]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/filemap.c
mm/filemap: split filemap_readahead out of filemap_get_pages
[thirdparty/linux.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4
LT
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c515e1fd 38#include <linux/cleancache.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
b9306a79 44#include <linux/page_idle.h>
f9ce0be7 45#include <asm/pgalloc.h>
de591a82 46#include <asm/tlbflush.h>
0f8053a5
NP
47#include "internal.h"
48
fe0bfaaf
RJ
49#define CREATE_TRACE_POINTS
50#include <trace/events/filemap.h>
51
1da177e4 52/*
1da177e4
LT
53 * FIXME: remove all knowledge of the buffer layer from the core VM
54 */
148f948b 55#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 56
1da177e4
LT
57#include <asm/mman.h>
58
59/*
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * though.
62 *
63 * Shared mappings now work. 15.8.1995 Bruno.
64 *
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 *
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 */
70
71/*
72 * Lock ordering:
73 *
c8c06efa 74 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 75 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 76 * ->swap_lock (exclusive_swap_page, others)
b93b0163 77 * ->i_pages lock
1da177e4 78 *
1b1dcc1b 79 * ->i_mutex
c8c06efa 80 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 81 *
c1e8d7c6 82 * ->mmap_lock
c8c06efa 83 * ->i_mmap_rwsem
b8072f09 84 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 85 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 86 *
c1e8d7c6 87 * ->mmap_lock
1da177e4
LT
88 * ->lock_page (access_process_vm)
89 *
ccad2365 90 * ->i_mutex (generic_perform_write)
c1e8d7c6 91 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
1da177e4 92 *
f758eeab 93 * bdi->wb.list_lock
a66979ab 94 * sb_lock (fs/fs-writeback.c)
b93b0163 95 * ->i_pages lock (__sync_single_inode)
1da177e4 96 *
c8c06efa 97 * ->i_mmap_rwsem
1da177e4
LT
98 * ->anon_vma.lock (vma_adjust)
99 *
100 * ->anon_vma.lock
b8072f09 101 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 102 *
b8072f09 103 * ->page_table_lock or pte_lock
5d337b91 104 * ->swap_lock (try_to_unmap_one)
1da177e4 105 * ->private_lock (try_to_unmap_one)
b93b0163 106 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
107 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
108 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 109 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 110 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 111 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 112 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 113 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 114 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 115 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
116 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
117 *
c8c06efa 118 * ->i_mmap_rwsem
9a3c531d 119 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
120 */
121
5c024e6a 122static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
123 struct page *page, void *shadow)
124{
5c024e6a
MW
125 XA_STATE(xas, &mapping->i_pages, page->index);
126 unsigned int nr = 1;
c70b647d 127
5c024e6a 128 mapping_set_update(&xas, mapping);
c70b647d 129
5c024e6a
MW
130 /* hugetlb pages are represented by a single entry in the xarray */
131 if (!PageHuge(page)) {
132 xas_set_order(&xas, page->index, compound_order(page));
d8c6546b 133 nr = compound_nr(page);
5c024e6a 134 }
91b0abe3 135
83929372
KS
136 VM_BUG_ON_PAGE(!PageLocked(page), page);
137 VM_BUG_ON_PAGE(PageTail(page), page);
138 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 139
5c024e6a
MW
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
d3798ae8 142
2300638b
JK
143 page->mapping = NULL;
144 /* Leave page->index set: truncation lookup relies upon it */
145
d3798ae8
JW
146 if (shadow) {
147 mapping->nrexceptional += nr;
148 /*
149 * Make sure the nrexceptional update is committed before
150 * the nrpages update so that final truncate racing
151 * with reclaim does not see both counters 0 at the
152 * same time and miss a shadow entry.
153 */
154 smp_wmb();
155 }
156 mapping->nrpages -= nr;
91b0abe3
JW
157}
158
5ecc4d85
JK
159static void unaccount_page_cache_page(struct address_space *mapping,
160 struct page *page)
1da177e4 161{
5ecc4d85 162 int nr;
1da177e4 163
c515e1fd
DM
164 /*
165 * if we're uptodate, flush out into the cleancache, otherwise
166 * invalidate any existing cleancache entries. We can't leave
167 * stale data around in the cleancache once our page is gone
168 */
169 if (PageUptodate(page) && PageMappedToDisk(page))
170 cleancache_put_page(page);
171 else
3167760f 172 cleancache_invalidate_page(mapping, page);
c515e1fd 173
83929372 174 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
175 VM_BUG_ON_PAGE(page_mapped(page), page);
176 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
177 int mapcount;
178
179 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
180 current->comm, page_to_pfn(page));
181 dump_page(page, "still mapped when deleted");
182 dump_stack();
183 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
184
185 mapcount = page_mapcount(page);
186 if (mapping_exiting(mapping) &&
187 page_count(page) >= mapcount + 2) {
188 /*
189 * All vmas have already been torn down, so it's
190 * a good bet that actually the page is unmapped,
191 * and we'd prefer not to leak it: if we're wrong,
192 * some other bad page check should catch it later.
193 */
194 page_mapcount_reset(page);
6d061f9f 195 page_ref_sub(page, mapcount);
06b241f3
HD
196 }
197 }
198
4165b9b4 199 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
200 if (PageHuge(page))
201 return;
09612fa6 202
6c357848 203 nr = thp_nr_pages(page);
5ecc4d85 204
0d1c2072 205 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
5ecc4d85 206 if (PageSwapBacked(page)) {
0d1c2072 207 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
5ecc4d85 208 if (PageTransHuge(page))
b8eddff8 209 __dec_lruvec_page_state(page, NR_SHMEM_THPS);
99cb0dbd 210 } else if (PageTransHuge(page)) {
b8eddff8 211 __dec_lruvec_page_state(page, NR_FILE_THPS);
09d91cda 212 filemap_nr_thps_dec(mapping);
800d8c63 213 }
5ecc4d85
JK
214
215 /*
216 * At this point page must be either written or cleaned by
217 * truncate. Dirty page here signals a bug and loss of
218 * unwritten data.
219 *
220 * This fixes dirty accounting after removing the page entirely
221 * but leaves PageDirty set: it has no effect for truncated
222 * page and anyway will be cleared before returning page into
223 * buddy allocator.
224 */
225 if (WARN_ON_ONCE(PageDirty(page)))
226 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
227}
228
229/*
230 * Delete a page from the page cache and free it. Caller has to make
231 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 232 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
233 */
234void __delete_from_page_cache(struct page *page, void *shadow)
235{
236 struct address_space *mapping = page->mapping;
237
238 trace_mm_filemap_delete_from_page_cache(page);
239
240 unaccount_page_cache_page(mapping, page);
5c024e6a 241 page_cache_delete(mapping, page, shadow);
1da177e4
LT
242}
243
59c66c5f
JK
244static void page_cache_free_page(struct address_space *mapping,
245 struct page *page)
246{
247 void (*freepage)(struct page *);
248
249 freepage = mapping->a_ops->freepage;
250 if (freepage)
251 freepage(page);
252
253 if (PageTransHuge(page) && !PageHuge(page)) {
887b22c6 254 page_ref_sub(page, thp_nr_pages(page));
59c66c5f
JK
255 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
256 } else {
257 put_page(page);
258 }
259}
260
702cfbf9
MK
261/**
262 * delete_from_page_cache - delete page from page cache
263 * @page: the page which the kernel is trying to remove from page cache
264 *
265 * This must be called only on pages that have been verified to be in the page
266 * cache and locked. It will never put the page into the free list, the caller
267 * has a reference on the page.
268 */
269void delete_from_page_cache(struct page *page)
1da177e4 270{
83929372 271 struct address_space *mapping = page_mapping(page);
c4843a75 272 unsigned long flags;
1da177e4 273
cd7619d6 274 BUG_ON(!PageLocked(page));
b93b0163 275 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 276 __delete_from_page_cache(page, NULL);
b93b0163 277 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 278
59c66c5f 279 page_cache_free_page(mapping, page);
97cecb5a
MK
280}
281EXPORT_SYMBOL(delete_from_page_cache);
282
aa65c29c 283/*
ef8e5717 284 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
285 * @mapping: the mapping to which pages belong
286 * @pvec: pagevec with pages to delete
287 *
b93b0163 288 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
289 * from the mapping. The function expects @pvec to be sorted by page index
290 * and is optimised for it to be dense.
b93b0163 291 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 292 * modified). The function expects only THP head pages to be present in the
4101196b 293 * @pvec.
aa65c29c 294 *
b93b0163 295 * The function expects the i_pages lock to be held.
aa65c29c 296 */
ef8e5717 297static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
298 struct pagevec *pvec)
299{
ef8e5717 300 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 301 int total_pages = 0;
4101196b 302 int i = 0;
aa65c29c 303 struct page *page;
aa65c29c 304
ef8e5717
MW
305 mapping_set_update(&xas, mapping);
306 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 307 if (i >= pagevec_count(pvec))
aa65c29c 308 break;
4101196b
MWO
309
310 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 311 if (xa_is_value(page))
aa65c29c 312 continue;
4101196b
MWO
313 /*
314 * A page got inserted in our range? Skip it. We have our
315 * pages locked so they are protected from being removed.
