * @start: offset in bytes where the range starts
469eb4d0 419 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 420 * @sync_mode: enable synchronous operation
1da177e4 421 *
485bb99b
RD
422 * Start writeback against all of a mapping's dirty pages that lie
423 * within the byte offsets <start, end> inclusive.
424 *
1da177e4 425 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 426 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
427 * these two operations is that if a dirty page/buffer is encountered, it must
428 * be waited upon, and not just skipped over.
429 */
ebcf28e1
AM
430int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
431 loff_t end, int sync_mode)
1da177e4
LT
432{
433 int ret;
434 struct writeback_control wbc = {
435 .sync_mode = sync_mode,
05fe478d 436 .nr_to_write = LONG_MAX,
111ebb6e
OH
437 .range_start = start,
438 .range_end = end,
1da177e4
LT
439 };
440
441 if (!mapping_cap_writeback_dirty(mapping))
442 return 0;
443
b16b1deb 444 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 445 ret = do_writepages(mapping, &wbc);
b16b1deb 446 wbc_detach_inode(&wbc);
1da177e4
LT
447 return ret;
448}
449
450static inline int __filemap_fdatawrite(struct address_space *mapping,
451 int sync_mode)
452{
111ebb6e 453 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
454}
455
456int filemap_fdatawrite(struct address_space *mapping)
457{
458 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
459}
460EXPORT_SYMBOL(filemap_fdatawrite);
461
f4c0a0fd 462int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 463 loff_t end)
1da177e4
LT
464{
465 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
466}
f4c0a0fd 467EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 468
485bb99b
RD
469/**
470 * filemap_flush - mostly a non-blocking flush
471 * @mapping: target address_space
472 *
1da177e4
LT
473 * This is a mostly non-blocking flush. Not suitable for data-integrity
474 * purposes - I/O may not be started against all dirty pages.
475 */
476int filemap_flush(struct address_space *mapping)
477{
478 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
479}
480EXPORT_SYMBOL(filemap_flush);
481
7fc9e472
GR
482/**
483 * filemap_range_has_page - check if a page exists in range.
484 * @mapping: address space within which to check
485 * @start_byte: offset in bytes where the range starts
486 * @end_byte: offset in bytes where the range ends (inclusive)
487 *
488 * Find at least one page in the range supplied, usually used to check if
489 * direct writing in this range will trigger a writeback.
490 */
491bool filemap_range_has_page(struct address_space *mapping,
492 loff_t start_byte, loff_t end_byte)
493{
494 pgoff_t index = start_byte >> PAGE_SHIFT;
495 pgoff_t end = end_byte >> PAGE_SHIFT;
f7b68046 496 struct page *page;
7fc9e472
GR
497
498 if (end_byte < start_byte)
499 return false;
500
501 if (mapping->nrpages == 0)
502 return false;
503
f7b68046 504 if (!find_get_pages_range(mapping, &index, end, 1, &page))
7fc9e472 505 return false;
f7b68046
JK
506 put_page(page);
507 return true;
7fc9e472
GR
508}
509EXPORT_SYMBOL(filemap_range_has_page);
510
5e8fcc1a 511static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 512 loff_t start_byte, loff_t end_byte)
1da177e4 513{
09cbfeaf
KS
514 pgoff_t index = start_byte >> PAGE_SHIFT;
515 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
516 struct pagevec pvec;
517 int nr_pages;
1da177e4 518
94004ed7 519 if (end_byte < start_byte)
5e8fcc1a 520 return;
1da177e4 521
86679820 522 pagevec_init(&pvec);
312e9d2f 523 while (index <= end) {
1da177e4
LT
524 unsigned i;
525
312e9d2f 526 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 527 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
528 if (!nr_pages)
529 break;
530
1da177e4
LT
531 for (i = 0; i < nr_pages; i++) {
532 struct page *page = pvec.pages[i];
533
1da177e4 534 wait_on_page_writeback(page);
5e8fcc1a 535 ClearPageError(page);
1da177e4
LT
536 }
537 pagevec_release(&pvec);
538 cond_resched();
539 }
aa750fd7
JN
540}
541
542/**
543 * filemap_fdatawait_range - wait for writeback to complete
544 * @mapping: address space structure to wait for
545 * @start_byte: offset in bytes where the range starts
546 * @end_byte: offset in bytes where the range ends (inclusive)
547 *
548 * Walk the list of under-writeback pages of the given address space
549 * in the given range and wait for all of them. Check error status of
550 * the address space and return it.
551 *
552 * Since the error status of the address space is cleared by this function,
553 * callers are responsible for checking the return value and handling and/or
554 * reporting the error.
555 */
556int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557 loff_t end_byte)
558{
5e8fcc1a
JL
559 __filemap_fdatawait_range(mapping, start_byte, end_byte);
560 return filemap_check_errors(mapping);
1da177e4 561}
d3bccb6f
JK
562EXPORT_SYMBOL(filemap_fdatawait_range);
563
a823e458
JL
564/**
565 * file_fdatawait_range - wait for writeback to complete
566 * @file: file pointing to address space structure to wait for
567 * @start_byte: offset in bytes where the range starts
568 * @end_byte: offset in bytes where the range ends (inclusive)
569 *
570 * Walk the list of under-writeback pages of the address space that file
571 * refers to, in the given range and wait for all of them. Check error
572 * status of the address space vs. the file->f_wb_err cursor and return it.
573 *
574 * Since the error status of the file is advanced by this function,
575 * callers are responsible for checking the return value and handling and/or
576 * reporting the error.
577 */
578int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
579{
580 struct address_space *mapping = file->f_mapping;
581
582 __filemap_fdatawait_range(mapping, start_byte, end_byte);
583 return file_check_and_advance_wb_err(file);
584}
585EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 586
aa750fd7
JN
587/**
588 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
589 * @mapping: address space structure to wait for
590 *
591 * Walk the list of under-writeback pages of the given address space
592 * and wait for all of them. Unlike filemap_fdatawait(), this function
593 * does not clear error status of the address space.
594 *
595 * Use this function if callers don't handle errors themselves. Expected
596 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
597 * fsfreeze(8)
598 */
76341cab 599int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 600{
ffb959bb 601 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 602 return filemap_check_and_keep_errors(mapping);
aa750fd7 603}
76341cab 604EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 605
9326c9b2 606static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 607{
9326c9b2
JL
608 return (!dax_mapping(mapping) && mapping->nrpages) ||
609 (dax_mapping(mapping) && mapping->nrexceptional);
1da177e4 610}
1da177e4
LT
611
612int filemap_write_and_wait(struct address_space *mapping)
613{
28fd1298 614 int err = 0;
1da177e4 615
9326c9b2 616 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
617 err = filemap_fdatawrite(mapping);
618 /*
619 * Even if the above returned error, the pages may be
620 * written partially (e.g. -ENOSPC), so we wait for it.
621 * But the -EIO is special case, it may indicate the worst
622 * thing (e.g. bug) happened, so we avoid waiting for it.
623 */
624 if (err != -EIO) {
625 int err2 = filemap_fdatawait(mapping);
626 if (!err)
627 err = err2;
cbeaf951
JL
628 } else {
629 /* Clear any previously stored errors */
630 filemap_check_errors(mapping);
28fd1298 631 }
865ffef3
DM
632 } else {
633 err = filemap_check_errors(mapping);
1da177e4 634 }
28fd1298 635 return err;
1da177e4 636}
28fd1298 637EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 638
485bb99b
RD
639/**
640 * filemap_write_and_wait_range - write out & wait on a file range
641 * @mapping: the address_space for the pages
642 * @lstart: offset in bytes where the range starts
643 * @lend: offset in bytes where the range ends (inclusive)
644 *
469eb4d0
AM
645 * Write out and wait upon file offsets lstart->lend, inclusive.
646 *
0e056eb5 647 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0
AM
648 * that this function can be used to write to the very end-of-file (end = -1).
649 */
1da177e4
LT
650int filemap_write_and_wait_range(struct address_space *mapping,
651 loff_t lstart, loff_t lend)
652{
28fd1298 653 int err = 0;
1da177e4 654
9326c9b2 655 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
656 err = __filemap_fdatawrite_range(mapping, lstart, lend,
657 WB_SYNC_ALL);
658 /* See comment of filemap_write_and_wait() */
659 if (err != -EIO) {
94004ed7
CH
660 int err2 = filemap_fdatawait_range(mapping,
661 lstart, lend);
28fd1298
OH
662 if (!err)
663 err = err2;
cbeaf951
JL
664 } else {
665 /* Clear any previously stored errors */
666 filemap_check_errors(mapping);
28fd1298 667 }
865ffef3
DM
668 } else {
669 err = filemap_check_errors(mapping);
1da177e4 670 }
28fd1298 671 return err;
1da177e4 672}
f6995585 673EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 674
5660e13d
JL
675void __filemap_set_wb_err(struct address_space *mapping, int err)
676{
3acdfd28 677 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
678
679 trace_filemap_set_wb_err(mapping, eseq);
680}
681EXPORT_SYMBOL(__filemap_set_wb_err);
682
683/**
684 * file_check_and_advance_wb_err - report wb error (if any) that was previously
685 * and advance wb_err to current one
686 * @file: struct file on which the error is being reported
687 *
688 * When userland calls fsync (or something like nfsd does the equivalent), we
689 * want to report any writeback errors that occurred since the last fsync (or
690 * since the file was opened if there haven't been any).
691 *
692 * Grab the wb_err from the mapping. If it matches what we have in the file,
693 * then just quickly return 0. The file is all caught up.
694 *
695 * If it doesn't match, then take the mapping value, set the "seen" flag in
696 * it and try to swap it into place. If it works, or another task beat us
697 * to it with the new value, then update the f_wb_err and return the error
698 * portion. The error at this point must be reported via proper channels
699 * (a'la fsync, or NFS COMMIT operation, etc.).
700 *
701 * While we handle mapping->wb_err with atomic operations, the f_wb_err
702 * value is protected by the f_lock since we must ensure that it reflects
703 * the latest value swapped in for this file descriptor.
704 */
705int file_check_and_advance_wb_err(struct file *file)
706{
707 int err = 0;
708 errseq_t old = READ_ONCE(file->f_wb_err);
709 struct address_space *mapping = file->f_mapping;
710
711 /* Locklessly handle the common case where nothing has changed */
712 if (errseq_check(&mapping->wb_err, old)) {
713 /* Something changed, must use slow path */
714 spin_lock(&file->f_lock);
715 old = file->f_wb_err;
716 err = errseq_check_and_advance(&mapping->wb_err,
717 &file->f_wb_err);
718 trace_file_check_and_advance_wb_err(file, old);
719 spin_unlock(&file->f_lock);
720 }
f4e222c5
JL
721
722 /*
723 * We're mostly using this function as a drop in replacement for
724 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
725 * that the legacy code would have had on these flags.
726 */
727 clear_bit(AS_EIO, &mapping->flags);
728 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
729 return err;
730}
731EXPORT_SYMBOL(file_check_and_advance_wb_err);
732
733/**
734 * file_write_and_wait_range - write out & wait on a file range
735 * @file: file pointing to address_space with pages
736 * @lstart: offset in bytes where the range starts
737 * @lend: offset in bytes where the range ends (inclusive)
738 *
739 * Write out and wait upon file offsets lstart->lend, inclusive.
740 *
741 * Note that @lend is inclusive (describes the last byte to be written) so
742 * that this function can be used to write to the very end-of-file (end = -1).
743 *
744 * After writing out and waiting on the data, we check and advance the
745 * f_wb_err cursor to the latest value, and return any errors detected there.
746 */
747int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
748{
749 int err = 0, err2;
750 struct address_space *mapping = file->f_mapping;
751
9326c9b2 752 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
753 err = __filemap_fdatawrite_range(mapping, lstart, lend,
754 WB_SYNC_ALL);
755 /* See comment of filemap_write_and_wait() */
756 if (err != -EIO)
757 __filemap_fdatawait_range(mapping, lstart, lend);
758 }
759 err2 = file_check_and_advance_wb_err(file);
760 if (!err)
761 err = err2;
762 return err;
763}
764EXPORT_SYMBOL(file_write_and_wait_range);
765
ef6a3c63
MS
766/**
767 * replace_page_cache_page - replace a pagecache page with a new one
768 * @old: page to be replaced
769 * @new: page to replace with
770 * @gfp_mask: allocation mode
771 *
772 * This function replaces a page in the pagecache with a new one. On
773 * success it acquires the pagecache reference for the new page and
774 * drops it for the old page. Both the old and new pages must be
775 * locked. This function does not add the new page to the LRU, the
776 * caller must do that.
