]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/filemap.c
mm: allow GUP to fail instead of waiting on a page
[thirdparty/linux.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
1da177e4 12#include <linux/module.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 35#include <linux/memcontrol.h>
4f98a2fe 36#include <linux/mm_inline.h> /* for page_is_file_cache() */
0f8053a5
NP
37#include "internal.h"
38
1da177e4 39/*
1da177e4
LT
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
148f948b 42#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 43
1da177e4
LT
44#include <asm/mman.h>
45
46/*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58/*
59 * Lock ordering:
60 *
25d9e2d1 61 * ->i_mmap_lock (truncate_pagecache)
1da177e4 62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
1da177e4 65 *
1b1dcc1b 66 * ->i_mutex
1da177e4
LT
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
68 *
69 * ->mmap_sem
70 * ->i_mmap_lock
b8072f09 71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
82591e6e
NP
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 79 *
1b1dcc1b 80 * ->i_mutex
1da177e4
LT
81 * ->i_alloc_sem (various)
82 *
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
b8072f09 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 92 *
b8072f09 93 * ->page_table_lock or pte_lock
5d337b91 94 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 *
6a46079c
AK
105 * (code doesn't rely on that order, so you could switch it around)
106 * ->tasklist_lock (memory_failure, collect_procs_ao)
107 * ->i_mmap_lock
1da177e4
LT
108 */
109
110/*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 113 * is safe. The caller must hold the mapping's tree_lock.
1da177e4
LT
114 */
115void __remove_from_page_cache(struct page *page)
116{
117 struct address_space *mapping = page->mapping;
118
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
347ce434 122 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
123 if (PageSwapBacked(page))
124 __dec_zone_page_state(page, NR_SHMEM);
45426812 125 BUG_ON(page_mapped(page));
3a692790
LT
126
127 /*
128 * Some filesystems seem to re-dirty the page even after
129 * the VM has canceled the dirty bit (eg ext3 journaling).
130 *
131 * Fix it up by doing a final dirty accounting check after
132 * having removed the page entirely.
133 */
134 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
135 dec_zone_page_state(page, NR_FILE_DIRTY);
136 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
137 }
1da177e4
LT
138}
139
140void remove_from_page_cache(struct page *page)
141{
142 struct address_space *mapping = page->mapping;
6072d13c 143 void (*freepage)(struct page *);
1da177e4 144
cd7619d6 145 BUG_ON(!PageLocked(page));
1da177e4 146
6072d13c 147 freepage = mapping->a_ops->freepage;
19fd6231 148 spin_lock_irq(&mapping->tree_lock);
1da177e4 149 __remove_from_page_cache(page);
19fd6231 150 spin_unlock_irq(&mapping->tree_lock);
e767e056 151 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
152
153 if (freepage)
154 freepage(page);
1da177e4 155}
a52116ab 156EXPORT_SYMBOL(remove_from_page_cache);
1da177e4
LT
157
158static int sync_page(void *word)
159{
160 struct address_space *mapping;
161 struct page *page;
162
07808b74 163 page = container_of((unsigned long *)word, struct page, flags);
1da177e4
LT
164
165 /*
dd1d5afc
NYC
166 * page_mapping() is being called without PG_locked held.
167 * Some knowledge of the state and use of the page is used to
168 * reduce the requirements down to a memory barrier.
169 * The danger here is of a stale page_mapping() return value
170 * indicating a struct address_space different from the one it's
171 * associated with when it is associated with one.
172 * After smp_mb(), it's either the correct page_mapping() for
173 * the page, or an old page_mapping() and the page's own
174 * page_mapping() has gone NULL.
175 * The ->sync_page() address_space operation must tolerate
176 * page_mapping() going NULL. By an amazing coincidence,
177 * this comes about because none of the users of the page
178 * in the ->sync_page() methods make essential use of the
179 * page_mapping(), merely passing the page down to the backing
180 * device's unplug functions when it's non-NULL, which in turn
4c21e2f2 181 * ignore it for all cases but swap, where only page_private(page) is
dd1d5afc
NYC
182 * of interest. When page_mapping() does go NULL, the entire
183 * call stack gracefully ignores the page and returns.
184 * -- wli
1da177e4
LT
185 */
186 smp_mb();
187 mapping = page_mapping(page);
188 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
189 mapping->a_ops->sync_page(page);
190 io_schedule();
191 return 0;
192}
193
2687a356
MW
194static int sync_page_killable(void *word)
195{
196 sync_page(word);
197 return fatal_signal_pending(current) ? -EINTR : 0;
198}
199
1da177e4 200/**
485bb99b 201 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
202 * @mapping: address space structure to write
203 * @start: offset in bytes where the range starts
469eb4d0 204 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 205 * @sync_mode: enable synchronous operation
1da177e4 206 *
485bb99b
RD
207 * Start writeback against all of a mapping's dirty pages that lie
208 * within the byte offsets <start, end> inclusive.
209 *
1da177e4 210 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 211 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
212 * these two operations is that if a dirty page/buffer is encountered, it must
213 * be waited upon, and not just skipped over.
214 */
ebcf28e1
AM
215int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
216 loff_t end, int sync_mode)
1da177e4
LT
217{
218 int ret;
219 struct writeback_control wbc = {
220 .sync_mode = sync_mode,
05fe478d 221 .nr_to_write = LONG_MAX,
111ebb6e
OH
222 .range_start = start,
223 .range_end = end,
1da177e4
LT
224 };
225
226 if (!mapping_cap_writeback_dirty(mapping))
227 return 0;
228
229 ret = do_writepages(mapping, &wbc);
230 return ret;
231}
232
233static inline int __filemap_fdatawrite(struct address_space *mapping,
234 int sync_mode)
235{
111ebb6e 236 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
237}
238
239int filemap_fdatawrite(struct address_space *mapping)
240{
241 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
242}
243EXPORT_SYMBOL(filemap_fdatawrite);
244
f4c0a0fd 245int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 246 loff_t end)
1da177e4
LT
247{
248 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
249}
f4c0a0fd 250EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 251
485bb99b
RD
252/**
253 * filemap_flush - mostly a non-blocking flush
254 * @mapping: target address_space
255 *
1da177e4
LT
256 * This is a mostly non-blocking flush. Not suitable for data-integrity
257 * purposes - I/O may not be started against all dirty pages.
258 */
259int filemap_flush(struct address_space *mapping)
260{
261 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
262}
263EXPORT_SYMBOL(filemap_flush);
264
485bb99b 265/**
94004ed7
CH
266 * filemap_fdatawait_range - wait for writeback to complete
267 * @mapping: address space structure to wait for
268 * @start_byte: offset in bytes where the range starts
269 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 270 *
94004ed7
CH
271 * Walk the list of under-writeback pages of the given address space
272 * in the given range and wait for all of them.
1da177e4 273 */
94004ed7
CH
274int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
275 loff_t end_byte)
1da177e4 276{
94004ed7
CH
277 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
278 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
279 struct pagevec pvec;
280 int nr_pages;
281 int ret = 0;
1da177e4 282
94004ed7 283 if (end_byte < start_byte)
1da177e4
LT
284 return 0;
285
286 pagevec_init(&pvec, 0);
1da177e4
LT
287 while ((index <= end) &&
288 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
289 PAGECACHE_TAG_WRITEBACK,
290 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
291 unsigned i;
292
293 for (i = 0; i < nr_pages; i++) {
294 struct page *page = pvec.pages[i];
295
296 /* until radix tree lookup accepts end_index */
297 if (page->index > end)
298 continue;
299
300 wait_on_page_writeback(page);
212260aa 301 if (TestClearPageError(page))
1da177e4
LT
302 ret = -EIO;
303 }
304 pagevec_release(&pvec);
305 cond_resched();
306 }
307
308 /* Check for outstanding write errors */
309 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
310 ret = -ENOSPC;
311 if (test_and_clear_bit(AS_EIO, &mapping->flags))
312 ret = -EIO;
313
314 return ret;
315}
d3bccb6f
JK
316EXPORT_SYMBOL(filemap_fdatawait_range);
317
1da177e4 318/**
485bb99b 319 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 320 * @mapping: address space structure to wait for
485bb99b
RD
321 *
322 * Walk the list of under-writeback pages of the given address space
323 * and wait for all of them.
1da177e4
LT
324 */
325int filemap_fdatawait(struct address_space *mapping)
326{
327 loff_t i_size = i_size_read(mapping->host);
328
329 if (i_size == 0)
330 return 0;
331
94004ed7 332 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
333}
334EXPORT_SYMBOL(filemap_fdatawait);
335
336int filemap_write_and_wait(struct address_space *mapping)
337{
28fd1298 338 int err = 0;
1da177e4
LT
339
340 if (mapping->nrpages) {
28fd1298
OH
341 err = filemap_fdatawrite(mapping);
342 /*
343 * Even if the above returned error, the pages may be
344 * written partially (e.g. -ENOSPC), so we wait for it.
345 * But the -EIO is special case, it may indicate the worst
346 * thing (e.g. bug) happened, so we avoid waiting for it.
347 */
348 if (err != -EIO) {
349 int err2 = filemap_fdatawait(mapping);
350 if (!err)
351 err = err2;
352 }
1da177e4 353 }
28fd1298 354 return err;
1da177e4 355}
28fd1298 356EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 357
485bb99b
RD
358/**
359 * filemap_write_and_wait_range - write out & wait on a file range
360 * @mapping: the address_space for the pages
361 * @lstart: offset in bytes where the range starts
362 * @lend: offset in bytes where the range ends (inclusive)
363 *
469eb4d0
AM
364 * Write out and wait upon file offsets lstart->lend, inclusive.
365 *
366 * Note that `lend' is inclusive (describes the last byte to be written) so
367 * that this function can be used to write to the very end-of-file (end = -1).