316 * If we see a page whose index is higher than ours, it
317 * means our page has been removed, which shouldn't be
318 * possible because we're holding the PageLock.
319 */
320 if (page != pvec->pages[i]) {
321 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
322 page);
323 continue;
324 }
325
326 WARN_ON_ONCE(!PageLocked(page));
327
328 if (page->index == xas.xa_index)
aa65c29c 329 page->mapping = NULL;
4101196b
MWO
330 /* Leave page->index set: truncation lookup relies on it */
331
332 /*
333 * Move to the next page in the vector if this is a regular
334 * page or the index is of the last sub-page of this compound
335 * page.
336 */
337 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 338 i++;
ef8e5717 339 xas_store(&xas, NULL);
aa65c29c
JK
340 total_pages++;
341 }
342 mapping->nrpages -= total_pages;
343}
344
345void delete_from_page_cache_batch(struct address_space *mapping,
346 struct pagevec *pvec)
347{
348 int i;
349 unsigned long flags;
350
351 if (!pagevec_count(pvec))
352 return;
353
b93b0163 354 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
355 for (i = 0; i < pagevec_count(pvec); i++) {
356 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
357
358 unaccount_page_cache_page(mapping, pvec->pages[i]);
359 }
ef8e5717 360 page_cache_delete_batch(mapping, pvec);
b93b0163 361 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
362
363 for (i = 0; i < pagevec_count(pvec); i++)
364 page_cache_free_page(mapping, pvec->pages[i]);
365}
366
d72d9e2a 367int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
368{
369 int ret = 0;
370 /* Check for outstanding write errors */
7fcbbaf1
JA
371 if (test_bit(AS_ENOSPC, &mapping->flags) &&
372 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 373 ret = -ENOSPC;
7fcbbaf1
JA
374 if (test_bit(AS_EIO, &mapping->flags) &&
375 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
376 ret = -EIO;
377 return ret;
378}
d72d9e2a 379EXPORT_SYMBOL(filemap_check_errors);
865ffef3 380
76341cab
JL
381static int filemap_check_and_keep_errors(struct address_space *mapping)
382{
383 /* Check for outstanding write errors */
384 if (test_bit(AS_EIO, &mapping->flags))
385 return -EIO;
386 if (test_bit(AS_ENOSPC, &mapping->flags))
387 return -ENOSPC;
388 return 0;
389}
390
1da177e4 391/**
485bb99b 392 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
393 * @mapping: address space structure to write
394 * @start: offset in bytes where the range starts
469eb4d0 395 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 396 * @sync_mode: enable synchronous operation
1da177e4 397 *
485bb99b
RD
398 * Start writeback against all of a mapping's dirty pages that lie
399 * within the byte offsets <start, end> inclusive.
400 *
1da177e4 401 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 402 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
403 * these two operations is that if a dirty page/buffer is encountered, it must
404 * be waited upon, and not just skipped over.
a862f68a
MR
405 *
406 * Return: %0 on success, negative error code otherwise.
1da177e4 407 */
ebcf28e1
AM
408int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
409 loff_t end, int sync_mode)
1da177e4
LT
410{
411 int ret;
412 struct writeback_control wbc = {
413 .sync_mode = sync_mode,
05fe478d 414 .nr_to_write = LONG_MAX,
111ebb6e
OH
415 .range_start = start,
416 .range_end = end,
1da177e4
LT
417 };
418
f56753ac 419 if (!mapping_can_writeback(mapping) ||
c3aab9a0 420 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1da177e4
LT
421 return 0;
422
b16b1deb 423 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 424 ret = do_writepages(mapping, &wbc);
b16b1deb 425 wbc_detach_inode(&wbc);
1da177e4
LT
426 return ret;
427}
428
429static inline int __filemap_fdatawrite(struct address_space *mapping,
430 int sync_mode)
431{
111ebb6e 432 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
433}
434
435int filemap_fdatawrite(struct address_space *mapping)
436{
437 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
438}
439EXPORT_SYMBOL(filemap_fdatawrite);
440
f4c0a0fd 441int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 442 loff_t end)
1da177e4
LT
443{
444 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
445}
f4c0a0fd 446EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 447
485bb99b
RD
448/**
449 * filemap_flush - mostly a non-blocking flush
450 * @mapping: target address_space
451 *
1da177e4
LT
452 * This is a mostly non-blocking flush. Not suitable for data-integrity
453 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
454 *
455 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
456 */
457int filemap_flush(struct address_space *mapping)
458{
459 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
460}
461EXPORT_SYMBOL(filemap_flush);
462
7fc9e472
GR
463/**
464 * filemap_range_has_page - check if a page exists in range.
465 * @mapping: address space within which to check
466 * @start_byte: offset in bytes where the range starts
467 * @end_byte: offset in bytes where the range ends (inclusive)
468 *
469 * Find at least one page in the range supplied, usually used to check if
470 * direct writing in this range will trigger a writeback.
a862f68a
MR
471 *
472 * Return: %true if at least one page exists in the specified range,
473 * %false otherwise.
7fc9e472
GR
474 */
475bool filemap_range_has_page(struct address_space *mapping,
476 loff_t start_byte, loff_t end_byte)
477{
f7b68046 478 struct page *page;
8fa8e538
MW
479 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
480 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
481
482 if (end_byte < start_byte)
483 return false;
484
8fa8e538
MW
485 rcu_read_lock();
486 for (;;) {
487 page = xas_find(&xas, max);
488 if (xas_retry(&xas, page))
489 continue;
490 /* Shadow entries don't count */
491 if (xa_is_value(page))
492 continue;
493 /*
494 * We don't need to try to pin this page; we're about to
495 * release the RCU lock anyway. It is enough to know that
496 * there was a page here recently.
497 */
498 break;
499 }
500 rcu_read_unlock();
7fc9e472 501
8fa8e538 502 return page != NULL;
7fc9e472
GR
503}
504EXPORT_SYMBOL(filemap_range_has_page);
505
5e8fcc1a 506static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 507 loff_t start_byte, loff_t end_byte)
1da177e4 508{
09cbfeaf
KS
509 pgoff_t index = start_byte >> PAGE_SHIFT;
510 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
511 struct pagevec pvec;
512 int nr_pages;
1da177e4 513
94004ed7 514 if (end_byte < start_byte)
5e8fcc1a 515 return;
1da177e4 516
86679820 517 pagevec_init(&pvec);
312e9d2f 518 while (index <= end) {
1da177e4
LT
519 unsigned i;
520
312e9d2f 521 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 522 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
523 if (!nr_pages)
524 break;
525
1da177e4
LT
526 for (i = 0; i < nr_pages; i++) {
527 struct page *page = pvec.pages[i];
528
1da177e4 529 wait_on_page_writeback(page);
5e8fcc1a 530 ClearPageError(page);
1da177e4
LT
531 }
532 pagevec_release(&pvec);
533 cond_resched();
534 }
aa750fd7
JN
535}
536
537/**
538 * filemap_fdatawait_range - wait for writeback to complete
539 * @mapping: address space structure to wait for
540 * @start_byte: offset in bytes where the range starts
541 * @end_byte: offset in bytes where the range ends (inclusive)
542 *
543 * Walk the list of under-writeback pages of the given address space
544 * in the given range and wait for all of them. Check error status of
545 * the address space and return it.
546 *
547 * Since the error status of the address space is cleared by this function,
548 * callers are responsible for checking the return value and handling and/or
549 * reporting the error.
a862f68a
MR
550 *
551 * Return: error status of the address space.
aa750fd7
JN
552 */
553int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
554 loff_t end_byte)
555{
5e8fcc1a
JL
556 __filemap_fdatawait_range(mapping, start_byte, end_byte);
557 return filemap_check_errors(mapping);
1da177e4 558}
d3bccb6f
JK
559EXPORT_SYMBOL(filemap_fdatawait_range);
560
aa0bfcd9
RZ
561/**
562 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
563 * @mapping: address space structure to wait for
564 * @start_byte: offset in bytes where the range starts
565 * @end_byte: offset in bytes where the range ends (inclusive)
566 *
567 * Walk the list of under-writeback pages of the given address space in the
568 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
569 * this function does not clear error status of the address space.
570 *
571 * Use this function if callers don't handle errors themselves. Expected
572 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
573 * fsfreeze(8)
574 */
575int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
576 loff_t start_byte, loff_t end_byte)
577{
578 __filemap_fdatawait_range(mapping, start_byte, end_byte);
579 return filemap_check_and_keep_errors(mapping);
580}
581EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
582
a823e458
JL
583/**
584 * file_fdatawait_range - wait for writeback to complete
585 * @file: file pointing to address space structure to wait for
586 * @start_byte: offset in bytes where the range starts
587 * @end_byte: offset in bytes where the range ends (inclusive)
588 *
589 * Walk the list of under-writeback pages of the address space that file
590 * refers to, in the given range and wait for all of them. Check error
591 * status of the address space vs. the file->f_wb_err cursor and return it.