777 *
778 * The remove + add is atomic. The only way this function can fail is
779 * memory allocation failure.
780 */
781int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
782{
783 int error;
ef6a3c63 784
309381fe
SL
785 VM_BUG_ON_PAGE(!PageLocked(old), old);
786 VM_BUG_ON_PAGE(!PageLocked(new), new);
787 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 788
abc1be13 789 error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
ef6a3c63
MS
790 if (!error) {
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *);
c4843a75 793 unsigned long flags;
ef6a3c63
MS
794
795 pgoff_t offset = old->index;
796 freepage = mapping->a_ops->freepage;
797
09cbfeaf 798 get_page(new);
ef6a3c63
MS
799 new->mapping = mapping;
800 new->index = offset;
801
b93b0163 802 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 803 __delete_from_page_cache(old, NULL);
22f2ac51 804 error = page_cache_tree_insert(mapping, new, NULL);
ef6a3c63 805 BUG_ON(error);
4165b9b4
MH
806
807 /*
808 * hugetlb pages do not participate in page cache accounting.
809 */
810 if (!PageHuge(new))
11fb9989 811 __inc_node_page_state(new, NR_FILE_PAGES);
ef6a3c63 812 if (PageSwapBacked(new))
11fb9989 813 __inc_node_page_state(new, NR_SHMEM);
b93b0163 814 xa_unlock_irqrestore(&mapping->i_pages, flags);
6a93ca8f 815 mem_cgroup_migrate(old, new);
ef6a3c63
MS
816 radix_tree_preload_end();
817 if (freepage)
818 freepage(old);
09cbfeaf 819 put_page(old);
ef6a3c63
MS
820 }
821
822 return error;
823}
824EXPORT_SYMBOL_GPL(replace_page_cache_page);
825
a528910e
JW
826static int __add_to_page_cache_locked(struct page *page,
827 struct address_space *mapping,
828 pgoff_t offset, gfp_t gfp_mask,
829 void **shadowp)
1da177e4 830{
00501b53
JW
831 int huge = PageHuge(page);
832 struct mem_cgroup *memcg;
e286781d
NP
833 int error;
834
309381fe
SL
835 VM_BUG_ON_PAGE(!PageLocked(page), page);
836 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 837
00501b53
JW
838 if (!huge) {
839 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 840 gfp_mask, &memcg, false);
00501b53
JW
841 if (error)
842 return error;
843 }
1da177e4 844
abc1be13 845 error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
66a0c8ee 846 if (error) {
00501b53 847 if (!huge)
f627c2f5 848 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
849 return error;
850 }
851
09cbfeaf 852 get_page(page);
66a0c8ee
KS
853 page->mapping = mapping;
854 page->index = offset;
855
b93b0163 856 xa_lock_irq(&mapping->i_pages);
a528910e 857 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
858 radix_tree_preload_end();
859 if (unlikely(error))
860 goto err_insert;
4165b9b4
MH
861
862 /* hugetlb pages do not participate in page cache accounting. */
863 if (!huge)
11fb9989 864 __inc_node_page_state(page, NR_FILE_PAGES);
b93b0163 865 xa_unlock_irq(&mapping->i_pages);
00501b53 866 if (!huge)
f627c2f5 867 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
868 trace_mm_filemap_add_to_page_cache(page);
869 return 0;
870err_insert:
871 page->mapping = NULL;
872 /* Leave page->index set: truncation relies upon it */
b93b0163 873 xa_unlock_irq(&mapping->i_pages);
00501b53 874 if (!huge)
f627c2f5 875 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 876 put_page(page);
1da177e4
LT
877 return error;
878}
a528910e
JW
879
880/**
881 * add_to_page_cache_locked - add a locked page to the pagecache
882 * @page: page to add
883 * @mapping: the page's address_space
884 * @offset: page index
885 * @gfp_mask: page allocation mode
886 *
887 * This function is used to add a page to the pagecache. It must be locked.
888 * This function does not add the page to the LRU. The caller must do that.
889 */
890int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
891 pgoff_t offset, gfp_t gfp_mask)
892{
893 return __add_to_page_cache_locked(page, mapping, offset,
894 gfp_mask, NULL);
895}
e286781d 896EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
897
898int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 899 pgoff_t offset, gfp_t gfp_mask)
1da177e4 900{
a528910e 901 void *shadow = NULL;
4f98a2fe
RR
902 int ret;
903
48c935ad 904 __SetPageLocked(page);
a528910e
JW
905 ret = __add_to_page_cache_locked(page, mapping, offset,
906 gfp_mask, &shadow);
907 if (unlikely(ret))
48c935ad 908 __ClearPageLocked(page);
a528910e
JW
909 else {
910 /*
911 * The page might have been evicted from cache only
912 * recently, in which case it should be activated like
913 * any other repeatedly accessed page.
f0281a00
RR
914 * The exception is pages getting rewritten; evicting other
915 * data from the working set, only to cache data that will
916 * get overwritten with something else, is a waste of memory.
a528910e 917 */
1899ad18
JW
918 WARN_ON_ONCE(PageActive(page));
919 if (!(gfp_mask & __GFP_WRITE) && shadow)
920 workingset_refault(page, shadow);
a528910e
JW
921 lru_cache_add(page);
922 }
1da177e4
LT
923 return ret;
924}
18bc0bbd 925EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 926
44110fe3 927#ifdef CONFIG_NUMA
2ae88149 928struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 929{
c0ff7453
MX
930 int n;
931 struct page *page;
932
44110fe3 933 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
934 unsigned int cpuset_mems_cookie;
935 do {
d26914d1 936 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 937 n = cpuset_mem_spread_node();
96db800f 938 page = __alloc_pages_node(n, gfp, 0);
d26914d1 939 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 940
c0ff7453 941 return page;
44110fe3 942 }
2ae88149 943 return alloc_pages(gfp, 0);
44110fe3 944}
2ae88149 945EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
946#endif
947
1da177e4
LT
948/*
949 * In order to wait for pages to become available there must be
950 * waitqueues associated with pages. By using a hash table of
951 * waitqueues where the bucket discipline is to maintain all
952 * waiters on the same queue and wake all when any of the pages
953 * become available, and for the woken contexts to check to be
954 * sure the appropriate page became available, this saves space
955 * at a cost of "thundering herd" phenomena during rare hash
956 * collisions.
957 */
62906027
NP
958#define PAGE_WAIT_TABLE_BITS 8
959#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
960static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
961
962static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 963{
62906027 964 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 965}
1da177e4 966
62906027 967void __init pagecache_init(void)
1da177e4 968{
62906027 969 int i;
1da177e4 970
62906027
NP
971 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
972 init_waitqueue_head(&page_wait_table[i]);
973
974 page_writeback_init();
1da177e4 975}
1da177e4 976
3510ca20 977/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
62906027
NP
978struct wait_page_key {
979 struct page *page;
980 int bit_nr;
981 int page_match;
982};
983
984struct wait_page_queue {
985 struct page *page;
986 int bit_nr;
ac6424b9 987 wait_queue_entry_t wait;
62906027
NP
988};
989
ac6424b9 990static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 991{
62906027
NP
992 struct wait_page_key *key = arg;
993 struct wait_page_queue *wait_page
994 = container_of(wait, struct wait_page_queue, wait);
995
996 if (wait_page->page != key->page)
997 return 0;
998 key->page_match = 1;
f62e00cc 999
62906027
NP
1000 if (wait_page->bit_nr != key->bit_nr)
1001 return 0;
3510ca20
LT
1002
1003 /* Stop walking if it's locked */
62906027 1004 if (test_bit(key->bit_nr, &key->page->flags))
3510ca20 1005 return -1;
f62e00cc 1006
62906027 1007 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
1008}
1009
74d81bfa 1010static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1011{
62906027
NP
1012 wait_queue_head_t *q = page_waitqueue(page);
1013 struct wait_page_key key;
1014 unsigned long flags;
11a19c7b 1015 wait_queue_entry_t bookmark;
cbbce822 1016
62906027
NP
1017 key.page = page;
1018 key.bit_nr = bit_nr;
1019 key.page_match = 0;
1020
11a19c7b
TC
1021 bookmark.flags = 0;
1022 bookmark.private = NULL;
1023 bookmark.func = NULL;
1024 INIT_LIST_HEAD(&bookmark.entry);
1025
62906027 1026 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1027 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1028
1029 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1030 /*
1031 * Take a breather from holding the lock,
1032 * allow pages that finish wake up asynchronously
1033 * to acquire the lock and remove themselves
1034 * from wait queue
1035 */
1036 spin_unlock_irqrestore(&q->lock, flags);
1037 cpu_relax();
1038 spin_lock_irqsave(&q->lock, flags);
1039 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1040 }
1041
62906027
NP
1042 /*
1043 * It is possible for other pages to have collided on the waitqueue
1044 * hash, so in that case check for a page match. That prevents a long-
1045 * term waiter
1046 *
1047 * It is still possible to miss a case here, when we woke page waiters
1048 * and removed them from the waitqueue, but there are still other
1049 * page waiters.
1050 */
1051 if (!waitqueue_active(q) || !key.page_match) {
1052 ClearPageWaiters(page);
1053 /*
1054 * It's possible to miss clearing Waiters here, when we woke
1055 * our page waiters, but the hashed waitqueue has waiters for
1056 * other pages on it.
1057 *
1058 * That's okay, it's a rare case. The next waker will clear it.
1059 */
1060 }
1061 spin_unlock_irqrestore(&q->lock, flags);
1062}
74d81bfa
NP
1063
1064static void wake_up_page(struct page *page, int bit)
1065{
1066 if (!PageWaiters(page))
1067 return;
1068 wake_up_page_bit(page, bit);
1069}
62906027
NP
1070
1071static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1072 struct page *page, int bit_nr, int state, bool lock)
1073{
1074 struct wait_page_queue wait_page;
ac6424b9 1075 wait_queue_entry_t *wait = &wait_page.wait;
62906027
NP
1076 int ret = 0;
1077
1078 init_wait(wait);
3510ca20 1079 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
62906027
NP
1080 wait->func = wake_page_function;
1081 wait_page.page = page;
1082 wait_page.bit_nr = bit_nr;
1083
1084 for (;;) {
1085 spin_lock_irq(&q->lock);
1086
2055da97 1087 if (likely(list_empty(&wait->entry))) {
3510ca20 1088 __add_wait_queue_entry_tail(q, wait);
62906027
NP
1089 SetPageWaiters(page);
1090 }
1091
1092 set_current_state(state);
1093
1094 spin_unlock_irq(&q->lock);
1095
1096 if (likely(test_bit(bit_nr, &page->flags))) {
1097 io_schedule();
62906027
NP
1098 }
1099
1100 if (lock) {
1101 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1102 break;
1103 } else {
1104 if (!test_bit(bit_nr, &page->flags))
1105 break;
1106 }
a8b169af
LT
1107
1108 if (unlikely(signal_pending_state(state, current))) {
1109 ret = -EINTR;
1110 break;
1111 }
62906027
NP
1112 }
1113
1114 finish_wait(q, wait);
1115
1116 /*
1117 * A signal could leave PageWaiters set. Clearing it here if
1118 * !waitqueue_active would be possible (by open-coding finish_wait),
1119 * but still fail to catch it in the case of wait hash collision. We
1120 * already can fail to clear wait hash collision cases, so don't
1121 * bother with signals either.
1122 */
1123
1124 return ret;
1125}
1126
1127void wait_on_page_bit(struct page *page, int bit_nr)
1128{
1129 wait_queue_head_t *q = page_waitqueue(page);
1130 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1131}
1132EXPORT_SYMBOL(wait_on_page_bit);
1133
1134int wait_on_page_bit_killable(struct page *page, int bit_nr)
1135{
1136 wait_queue_head_t *q = page_waitqueue(page);
1137 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
cbbce822 1138}
4343d008 1139EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1140
385e1ca5
DH
1141/**
1142 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1143 * @page: Page defining the wait queue of interest
1144 * @waiter: Waiter to add to the queue
385e1ca5
DH
1145 *
1146 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1147 */
ac6424b9 1148void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1149{
1150 wait_queue_head_t *q = page_waitqueue(page);
1151 unsigned long flags;
1152
1153 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1154 __add_wait_queue_entry_tail(q, waiter);
62906027 1155 SetPageWaiters(page);
385e1ca5
DH
1156 spin_unlock_irqrestore(&q->lock, flags);
1157}
1158EXPORT_SYMBOL_GPL(add_page_wait_queue);
1159
b91e1302
LT
1160#ifndef clear_bit_unlock_is_negative_byte
1161
1162/*
1163 * PG_waiters is the high bit in the same byte as PG_lock.