368 */
1da177e4
LT
369int filemap_write_and_wait_range(struct address_space *mapping,
370 loff_t lstart, loff_t lend)
371{
28fd1298 372 int err = 0;
1da177e4
LT
373
374 if (mapping->nrpages) {
28fd1298
OH
375 err = __filemap_fdatawrite_range(mapping, lstart, lend,
376 WB_SYNC_ALL);
377 /* See comment of filemap_write_and_wait() */
378 if (err != -EIO) {
94004ed7
CH
379 int err2 = filemap_fdatawait_range(mapping,
380 lstart, lend);
28fd1298
OH
381 if (!err)
382 err = err2;
383 }
1da177e4 384 }
28fd1298 385 return err;
1da177e4 386}
f6995585 387EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 388
485bb99b 389/**
e286781d 390 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
391 * @page: page to add
392 * @mapping: the page's address_space
393 * @offset: page index
394 * @gfp_mask: page allocation mode
395 *
e286781d 396 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
397 * This function does not add the page to the LRU. The caller must do that.
398 */
e286781d 399int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 400 pgoff_t offset, gfp_t gfp_mask)
1da177e4 401{
e286781d
NP
402 int error;
403
404 VM_BUG_ON(!PageLocked(page));
405
406 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 407 gfp_mask & GFP_RECLAIM_MASK);
35c754d7
BS
408 if (error)
409 goto out;
1da177e4 410
35c754d7 411 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 412 if (error == 0) {
e286781d
NP
413 page_cache_get(page);
414 page->mapping = mapping;
415 page->index = offset;
416
19fd6231 417 spin_lock_irq(&mapping->tree_lock);
1da177e4 418 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 419 if (likely(!error)) {
1da177e4 420 mapping->nrpages++;
347ce434 421 __inc_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
422 if (PageSwapBacked(page))
423 __inc_zone_page_state(page, NR_SHMEM);
e767e056 424 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
425 } else {
426 page->mapping = NULL;
e767e056 427 spin_unlock_irq(&mapping->tree_lock);
69029cd5 428 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
429 page_cache_release(page);
430 }
1da177e4 431 radix_tree_preload_end();
35c754d7 432 } else
69029cd5 433 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 434out:
1da177e4
LT
435 return error;
436}
e286781d 437EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
438
439int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 440 pgoff_t offset, gfp_t gfp_mask)
1da177e4 441{
4f98a2fe
RR
442 int ret;
443
444 /*
445 * Splice_read and readahead add shmem/tmpfs pages into the page cache
446 * before shmem_readpage has a chance to mark them as SwapBacked: they
e9d6c157 447 * need to go on the anon lru below, and mem_cgroup_cache_charge
4f98a2fe
RR
448 * (called in add_to_page_cache) needs to know where they're going too.
449 */
450 if (mapping_cap_swap_backed(mapping))
451 SetPageSwapBacked(page);
452
453 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
454 if (ret == 0) {
455 if (page_is_file_cache(page))
456 lru_cache_add_file(page);
457 else
e9d6c157 458 lru_cache_add_anon(page);
4f98a2fe 459 }
1da177e4
LT
460 return ret;
461}
18bc0bbd 462EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 463
44110fe3 464#ifdef CONFIG_NUMA
2ae88149 465struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 466{
c0ff7453
MX
467 int n;
468 struct page *page;
469
44110fe3 470 if (cpuset_do_page_mem_spread()) {
c0ff7453
MX
471 get_mems_allowed();
472 n = cpuset_mem_spread_node();
473 page = alloc_pages_exact_node(n, gfp, 0);
474 put_mems_allowed();
475 return page;
44110fe3 476 }
2ae88149 477 return alloc_pages(gfp, 0);
44110fe3 478}
2ae88149 479EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
480#endif
481
db37648c
NP
482static int __sleep_on_page_lock(void *word)
483{
484 io_schedule();
485 return 0;
486}
487
1da177e4
LT
488/*
489 * In order to wait for pages to become available there must be
490 * waitqueues associated with pages. By using a hash table of
491 * waitqueues where the bucket discipline is to maintain all
492 * waiters on the same queue and wake all when any of the pages
493 * become available, and for the woken contexts to check to be
494 * sure the appropriate page became available, this saves space
495 * at a cost of "thundering herd" phenomena during rare hash
496 * collisions.
497 */
498static wait_queue_head_t *page_waitqueue(struct page *page)
499{
500 const struct zone *zone = page_zone(page);
501
502 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
503}
504
505static inline void wake_up_page(struct page *page, int bit)
506{
507 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
508}
509
920c7a5d 510void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
511{
512 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
513
514 if (test_bit(bit_nr, &page->flags))
515 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
516 TASK_UNINTERRUPTIBLE);
517}
518EXPORT_SYMBOL(wait_on_page_bit);
519
385e1ca5
DH
520/**
521 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
522 * @page: Page defining the wait queue of interest
523 * @waiter: Waiter to add to the queue
385e1ca5
DH
524 *
525 * Add an arbitrary @waiter to the wait queue for the nominated @page.
526 */
527void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
528{
529 wait_queue_head_t *q = page_waitqueue(page);
530 unsigned long flags;
531
532 spin_lock_irqsave(&q->lock, flags);
533 __add_wait_queue(q, waiter);
534 spin_unlock_irqrestore(&q->lock, flags);
535}
536EXPORT_SYMBOL_GPL(add_page_wait_queue);
537
1da177e4 538/**
485bb99b 539 * unlock_page - unlock a locked page
1da177e4
LT
540 * @page: the page
541 *
542 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
543 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
544 * mechananism between PageLocked pages and PageWriteback pages is shared.
545 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
546 *
8413ac9d
NP
547 * The mb is necessary to enforce ordering between the clear_bit and the read
548 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 549 */
920c7a5d 550void unlock_page(struct page *page)
1da177e4 551{
8413ac9d
NP
552 VM_BUG_ON(!PageLocked(page));
553 clear_bit_unlock(PG_locked, &page->flags);
554 smp_mb__after_clear_bit();
1da177e4
LT
555 wake_up_page(page, PG_locked);
556}
557EXPORT_SYMBOL(unlock_page);
558
485bb99b
RD
559/**
560 * end_page_writeback - end writeback against a page
561 * @page: the page
1da177e4
LT
562 */
563void end_page_writeback(struct page *page)
564{
ac6aadb2
MS
565 if (TestClearPageReclaim(page))
566 rotate_reclaimable_page(page);
567
568 if (!test_clear_page_writeback(page))
569 BUG();
570
1da177e4
LT
571 smp_mb__after_clear_bit();
572 wake_up_page(page, PG_writeback);
573}
574EXPORT_SYMBOL(end_page_writeback);
575
485bb99b
RD
576/**
577 * __lock_page - get a lock on the page, assuming we need to sleep to get it
578 * @page: the page to lock
1da177e4 579 *
485bb99b 580 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
1da177e4
LT
581 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
582 * chances are that on the second loop, the block layer's plug list is empty,
583 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
584 */
920c7a5d 585void __lock_page(struct page *page)
1da177e4
LT
586{
587 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
588
589 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
590 TASK_UNINTERRUPTIBLE);
591}
592EXPORT_SYMBOL(__lock_page);
593
b5606c2d 594int __lock_page_killable(struct page *page)
2687a356
MW
595{
596 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
597
598 return __wait_on_bit_lock(page_waitqueue(page), &wait,
599 sync_page_killable, TASK_KILLABLE);
600}
18bc0bbd 601EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 602
7682486b
RD
603/**
604 * __lock_page_nosync - get a lock on the page, without calling sync_page()
605 * @page: the page to lock
606 *
db37648c
NP
607 * Variant of lock_page that does not require the caller to hold a reference
608 * on the page's mapping.
609 */
920c7a5d 610void __lock_page_nosync(struct page *page)
db37648c
NP
611{
612 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
613 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
614 TASK_UNINTERRUPTIBLE);
615}
616
d065bd81
ML
617int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
618 unsigned int flags)
619{
620 if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
621 __lock_page(page);
622 return 1;
623 } else {
318b275f
GN
624 if (!(flags & FAULT_FLAG_RETRY_NOWAIT)) {
625 up_read(&mm->mmap_sem);
626 wait_on_page_locked(page);
627 }
d065bd81
ML
628 return 0;
629 }
630}
631
485bb99b
RD
632/**
633 * find_get_page - find and get a page reference
634 * @mapping: the address_space to search
635 * @offset: the page index
636 *
da6052f7
NP
637 * Is there a pagecache struct page at the given (mapping, offset) tuple?
638 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 639 */
a60637c8 640struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 641{
a60637c8 642 void **pagep;
1da177e4
LT
643 struct page *page;
644
a60637c8
NP
645 rcu_read_lock();
646repeat:
647 page = NULL;
648 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
649 if (pagep) {
650 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
651 if (unlikely(!page))
652 goto out;
653 if (radix_tree_deref_retry(page))
a60637c8
NP
654 goto repeat;
655
656 if (!page_cache_get_speculative(page))
657 goto repeat;
658
659 /*
660 * Has the page moved?
661 * This is part of the lockless pagecache protocol. See
662 * include/linux/pagemap.h for details.
663 */
664 if (unlikely(page != *pagep)) {
665 page_cache_release(page);
666 goto repeat;
667 }
668 }
27d20fdd 669out:
a60637c8
NP
670 rcu_read_unlock();
671
1da177e4
LT
672 return page;
673}
1da177e4
LT
674EXPORT_SYMBOL(find_get_page);
675
1da177e4
LT
676/**
677 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
678 * @mapping: the address_space to search
679 * @offset: the page index
1da177e4
LT
680 *
681 * Locates the desired pagecache page, locks it, increments its reference
682 * count and returns its address.
683 *
684 * Returns zero if the page was not present. find_lock_page() may sleep.
685 */
a60637c8 686struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
687{
688 struct page *page;
689
1da177e4 690repeat:
a60637c8 691 page = find_get_page(mapping, offset);
1da177e4 692 if (page) {
a60637c8
NP
693 lock_page(page);
694 /* Has the page been truncated? */
695 if (unlikely(page->mapping != mapping)) {
696 unlock_page(page);
697 page_cache_release(page);
698 goto repeat;
1da177e4 699 }
a60637c8 700 VM_BUG_ON(page->index != offset);
1da177e4 701 }
1da177e4
LT
702 return page;
703}
1da177e4
LT
704EXPORT_SYMBOL(find_lock_page);
705
706/**
707 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
708 * @mapping: the page's address_space
709 * @index: the page's index into the mapping
710 * @gfp_mask: page allocation mode
1da177e4
LT
711 *
712 * Locates a page in the pagecache. If the page is not present, a new page
713 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
714 * LRU list. The returned page is locked and has its reference count
715 * incremented.