592 *
593 * Since the error status of the file is advanced by this function,
594 * callers are responsible for checking the return value and handling and/or
595 * reporting the error.
a862f68a
MR
596 *
597 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
598 */
599int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
600{
601 struct address_space *mapping = file->f_mapping;
602
603 __filemap_fdatawait_range(mapping, start_byte, end_byte);
604 return file_check_and_advance_wb_err(file);
605}
606EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 607
aa750fd7
JN
608/**
609 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
610 * @mapping: address space structure to wait for
611 *
612 * Walk the list of under-writeback pages of the given address space
613 * and wait for all of them. Unlike filemap_fdatawait(), this function
614 * does not clear error status of the address space.
615 *
616 * Use this function if callers don't handle errors themselves. Expected
617 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
618 * fsfreeze(8)
a862f68a
MR
619 *
620 * Return: error status of the address space.
aa750fd7 621 */
76341cab 622int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 623{
ffb959bb 624 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 625 return filemap_check_and_keep_errors(mapping);
aa750fd7 626}
76341cab 627EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 628
875d91b1 629/* Returns true if writeback might be needed or already in progress. */
9326c9b2 630static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 631{
875d91b1
KK
632 if (dax_mapping(mapping))
633 return mapping->nrexceptional;
634
635 return mapping->nrpages;
1da177e4 636}
1da177e4 637
485bb99b
RD
638/**
639 * filemap_write_and_wait_range - write out & wait on a file range
640 * @mapping: the address_space for the pages
641 * @lstart: offset in bytes where the range starts
642 * @lend: offset in bytes where the range ends (inclusive)
643 *
469eb4d0
AM
644 * Write out and wait upon file offsets lstart->lend, inclusive.
645 *
0e056eb5 646 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 647 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
648 *
649 * Return: error status of the address space.
469eb4d0 650 */
1da177e4
LT
651int filemap_write_and_wait_range(struct address_space *mapping,
652 loff_t lstart, loff_t lend)
653{
28fd1298 654 int err = 0;
1da177e4 655
9326c9b2 656 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
657 err = __filemap_fdatawrite_range(mapping, lstart, lend,
658 WB_SYNC_ALL);
ddf8f376
IW
659 /*
660 * Even if the above returned error, the pages may be
661 * written partially (e.g. -ENOSPC), so we wait for it.
662 * But the -EIO is special case, it may indicate the worst
663 * thing (e.g. bug) happened, so we avoid waiting for it.
664 */
28fd1298 665 if (err != -EIO) {
94004ed7
CH
666 int err2 = filemap_fdatawait_range(mapping,
667 lstart, lend);
28fd1298
OH
668 if (!err)
669 err = err2;
cbeaf951
JL
670 } else {
671 /* Clear any previously stored errors */
672 filemap_check_errors(mapping);
28fd1298 673 }
865ffef3
DM
674 } else {
675 err = filemap_check_errors(mapping);
1da177e4 676 }
28fd1298 677 return err;
1da177e4 678}
f6995585 679EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 680
5660e13d
JL
681void __filemap_set_wb_err(struct address_space *mapping, int err)
682{
3acdfd28 683 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
684
685 trace_filemap_set_wb_err(mapping, eseq);
686}
687EXPORT_SYMBOL(__filemap_set_wb_err);
688
689/**
690 * file_check_and_advance_wb_err - report wb error (if any) that was previously
691 * and advance wb_err to current one
692 * @file: struct file on which the error is being reported
693 *
694 * When userland calls fsync (or something like nfsd does the equivalent), we
695 * want to report any writeback errors that occurred since the last fsync (or
696 * since the file was opened if there haven't been any).
697 *
698 * Grab the wb_err from the mapping. If it matches what we have in the file,
699 * then just quickly return 0. The file is all caught up.
700 *
701 * If it doesn't match, then take the mapping value, set the "seen" flag in
702 * it and try to swap it into place. If it works, or another task beat us
703 * to it with the new value, then update the f_wb_err and return the error
704 * portion. The error at this point must be reported via proper channels
705 * (a'la fsync, or NFS COMMIT operation, etc.).
706 *
707 * While we handle mapping->wb_err with atomic operations, the f_wb_err
708 * value is protected by the f_lock since we must ensure that it reflects
709 * the latest value swapped in for this file descriptor.
a862f68a
MR
710 *
711 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
712 */
713int file_check_and_advance_wb_err(struct file *file)
714{
715 int err = 0;
716 errseq_t old = READ_ONCE(file->f_wb_err);
717 struct address_space *mapping = file->f_mapping;
718
719 /* Locklessly handle the common case where nothing has changed */
720 if (errseq_check(&mapping->wb_err, old)) {
721 /* Something changed, must use slow path */
722 spin_lock(&file->f_lock);
723 old = file->f_wb_err;
724 err = errseq_check_and_advance(&mapping->wb_err,
725 &file->f_wb_err);
726 trace_file_check_and_advance_wb_err(file, old);
727 spin_unlock(&file->f_lock);
728 }
f4e222c5
JL
729
730 /*
731 * We're mostly using this function as a drop in replacement for
732 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
733 * that the legacy code would have had on these flags.
734 */
735 clear_bit(AS_EIO, &mapping->flags);
736 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
737 return err;
738}
739EXPORT_SYMBOL(file_check_and_advance_wb_err);
740
741/**
742 * file_write_and_wait_range - write out & wait on a file range
743 * @file: file pointing to address_space with pages
744 * @lstart: offset in bytes where the range starts
745 * @lend: offset in bytes where the range ends (inclusive)
746 *
747 * Write out and wait upon file offsets lstart->lend, inclusive.
748 *
749 * Note that @lend is inclusive (describes the last byte to be written) so
750 * that this function can be used to write to the very end-of-file (end = -1).
751 *
752 * After writing out and waiting on the data, we check and advance the
753 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
754 *
755 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
756 */
757int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
758{
759 int err = 0, err2;
760 struct address_space *mapping = file->f_mapping;
761
9326c9b2 762 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
763 err = __filemap_fdatawrite_range(mapping, lstart, lend,
764 WB_SYNC_ALL);
765 /* See comment of filemap_write_and_wait() */
766 if (err != -EIO)
767 __filemap_fdatawait_range(mapping, lstart, lend);
768 }
769 err2 = file_check_and_advance_wb_err(file);
770 if (!err)
771 err = err2;
772 return err;
773}
774EXPORT_SYMBOL(file_write_and_wait_range);
775
ef6a3c63
MS
776/**
777 * replace_page_cache_page - replace a pagecache page with a new one
778 * @old: page to be replaced
779 * @new: page to replace with
ef6a3c63
MS
780 *
781 * This function replaces a page in the pagecache with a new one. On
782 * success it acquires the pagecache reference for the new page and
783 * drops it for the old page. Both the old and new pages must be
784 * locked. This function does not add the new page to the LRU, the
785 * caller must do that.
786 *
74d60958 787 * The remove + add is atomic. This function cannot fail.