1164 *
1165 * On x86 (and on many other architectures), we can clear PG_lock and
1166 * test the sign bit at the same time. But if the architecture does
1167 * not support that special operation, we just do this all by hand
1168 * instead.
1169 *
1170 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1171 * being cleared, but a memory barrier should be unneccssary since it is
1172 * in the same byte as PG_locked.
1173 */
1174static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1175{
1176 clear_bit_unlock(nr, mem);
1177 /* smp_mb__after_atomic(); */
98473f9f 1178 return test_bit(PG_waiters, mem);
b91e1302
LT
1179}
1180
1181#endif
1182
1da177e4 1183/**
485bb99b 1184 * unlock_page - unlock a locked page
1da177e4
LT
1185 * @page: the page
1186 *
1187 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1188 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1189 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1190 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1191 *
b91e1302
LT
1192 * Note that this depends on PG_waiters being the sign bit in the byte
1193 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1194 * clear the PG_locked bit and test PG_waiters at the same time fairly
1195 * portably (architectures that do LL/SC can test any bit, while x86 can
1196 * test the sign bit).
1da177e4 1197 */
920c7a5d 1198void unlock_page(struct page *page)
1da177e4 1199{
b91e1302 1200 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1201 page = compound_head(page);
309381fe 1202 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1203 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1204 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1205}
1206EXPORT_SYMBOL(unlock_page);
1207
485bb99b
RD
1208/**
1209 * end_page_writeback - end writeback against a page
1210 * @page: the page
1da177e4
LT
1211 */
1212void end_page_writeback(struct page *page)
1213{
888cf2db
MG
1214 /*
1215 * TestClearPageReclaim could be used here but it is an atomic
1216 * operation and overkill in this particular case. Failing to
1217 * shuffle a page marked for immediate reclaim is too mild to
1218 * justify taking an atomic operation penalty at the end of
1219 * ever page writeback.
1220 */
1221 if (PageReclaim(page)) {
1222 ClearPageReclaim(page);
ac6aadb2 1223 rotate_reclaimable_page(page);
888cf2db 1224 }
ac6aadb2
MS
1225
1226 if (!test_clear_page_writeback(page))
1227 BUG();
1228
4e857c58 1229 smp_mb__after_atomic();
1da177e4
LT
1230 wake_up_page(page, PG_writeback);
1231}
1232EXPORT_SYMBOL(end_page_writeback);
1233
57d99845
MW
1234/*
1235 * After completing I/O on a page, call this routine to update the page
1236 * flags appropriately
1237 */
c11f0c0b 1238void page_endio(struct page *page, bool is_write, int err)
57d99845 1239{
c11f0c0b 1240 if (!is_write) {
57d99845
MW
1241 if (!err) {
1242 SetPageUptodate(page);
1243 } else {
1244 ClearPageUptodate(page);
1245 SetPageError(page);
1246 }
1247 unlock_page(page);
abf54548 1248 } else {
57d99845 1249 if (err) {
dd8416c4
MK
1250 struct address_space *mapping;
1251
57d99845 1252 SetPageError(page);
dd8416c4
MK
1253 mapping = page_mapping(page);
1254 if (mapping)
1255 mapping_set_error(mapping, err);
57d99845
MW
1256 }
1257 end_page_writeback(page);
1258 }
1259}
1260EXPORT_SYMBOL_GPL(page_endio);
1261
485bb99b
RD
1262/**
1263 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1264 * @__page: the page to lock
1da177e4 1265 */
62906027 1266void __lock_page(struct page *__page)
1da177e4 1267{
62906027
NP
1268 struct page *page = compound_head(__page);
1269 wait_queue_head_t *q = page_waitqueue(page);
1270 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1da177e4
LT
1271}
1272EXPORT_SYMBOL(__lock_page);
1273
62906027 1274int __lock_page_killable(struct page *__page)
2687a356 1275{
62906027
NP
1276 struct page *page = compound_head(__page);
1277 wait_queue_head_t *q = page_waitqueue(page);
1278 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
2687a356 1279}
18bc0bbd 1280EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1281
9a95f3cf
PC
1282/*
1283 * Return values:
1284 * 1 - page is locked; mmap_sem is still held.
1285 * 0 - page is not locked.
1286 * mmap_sem has been released (up_read()), unless flags had both
1287 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1288 * which case mmap_sem is still held.
1289 *
1290 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1291 * with the page locked and the mmap_sem unperturbed.
1292 */
d065bd81
ML
1293int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1294 unsigned int flags)
1295{
37b23e05
KM
1296 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1297 /*
1298 * CAUTION! In this case, mmap_sem is not released
1299 * even though return 0.
1300 */
1301 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1302 return 0;
1303
1304 up_read(&mm->mmap_sem);
1305 if (flags & FAULT_FLAG_KILLABLE)
1306 wait_on_page_locked_killable(page);
1307 else
318b275f 1308 wait_on_page_locked(page);
d065bd81 1309 return 0;
37b23e05
KM
1310 } else {
1311 if (flags & FAULT_FLAG_KILLABLE) {
1312 int ret;
1313
1314 ret = __lock_page_killable(page);
1315 if (ret) {
1316 up_read(&mm->mmap_sem);
1317 return 0;
1318 }
1319 } else
1320 __lock_page(page);
1321 return 1;
d065bd81
ML
1322 }
1323}
1324
e7b563bb
JW
1325/**
1326 * page_cache_next_hole - find the next hole (not-present entry)
1327 * @mapping: mapping
1328 * @index: index
1329 * @max_scan: maximum range to search
1330 *
1331 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1332 * lowest indexed hole.
1333 *
1334 * Returns: the index of the hole if found, otherwise returns an index
1335 * outside of the set specified (in which case 'return - index >=
1336 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1337 * be returned.
1338 *
1339 * page_cache_next_hole may be called under rcu_read_lock. However,
1340 * like radix_tree_gang_lookup, this will not atomically search a
1341 * snapshot of the tree at a single point in time. For example, if a
1342 * hole is created at index 5, then subsequently a hole is created at
1343 * index 10, page_cache_next_hole covering both indexes may return 10
1344 * if called under rcu_read_lock.
1345 */
1346pgoff_t page_cache_next_hole(struct address_space *mapping,
1347 pgoff_t index, unsigned long max_scan)
1348{
1349 unsigned long i;
1350
1351 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1352 struct page *page;
1353
b93b0163 1354 page = radix_tree_lookup(&mapping->i_pages, index);
0cd6144a 1355 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1356 break;
1357 index++;
1358 if (index == 0)
1359 break;
1360 }
1361
1362 return index;
1363}
1364EXPORT_SYMBOL(page_cache_next_hole);
1365
1366/**
1367 * page_cache_prev_hole - find the prev hole (not-present entry)
1368 * @mapping: mapping
1369 * @index: index
1370 * @max_scan: maximum range to search
1371 *
1372 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1373 * the first hole.
1374 *
1375 * Returns: the index of the hole if found, otherwise returns an index
1376 * outside of the set specified (in which case 'index - return >=
1377 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1378 * will be returned.
1379 *
1380 * page_cache_prev_hole may be called under rcu_read_lock. However,
1381 * like radix_tree_gang_lookup, this will not atomically search a
1382 * snapshot of the tree at a single point in time. For example, if a
1383 * hole is created at index 10, then subsequently a hole is created at
1384 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1385 * called under rcu_read_lock.
1386 */
1387pgoff_t page_cache_prev_hole(struct address_space *mapping,
1388 pgoff_t index, unsigned long max_scan)
1389{
1390 unsigned long i;
1391
1392 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1393 struct page *page;
1394
b93b0163 1395 page = radix_tree_lookup(&mapping->i_pages, index);
0cd6144a 1396 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1397 break;
1398 index--;
1399 if (index == ULONG_MAX)
1400 break;
1401 }
1402
1403 return index;
1404}
1405EXPORT_SYMBOL(page_cache_prev_hole);
1406
485bb99b 1407/**
0cd6144a 1408 * find_get_entry - find and get a page cache entry
485bb99b 1409 * @mapping: the address_space to search
0cd6144a
JW
1410 * @offset: the page cache index
1411 *
1412 * Looks up the page cache slot at @mapping & @offset. If there is a
1413 * page cache page, it is returned with an increased refcount.
485bb99b 1414 *
139b6a6f
JW
1415 * If the slot holds a shadow entry of a previously evicted page, or a
1416 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1417 *
1418 * Otherwise, %NULL is returned.
1da177e4 1419 */
0cd6144a 1420struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1421{
a60637c8 1422 void **pagep;
83929372 1423 struct page *head, *page;
1da177e4 1424
a60637c8
NP
1425 rcu_read_lock();
1426repeat:
1427 page = NULL;
b93b0163 1428 pagep = radix_tree_lookup_slot(&mapping->i_pages, offset);
a60637c8
NP
1429 if (pagep) {
1430 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1431 if (unlikely(!page))
1432 goto out;
a2c16d6c 1433 if (radix_tree_exception(page)) {
8079b1c8
HD
1434 if (radix_tree_deref_retry(page))
1435 goto repeat;
1436 /*
139b6a6f
JW
1437 * A shadow entry of a recently evicted page,
1438 * or a swap entry from shmem/tmpfs. Return
1439 * it without attempting to raise page count.
8079b1c8
HD
1440 */
1441 goto out;
a2c16d6c 1442 }
83929372
KS
1443
1444 head = compound_head(page);
1445 if (!page_cache_get_speculative(head))
1446 goto repeat;
1447
1448 /* The page was split under us? */
1449 if (compound_head(page) != head) {
1450 put_page(head);
a60637c8 1451 goto repeat;
83929372 1452 }
a60637c8
NP
1453
1454 /*
1455 * Has the page moved?
1456 * This is part of the lockless pagecache protocol. See
1457 * include/linux/pagemap.h for details.
1458 */
1459 if (unlikely(page != *pagep)) {
83929372 1460 put_page(head);
a60637c8
NP
1461 goto repeat;
1462 }
1463 }
27d20fdd 1464out:
a60637c8
NP
1465 rcu_read_unlock();
1466
1da177e4
LT
1467 return page;
1468}
0cd6144a 1469EXPORT_SYMBOL(find_get_entry);
1da177e4 1470
0cd6144a
JW
1471/**
1472 * find_lock_entry - locate, pin and lock a page cache entry
1473 * @mapping: the address_space to search
1474 * @offset: the page cache index
1475 *
1476 * Looks up the page cache slot at @mapping & @offset. If there is a
1477 * page cache page, it is returned locked and with an increased
1478 * refcount.
1479 *
139b6a6f
JW
1480 * If the slot holds a shadow entry of a previously evicted page, or a
1481 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1482 *
1483 * Otherwise, %NULL is returned.
1484 *
1485 * find_lock_entry() may sleep.
1486 */
1487struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1488{
1489 struct page *page;
1490
1da177e4 1491repeat:
0cd6144a 1492 page = find_get_entry(mapping, offset);
a2c16d6c 1493 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1494 lock_page(page);
1495 /* Has the page been truncated? */
83929372 1496 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1497 unlock_page(page);
09cbfeaf 1498 put_page(page);
a60637c8 1499 goto repeat;
1da177e4 1500 }
83929372 1501 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1502 }
1da177e4
LT
1503 return page;
1504}
0cd6144a
JW
1505EXPORT_SYMBOL(find_lock_entry);
1506
1507/**
2457aec6 1508 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1509 * @mapping: the address_space to search
1510 * @offset: the page index
2457aec6 1511 * @fgp_flags: PCG flags
45f87de5 1512 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1513 *
2457aec6 1514 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1515 *
75325189 1516 * PCG flags modify how the page is returned.
0cd6144a 1517 *
0e056eb5
MCC
1518 * @fgp_flags can be:
1519 *
1520 * - FGP_ACCESSED: the page will be marked accessed
1521 * - FGP_LOCK: Page is return locked
1522 * - FGP_CREAT: If page is not present then a new page is allocated using
1523 * @gfp_mask and added to the page cache and the VM's LRU
1524 * list. The page is returned locked and with an increased
1525 * refcount. Otherwise, NULL is returned.