716 *
717 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
718 * allocation!
719 *
720 * find_or_create_page() returns the desired page's address, or zero on
721 * memory exhaustion.
722 */
723struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 724 pgoff_t index, gfp_t gfp_mask)
1da177e4 725{
eb2be189 726 struct page *page;
1da177e4
LT
727 int err;
728repeat:
729 page = find_lock_page(mapping, index);
730 if (!page) {
eb2be189
NP
731 page = __page_cache_alloc(gfp_mask);
732 if (!page)
733 return NULL;
67d58ac4
NP
734 /*
735 * We want a regular kernel memory (not highmem or DMA etc)
736 * allocation for the radix tree nodes, but we need to honour
737 * the context-specific requirements the caller has asked for.
738 * GFP_RECLAIM_MASK collects those requirements.
739 */
740 err = add_to_page_cache_lru(page, mapping, index,
741 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
742 if (unlikely(err)) {
743 page_cache_release(page);
744 page = NULL;
745 if (err == -EEXIST)
746 goto repeat;
1da177e4 747 }
1da177e4 748 }
1da177e4
LT
749 return page;
750}
1da177e4
LT
751EXPORT_SYMBOL(find_or_create_page);
752
753/**
754 * find_get_pages - gang pagecache lookup
755 * @mapping: The address_space to search
756 * @start: The starting page index
757 * @nr_pages: The maximum number of pages
758 * @pages: Where the resulting pages are placed
759 *
760 * find_get_pages() will search for and return a group of up to
761 * @nr_pages pages in the mapping. The pages are placed at @pages.
762 * find_get_pages() takes a reference against the returned pages.
763 *
764 * The search returns a group of mapping-contiguous pages with ascending
765 * indexes. There may be holes in the indices due to not-present pages.
766 *
767 * find_get_pages() returns the number of pages which were found.
768 */
769unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
770 unsigned int nr_pages, struct page **pages)
771{
772 unsigned int i;
773 unsigned int ret;
a60637c8
NP
774 unsigned int nr_found;
775
776 rcu_read_lock();
777restart:
778 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
779 (void ***)pages, start, nr_pages);
780 ret = 0;
781 for (i = 0; i < nr_found; i++) {
782 struct page *page;
783repeat:
784 page = radix_tree_deref_slot((void **)pages[i]);
785 if (unlikely(!page))
786 continue;
27d20fdd
NP
787 if (radix_tree_deref_retry(page)) {
788 if (ret)
789 start = pages[ret-1]->index;
a60637c8 790 goto restart;
27d20fdd 791 }
a60637c8
NP
792
793 if (!page_cache_get_speculative(page))
794 goto repeat;
795
796 /* Has the page moved? */
797 if (unlikely(page != *((void **)pages[i]))) {
798 page_cache_release(page);
799 goto repeat;
800 }
1da177e4 801
a60637c8
NP
802 pages[ret] = page;
803 ret++;
804 }
805 rcu_read_unlock();
1da177e4
LT
806 return ret;
807}
808
ebf43500
JA
809/**
810 * find_get_pages_contig - gang contiguous pagecache lookup
811 * @mapping: The address_space to search
812 * @index: The starting page index
813 * @nr_pages: The maximum number of pages
814 * @pages: Where the resulting pages are placed
815 *
816 * find_get_pages_contig() works exactly like find_get_pages(), except
817 * that the returned number of pages are guaranteed to be contiguous.
818 *
819 * find_get_pages_contig() returns the number of pages which were found.
820 */
821unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
822 unsigned int nr_pages, struct page **pages)
823{
824 unsigned int i;
825 unsigned int ret;
a60637c8
NP
826 unsigned int nr_found;
827
828 rcu_read_lock();
829restart:
830 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
831 (void ***)pages, index, nr_pages);
832 ret = 0;
833 for (i = 0; i < nr_found; i++) {
834 struct page *page;
835repeat:
836 page = radix_tree_deref_slot((void **)pages[i]);
837 if (unlikely(!page))
838 continue;
27d20fdd 839 if (radix_tree_deref_retry(page))
a60637c8 840 goto restart;
ebf43500 841
a60637c8
NP
842 if (!page_cache_get_speculative(page))
843 goto repeat;
844
845 /* Has the page moved? */
846 if (unlikely(page != *((void **)pages[i]))) {
847 page_cache_release(page);
848 goto repeat;
849 }
850
9cbb4cb2
NP
851 /*
852 * must check mapping and index after taking the ref.
853 * otherwise we can get both false positives and false
854 * negatives, which is just confusing to the caller.
855 */
856 if (page->mapping == NULL || page->index != index) {
857 page_cache_release(page);
858 break;
859 }
860
a60637c8
NP
861 pages[ret] = page;
862 ret++;
ebf43500
JA
863 index++;
864 }
a60637c8
NP
865 rcu_read_unlock();
866 return ret;
ebf43500 867}
ef71c15c 868EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 869
485bb99b
RD
870/**
871 * find_get_pages_tag - find and return pages that match @tag
872 * @mapping: the address_space to search
873 * @index: the starting page index
874 * @tag: the tag index
875 * @nr_pages: the maximum number of pages
876 * @pages: where the resulting pages are placed
877 *
1da177e4 878 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 879 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
880 */
881unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
882 int tag, unsigned int nr_pages, struct page **pages)
883{
884 unsigned int i;
885 unsigned int ret;
a60637c8
NP
886 unsigned int nr_found;
887
888 rcu_read_lock();
889restart:
890 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
891 (void ***)pages, *index, nr_pages, tag);
892 ret = 0;
893 for (i = 0; i < nr_found; i++) {
894 struct page *page;
895repeat:
896 page = radix_tree_deref_slot((void **)pages[i]);
897 if (unlikely(!page))
898 continue;
27d20fdd 899 if (radix_tree_deref_retry(page))
a60637c8
NP
900 goto restart;
901
902 if (!page_cache_get_speculative(page))
903 goto repeat;
904
905 /* Has the page moved? */
906 if (unlikely(page != *((void **)pages[i]))) {
907 page_cache_release(page);
908 goto repeat;
909 }
910
911 pages[ret] = page;
912 ret++;
913 }
914 rcu_read_unlock();
1da177e4 915
1da177e4
LT
916 if (ret)
917 *index = pages[ret - 1]->index + 1;
a60637c8 918
1da177e4
LT
919 return ret;
920}
ef71c15c 921EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 922
485bb99b
RD
923/**
924 * grab_cache_page_nowait - returns locked page at given index in given cache
925 * @mapping: target address_space
926 * @index: the page index
927 *
72fd4a35 928 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
929 * This is intended for speculative data generators, where the data can
930 * be regenerated if the page couldn't be grabbed. This routine should
931 * be safe to call while holding the lock for another page.
932 *
933 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
934 * and deadlock against the caller's locked page.
935 */
936struct page *
57f6b96c 937grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
938{
939 struct page *page = find_get_page(mapping, index);
1da177e4
LT
940
941 if (page) {
529ae9aa 942 if (trylock_page(page))
1da177e4
LT
943 return page;
944 page_cache_release(page);
945 return NULL;
946 }
2ae88149 947 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 948 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
949 page_cache_release(page);
950 page = NULL;
951 }
952 return page;
953}
1da177e4
LT
954EXPORT_SYMBOL(grab_cache_page_nowait);
955
76d42bd9
WF
956/*
957 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
958 * a _large_ part of the i/o request. Imagine the worst scenario:
959 *
960 * ---R__________________________________________B__________
961 * ^ reading here ^ bad block(assume 4k)
962 *
963 * read(R) => miss => readahead(R...B) => media error => frustrating retries
964 * => failing the whole request => read(R) => read(R+1) =>
965 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
966 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
967 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
968 *
969 * It is going insane. Fix it by quickly scaling down the readahead size.
970 */
971static void shrink_readahead_size_eio(struct file *filp,
972 struct file_ra_state *ra)
973{
76d42bd9 974 ra->ra_pages /= 4;
76d42bd9
WF
975}
976
485bb99b 977/**
36e78914 978 * do_generic_file_read - generic file read routine
485bb99b
RD
979 * @filp: the file to read
980 * @ppos: current file position
981 * @desc: read_descriptor
982 * @actor: read method
983 *
1da177e4 984 * This is a generic file read routine, and uses the
485bb99b 985 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
986 *
987 * This is really ugly. But the goto's actually try to clarify some
988 * of the logic when it comes to error handling etc.