ef6a3c63 788 */
1f7ef657 789void replace_page_cache_page(struct page *old, struct page *new)
ef6a3c63 790{
74d60958
MW
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 pgoff_t offset = old->index;
794 XA_STATE(xas, &mapping->i_pages, offset);
795 unsigned long flags;
ef6a3c63 796
309381fe
SL
797 VM_BUG_ON_PAGE(!PageLocked(old), old);
798 VM_BUG_ON_PAGE(!PageLocked(new), new);
799 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 800
74d60958
MW
801 get_page(new);
802 new->mapping = mapping;
803 new->index = offset;
ef6a3c63 804
0d1c2072
JW
805 mem_cgroup_migrate(old, new);
806
74d60958
MW
807 xas_lock_irqsave(&xas, flags);
808 xas_store(&xas, new);
4165b9b4 809
74d60958
MW
810 old->mapping = NULL;
811 /* hugetlb pages do not participate in page cache accounting. */
812 if (!PageHuge(old))
0d1c2072 813 __dec_lruvec_page_state(old, NR_FILE_PAGES);
74d60958 814 if (!PageHuge(new))
0d1c2072 815 __inc_lruvec_page_state(new, NR_FILE_PAGES);
74d60958 816 if (PageSwapBacked(old))
0d1c2072 817 __dec_lruvec_page_state(old, NR_SHMEM);
74d60958 818 if (PageSwapBacked(new))
0d1c2072 819 __inc_lruvec_page_state(new, NR_SHMEM);
74d60958 820 xas_unlock_irqrestore(&xas, flags);
74d60958
MW
821 if (freepage)
822 freepage(old);
823 put_page(old);
ef6a3c63
MS
824}
825EXPORT_SYMBOL_GPL(replace_page_cache_page);
826
16c0cc0c 827noinline int __add_to_page_cache_locked(struct page *page,
76cd6173 828 struct address_space *mapping,
c4cf498d 829 pgoff_t offset, gfp_t gfp,
76cd6173 830 void **shadowp)
1da177e4 831{
74d60958 832 XA_STATE(xas, &mapping->i_pages, offset);
00501b53 833 int huge = PageHuge(page);
e286781d 834 int error;
da74240e 835 bool charged = false;
e286781d 836
309381fe
SL
837 VM_BUG_ON_PAGE(!PageLocked(page), page);
838 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 839 mapping_set_update(&xas, mapping);
e286781d 840
09cbfeaf 841 get_page(page);
66a0c8ee
KS
842 page->mapping = mapping;
843 page->index = offset;
844
3fea5a49 845 if (!huge) {
198b62f8 846 error = mem_cgroup_charge(page, current->mm, gfp);
3fea5a49
JW
847 if (error)
848 goto error;
da74240e 849 charged = true;
3fea5a49
JW
850 }
851
198b62f8
MWO
852 gfp &= GFP_RECLAIM_MASK;
853
74d60958 854 do {
198b62f8
MWO
855 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
856 void *entry, *old = NULL;
857
858 if (order > thp_order(page))
859 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
860 order, gfp);
74d60958 861 xas_lock_irq(&xas);
198b62f8
MWO
862 xas_for_each_conflict(&xas, entry) {
863 old = entry;
864 if (!xa_is_value(entry)) {
865 xas_set_err(&xas, -EEXIST);
866 goto unlock;
867 }
868 }
869
870 if (old) {
871 if (shadowp)
872 *shadowp = old;
873 /* entry may have been split before we acquired lock */
874 order = xa_get_order(xas.xa, xas.xa_index);
875 if (order > thp_order(page)) {
876 xas_split(&xas, old, order);
877 xas_reset(&xas);
878 }
879 }
880
74d60958
MW
881 xas_store(&xas, page);
882 if (xas_error(&xas))
883 goto unlock;
884
198b62f8 885 if (old)
74d60958 886 mapping->nrexceptional--;
74d60958
MW
887 mapping->nrpages++;
888
889 /* hugetlb pages do not participate in page cache accounting */
890 if (!huge)
0d1c2072 891 __inc_lruvec_page_state(page, NR_FILE_PAGES);
74d60958
MW
892unlock:
893 xas_unlock_irq(&xas);
198b62f8 894 } while (xas_nomem(&xas, gfp));
74d60958 895
3fea5a49
JW
896 if (xas_error(&xas)) {
897 error = xas_error(&xas);
da74240e
WL
898 if (charged)
899 mem_cgroup_uncharge(page);
74d60958 900 goto error;
3fea5a49 901 }
4165b9b4 902
66a0c8ee
KS
903 trace_mm_filemap_add_to_page_cache(page);
904 return 0;
74d60958 905error:
66a0c8ee
KS
906 page->mapping = NULL;
907 /* Leave page->index set: truncation relies upon it */
09cbfeaf 908 put_page(page);
3fea5a49 909 return error;
1da177e4 910}
cfcbfb13 911ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
a528910e
JW
912
913/**
914 * add_to_page_cache_locked - add a locked page to the pagecache
915 * @page: page to add
916 * @mapping: the page's address_space
917 * @offset: page index
918 * @gfp_mask: page allocation mode
919 *
920 * This function is used to add a page to the pagecache. It must be locked.
921 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
922 *
923 * Return: %0 on success, negative error code otherwise.
a528910e
JW
924 */
925int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
926 pgoff_t offset, gfp_t gfp_mask)
927{
928 return __add_to_page_cache_locked(page, mapping, offset,
929 gfp_mask, NULL);
930}
e286781d 931EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
932
933int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 934 pgoff_t offset, gfp_t gfp_mask)
1da177e4 935{
a528910e 936 void *shadow = NULL;
4f98a2fe
RR
937 int ret;
938
48c935ad 939 __SetPageLocked(page);
a528910e
JW
940 ret = __add_to_page_cache_locked(page, mapping, offset,
941 gfp_mask, &shadow);
942 if (unlikely(ret))
48c935ad 943 __ClearPageLocked(page);
a528910e
JW
944 else {
945 /*
946 * The page might have been evicted from cache only
947 * recently, in which case it should be activated like
948 * any other repeatedly accessed page.
f0281a00
RR
949 * The exception is pages getting rewritten; evicting other
950 * data from the working set, only to cache data that will
951 * get overwritten with something else, is a waste of memory.
a528910e 952 */
1899ad18
JW
953 WARN_ON_ONCE(PageActive(page));
954 if (!(gfp_mask & __GFP_WRITE) && shadow)
955 workingset_refault(page, shadow);
a528910e
JW
956 lru_cache_add(page);
957 }
1da177e4
LT
958 return ret;
959}
18bc0bbd 960EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 961
44110fe3 962#ifdef CONFIG_NUMA
2ae88149 963struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 964{
c0ff7453
MX
965 int n;
966 struct page *page;
967
44110fe3 968 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
969 unsigned int cpuset_mems_cookie;
970 do {
d26914d1 971 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 972 n = cpuset_mem_spread_node();
96db800f 973 page = __alloc_pages_node(n, gfp, 0);
d26914d1 974 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 975
c0ff7453 976 return page;
44110fe3 977 }
2ae88149 978 return alloc_pages(gfp, 0);
44110fe3 979}
2ae88149 980EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
981#endif
982
1da177e4
LT
983/*
984 * In order to wait for pages to become available there must be
985 * waitqueues associated with pages. By using a hash table of
986 * waitqueues where the bucket discipline is to maintain all
987 * waiters on the same queue and wake all when any of the pages
988 * become available, and for the woken contexts to check to be
989 * sure the appropriate page became available, this saves space
990 * at a cost of "thundering herd" phenomena during rare hash
991 * collisions.
992 */
62906027
NP
993#define PAGE_WAIT_TABLE_BITS 8
994#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
995static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
996
997static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 998{
62906027 999 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 1000}
1da177e4 1001
62906027 1002void __init pagecache_init(void)
1da177e4 1003{
62906027 1004 int i;
1da177e4 1005
62906027
NP
1006 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1007 init_waitqueue_head(&page_wait_table[i]);
1008
1009 page_writeback_init();
1da177e4 1010}
1da177e4 1011
5ef64cc8
LT
1012/*
1013 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1014 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1015 * one.
1016 *
1017 * We have:
1018 *
1019 * (a) no special bits set:
1020 *
1021 * We're just waiting for the bit to be released, and when a waker
1022 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1023 * and remove it from the wait queue.
1024 *
1025 * Simple and straightforward.
1026 *
1027 * (b) WQ_FLAG_EXCLUSIVE:
1028 *
1029 * The waiter is waiting to get the lock, and only one waiter should
1030 * be woken up to avoid any thundering herd behavior. We'll set the
1031 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1032 *
1033 * This is the traditional exclusive wait.
1034 *
5868ec26 1035 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1036 *
1037 * The waiter is waiting to get the bit, and additionally wants the
1038 * lock to be transferred to it for fair lock behavior. If the lock
1039 * cannot be taken, we stop walking the wait queue without waking
1040 * the waiter.
1041 *
1042 * This is the "fair lock handoff" case, and in addition to setting
1043 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1044 * that it now has the lock.
1045 */
ac6424b9 1046static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1047{
5ef64cc8 1048 unsigned int flags;
62906027
NP
1049 struct wait_page_key *key = arg;
1050 struct wait_page_queue *wait_page
1051 = container_of(wait, struct wait_page_queue, wait);
1052
cdc8fcb4 1053 if (!wake_page_match(wait_page, key))
62906027 1054 return 0;
3510ca20 1055
9a1ea439 1056 /*
5ef64cc8
LT
1057 * If it's a lock handoff wait, we get the bit for it, and
1058 * stop walking (and do not wake it up) if we can't.
9a1ea439 1059 */
5ef64cc8
LT
1060 flags = wait->flags;
1061 if (flags & WQ_FLAG_EXCLUSIVE) {
1062 if (test_bit(key->bit_nr, &key->page->flags))
2a9127fc 1063 return -1;
5ef64cc8
LT
1064 if (flags & WQ_FLAG_CUSTOM) {
1065 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1066 return -1;
1067 flags |= WQ_FLAG_DONE;
1068 }
2a9127fc 1069 }
f62e00cc 1070
5ef64cc8
LT
1071 /*
1072 * We are holding the wait-queue lock, but the waiter that
1073 * is waiting for this will be checking the flags without
1074 * any locking.
1075 *
1076 * So update the flags atomically, and wake up the waiter
1077 * afterwards to avoid any races. This store-release pairs
1078 * with the load-acquire in wait_on_page_bit_common().
1079 */
1080 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1081 wake_up_state(wait->private, mode);
1082
1083 /*
1084 * Ok, we have successfully done what we're waiting for,
1085 * and we can unconditionally remove the wait entry.
1086 *
5ef64cc8
LT
1087 * Note that this pairs with the "finish_wait()" in the
1088 * waiter, and has to be the absolute last thing we do.
1089 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1090 * might be de-allocated and the process might even have
1091 * exited.
2a9127fc 1092 */
c6fe44d9 1093 list_del_init_careful(&wait->entry);
5ef64cc8 1094 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1095}
1096
74d81bfa 1097static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1098{
62906027
NP
1099 wait_queue_head_t *q = page_waitqueue(page);
1100 struct wait_page_key key;
1101 unsigned long flags;
11a19c7b 1102 wait_queue_entry_t bookmark;
cbbce822 1103
62906027
NP
1104 key.page = page;
1105 key.bit_nr = bit_nr;
1106 key.page_match = 0;
1107
11a19c7b
TC
1108 bookmark.flags = 0;
1109 bookmark.private = NULL;
1110 bookmark.func = NULL;
1111 INIT_LIST_HEAD(&bookmark.entry);
1112
62906027 1113 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1114 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1115
1116 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1117 /*
1118 * Take a breather from holding the lock,
1119 * allow pages that finish wake up asynchronously
1120 * to acquire the lock and remove themselves
1121 * from wait queue
1122 */
1123 spin_unlock_irqrestore(&q->lock, flags);
1124 cpu_relax();
1125 spin_lock_irqsave(&q->lock, flags);
1126 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1127 }
1128
62906027
NP
1129 /*
1130 * It is possible for other pages to have collided on the waitqueue
1131 * hash, so in that case check for a page match. That prevents a long-
1132 * term waiter
1133 *
1134 * It is still possible to miss a case here, when we woke page waiters
1135 * and removed them from the waitqueue, but there are still other
1136 * page waiters.
