]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/filemap.c
mm: move clearing of page->mapping to page_cache_tree_delete()
[thirdparty/linux.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
3f07c014 16#include <linux/sched/signal.h>
c22ce143 17#include <linux/uaccess.h>
c59ede7b 18#include <linux/capability.h>
1da177e4 19#include <linux/kernel_stat.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/mm.h>
22#include <linux/swap.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/file.h>
26#include <linux/uio.h>
27#include <linux/hash.h>
28#include <linux/writeback.h>
53253383 29#include <linux/backing-dev.h>
1da177e4
LT
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/security.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 35#include <linux/hugetlb.h>
8a9f3ccd 36#include <linux/memcontrol.h>
c515e1fd 37#include <linux/cleancache.h>
f1820361 38#include <linux/rmap.h>
0f8053a5
NP
39#include "internal.h"
40
fe0bfaaf
RJ
41#define CREATE_TRACE_POINTS
42#include <trace/events/filemap.h>
43
1da177e4 44/*
1da177e4
LT
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
148f948b 47#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 48
1da177e4
LT
49#include <asm/mman.h>
50
51/*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63/*
64 * Lock ordering:
65 *
c8c06efa 66 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
1da177e4 70 *
1b1dcc1b 71 * ->i_mutex
c8c06efa 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
73 *
74 * ->mmap_sem
c8c06efa 75 * ->i_mmap_rwsem
b8072f09 76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
ccad2365 82 * ->i_mutex (generic_perform_write)
82591e6e 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 84 *
f758eeab 85 * bdi->wb.list_lock
a66979ab 86 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
c8c06efa 89 * ->i_mmap_rwsem
1da177e4
LT
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
b8072f09 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 94 *
b8072f09 95 * ->page_table_lock or pte_lock
5d337b91 96 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
a52633d8
MG
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
1da177e4
LT
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
c8c06efa 110 * ->i_mmap_rwsem
9a3c531d 111 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
112 */
113
22f2ac51
JW
114static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116{
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
d01ad197
RZ
133 if (shadowp)
134 *shadowp = p;
22f2ac51 135 }
14b46879
JW
136 __radix_tree_replace(&mapping->page_tree, node, slot, page,
137 workingset_update_node, mapping);
22f2ac51 138 mapping->nrpages++;
22f2ac51
JW
139 return 0;
140}
141
91b0abe3
JW
142static void page_cache_tree_delete(struct address_space *mapping,
143 struct page *page, void *shadow)
144{
c70b647d
KS
145 int i, nr;
146
147 /* hugetlb pages are represented by one entry in the radix tree */
148 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
91b0abe3 149
83929372
KS
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(PageTail(page), page);
152 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 153
83929372 154 for (i = 0; i < nr; i++) {
d3798ae8
JW
155 struct radix_tree_node *node;
156 void **slot;
157
158 __radix_tree_lookup(&mapping->page_tree, page->index + i,
159 &node, &slot);
160
dbc446b8 161 VM_BUG_ON_PAGE(!node && nr != 1, page);
449dd698 162
14b46879
JW
163 radix_tree_clear_tags(&mapping->page_tree, node, slot);
164 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
165 workingset_update_node, mapping);
449dd698 166 }
d3798ae8 167
2300638b
JK
168 page->mapping = NULL;
169 /* Leave page->index set: truncation lookup relies upon it */
170
d3798ae8
JW
171 if (shadow) {
172 mapping->nrexceptional += nr;
173 /*
174 * Make sure the nrexceptional update is committed before
175 * the nrpages update so that final truncate racing
176 * with reclaim does not see both counters 0 at the
177 * same time and miss a shadow entry.
178 */
179 smp_wmb();
180 }
181 mapping->nrpages -= nr;
91b0abe3
JW
182}
183
1da177e4 184/*
e64a782f 185 * Delete a page from the page cache and free it. Caller has to make
1da177e4 186 * sure the page is locked and that nobody else uses it - or that usage
fdf1cdb9 187 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 188 */
62cccb8c 189void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
190{
191 struct address_space *mapping = page->mapping;
83929372 192 int nr = hpage_nr_pages(page);
1da177e4 193
fe0bfaaf 194 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
195 /*
196 * if we're uptodate, flush out into the cleancache, otherwise
197 * invalidate any existing cleancache entries. We can't leave
198 * stale data around in the cleancache once our page is gone
199 */
200 if (PageUptodate(page) && PageMappedToDisk(page))
201 cleancache_put_page(page);
202 else
3167760f 203 cleancache_invalidate_page(mapping, page);
c515e1fd 204
83929372 205 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
206 VM_BUG_ON_PAGE(page_mapped(page), page);
207 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
208 int mapcount;
209
210 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
211 current->comm, page_to_pfn(page));
212 dump_page(page, "still mapped when deleted");
213 dump_stack();
214 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
215
216 mapcount = page_mapcount(page);
217 if (mapping_exiting(mapping) &&
218 page_count(page) >= mapcount + 2) {
219 /*
220 * All vmas have already been torn down, so it's
221 * a good bet that actually the page is unmapped,
222 * and we'd prefer not to leak it: if we're wrong,
223 * some other bad page check should catch it later.
224 */
225 page_mapcount_reset(page);
6d061f9f 226 page_ref_sub(page, mapcount);
06b241f3
HD
227 }
228 }
229
4165b9b4 230 /* hugetlb pages do not participate in page cache accounting. */
76253fbc
JK
231 if (!PageHuge(page)) {
232 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
233 if (PageSwapBacked(page)) {
234 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
235 if (PageTransHuge(page))
236 __dec_node_page_state(page, NR_SHMEM_THPS);
237 } else {
238 VM_BUG_ON_PAGE(PageTransHuge(page), page);
239 }
09612fa6 240
76253fbc
JK
241 /*
242 * At this point page must be either written or cleaned by
243 * truncate. Dirty page here signals a bug and loss of
244 * unwritten data.
245 *
246 * This fixes dirty accounting after removing the page entirely
247 * but leaves PageDirty set: it has no effect for truncated
248 * page and anyway will be cleared before returning page into
249 * buddy allocator.
250 */
251 if (WARN_ON_ONCE(PageDirty(page)))
252 account_page_cleaned(page, mapping,
253 inode_to_wb(mapping->host));
800d8c63 254 }
76253fbc 255 page_cache_tree_delete(mapping, page, shadow);
1da177e4
LT
256}
257
59c66c5f
JK
258static void page_cache_free_page(struct address_space *mapping,
259 struct page *page)
260{
261 void (*freepage)(struct page *);
262
263 freepage = mapping->a_ops->freepage;
264 if (freepage)
265 freepage(page);
266
267 if (PageTransHuge(page) && !PageHuge(page)) {
268 page_ref_sub(page, HPAGE_PMD_NR);
269 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
270 } else {
271 put_page(page);
272 }
273}
274
702cfbf9
MK
275/**
276 * delete_from_page_cache - delete page from page cache
277 * @page: the page which the kernel is trying to remove from page cache
278 *
279 * This must be called only on pages that have been verified to be in the page
280 * cache and locked. It will never put the page into the free list, the caller
281 * has a reference on the page.
282 */
283void delete_from_page_cache(struct page *page)
1da177e4 284{
83929372 285 struct address_space *mapping = page_mapping(page);
c4843a75 286 unsigned long flags;
1da177e4 287
cd7619d6 288 BUG_ON(!PageLocked(page));
c4843a75 289 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 290 __delete_from_page_cache(page, NULL);
c4843a75 291 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c 292
59c66c5f 293 page_cache_free_page(mapping, page);
97cecb5a
MK
294}
295EXPORT_SYMBOL(delete_from_page_cache);
296
d72d9e2a 297int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
298{
299 int ret = 0;
300 /* Check for outstanding write errors */
7fcbbaf1
JA
301 if (test_bit(AS_ENOSPC, &mapping->flags) &&
302 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 303 ret = -ENOSPC;
7fcbbaf1
JA
304 if (test_bit(AS_EIO, &mapping->flags) &&
305 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
306 ret = -EIO;
307 return ret;
308}
d72d9e2a 309EXPORT_SYMBOL(filemap_check_errors);
865ffef3 310
76341cab
JL
311static int filemap_check_and_keep_errors(struct address_space *mapping)
312{
313 /* Check for outstanding write errors */
314 if (test_bit(AS_EIO, &mapping->flags))
315 return -EIO;
316 if (test_bit(AS_ENOSPC, &mapping->flags))
317 return -ENOSPC;
318 return 0;
319}
320
1da177e4 321/**
485bb99b 322 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
323 * @mapping: address space structure to write
324 * @start: offset in bytes where the range starts
469eb4d0 325 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 326 * @sync_mode: enable synchronous operation
1da177e4 327 *
485bb99b
RD
328 * Start writeback against all of a mapping's dirty pages that lie
329 * within the byte offsets <start, end> inclusive.
330 *
1da177e4 331 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 332 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
333 * these two operations is that if a dirty page/buffer is encountered, it must
334 * be waited upon, and not just skipped over.
335 */
ebcf28e1
AM
336int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
337 loff_t end, int sync_mode)
1da177e4
LT
338{
339 int ret;
340 struct writeback_control wbc = {
341 .sync_mode = sync_mode,
05fe478d 342 .nr_to_write = LONG_MAX,
111ebb6e
OH
343 .range_start = start,
344 .range_end = end,
1da177e4
LT
345 };
346
347 if (!mapping_cap_writeback_dirty(mapping))
348 return 0;
349
b16b1deb 350 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 351 ret = do_writepages(mapping, &wbc);
b16b1deb 352 wbc_detach_inode(&wbc);
1da177e4
LT
353 return ret;
354}
355
356static inline int __filemap_fdatawrite(struct address_space *mapping,
357 int sync_mode)
358{
111ebb6e 359 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
360}
361
362int filemap_fdatawrite(struct address_space *mapping)
363{
364 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
365}
366EXPORT_SYMBOL(filemap_fdatawrite);
367
f4c0a0fd 368int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 369 loff_t end)
1da177e4
LT
370{
371 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
372}
f4c0a0fd 373EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 374
485bb99b
RD
375/**
376 * filemap_flush - mostly a non-blocking flush
377 * @mapping: target address_space
378 *
1da177e4
LT
379 * This is a mostly non-blocking flush. Not suitable for data-integrity
380 * purposes - I/O may not be started against all dirty pages.
381 */
382int filemap_flush(struct address_space *mapping)
383{
384 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
385}
386EXPORT_SYMBOL(filemap_flush);
387
7fc9e472
GR
388/**
389 * filemap_range_has_page - check if a page exists in range.
390 * @mapping: address space within which to check
391 * @start_byte: offset in bytes where the range starts
392 * @end_byte: offset in bytes where the range ends (inclusive)
393 *
394 * Find at least one page in the range supplied, usually used to check if
395 * direct writing in this range will trigger a writeback.
396 */
397bool filemap_range_has_page(struct address_space *mapping,
398 loff_t start_byte, loff_t end_byte)
399{
400 pgoff_t index = start_byte >> PAGE_SHIFT;
401 pgoff_t end = end_byte >> PAGE_SHIFT;
f7b68046 402 struct page *page;
7fc9e472
GR
403
404 if (end_byte < start_byte)
405 return false;
406
407 if (mapping->nrpages == 0)
408 return false;
409
f7b68046 410 if (!find_get_pages_range(mapping, &index, end, 1, &page))
7fc9e472 411 return false;
f7b68046
JK
412 put_page(page);
413 return true;
7fc9e472
GR
414}
415EXPORT_SYMBOL(filemap_range_has_page);
416
5e8fcc1a 417static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 418 loff_t start_byte, loff_t end_byte)
1da177e4 419{
09cbfeaf
KS
420 pgoff_t index = start_byte >> PAGE_SHIFT;
421 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
422 struct pagevec pvec;
423 int nr_pages;
1da177e4 424
94004ed7 425 if (end_byte < start_byte)
5e8fcc1a 426 return;
1da177e4
LT
427
428 pagevec_init(&pvec, 0);
312e9d2f 429 while (index <= end) {
1da177e4
LT
430 unsigned i;
431
312e9d2f 432 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 433 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
434 if (!nr_pages)
435 break;
436
1da177e4
LT
437 for (i = 0; i < nr_pages; i++) {
438 struct page *page = pvec.pages[i];
439
1da177e4 440 wait_on_page_writeback(page);
5e8fcc1a 441 ClearPageError(page);
1da177e4
LT
442 }
443 pagevec_release(&pvec);
444 cond_resched();
445 }
aa750fd7
JN
446}
447
448/**
449 * filemap_fdatawait_range - wait for writeback to complete
450 * @mapping: address space structure to wait for
451 * @start_byte: offset in bytes where the range starts
452 * @end_byte: offset in bytes where the range ends (inclusive)
453 *
454 * Walk the list of under-writeback pages of the given address space
455 * in the given range and wait for all of them. Check error status of
456 * the address space and return it.
457 *
458 * Since the error status of the address space is cleared by this function,
459 * callers are responsible for checking the return value and handling and/or
460 * reporting the error.
461 */
462int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
463 loff_t end_byte)
464{
5e8fcc1a
JL
465 __filemap_fdatawait_range(mapping, start_byte, end_byte);
466 return filemap_check_errors(mapping);
1da177e4 467}
d3bccb6f
JK
468EXPORT_SYMBOL(filemap_fdatawait_range);
469
a823e458
JL
470/**
471 * file_fdatawait_range - wait for writeback to complete
472 * @file: file pointing to address space structure to wait for
473 * @start_byte: offset in bytes where the range starts
474 * @end_byte: offset in bytes where the range ends (inclusive)
475 *
476 * Walk the list of under-writeback pages of the address space that file
477 * refers to, in the given range and wait for all of them. Check error
478 * status of the address space vs. the file->f_wb_err cursor and return it.