1da177e4 1526 *
2457aec6
MG
1527 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1528 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1529 *
2457aec6 1530 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1531 */
2457aec6 1532struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1533 int fgp_flags, gfp_t gfp_mask)
1da177e4 1534{
eb2be189 1535 struct page *page;
2457aec6 1536
1da177e4 1537repeat:
2457aec6
MG
1538 page = find_get_entry(mapping, offset);
1539 if (radix_tree_exceptional_entry(page))
1540 page = NULL;
1541 if (!page)
1542 goto no_page;
1543
1544 if (fgp_flags & FGP_LOCK) {
1545 if (fgp_flags & FGP_NOWAIT) {
1546 if (!trylock_page(page)) {
09cbfeaf 1547 put_page(page);
2457aec6
MG
1548 return NULL;
1549 }
1550 } else {
1551 lock_page(page);
1552 }
1553
1554 /* Has the page been truncated? */
1555 if (unlikely(page->mapping != mapping)) {
1556 unlock_page(page);
09cbfeaf 1557 put_page(page);
2457aec6
MG
1558 goto repeat;
1559 }
1560 VM_BUG_ON_PAGE(page->index != offset, page);
1561 }
1562
1563 if (page && (fgp_flags & FGP_ACCESSED))
1564 mark_page_accessed(page);
1565
1566no_page:
1567 if (!page && (fgp_flags & FGP_CREAT)) {
1568 int err;
1569 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1570 gfp_mask |= __GFP_WRITE;
1571 if (fgp_flags & FGP_NOFS)
1572 gfp_mask &= ~__GFP_FS;
2457aec6 1573
45f87de5 1574 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1575 if (!page)
1576 return NULL;
2457aec6
MG
1577
1578 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1579 fgp_flags |= FGP_LOCK;
1580
eb39d618 1581 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1582 if (fgp_flags & FGP_ACCESSED)
eb39d618 1583 __SetPageReferenced(page);
2457aec6 1584
abc1be13 1585 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
eb2be189 1586 if (unlikely(err)) {
09cbfeaf 1587 put_page(page);
eb2be189
NP
1588 page = NULL;
1589 if (err == -EEXIST)
1590 goto repeat;
1da177e4 1591 }
1da177e4 1592 }
2457aec6 1593
1da177e4
LT
1594 return page;
1595}
2457aec6 1596EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1597
0cd6144a
JW
1598/**
1599 * find_get_entries - gang pagecache lookup
1600 * @mapping: The address_space to search
1601 * @start: The starting page cache index
1602 * @nr_entries: The maximum number of entries
1603 * @entries: Where the resulting entries are placed
1604 * @indices: The cache indices corresponding to the entries in @entries
1605 *
1606 * find_get_entries() will search for and return a group of up to
1607 * @nr_entries entries in the mapping. The entries are placed at
1608 * @entries. find_get_entries() takes a reference against any actual
1609 * pages it returns.
1610 *
1611 * The search returns a group of mapping-contiguous page cache entries
1612 * with ascending indexes. There may be holes in the indices due to
1613 * not-present pages.
1614 *
139b6a6f
JW
1615 * Any shadow entries of evicted pages, or swap entries from
1616 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1617 *
1618 * find_get_entries() returns the number of pages and shadow entries
1619 * which were found.
1620 */
1621unsigned find_get_entries(struct address_space *mapping,
1622 pgoff_t start, unsigned int nr_entries,
1623 struct page **entries, pgoff_t *indices)
1624{
1625 void **slot;
1626 unsigned int ret = 0;
1627 struct radix_tree_iter iter;
1628
1629 if (!nr_entries)
1630 return 0;
1631
1632 rcu_read_lock();
b93b0163 1633 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
83929372 1634 struct page *head, *page;
0cd6144a
JW
1635repeat:
1636 page = radix_tree_deref_slot(slot);
1637 if (unlikely(!page))
1638 continue;
1639 if (radix_tree_exception(page)) {
2cf938aa
MW
1640 if (radix_tree_deref_retry(page)) {
1641 slot = radix_tree_iter_retry(&iter);
1642 continue;
1643 }
0cd6144a 1644 /*
f9fe48be
RZ
1645 * A shadow entry of a recently evicted page, a swap
1646 * entry from shmem/tmpfs or a DAX entry. Return it
1647 * without attempting to raise page count.
0cd6144a
JW
1648 */
1649 goto export;
1650 }
83929372
KS
1651
1652 head = compound_head(page);
1653 if (!page_cache_get_speculative(head))
1654 goto repeat;
1655
1656 /* The page was split under us? */
1657 if (compound_head(page) != head) {
1658 put_page(head);
0cd6144a 1659 goto repeat;
83929372 1660 }
0cd6144a
JW
1661
1662 /* Has the page moved? */
1663 if (unlikely(page != *slot)) {
83929372 1664 put_page(head);
0cd6144a
JW
1665 goto repeat;
1666 }
1667export:
1668 indices[ret] = iter.index;
1669 entries[ret] = page;
1670 if (++ret == nr_entries)
1671 break;
1672 }
1673 rcu_read_unlock();
1674 return ret;
1675}
1676
1da177e4 1677/**
b947cee4 1678 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1679 * @mapping: The address_space to search
1680 * @start: The starting page index
b947cee4 1681 * @end: The final page index (inclusive)
1da177e4
LT
1682 * @nr_pages: The maximum number of pages
1683 * @pages: Where the resulting pages are placed
1684 *
b947cee4
JK
1685 * find_get_pages_range() will search for and return a group of up to @nr_pages
1686 * pages in the mapping starting at index @start and up to index @end
1687 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1688 * a reference against the returned pages.
1da177e4
LT
1689 *
1690 * The search returns a group of mapping-contiguous pages with ascending
1691 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1692 * We also update @start to index the next page for the traversal.
1da177e4 1693 *
b947cee4
JK
1694 * find_get_pages_range() returns the number of pages which were found. If this
1695 * number is smaller than @nr_pages, the end of specified range has been
1696 * reached.
1da177e4 1697 */
b947cee4
JK
1698unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1699 pgoff_t end, unsigned int nr_pages,
1700 struct page **pages)
1da177e4 1701{
0fc9d104
KK
1702 struct radix_tree_iter iter;
1703 void **slot;
1704 unsigned ret = 0;
1705
1706 if (unlikely(!nr_pages))
1707 return 0;
a60637c8
NP
1708
1709 rcu_read_lock();
b93b0163 1710 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
83929372 1711 struct page *head, *page;
b947cee4
JK
1712
1713 if (iter.index > end)
1714 break;
a60637c8 1715repeat:
0fc9d104 1716 page = radix_tree_deref_slot(slot);
a60637c8
NP
1717 if (unlikely(!page))
1718 continue;
9d8aa4ea 1719
a2c16d6c 1720 if (radix_tree_exception(page)) {
8079b1c8 1721 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1722 slot = radix_tree_iter_retry(&iter);
1723 continue;
8079b1c8 1724 }
a2c16d6c 1725 /*
139b6a6f
JW
1726 * A shadow entry of a recently evicted page,
1727 * or a swap entry from shmem/tmpfs. Skip
1728 * over it.
a2c16d6c 1729 */
8079b1c8 1730 continue;
27d20fdd 1731 }
a60637c8 1732
83929372
KS
1733 head = compound_head(page);
1734 if (!page_cache_get_speculative(head))
1735 goto repeat;
1736
1737 /* The page was split under us? */
1738 if (compound_head(page) != head) {
1739 put_page(head);
a60637c8 1740 goto repeat;
83929372 1741 }
a60637c8
NP
1742
1743 /* Has the page moved? */
0fc9d104 1744 if (unlikely(page != *slot)) {
83929372 1745 put_page(head);
a60637c8
NP
1746 goto repeat;
1747 }
1da177e4 1748
a60637c8 1749 pages[ret] = page;
b947cee4
JK
1750 if (++ret == nr_pages) {
1751 *start = pages[ret - 1]->index + 1;
1752 goto out;
1753 }
a60637c8 1754 }
5b280c0c 1755
b947cee4
JK
1756 /*
1757 * We come here when there is no page beyond @end. We take care to not
1758 * overflow the index @start as it confuses some of the callers. This
1759 * breaks the iteration when there is page at index -1 but that is
1760 * already broken anyway.
1761 */
1762 if (end == (pgoff_t)-1)
1763 *start = (pgoff_t)-1;
1764 else
1765 *start = end + 1;
1766out:
a60637c8 1767 rcu_read_unlock();
d72dc8a2 1768
1da177e4
LT
1769 return ret;
1770}
1771
ebf43500
JA
1772/**
1773 * find_get_pages_contig - gang contiguous pagecache lookup
1774 * @mapping: The address_space to search
1775 * @index: The starting page index
1776 * @nr_pages: The maximum number of pages
1777 * @pages: Where the resulting pages are placed
1778 *
1779 * find_get_pages_contig() works exactly like find_get_pages(), except
1780 * that the returned number of pages are guaranteed to be contiguous.
1781 *
1782 * find_get_pages_contig() returns the number of pages which were found.
1783 */
1784unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1785 unsigned int nr_pages, struct page **pages)
1786{
0fc9d104
KK
1787 struct radix_tree_iter iter;
1788 void **slot;
1789 unsigned int ret = 0;
1790
1791 if (unlikely(!nr_pages))
1792 return 0;
a60637c8
NP
1793
1794 rcu_read_lock();
b93b0163 1795 radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
83929372 1796 struct page *head, *page;
a60637c8 1797repeat:
0fc9d104
KK
1798 page = radix_tree_deref_slot(slot);
1799 /* The hole, there no reason to continue */
a60637c8 1800 if (unlikely(!page))
0fc9d104 1801 break;
9d8aa4ea 1802
a2c16d6c 1803 if (radix_tree_exception(page)) {
8079b1c8 1804 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1805 slot = radix_tree_iter_retry(&iter);
1806 continue;
8079b1c8 1807 }
a2c16d6c 1808 /*
139b6a6f
JW
1809 * A shadow entry of a recently evicted page,
1810 * or a swap entry from shmem/tmpfs. Stop
1811 * looking for contiguous pages.
a2c16d6c 1812 */
8079b1c8 1813 break;
a2c16d6c 1814 }
ebf43500 1815
83929372
KS
1816 head = compound_head(page);
1817 if (!page_cache_get_speculative(head))
1818 goto repeat;
1819
1820 /* The page was split under us? */
1821 if (compound_head(page) != head) {
1822 put_page(head);
a60637c8 1823 goto repeat;
83929372 1824 }
a60637c8
NP
1825
1826 /* Has the page moved? */
0fc9d104 1827 if (unlikely(page != *slot)) {
83929372 1828 put_page(head);
a60637c8
NP
1829 goto repeat;
1830 }
1831
9cbb4cb2
NP
1832 /*
1833 * must check mapping and index after taking the ref.
1834 * otherwise we can get both false positives and false
1835 * negatives, which is just confusing to the caller.
1836 */
83929372 1837 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1838 put_page(page);
9cbb4cb2
NP
1839 break;
1840 }
1841
a60637c8 1842 pages[ret] = page;
0fc9d104
KK
1843 if (++ret == nr_pages)
1844 break;
ebf43500 1845 }
a60637c8
NP
1846 rcu_read_unlock();
1847 return ret;
ebf43500 1848}
ef71c15c 1849EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1850
485bb99b 1851/**
72b045ae 1852 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
1853 * @mapping: the address_space to search
1854 * @index: the starting page index
72b045ae 1855 * @end: The final page index (inclusive)
485bb99b
RD
1856 * @tag: the tag index
1857 * @nr_pages: the maximum number of pages
1858 * @pages: where the resulting pages are placed
1859 *
1da177e4 1860 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1861 * @tag. We update @index to index the next page for the traversal.
1da177e4 1862 */
72b045ae
JK
1863unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1864 pgoff_t end, int tag, unsigned int nr_pages,
1865 struct page **pages)
1da177e4 1866{
0fc9d104
KK
1867 struct radix_tree_iter iter;
1868 void **slot;
1869 unsigned ret = 0;
1870
1871 if (unlikely(!nr_pages))
1872 return 0;
a60637c8
NP
1873
1874 rcu_read_lock();
b93b0163 1875 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
83929372 1876 struct page *head, *page;
72b045ae
JK
1877
1878 if (iter.index > end)
1879 break;
a60637c8 1880repeat:
0fc9d104 1881 page = radix_tree_deref_slot(slot);
a60637c8
NP
1882 if (unlikely(!page))
1883 continue;
9d8aa4ea 1884
a2c16d6c 1885 if (radix_tree_exception(page)) {
8079b1c8 1886 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1887 slot = radix_tree_iter_retry(&iter);
1888 continue;
8079b1c8 1889 }
a2c16d6c 1890 /*
139b6a6f
JW
1891 * A shadow entry of a recently evicted page.