1137 */
1138 if (!waitqueue_active(q) || !key.page_match) {
1139 ClearPageWaiters(page);
1140 /*
1141 * It's possible to miss clearing Waiters here, when we woke
1142 * our page waiters, but the hashed waitqueue has waiters for
1143 * other pages on it.
1144 *
1145 * That's okay, it's a rare case. The next waker will clear it.
1146 */
1147 }
1148 spin_unlock_irqrestore(&q->lock, flags);
1149}
74d81bfa
NP
1150
1151static void wake_up_page(struct page *page, int bit)
1152{
1153 if (!PageWaiters(page))
1154 return;
1155 wake_up_page_bit(page, bit);
1156}
62906027 1157
9a1ea439
HD
1158/*
1159 * A choice of three behaviors for wait_on_page_bit_common():
1160 */
1161enum behavior {
1162 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1163 * __lock_page() waiting on then setting PG_locked.
1164 */
1165 SHARED, /* Hold ref to page and check the bit when woken, like
1166 * wait_on_page_writeback() waiting on PG_writeback.
1167 */
1168 DROP, /* Drop ref to page before wait, no check when woken,
1169 * like put_and_wait_on_page_locked() on PG_locked.
1170 */
1171};
1172
2a9127fc 1173/*
5ef64cc8
LT
1174 * Attempt to check (or get) the page bit, and mark us done
1175 * if successful.
2a9127fc
LT
1176 */
1177static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1178 struct wait_queue_entry *wait)
1179{
1180 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1181 if (test_and_set_bit(bit_nr, &page->flags))
1182 return false;
1183 } else if (test_bit(bit_nr, &page->flags))
1184 return false;
1185
5ef64cc8 1186 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1187 return true;
1188}
1189
5ef64cc8
LT
1190/* How many times do we accept lock stealing from under a waiter? */
1191int sysctl_page_lock_unfairness = 5;
1192
62906027 1193static inline int wait_on_page_bit_common(wait_queue_head_t *q,
9a1ea439 1194 struct page *page, int bit_nr, int state, enum behavior behavior)
62906027 1195{
5ef64cc8 1196 int unfairness = sysctl_page_lock_unfairness;
62906027 1197 struct wait_page_queue wait_page;
ac6424b9 1198 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1199 bool thrashing = false;
9a1ea439 1200 bool delayacct = false;
eb414681 1201 unsigned long pflags;
62906027 1202
eb414681 1203 if (bit_nr == PG_locked &&
b1d29ba8 1204 !PageUptodate(page) && PageWorkingset(page)) {
9a1ea439 1205 if (!PageSwapBacked(page)) {
eb414681 1206 delayacct_thrashing_start();
9a1ea439
HD
1207 delayacct = true;
1208 }
eb414681 1209 psi_memstall_enter(&pflags);
b1d29ba8
JW
1210 thrashing = true;
1211 }
1212
62906027
NP
1213 init_wait(wait);
1214 wait->func = wake_page_function;
1215 wait_page.page = page;
1216 wait_page.bit_nr = bit_nr;
1217
5ef64cc8
LT
1218repeat:
1219 wait->flags = 0;
1220 if (behavior == EXCLUSIVE) {
1221 wait->flags = WQ_FLAG_EXCLUSIVE;
1222 if (--unfairness < 0)
1223 wait->flags |= WQ_FLAG_CUSTOM;
1224 }
1225
2a9127fc
LT
1226 /*
1227 * Do one last check whether we can get the
1228 * page bit synchronously.
1229 *
1230 * Do the SetPageWaiters() marking before that
1231 * to let any waker we _just_ missed know they
1232 * need to wake us up (otherwise they'll never
1233 * even go to the slow case that looks at the
1234 * page queue), and add ourselves to the wait
1235 * queue if we need to sleep.
1236 *
1237 * This part needs to be done under the queue
1238 * lock to avoid races.
1239 */
1240 spin_lock_irq(&q->lock);
1241 SetPageWaiters(page);
1242 if (!trylock_page_bit_common(page, bit_nr, wait))
1243 __add_wait_queue_entry_tail(q, wait);
1244 spin_unlock_irq(&q->lock);
62906027 1245
2a9127fc
LT
1246 /*
1247 * From now on, all the logic will be based on
5ef64cc8
LT
1248 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1249 * see whether the page bit testing has already
1250 * been done by the wake function.
2a9127fc
LT
1251 *
1252 * We can drop our reference to the page.
1253 */
1254 if (behavior == DROP)
1255 put_page(page);
62906027 1256
5ef64cc8
LT
1257 /*
1258 * Note that until the "finish_wait()", or until
1259 * we see the WQ_FLAG_WOKEN flag, we need to
1260 * be very careful with the 'wait->flags', because
1261 * we may race with a waker that sets them.
1262 */
2a9127fc 1263 for (;;) {
5ef64cc8
LT
1264 unsigned int flags;
1265
62906027
NP
1266 set_current_state(state);
1267
5ef64cc8
LT
1268 /* Loop until we've been woken or interrupted */
1269 flags = smp_load_acquire(&wait->flags);
1270 if (!(flags & WQ_FLAG_WOKEN)) {
1271 if (signal_pending_state(state, current))
1272 break;
1273
1274 io_schedule();
1275 continue;
1276 }
1277
1278 /* If we were non-exclusive, we're done */
1279 if (behavior != EXCLUSIVE)
a8b169af 1280 break;
9a1ea439 1281
5ef64cc8
LT
1282 /* If the waker got the lock for us, we're done */
1283 if (flags & WQ_FLAG_DONE)
9a1ea439 1284 break;
2a9127fc 1285
5ef64cc8
LT
1286 /*
1287 * Otherwise, if we're getting the lock, we need to
1288 * try to get it ourselves.
1289 *
1290 * And if that fails, we'll have to retry this all.
1291 */
1292 if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1293 goto repeat;
1294
1295 wait->flags |= WQ_FLAG_DONE;
1296 break;
62906027
NP
1297 }
1298
5ef64cc8
LT
1299 /*
1300 * If a signal happened, this 'finish_wait()' may remove the last
1301 * waiter from the wait-queues, but the PageWaiters bit will remain
1302 * set. That's ok. The next wakeup will take care of it, and trying
1303 * to do it here would be difficult and prone to races.
1304 */
62906027
NP
1305 finish_wait(q, wait);
1306
eb414681 1307 if (thrashing) {
9a1ea439 1308 if (delayacct)
eb414681
JW
1309 delayacct_thrashing_end();
1310 psi_memstall_leave(&pflags);
1311 }
b1d29ba8 1312
62906027 1313 /*
5ef64cc8
LT
1314 * NOTE! The wait->flags weren't stable until we've done the
1315 * 'finish_wait()', and we could have exited the loop above due
1316 * to a signal, and had a wakeup event happen after the signal
1317 * test but before the 'finish_wait()'.
1318 *
1319 * So only after the finish_wait() can we reliably determine
1320 * if we got woken up or not, so we can now figure out the final
1321 * return value based on that state without races.
1322 *
1323 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1324 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1325 */
5ef64cc8
LT
1326 if (behavior == EXCLUSIVE)
1327 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1328
2a9127fc 1329 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1330}
1331
1332void wait_on_page_bit(struct page *page, int bit_nr)
1333{
1334 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1335 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027
NP
1336}
1337EXPORT_SYMBOL(wait_on_page_bit);
1338
1339int wait_on_page_bit_killable(struct page *page, int bit_nr)
1340{
1341 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1342 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1343}
4343d008 1344EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1345
9a1ea439
HD
1346/**
1347 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1348 * @page: The page to wait for.
48054625 1349 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439
HD
1350 *
1351 * The caller should hold a reference on @page. They expect the page to
1352 * become unlocked relatively soon, but do not wish to hold up migration
1353 * (for example) by holding the reference while waiting for the page to
1354 * come unlocked. After this function returns, the caller should not
1355 * dereference @page.
48054625
MWO
1356 *
1357 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1358 */
48054625 1359int put_and_wait_on_page_locked(struct page *page, int state)
9a1ea439
HD
1360{
1361 wait_queue_head_t *q;
1362
1363 page = compound_head(page);
1364 q = page_waitqueue(page);
48054625 1365 return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
9a1ea439
HD
1366}
1367
385e1ca5
DH
1368/**
1369 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1370 * @page: Page defining the wait queue of interest
1371 * @waiter: Waiter to add to the queue
385e1ca5
DH
1372 *
1373 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1374 */
ac6424b9 1375void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1376{
1377 wait_queue_head_t *q = page_waitqueue(page);
1378 unsigned long flags;
1379
1380 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1381 __add_wait_queue_entry_tail(q, waiter);
62906027 1382 SetPageWaiters(page);
385e1ca5
DH
1383 spin_unlock_irqrestore(&q->lock, flags);
1384}
1385EXPORT_SYMBOL_GPL(add_page_wait_queue);
1386
b91e1302
LT
1387#ifndef clear_bit_unlock_is_negative_byte
1388
1389/*
1390 * PG_waiters is the high bit in the same byte as PG_lock.