1da177e4 989 */
36e78914
CH
990static void do_generic_file_read(struct file *filp, loff_t *ppos,
991 read_descriptor_t *desc, read_actor_t actor)
1da177e4 992{
36e78914 993 struct address_space *mapping = filp->f_mapping;
1da177e4 994 struct inode *inode = mapping->host;
36e78914 995 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
996 pgoff_t index;
997 pgoff_t last_index;
998 pgoff_t prev_index;
999 unsigned long offset; /* offset into pagecache page */
ec0f1637 1000 unsigned int prev_offset;
1da177e4 1001 int error;
1da177e4 1002
1da177e4 1003 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1004 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1005 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1006 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1007 offset = *ppos & ~PAGE_CACHE_MASK;
1008
1da177e4
LT
1009 for (;;) {
1010 struct page *page;
57f6b96c 1011 pgoff_t end_index;
a32ea1e1 1012 loff_t isize;
1da177e4
LT
1013 unsigned long nr, ret;
1014
1da177e4 1015 cond_resched();
1da177e4
LT
1016find_page:
1017 page = find_get_page(mapping, index);
3ea89ee8 1018 if (!page) {
cf914a7d 1019 page_cache_sync_readahead(mapping,
7ff81078 1020 ra, filp,
3ea89ee8
FW
1021 index, last_index - index);
1022 page = find_get_page(mapping, index);
1023 if (unlikely(page == NULL))
1024 goto no_cached_page;
1025 }
1026 if (PageReadahead(page)) {
cf914a7d 1027 page_cache_async_readahead(mapping,
7ff81078 1028 ra, filp, page,
3ea89ee8 1029 index, last_index - index);
1da177e4 1030 }
8ab22b9a
HH
1031 if (!PageUptodate(page)) {
1032 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1033 !mapping->a_ops->is_partially_uptodate)
1034 goto page_not_up_to_date;
529ae9aa 1035 if (!trylock_page(page))
8ab22b9a 1036 goto page_not_up_to_date;
8d056cb9
DH
1037 /* Did it get truncated before we got the lock? */
1038 if (!page->mapping)
1039 goto page_not_up_to_date_locked;
8ab22b9a
HH
1040 if (!mapping->a_ops->is_partially_uptodate(page,
1041 desc, offset))
1042 goto page_not_up_to_date_locked;
1043 unlock_page(page);
1044 }
1da177e4 1045page_ok:
a32ea1e1
N
1046 /*
1047 * i_size must be checked after we know the page is Uptodate.
1048 *
1049 * Checking i_size after the check allows us to calculate
1050 * the correct value for "nr", which means the zero-filled
1051 * part of the page is not copied back to userspace (unless
1052 * another truncate extends the file - this is desired though).
1053 */
1054
1055 isize = i_size_read(inode);
1056 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1057 if (unlikely(!isize || index > end_index)) {
1058 page_cache_release(page);
1059 goto out;
1060 }
1061
1062 /* nr is the maximum number of bytes to copy from this page */
1063 nr = PAGE_CACHE_SIZE;
1064 if (index == end_index) {
1065 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1066 if (nr <= offset) {
1067 page_cache_release(page);
1068 goto out;
1069 }
1070 }
1071 nr = nr - offset;
1da177e4
LT
1072
1073 /* If users can be writing to this page using arbitrary
1074 * virtual addresses, take care about potential aliasing
1075 * before reading the page on the kernel side.
1076 */
1077 if (mapping_writably_mapped(mapping))
1078 flush_dcache_page(page);
1079
1080 /*
ec0f1637
JK
1081 * When a sequential read accesses a page several times,
1082 * only mark it as accessed the first time.
1da177e4 1083 */
ec0f1637 1084 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1085 mark_page_accessed(page);
1086 prev_index = index;
1087
1088 /*
1089 * Ok, we have the page, and it's up-to-date, so
1090 * now we can copy it to user space...
1091 *
1092 * The actor routine returns how many bytes were actually used..
1093 * NOTE! This may not be the same as how much of a user buffer
1094 * we filled up (we may be padding etc), so we can only update
1095 * "pos" here (the actor routine has to update the user buffer
1096 * pointers and the remaining count).
1097 */
1098 ret = actor(desc, page, offset, nr);
1099 offset += ret;
1100 index += offset >> PAGE_CACHE_SHIFT;
1101 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1102 prev_offset = offset;
1da177e4
LT
1103
1104 page_cache_release(page);
1105 if (ret == nr && desc->count)
1106 continue;
1107 goto out;
1108
1109page_not_up_to_date:
1110 /* Get exclusive access to the page ... */
85462323
ON
1111 error = lock_page_killable(page);
1112 if (unlikely(error))
1113 goto readpage_error;
1da177e4 1114
8ab22b9a 1115page_not_up_to_date_locked:
da6052f7 1116 /* Did it get truncated before we got the lock? */
1da177e4
LT
1117 if (!page->mapping) {
1118 unlock_page(page);
1119 page_cache_release(page);
1120 continue;
1121 }
1122
1123 /* Did somebody else fill it already? */
1124 if (PageUptodate(page)) {
1125 unlock_page(page);
1126 goto page_ok;
1127 }
1128
1129readpage:
91803b49
JM
1130 /*
1131 * A previous I/O error may have been due to temporary
1132 * failures, eg. multipath errors.
1133 * PG_error will be set again if readpage fails.
1134 */
1135 ClearPageError(page);
1da177e4
LT
1136 /* Start the actual read. The read will unlock the page. */
1137 error = mapping->a_ops->readpage(filp, page);
1138
994fc28c
ZB
1139 if (unlikely(error)) {
1140 if (error == AOP_TRUNCATED_PAGE) {
1141 page_cache_release(page);
1142 goto find_page;
1143 }
1da177e4 1144 goto readpage_error;
994fc28c 1145 }
1da177e4
LT
1146
1147 if (!PageUptodate(page)) {
85462323
ON
1148 error = lock_page_killable(page);
1149 if (unlikely(error))
1150 goto readpage_error;
1da177e4
LT
1151 if (!PageUptodate(page)) {
1152 if (page->mapping == NULL) {
1153 /*
2ecdc82e 1154 * invalidate_mapping_pages got it
1da177e4
LT
1155 */
1156 unlock_page(page);
1157 page_cache_release(page);
1158 goto find_page;
1159 }
1160 unlock_page(page);
7ff81078 1161 shrink_readahead_size_eio(filp, ra);
85462323
ON
1162 error = -EIO;
1163 goto readpage_error;
1da177e4
LT
1164 }
1165 unlock_page(page);
1166 }
1167
1da177e4
LT
1168 goto page_ok;
1169
1170readpage_error:
1171 /* UHHUH! A synchronous read error occurred. Report it */
1172 desc->error = error;
1173 page_cache_release(page);
1174 goto out;
1175
1176no_cached_page:
1177 /*
1178 * Ok, it wasn't cached, so we need to create a new
1179 * page..
1180 */
eb2be189
NP
1181 page = page_cache_alloc_cold(mapping);
1182 if (!page) {
1183 desc->error = -ENOMEM;
1184 goto out;
1da177e4 1185 }
eb2be189 1186 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1187 index, GFP_KERNEL);
1188 if (error) {
eb2be189 1189 page_cache_release(page);
1da177e4
LT
1190 if (error == -EEXIST)
1191 goto find_page;
1192 desc->error = error;
1193 goto out;
1194 }
1da177e4
LT
1195 goto readpage;
1196 }
1197
1198out:
7ff81078
FW
1199 ra->prev_pos = prev_index;
1200 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1201 ra->prev_pos |= prev_offset;
1da177e4 1202
f4e6b498 1203 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1204 file_accessed(filp);
1da177e4 1205}
1da177e4
LT
1206
1207int file_read_actor(read_descriptor_t *desc, struct page *page,
1208 unsigned long offset, unsigned long size)
1209{
1210 char *kaddr;
1211 unsigned long left, count = desc->count;
1212
1213 if (size > count)
1214 size = count;
1215
1216 /*
1217 * Faults on the destination of a read are common, so do it before
1218 * taking the kmap.
1219 */
1220 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1221 kaddr = kmap_atomic(page, KM_USER0);
1222 left = __copy_to_user_inatomic(desc->arg.buf,
1223 kaddr + offset, size);
1224 kunmap_atomic(kaddr, KM_USER0);
1225 if (left == 0)
1226 goto success;
1227 }
1228
1229 /* Do it the slow way */
1230 kaddr = kmap(page);
1231 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1232 kunmap(page);
1233
1234 if (left) {
1235 size -= left;
1236 desc->error = -EFAULT;
1237 }
1238success:
1239 desc->count = count - size;
1240 desc->written += size;
1241 desc->arg.buf += size;
1242 return size;
1243}
1244
0ceb3314
DM
1245/*
1246 * Performs necessary checks before doing a write
1247 * @iov: io vector request
1248 * @nr_segs: number of segments in the iovec
1249 * @count: number of bytes to write
1250 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1251 *
1252 * Adjust number of segments and amount of bytes to write (nr_segs should be
1253 * properly initialized first). Returns appropriate error code that caller
1254 * should return or zero in case that write should be allowed.
1255 */
1256int generic_segment_checks(const struct iovec *iov,
1257 unsigned long *nr_segs, size_t *count, int access_flags)
1258{
1259 unsigned long seg;
1260 size_t cnt = 0;
1261 for (seg = 0; seg < *nr_segs; seg++) {
1262 const struct iovec *iv = &iov[seg];
1263
1264 /*
1265 * If any segment has a negative length, or the cumulative
1266 * length ever wraps negative then return -EINVAL.
1267 */
1268 cnt += iv->iov_len;
1269 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1270 return -EINVAL;
1271 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1272 continue;
1273 if (seg == 0)
1274 return -EFAULT;
1275 *nr_segs = seg;
1276 cnt -= iv->iov_len; /* This segment is no good */
1277 break;
1278 }
1279 *count = cnt;
1280 return 0;
1281}
1282EXPORT_SYMBOL(generic_segment_checks);
1283
485bb99b 1284/**
b2abacf3 1285 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1286 * @iocb: kernel I/O control block
1287 * @iov: io vector request
1288 * @nr_segs: number of segments in the iovec
b2abacf3 1289 * @pos: current file position
485bb99b 1290 *
1da177e4
LT
1291 * This is the "read()" routine for all filesystems
1292 * that can use the page cache directly.
1293 */
1294ssize_t
543ade1f
BP
1295generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1296 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1297{
1298 struct file *filp = iocb->ki_filp;
1299 ssize_t retval;
66f998f6 1300 unsigned long seg = 0;
1da177e4 1301 size_t count;
543ade1f 1302 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1303
1304 count = 0;
0ceb3314
DM
1305 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1306 if (retval)
1307 return retval;
1da177e4
LT
1308
1309 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1310 if (filp->f_flags & O_DIRECT) {
543ade1f 1311 loff_t size;
1da177e4
LT
1312 struct address_space *mapping;
1313 struct inode *inode;
1314
1315 mapping = filp->f_mapping;
1316 inode = mapping->host;
1da177e4
LT
1317 if (!count)
1318 goto out; /* skip atime */
1319 size = i_size_read(inode);
1320 if (pos < size) {
48b47c56
NP
1321 retval = filemap_write_and_wait_range(mapping, pos,
1322 pos + iov_length(iov, nr_segs) - 1);
a969e903
CH
1323 if (!retval) {
1324 retval = mapping->a_ops->direct_IO(READ, iocb,
1325 iov, pos, nr_segs);
1326 }
66f998f6 1327 if (retval > 0) {
1da177e4 1328 *ppos = pos + retval;
66f998f6
JB
1329 count -= retval;
1330 }
1331
1332 /*
1333 * Btrfs can have a short DIO read if we encounter
1334 * compressed extents, so if there was an error, or if
1335 * we've already read everything we wanted to, or if
1336 * there was a short read because we hit EOF, go ahead
1337 * and return. Otherwise fallthrough to buffered io for
1338 * the rest of the read.