1892 *
1893 * Those entries should never be tagged, but
1894 * this tree walk is lockless and the tags are
1895 * looked up in bulk, one radix tree node at a
1896 * time, so there is a sizable window for page
1897 * reclaim to evict a page we saw tagged.
1898 *
1899 * Skip over it.
a2c16d6c 1900 */
139b6a6f 1901 continue;
a2c16d6c 1902 }
a60637c8 1903
83929372
KS
1904 head = compound_head(page);
1905 if (!page_cache_get_speculative(head))
a60637c8
NP
1906 goto repeat;
1907
83929372
KS
1908 /* The page was split under us? */
1909 if (compound_head(page) != head) {
1910 put_page(head);
1911 goto repeat;
1912 }
1913
a60637c8 1914 /* Has the page moved? */
0fc9d104 1915 if (unlikely(page != *slot)) {
83929372 1916 put_page(head);
a60637c8
NP
1917 goto repeat;
1918 }
1919
1920 pages[ret] = page;
72b045ae
JK
1921 if (++ret == nr_pages) {
1922 *index = pages[ret - 1]->index + 1;
1923 goto out;
1924 }
a60637c8 1925 }
5b280c0c 1926
72b045ae
JK
1927 /*
1928 * We come here when we got at @end. We take care to not overflow the
1929 * index @index as it confuses some of the callers. This breaks the
1930 * iteration when there is page at index -1 but that is already broken
1931 * anyway.
1932 */
1933 if (end == (pgoff_t)-1)
1934 *index = (pgoff_t)-1;
1935 else
1936 *index = end + 1;
1937out:
a60637c8 1938 rcu_read_unlock();
1da177e4 1939
1da177e4
LT
1940 return ret;
1941}
72b045ae 1942EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 1943
7e7f7749
RZ
1944/**
1945 * find_get_entries_tag - find and return entries that match @tag
1946 * @mapping: the address_space to search
1947 * @start: the starting page cache index
1948 * @tag: the tag index
1949 * @nr_entries: the maximum number of entries
1950 * @entries: where the resulting entries are placed
1951 * @indices: the cache indices corresponding to the entries in @entries
1952 *
1953 * Like find_get_entries, except we only return entries which are tagged with
1954 * @tag.
1955 */
1956unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1957 int tag, unsigned int nr_entries,
1958 struct page **entries, pgoff_t *indices)
1959{
1960 void **slot;
1961 unsigned int ret = 0;
1962 struct radix_tree_iter iter;
1963
1964 if (!nr_entries)
1965 return 0;
1966
1967 rcu_read_lock();
b93b0163 1968 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
83929372 1969 struct page *head, *page;
7e7f7749
RZ
1970repeat:
1971 page = radix_tree_deref_slot(slot);
1972 if (unlikely(!page))
1973 continue;
1974 if (radix_tree_exception(page)) {
1975 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1976 slot = radix_tree_iter_retry(&iter);
1977 continue;
7e7f7749
RZ
1978 }
1979
1980 /*
1981 * A shadow entry of a recently evicted page, a swap
1982 * entry from shmem/tmpfs or a DAX entry. Return it
1983 * without attempting to raise page count.
1984 */
1985 goto export;
1986 }
83929372
KS
1987
1988 head = compound_head(page);
1989 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1990 goto repeat;
1991
83929372
KS
1992 /* The page was split under us? */
1993 if (compound_head(page) != head) {
1994 put_page(head);
1995 goto repeat;
1996 }
1997
7e7f7749
RZ
1998 /* Has the page moved? */
1999 if (unlikely(page != *slot)) {
83929372 2000 put_page(head);
7e7f7749
RZ
2001 goto repeat;
2002 }
2003export:
2004 indices[ret] = iter.index;
2005 entries[ret] = page;
2006 if (++ret == nr_entries)
2007 break;
2008 }
2009 rcu_read_unlock();
2010 return ret;
2011}
2012EXPORT_SYMBOL(find_get_entries_tag);
2013
76d42bd9
WF
2014/*
2015 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2016 * a _large_ part of the i/o request. Imagine the worst scenario:
2017 *
2018 * ---R__________________________________________B__________
2019 * ^ reading here ^ bad block(assume 4k)
2020 *
2021 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2022 * => failing the whole request => read(R) => read(R+1) =>
2023 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2024 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2025 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2026 *
2027 * It is going insane. Fix it by quickly scaling down the readahead size.
2028 */
2029static void shrink_readahead_size_eio(struct file *filp,
2030 struct file_ra_state *ra)
2031{
76d42bd9 2032 ra->ra_pages /= 4;
76d42bd9
WF
2033}
2034
485bb99b 2035/**
47c27bc4
CH
2036 * generic_file_buffered_read - generic file read routine
2037 * @iocb: the iocb to read
6e58e79d
AV
2038 * @iter: data destination
2039 * @written: already copied
485bb99b 2040 *
1da177e4 2041 * This is a generic file read routine, and uses the
485bb99b 2042 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
2043 *
2044 * This is really ugly. But the goto's actually try to clarify some
2045 * of the logic when it comes to error handling etc.
1da177e4 2046 */
47c27bc4 2047static ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 2048 struct iov_iter *iter, ssize_t written)
1da177e4 2049{
47c27bc4 2050 struct file *filp = iocb->ki_filp;
36e78914 2051 struct address_space *mapping = filp->f_mapping;
1da177e4 2052 struct inode *inode = mapping->host;
36e78914 2053 struct file_ra_state *ra = &filp->f_ra;
47c27bc4 2054 loff_t *ppos = &iocb->ki_pos;
57f6b96c
FW
2055 pgoff_t index;
2056 pgoff_t last_index;
2057 pgoff_t prev_index;
2058 unsigned long offset; /* offset into pagecache page */
ec0f1637 2059 unsigned int prev_offset;
6e58e79d 2060 int error = 0;
1da177e4 2061
c2a9737f 2062 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 2063 return 0;
c2a9737f
WF
2064 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2065
09cbfeaf
KS
2066 index = *ppos >> PAGE_SHIFT;
2067 prev_index = ra->prev_pos >> PAGE_SHIFT;
2068 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2069 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2070 offset = *ppos & ~PAGE_MASK;
1da177e4 2071
1da177e4
LT
2072 for (;;) {
2073 struct page *page;
57f6b96c 2074 pgoff_t end_index;
a32ea1e1 2075 loff_t isize;
1da177e4
LT
2076 unsigned long nr, ret;
2077
1da177e4 2078 cond_resched();
1da177e4 2079find_page:
5abf186a
MH
2080 if (fatal_signal_pending(current)) {
2081 error = -EINTR;
2082 goto out;
2083 }
2084
1da177e4 2085 page = find_get_page(mapping, index);
3ea89ee8 2086 if (!page) {
3239d834
MT
2087 if (iocb->ki_flags & IOCB_NOWAIT)
2088 goto would_block;
cf914a7d 2089 page_cache_sync_readahead(mapping,
7ff81078 2090 ra, filp,
3ea89ee8
FW
2091 index, last_index - index);
2092 page = find_get_page(mapping, index);
2093 if (unlikely(page == NULL))
2094 goto no_cached_page;
2095 }
2096 if (PageReadahead(page)) {
cf914a7d 2097 page_cache_async_readahead(mapping,
7ff81078 2098 ra, filp, page,
3ea89ee8 2099 index, last_index - index);
1da177e4 2100 }
8ab22b9a 2101 if (!PageUptodate(page)) {
3239d834
MT
2102 if (iocb->ki_flags & IOCB_NOWAIT) {
2103 put_page(page);
2104 goto would_block;
2105 }
2106
ebded027
MG
2107 /*
2108 * See comment in do_read_cache_page on why
2109 * wait_on_page_locked is used to avoid unnecessarily
2110 * serialisations and why it's safe.
2111 */
c4b209a4
BVA
2112 error = wait_on_page_locked_killable(page);
2113 if (unlikely(error))
2114 goto readpage_error;
ebded027
MG
2115 if (PageUptodate(page))
2116 goto page_ok;
2117
09cbfeaf 2118 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
2119 !mapping->a_ops->is_partially_uptodate)
2120 goto page_not_up_to_date;
6d6d36bc
EG
2121 /* pipes can't handle partially uptodate pages */
2122 if (unlikely(iter->type & ITER_PIPE))
2123 goto page_not_up_to_date;
529ae9aa 2124 if (!trylock_page(page))
8ab22b9a 2125 goto page_not_up_to_date;
8d056cb9
DH
2126 /* Did it get truncated before we got the lock? */
2127 if (!page->mapping)
2128 goto page_not_up_to_date_locked;
8ab22b9a 2129 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 2130 offset, iter->count))
8ab22b9a
HH
2131 goto page_not_up_to_date_locked;
2132 unlock_page(page);
2133 }
1da177e4 2134page_ok:
a32ea1e1
N
2135 /*
2136 * i_size must be checked after we know the page is Uptodate.
2137 *
2138 * Checking i_size after the check allows us to calculate
2139 * the correct value for "nr", which means the zero-filled
2140 * part of the page is not copied back to userspace (unless
2141 * another truncate extends the file - this is desired though).
2142 */
2143
2144 isize = i_size_read(inode);
09cbfeaf 2145 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 2146 if (unlikely(!isize || index > end_index)) {
09cbfeaf 2147 put_page(page);
a32ea1e1
N
2148 goto out;
2149 }
2150
2151 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2152 nr = PAGE_SIZE;
a32ea1e1 2153 if (index == end_index) {
09cbfeaf 2154 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2155 if (nr <= offset) {
09cbfeaf 2156 put_page(page);
a32ea1e1
N
2157 goto out;
2158 }
2159 }
2160 nr = nr - offset;
1da177e4
LT
2161
2162 /* If users can be writing to this page using arbitrary
2163 * virtual addresses, take care about potential aliasing
2164 * before reading the page on the kernel side.
2165 */
2166 if (mapping_writably_mapped(mapping))
2167 flush_dcache_page(page);
2168
2169 /*
ec0f1637
JK
2170 * When a sequential read accesses a page several times,
2171 * only mark it as accessed the first time.
1da177e4 2172 */
ec0f1637 2173 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2174 mark_page_accessed(page);
2175 prev_index = index;
2176
2177 /*
2178 * Ok, we have the page, and it's up-to-date, so
2179 * now we can copy it to user space...
1da177e4 2180 */
6e58e79d
AV
2181
2182 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2183 offset += ret;
09cbfeaf
KS
2184 index += offset >> PAGE_SHIFT;
2185 offset &= ~PAGE_MASK;
6ce745ed 2186 prev_offset = offset;
1da177e4 2187
09cbfeaf 2188 put_page(page);
6e58e79d
AV
2189 written += ret;
2190 if (!iov_iter_count(iter))
2191 goto out;
2192 if (ret < nr) {
2193 error = -EFAULT;
2194 goto out;
2195 }
2196 continue;
1da177e4
LT
2197
2198page_not_up_to_date:
2199 /* Get exclusive access to the page ... */
85462323
ON
2200 error = lock_page_killable(page);
2201 if (unlikely(error))
2202 goto readpage_error;
1da177e4 2203
8ab22b9a 2204page_not_up_to_date_locked:
da6052f7 2205 /* Did it get truncated before we got the lock? */
1da177e4
LT
2206 if (!page->mapping) {
2207 unlock_page(page);
09cbfeaf 2208 put_page(page);
1da177e4
LT
2209 continue;
2210 }
2211
2212 /* Did somebody else fill it already? */
2213 if (PageUptodate(page)) {
2214 unlock_page(page);
2215 goto page_ok;
2216 }
2217
2218readpage:
91803b49
JM
2219 /*
2220 * A previous I/O error may have been due to temporary
2221 * failures, eg. multipath errors.
2222 * PG_error will be set again if readpage fails.