479 *
480 * Since the error status of the file is advanced by this function,
481 * callers are responsible for checking the return value and handling and/or
482 * reporting the error.
483 */
484int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
485{
486 struct address_space *mapping = file->f_mapping;
487
488 __filemap_fdatawait_range(mapping, start_byte, end_byte);
489 return file_check_and_advance_wb_err(file);
490}
491EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 492
aa750fd7
JN
493/**
494 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
495 * @mapping: address space structure to wait for
496 *
497 * Walk the list of under-writeback pages of the given address space
498 * and wait for all of them. Unlike filemap_fdatawait(), this function
499 * does not clear error status of the address space.
500 *
501 * Use this function if callers don't handle errors themselves. Expected
502 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
503 * fsfreeze(8)
504 */
76341cab 505int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 506{
ffb959bb 507 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 508 return filemap_check_and_keep_errors(mapping);
aa750fd7 509}
76341cab 510EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 511
9326c9b2 512static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 513{
9326c9b2
JL
514 return (!dax_mapping(mapping) && mapping->nrpages) ||
515 (dax_mapping(mapping) && mapping->nrexceptional);
1da177e4 516}
1da177e4
LT
517
518int filemap_write_and_wait(struct address_space *mapping)
519{
28fd1298 520 int err = 0;
1da177e4 521
9326c9b2 522 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
523 err = filemap_fdatawrite(mapping);
524 /*
525 * Even if the above returned error, the pages may be
526 * written partially (e.g. -ENOSPC), so we wait for it.
527 * But the -EIO is special case, it may indicate the worst
528 * thing (e.g. bug) happened, so we avoid waiting for it.
529 */
530 if (err != -EIO) {
531 int err2 = filemap_fdatawait(mapping);
532 if (!err)
533 err = err2;
cbeaf951
JL
534 } else {
535 /* Clear any previously stored errors */
536 filemap_check_errors(mapping);
28fd1298 537 }
865ffef3
DM
538 } else {
539 err = filemap_check_errors(mapping);
1da177e4 540 }
28fd1298 541 return err;
1da177e4 542}
28fd1298 543EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 544
485bb99b
RD
545/**
546 * filemap_write_and_wait_range - write out & wait on a file range
547 * @mapping: the address_space for the pages
548 * @lstart: offset in bytes where the range starts
549 * @lend: offset in bytes where the range ends (inclusive)
550 *
469eb4d0
AM
551 * Write out and wait upon file offsets lstart->lend, inclusive.
552 *
0e056eb5 553 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0
AM
554 * that this function can be used to write to the very end-of-file (end = -1).
555 */
1da177e4
LT
556int filemap_write_and_wait_range(struct address_space *mapping,
557 loff_t lstart, loff_t lend)
558{
28fd1298 559 int err = 0;
1da177e4 560
9326c9b2 561 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
562 err = __filemap_fdatawrite_range(mapping, lstart, lend,
563 WB_SYNC_ALL);
564 /* See comment of filemap_write_and_wait() */
565 if (err != -EIO) {
94004ed7
CH
566 int err2 = filemap_fdatawait_range(mapping,
567 lstart, lend);
28fd1298
OH
568 if (!err)
569 err = err2;
cbeaf951
JL
570 } else {
571 /* Clear any previously stored errors */
572 filemap_check_errors(mapping);
28fd1298 573 }
865ffef3
DM
574 } else {
575 err = filemap_check_errors(mapping);
1da177e4 576 }
28fd1298 577 return err;
1da177e4 578}
f6995585 579EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 580
5660e13d
JL
581void __filemap_set_wb_err(struct address_space *mapping, int err)
582{
3acdfd28 583 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
584
585 trace_filemap_set_wb_err(mapping, eseq);
586}
587EXPORT_SYMBOL(__filemap_set_wb_err);
588
589/**
590 * file_check_and_advance_wb_err - report wb error (if any) that was previously
591 * and advance wb_err to current one
592 * @file: struct file on which the error is being reported
593 *
594 * When userland calls fsync (or something like nfsd does the equivalent), we
595 * want to report any writeback errors that occurred since the last fsync (or
596 * since the file was opened if there haven't been any).
597 *
598 * Grab the wb_err from the mapping. If it matches what we have in the file,
599 * then just quickly return 0. The file is all caught up.
600 *
601 * If it doesn't match, then take the mapping value, set the "seen" flag in
602 * it and try to swap it into place. If it works, or another task beat us
603 * to it with the new value, then update the f_wb_err and return the error
604 * portion. The error at this point must be reported via proper channels
605 * (a'la fsync, or NFS COMMIT operation, etc.).
606 *
607 * While we handle mapping->wb_err with atomic operations, the f_wb_err
608 * value is protected by the f_lock since we must ensure that it reflects
609 * the latest value swapped in for this file descriptor.
610 */
611int file_check_and_advance_wb_err(struct file *file)
612{
613 int err = 0;
614 errseq_t old = READ_ONCE(file->f_wb_err);
615 struct address_space *mapping = file->f_mapping;
616
617 /* Locklessly handle the common case where nothing has changed */
618 if (errseq_check(&mapping->wb_err, old)) {
619 /* Something changed, must use slow path */
620 spin_lock(&file->f_lock);
621 old = file->f_wb_err;
622 err = errseq_check_and_advance(&mapping->wb_err,
623 &file->f_wb_err);
624 trace_file_check_and_advance_wb_err(file, old);
625 spin_unlock(&file->f_lock);
626 }
f4e222c5
JL
627
628 /*
629 * We're mostly using this function as a drop in replacement for
630 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
631 * that the legacy code would have had on these flags.
632 */
633 clear_bit(AS_EIO, &mapping->flags);
634 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
635 return err;
636}
637EXPORT_SYMBOL(file_check_and_advance_wb_err);
638
639/**
640 * file_write_and_wait_range - write out & wait on a file range
641 * @file: file pointing to address_space with pages
642 * @lstart: offset in bytes where the range starts
643 * @lend: offset in bytes where the range ends (inclusive)
644 *
645 * Write out and wait upon file offsets lstart->lend, inclusive.
646 *
647 * Note that @lend is inclusive (describes the last byte to be written) so
648 * that this function can be used to write to the very end-of-file (end = -1).
649 *
650 * After writing out and waiting on the data, we check and advance the
651 * f_wb_err cursor to the latest value, and return any errors detected there.
652 */
653int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
654{
655 int err = 0, err2;
656 struct address_space *mapping = file->f_mapping;
657
9326c9b2 658 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
659 err = __filemap_fdatawrite_range(mapping, lstart, lend,
660 WB_SYNC_ALL);
661 /* See comment of filemap_write_and_wait() */
662 if (err != -EIO)
663 __filemap_fdatawait_range(mapping, lstart, lend);
664 }
665 err2 = file_check_and_advance_wb_err(file);
666 if (!err)
667 err = err2;
668 return err;
669}
670EXPORT_SYMBOL(file_write_and_wait_range);
671
ef6a3c63
MS
672/**
673 * replace_page_cache_page - replace a pagecache page with a new one
674 * @old: page to be replaced
675 * @new: page to replace with
676 * @gfp_mask: allocation mode
677 *
678 * This function replaces a page in the pagecache with a new one. On
679 * success it acquires the pagecache reference for the new page and
680 * drops it for the old page. Both the old and new pages must be
681 * locked. This function does not add the new page to the LRU, the
682 * caller must do that.
683 *
684 * The remove + add is atomic. The only way this function can fail is
685 * memory allocation failure.
686 */
687int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
688{
689 int error;
ef6a3c63 690
309381fe
SL
691 VM_BUG_ON_PAGE(!PageLocked(old), old);
692 VM_BUG_ON_PAGE(!PageLocked(new), new);
693 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 694
ef6a3c63
MS
695 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
696 if (!error) {
697 struct address_space *mapping = old->mapping;
698 void (*freepage)(struct page *);
c4843a75 699 unsigned long flags;
ef6a3c63
MS
700
701 pgoff_t offset = old->index;
702 freepage = mapping->a_ops->freepage;
703
09cbfeaf 704 get_page(new);
ef6a3c63
MS
705 new->mapping = mapping;
706 new->index = offset;
707
c4843a75 708 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 709 __delete_from_page_cache(old, NULL);
22f2ac51 710 error = page_cache_tree_insert(mapping, new, NULL);
ef6a3c63 711 BUG_ON(error);
4165b9b4
MH
712
713 /*
714 * hugetlb pages do not participate in page cache accounting.
715 */
716 if (!PageHuge(new))
11fb9989 717 __inc_node_page_state(new, NR_FILE_PAGES);
ef6a3c63 718 if (PageSwapBacked(new))
11fb9989 719 __inc_node_page_state(new, NR_SHMEM);
c4843a75 720 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6a93ca8f 721 mem_cgroup_migrate(old, new);
ef6a3c63
MS
722 radix_tree_preload_end();
723 if (freepage)
724 freepage(old);
09cbfeaf 725 put_page(old);
ef6a3c63
MS
726 }
727
728 return error;
729}
730EXPORT_SYMBOL_GPL(replace_page_cache_page);
731
a528910e
JW
732static int __add_to_page_cache_locked(struct page *page,
733 struct address_space *mapping,
734 pgoff_t offset, gfp_t gfp_mask,
735 void **shadowp)
1da177e4 736{
00501b53
JW
737 int huge = PageHuge(page);
738 struct mem_cgroup *memcg;
e286781d
NP
739 int error;
740
309381fe
SL
741 VM_BUG_ON_PAGE(!PageLocked(page), page);
742 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 743
00501b53
JW
744 if (!huge) {
745 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 746 gfp_mask, &memcg, false);
00501b53
JW
747 if (error)
748 return error;
749 }
1da177e4 750
5e4c0d97 751 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 752 if (error) {
00501b53 753 if (!huge)
f627c2f5 754 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
755 return error;
756 }
757
09cbfeaf 758 get_page(page);
66a0c8ee
KS
759 page->mapping = mapping;
760 page->index = offset;
761
762 spin_lock_irq(&mapping->tree_lock);
a528910e 763 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
764 radix_tree_preload_end();
765 if (unlikely(error))
766 goto err_insert;
4165b9b4
MH
767
768 /* hugetlb pages do not participate in page cache accounting. */
769 if (!huge)
11fb9989 770 __inc_node_page_state(page, NR_FILE_PAGES);
66a0c8ee 771 spin_unlock_irq(&mapping->tree_lock);
00501b53 772 if (!huge)
f627c2f5 773 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
774 trace_mm_filemap_add_to_page_cache(page);
775 return 0;
776err_insert:
777 page->mapping = NULL;
778 /* Leave page->index set: truncation relies upon it */
779 spin_unlock_irq(&mapping->tree_lock);
00501b53 780 if (!huge)
f627c2f5 781 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 782 put_page(page);
1da177e4
LT
783 return error;
784}
a528910e
JW
785
786/**
787 * add_to_page_cache_locked - add a locked page to the pagecache
788 * @page: page to add
789 * @mapping: the page's address_space
790 * @offset: page index
791 * @gfp_mask: page allocation mode
792 *
793 * This function is used to add a page to the pagecache. It must be locked.
794 * This function does not add the page to the LRU. The caller must do that.
795 */
796int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
797 pgoff_t offset, gfp_t gfp_mask)
798{
799 return __add_to_page_cache_locked(page, mapping, offset,
800 gfp_mask, NULL);
801}
e286781d 802EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
803
804int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 805 pgoff_t offset, gfp_t gfp_mask)
1da177e4 806{
a528910e 807 void *shadow = NULL;
4f98a2fe
RR
808 int ret;
809
48c935ad 810 __SetPageLocked(page);
a528910e
JW
811 ret = __add_to_page_cache_locked(page, mapping, offset,
812 gfp_mask, &shadow);
813 if (unlikely(ret))
48c935ad 814 __ClearPageLocked(page);
a528910e
JW
815 else {
816 /*
817 * The page might have been evicted from cache only
818 * recently, in which case it should be activated like
819 * any other repeatedly accessed page.
f0281a00
RR
820 * The exception is pages getting rewritten; evicting other
821 * data from the working set, only to cache data that will
822 * get overwritten with something else, is a waste of memory.
a528910e 823 */
f0281a00
RR
824 if (!(gfp_mask & __GFP_WRITE) &&
825 shadow && workingset_refault(shadow)) {
a528910e
JW
826 SetPageActive(page);
827 workingset_activation(page);
828 } else
829 ClearPageActive(page);
830 lru_cache_add(page);
831 }
1da177e4
LT
832 return ret;
833}
18bc0bbd 834EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 835
44110fe3 836#ifdef CONFIG_NUMA
2ae88149 837struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 838{
c0ff7453
MX
839 int n;
840 struct page *page;
841
44110fe3 842 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
843 unsigned int cpuset_mems_cookie;
844 do {
d26914d1 845 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 846 n = cpuset_mem_spread_node();
96db800f 847 page = __alloc_pages_node(n, gfp, 0);
d26914d1 848 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 849
c0ff7453 850 return page;
44110fe3 851 }
2ae88149 852 return alloc_pages(gfp, 0);
44110fe3 853}
2ae88149 854EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
855#endif
856
1da177e4
LT
857/*
858 * In order to wait for pages to become available there must be
859 * waitqueues associated with pages. By using a hash table of
860 * waitqueues where the bucket discipline is to maintain all
861 * waiters on the same queue and wake all when any of the pages
862 * become available, and for the woken contexts to check to be
863 * sure the appropriate page became available, this saves space
864 * at a cost of "thundering herd" phenomena during rare hash
865 * collisions.