1339 */
1340 if (retval < 0 || !count || *ppos >= size) {
11fa977e
HD
1341 file_accessed(filp);
1342 goto out;
1343 }
0e0bcae3 1344 }
1da177e4
LT
1345 }
1346
66f998f6 1347 count = retval;
11fa977e
HD
1348 for (seg = 0; seg < nr_segs; seg++) {
1349 read_descriptor_t desc;
66f998f6
JB
1350 loff_t offset = 0;
1351
1352 /*
1353 * If we did a short DIO read we need to skip the section of the
1354 * iov that we've already read data into.
1355 */
1356 if (count) {
1357 if (count > iov[seg].iov_len) {
1358 count -= iov[seg].iov_len;
1359 continue;
1360 }
1361 offset = count;
1362 count = 0;
1363 }
1da177e4 1364
11fa977e 1365 desc.written = 0;
66f998f6
JB
1366 desc.arg.buf = iov[seg].iov_base + offset;
1367 desc.count = iov[seg].iov_len - offset;
11fa977e
HD
1368 if (desc.count == 0)
1369 continue;
1370 desc.error = 0;
1371 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1372 retval += desc.written;
1373 if (desc.error) {
1374 retval = retval ?: desc.error;
1375 break;
1da177e4 1376 }
11fa977e
HD
1377 if (desc.count > 0)
1378 break;
1da177e4
LT
1379 }
1380out:
1381 return retval;
1382}
1da177e4
LT
1383EXPORT_SYMBOL(generic_file_aio_read);
1384
1da177e4
LT
1385static ssize_t
1386do_readahead(struct address_space *mapping, struct file *filp,
57f6b96c 1387 pgoff_t index, unsigned long nr)
1da177e4
LT
1388{
1389 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1390 return -EINVAL;
1391
f7e839dd 1392 force_page_cache_readahead(mapping, filp, index, nr);
1da177e4
LT
1393 return 0;
1394}
1395
6673e0c3 1396SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1da177e4
LT
1397{
1398 ssize_t ret;
1399 struct file *file;
1400
1401 ret = -EBADF;
1402 file = fget(fd);
1403 if (file) {
1404 if (file->f_mode & FMODE_READ) {
1405 struct address_space *mapping = file->f_mapping;
57f6b96c
FW
1406 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1407 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1408 unsigned long len = end - start + 1;
1409 ret = do_readahead(mapping, file, start, len);
1410 }
1411 fput(file);
1412 }
1413 return ret;
1414}
6673e0c3
HC
1415#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1416asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1417{
1418 return SYSC_readahead((int) fd, offset, (size_t) count);
1419}
1420SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1421#endif
1da177e4
LT
1422
1423#ifdef CONFIG_MMU
485bb99b
RD
1424/**
1425 * page_cache_read - adds requested page to the page cache if not already there
1426 * @file: file to read
1427 * @offset: page index
1428 *
1da177e4
LT
1429 * This adds the requested page to the page cache if it isn't already there,
1430 * and schedules an I/O to read in its contents from disk.
1431 */
920c7a5d 1432static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1433{
1434 struct address_space *mapping = file->f_mapping;
1435 struct page *page;
994fc28c 1436 int ret;
1da177e4 1437
994fc28c
ZB
1438 do {
1439 page = page_cache_alloc_cold(mapping);
1440 if (!page)
1441 return -ENOMEM;
1442
1443 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1444 if (ret == 0)
1445 ret = mapping->a_ops->readpage(file, page);
1446 else if (ret == -EEXIST)
1447 ret = 0; /* losing race to add is OK */
1da177e4 1448
1da177e4 1449 page_cache_release(page);
1da177e4 1450
994fc28c
ZB
1451 } while (ret == AOP_TRUNCATED_PAGE);
1452
1453 return ret;
1da177e4
LT
1454}
1455
1456#define MMAP_LOTSAMISS (100)
1457
ef00e08e
LT
1458/*
1459 * Synchronous readahead happens when we don't even find
1460 * a page in the page cache at all.
1461 */
1462static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1463 struct file_ra_state *ra,
1464 struct file *file,
1465 pgoff_t offset)
1466{
1467 unsigned long ra_pages;
1468 struct address_space *mapping = file->f_mapping;
1469
1470 /* If we don't want any read-ahead, don't bother */
1471 if (VM_RandomReadHint(vma))
1472 return;
1473
70ac23cf
WF
1474 if (VM_SequentialReadHint(vma) ||
1475 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
7ffc59b4
WF
1476 page_cache_sync_readahead(mapping, ra, file, offset,
1477 ra->ra_pages);
ef00e08e
LT
1478 return;
1479 }
1480
1481 if (ra->mmap_miss < INT_MAX)
1482 ra->mmap_miss++;
1483
1484 /*
1485 * Do we miss much more than hit in this file? If so,
1486 * stop bothering with read-ahead. It will only hurt.
1487 */
1488 if (ra->mmap_miss > MMAP_LOTSAMISS)
1489 return;
1490
d30a1100
WF
1491 /*
1492 * mmap read-around
1493 */
ef00e08e
LT
1494 ra_pages = max_sane_readahead(ra->ra_pages);
1495 if (ra_pages) {
d30a1100
WF
1496 ra->start = max_t(long, 0, offset - ra_pages/2);
1497 ra->size = ra_pages;
1498 ra->async_size = 0;
1499 ra_submit(ra, mapping, file);
ef00e08e
LT
1500 }
1501}
1502
1503/*
1504 * Asynchronous readahead happens when we find the page and PG_readahead,
1505 * so we want to possibly extend the readahead further..
1506 */
1507static void do_async_mmap_readahead(struct vm_area_struct *vma,
1508 struct file_ra_state *ra,
1509 struct file *file,
1510 struct page *page,
1511 pgoff_t offset)
1512{
1513 struct address_space *mapping = file->f_mapping;
1514
1515 /* If we don't want any read-ahead, don't bother */
1516 if (VM_RandomReadHint(vma))
1517 return;
1518 if (ra->mmap_miss > 0)
1519 ra->mmap_miss--;
1520 if (PageReadahead(page))
2fad6f5d
WF
1521 page_cache_async_readahead(mapping, ra, file,
1522 page, offset, ra->ra_pages);
ef00e08e
LT
1523}
1524
485bb99b 1525/**
54cb8821 1526 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1527 * @vma: vma in which the fault was taken
1528 * @vmf: struct vm_fault containing details of the fault
485bb99b 1529 *
54cb8821 1530 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1531 * mapped memory region to read in file data during a page fault.
1532 *
1533 * The goto's are kind of ugly, but this streamlines the normal case of having
1534 * it in the page cache, and handles the special cases reasonably without
1535 * having a lot of duplicated code.
1536 */
d0217ac0 1537int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1538{
1539 int error;
54cb8821 1540 struct file *file = vma->vm_file;
1da177e4
LT
1541 struct address_space *mapping = file->f_mapping;
1542 struct file_ra_state *ra = &file->f_ra;
1543 struct inode *inode = mapping->host;
ef00e08e 1544 pgoff_t offset = vmf->pgoff;
1da177e4 1545 struct page *page;
2004dc8e 1546 pgoff_t size;
83c54070 1547 int ret = 0;
1da177e4 1548
1da177e4 1549 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1550 if (offset >= size)
5307cc1a 1551 return VM_FAULT_SIGBUS;
1da177e4 1552
1da177e4
LT
1553 /*
1554 * Do we have something in the page cache already?
1555 */
ef00e08e
LT
1556 page = find_get_page(mapping, offset);
1557 if (likely(page)) {
1da177e4 1558 /*
ef00e08e
LT
1559 * We found the page, so try async readahead before
1560 * waiting for the lock.
1da177e4 1561 */
ef00e08e 1562 do_async_mmap_readahead(vma, ra, file, page, offset);
ef00e08e
LT
1563 } else {
1564 /* No page in the page cache at all */
1565 do_sync_mmap_readahead(vma, ra, file, offset);
1566 count_vm_event(PGMAJFAULT);
1567 ret = VM_FAULT_MAJOR;
1568retry_find:
b522c94d 1569 page = find_get_page(mapping, offset);
1da177e4
LT
1570 if (!page)
1571 goto no_cached_page;
1572 }
1573
d88c0922
ML
1574 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1575 page_cache_release(page);
d065bd81 1576 return ret | VM_FAULT_RETRY;
d88c0922 1577 }
b522c94d
ML
1578
1579 /* Did it get truncated? */
1580 if (unlikely(page->mapping != mapping)) {
1581 unlock_page(page);
1582 put_page(page);
1583 goto retry_find;
1584 }
1585 VM_BUG_ON(page->index != offset);
1586
1da177e4 1587 /*
d00806b1
NP
1588 * We have a locked page in the page cache, now we need to check
1589 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1590 */
d00806b1 1591 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1592 goto page_not_uptodate;
1593
ef00e08e
LT
1594 /*
1595 * Found the page and have a reference on it.
1596 * We must recheck i_size under page lock.