2223 */
2224 ClearPageError(page);
1da177e4
LT
2225 /* Start the actual read. The read will unlock the page. */
2226 error = mapping->a_ops->readpage(filp, page);
2227
994fc28c
ZB
2228 if (unlikely(error)) {
2229 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2230 put_page(page);
6e58e79d 2231 error = 0;
994fc28c
ZB
2232 goto find_page;
2233 }
1da177e4 2234 goto readpage_error;
994fc28c 2235 }
1da177e4
LT
2236
2237 if (!PageUptodate(page)) {
85462323
ON
2238 error = lock_page_killable(page);
2239 if (unlikely(error))
2240 goto readpage_error;
1da177e4
LT
2241 if (!PageUptodate(page)) {
2242 if (page->mapping == NULL) {
2243 /*
2ecdc82e 2244 * invalidate_mapping_pages got it
1da177e4
LT
2245 */
2246 unlock_page(page);
09cbfeaf 2247 put_page(page);
1da177e4
LT
2248 goto find_page;
2249 }
2250 unlock_page(page);
7ff81078 2251 shrink_readahead_size_eio(filp, ra);
85462323
ON
2252 error = -EIO;
2253 goto readpage_error;
1da177e4
LT
2254 }
2255 unlock_page(page);
2256 }
2257
1da177e4
LT
2258 goto page_ok;
2259
2260readpage_error:
2261 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2262 put_page(page);
1da177e4
LT
2263 goto out;
2264
2265no_cached_page:
2266 /*
2267 * Ok, it wasn't cached, so we need to create a new
2268 * page..
2269 */
453f85d4 2270 page = page_cache_alloc(mapping);
eb2be189 2271 if (!page) {
6e58e79d 2272 error = -ENOMEM;
eb2be189 2273 goto out;
1da177e4 2274 }
6afdb859 2275 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2276 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2277 if (error) {
09cbfeaf 2278 put_page(page);
6e58e79d
AV
2279 if (error == -EEXIST) {
2280 error = 0;
1da177e4 2281 goto find_page;
6e58e79d 2282 }
1da177e4
LT
2283 goto out;
2284 }
1da177e4
LT
2285 goto readpage;
2286 }
2287
3239d834
MT
2288would_block:
2289 error = -EAGAIN;
1da177e4 2290out:
7ff81078 2291 ra->prev_pos = prev_index;
09cbfeaf 2292 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2293 ra->prev_pos |= prev_offset;
1da177e4 2294
09cbfeaf 2295 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2296 file_accessed(filp);
6e58e79d 2297 return written ? written : error;
1da177e4
LT
2298}
2299
485bb99b 2300/**
6abd2322 2301 * generic_file_read_iter - generic filesystem read routine
485bb99b 2302 * @iocb: kernel I/O control block
6abd2322 2303 * @iter: destination for the data read
485bb99b 2304 *
6abd2322 2305 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
2306 * that can use the page cache directly.
2307 */
2308ssize_t
ed978a81 2309generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2310{
e7080a43 2311 size_t count = iov_iter_count(iter);
47c27bc4 2312 ssize_t retval = 0;
e7080a43
NS
2313
2314 if (!count)
2315 goto out; /* skip atime */
1da177e4 2316
2ba48ce5 2317 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2318 struct file *file = iocb->ki_filp;
ed978a81
AV
2319 struct address_space *mapping = file->f_mapping;
2320 struct inode *inode = mapping->host;
543ade1f 2321 loff_t size;
1da177e4 2322
1da177e4 2323 size = i_size_read(inode);
6be96d3a
GR
2324 if (iocb->ki_flags & IOCB_NOWAIT) {
2325 if (filemap_range_has_page(mapping, iocb->ki_pos,
2326 iocb->ki_pos + count - 1))
2327 return -EAGAIN;
2328 } else {
2329 retval = filemap_write_and_wait_range(mapping,
2330 iocb->ki_pos,
2331 iocb->ki_pos + count - 1);
2332 if (retval < 0)
2333 goto out;
2334 }
d8d3d94b 2335
0d5b0cf2
CH
2336 file_accessed(file);
2337
5ecda137 2338 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2339 if (retval >= 0) {
c64fb5c7 2340 iocb->ki_pos += retval;
5ecda137 2341 count -= retval;
9fe55eea 2342 }
5b47d59a 2343 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2344
9fe55eea
SW
2345 /*
2346 * Btrfs can have a short DIO read if we encounter
2347 * compressed extents, so if there was an error, or if
2348 * we've already read everything we wanted to, or if
2349 * there was a short read because we hit EOF, go ahead
2350 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2351 * the rest of the read. Buffered reads will not work for
2352 * DAX files, so don't bother trying.
9fe55eea 2353 */
5ecda137 2354 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2355 IS_DAX(inode))
9fe55eea 2356 goto out;
1da177e4
LT
2357 }
2358
47c27bc4 2359 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2360out:
2361 return retval;
2362}
ed978a81 2363EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2364
1da177e4 2365#ifdef CONFIG_MMU
485bb99b
RD
2366/**
2367 * page_cache_read - adds requested page to the page cache if not already there
2368 * @file: file to read
2369 * @offset: page index
62eb320a 2370 * @gfp_mask: memory allocation flags
485bb99b 2371 *
1da177e4
LT
2372 * This adds the requested page to the page cache if it isn't already there,
2373 * and schedules an I/O to read in its contents from disk.
2374 */
c20cd45e 2375static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
2376{
2377 struct address_space *mapping = file->f_mapping;
99dadfdd 2378 struct page *page;
994fc28c 2379 int ret;
1da177e4 2380
994fc28c 2381 do {
453f85d4 2382 page = __page_cache_alloc(gfp_mask);
994fc28c
ZB
2383 if (!page)
2384 return -ENOMEM;
2385
abc1be13 2386 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
994fc28c
ZB
2387 if (ret == 0)
2388 ret = mapping->a_ops->readpage(file, page);
2389 else if (ret == -EEXIST)
2390 ret = 0; /* losing race to add is OK */
1da177e4 2391
09cbfeaf 2392 put_page(page);
1da177e4 2393
994fc28c 2394 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 2395
994fc28c 2396 return ret;
1da177e4
LT
2397}
2398
2399#define MMAP_LOTSAMISS (100)
2400
ef00e08e
LT
2401/*
2402 * Synchronous readahead happens when we don't even find
2403 * a page in the page cache at all.
2404 */
2405static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2406 struct file_ra_state *ra,
2407 struct file *file,
2408 pgoff_t offset)
2409{
ef00e08e
LT
2410 struct address_space *mapping = file->f_mapping;
2411
2412 /* If we don't want any read-ahead, don't bother */
64363aad 2413 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 2414 return;
275b12bf
WF
2415 if (!ra->ra_pages)
2416 return;
ef00e08e 2417
64363aad 2418 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
2419 page_cache_sync_readahead(mapping, ra, file, offset,
2420 ra->ra_pages);
ef00e08e
LT
2421 return;
2422 }
2423
207d04ba
AK
2424 /* Avoid banging the cache line if not needed */
2425 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2426 ra->mmap_miss++;
2427
2428 /*
2429 * Do we miss much more than hit in this file? If so,
2430 * stop bothering with read-ahead. It will only hurt.
2431 */
2432 if (ra->mmap_miss > MMAP_LOTSAMISS)
2433 return;
2434
d30a1100
WF
2435 /*
2436 * mmap read-around
2437 */
600e19af
RG
2438 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2439 ra->size = ra->ra_pages;
2440 ra->async_size = ra->ra_pages / 4;
275b12bf 2441 ra_submit(ra, mapping, file);
ef00e08e
LT
2442}
2443
2444/*
2445 * Asynchronous readahead happens when we find the page and PG_readahead,
2446 * so we want to possibly extend the readahead further..
2447 */
2448static void do_async_mmap_readahead(struct vm_area_struct *vma,
2449 struct file_ra_state *ra,
2450 struct file *file,
2451 struct page *page,
2452 pgoff_t offset)
2453{
2454 struct address_space *mapping = file->f_mapping;
2455
2456 /* If we don't want any read-ahead, don't bother */
64363aad 2457 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2458 return;
2459 if (ra->mmap_miss > 0)
2460 ra->mmap_miss--;
2461 if (PageReadahead(page))
2fad6f5d
WF
2462 page_cache_async_readahead(mapping, ra, file,
2463 page, offset, ra->ra_pages);
ef00e08e
LT
2464}
2465
485bb99b 2466/**
54cb8821 2467 * filemap_fault - read in file data for page fault handling
d0217ac0 2468 * @vmf: struct vm_fault containing details of the fault
485bb99b 2469 *
54cb8821 2470 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2471 * mapped memory region to read in file data during a page fault.
2472 *
2473 * The goto's are kind of ugly, but this streamlines the normal case of having
2474 * it in the page cache, and handles the special cases reasonably without
2475 * having a lot of duplicated code.
9a95f3cf
PC
2476 *
2477 * vma->vm_mm->mmap_sem must be held on entry.
2478 *
2479 * If our return value has VM_FAULT_RETRY set, it's because
2480 * lock_page_or_retry() returned 0.
2481 * The mmap_sem has usually been released in this case.
2482 * See __lock_page_or_retry() for the exception.
2483 *
2484 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2485 * has not been released.
2486 *
2487 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2488 */
2bcd6454 2489vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2490{
2491 int error;
11bac800 2492 struct file *file = vmf->vma->vm_file;
1da177e4
LT
2493 struct address_space *mapping = file->f_mapping;
2494 struct file_ra_state *ra = &file->f_ra;
2495 struct inode *inode = mapping->host;
ef00e08e 2496 pgoff_t offset = vmf->pgoff;
9ab2594f 2497 pgoff_t max_off;
1da177e4 2498 struct page *page;
2bcd6454 2499 vm_fault_t ret = 0;
1da177e4 2500
9ab2594f
MW
2501 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2502 if (unlikely(offset >= max_off))
5307cc1a 2503 return VM_FAULT_SIGBUS;
1da177e4 2504
1da177e4 2505 /*
49426420 2506 * Do we have something in the page cache already?
1da177e4 2507 */
ef00e08e 2508 page = find_get_page(mapping, offset);
45cac65b 2509 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2510 /*
ef00e08e
LT
2511 * We found the page, so try async readahead before
2512 * waiting for the lock.
1da177e4 2513 */
11bac800 2514 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
45cac65b 2515 } else if (!page) {
ef00e08e 2516 /* No page in the page cache at all */
11bac800 2517 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
ef00e08e 2518 count_vm_event(PGMAJFAULT);
2262185c 2519 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2520 ret = VM_FAULT_MAJOR;
2521retry_find:
b522c94d 2522 page = find_get_page(mapping, offset);
1da177e4
LT
2523 if (!page)
2524 goto no_cached_page;
2525 }
2526
11bac800 2527 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
09cbfeaf 2528 put_page(page);
d065bd81 2529 return ret | VM_FAULT_RETRY;
d88c0922 2530 }
b522c94d
ML
2531
2532 /* Did it get truncated? */
2533 if (unlikely(page->mapping != mapping)) {
2534 unlock_page(page);
2535 put_page(page);
2536 goto retry_find;
2537 }
309381fe 2538 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2539
1da177e4 2540 /*
d00806b1
NP
2541 * We have a locked page in the page cache, now we need to check
2542 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2543 */
d00806b1 2544 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2545 goto page_not_uptodate;
2546
ef00e08e
LT
2547 /*
2548 * Found the page and have a reference on it.
2549 * We must recheck i_size under page lock.
2550 */
9ab2594f
MW
2551 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2552 if (unlikely(offset >= max_off)) {
d00806b1 2553 unlock_page(page);
09cbfeaf 2554 put_page(page);
5307cc1a 2555 return VM_FAULT_SIGBUS;
d00806b1
NP
2556 }
2557
d0217ac0 2558 vmf->page = page;
83c54070 2559 return ret | VM_FAULT_LOCKED;
1da177e4 2560
1da177e4
LT
2561no_cached_page:
2562 /*
2563 * We're only likely to ever get here if MADV_RANDOM is in
2564 * effect.
2565 */
c20cd45e 2566 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2567
2568 /*
2569 * The page we want has now been added to the page cache.
2570 * In the unlikely event that someone removed it in the
2571 * meantime, we'll just come back here and read it again.
2572 */
2573 if (error >= 0)
2574 goto retry_find;
2575
2576 /*
2577 * An error return from page_cache_read can result if the
2578 * system is low on memory, or a problem occurs while trying
2579 * to schedule I/O.
2580 */
2581 if (error == -ENOMEM)
d0217ac0
NP
2582 return VM_FAULT_OOM;
2583 return VM_FAULT_SIGBUS;
1da177e4
LT
2584
2585page_not_uptodate:
1da177e4
LT
2586 /*
2587 * Umm, take care of errors if the page isn't up-to-date.
2588 * Try to re-read it _once_. We do this synchronously,
2589 * because there really aren't any performance issues here
2590 * and we need to check for errors.