866 */
62906027
NP
867#define PAGE_WAIT_TABLE_BITS 8
868#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
869static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
870
871static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 872{
62906027 873 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 874}
1da177e4 875
62906027 876void __init pagecache_init(void)
1da177e4 877{
62906027 878 int i;
1da177e4 879
62906027
NP
880 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
881 init_waitqueue_head(&page_wait_table[i]);
882
883 page_writeback_init();
1da177e4 884}
1da177e4 885
3510ca20 886/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
62906027
NP
887struct wait_page_key {
888 struct page *page;
889 int bit_nr;
890 int page_match;
891};
892
893struct wait_page_queue {
894 struct page *page;
895 int bit_nr;
ac6424b9 896 wait_queue_entry_t wait;
62906027
NP
897};
898
ac6424b9 899static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 900{
62906027
NP
901 struct wait_page_key *key = arg;
902 struct wait_page_queue *wait_page
903 = container_of(wait, struct wait_page_queue, wait);
904
905 if (wait_page->page != key->page)
906 return 0;
907 key->page_match = 1;
f62e00cc 908
62906027
NP
909 if (wait_page->bit_nr != key->bit_nr)
910 return 0;
3510ca20
LT
911
912 /* Stop walking if it's locked */
62906027 913 if (test_bit(key->bit_nr, &key->page->flags))
3510ca20 914 return -1;
f62e00cc 915
62906027 916 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
917}
918
74d81bfa 919static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 920{
62906027
NP
921 wait_queue_head_t *q = page_waitqueue(page);
922 struct wait_page_key key;
923 unsigned long flags;
11a19c7b 924 wait_queue_entry_t bookmark;
cbbce822 925
62906027
NP
926 key.page = page;
927 key.bit_nr = bit_nr;
928 key.page_match = 0;
929
11a19c7b
TC
930 bookmark.flags = 0;
931 bookmark.private = NULL;
932 bookmark.func = NULL;
933 INIT_LIST_HEAD(&bookmark.entry);
934
62906027 935 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
936 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
937
938 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
939 /*
940 * Take a breather from holding the lock,
941 * allow pages that finish wake up asynchronously
942 * to acquire the lock and remove themselves
943 * from wait queue
944 */
945 spin_unlock_irqrestore(&q->lock, flags);
946 cpu_relax();
947 spin_lock_irqsave(&q->lock, flags);
948 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
949 }
950
62906027
NP
951 /*
952 * It is possible for other pages to have collided on the waitqueue
953 * hash, so in that case check for a page match. That prevents a long-
954 * term waiter
955 *
956 * It is still possible to miss a case here, when we woke page waiters
957 * and removed them from the waitqueue, but there are still other
958 * page waiters.
959 */
960 if (!waitqueue_active(q) || !key.page_match) {
961 ClearPageWaiters(page);
962 /*
963 * It's possible to miss clearing Waiters here, when we woke
964 * our page waiters, but the hashed waitqueue has waiters for
965 * other pages on it.
966 *
967 * That's okay, it's a rare case. The next waker will clear it.
968 */
969 }
970 spin_unlock_irqrestore(&q->lock, flags);
971}
74d81bfa
NP
972
973static void wake_up_page(struct page *page, int bit)
974{
975 if (!PageWaiters(page))
976 return;
977 wake_up_page_bit(page, bit);
978}
62906027
NP
979
980static inline int wait_on_page_bit_common(wait_queue_head_t *q,
981 struct page *page, int bit_nr, int state, bool lock)
982{
983 struct wait_page_queue wait_page;
ac6424b9 984 wait_queue_entry_t *wait = &wait_page.wait;
62906027
NP
985 int ret = 0;
986
987 init_wait(wait);
3510ca20 988 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
62906027
NP
989 wait->func = wake_page_function;
990 wait_page.page = page;
991 wait_page.bit_nr = bit_nr;
992
993 for (;;) {
994 spin_lock_irq(&q->lock);
995
2055da97 996 if (likely(list_empty(&wait->entry))) {
3510ca20 997 __add_wait_queue_entry_tail(q, wait);
62906027
NP
998 SetPageWaiters(page);
999 }
1000
1001 set_current_state(state);
1002
1003 spin_unlock_irq(&q->lock);
1004
1005 if (likely(test_bit(bit_nr, &page->flags))) {
1006 io_schedule();
62906027
NP
1007 }
1008
1009 if (lock) {
1010 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1011 break;
1012 } else {
1013 if (!test_bit(bit_nr, &page->flags))
1014 break;
1015 }
a8b169af
LT
1016
1017 if (unlikely(signal_pending_state(state, current))) {
1018 ret = -EINTR;
1019 break;
1020 }
62906027
NP
1021 }
1022
1023 finish_wait(q, wait);
1024
1025 /*
1026 * A signal could leave PageWaiters set. Clearing it here if
1027 * !waitqueue_active would be possible (by open-coding finish_wait),
1028 * but still fail to catch it in the case of wait hash collision. We
1029 * already can fail to clear wait hash collision cases, so don't
1030 * bother with signals either.
1031 */
1032
1033 return ret;
1034}
1035
1036void wait_on_page_bit(struct page *page, int bit_nr)
1037{
1038 wait_queue_head_t *q = page_waitqueue(page);
1039 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1040}
1041EXPORT_SYMBOL(wait_on_page_bit);
1042
1043int wait_on_page_bit_killable(struct page *page, int bit_nr)
1044{
1045 wait_queue_head_t *q = page_waitqueue(page);
1046 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
cbbce822 1047}
cbbce822 1048
385e1ca5
DH
1049/**
1050 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1051 * @page: Page defining the wait queue of interest
1052 * @waiter: Waiter to add to the queue
385e1ca5
DH
1053 *
1054 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1055 */
ac6424b9 1056void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1057{
1058 wait_queue_head_t *q = page_waitqueue(page);
1059 unsigned long flags;
1060
1061 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1062 __add_wait_queue_entry_tail(q, waiter);
62906027 1063 SetPageWaiters(page);
385e1ca5
DH
1064 spin_unlock_irqrestore(&q->lock, flags);
1065}
1066EXPORT_SYMBOL_GPL(add_page_wait_queue);
1067
b91e1302
LT
1068#ifndef clear_bit_unlock_is_negative_byte
1069
1070/*
1071 * PG_waiters is the high bit in the same byte as PG_lock.
1072 *
1073 * On x86 (and on many other architectures), we can clear PG_lock and
1074 * test the sign bit at the same time. But if the architecture does
1075 * not support that special operation, we just do this all by hand
1076 * instead.
1077 *
1078 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1079 * being cleared, but a memory barrier should be unneccssary since it is
1080 * in the same byte as PG_locked.
1081 */
1082static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1083{
1084 clear_bit_unlock(nr, mem);
1085 /* smp_mb__after_atomic(); */
98473f9f 1086 return test_bit(PG_waiters, mem);
b91e1302
LT
1087}
1088
1089#endif
1090
1da177e4 1091/**
485bb99b 1092 * unlock_page - unlock a locked page
1da177e4
LT
1093 * @page: the page
1094 *
1095 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1096 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1097 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1098 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1099 *
b91e1302
LT
1100 * Note that this depends on PG_waiters being the sign bit in the byte
1101 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1102 * clear the PG_locked bit and test PG_waiters at the same time fairly
1103 * portably (architectures that do LL/SC can test any bit, while x86 can
1104 * test the sign bit).
1da177e4 1105 */
920c7a5d 1106void unlock_page(struct page *page)
1da177e4 1107{
b91e1302 1108 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1109 page = compound_head(page);
309381fe 1110 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1111 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1112 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1113}
1114EXPORT_SYMBOL(unlock_page);
1115
485bb99b
RD
1116/**
1117 * end_page_writeback - end writeback against a page
1118 * @page: the page
1da177e4
LT
1119 */
1120void end_page_writeback(struct page *page)
1121{
888cf2db
MG
1122 /*
1123 * TestClearPageReclaim could be used here but it is an atomic
1124 * operation and overkill in this particular case. Failing to
1125 * shuffle a page marked for immediate reclaim is too mild to
1126 * justify taking an atomic operation penalty at the end of
1127 * ever page writeback.
1128 */
1129 if (PageReclaim(page)) {
1130 ClearPageReclaim(page);
ac6aadb2 1131 rotate_reclaimable_page(page);
888cf2db 1132 }
ac6aadb2
MS
1133
1134 if (!test_clear_page_writeback(page))
1135 BUG();
1136
4e857c58 1137 smp_mb__after_atomic();
1da177e4
LT
1138 wake_up_page(page, PG_writeback);
1139}
1140EXPORT_SYMBOL(end_page_writeback);
1141
57d99845
MW
1142/*
1143 * After completing I/O on a page, call this routine to update the page
1144 * flags appropriately
1145 */
c11f0c0b 1146void page_endio(struct page *page, bool is_write, int err)
57d99845 1147{
c11f0c0b 1148 if (!is_write) {
57d99845
MW
1149 if (!err) {
1150 SetPageUptodate(page);
1151 } else {
1152 ClearPageUptodate(page);
1153 SetPageError(page);
1154 }
1155 unlock_page(page);
abf54548 1156 } else {
57d99845 1157 if (err) {
dd8416c4
MK
1158 struct address_space *mapping;
1159
57d99845 1160 SetPageError(page);
dd8416c4
MK
1161 mapping = page_mapping(page);
1162 if (mapping)
1163 mapping_set_error(mapping, err);
57d99845
MW
1164 }
1165 end_page_writeback(page);
1166 }
1167}
1168EXPORT_SYMBOL_GPL(page_endio);
1169
485bb99b
RD
1170/**
1171 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1172 * @__page: the page to lock
1da177e4 1173 */
62906027 1174void __lock_page(struct page *__page)
1da177e4 1175{
62906027
NP
1176 struct page *page = compound_head(__page);
1177 wait_queue_head_t *q = page_waitqueue(page);
1178 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1da177e4
LT
1179}
1180EXPORT_SYMBOL(__lock_page);
1181
62906027 1182int __lock_page_killable(struct page *__page)
2687a356 1183{
62906027
NP
1184 struct page *page = compound_head(__page);
1185 wait_queue_head_t *q = page_waitqueue(page);
1186 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
2687a356 1187}
18bc0bbd 1188EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1189
9a95f3cf
PC
1190/*
1191 * Return values:
1192 * 1 - page is locked; mmap_sem is still held.
1193 * 0 - page is not locked.
1194 * mmap_sem has been released (up_read()), unless flags had both
1195 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1196 * which case mmap_sem is still held.
1197 *
1198 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1199 * with the page locked and the mmap_sem unperturbed.
1200 */
d065bd81
ML
1201int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1202 unsigned int flags)
1203{
37b23e05
KM
1204 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1205 /*
1206 * CAUTION! In this case, mmap_sem is not released
1207 * even though return 0.
1208 */
1209 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1210 return 0;
1211
1212 up_read(&mm->mmap_sem);
1213 if (flags & FAULT_FLAG_KILLABLE)
1214 wait_on_page_locked_killable(page);
1215 else
318b275f 1216 wait_on_page_locked(page);
d065bd81 1217 return 0;
37b23e05
KM
1218 } else {
1219 if (flags & FAULT_FLAG_KILLABLE) {
1220 int ret;
1221
1222 ret = __lock_page_killable(page);
1223 if (ret) {
1224 up_read(&mm->mmap_sem);
1225 return 0;
1226 }
1227 } else
1228 __lock_page(page);
1229 return 1;
d065bd81
ML
1230 }
1231}
1232
e7b563bb
JW
1233/**
1234 * page_cache_next_hole - find the next hole (not-present entry)
1235 * @mapping: mapping
1236 * @index: index
1237 * @max_scan: maximum range to search
1238 *
1239 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1240 * lowest indexed hole.
1241 *
1242 * Returns: the index of the hole if found, otherwise returns an index
1243 * outside of the set specified (in which case 'return - index >=
1244 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1245 * be returned.
1246 *
1247 * page_cache_next_hole may be called under rcu_read_lock. However,
1248 * like radix_tree_gang_lookup, this will not atomically search a
1249 * snapshot of the tree at a single point in time. For example, if a
1250 * hole is created at index 5, then subsequently a hole is created at
1251 * index 10, page_cache_next_hole covering both indexes may return 10
1252 * if called under rcu_read_lock.
1253 */
1254pgoff_t page_cache_next_hole(struct address_space *mapping,
1255 pgoff_t index, unsigned long max_scan)
1256{
1257 unsigned long i;
1258
1259 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1260 struct page *page;
1261
1262 page = radix_tree_lookup(&mapping->page_tree, index);
1263 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1264 break;
1265 index++;
1266 if (index == 0)
1267 break;
1268 }
1269
1270 return index;
1271}
1272EXPORT_SYMBOL(page_cache_next_hole);
1273
1274/**
1275 * page_cache_prev_hole - find the prev hole (not-present entry)
1276 * @mapping: mapping
1277 * @index: index
1278 * @max_scan: maximum range to search
1279 *
1280 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1281 * the first hole.
1282 *
1283 * Returns: the index of the hole if found, otherwise returns an index
1284 * outside of the set specified (in which case 'index - return >=
1285 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1286 * will be returned.