1597 */
d00806b1 1598 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1599 if (unlikely(offset >= size)) {
d00806b1 1600 unlock_page(page);
745ad48e 1601 page_cache_release(page);
5307cc1a 1602 return VM_FAULT_SIGBUS;
d00806b1
NP
1603 }
1604
ef00e08e 1605 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
d0217ac0 1606 vmf->page = page;
83c54070 1607 return ret | VM_FAULT_LOCKED;
1da177e4 1608
1da177e4
LT
1609no_cached_page:
1610 /*
1611 * We're only likely to ever get here if MADV_RANDOM is in
1612 * effect.
1613 */
ef00e08e 1614 error = page_cache_read(file, offset);
1da177e4
LT
1615
1616 /*
1617 * The page we want has now been added to the page cache.
1618 * In the unlikely event that someone removed it in the
1619 * meantime, we'll just come back here and read it again.
1620 */
1621 if (error >= 0)
1622 goto retry_find;
1623
1624 /*
1625 * An error return from page_cache_read can result if the
1626 * system is low on memory, or a problem occurs while trying
1627 * to schedule I/O.
1628 */
1629 if (error == -ENOMEM)
d0217ac0
NP
1630 return VM_FAULT_OOM;
1631 return VM_FAULT_SIGBUS;
1da177e4
LT
1632
1633page_not_uptodate:
1da177e4
LT
1634 /*
1635 * Umm, take care of errors if the page isn't up-to-date.
1636 * Try to re-read it _once_. We do this synchronously,
1637 * because there really aren't any performance issues here
1638 * and we need to check for errors.
1639 */
1da177e4 1640 ClearPageError(page);
994fc28c 1641 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1642 if (!error) {
1643 wait_on_page_locked(page);
1644 if (!PageUptodate(page))
1645 error = -EIO;
1646 }
d00806b1
NP
1647 page_cache_release(page);
1648
1649 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1650 goto retry_find;
1da177e4 1651
d00806b1 1652 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1653 shrink_readahead_size_eio(file, ra);
d0217ac0 1654 return VM_FAULT_SIGBUS;
54cb8821
NP
1655}
1656EXPORT_SYMBOL(filemap_fault);
1657
f0f37e2f 1658const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1659 .fault = filemap_fault,
1da177e4
LT
1660};
1661
1662/* This is used for a general mmap of a disk file */
1663
1664int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1665{
1666 struct address_space *mapping = file->f_mapping;
1667
1668 if (!mapping->a_ops->readpage)
1669 return -ENOEXEC;
1670 file_accessed(file);
1671 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1672 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1673 return 0;
1674}
1da177e4
LT
1675
1676/*
1677 * This is for filesystems which do not implement ->writepage.
1678 */
1679int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1680{
1681 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1682 return -EINVAL;
1683 return generic_file_mmap(file, vma);
1684}
1685#else
1686int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1687{
1688 return -ENOSYS;
1689}
1690int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1691{
1692 return -ENOSYS;
1693}
1694#endif /* CONFIG_MMU */
1695
1696EXPORT_SYMBOL(generic_file_mmap);
1697EXPORT_SYMBOL(generic_file_readonly_mmap);
1698
6fe6900e 1699static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1700 pgoff_t index,
1da177e4 1701 int (*filler)(void *,struct page*),
0531b2aa
LT
1702 void *data,
1703 gfp_t gfp)
1da177e4 1704{
eb2be189 1705 struct page *page;
1da177e4
LT
1706 int err;
1707repeat:
1708 page = find_get_page(mapping, index);
1709 if (!page) {
0531b2aa 1710 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
1711 if (!page)
1712 return ERR_PTR(-ENOMEM);
1713 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1714 if (unlikely(err)) {
1715 page_cache_release(page);
1716 if (err == -EEXIST)
1717 goto repeat;
1da177e4 1718 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1719 return ERR_PTR(err);
1720 }
1da177e4
LT
1721 err = filler(data, page);
1722 if (err < 0) {
1723 page_cache_release(page);
1724 page = ERR_PTR(err);
1725 }
1726 }
1da177e4
LT
1727 return page;
1728}
1729
0531b2aa 1730static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 1731 pgoff_t index,
1da177e4 1732 int (*filler)(void *,struct page*),
0531b2aa
LT
1733 void *data,
1734 gfp_t gfp)
1735
1da177e4
LT
1736{
1737 struct page *page;
1738 int err;
1739
1740retry:
0531b2aa 1741 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 1742 if (IS_ERR(page))
c855ff37 1743 return page;
1da177e4
LT
1744 if (PageUptodate(page))
1745 goto out;
1746
1747 lock_page(page);
1748 if (!page->mapping) {
1749 unlock_page(page);
1750 page_cache_release(page);
1751 goto retry;
1752 }
1753 if (PageUptodate(page)) {
1754 unlock_page(page);
1755 goto out;
1756 }
1757 err = filler(data, page);
1758 if (err < 0) {
1759 page_cache_release(page);
c855ff37 1760 return ERR_PTR(err);
1da177e4 1761 }
c855ff37 1762out:
6fe6900e
NP
1763 mark_page_accessed(page);
1764 return page;
1765}
0531b2aa
LT
1766
1767/**
1768 * read_cache_page_async - read into page cache, fill it if needed
1769 * @mapping: the page's address_space
1770 * @index: the page index
1771 * @filler: function to perform the read
1772 * @data: destination for read data
1773 *
1774 * Same as read_cache_page, but don't wait for page to become unlocked
1775 * after submitting it to the filler.
1776 *
1777 * Read into the page cache. If a page already exists, and PageUptodate() is
1778 * not set, try to fill the page but don't wait for it to become unlocked.
1779 *
1780 * If the page does not get brought uptodate, return -EIO.
1781 */
1782struct page *read_cache_page_async(struct address_space *mapping,
1783 pgoff_t index,
1784 int (*filler)(void *,struct page*),
1785 void *data)
1786{
1787 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1788}
6fe6900e
NP
1789EXPORT_SYMBOL(read_cache_page_async);
1790
0531b2aa
LT
1791static struct page *wait_on_page_read(struct page *page)
1792{
1793 if (!IS_ERR(page)) {
1794 wait_on_page_locked(page);
1795 if (!PageUptodate(page)) {
1796 page_cache_release(page);
1797 page = ERR_PTR(-EIO);
1798 }
1799 }
1800 return page;
1801}
1802
1803/**
1804 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1805 * @mapping: the page's address_space
1806 * @index: the page index
1807 * @gfp: the page allocator flags to use if allocating
1808 *
1809 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1810 * any new page allocations done using the specified allocation flags. Note
1811 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1812 * expect to do this atomically or anything like that - but you can pass in
1813 * other page requirements.
1814 *
1815 * If the page does not get brought uptodate, return -EIO.
1816 */
1817struct page *read_cache_page_gfp(struct address_space *mapping,
1818 pgoff_t index,
1819 gfp_t gfp)
1820{
1821 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1822
1823 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1824}
1825EXPORT_SYMBOL(read_cache_page_gfp);
1826
6fe6900e
NP
1827/**
1828 * read_cache_page - read into page cache, fill it if needed
1829 * @mapping: the page's address_space
1830 * @index: the page index
1831 * @filler: function to perform the read
1832 * @data: destination for read data
1833 *
1834 * Read into the page cache. If a page already exists, and PageUptodate() is
1835 * not set, try to fill the page then wait for it to become unlocked.
1836 *
1837 * If the page does not get brought uptodate, return -EIO.
1838 */
1839struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1840 pgoff_t index,
6fe6900e
NP
1841 int (*filler)(void *,struct page*),
1842 void *data)
1843{
0531b2aa 1844 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 1845}
1da177e4
LT
1846EXPORT_SYMBOL(read_cache_page);
1847
1da177e4
LT
1848/*
1849 * The logic we want is
1850 *
1851 * if suid or (sgid and xgrp)
1852 * remove privs
1853 */
01de85e0 1854int should_remove_suid(struct dentry *dentry)
1da177e4
LT
1855{
1856 mode_t mode = dentry->d_inode->i_mode;
1857 int kill = 0;
1da177e4
LT
1858
1859 /* suid always must be killed */
1860 if (unlikely(mode & S_ISUID))
1861 kill = ATTR_KILL_SUID;
1862
1863 /*
1864 * sgid without any exec bits is just a mandatory locking mark; leave
1865 * it alone. If some exec bits are set, it's a real sgid; kill it.
1866 */
1867 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1868 kill |= ATTR_KILL_SGID;
1869
7f5ff766 1870 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
01de85e0 1871 return kill;
1da177e4 1872
01de85e0
JA
1873 return 0;
1874}
d23a147b 1875EXPORT_SYMBOL(should_remove_suid);
01de85e0 1876
7f3d4ee1 1877static int __remove_suid(struct dentry *dentry, int kill)
01de85e0
JA
1878{
1879 struct iattr newattrs;
1880
1881 newattrs.ia_valid = ATTR_FORCE | kill;
1882 return notify_change(dentry, &newattrs);
1883}
1884
2f1936b8 1885int file_remove_suid(struct file *file)
01de85e0 1886{
2f1936b8 1887 struct dentry *dentry = file->f_path.dentry;
b5376771
SH
1888 int killsuid = should_remove_suid(dentry);
1889 int killpriv = security_inode_need_killpriv(dentry);
1890 int error = 0;
01de85e0 1891
b5376771
SH
1892 if (killpriv < 0)
1893 return killpriv;
1894 if (killpriv)
1895 error = security_inode_killpriv(dentry);
1896 if (!error && killsuid)
1897 error = __remove_suid(dentry, killsuid);
01de85e0 1898
b5376771 1899 return error;
1da177e4 1900}
2f1936b8 1901EXPORT_SYMBOL(file_remove_suid);
1da177e4 1902
2f718ffc 1903static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
1904 const struct iovec *iov, size_t base, size_t bytes)
1905{
f1800536 1906 size_t copied = 0, left = 0;
1da177e4
LT
1907
1908 while (bytes) {
1909 char __user *buf = iov->iov_base + base;
1910 int copy = min(bytes, iov->iov_len - base);
1911
1912 base = 0;
f1800536 1913 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
1914 copied += copy;
1915 bytes -= copy;
1916 vaddr += copy;
1917 iov++;
1918
01408c49 1919 if (unlikely(left))
1da177e4 1920 break;
1da177e4
LT
1921 }
1922 return copied - left;
1923}
1924
2f718ffc
NP
1925/*
1926 * Copy as much as we can into the page and return the number of bytes which
af901ca1 1927 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
1928 * bytes which were copied.