2591 */
1da177e4 2592 ClearPageError(page);
994fc28c 2593 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2594 if (!error) {
2595 wait_on_page_locked(page);
2596 if (!PageUptodate(page))
2597 error = -EIO;
2598 }
09cbfeaf 2599 put_page(page);
d00806b1
NP
2600
2601 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2602 goto retry_find;
1da177e4 2603
d00806b1 2604 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2605 shrink_readahead_size_eio(file, ra);
d0217ac0 2606 return VM_FAULT_SIGBUS;
54cb8821
NP
2607}
2608EXPORT_SYMBOL(filemap_fault);
2609
82b0f8c3 2610void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2611 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2612{
2613 struct radix_tree_iter iter;
2614 void **slot;
82b0f8c3 2615 struct file *file = vmf->vma->vm_file;
f1820361 2616 struct address_space *mapping = file->f_mapping;
bae473a4 2617 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2618 unsigned long max_idx;
83929372 2619 struct page *head, *page;
f1820361
KS
2620
2621 rcu_read_lock();
b93b0163 2622 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
bae473a4 2623 if (iter.index > end_pgoff)
f1820361
KS
2624 break;
2625repeat:
2626 page = radix_tree_deref_slot(slot);
2627 if (unlikely(!page))
2628 goto next;
2629 if (radix_tree_exception(page)) {
2cf938aa
MW
2630 if (radix_tree_deref_retry(page)) {
2631 slot = radix_tree_iter_retry(&iter);
2632 continue;
2633 }
2634 goto next;
f1820361
KS
2635 }
2636
83929372
KS
2637 head = compound_head(page);
2638 if (!page_cache_get_speculative(head))
f1820361
KS
2639 goto repeat;
2640
83929372
KS
2641 /* The page was split under us? */
2642 if (compound_head(page) != head) {
2643 put_page(head);
2644 goto repeat;
2645 }
2646
f1820361
KS
2647 /* Has the page moved? */
2648 if (unlikely(page != *slot)) {
83929372 2649 put_page(head);
f1820361
KS
2650 goto repeat;
2651 }
2652
2653 if (!PageUptodate(page) ||
2654 PageReadahead(page) ||
2655 PageHWPoison(page))
2656 goto skip;
2657 if (!trylock_page(page))
2658 goto skip;
2659
2660 if (page->mapping != mapping || !PageUptodate(page))
2661 goto unlock;
2662
9ab2594f
MW
2663 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2664 if (page->index >= max_idx)
f1820361
KS
2665 goto unlock;
2666
f1820361
KS
2667 if (file->f_ra.mmap_miss > 0)
2668 file->f_ra.mmap_miss--;
7267ec00 2669
82b0f8c3
JK
2670 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2671 if (vmf->pte)
2672 vmf->pte += iter.index - last_pgoff;
7267ec00 2673 last_pgoff = iter.index;
82b0f8c3 2674 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2675 goto unlock;
f1820361
KS
2676 unlock_page(page);
2677 goto next;
2678unlock:
2679 unlock_page(page);
2680skip:
09cbfeaf 2681 put_page(page);
f1820361 2682next:
7267ec00 2683 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2684 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2685 break;
bae473a4 2686 if (iter.index == end_pgoff)
f1820361
KS
2687 break;
2688 }
2689 rcu_read_unlock();
2690}
2691EXPORT_SYMBOL(filemap_map_pages);
2692
2bcd6454 2693vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2694{
2695 struct page *page = vmf->page;
11bac800 2696 struct inode *inode = file_inode(vmf->vma->vm_file);
2bcd6454 2697 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 2698
14da9200 2699 sb_start_pagefault(inode->i_sb);
11bac800 2700 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2701 lock_page(page);
2702 if (page->mapping != inode->i_mapping) {
2703 unlock_page(page);
2704 ret = VM_FAULT_NOPAGE;
2705 goto out;
2706 }
14da9200
JK
2707 /*
2708 * We mark the page dirty already here so that when freeze is in
2709 * progress, we are guaranteed that writeback during freezing will
2710 * see the dirty page and writeprotect it again.
2711 */
2712 set_page_dirty(page);
1d1d1a76 2713 wait_for_stable_page(page);
4fcf1c62 2714out:
14da9200 2715 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2716 return ret;
2717}
4fcf1c62 2718
f0f37e2f 2719const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2720 .fault = filemap_fault,
f1820361 2721 .map_pages = filemap_map_pages,
4fcf1c62 2722 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2723};
2724
2725/* This is used for a general mmap of a disk file */
2726
2727int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2728{
2729 struct address_space *mapping = file->f_mapping;
2730
2731 if (!mapping->a_ops->readpage)
2732 return -ENOEXEC;
2733 file_accessed(file);
2734 vma->vm_ops = &generic_file_vm_ops;
2735 return 0;
2736}
1da177e4
LT
2737
2738/*
2739 * This is for filesystems which do not implement ->writepage.
2740 */
2741int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2742{
2743 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2744 return -EINVAL;
2745 return generic_file_mmap(file, vma);
2746}
2747#else
4b96a37d 2748vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 2749{
4b96a37d 2750 return VM_FAULT_SIGBUS;
45397228 2751}
1da177e4
LT
2752int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2753{
2754 return -ENOSYS;
2755}
2756int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2757{
2758 return -ENOSYS;
2759}
2760#endif /* CONFIG_MMU */
2761
45397228 2762EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
2763EXPORT_SYMBOL(generic_file_mmap);
2764EXPORT_SYMBOL(generic_file_readonly_mmap);
2765
67f9fd91
SL
2766static struct page *wait_on_page_read(struct page *page)
2767{
2768 if (!IS_ERR(page)) {
2769 wait_on_page_locked(page);
2770 if (!PageUptodate(page)) {
09cbfeaf 2771 put_page(page);
67f9fd91
SL
2772 page = ERR_PTR(-EIO);
2773 }
2774 }
2775 return page;
2776}
2777
32b63529 2778static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2779 pgoff_t index,
5e5358e7 2780 int (*filler)(void *, struct page *),
0531b2aa
LT
2781 void *data,
2782 gfp_t gfp)
1da177e4 2783{
eb2be189 2784 struct page *page;
1da177e4
LT
2785 int err;
2786repeat:
2787 page = find_get_page(mapping, index);
2788 if (!page) {
453f85d4 2789 page = __page_cache_alloc(gfp);
eb2be189
NP
2790 if (!page)
2791 return ERR_PTR(-ENOMEM);
e6f67b8c 2792 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2793 if (unlikely(err)) {
09cbfeaf 2794 put_page(page);
eb2be189
NP
2795 if (err == -EEXIST)
2796 goto repeat;
1da177e4 2797 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2798 return ERR_PTR(err);
2799 }
32b63529
MG
2800
2801filler:
1da177e4
LT
2802 err = filler(data, page);
2803 if (err < 0) {
09cbfeaf 2804 put_page(page);
32b63529 2805 return ERR_PTR(err);
1da177e4 2806 }
1da177e4 2807
32b63529
MG
2808 page = wait_on_page_read(page);
2809 if (IS_ERR(page))
2810 return page;
2811 goto out;
2812 }
1da177e4
LT
2813 if (PageUptodate(page))
2814 goto out;
2815
ebded027
MG
2816 /*
2817 * Page is not up to date and may be locked due one of the following
2818 * case a: Page is being filled and the page lock is held
2819 * case b: Read/write error clearing the page uptodate status
2820 * case c: Truncation in progress (page locked)
2821 * case d: Reclaim in progress
2822 *
2823 * Case a, the page will be up to date when the page is unlocked.
2824 * There is no need to serialise on the page lock here as the page
2825 * is pinned so the lock gives no additional protection. Even if the
2826 * the page is truncated, the data is still valid if PageUptodate as
2827 * it's a race vs truncate race.
2828 * Case b, the page will not be up to date
2829 * Case c, the page may be truncated but in itself, the data may still
2830 * be valid after IO completes as it's a read vs truncate race. The
2831 * operation must restart if the page is not uptodate on unlock but
2832 * otherwise serialising on page lock to stabilise the mapping gives
2833 * no additional guarantees to the caller as the page lock is
2834 * released before return.
2835 * Case d, similar to truncation. If reclaim holds the page lock, it
2836 * will be a race with remove_mapping that determines if the mapping
2837 * is valid on unlock but otherwise the data is valid and there is
2838 * no need to serialise with page lock.
2839 *
2840 * As the page lock gives no additional guarantee, we optimistically
2841 * wait on the page to be unlocked and check if it's up to date and
2842 * use the page if it is. Otherwise, the page lock is required to
2843 * distinguish between the different cases. The motivation is that we
2844 * avoid spurious serialisations and wakeups when multiple processes
2845 * wait on the same page for IO to complete.
2846 */
2847 wait_on_page_locked(page);
2848 if (PageUptodate(page))
2849 goto out;
2850
2851 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2852 lock_page(page);
ebded027
MG
2853
2854 /* Case c or d, restart the operation */
1da177e4
LT
2855 if (!page->mapping) {
2856 unlock_page(page);
09cbfeaf 2857 put_page(page);
32b63529 2858 goto repeat;
1da177e4 2859 }
ebded027
MG
2860
2861 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2862 if (PageUptodate(page)) {
2863 unlock_page(page);
2864 goto out;
2865 }
32b63529
MG
2866 goto filler;
2867
c855ff37 2868out:
6fe6900e
NP
2869 mark_page_accessed(page);
2870 return page;
2871}
0531b2aa
LT
2872
2873/**
67f9fd91 2874 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2875 * @mapping: the page's address_space
2876 * @index: the page index
2877 * @filler: function to perform the read
5e5358e7 2878 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2879 *
0531b2aa 2880 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2881 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2882 *
2883 * If the page does not get brought uptodate, return -EIO.
2884 */
67f9fd91 2885struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2886 pgoff_t index,
5e5358e7 2887 int (*filler)(void *, struct page *),
0531b2aa
LT
2888 void *data)
2889{
2890 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2891}
67f9fd91 2892EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2893
2894/**
2895 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2896 * @mapping: the page's address_space
2897 * @index: the page index
2898 * @gfp: the page allocator flags to use if allocating
2899 *
2900 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2901 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2902 *
2903 * If the page does not get brought uptodate, return -EIO.
2904 */
2905struct page *read_cache_page_gfp(struct address_space *mapping,
2906 pgoff_t index,
2907 gfp_t gfp)
2908{
2909 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2910
67f9fd91 2911 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2912}
2913EXPORT_SYMBOL(read_cache_page_gfp);
2914
1da177e4
LT
2915/*
2916 * Performs necessary checks before doing a write
2917 *
485bb99b 2918 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2919 * Returns appropriate error code that caller should return or
2920 * zero in case that write should be allowed.
2921 */
3309dd04 2922inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2923{
3309dd04 2924 struct file *file = iocb->ki_filp;
1da177e4 2925 struct inode *inode = file->f_mapping->host;
59e99e5b 2926 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2927 loff_t pos;
1da177e4 2928
3309dd04
AV
2929 if (!iov_iter_count(from))
2930 return 0;
1da177e4 2931
0fa6b005 2932 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2933 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2934 iocb->ki_pos = i_size_read(inode);
1da177e4 2935
3309dd04 2936 pos = iocb->ki_pos;
1da177e4 2937
6be96d3a
GR
2938 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2939 return -EINVAL;
2940
0fa6b005 2941 if (limit != RLIM_INFINITY) {
3309dd04 2942 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2943 send_sig(SIGXFSZ, current, 0);
2944 return -EFBIG;
1da177e4 2945 }
3309dd04 2946 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2947 }
2948
2949 /*
2950 * LFS rule
2951 */
3309dd04 2952 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2953 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2954 if (pos >= MAX_NON_LFS)
1da177e4 2955 return -EFBIG;
3309dd04 2956 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2957 }
2958
2959 /*
2960 * Are we about to exceed the fs block limit ?
2961 *
2962 * If we have written data it becomes a short write. If we have
2963 * exceeded without writing data we send a signal and return EFBIG.
2964 * Linus frestrict idea will clean these up nicely..