1287 *
1288 * page_cache_prev_hole may be called under rcu_read_lock. However,
1289 * like radix_tree_gang_lookup, this will not atomically search a
1290 * snapshot of the tree at a single point in time. For example, if a
1291 * hole is created at index 10, then subsequently a hole is created at
1292 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1293 * called under rcu_read_lock.
1294 */
1295pgoff_t page_cache_prev_hole(struct address_space *mapping,
1296 pgoff_t index, unsigned long max_scan)
1297{
1298 unsigned long i;
1299
1300 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1301 struct page *page;
1302
1303 page = radix_tree_lookup(&mapping->page_tree, index);
1304 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1305 break;
1306 index--;
1307 if (index == ULONG_MAX)
1308 break;
1309 }
1310
1311 return index;
1312}
1313EXPORT_SYMBOL(page_cache_prev_hole);
1314
485bb99b 1315/**
0cd6144a 1316 * find_get_entry - find and get a page cache entry
485bb99b 1317 * @mapping: the address_space to search
0cd6144a
JW
1318 * @offset: the page cache index
1319 *
1320 * Looks up the page cache slot at @mapping & @offset. If there is a
1321 * page cache page, it is returned with an increased refcount.
485bb99b 1322 *
139b6a6f
JW
1323 * If the slot holds a shadow entry of a previously evicted page, or a
1324 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1325 *
1326 * Otherwise, %NULL is returned.
1da177e4 1327 */
0cd6144a 1328struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1329{
a60637c8 1330 void **pagep;
83929372 1331 struct page *head, *page;
1da177e4 1332
a60637c8
NP
1333 rcu_read_lock();
1334repeat:
1335 page = NULL;
1336 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1337 if (pagep) {
1338 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1339 if (unlikely(!page))
1340 goto out;
a2c16d6c 1341 if (radix_tree_exception(page)) {
8079b1c8
HD
1342 if (radix_tree_deref_retry(page))
1343 goto repeat;
1344 /*
139b6a6f
JW
1345 * A shadow entry of a recently evicted page,
1346 * or a swap entry from shmem/tmpfs. Return
1347 * it without attempting to raise page count.
8079b1c8
HD
1348 */
1349 goto out;
a2c16d6c 1350 }
83929372
KS
1351
1352 head = compound_head(page);
1353 if (!page_cache_get_speculative(head))
1354 goto repeat;
1355
1356 /* The page was split under us? */
1357 if (compound_head(page) != head) {
1358 put_page(head);
a60637c8 1359 goto repeat;
83929372 1360 }
a60637c8
NP
1361
1362 /*
1363 * Has the page moved?
1364 * This is part of the lockless pagecache protocol. See
1365 * include/linux/pagemap.h for details.
1366 */
1367 if (unlikely(page != *pagep)) {
83929372 1368 put_page(head);
a60637c8
NP
1369 goto repeat;
1370 }
1371 }
27d20fdd 1372out:
a60637c8
NP
1373 rcu_read_unlock();
1374
1da177e4
LT
1375 return page;
1376}
0cd6144a 1377EXPORT_SYMBOL(find_get_entry);
1da177e4 1378
0cd6144a
JW
1379/**
1380 * find_lock_entry - locate, pin and lock a page cache entry
1381 * @mapping: the address_space to search
1382 * @offset: the page cache index
1383 *
1384 * Looks up the page cache slot at @mapping & @offset. If there is a
1385 * page cache page, it is returned locked and with an increased
1386 * refcount.
1387 *
139b6a6f
JW
1388 * If the slot holds a shadow entry of a previously evicted page, or a
1389 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1390 *
1391 * Otherwise, %NULL is returned.
1392 *
1393 * find_lock_entry() may sleep.
1394 */
1395struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1396{
1397 struct page *page;
1398
1da177e4 1399repeat:
0cd6144a 1400 page = find_get_entry(mapping, offset);
a2c16d6c 1401 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1402 lock_page(page);
1403 /* Has the page been truncated? */
83929372 1404 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1405 unlock_page(page);
09cbfeaf 1406 put_page(page);
a60637c8 1407 goto repeat;
1da177e4 1408 }
83929372 1409 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1410 }
1da177e4
LT
1411 return page;
1412}
0cd6144a
JW
1413EXPORT_SYMBOL(find_lock_entry);
1414
1415/**
2457aec6 1416 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1417 * @mapping: the address_space to search
1418 * @offset: the page index
2457aec6 1419 * @fgp_flags: PCG flags
45f87de5 1420 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1421 *
2457aec6 1422 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1423 *
75325189 1424 * PCG flags modify how the page is returned.
0cd6144a 1425 *
0e056eb5
MCC
1426 * @fgp_flags can be:
1427 *
1428 * - FGP_ACCESSED: the page will be marked accessed
1429 * - FGP_LOCK: Page is return locked
1430 * - FGP_CREAT: If page is not present then a new page is allocated using
1431 * @gfp_mask and added to the page cache and the VM's LRU
1432 * list. The page is returned locked and with an increased
1433 * refcount. Otherwise, NULL is returned.
1da177e4 1434 *
2457aec6
MG
1435 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1436 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1437 *
2457aec6 1438 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1439 */
2457aec6 1440struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1441 int fgp_flags, gfp_t gfp_mask)
1da177e4 1442{
eb2be189 1443 struct page *page;
2457aec6 1444
1da177e4 1445repeat:
2457aec6
MG
1446 page = find_get_entry(mapping, offset);
1447 if (radix_tree_exceptional_entry(page))
1448 page = NULL;
1449 if (!page)
1450 goto no_page;
1451
1452 if (fgp_flags & FGP_LOCK) {
1453 if (fgp_flags & FGP_NOWAIT) {
1454 if (!trylock_page(page)) {
09cbfeaf 1455 put_page(page);
2457aec6
MG
1456 return NULL;
1457 }
1458 } else {
1459 lock_page(page);
1460 }
1461
1462 /* Has the page been truncated? */
1463 if (unlikely(page->mapping != mapping)) {
1464 unlock_page(page);
09cbfeaf 1465 put_page(page);
2457aec6
MG
1466 goto repeat;
1467 }
1468 VM_BUG_ON_PAGE(page->index != offset, page);
1469 }
1470
1471 if (page && (fgp_flags & FGP_ACCESSED))
1472 mark_page_accessed(page);
1473
1474no_page:
1475 if (!page && (fgp_flags & FGP_CREAT)) {
1476 int err;
1477 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1478 gfp_mask |= __GFP_WRITE;
1479 if (fgp_flags & FGP_NOFS)
1480 gfp_mask &= ~__GFP_FS;
2457aec6 1481
45f87de5 1482 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1483 if (!page)
1484 return NULL;
2457aec6
MG
1485
1486 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1487 fgp_flags |= FGP_LOCK;
1488
eb39d618 1489 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1490 if (fgp_flags & FGP_ACCESSED)
eb39d618 1491 __SetPageReferenced(page);
2457aec6 1492
45f87de5
MH
1493 err = add_to_page_cache_lru(page, mapping, offset,
1494 gfp_mask & GFP_RECLAIM_MASK);
eb2be189 1495 if (unlikely(err)) {
09cbfeaf 1496 put_page(page);
eb2be189
NP
1497 page = NULL;
1498 if (err == -EEXIST)
1499 goto repeat;
1da177e4 1500 }
1da177e4 1501 }
2457aec6 1502
1da177e4
LT
1503 return page;
1504}
2457aec6 1505EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1506
0cd6144a
JW
1507/**
1508 * find_get_entries - gang pagecache lookup
1509 * @mapping: The address_space to search
1510 * @start: The starting page cache index
1511 * @nr_entries: The maximum number of entries
1512 * @entries: Where the resulting entries are placed
1513 * @indices: The cache indices corresponding to the entries in @entries
1514 *
1515 * find_get_entries() will search for and return a group of up to
1516 * @nr_entries entries in the mapping. The entries are placed at
1517 * @entries. find_get_entries() takes a reference against any actual
1518 * pages it returns.
1519 *
1520 * The search returns a group of mapping-contiguous page cache entries
1521 * with ascending indexes. There may be holes in the indices due to
1522 * not-present pages.
1523 *
139b6a6f
JW
1524 * Any shadow entries of evicted pages, or swap entries from
1525 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1526 *
1527 * find_get_entries() returns the number of pages and shadow entries
1528 * which were found.
1529 */
1530unsigned find_get_entries(struct address_space *mapping,
1531 pgoff_t start, unsigned int nr_entries,
1532 struct page **entries, pgoff_t *indices)
1533{
1534 void **slot;
1535 unsigned int ret = 0;
1536 struct radix_tree_iter iter;
1537
1538 if (!nr_entries)
1539 return 0;
1540
1541 rcu_read_lock();
0cd6144a 1542 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1543 struct page *head, *page;
0cd6144a
JW
1544repeat:
1545 page = radix_tree_deref_slot(slot);
1546 if (unlikely(!page))
1547 continue;
1548 if (radix_tree_exception(page)) {
2cf938aa
MW
1549 if (radix_tree_deref_retry(page)) {
1550 slot = radix_tree_iter_retry(&iter);
1551 continue;
1552 }
0cd6144a 1553 /*
f9fe48be
RZ
1554 * A shadow entry of a recently evicted page, a swap
1555 * entry from shmem/tmpfs or a DAX entry. Return it
1556 * without attempting to raise page count.
0cd6144a
JW
1557 */
1558 goto export;
1559 }
83929372
KS
1560
1561 head = compound_head(page);
1562 if (!page_cache_get_speculative(head))
1563 goto repeat;
1564
1565 /* The page was split under us? */
1566 if (compound_head(page) != head) {
1567 put_page(head);
0cd6144a 1568 goto repeat;
83929372 1569 }
0cd6144a
JW
1570
1571 /* Has the page moved? */
1572 if (unlikely(page != *slot)) {
83929372 1573 put_page(head);
0cd6144a
JW
1574 goto repeat;
1575 }
1576export:
1577 indices[ret] = iter.index;
1578 entries[ret] = page;
1579 if (++ret == nr_entries)
1580 break;
1581 }
1582 rcu_read_unlock();
1583 return ret;
1584}
1585
1da177e4 1586/**
b947cee4 1587 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1588 * @mapping: The address_space to search
1589 * @start: The starting page index
b947cee4 1590 * @end: The final page index (inclusive)
1da177e4
LT
1591 * @nr_pages: The maximum number of pages
1592 * @pages: Where the resulting pages are placed
1593 *
b947cee4
JK
1594 * find_get_pages_range() will search for and return a group of up to @nr_pages
1595 * pages in the mapping starting at index @start and up to index @end
1596 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1597 * a reference against the returned pages.
1da177e4
LT
1598 *
1599 * The search returns a group of mapping-contiguous pages with ascending
1600 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1601 * We also update @start to index the next page for the traversal.
1da177e4 1602 *
b947cee4
JK
1603 * find_get_pages_range() returns the number of pages which were found. If this
1604 * number is smaller than @nr_pages, the end of specified range has been
1605 * reached.
1da177e4 1606 */
b947cee4
JK
1607unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1608 pgoff_t end, unsigned int nr_pages,
1609 struct page **pages)
1da177e4 1610{
0fc9d104
KK
1611 struct radix_tree_iter iter;
1612 void **slot;
1613 unsigned ret = 0;
1614
1615 if (unlikely(!nr_pages))
1616 return 0;
a60637c8
NP
1617
1618 rcu_read_lock();
d72dc8a2 1619 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
83929372 1620 struct page *head, *page;
b947cee4
JK
1621
1622 if (iter.index > end)
1623 break;
a60637c8 1624repeat:
0fc9d104 1625 page = radix_tree_deref_slot(slot);
a60637c8
NP
1626 if (unlikely(!page))
1627 continue;
9d8aa4ea 1628
a2c16d6c 1629 if (radix_tree_exception(page)) {
8079b1c8 1630 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1631 slot = radix_tree_iter_retry(&iter);
1632 continue;
8079b1c8 1633 }
a2c16d6c 1634 /*
139b6a6f
JW
1635 * A shadow entry of a recently evicted page,
1636 * or a swap entry from shmem/tmpfs. Skip
1637 * over it.
a2c16d6c 1638 */
8079b1c8 1639 continue;
27d20fdd 1640 }
a60637c8 1641
83929372
KS
1642 head = compound_head(page);
1643 if (!page_cache_get_speculative(head))
1644 goto repeat;
1645
1646 /* The page was split under us? */
1647 if (compound_head(page) != head) {
1648 put_page(head);
a60637c8 1649 goto repeat;
83929372 1650 }
a60637c8
NP
1651
1652 /* Has the page moved? */
0fc9d104 1653 if (unlikely(page != *slot)) {
83929372 1654 put_page(head);
a60637c8
NP
1655 goto repeat;
1656 }
1da177e4 1657
a60637c8 1658 pages[ret] = page;
b947cee4
JK
1659 if (++ret == nr_pages) {
1660 *start = pages[ret - 1]->index + 1;
1661 goto out;
1662 }
a60637c8 1663 }
5b280c0c 1664
b947cee4
JK
1665 /*
1666 * We come here when there is no page beyond @end. We take care to not
1667 * overflow the index @start as it confuses some of the callers. This
1668 * breaks the iteration when there is page at index -1 but that is
1669 * already broken anyway.