1929 */
1930size_t iov_iter_copy_from_user_atomic(struct page *page,
1931 struct iov_iter *i, unsigned long offset, size_t bytes)
1932{
1933 char *kaddr;
1934 size_t copied;
1935
1936 BUG_ON(!in_atomic());
1937 kaddr = kmap_atomic(page, KM_USER0);
1938 if (likely(i->nr_segs == 1)) {
1939 int left;
1940 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1941 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
1942 copied = bytes - left;
1943 } else {
1944 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1945 i->iov, i->iov_offset, bytes);
1946 }
1947 kunmap_atomic(kaddr, KM_USER0);
1948
1949 return copied;
1950}
89e10787 1951EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
1952
1953/*
1954 * This has the same sideeffects and return value as
1955 * iov_iter_copy_from_user_atomic().
1956 * The difference is that it attempts to resolve faults.
1957 * Page must not be locked.
1958 */
1959size_t iov_iter_copy_from_user(struct page *page,
1960 struct iov_iter *i, unsigned long offset, size_t bytes)
1961{
1962 char *kaddr;
1963 size_t copied;
1964
1965 kaddr = kmap(page);
1966 if (likely(i->nr_segs == 1)) {
1967 int left;
1968 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1969 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
1970 copied = bytes - left;
1971 } else {
1972 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1973 i->iov, i->iov_offset, bytes);
1974 }
1975 kunmap(page);
1976 return copied;
1977}
89e10787 1978EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 1979
f7009264 1980void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 1981{
f7009264
NP
1982 BUG_ON(i->count < bytes);
1983
2f718ffc
NP
1984 if (likely(i->nr_segs == 1)) {
1985 i->iov_offset += bytes;
f7009264 1986 i->count -= bytes;
2f718ffc
NP
1987 } else {
1988 const struct iovec *iov = i->iov;
1989 size_t base = i->iov_offset;
1990
124d3b70
NP
1991 /*
1992 * The !iov->iov_len check ensures we skip over unlikely
f7009264 1993 * zero-length segments (without overruning the iovec).
124d3b70 1994 */
94ad374a 1995 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 1996 int copy;
2f718ffc 1997
f7009264
NP
1998 copy = min(bytes, iov->iov_len - base);
1999 BUG_ON(!i->count || i->count < copy);
2000 i->count -= copy;
2f718ffc
NP
2001 bytes -= copy;
2002 base += copy;
2003 if (iov->iov_len == base) {
2004 iov++;
2005 base = 0;
2006 }
2007 }
2008 i->iov = iov;
2009 i->iov_offset = base;
2010 }
2011}
89e10787 2012EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 2013
afddba49
NP
2014/*
2015 * Fault in the first iovec of the given iov_iter, to a maximum length
2016 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2017 * accessed (ie. because it is an invalid address).
2018 *
2019 * writev-intensive code may want this to prefault several iovecs -- that
2020 * would be possible (callers must not rely on the fact that _only_ the
2021 * first iovec will be faulted with the current implementation).
2022 */
2023int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 2024{
2f718ffc 2025 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2026 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2027 return fault_in_pages_readable(buf, bytes);
2f718ffc 2028}
89e10787 2029EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2030
2031/*
2032 * Return the count of just the current iov_iter segment.
2033 */
2034size_t iov_iter_single_seg_count(struct iov_iter *i)
2035{
2036 const struct iovec *iov = i->iov;
2037 if (i->nr_segs == 1)
2038 return i->count;
2039 else
2040 return min(i->count, iov->iov_len - i->iov_offset);
2041}
89e10787 2042EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2043
1da177e4
LT
2044/*
2045 * Performs necessary checks before doing a write
2046 *
485bb99b 2047 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2048 * Returns appropriate error code that caller should return or
2049 * zero in case that write should be allowed.
2050 */
2051inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2052{
2053 struct inode *inode = file->f_mapping->host;
59e99e5b 2054 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2055
2056 if (unlikely(*pos < 0))
2057 return -EINVAL;
2058
1da177e4
LT
2059 if (!isblk) {
2060 /* FIXME: this is for backwards compatibility with 2.4 */
2061 if (file->f_flags & O_APPEND)
2062 *pos = i_size_read(inode);
2063
2064 if (limit != RLIM_INFINITY) {
2065 if (*pos >= limit) {
2066 send_sig(SIGXFSZ, current, 0);
2067 return -EFBIG;
2068 }
2069 if (*count > limit - (typeof(limit))*pos) {
2070 *count = limit - (typeof(limit))*pos;
2071 }
2072 }
2073 }
2074
2075 /*
2076 * LFS rule
2077 */
2078 if (unlikely(*pos + *count > MAX_NON_LFS &&
2079 !(file->f_flags & O_LARGEFILE))) {
2080 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2081 return -EFBIG;
2082 }
2083 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2084 *count = MAX_NON_LFS - (unsigned long)*pos;
2085 }
2086 }
2087
2088 /*
2089 * Are we about to exceed the fs block limit ?
2090 *
2091 * If we have written data it becomes a short write. If we have
2092 * exceeded without writing data we send a signal and return EFBIG.
2093 * Linus frestrict idea will clean these up nicely..
2094 */
2095 if (likely(!isblk)) {
2096 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2097 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2098 return -EFBIG;
2099 }
2100 /* zero-length writes at ->s_maxbytes are OK */
2101 }
2102
2103 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2104 *count = inode->i_sb->s_maxbytes - *pos;
2105 } else {
9361401e 2106#ifdef CONFIG_BLOCK
1da177e4
LT
2107 loff_t isize;
2108 if (bdev_read_only(I_BDEV(inode)))
2109 return -EPERM;
2110 isize = i_size_read(inode);
2111 if (*pos >= isize) {
2112 if (*count || *pos > isize)
2113 return -ENOSPC;
2114 }
2115
2116 if (*pos + *count > isize)
2117 *count = isize - *pos;
9361401e
DH
2118#else
2119 return -EPERM;
2120#endif
1da177e4
LT
2121 }
2122 return 0;
2123}
2124EXPORT_SYMBOL(generic_write_checks);
2125
afddba49
NP
2126int pagecache_write_begin(struct file *file, struct address_space *mapping,
2127 loff_t pos, unsigned len, unsigned flags,
2128 struct page **pagep, void **fsdata)
2129{
2130 const struct address_space_operations *aops = mapping->a_ops;
2131
4e02ed4b 2132 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2133 pagep, fsdata);
afddba49
NP
2134}
2135EXPORT_SYMBOL(pagecache_write_begin);
2136
2137int pagecache_write_end(struct file *file, struct address_space *mapping,
2138 loff_t pos, unsigned len, unsigned copied,
2139 struct page *page, void *fsdata)
2140{
2141 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2142
4e02ed4b
NP
2143 mark_page_accessed(page);
2144 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2145}
2146EXPORT_SYMBOL(pagecache_write_end);
2147
1da177e4
LT
2148ssize_t
2149generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2150 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2151 size_t count, size_t ocount)
2152{
2153 struct file *file = iocb->ki_filp;
2154 struct address_space *mapping = file->f_mapping;
2155 struct inode *inode = mapping->host;
2156 ssize_t written;
a969e903
CH
2157 size_t write_len;
2158 pgoff_t end;
1da177e4
LT
2159
2160 if (count != ocount)
2161 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2162
a969e903
CH
2163 write_len = iov_length(iov, *nr_segs);
2164 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2165
48b47c56 2166 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2167 if (written)
2168 goto out;
2169
2170 /*
2171 * After a write we want buffered reads to be sure to go to disk to get
2172 * the new data. We invalidate clean cached page from the region we're
2173 * about to write. We do this *before* the write so that we can return
6ccfa806 2174 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2175 */
2176 if (mapping->nrpages) {
2177 written = invalidate_inode_pages2_range(mapping,
2178 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2179 /*
2180 * If a page can not be invalidated, return 0 to fall back
2181 * to buffered write.
2182 */
2183 if (written) {
2184 if (written == -EBUSY)
2185 return 0;
a969e903 2186 goto out;
6ccfa806 2187 }
a969e903
CH
2188 }
2189
2190 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2191
2192 /*
2193 * Finally, try again to invalidate clean pages which might have been
2194 * cached by non-direct readahead, or faulted in by get_user_pages()
2195 * if the source of the write was an mmap'ed region of the file
2196 * we're writing. Either one is a pretty crazy thing to do,
2197 * so we don't support it 100%. If this invalidation
2198 * fails, tough, the write still worked...
2199 */
2200 if (mapping->nrpages) {
2201 invalidate_inode_pages2_range(mapping,
2202 pos >> PAGE_CACHE_SHIFT, end);
2203 }
2204
1da177e4 2205 if (written > 0) {
0116651c
NK
2206 pos += written;
2207 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2208 i_size_write(inode, pos);
1da177e4
LT
2209 mark_inode_dirty(inode);
2210 }
0116651c 2211 *ppos = pos;
1da177e4 2212 }
a969e903 2213out:
1da177e4
LT
2214 return written;
2215}
2216EXPORT_SYMBOL(generic_file_direct_write);
2217
eb2be189
NP
2218/*
2219 * Find or create a page at the given pagecache position. Return the locked
2220 * page. This function is specifically for buffered writes.