2965 */
3309dd04
AV
2966 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2967 return -EFBIG;
1da177e4 2968
3309dd04
AV
2969 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2970 return iov_iter_count(from);
1da177e4
LT
2971}
2972EXPORT_SYMBOL(generic_write_checks);
2973
afddba49
NP
2974int pagecache_write_begin(struct file *file, struct address_space *mapping,
2975 loff_t pos, unsigned len, unsigned flags,
2976 struct page **pagep, void **fsdata)
2977{
2978 const struct address_space_operations *aops = mapping->a_ops;
2979
4e02ed4b 2980 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2981 pagep, fsdata);
afddba49
NP
2982}
2983EXPORT_SYMBOL(pagecache_write_begin);
2984
2985int pagecache_write_end(struct file *file, struct address_space *mapping,
2986 loff_t pos, unsigned len, unsigned copied,
2987 struct page *page, void *fsdata)
2988{
2989 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2990
4e02ed4b 2991 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2992}
2993EXPORT_SYMBOL(pagecache_write_end);
2994
1da177e4 2995ssize_t
1af5bb49 2996generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2997{
2998 struct file *file = iocb->ki_filp;
2999 struct address_space *mapping = file->f_mapping;
3000 struct inode *inode = mapping->host;
1af5bb49 3001 loff_t pos = iocb->ki_pos;
1da177e4 3002 ssize_t written;
a969e903
CH
3003 size_t write_len;
3004 pgoff_t end;
1da177e4 3005
0c949334 3006 write_len = iov_iter_count(from);
09cbfeaf 3007 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3008
6be96d3a
GR
3009 if (iocb->ki_flags & IOCB_NOWAIT) {
3010 /* If there are pages to writeback, return */
3011 if (filemap_range_has_page(inode->i_mapping, pos,
3012 pos + iov_iter_count(from)))
3013 return -EAGAIN;
3014 } else {
3015 written = filemap_write_and_wait_range(mapping, pos,
3016 pos + write_len - 1);
3017 if (written)
3018 goto out;
3019 }
a969e903
CH
3020
3021 /*
3022 * After a write we want buffered reads to be sure to go to disk to get
3023 * the new data. We invalidate clean cached page from the region we're
3024 * about to write. We do this *before* the write so that we can return
6ccfa806 3025 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3026 */
55635ba7 3027 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3028 pos >> PAGE_SHIFT, end);
55635ba7
AR
3029 /*
3030 * If a page can not be invalidated, return 0 to fall back
3031 * to buffered write.
3032 */
3033 if (written) {
3034 if (written == -EBUSY)
3035 return 0;
3036 goto out;
a969e903
CH
3037 }
3038
639a93a5 3039 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3040
3041 /*
3042 * Finally, try again to invalidate clean pages which might have been
3043 * cached by non-direct readahead, or faulted in by get_user_pages()
3044 * if the source of the write was an mmap'ed region of the file
3045 * we're writing. Either one is a pretty crazy thing to do,
3046 * so we don't support it 100%. If this invalidation
3047 * fails, tough, the write still worked...
332391a9
LC
3048 *
3049 * Most of the time we do not need this since dio_complete() will do
3050 * the invalidation for us. However there are some file systems that
3051 * do not end up with dio_complete() being called, so let's not break
3052 * them by removing it completely
a969e903 3053 */
332391a9
LC
3054 if (mapping->nrpages)
3055 invalidate_inode_pages2_range(mapping,
3056 pos >> PAGE_SHIFT, end);
a969e903 3057
1da177e4 3058 if (written > 0) {
0116651c 3059 pos += written;
639a93a5 3060 write_len -= written;
0116651c
NK
3061 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3062 i_size_write(inode, pos);
1da177e4
LT
3063 mark_inode_dirty(inode);
3064 }
5cb6c6c7 3065 iocb->ki_pos = pos;
1da177e4 3066 }
639a93a5 3067 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3068out:
1da177e4
LT
3069 return written;
3070}
3071EXPORT_SYMBOL(generic_file_direct_write);
3072
eb2be189
NP
3073/*
3074 * Find or create a page at the given pagecache position. Return the locked
3075 * page. This function is specifically for buffered writes.
3076 */
54566b2c
NP
3077struct page *grab_cache_page_write_begin(struct address_space *mapping,
3078 pgoff_t index, unsigned flags)
eb2be189 3079{
eb2be189 3080 struct page *page;
bbddabe2 3081 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3082
54566b2c 3083 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3084 fgp_flags |= FGP_NOFS;
3085
3086 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3087 mapping_gfp_mask(mapping));
c585a267 3088 if (page)
2457aec6 3089 wait_for_stable_page(page);
eb2be189 3090
eb2be189
NP
3091 return page;
3092}
54566b2c 3093EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3094
3b93f911 3095ssize_t generic_perform_write(struct file *file,
afddba49
NP
3096 struct iov_iter *i, loff_t pos)
3097{
3098 struct address_space *mapping = file->f_mapping;
3099 const struct address_space_operations *a_ops = mapping->a_ops;
3100 long status = 0;
3101 ssize_t written = 0;
674b892e
NP
3102 unsigned int flags = 0;
3103
afddba49
NP
3104 do {
3105 struct page *page;
afddba49
NP
3106 unsigned long offset; /* Offset into pagecache page */
3107 unsigned long bytes; /* Bytes to write to page */
3108 size_t copied; /* Bytes copied from user */
3109 void *fsdata;
3110
09cbfeaf
KS
3111 offset = (pos & (PAGE_SIZE - 1));
3112 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3113 iov_iter_count(i));
3114
3115again:
00a3d660
LT
3116 /*
3117 * Bring in the user page that we will copy from _first_.
3118 * Otherwise there's a nasty deadlock on copying from the
3119 * same page as we're writing to, without it being marked
3120 * up-to-date.
3121 *
3122 * Not only is this an optimisation, but it is also required
3123 * to check that the address is actually valid, when atomic
3124 * usercopies are used, below.
3125 */
3126 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3127 status = -EFAULT;
3128 break;
3129 }
3130
296291cd
JK
3131 if (fatal_signal_pending(current)) {
3132 status = -EINTR;
3133 break;
3134 }
3135
674b892e 3136 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3137 &page, &fsdata);
2457aec6 3138 if (unlikely(status < 0))
afddba49
NP
3139 break;
3140
931e80e4 3141 if (mapping_writably_mapped(mapping))
3142 flush_dcache_page(page);
00a3d660 3143
afddba49 3144 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3145 flush_dcache_page(page);
3146
3147 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3148 page, fsdata);
3149 if (unlikely(status < 0))
3150 break;
3151 copied = status;
3152
3153 cond_resched();
3154
124d3b70 3155 iov_iter_advance(i, copied);
afddba49
NP
3156 if (unlikely(copied == 0)) {
3157 /*
3158 * If we were unable to copy any data at all, we must
3159 * fall back to a single segment length write.
3160 *
3161 * If we didn't fallback here, we could livelock
3162 * because not all segments in the iov can be copied at
3163 * once without a pagefault.
3164 */
09cbfeaf 3165 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3166 iov_iter_single_seg_count(i));
3167 goto again;
3168 }
afddba49
NP
3169 pos += copied;
3170 written += copied;
3171
3172 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3173 } while (iov_iter_count(i));
3174
3175 return written ? written : status;
3176}
3b93f911 3177EXPORT_SYMBOL(generic_perform_write);
1da177e4 3178
e4dd9de3 3179/**
8174202b 3180 * __generic_file_write_iter - write data to a file
e4dd9de3 3181 * @iocb: IO state structure (file, offset, etc.)
8174202b 3182 * @from: iov_iter with data to write
e4dd9de3
JK
3183 *
3184 * This function does all the work needed for actually writing data to a
3185 * file. It does all basic checks, removes SUID from the file, updates
3186 * modification times and calls proper subroutines depending on whether we
3187 * do direct IO or a standard buffered write.
3188 *
3189 * It expects i_mutex to be grabbed unless we work on a block device or similar
3190 * object which does not need locking at all.
3191 *
3192 * This function does *not* take care of syncing data in case of O_SYNC write.
3193 * A caller has to handle it. This is mainly due to the fact that we want to
3194 * avoid syncing under i_mutex.
3195 */
8174202b 3196ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3197{
3198 struct file *file = iocb->ki_filp;
fb5527e6 3199 struct address_space * mapping = file->f_mapping;
1da177e4 3200 struct inode *inode = mapping->host;
3b93f911 3201 ssize_t written = 0;
1da177e4 3202 ssize_t err;
3b93f911 3203 ssize_t status;
1da177e4 3204
1da177e4 3205 /* We can write back this queue in page reclaim */
de1414a6 3206 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3207 err = file_remove_privs(file);
1da177e4
LT
3208 if (err)
3209 goto out;
3210
c3b2da31
JB
3211 err = file_update_time(file);
3212 if (err)
3213 goto out;
1da177e4 3214
2ba48ce5 3215 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3216 loff_t pos, endbyte;
fb5527e6 3217
1af5bb49 3218 written = generic_file_direct_write(iocb, from);
1da177e4 3219 /*
fbbbad4b
MW
3220 * If the write stopped short of completing, fall back to
3221 * buffered writes. Some filesystems do this for writes to
3222 * holes, for example. For DAX files, a buffered write will
3223 * not succeed (even if it did, DAX does not handle dirty
3224 * page-cache pages correctly).
1da177e4 3225 */
0b8def9d 3226 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3227 goto out;
3228
0b8def9d 3229 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3230 /*
3b93f911 3231 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3232 * then we want to return the number of bytes which were
3233 * direct-written, or the error code if that was zero. Note
3234 * that this differs from normal direct-io semantics, which
3235 * will return -EFOO even if some bytes were written.
3236 */
60bb4529 3237 if (unlikely(status < 0)) {
3b93f911 3238 err = status;
fb5527e6
JM
3239 goto out;
3240 }
fb5527e6
JM
3241 /*
3242 * We need to ensure that the page cache pages are written to
3243 * disk and invalidated to preserve the expected O_DIRECT
3244 * semantics.
3245 */
3b93f911 3246 endbyte = pos + status - 1;
0b8def9d 3247 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3248 if (err == 0) {
0b8def9d 3249 iocb->ki_pos = endbyte + 1;
3b93f911 3250 written += status;
fb5527e6 3251 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3252 pos >> PAGE_SHIFT,
3253 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3254 } else {
3255 /*
3256 * We don't know how much we wrote, so just return
3257 * the number of bytes which were direct-written
3258 */
3259 }
3260 } else {
0b8def9d
AV
3261 written = generic_perform_write(file, from, iocb->ki_pos);
3262 if (likely(written > 0))
3263 iocb->ki_pos += written;
fb5527e6 3264 }
1da177e4
LT
3265out:
3266 current->backing_dev_info = NULL;
3267 return written ? written : err;
3268}
8174202b 3269EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3270
e4dd9de3 3271/**
8174202b 3272 * generic_file_write_iter - write data to a file
e4dd9de3 3273 * @iocb: IO state structure
8174202b 3274 * @from: iov_iter with data to write
e4dd9de3 3275 *
8174202b 3276 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3277 * filesystems. It takes care of syncing the file in case of O_SYNC file
3278 * and acquires i_mutex as needed.
3279 */
8174202b 3280ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3281{
3282 struct file *file = iocb->ki_filp;
148f948b 3283 struct inode *inode = file->f_mapping->host;
1da177e4 3284 ssize_t ret;
1da177e4 3285
5955102c 3286 inode_lock(inode);
3309dd04
AV
3287 ret = generic_write_checks(iocb, from);
3288 if (ret > 0)
5f380c7f 3289 ret = __generic_file_write_iter(iocb, from);
5955102c 3290 inode_unlock(inode);
1da177e4 3291
e2592217
CH
3292 if (ret > 0)
3293 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3294 return ret;
3295}
8174202b 3296EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3297
cf9a2ae8
DH
3298/**
3299 * try_to_release_page() - release old fs-specific metadata on a page
3300 *
3301 * @page: the page which the kernel is trying to free
3302 * @gfp_mask: memory allocation flags (and I/O mode)
3303 *
3304 * The address_space is to try to release any data against the page
0e056eb5 3305 * (presumably at page->private). If the release was successful, return '1'.
cf9a2ae8
DH
3306 * Otherwise return zero.
3307 *
266cf658
DH
3308 * This may also be called if PG_fscache is set on a page, indicating that the
3309 * page is known to the local caching routines.
3310 *
cf9a2ae8 3311 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3312 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3313 *
cf9a2ae8
DH
3314 */
3315int try_to_release_page(struct page *page, gfp_t gfp_mask)
3316{
3317 struct address_space * const mapping = page->mapping;
3318
3319 BUG_ON(!PageLocked(page));
3320 if (PageWriteback(page))
3321 return 0;
3322
3323 if (mapping && mapping->a_ops->releasepage)
3324 return mapping->a_ops->releasepage(page, gfp_mask);
3325 return try_to_free_buffers(page);
3326}
3327
3328EXPORT_SYMBOL(try_to_release_page);