1391 *
1392 * On x86 (and on many other architectures), we can clear PG_lock and
1393 * test the sign bit at the same time. But if the architecture does
1394 * not support that special operation, we just do this all by hand
1395 * instead.
1396 *
1397 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1398 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1399 * in the same byte as PG_locked.
1400 */
1401static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1402{
1403 clear_bit_unlock(nr, mem);
1404 /* smp_mb__after_atomic(); */
98473f9f 1405 return test_bit(PG_waiters, mem);
b91e1302
LT
1406}
1407
1408#endif
1409
1da177e4 1410/**
485bb99b 1411 * unlock_page - unlock a locked page
1da177e4
LT
1412 * @page: the page
1413 *
0e9aa675 1414 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1da177e4 1415 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1416 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1417 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1418 *
b91e1302
LT
1419 * Note that this depends on PG_waiters being the sign bit in the byte
1420 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1421 * clear the PG_locked bit and test PG_waiters at the same time fairly
1422 * portably (architectures that do LL/SC can test any bit, while x86 can
1423 * test the sign bit).
1da177e4 1424 */
920c7a5d 1425void unlock_page(struct page *page)
1da177e4 1426{
b91e1302 1427 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1428 page = compound_head(page);
309381fe 1429 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1430 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1431 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1432}
1433EXPORT_SYMBOL(unlock_page);
1434
485bb99b
RD
1435/**
1436 * end_page_writeback - end writeback against a page
1437 * @page: the page
1da177e4
LT
1438 */
1439void end_page_writeback(struct page *page)
1440{
888cf2db
MG
1441 /*
1442 * TestClearPageReclaim could be used here but it is an atomic
1443 * operation and overkill in this particular case. Failing to
1444 * shuffle a page marked for immediate reclaim is too mild to
1445 * justify taking an atomic operation penalty at the end of
1446 * ever page writeback.
1447 */
1448 if (PageReclaim(page)) {
1449 ClearPageReclaim(page);
ac6aadb2 1450 rotate_reclaimable_page(page);
888cf2db 1451 }
ac6aadb2 1452
073861ed
HD
1453 /*
1454 * Writeback does not hold a page reference of its own, relying
1455 * on truncation to wait for the clearing of PG_writeback.
1456 * But here we must make sure that the page is not freed and
1457 * reused before the wake_up_page().
1458 */
1459 get_page(page);
ac6aadb2
MS
1460 if (!test_clear_page_writeback(page))
1461 BUG();
1462
4e857c58 1463 smp_mb__after_atomic();
1da177e4 1464 wake_up_page(page, PG_writeback);
073861ed 1465 put_page(page);
1da177e4
LT
1466}
1467EXPORT_SYMBOL(end_page_writeback);
1468
57d99845
MW
1469/*
1470 * After completing I/O on a page, call this routine to update the page
1471 * flags appropriately
1472 */
c11f0c0b 1473void page_endio(struct page *page, bool is_write, int err)
57d99845 1474{
c11f0c0b 1475 if (!is_write) {
57d99845
MW
1476 if (!err) {
1477 SetPageUptodate(page);
1478 } else {
1479 ClearPageUptodate(page);
1480 SetPageError(page);
1481 }
1482 unlock_page(page);
abf54548 1483 } else {
57d99845 1484 if (err) {
dd8416c4
MK
1485 struct address_space *mapping;
1486
57d99845 1487 SetPageError(page);
dd8416c4
MK
1488 mapping = page_mapping(page);
1489 if (mapping)
1490 mapping_set_error(mapping, err);
57d99845
MW
1491 }
1492 end_page_writeback(page);
1493 }
1494}
1495EXPORT_SYMBOL_GPL(page_endio);
1496
485bb99b
RD
1497/**
1498 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1499 * @__page: the page to lock
1da177e4 1500 */
62906027 1501void __lock_page(struct page *__page)
1da177e4 1502{
62906027
NP
1503 struct page *page = compound_head(__page);
1504 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1505 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1506 EXCLUSIVE);
1da177e4
LT
1507}
1508EXPORT_SYMBOL(__lock_page);
1509
62906027 1510int __lock_page_killable(struct page *__page)
2687a356 1511{
62906027
NP
1512 struct page *page = compound_head(__page);
1513 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1514 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1515 EXCLUSIVE);
2687a356 1516}
18bc0bbd 1517EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1518
dd3e6d50
JA
1519int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1520{
f32b5dd7
MWO
1521 struct wait_queue_head *q = page_waitqueue(page);
1522 int ret = 0;
1523
1524 wait->page = page;
1525 wait->bit_nr = PG_locked;
1526
1527 spin_lock_irq(&q->lock);
1528 __add_wait_queue_entry_tail(q, &wait->wait);
1529 SetPageWaiters(page);
1530 ret = !trylock_page(page);
1531 /*
1532 * If we were successful now, we know we're still on the
1533 * waitqueue as we're still under the lock. This means it's
1534 * safe to remove and return success, we know the callback
1535 * isn't going to trigger.
1536 */
1537 if (!ret)
1538 __remove_wait_queue(q, &wait->wait);
1539 else
1540 ret = -EIOCBQUEUED;
1541 spin_unlock_irq(&q->lock);
1542 return ret;
dd3e6d50
JA
1543}
1544
9a95f3cf
PC
1545/*
1546 * Return values:
c1e8d7c6 1547 * 1 - page is locked; mmap_lock is still held.
9a95f3cf 1548 * 0 - page is not locked.
3e4e28c5 1549 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1550 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1551 * which case mmap_lock is still held.
9a95f3cf
PC
1552 *
1553 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
c1e8d7c6 1554 * with the page locked and the mmap_lock unperturbed.
9a95f3cf 1555 */
d065bd81
ML
1556int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1557 unsigned int flags)
1558{
4064b982 1559 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1560 /*
c1e8d7c6 1561 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1562 * even though return 0.
1563 */
1564 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1565 return 0;
1566
d8ed45c5 1567 mmap_read_unlock(mm);
37b23e05
KM
1568 if (flags & FAULT_FLAG_KILLABLE)
1569 wait_on_page_locked_killable(page);
1570 else
318b275f 1571 wait_on_page_locked(page);
d065bd81 1572 return 0;
800bca7c
HL
1573 }
1574 if (flags & FAULT_FLAG_KILLABLE) {
1575 int ret;
37b23e05 1576
800bca7c
HL
1577 ret = __lock_page_killable(page);
1578 if (ret) {
1579 mmap_read_unlock(mm);
1580 return 0;
1581 }
1582 } else {
1583 __lock_page(page);
d065bd81 1584 }
800bca7c
HL
1585 return 1;
1586
d065bd81
ML
1587}
1588
e7b563bb 1589/**
0d3f9296
MW
1590 * page_cache_next_miss() - Find the next gap in the page cache.
1591 * @mapping: Mapping.
1592 * @index: Index.
1593 * @max_scan: Maximum range to search.
e7b563bb 1594 *
0d3f9296
MW
1595 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1596 * gap with the lowest index.
e7b563bb 1597 *
0d3f9296
MW
1598 * This function may be called under the rcu_read_lock. However, this will
1599 * not atomically search a snapshot of the cache at a single point in time.
1600 * For example, if a gap is created at index 5, then subsequently a gap is
1601 * created at index 10, page_cache_next_miss covering both indices may
1602 * return 10 if called under the rcu_read_lock.
e7b563bb 1603 *
0d3f9296
MW
1604 * Return: The index of the gap if found, otherwise an index outside the
1605 * range specified (in which case 'return - index >= max_scan' will be true).
1606 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1607 */
0d3f9296 1608pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1609 pgoff_t index, unsigned long max_scan)
1610{
0d3f9296 1611 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1612
0d3f9296
MW
1613 while (max_scan--) {
1614 void *entry = xas_next(&xas);
1615 if (!entry || xa_is_value(entry))
e7b563bb 1616 break;
0d3f9296 1617 if (xas.xa_index == 0)
e7b563bb
JW
1618 break;
1619 }
1620
0d3f9296 1621 return xas.xa_index;
e7b563bb 1622}
0d3f9296 1623EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1624
1625/**
2346a560 1626 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1627 * @mapping: Mapping.
1628 * @index: Index.
1629 * @max_scan: Maximum range to search.
e7b563bb 1630 *
0d3f9296
MW
1631 * Search the range [max(index - max_scan + 1, 0), index] for the
1632 * gap with the highest index.
e7b563bb 1633 *
0d3f9296
MW
1634 * This function may be called under the rcu_read_lock. However, this will
1635 * not atomically search a snapshot of the cache at a single point in time.