2221 */
54566b2c
NP
2222struct page *grab_cache_page_write_begin(struct address_space *mapping,
2223 pgoff_t index, unsigned flags)
eb2be189
NP
2224{
2225 int status;
2226 struct page *page;
54566b2c
NP
2227 gfp_t gfp_notmask = 0;
2228 if (flags & AOP_FLAG_NOFS)
2229 gfp_notmask = __GFP_FS;
eb2be189
NP
2230repeat:
2231 page = find_lock_page(mapping, index);
c585a267 2232 if (page)
eb2be189
NP
2233 return page;
2234
54566b2c 2235 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
eb2be189
NP
2236 if (!page)
2237 return NULL;
54566b2c
NP
2238 status = add_to_page_cache_lru(page, mapping, index,
2239 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2240 if (unlikely(status)) {
2241 page_cache_release(page);
2242 if (status == -EEXIST)
2243 goto repeat;
2244 return NULL;
2245 }
2246 return page;
2247}
54566b2c 2248EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2249
afddba49
NP
2250static ssize_t generic_perform_write(struct file *file,
2251 struct iov_iter *i, loff_t pos)
2252{
2253 struct address_space *mapping = file->f_mapping;
2254 const struct address_space_operations *a_ops = mapping->a_ops;
2255 long status = 0;
2256 ssize_t written = 0;
674b892e
NP
2257 unsigned int flags = 0;
2258
2259 /*
2260 * Copies from kernel address space cannot fail (NFSD is a big user).
2261 */
2262 if (segment_eq(get_fs(), KERNEL_DS))
2263 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2264
2265 do {
2266 struct page *page;
afddba49
NP
2267 unsigned long offset; /* Offset into pagecache page */
2268 unsigned long bytes; /* Bytes to write to page */
2269 size_t copied; /* Bytes copied from user */
2270 void *fsdata;
2271
2272 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2273 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2274 iov_iter_count(i));
2275
2276again:
2277
2278 /*
2279 * Bring in the user page that we will copy from _first_.
2280 * Otherwise there's a nasty deadlock on copying from the
2281 * same page as we're writing to, without it being marked
2282 * up-to-date.
2283 *
2284 * Not only is this an optimisation, but it is also required
2285 * to check that the address is actually valid, when atomic
2286 * usercopies are used, below.
2287 */
2288 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2289 status = -EFAULT;
2290 break;
2291 }
2292
674b892e 2293 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2294 &page, &fsdata);
2295 if (unlikely(status))
2296 break;
2297
931e80e4 2298 if (mapping_writably_mapped(mapping))
2299 flush_dcache_page(page);
2300
afddba49
NP
2301 pagefault_disable();
2302 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2303 pagefault_enable();
2304 flush_dcache_page(page);
2305
c8236db9 2306 mark_page_accessed(page);
afddba49
NP
2307 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2308 page, fsdata);
2309 if (unlikely(status < 0))
2310 break;
2311 copied = status;
2312
2313 cond_resched();
2314
124d3b70 2315 iov_iter_advance(i, copied);
afddba49
NP
2316 if (unlikely(copied == 0)) {
2317 /*
2318 * If we were unable to copy any data at all, we must
2319 * fall back to a single segment length write.
2320 *
2321 * If we didn't fallback here, we could livelock
2322 * because not all segments in the iov can be copied at
2323 * once without a pagefault.
2324 */
2325 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2326 iov_iter_single_seg_count(i));
2327 goto again;
2328 }
afddba49
NP
2329 pos += copied;
2330 written += copied;
2331
2332 balance_dirty_pages_ratelimited(mapping);
2333
2334 } while (iov_iter_count(i));
2335
2336 return written ? written : status;
2337}
2338
2339ssize_t
2340generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2341 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2342 size_t count, ssize_t written)
2343{
2344 struct file *file = iocb->ki_filp;
afddba49
NP
2345 ssize_t status;
2346 struct iov_iter i;
2347
2348 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2349 status = generic_perform_write(file, &i, pos);
1da177e4 2350
1da177e4 2351 if (likely(status >= 0)) {
afddba49
NP
2352 written += status;
2353 *ppos = pos + status;
1da177e4
LT
2354 }
2355
1da177e4
LT
2356 return written ? written : status;
2357}
2358EXPORT_SYMBOL(generic_file_buffered_write);
2359
e4dd9de3
JK
2360/**
2361 * __generic_file_aio_write - write data to a file
2362 * @iocb: IO state structure (file, offset, etc.)
2363 * @iov: vector with data to write
2364 * @nr_segs: number of segments in the vector
2365 * @ppos: position where to write
2366 *
2367 * This function does all the work needed for actually writing data to a
2368 * file. It does all basic checks, removes SUID from the file, updates
2369 * modification times and calls proper subroutines depending on whether we
2370 * do direct IO or a standard buffered write.
2371 *
2372 * It expects i_mutex to be grabbed unless we work on a block device or similar
2373 * object which does not need locking at all.
2374 *
2375 * This function does *not* take care of syncing data in case of O_SYNC write.
2376 * A caller has to handle it. This is mainly due to the fact that we want to
2377 * avoid syncing under i_mutex.
2378 */
2379ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2380 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2381{
2382 struct file *file = iocb->ki_filp;
fb5527e6 2383 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2384 size_t ocount; /* original count */
2385 size_t count; /* after file limit checks */
2386 struct inode *inode = mapping->host;
1da177e4
LT
2387 loff_t pos;
2388 ssize_t written;
2389 ssize_t err;
2390
2391 ocount = 0;
0ceb3314
DM
2392 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2393 if (err)
2394 return err;
1da177e4
LT
2395
2396 count = ocount;
2397 pos = *ppos;
2398
2399 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2400
2401 /* We can write back this queue in page reclaim */
2402 current->backing_dev_info = mapping->backing_dev_info;
2403 written = 0;
2404
2405 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2406 if (err)
2407 goto out;
2408
2409 if (count == 0)
2410 goto out;
2411
2f1936b8 2412 err = file_remove_suid(file);
1da177e4
LT
2413 if (err)
2414 goto out;
2415
870f4817 2416 file_update_time(file);
1da177e4
LT
2417
2418 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2419 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2420 loff_t endbyte;
2421 ssize_t written_buffered;
2422
2423 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2424 ppos, count, ocount);
1da177e4
LT
2425 if (written < 0 || written == count)
2426 goto out;
2427 /*
2428 * direct-io write to a hole: fall through to buffered I/O
2429 * for completing the rest of the request.
2430 */
2431 pos += written;
2432 count -= written;
fb5527e6
JM
2433 written_buffered = generic_file_buffered_write(iocb, iov,
2434 nr_segs, pos, ppos, count,
2435 written);
2436 /*
2437 * If generic_file_buffered_write() retuned a synchronous error
2438 * then we want to return the number of bytes which were
2439 * direct-written, or the error code if that was zero. Note
2440 * that this differs from normal direct-io semantics, which
2441 * will return -EFOO even if some bytes were written.
2442 */
2443 if (written_buffered < 0) {
2444 err = written_buffered;
2445 goto out;
2446 }
1da177e4 2447
fb5527e6
JM
2448 /*
2449 * We need to ensure that the page cache pages are written to
2450 * disk and invalidated to preserve the expected O_DIRECT
2451 * semantics.
2452 */
2453 endbyte = pos + written_buffered - written - 1;
c05c4edd 2454 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2455 if (err == 0) {
2456 written = written_buffered;
2457 invalidate_mapping_pages(mapping,
2458 pos >> PAGE_CACHE_SHIFT,
2459 endbyte >> PAGE_CACHE_SHIFT);
2460 } else {
2461 /*
2462 * We don't know how much we wrote, so just return
2463 * the number of bytes which were direct-written
2464 */
2465 }
2466 } else {
2467 written = generic_file_buffered_write(iocb, iov, nr_segs,
2468 pos, ppos, count, written);
2469 }
1da177e4
LT
2470out:
2471 current->backing_dev_info = NULL;
2472 return written ? written : err;
2473}
e4dd9de3
JK
2474EXPORT_SYMBOL(__generic_file_aio_write);
2475
e4dd9de3
JK
2476/**
2477 * generic_file_aio_write - write data to a file
2478 * @iocb: IO state structure
2479 * @iov: vector with data to write
2480 * @nr_segs: number of segments in the vector
2481 * @pos: position in file where to write
2482 *
2483 * This is a wrapper around __generic_file_aio_write() to be used by most
2484 * filesystems. It takes care of syncing the file in case of O_SYNC file
2485 * and acquires i_mutex as needed.
2486 */
027445c3
BP
2487ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2488 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2489{
2490 struct file *file = iocb->ki_filp;
148f948b 2491 struct inode *inode = file->f_mapping->host;
1da177e4 2492 ssize_t ret;
1da177e4
LT
2493
2494 BUG_ON(iocb->ki_pos != pos);
2495
1b1dcc1b 2496 mutex_lock(&inode->i_mutex);
e4dd9de3 2497 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2498 mutex_unlock(&inode->i_mutex);
1da177e4 2499
148f948b 2500 if (ret > 0 || ret == -EIOCBQUEUED) {
1da177e4
LT
2501 ssize_t err;
2502
148f948b 2503 err = generic_write_sync(file, pos, ret);
c7b50db2 2504 if (err < 0 && ret > 0)
1da177e4
LT
2505 ret = err;
2506 }
2507 return ret;
2508}
2509EXPORT_SYMBOL(generic_file_aio_write);
2510
cf9a2ae8
DH
2511/**
2512 * try_to_release_page() - release old fs-specific metadata on a page
2513 *
2514 * @page: the page which the kernel is trying to free
2515 * @gfp_mask: memory allocation flags (and I/O mode)
2516 *
2517 * The address_space is to try to release any data against the page
2518 * (presumably at page->private). If the release was successful, return `1'.
2519 * Otherwise return zero.
2520 *
266cf658
DH
2521 * This may also be called if PG_fscache is set on a page, indicating that the
2522 * page is known to the local caching routines.
2523 *
cf9a2ae8 2524 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2525 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2526 *
cf9a2ae8
DH
2527 */
2528int try_to_release_page(struct page *page, gfp_t gfp_mask)
2529{
2530 struct address_space * const mapping = page->mapping;
2531
2532 BUG_ON(!PageLocked(page));
2533 if (PageWriteback(page))
2534 return 0;
2535
2536 if (mapping && mapping->a_ops->releasepage)
2537 return mapping->a_ops->releasepage(page, gfp_mask);
2538 return try_to_free_buffers(page);
2539}
2540
2541EXPORT_SYMBOL(try_to_release_page);