1670 */
1671 if (end == (pgoff_t)-1)
1672 *start = (pgoff_t)-1;
1673 else
1674 *start = end + 1;
1675out:
a60637c8 1676 rcu_read_unlock();
d72dc8a2 1677
1da177e4
LT
1678 return ret;
1679}
1680
ebf43500
JA
1681/**
1682 * find_get_pages_contig - gang contiguous pagecache lookup
1683 * @mapping: The address_space to search
1684 * @index: The starting page index
1685 * @nr_pages: The maximum number of pages
1686 * @pages: Where the resulting pages are placed
1687 *
1688 * find_get_pages_contig() works exactly like find_get_pages(), except
1689 * that the returned number of pages are guaranteed to be contiguous.
1690 *
1691 * find_get_pages_contig() returns the number of pages which were found.
1692 */
1693unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1694 unsigned int nr_pages, struct page **pages)
1695{
0fc9d104
KK
1696 struct radix_tree_iter iter;
1697 void **slot;
1698 unsigned int ret = 0;
1699
1700 if (unlikely(!nr_pages))
1701 return 0;
a60637c8
NP
1702
1703 rcu_read_lock();
0fc9d104 1704 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
83929372 1705 struct page *head, *page;
a60637c8 1706repeat:
0fc9d104
KK
1707 page = radix_tree_deref_slot(slot);
1708 /* The hole, there no reason to continue */
a60637c8 1709 if (unlikely(!page))
0fc9d104 1710 break;
9d8aa4ea 1711
a2c16d6c 1712 if (radix_tree_exception(page)) {
8079b1c8 1713 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1714 slot = radix_tree_iter_retry(&iter);
1715 continue;
8079b1c8 1716 }
a2c16d6c 1717 /*
139b6a6f
JW
1718 * A shadow entry of a recently evicted page,
1719 * or a swap entry from shmem/tmpfs. Stop
1720 * looking for contiguous pages.
a2c16d6c 1721 */
8079b1c8 1722 break;
a2c16d6c 1723 }
ebf43500 1724
83929372
KS
1725 head = compound_head(page);
1726 if (!page_cache_get_speculative(head))
1727 goto repeat;
1728
1729 /* The page was split under us? */
1730 if (compound_head(page) != head) {
1731 put_page(head);
a60637c8 1732 goto repeat;
83929372 1733 }
a60637c8
NP
1734
1735 /* Has the page moved? */
0fc9d104 1736 if (unlikely(page != *slot)) {
83929372 1737 put_page(head);
a60637c8
NP
1738 goto repeat;
1739 }
1740
9cbb4cb2
NP
1741 /*
1742 * must check mapping and index after taking the ref.
1743 * otherwise we can get both false positives and false
1744 * negatives, which is just confusing to the caller.
1745 */
83929372 1746 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1747 put_page(page);
9cbb4cb2
NP
1748 break;
1749 }
1750
a60637c8 1751 pages[ret] = page;
0fc9d104
KK
1752 if (++ret == nr_pages)
1753 break;
ebf43500 1754 }
a60637c8
NP
1755 rcu_read_unlock();
1756 return ret;
ebf43500 1757}
ef71c15c 1758EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1759
485bb99b 1760/**
72b045ae 1761 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
1762 * @mapping: the address_space to search
1763 * @index: the starting page index
72b045ae 1764 * @end: The final page index (inclusive)
485bb99b
RD
1765 * @tag: the tag index
1766 * @nr_pages: the maximum number of pages
1767 * @pages: where the resulting pages are placed
1768 *
1da177e4 1769 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1770 * @tag. We update @index to index the next page for the traversal.
1da177e4 1771 */
72b045ae
JK
1772unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1773 pgoff_t end, int tag, unsigned int nr_pages,
1774 struct page **pages)
1da177e4 1775{
0fc9d104
KK
1776 struct radix_tree_iter iter;
1777 void **slot;
1778 unsigned ret = 0;
1779
1780 if (unlikely(!nr_pages))
1781 return 0;
a60637c8
NP
1782
1783 rcu_read_lock();
0fc9d104
KK
1784 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1785 &iter, *index, tag) {
83929372 1786 struct page *head, *page;
72b045ae
JK
1787
1788 if (iter.index > end)
1789 break;
a60637c8 1790repeat:
0fc9d104 1791 page = radix_tree_deref_slot(slot);
a60637c8
NP
1792 if (unlikely(!page))
1793 continue;
9d8aa4ea 1794
a2c16d6c 1795 if (radix_tree_exception(page)) {
8079b1c8 1796 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1797 slot = radix_tree_iter_retry(&iter);
1798 continue;
8079b1c8 1799 }
a2c16d6c 1800 /*
139b6a6f
JW
1801 * A shadow entry of a recently evicted page.
1802 *
1803 * Those entries should never be tagged, but
1804 * this tree walk is lockless and the tags are
1805 * looked up in bulk, one radix tree node at a
1806 * time, so there is a sizable window for page
1807 * reclaim to evict a page we saw tagged.
1808 *
1809 * Skip over it.
a2c16d6c 1810 */
139b6a6f 1811 continue;
a2c16d6c 1812 }
a60637c8 1813
83929372
KS
1814 head = compound_head(page);
1815 if (!page_cache_get_speculative(head))
a60637c8
NP
1816 goto repeat;
1817
83929372
KS
1818 /* The page was split under us? */
1819 if (compound_head(page) != head) {
1820 put_page(head);
1821 goto repeat;
1822 }
1823
a60637c8 1824 /* Has the page moved? */
0fc9d104 1825 if (unlikely(page != *slot)) {
83929372 1826 put_page(head);
a60637c8
NP
1827 goto repeat;
1828 }
1829
1830 pages[ret] = page;
72b045ae
JK
1831 if (++ret == nr_pages) {
1832 *index = pages[ret - 1]->index + 1;
1833 goto out;
1834 }
a60637c8 1835 }
5b280c0c 1836
72b045ae
JK
1837 /*
1838 * We come here when we got at @end. We take care to not overflow the
1839 * index @index as it confuses some of the callers. This breaks the
1840 * iteration when there is page at index -1 but that is already broken
1841 * anyway.
1842 */
1843 if (end == (pgoff_t)-1)
1844 *index = (pgoff_t)-1;
1845 else
1846 *index = end + 1;
1847out:
a60637c8 1848 rcu_read_unlock();
1da177e4 1849
1da177e4
LT
1850 return ret;
1851}
72b045ae 1852EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 1853
7e7f7749
RZ
1854/**
1855 * find_get_entries_tag - find and return entries that match @tag
1856 * @mapping: the address_space to search
1857 * @start: the starting page cache index
1858 * @tag: the tag index
1859 * @nr_entries: the maximum number of entries
1860 * @entries: where the resulting entries are placed
1861 * @indices: the cache indices corresponding to the entries in @entries
1862 *
1863 * Like find_get_entries, except we only return entries which are tagged with
1864 * @tag.
1865 */
1866unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1867 int tag, unsigned int nr_entries,
1868 struct page **entries, pgoff_t *indices)
1869{
1870 void **slot;
1871 unsigned int ret = 0;
1872 struct radix_tree_iter iter;
1873
1874 if (!nr_entries)
1875 return 0;
1876
1877 rcu_read_lock();
7e7f7749
RZ
1878 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1879 &iter, start, tag) {
83929372 1880 struct page *head, *page;
7e7f7749
RZ
1881repeat:
1882 page = radix_tree_deref_slot(slot);
1883 if (unlikely(!page))
1884 continue;
1885 if (radix_tree_exception(page)) {
1886 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1887 slot = radix_tree_iter_retry(&iter);
1888 continue;
7e7f7749
RZ
1889 }
1890
1891 /*
1892 * A shadow entry of a recently evicted page, a swap
1893 * entry from shmem/tmpfs or a DAX entry. Return it
1894 * without attempting to raise page count.
1895 */
1896 goto export;
1897 }
83929372
KS
1898
1899 head = compound_head(page);
1900 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1901 goto repeat;
1902
83929372
KS
1903 /* The page was split under us? */
1904 if (compound_head(page) != head) {
1905 put_page(head);
1906 goto repeat;
1907 }
1908
7e7f7749
RZ
1909 /* Has the page moved? */
1910 if (unlikely(page != *slot)) {
83929372 1911 put_page(head);
7e7f7749
RZ
1912 goto repeat;
1913 }
1914export:
1915 indices[ret] = iter.index;
1916 entries[ret] = page;
1917 if (++ret == nr_entries)
1918 break;
1919 }
1920 rcu_read_unlock();
1921 return ret;
1922}
1923EXPORT_SYMBOL(find_get_entries_tag);
1924
76d42bd9
WF
1925/*
1926 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1927 * a _large_ part of the i/o request. Imagine the worst scenario:
1928 *
1929 * ---R__________________________________________B__________
1930 * ^ reading here ^ bad block(assume 4k)
1931 *
1932 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1933 * => failing the whole request => read(R) => read(R+1) =>
1934 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1935 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1936 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1937 *
1938 * It is going insane. Fix it by quickly scaling down the readahead size.
1939 */
1940static void shrink_readahead_size_eio(struct file *filp,
1941 struct file_ra_state *ra)
1942{
76d42bd9 1943 ra->ra_pages /= 4;
76d42bd9
WF
1944}
1945
485bb99b 1946/**
47c27bc4
CH
1947 * generic_file_buffered_read - generic file read routine
1948 * @iocb: the iocb to read
6e58e79d
AV
1949 * @iter: data destination
1950 * @written: already copied
485bb99b 1951 *
1da177e4 1952 * This is a generic file read routine, and uses the
485bb99b 1953 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1954 *
1955 * This is really ugly. But the goto's actually try to clarify some
1956 * of the logic when it comes to error handling etc.
1da177e4 1957 */
47c27bc4 1958static ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 1959 struct iov_iter *iter, ssize_t written)
1da177e4 1960{
47c27bc4 1961 struct file *filp = iocb->ki_filp;
36e78914 1962 struct address_space *mapping = filp->f_mapping;
1da177e4 1963 struct inode *inode = mapping->host;
36e78914 1964 struct file_ra_state *ra = &filp->f_ra;
47c27bc4 1965 loff_t *ppos = &iocb->ki_pos;
57f6b96c
FW
1966 pgoff_t index;
1967 pgoff_t last_index;
1968 pgoff_t prev_index;
1969 unsigned long offset; /* offset into pagecache page */
ec0f1637 1970 unsigned int prev_offset;
6e58e79d 1971 int error = 0;
1da177e4 1972
c2a9737f 1973 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 1974 return 0;
c2a9737f
WF
1975 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1976
09cbfeaf
KS
1977 index = *ppos >> PAGE_SHIFT;
1978 prev_index = ra->prev_pos >> PAGE_SHIFT;
1979 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1980 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1981 offset = *ppos & ~PAGE_MASK;
1da177e4 1982
1da177e4
LT
1983 for (;;) {
1984 struct page *page;
57f6b96c 1985 pgoff_t end_index;
a32ea1e1 1986 loff_t isize;
1da177e4
LT
1987 unsigned long nr, ret;
1988
1da177e4 1989 cond_resched();
1da177e4 1990find_page:
5abf186a
MH
1991 if (fatal_signal_pending(current)) {
1992 error = -EINTR;
1993 goto out;
1994 }
1995
1da177e4 1996 page = find_get_page(mapping, index);
3ea89ee8 1997 if (!page) {
3239d834
MT
1998 if (iocb->ki_flags & IOCB_NOWAIT)
1999 goto would_block;
cf914a7d 2000 page_cache_sync_readahead(mapping,
7ff81078 2001 ra, filp,
3ea89ee8
FW
2002 index, last_index - index);
2003 page = find_get_page(mapping, index);
2004 if (unlikely(page == NULL))
2005 goto no_cached_page;
2006 }
2007 if (PageReadahead(page)) {
cf914a7d 2008 page_cache_async_readahead(mapping,
7ff81078 2009 ra, filp, page,
3ea89ee8 2010 index, last_index - index);
1da177e4 2011 }
8ab22b9a 2012 if (!PageUptodate(page)) {
3239d834
MT
2013 if (iocb->ki_flags & IOCB_NOWAIT) {
2014 put_page(page);
2015 goto would_block;
2016 }
2017
ebded027
MG
2018 /*
2019 * See comment in do_read_cache_page on why
2020 * wait_on_page_locked is used to avoid unnecessarily
2021 * serialisations and why it's safe.
2022 */
c4b209a4
BVA
2023 error = wait_on_page_locked_killable(page);
2024 if (unlikely(error))
2025 goto readpage_error;
ebded027
MG
2026 if (PageUptodate(page))
2027 goto page_ok;
2028
09cbfeaf 2029 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
2030 !mapping->a_ops->is_partially_uptodate)
2031 goto page_not_up_to_date;
6d6d36bc
EG
2032 /* pipes can't handle partially uptodate pages */
2033 if (unlikely(iter->type & ITER_PIPE))
2034 goto page_not_up_to_date;
529ae9aa 2035 if (!trylock_page(page))
8ab22b9a 2036 goto page_not_up_to_date;
8d056cb9
DH
2037 /* Did it get truncated before we got the lock? */
2038 if (!page->mapping)
2039 goto page_not_up_to_date_locked;
8ab22b9a 2040 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 2041 offset, iter->count))
8ab22b9a
HH
2042 goto page_not_up_to_date_locked;
2043 unlock_page(page);
2044 }
1da177e4 2045page_ok:
a32ea1e1
N
2046 /*
2047 * i_size must be checked after we know the page is Uptodate.
2048 *
2049 * Checking i_size after the check allows us to calculate
2050 * the correct value for "nr", which means the zero-filled
2051 * part of the page is not copied back to userspace (unless
2052 * another truncate extends the file - this is desired though).