1636 * For example, if a gap is created at index 10, then subsequently a gap is
1637 * created at index 5, page_cache_prev_miss() covering both indices may
1638 * return 5 if called under the rcu_read_lock.
e7b563bb 1639 *
0d3f9296
MW
1640 * Return: The index of the gap if found, otherwise an index outside the
1641 * range specified (in which case 'index - return >= max_scan' will be true).
1642 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1643 */
0d3f9296 1644pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1645 pgoff_t index, unsigned long max_scan)
1646{
0d3f9296 1647 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1648
0d3f9296
MW
1649 while (max_scan--) {
1650 void *entry = xas_prev(&xas);
1651 if (!entry || xa_is_value(entry))
e7b563bb 1652 break;
0d3f9296 1653 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1654 break;
1655 }
1656
0d3f9296 1657 return xas.xa_index;
e7b563bb 1658}
0d3f9296 1659EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1660
485bb99b 1661/**
0cd6144a 1662 * find_get_entry - find and get a page cache entry
485bb99b 1663 * @mapping: the address_space to search
a6de4b48 1664 * @index: The page cache index.
0cd6144a
JW
1665 *
1666 * Looks up the page cache slot at @mapping & @offset. If there is a
a6de4b48 1667 * page cache page, the head page is returned with an increased refcount.
485bb99b 1668 *
139b6a6f
JW
1669 * If the slot holds a shadow entry of a previously evicted page, or a
1670 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1671 *
a6de4b48 1672 * Return: The head page or shadow entry, %NULL if nothing is found.
1da177e4 1673 */
a6de4b48 1674struct page *find_get_entry(struct address_space *mapping, pgoff_t index)
1da177e4 1675{
a6de4b48 1676 XA_STATE(xas, &mapping->i_pages, index);
4101196b 1677 struct page *page;
1da177e4 1678
a60637c8
NP
1679 rcu_read_lock();
1680repeat:
4c7472c0
MW
1681 xas_reset(&xas);
1682 page = xas_load(&xas);
1683 if (xas_retry(&xas, page))
1684 goto repeat;
1685 /*
1686 * A shadow entry of a recently evicted page, or a swap entry from
1687 * shmem/tmpfs. Return it without attempting to raise page count.
1688 */
1689 if (!page || xa_is_value(page))
1690 goto out;
83929372 1691
4101196b 1692 if (!page_cache_get_speculative(page))
4c7472c0 1693 goto repeat;
83929372 1694
4c7472c0 1695 /*
4101196b 1696 * Has the page moved or been split?
4c7472c0
MW
1697 * This is part of the lockless pagecache protocol. See
1698 * include/linux/pagemap.h for details.
1699 */
1700 if (unlikely(page != xas_reload(&xas))) {
4101196b 1701 put_page(page);
4c7472c0 1702 goto repeat;
a60637c8 1703 }
27d20fdd 1704out:
a60637c8
NP
1705 rcu_read_unlock();
1706
1da177e4
LT
1707 return page;
1708}
1da177e4 1709
0cd6144a 1710/**
63ec1973
MWO
1711 * find_lock_entry - Locate and lock a page cache entry.
1712 * @mapping: The address_space to search.
1713 * @index: The page cache index.
0cd6144a 1714 *
63ec1973
MWO
1715 * Looks up the page at @mapping & @index. If there is a page in the
1716 * cache, the head page is returned locked and with an increased refcount.
0cd6144a 1717 *
139b6a6f
JW
1718 * If the slot holds a shadow entry of a previously evicted page, or a
1719 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1720 *
63ec1973
MWO
1721 * Context: May sleep.
1722 * Return: The head page or shadow entry, %NULL if nothing is found.
0cd6144a 1723 */
63ec1973 1724struct page *find_lock_entry(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1725{
1726 struct page *page;
1727
1da177e4 1728repeat:
63ec1973 1729 page = find_get_entry(mapping, index);
4c7472c0 1730 if (page && !xa_is_value(page)) {
a60637c8
NP
1731 lock_page(page);
1732 /* Has the page been truncated? */
63ec1973 1733 if (unlikely(page->mapping != mapping)) {
a60637c8 1734 unlock_page(page);
09cbfeaf 1735 put_page(page);
a60637c8 1736 goto repeat;
1da177e4 1737 }
63ec1973 1738 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1da177e4 1739 }
1da177e4
LT
1740 return page;
1741}
0cd6144a
JW
1742
1743/**
2294b32e
MWO
1744 * pagecache_get_page - Find and get a reference to a page.
1745 * @mapping: The address_space to search.
1746 * @index: The page index.
1747 * @fgp_flags: %FGP flags modify how the page is returned.
1748 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1749 *
2294b32e 1750 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1751 *
2294b32e 1752 * @fgp_flags can be zero or more of these flags:
0e056eb5 1753 *
2294b32e
MWO
1754 * * %FGP_ACCESSED - The page will be marked accessed.
1755 * * %FGP_LOCK - The page is returned locked.
a8cf7f27
MWO
1756 * * %FGP_HEAD - If the page is present and a THP, return the head page
1757 * rather than the exact page specified by the index.
2294b32e
MWO
1758 * * %FGP_CREAT - If no page is present then a new page is allocated using
1759 * @gfp_mask and added to the page cache and the VM's LRU list.
1760 * The page is returned locked and with an increased refcount.
1761 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1762 * page is already in cache. If the page was allocated, unlock it before
1763 * returning so the caller can do the same dance.
605cad83
YS
1764 * * %FGP_WRITE - The page will be written
1765 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1766 * * %FGP_NOWAIT - Don't get blocked by page lock
1da177e4 1767 *
2294b32e
MWO
1768 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1769 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1770 *
2457aec6 1771 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1772 *
2294b32e 1773 * Return: The found page or %NULL otherwise.
1da177e4 1774 */
2294b32e
MWO
1775struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1776 int fgp_flags, gfp_t gfp_mask)
1da177e4 1777{
eb2be189 1778 struct page *page;
2457aec6 1779
1da177e4 1780repeat:
2294b32e 1781 page = find_get_entry(mapping, index);
3159f943 1782 if (xa_is_value(page))
2457aec6
MG
1783 page = NULL;
1784 if (!page)
1785 goto no_page;
1786
1787 if (fgp_flags & FGP_LOCK) {
1788 if (fgp_flags & FGP_NOWAIT) {
1789 if (!trylock_page(page)) {
09cbfeaf 1790 put_page(page);
2457aec6
MG
1791 return NULL;
1792 }
1793 } else {
1794 lock_page(page);
1795 }
1796
1797 /* Has the page been truncated? */
a8cf7f27 1798 if (unlikely(page->mapping != mapping)) {
2457aec6 1799 unlock_page(page);
09cbfeaf 1800 put_page(page);
2457aec6
MG
1801 goto repeat;
1802 }
a8cf7f27 1803 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
2457aec6
MG
1804 }
1805
c16eb000 1806 if (fgp_flags & FGP_ACCESSED)
2457aec6 1807 mark_page_accessed(page);
b9306a79
YS
1808 else if (fgp_flags & FGP_WRITE) {
1809 /* Clear idle flag for buffer write */
1810 if (page_is_idle(page))
1811 clear_page_idle(page);
1812 }
a8cf7f27
MWO
1813 if (!(fgp_flags & FGP_HEAD))
1814 page = find_subpage(page, index);
2457aec6
MG
1815
1816no_page:
1817 if (!page && (fgp_flags & FGP_CREAT)) {
1818 int err;
f56753ac 1819 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
45f87de5
MH
1820 gfp_mask |= __GFP_WRITE;
1821 if (fgp_flags & FGP_NOFS)
1822 gfp_mask &= ~__GFP_FS;
2457aec6 1823
45f87de5 1824 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1825 if (!page)
1826 return NULL;
2457aec6 1827
a75d4c33 1828 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1829 fgp_flags |= FGP_LOCK;
1830
eb39d618 1831 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1832 if (fgp_flags & FGP_ACCESSED)
eb39d618 1833 __SetPageReferenced(page);
2457aec6 1834
2294b32e 1835 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
eb2be189 1836 if (unlikely(err)) {
09cbfeaf 1837 put_page(page);
eb2be189
NP
1838 page = NULL;
1839 if (err == -EEXIST)
1840 goto repeat;
1da177e4 1841 }
a75d4c33
JB
1842
1843 /*
1844 * add_to_page_cache_lru locks the page, and for mmap we expect
1845 * an unlocked page.
1846 */
1847 if (page && (fgp_flags & FGP_FOR_MMAP))
1848 unlock_page(page);
1da177e4 1849 }
2457aec6 1850
1da177e4
LT
1851 return page;
1852}
2457aec6 1853EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1854
0cd6144a
JW
1855/**
1856 * find_get_entries - gang pagecache lookup
1857 * @mapping: The address_space to search
1858 * @start: The starting page cache index
1859 * @nr_entries: The maximum number of entries
1860 * @entries: Where the resulting entries are placed
1861 * @indices: The cache indices corresponding to the entries in @entries
1862 *
1863 * find_get_entries() will search for and return a group of up to
1864 * @nr_entries entries in the mapping. The entries are placed at
1865 * @entries. find_get_entries() takes a reference against any actual
1866 * pages it returns.