2053 */
2054
2055 isize = i_size_read(inode);
09cbfeaf 2056 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 2057 if (unlikely(!isize || index > end_index)) {
09cbfeaf 2058 put_page(page);
a32ea1e1
N
2059 goto out;
2060 }
2061
2062 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2063 nr = PAGE_SIZE;
a32ea1e1 2064 if (index == end_index) {
09cbfeaf 2065 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2066 if (nr <= offset) {
09cbfeaf 2067 put_page(page);
a32ea1e1
N
2068 goto out;
2069 }
2070 }
2071 nr = nr - offset;
1da177e4
LT
2072
2073 /* If users can be writing to this page using arbitrary
2074 * virtual addresses, take care about potential aliasing
2075 * before reading the page on the kernel side.
2076 */
2077 if (mapping_writably_mapped(mapping))
2078 flush_dcache_page(page);
2079
2080 /*
ec0f1637
JK
2081 * When a sequential read accesses a page several times,
2082 * only mark it as accessed the first time.
1da177e4 2083 */
ec0f1637 2084 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2085 mark_page_accessed(page);
2086 prev_index = index;
2087
2088 /*
2089 * Ok, we have the page, and it's up-to-date, so
2090 * now we can copy it to user space...
1da177e4 2091 */
6e58e79d
AV
2092
2093 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2094 offset += ret;
09cbfeaf
KS
2095 index += offset >> PAGE_SHIFT;
2096 offset &= ~PAGE_MASK;
6ce745ed 2097 prev_offset = offset;
1da177e4 2098
09cbfeaf 2099 put_page(page);
6e58e79d
AV
2100 written += ret;
2101 if (!iov_iter_count(iter))
2102 goto out;
2103 if (ret < nr) {
2104 error = -EFAULT;
2105 goto out;
2106 }
2107 continue;
1da177e4
LT
2108
2109page_not_up_to_date:
2110 /* Get exclusive access to the page ... */
85462323
ON
2111 error = lock_page_killable(page);
2112 if (unlikely(error))
2113 goto readpage_error;
1da177e4 2114
8ab22b9a 2115page_not_up_to_date_locked:
da6052f7 2116 /* Did it get truncated before we got the lock? */
1da177e4
LT
2117 if (!page->mapping) {
2118 unlock_page(page);
09cbfeaf 2119 put_page(page);
1da177e4
LT
2120 continue;
2121 }
2122
2123 /* Did somebody else fill it already? */
2124 if (PageUptodate(page)) {
2125 unlock_page(page);
2126 goto page_ok;
2127 }
2128
2129readpage:
91803b49
JM
2130 /*
2131 * A previous I/O error may have been due to temporary
2132 * failures, eg. multipath errors.
2133 * PG_error will be set again if readpage fails.
2134 */
2135 ClearPageError(page);
1da177e4
LT
2136 /* Start the actual read. The read will unlock the page. */
2137 error = mapping->a_ops->readpage(filp, page);
2138
994fc28c
ZB
2139 if (unlikely(error)) {
2140 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2141 put_page(page);
6e58e79d 2142 error = 0;
994fc28c
ZB
2143 goto find_page;
2144 }
1da177e4 2145 goto readpage_error;
994fc28c 2146 }
1da177e4
LT
2147
2148 if (!PageUptodate(page)) {
85462323
ON
2149 error = lock_page_killable(page);
2150 if (unlikely(error))
2151 goto readpage_error;
1da177e4
LT
2152 if (!PageUptodate(page)) {
2153 if (page->mapping == NULL) {
2154 /*
2ecdc82e 2155 * invalidate_mapping_pages got it
1da177e4
LT
2156 */
2157 unlock_page(page);
09cbfeaf 2158 put_page(page);
1da177e4
LT
2159 goto find_page;
2160 }
2161 unlock_page(page);
7ff81078 2162 shrink_readahead_size_eio(filp, ra);
85462323
ON
2163 error = -EIO;
2164 goto readpage_error;
1da177e4
LT
2165 }
2166 unlock_page(page);
2167 }
2168
1da177e4
LT
2169 goto page_ok;
2170
2171readpage_error:
2172 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2173 put_page(page);
1da177e4
LT
2174 goto out;
2175
2176no_cached_page:
2177 /*
2178 * Ok, it wasn't cached, so we need to create a new
2179 * page..
2180 */
eb2be189
NP
2181 page = page_cache_alloc_cold(mapping);
2182 if (!page) {
6e58e79d 2183 error = -ENOMEM;
eb2be189 2184 goto out;
1da177e4 2185 }
6afdb859 2186 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2187 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2188 if (error) {
09cbfeaf 2189 put_page(page);
6e58e79d
AV
2190 if (error == -EEXIST) {
2191 error = 0;
1da177e4 2192 goto find_page;
6e58e79d 2193 }
1da177e4
LT
2194 goto out;
2195 }
1da177e4
LT
2196 goto readpage;
2197 }
2198
3239d834
MT
2199would_block:
2200 error = -EAGAIN;
1da177e4 2201out:
7ff81078 2202 ra->prev_pos = prev_index;
09cbfeaf 2203 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2204 ra->prev_pos |= prev_offset;
1da177e4 2205
09cbfeaf 2206 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2207 file_accessed(filp);
6e58e79d 2208 return written ? written : error;
1da177e4
LT
2209}
2210
485bb99b 2211/**
6abd2322 2212 * generic_file_read_iter - generic filesystem read routine
485bb99b 2213 * @iocb: kernel I/O control block
6abd2322 2214 * @iter: destination for the data read
485bb99b 2215 *
6abd2322 2216 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
2217 * that can use the page cache directly.
2218 */
2219ssize_t
ed978a81 2220generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2221{
e7080a43 2222 size_t count = iov_iter_count(iter);
47c27bc4 2223 ssize_t retval = 0;
e7080a43
NS
2224
2225 if (!count)
2226 goto out; /* skip atime */
1da177e4 2227
2ba48ce5 2228 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2229 struct file *file = iocb->ki_filp;
ed978a81
AV
2230 struct address_space *mapping = file->f_mapping;
2231 struct inode *inode = mapping->host;
543ade1f 2232 loff_t size;
1da177e4 2233
1da177e4 2234 size = i_size_read(inode);
6be96d3a
GR
2235 if (iocb->ki_flags & IOCB_NOWAIT) {
2236 if (filemap_range_has_page(mapping, iocb->ki_pos,
2237 iocb->ki_pos + count - 1))
2238 return -EAGAIN;
2239 } else {
2240 retval = filemap_write_and_wait_range(mapping,
2241 iocb->ki_pos,
2242 iocb->ki_pos + count - 1);
2243 if (retval < 0)
2244 goto out;
2245 }
d8d3d94b 2246
0d5b0cf2
CH
2247 file_accessed(file);
2248
5ecda137 2249 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2250 if (retval >= 0) {
c64fb5c7 2251 iocb->ki_pos += retval;
5ecda137 2252 count -= retval;
9fe55eea 2253 }
5b47d59a 2254 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2255
9fe55eea
SW
2256 /*
2257 * Btrfs can have a short DIO read if we encounter
2258 * compressed extents, so if there was an error, or if
2259 * we've already read everything we wanted to, or if
2260 * there was a short read because we hit EOF, go ahead
2261 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2262 * the rest of the read. Buffered reads will not work for
2263 * DAX files, so don't bother trying.
9fe55eea 2264 */
5ecda137 2265 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2266 IS_DAX(inode))
9fe55eea 2267 goto out;
1da177e4
LT
2268 }
2269
47c27bc4 2270 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2271out:
2272 return retval;
2273}
ed978a81 2274EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2275
1da177e4 2276#ifdef CONFIG_MMU
485bb99b
RD
2277/**
2278 * page_cache_read - adds requested page to the page cache if not already there
2279 * @file: file to read
2280 * @offset: page index
62eb320a 2281 * @gfp_mask: memory allocation flags
485bb99b 2282 *
1da177e4
LT
2283 * This adds the requested page to the page cache if it isn't already there,
2284 * and schedules an I/O to read in its contents from disk.
2285 */
c20cd45e 2286static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
2287{
2288 struct address_space *mapping = file->f_mapping;
99dadfdd 2289 struct page *page;
994fc28c 2290 int ret;
1da177e4 2291
994fc28c 2292 do {
c20cd45e 2293 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
2294 if (!page)
2295 return -ENOMEM;
2296
c20cd45e 2297 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
2298 if (ret == 0)
2299 ret = mapping->a_ops->readpage(file, page);
2300 else if (ret == -EEXIST)
2301 ret = 0; /* losing race to add is OK */
1da177e4 2302
09cbfeaf 2303 put_page(page);
1da177e4 2304
994fc28c 2305 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 2306
994fc28c 2307 return ret;
1da177e4
LT
2308}
2309
2310#define MMAP_LOTSAMISS (100)
2311
ef00e08e
LT
2312/*
2313 * Synchronous readahead happens when we don't even find
2314 * a page in the page cache at all.
2315 */
2316static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2317 struct file_ra_state *ra,
2318 struct file *file,
2319 pgoff_t offset)
2320{
ef00e08e
LT
2321 struct address_space *mapping = file->f_mapping;
2322
2323 /* If we don't want any read-ahead, don't bother */
64363aad 2324 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 2325 return;
275b12bf
WF
2326 if (!ra->ra_pages)
2327 return;
ef00e08e 2328
64363aad 2329 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
2330 page_cache_sync_readahead(mapping, ra, file, offset,
2331 ra->ra_pages);
ef00e08e
LT
2332 return;
2333 }
2334
207d04ba
AK
2335 /* Avoid banging the cache line if not needed */
2336 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2337 ra->mmap_miss++;
2338
2339 /*
2340 * Do we miss much more than hit in this file? If so,
2341 * stop bothering with read-ahead. It will only hurt.
2342 */
2343 if (ra->mmap_miss > MMAP_LOTSAMISS)
2344 return;
2345
d30a1100
WF
2346 /*
2347 * mmap read-around
2348 */
600e19af
RG
2349 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2350 ra->size = ra->ra_pages;
2351 ra->async_size = ra->ra_pages / 4;
275b12bf 2352 ra_submit(ra, mapping, file);
ef00e08e
LT
2353}
2354
2355/*
2356 * Asynchronous readahead happens when we find the page and PG_readahead,
2357 * so we want to possibly extend the readahead further..
2358 */
2359static void do_async_mmap_readahead(struct vm_area_struct *vma,
2360 struct file_ra_state *ra,
2361 struct file *file,
2362 struct page *page,
2363 pgoff_t offset)
2364{
2365 struct address_space *mapping = file->f_mapping;
2366
2367 /* If we don't want any read-ahead, don't bother */
64363aad 2368 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2369 return;
2370 if (ra->mmap_miss > 0)
2371 ra->mmap_miss--;
2372 if (PageReadahead(page))
2fad6f5d
WF
2373 page_cache_async_readahead(mapping, ra, file,
2374 page, offset, ra->ra_pages);
ef00e08e
LT
2375}
2376
485bb99b 2377/**
54cb8821 2378 * filemap_fault - read in file data for page fault handling
d0217ac0 2379 * @vmf: struct vm_fault containing details of the fault
485bb99b 2380 *
54cb8821 2381 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2382 * mapped memory region to read in file data during a page fault.
2383 *
2384 * The goto's are kind of ugly, but this streamlines the normal case of having
2385 * it in the page cache, and handles the special cases reasonably without
2386 * having a lot of duplicated code.
9a95f3cf
PC
2387 *
2388 * vma->vm_mm->mmap_sem must be held on entry.
2389 *
2390 * If our return value has VM_FAULT_RETRY set, it's because
2391 * lock_page_or_retry() returned 0.
2392 * The mmap_sem has usually been released in this case.
2393 * See __lock_page_or_retry() for the exception.
2394 *
2395 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2396 * has not been released.
2397 *
2398 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2399 */
11bac800 2400int filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2401{
2402 int error;
11bac800 2403 struct file *file = vmf->vma->vm_file;
1da177e4
LT
2404 struct address_space *mapping = file->f_mapping;
2405 struct file_ra_state *ra = &file->f_ra;
2406 struct inode *inode = mapping->host;
ef00e08e 2407 pgoff_t offset = vmf->pgoff;
9ab2594f 2408 pgoff_t max_off;
1da177e4 2409 struct page *page;
83c54070 2410 int ret = 0;
1da177e4 2411
9ab2594f
MW
2412 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2413 if (unlikely(offset >= max_off))
5307cc1a 2414 return VM_FAULT_SIGBUS;
1da177e4 2415
1da177e4 2416 /*
49426420 2417 * Do we have something in the page cache already?
1da177e4 2418 */
ef00e08e 2419 page = find_get_page(mapping, offset);
45cac65b 2420 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2421 /*
ef00e08e
LT
2422 * We found the page, so try async readahead before
2423 * waiting for the lock.
1da177e4 2424 */
11bac800 2425 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
45cac65b 2426 } else if (!page) {
ef00e08e 2427 /* No page in the page cache at all */
11bac800 2428 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
ef00e08e 2429 count_vm_event(PGMAJFAULT);
2262185c 2430 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2431 ret = VM_FAULT_MAJOR;
2432retry_find:
b522c94d 2433 page = find_get_page(mapping, offset);
1da177e4
LT
2434 if (!page)
2435 goto no_cached_page;
2436 }
2437
11bac800 2438 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
09cbfeaf 2439 put_page(page);
d065bd81 2440 return ret | VM_FAULT_RETRY;
d88c0922 2441 }
b522c94d
ML
2442
2443 /* Did it get truncated? */
2444 if (unlikely(page->mapping != mapping)) {
2445 unlock_page(page);
2446 put_page(page);
2447 goto retry_find;
2448 }
309381fe 2449 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2450
1da177e4 2451 /*
d00806b1
NP
2452 * We have a locked page in the page cache, now we need to check
2453 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2454 */
d00806b1 2455 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2456 goto page_not_uptodate;
2457
ef00e08e
LT
2458 /*
2459 * Found the page and have a reference on it.
2460 * We must recheck i_size under page lock.
2461 */
9ab2594f
MW
2462 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2463 if (unlikely(offset >= max_off)) {
d00806b1 2464 unlock_page(page);
09cbfeaf 2465 put_page(page);
5307cc1a 2466 return VM_FAULT_SIGBUS;
d00806b1
NP
2467 }
2468
d0217ac0 2469 vmf->page = page;
83c54070 2470 return ret | VM_FAULT_LOCKED;
1da177e4 2471
1da177e4
LT
2472no_cached_page:
2473 /*
2474 * We're only likely to ever get here if MADV_RANDOM is in
2475 * effect.
2476 */
c20cd45e 2477 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2478
2479 /*
2480 * The page we want has now been added to the page cache.
2481 * In the unlikely event that someone removed it in the
2482 * meantime, we'll just come back here and read it again.
2483 */
2484 if (error >= 0)
2485 goto retry_find;
2486
2487 /*
2488 * An error return from page_cache_read can result if the
2489 * system is low on memory, or a problem occurs while trying
2490 * to schedule I/O.
2491 */
2492 if (error == -ENOMEM)
d0217ac0
NP
2493 return VM_FAULT_OOM;
2494 return VM_FAULT_SIGBUS;
1da177e4
LT
2495
2496page_not_uptodate:
1da177e4
LT
2497 /*
2498 * Umm, take care of errors if the page isn't up-to-date.
2499 * Try to re-read it _once_. We do this synchronously,
2500 * because there really aren't any performance issues here
2501 * and we need to check for errors.
2502 */
1da177e4 2503 ClearPageError(page);
994fc28c 2504 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2505 if (!error) {
2506 wait_on_page_locked(page);
2507 if (!PageUptodate(page))
2508 error = -EIO;
2509 }
09cbfeaf 2510 put_page(page);
d00806b1
NP
2511
2512 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2513 goto retry_find;
1da177e4 2514
d00806b1 2515 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2516 shrink_readahead_size_eio(file, ra);
d0217ac0 2517 return VM_FAULT_SIGBUS;
54cb8821
NP
2518}
2519EXPORT_SYMBOL(filemap_fault);
2520
82b0f8c3 2521void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2522 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2523{
2524 struct radix_tree_iter iter;
2525 void **slot;
82b0f8c3 2526 struct file *file = vmf->vma->vm_file;
f1820361 2527 struct address_space *mapping = file->f_mapping;
bae473a4 2528 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2529 unsigned long max_idx;
83929372 2530 struct page *head, *page;
f1820361
KS
2531
2532 rcu_read_lock();
bae473a4
KS
2533 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2534 start_pgoff) {
2535 if (iter.index > end_pgoff)
f1820361
KS
2536 break;
2537repeat:
2538 page = radix_tree_deref_slot(slot);
2539 if (unlikely(!page))
2540 goto next;
2541 if (radix_tree_exception(page)) {
2cf938aa
MW
2542 if (radix_tree_deref_retry(page)) {
2543 slot = radix_tree_iter_retry(&iter);
2544 continue;
2545 }
2546 goto next;
f1820361
KS
2547 }
2548
83929372
KS
2549 head = compound_head(page);
2550 if (!page_cache_get_speculative(head))
f1820361
KS
2551 goto repeat;
2552
83929372
KS
2553 /* The page was split under us? */
2554 if (compound_head(page) != head) {
2555 put_page(head);
2556 goto repeat;
2557 }
2558
f1820361
KS
2559 /* Has the page moved? */
2560 if (unlikely(page != *slot)) {
83929372 2561 put_page(head);
f1820361
KS
2562 goto repeat;
2563 }
2564
2565 if (!PageUptodate(page) ||
2566 PageReadahead(page) ||
2567 PageHWPoison(page))
2568 goto skip;
2569 if (!trylock_page(page))
2570 goto skip;
2571
2572 if (page->mapping != mapping || !PageUptodate(page))
2573 goto unlock;
2574
9ab2594f
MW
2575 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2576 if (page->index >= max_idx)
f1820361
KS
2577 goto unlock;
2578
f1820361
KS
2579 if (file->f_ra.mmap_miss > 0)
2580 file->f_ra.mmap_miss--;
7267ec00 2581
82b0f8c3
JK
2582 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2583 if (vmf->pte)
2584 vmf->pte += iter.index - last_pgoff;
7267ec00 2585 last_pgoff = iter.index;
82b0f8c3 2586 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2587 goto unlock;
f1820361
KS
2588 unlock_page(page);
2589 goto next;
2590unlock:
2591 unlock_page(page);
2592skip:
09cbfeaf 2593 put_page(page);
f1820361 2594next:
7267ec00 2595 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2596 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2597 break;
bae473a4 2598 if (iter.index == end_pgoff)
f1820361
KS
2599 break;
2600 }
2601 rcu_read_unlock();
2602}
2603EXPORT_SYMBOL(filemap_map_pages);
2604
11bac800 2605int filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2606{
2607 struct page *page = vmf->page;
11bac800 2608 struct inode *inode = file_inode(vmf->vma->vm_file);
4fcf1c62
JK
2609 int ret = VM_FAULT_LOCKED;
2610
14da9200 2611 sb_start_pagefault(inode->i_sb);
11bac800 2612 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2613 lock_page(page);
2614 if (page->mapping != inode->i_mapping) {
2615 unlock_page(page);
2616 ret = VM_FAULT_NOPAGE;
2617 goto out;
2618 }
14da9200
JK
2619 /*
2620 * We mark the page dirty already here so that when freeze is in
2621 * progress, we are guaranteed that writeback during freezing will
2622 * see the dirty page and writeprotect it again.
2623 */
2624 set_page_dirty(page);
1d1d1a76 2625 wait_for_stable_page(page);
4fcf1c62 2626out:
14da9200 2627 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2628 return ret;
2629}
2630EXPORT_SYMBOL(filemap_page_mkwrite);
2631
f0f37e2f 2632const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2633 .fault = filemap_fault,
f1820361 2634 .map_pages = filemap_map_pages,
4fcf1c62 2635 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2636};
2637
2638/* This is used for a general mmap of a disk file */
2639
2640int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2641{
2642 struct address_space *mapping = file->f_mapping;
2643
2644 if (!mapping->a_ops->readpage)
2645 return -ENOEXEC;
2646 file_accessed(file);
2647 vma->vm_ops = &generic_file_vm_ops;
2648 return 0;
2649}
1da177e4
LT
2650
2651/*
2652 * This is for filesystems which do not implement ->writepage.
2653 */
2654int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2655{
2656 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2657 return -EINVAL;
2658 return generic_file_mmap(file, vma);
2659}
2660#else
2661int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2662{
2663 return -ENOSYS;
2664}
2665int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2666{
2667 return -ENOSYS;
2668}
2669#endif /* CONFIG_MMU */
2670
2671EXPORT_SYMBOL(generic_file_mmap);
2672EXPORT_SYMBOL(generic_file_readonly_mmap);
2673
67f9fd91
SL
2674static struct page *wait_on_page_read(struct page *page)
2675{
2676 if (!IS_ERR(page)) {
2677 wait_on_page_locked(page);
2678 if (!PageUptodate(page)) {
09cbfeaf 2679 put_page(page);
67f9fd91
SL
2680 page = ERR_PTR(-EIO);
2681 }
2682 }
2683 return page;
2684}
2685
32b63529 2686static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2687 pgoff_t index,
5e5358e7 2688 int (*filler)(void *, struct page *),
0531b2aa
LT
2689 void *data,
2690 gfp_t gfp)
1da177e4 2691{
eb2be189 2692 struct page *page;
1da177e4
LT
2693 int err;
2694repeat:
2695 page = find_get_page(mapping, index);
2696 if (!page) {
0531b2aa 2697 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2698 if (!page)
2699 return ERR_PTR(-ENOMEM);
e6f67b8c 2700 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2701 if (unlikely(err)) {
09cbfeaf 2702 put_page(page);
eb2be189
NP
2703 if (err == -EEXIST)
2704 goto repeat;
1da177e4 2705 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2706 return ERR_PTR(err);
2707 }
32b63529
MG
2708
2709filler:
1da177e4
LT
2710 err = filler(data, page);
2711 if (err < 0) {
09cbfeaf 2712 put_page(page);
32b63529 2713 return ERR_PTR(err);
1da177e4 2714 }
1da177e4 2715
32b63529
MG
2716 page = wait_on_page_read(page);
2717 if (IS_ERR(page))
2718 return page;
2719 goto out;
2720 }
1da177e4
LT
2721 if (PageUptodate(page))
2722 goto out;
2723
ebded027
MG
2724 /*
2725 * Page is not up to date and may be locked due one of the following
2726 * case a: Page is being filled and the page lock is held
2727 * case b: Read/write error clearing the page uptodate status
2728 * case c: Truncation in progress (page locked)
2729 * case d: Reclaim in progress
2730 *
2731 * Case a, the page will be up to date when the page is unlocked.
2732 * There is no need to serialise on the page lock here as the page
2733 * is pinned so the lock gives no additional protection. Even if the
2734 * the page is truncated, the data is still valid if PageUptodate as
2735 * it's a race vs truncate race.
2736 * Case b, the page will not be up to date
2737 * Case c, the page may be truncated but in itself, the data may still
2738 * be valid after IO completes as it's a read vs truncate race. The
2739 * operation must restart if the page is not uptodate on unlock but
2740 * otherwise serialising on page lock to stabilise the mapping gives
2741 * no additional guarantees to the caller as the page lock is
2742 * released before return.
2743 * Case d, similar to truncation. If reclaim holds the page lock, it
2744 * will be a race with remove_mapping that determines if the mapping
2745 * is valid on unlock but otherwise the data is valid and there is
2746 * no need to serialise with page lock.
2747 *
2748 * As the page lock gives no additional guarantee, we optimistically
2749 * wait on the page to be unlocked and check if it's up to date and
2750 * use the page if it is. Otherwise, the page lock is required to
2751 * distinguish between the different cases. The motivation is that we
2752 * avoid spurious serialisations and wakeups when multiple processes
2753 * wait on the same page for IO to complete.
2754 */
2755 wait_on_page_locked(page);
2756 if (PageUptodate(page))
2757 goto out;
2758
2759 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2760 lock_page(page);
ebded027
MG
2761
2762 /* Case c or d, restart the operation */
1da177e4
LT
2763 if (!page->mapping) {
2764 unlock_page(page);
09cbfeaf 2765 put_page(page);
32b63529 2766 goto repeat;
1da177e4 2767 }
ebded027
MG
2768
2769 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2770 if (PageUptodate(page)) {
2771 unlock_page(page);
2772 goto out;
2773 }
32b63529
MG
2774 goto filler;
2775
c855ff37 2776out:
6fe6900e
NP
2777 mark_page_accessed(page);
2778 return page;
2779}
0531b2aa
LT
2780
2781/**
67f9fd91 2782 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2783 * @mapping: the page's address_space
2784 * @index: the page index
2785 * @filler: function to perform the read
5e5358e7 2786 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2787 *
0531b2aa 2788 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2789 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2790 *
2791 * If the page does not get brought uptodate, return -EIO.
2792 */
67f9fd91 2793struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2794 pgoff_t index,
5e5358e7 2795 int (*filler)(void *, struct page *),
0531b2aa
LT
2796 void *data)
2797{
2798 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2799}
67f9fd91 2800EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2801
2802/**
2803 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2804 * @mapping: the page's address_space
2805 * @index: the page index
2806 * @gfp: the page allocator flags to use if allocating
2807 *
2808 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2809 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2810 *
2811 * If the page does not get brought uptodate, return -EIO.
2812 */
2813struct page *read_cache_page_gfp(struct address_space *mapping,
2814 pgoff_t index,
2815 gfp_t gfp)
2816{
2817 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2818
67f9fd91 2819 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2820}
2821EXPORT_SYMBOL(read_cache_page_gfp);
2822
1da177e4
LT
2823/*
2824 * Performs necessary checks before doing a write
2825 *
485bb99b 2826 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2827 * Returns appropriate error code that caller should return or
2828 * zero in case that write should be allowed.
2829 */
3309dd04 2830inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2831{
3309dd04 2832 struct file *file = iocb->ki_filp;
1da177e4 2833 struct inode *inode = file->f_mapping->host;
59e99e5b 2834 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2835 loff_t pos;
1da177e4 2836
3309dd04
AV
2837 if (!iov_iter_count(from))
2838 return 0;
1da177e4 2839
0fa6b005 2840 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2841 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2842 iocb->ki_pos = i_size_read(inode);
1da177e4 2843
3309dd04 2844 pos = iocb->ki_pos;
1da177e4 2845
6be96d3a
GR
2846 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2847 return -EINVAL;
2848
0fa6b005 2849 if (limit != RLIM_INFINITY) {
3309dd04 2850 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2851 send_sig(SIGXFSZ, current, 0);
2852 return -EFBIG;
1da177e4 2853 }
3309dd04 2854 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2855 }
2856
2857 /*
2858 * LFS rule
2859 */
3309dd04 2860 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2861 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2862 if (pos >= MAX_NON_LFS)
1da177e4 2863 return -EFBIG;
3309dd04 2864 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2865 }
2866
2867 /*
2868 * Are we about to exceed the fs block limit ?
2869 *
2870 * If we have written data it becomes a short write. If we have
2871 * exceeded without writing data we send a signal and return EFBIG.
2872 * Linus frestrict idea will clean these up nicely..
2873 */
3309dd04
AV
2874 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2875 return -EFBIG;
1da177e4 2876
3309dd04
AV
2877 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2878 return iov_iter_count(from);
1da177e4
LT
2879}
2880EXPORT_SYMBOL(generic_write_checks);
2881
afddba49
NP
2882int pagecache_write_begin(struct file *file, struct address_space *mapping,
2883 loff_t pos, unsigned len, unsigned flags,
2884 struct page **pagep, void **fsdata)
2885{
2886 const struct address_space_operations *aops = mapping->a_ops;
2887
4e02ed4b 2888 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2889 pagep, fsdata);
afddba49
NP
2890}
2891EXPORT_SYMBOL(pagecache_write_begin);
2892
2893int pagecache_write_end(struct file *file, struct address_space *mapping,
2894 loff_t pos, unsigned len, unsigned copied,
2895 struct page *page, void *fsdata)
2896{
2897 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2898
4e02ed4b 2899 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2900}
2901EXPORT_SYMBOL(pagecache_write_end);
2902
1da177e4 2903ssize_t
1af5bb49 2904generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2905{
2906 struct file *file = iocb->ki_filp;
2907 struct address_space *mapping = file->f_mapping;
2908 struct inode *inode = mapping->host;
1af5bb49 2909 loff_t pos = iocb->ki_pos;
1da177e4 2910 ssize_t written;
a969e903
CH
2911 size_t write_len;
2912 pgoff_t end;
1da177e4 2913
0c949334 2914 write_len = iov_iter_count(from);
09cbfeaf 2915 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 2916
6be96d3a
GR
2917 if (iocb->ki_flags & IOCB_NOWAIT) {
2918 /* If there are pages to writeback, return */
2919 if (filemap_range_has_page(inode->i_mapping, pos,
2920 pos + iov_iter_count(from)))
2921 return -EAGAIN;
2922 } else {
2923 written = filemap_write_and_wait_range(mapping, pos,
2924 pos + write_len - 1);
2925 if (written)
2926 goto out;
2927 }
a969e903
CH
2928
2929 /*
2930 * After a write we want buffered reads to be sure to go to disk to get
2931 * the new data. We invalidate clean cached page from the region we're
2932 * about to write. We do this *before* the write so that we can return
6ccfa806 2933 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 2934 */
55635ba7 2935 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 2936 pos >> PAGE_SHIFT, end);
55635ba7
AR
2937 /*
2938 * If a page can not be invalidated, return 0 to fall back
2939 * to buffered write.
2940 */
2941 if (written) {
2942 if (written == -EBUSY)
2943 return 0;
2944 goto out;
a969e903
CH
2945 }
2946
639a93a5 2947 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
2948
2949 /*
2950 * Finally, try again to invalidate clean pages which might have been
2951 * cached by non-direct readahead, or faulted in by get_user_pages()
2952 * if the source of the write was an mmap'ed region of the file
2953 * we're writing. Either one is a pretty crazy thing to do,
2954 * so we don't support it 100%. If this invalidation
2955 * fails, tough, the write still worked...
332391a9
LC
2956 *
2957 * Most of the time we do not need this since dio_complete() will do
2958 * the invalidation for us. However there are some file systems that
2959 * do not end up with dio_complete() being called, so let's not break
2960 * them by removing it completely
a969e903 2961 */
332391a9
LC
2962 if (mapping->nrpages)
2963 invalidate_inode_pages2_range(mapping,
2964 pos >> PAGE_SHIFT, end);
a969e903 2965
1da177e4 2966 if (written > 0) {
0116651c 2967 pos += written;
639a93a5 2968 write_len -= written;
0116651c
NK
2969 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2970 i_size_write(inode, pos);
1da177e4
LT
2971 mark_inode_dirty(inode);
2972 }
5cb6c6c7 2973 iocb->ki_pos = pos;
1da177e4 2974 }
639a93a5 2975 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 2976out:
1da177e4
LT
2977 return written;
2978}
2979EXPORT_SYMBOL(generic_file_direct_write);
2980
eb2be189
NP
2981/*
2982 * Find or create a page at the given pagecache position. Return the locked
2983 * page. This function is specifically for buffered writes.
2984 */
54566b2c
NP
2985struct page *grab_cache_page_write_begin(struct address_space *mapping,
2986 pgoff_t index, unsigned flags)
eb2be189 2987{
eb2be189 2988 struct page *page;
bbddabe2 2989 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 2990
54566b2c 2991 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2992 fgp_flags |= FGP_NOFS;
2993
2994 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2995 mapping_gfp_mask(mapping));
c585a267 2996 if (page)
2457aec6 2997 wait_for_stable_page(page);
eb2be189 2998
eb2be189
NP
2999 return page;
3000}
54566b2c 3001EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3002
3b93f911 3003ssize_t generic_perform_write(struct file *file,
afddba49
NP
3004 struct iov_iter *i, loff_t pos)
3005{
3006 struct address_space *mapping = file->f_mapping;
3007 const struct address_space_operations *a_ops = mapping->a_ops;
3008 long status = 0;
3009 ssize_t written = 0;
674b892e
NP
3010 unsigned int flags = 0;
3011
afddba49
NP
3012 do {
3013 struct page *page;
afddba49
NP
3014 unsigned long offset; /* Offset into pagecache page */
3015 unsigned long bytes; /* Bytes to write to page */
3016 size_t copied; /* Bytes copied from user */
3017 void *fsdata;
3018
09cbfeaf
KS
3019 offset = (pos & (PAGE_SIZE - 1));
3020 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3021 iov_iter_count(i));
3022
3023again:
00a3d660
LT
3024 /*
3025 * Bring in the user page that we will copy from _first_.
3026 * Otherwise there's a nasty deadlock on copying from the
3027 * same page as we're writing to, without it being marked
3028 * up-to-date.
3029 *
3030 * Not only is this an optimisation, but it is also required
3031 * to check that the address is actually valid, when atomic
3032 * usercopies are used, below.
3033 */
3034 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3035 status = -EFAULT;
3036 break;
3037 }
3038
296291cd
JK
3039 if (fatal_signal_pending(current)) {
3040 status = -EINTR;
3041 break;
3042 }
3043
674b892e 3044 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3045 &page, &fsdata);
2457aec6 3046 if (unlikely(status < 0))
afddba49
NP
3047 break;
3048
931e80e4 3049 if (mapping_writably_mapped(mapping))
3050 flush_dcache_page(page);
00a3d660 3051
afddba49 3052 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3053 flush_dcache_page(page);
3054
3055 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3056 page, fsdata);
3057 if (unlikely(status < 0))
3058 break;
3059 copied = status;
3060
3061 cond_resched();
3062
124d3b70 3063 iov_iter_advance(i, copied);
afddba49
NP
3064 if (unlikely(copied == 0)) {
3065 /*
3066 * If we were unable to copy any data at all, we must
3067 * fall back to a single segment length write.
3068 *
3069 * If we didn't fallback here, we could livelock
3070 * because not all segments in the iov can be copied at
3071 * once without a pagefault.
3072 */
09cbfeaf 3073 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3074 iov_iter_single_seg_count(i));
3075 goto again;
3076 }
afddba49
NP
3077 pos += copied;
3078 written += copied;
3079
3080 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3081 } while (iov_iter_count(i));
3082
3083 return written ? written : status;
3084}
3b93f911 3085EXPORT_SYMBOL(generic_perform_write);
1da177e4 3086
e4dd9de3 3087/**
8174202b 3088 * __generic_file_write_iter - write data to a file
e4dd9de3 3089 * @iocb: IO state structure (file, offset, etc.)
8174202b 3090 * @from: iov_iter with data to write
e4dd9de3
JK
3091 *
3092 * This function does all the work needed for actually writing data to a
3093 * file. It does all basic checks, removes SUID from the file, updates
3094 * modification times and calls proper subroutines depending on whether we
3095 * do direct IO or a standard buffered write.
3096 *
3097 * It expects i_mutex to be grabbed unless we work on a block device or similar
3098 * object which does not need locking at all.
3099 *
3100 * This function does *not* take care of syncing data in case of O_SYNC write.
3101 * A caller has to handle it. This is mainly due to the fact that we want to
3102 * avoid syncing under i_mutex.
3103 */
8174202b 3104ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3105{
3106 struct file *file = iocb->ki_filp;
fb5527e6 3107 struct address_space * mapping = file->f_mapping;
1da177e4 3108 struct inode *inode = mapping->host;
3b93f911 3109 ssize_t written = 0;
1da177e4 3110 ssize_t err;
3b93f911 3111 ssize_t status;
1da177e4 3112
1da177e4 3113 /* We can write back this queue in page reclaim */
de1414a6 3114 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3115 err = file_remove_privs(file);
1da177e4
LT
3116 if (err)
3117 goto out;
3118
c3b2da31
JB
3119 err = file_update_time(file);
3120 if (err)
3121 goto out;
1da177e4 3122
2ba48ce5 3123 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3124 loff_t pos, endbyte;
fb5527e6 3125
1af5bb49 3126 written = generic_file_direct_write(iocb, from);
1da177e4 3127 /*
fbbbad4b
MW
3128 * If the write stopped short of completing, fall back to
3129 * buffered writes. Some filesystems do this for writes to
3130 * holes, for example. For DAX files, a buffered write will
3131 * not succeed (even if it did, DAX does not handle dirty
3132 * page-cache pages correctly).
1da177e4 3133 */
0b8def9d 3134 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3135 goto out;
3136
0b8def9d 3137 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3138 /*
3b93f911 3139 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3140 * then we want to return the number of bytes which were
3141 * direct-written, or the error code if that was zero. Note
3142 * that this differs from normal direct-io semantics, which
3143 * will return -EFOO even if some bytes were written.
3144 */
60bb4529 3145 if (unlikely(status < 0)) {
3b93f911 3146 err = status;
fb5527e6
JM
3147 goto out;
3148 }
fb5527e6
JM
3149 /*
3150 * We need to ensure that the page cache pages are written to
3151 * disk and invalidated to preserve the expected O_DIRECT
3152 * semantics.
3153 */
3b93f911 3154 endbyte = pos + status - 1;
0b8def9d 3155 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3156 if (err == 0) {
0b8def9d 3157 iocb->ki_pos = endbyte + 1;
3b93f911 3158 written += status;
fb5527e6 3159 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3160 pos >> PAGE_SHIFT,
3161 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3162 } else {
3163 /*
3164 * We don't know how much we wrote, so just return
3165 * the number of bytes which were direct-written
3166 */
3167 }
3168 } else {
0b8def9d
AV
3169 written = generic_perform_write(file, from, iocb->ki_pos);
3170 if (likely(written > 0))
3171 iocb->ki_pos += written;
fb5527e6 3172 }
1da177e4
LT
3173out:
3174 current->backing_dev_info = NULL;
3175 return written ? written : err;
3176}
8174202b 3177EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3178
e4dd9de3 3179/**
8174202b 3180 * generic_file_write_iter - write data to a file
e4dd9de3 3181 * @iocb: IO state structure
8174202b 3182 * @from: iov_iter with data to write
e4dd9de3 3183 *
8174202b 3184 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3185 * filesystems. It takes care of syncing the file in case of O_SYNC file
3186 * and acquires i_mutex as needed.
3187 */
8174202b 3188ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3189{
3190 struct file *file = iocb->ki_filp;
148f948b 3191 struct inode *inode = file->f_mapping->host;
1da177e4 3192 ssize_t ret;
1da177e4 3193
5955102c 3194 inode_lock(inode);
3309dd04
AV
3195 ret = generic_write_checks(iocb, from);
3196 if (ret > 0)
5f380c7f 3197 ret = __generic_file_write_iter(iocb, from);
5955102c 3198 inode_unlock(inode);
1da177e4 3199
e2592217
CH
3200 if (ret > 0)
3201 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3202 return ret;
3203}
8174202b 3204EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3205
cf9a2ae8
DH
3206/**
3207 * try_to_release_page() - release old fs-specific metadata on a page
3208 *
3209 * @page: the page which the kernel is trying to free
3210 * @gfp_mask: memory allocation flags (and I/O mode)
3211 *
3212 * The address_space is to try to release any data against the page
0e056eb5 3213 * (presumably at page->private). If the release was successful, return '1'.
cf9a2ae8
DH
3214 * Otherwise return zero.
3215 *
266cf658
DH
3216 * This may also be called if PG_fscache is set on a page, indicating that the
3217 * page is known to the local caching routines.
3218 *
cf9a2ae8 3219 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3220 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3221 *
cf9a2ae8
DH
3222 */
3223int try_to_release_page(struct page *page, gfp_t gfp_mask)
3224{
3225 struct address_space * const mapping = page->mapping;
3226
3227 BUG_ON(!PageLocked(page));
3228 if (PageWriteback(page))
3229 return 0;
3230
3231 if (mapping && mapping->a_ops->releasepage)
3232 return mapping->a_ops->releasepage(page, gfp_mask);
3233 return try_to_free_buffers(page);
3234}
3235
3236EXPORT_SYMBOL(try_to_release_page);