1867 *
1868 * The search returns a group of mapping-contiguous page cache entries
1869 * with ascending indexes. There may be holes in the indices due to
1870 * not-present pages.
1871 *
139b6a6f
JW
1872 * Any shadow entries of evicted pages, or swap entries from
1873 * shmem/tmpfs, are included in the returned array.
0cd6144a 1874 *
71725ed1
HD
1875 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1876 * stops at that page: the caller is likely to have a better way to handle
1877 * the compound page as a whole, and then skip its extent, than repeatedly
1878 * calling find_get_entries() to return all its tails.
1879 *
a862f68a 1880 * Return: the number of pages and shadow entries which were found.
0cd6144a
JW
1881 */
1882unsigned find_get_entries(struct address_space *mapping,
1883 pgoff_t start, unsigned int nr_entries,
1884 struct page **entries, pgoff_t *indices)
1885{
f280bf09
MW
1886 XA_STATE(xas, &mapping->i_pages, start);
1887 struct page *page;
0cd6144a 1888 unsigned int ret = 0;
0cd6144a
JW
1889
1890 if (!nr_entries)
1891 return 0;
1892
1893 rcu_read_lock();
f280bf09 1894 xas_for_each(&xas, page, ULONG_MAX) {
f280bf09 1895 if (xas_retry(&xas, page))
0cd6144a 1896 continue;
f280bf09
MW
1897 /*
1898 * A shadow entry of a recently evicted page, a swap
1899 * entry from shmem/tmpfs or a DAX entry. Return it
1900 * without attempting to raise page count.
1901 */
1902 if (xa_is_value(page))
0cd6144a 1903 goto export;
83929372 1904
4101196b 1905 if (!page_cache_get_speculative(page))
f280bf09 1906 goto retry;
83929372 1907
4101196b 1908 /* Has the page moved or been split? */
f280bf09
MW
1909 if (unlikely(page != xas_reload(&xas)))
1910 goto put_page;
1911
71725ed1
HD
1912 /*
1913 * Terminate early on finding a THP, to allow the caller to
1914 * handle it all at once; but continue if this is hugetlbfs.
1915 */
1916 if (PageTransHuge(page) && !PageHuge(page)) {
1917 page = find_subpage(page, xas.xa_index);
1918 nr_entries = ret + 1;
1919 }
0cd6144a 1920export:
f280bf09 1921 indices[ret] = xas.xa_index;
0cd6144a
JW
1922 entries[ret] = page;
1923 if (++ret == nr_entries)
1924 break;
f280bf09
MW
1925 continue;
1926put_page:
4101196b 1927 put_page(page);
f280bf09
MW
1928retry:
1929 xas_reset(&xas);
0cd6144a
JW
1930 }
1931 rcu_read_unlock();
1932 return ret;
1933}
1934
1da177e4 1935/**
b947cee4 1936 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1937 * @mapping: The address_space to search
1938 * @start: The starting page index
b947cee4 1939 * @end: The final page index (inclusive)
1da177e4
LT
1940 * @nr_pages: The maximum number of pages
1941 * @pages: Where the resulting pages are placed
1942 *
b947cee4
JK
1943 * find_get_pages_range() will search for and return a group of up to @nr_pages
1944 * pages in the mapping starting at index @start and up to index @end
1945 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1946 * a reference against the returned pages.
1da177e4
LT
1947 *
1948 * The search returns a group of mapping-contiguous pages with ascending
1949 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1950 * We also update @start to index the next page for the traversal.
1da177e4 1951 *
a862f68a
MR
1952 * Return: the number of pages which were found. If this number is
1953 * smaller than @nr_pages, the end of specified range has been
b947cee4 1954 * reached.
1da177e4 1955 */
b947cee4
JK
1956unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1957 pgoff_t end, unsigned int nr_pages,
1958 struct page **pages)
1da177e4 1959{
fd1b3cee
MW
1960 XA_STATE(xas, &mapping->i_pages, *start);
1961 struct page *page;
0fc9d104
KK
1962 unsigned ret = 0;
1963
1964 if (unlikely(!nr_pages))
1965 return 0;
a60637c8
NP
1966
1967 rcu_read_lock();
fd1b3cee 1968 xas_for_each(&xas, page, end) {
fd1b3cee 1969 if (xas_retry(&xas, page))
a60637c8 1970 continue;
fd1b3cee
MW
1971 /* Skip over shadow, swap and DAX entries */
1972 if (xa_is_value(page))
8079b1c8 1973 continue;
a60637c8 1974
4101196b 1975 if (!page_cache_get_speculative(page))
fd1b3cee 1976 goto retry;
83929372 1977
4101196b 1978 /* Has the page moved or been split? */
fd1b3cee
MW
1979 if (unlikely(page != xas_reload(&xas)))
1980 goto put_page;
1da177e4 1981
4101196b 1982 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 1983 if (++ret == nr_pages) {
5d3ee42f 1984 *start = xas.xa_index + 1;
b947cee4
JK
1985 goto out;
1986 }
fd1b3cee
MW
1987 continue;
1988put_page:
4101196b 1989 put_page(page);
fd1b3cee
MW
1990retry:
1991 xas_reset(&xas);
a60637c8 1992 }
5b280c0c 1993
b947cee4
JK
1994 /*
1995 * We come here when there is no page beyond @end. We take care to not
1996 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 1997 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
1998 * already broken anyway.
1999 */
2000 if (end == (pgoff_t)-1)
2001 *start = (pgoff_t)-1;
2002 else
2003 *start = end + 1;
2004out:
a60637c8 2005 rcu_read_unlock();
d72dc8a2 2006
1da177e4
LT
2007 return ret;
2008}
2009
ebf43500
JA
2010/**
2011 * find_get_pages_contig - gang contiguous pagecache lookup
2012 * @mapping: The address_space to search
2013 * @index: The starting page index
2014 * @nr_pages: The maximum number of pages
2015 * @pages: Where the resulting pages are placed
2016 *
2017 * find_get_pages_contig() works exactly like find_get_pages(), except
2018 * that the returned number of pages are guaranteed to be contiguous.
2019 *
a862f68a 2020 * Return: the number of pages which were found.
ebf43500
JA
2021 */
2022unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2023 unsigned int nr_pages, struct page **pages)
2024{
3ece58a2
MW
2025 XA_STATE(xas, &mapping->i_pages, index);
2026 struct page *page;
0fc9d104
KK
2027 unsigned int ret = 0;
2028
2029 if (unlikely(!nr_pages))
2030 return 0;
a60637c8
NP
2031
2032 rcu_read_lock();
3ece58a2 2033 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
2034 if (xas_retry(&xas, page))
2035 continue;
2036 /*
2037 * If the entry has been swapped out, we can stop looking.
2038 * No current caller is looking for DAX entries.
2039 */
2040 if (xa_is_value(page))
8079b1c8 2041 break;
ebf43500 2042
4101196b 2043 if (!page_cache_get_speculative(page))
3ece58a2 2044 goto retry;
83929372 2045
4101196b 2046 /* Has the page moved or been split? */
3ece58a2
MW
2047 if (unlikely(page != xas_reload(&xas)))
2048 goto put_page;
a60637c8 2049
4101196b 2050 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
2051 if (++ret == nr_pages)
2052 break;
3ece58a2
MW
2053 continue;
2054put_page:
4101196b 2055 put_page(page);
3ece58a2
MW
2056retry:
2057 xas_reset(&xas);
ebf43500 2058 }
a60637c8
NP
2059 rcu_read_unlock();
2060 return ret;
ebf43500 2061}
ef71c15c 2062EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 2063
485bb99b 2064/**
72b045ae 2065 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
2066 * @mapping: the address_space to search
2067 * @index: the starting page index
72b045ae 2068 * @end: The final page index (inclusive)
485bb99b
RD
2069 * @tag: the tag index
2070 * @nr_pages: the maximum number of pages
2071 * @pages: where the resulting pages are placed
2072 *
1da177e4 2073 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 2074 * @tag. We update @index to index the next page for the traversal.
a862f68a
MR
2075 *
2076 * Return: the number of pages which were found.
1da177e4 2077 */
72b045ae 2078unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 2079 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 2080 struct page **pages)
1da177e4 2081{
a6906972
MW
2082 XA_STATE(xas, &mapping->i_pages, *index);
2083 struct page *page;
0fc9d104
KK
2084 unsigned ret = 0;
2085
2086 if (unlikely(!nr_pages))
2087 return 0;
a60637c8
NP
2088
2089 rcu_read_lock();
a6906972 2090 xas_for_each_marked(&xas, page, end, tag) {
a6906972 2091 if (xas_retry(&xas, page))
a60637c8 2092 continue;
a6906972
MW
2093 /*
2094 * Shadow entries should never be tagged, but this iteration
2095 * is lockless so there is a window for page reclaim to evict
2096 * a page we saw tagged. Skip over it.
2097 */
2098 if (xa_is_value(page))
139b6a6f 2099 continue;
a60637c8 2100
4101196b 2101 if (!page_cache_get_speculative(page))
a6906972 2102 goto retry;
a60637c8 2103
4101196b 2104 /* Has the page moved or been split? */
a6906972
MW
2105 if (unlikely(page != xas_reload(&xas)))
2106 goto put_page;
a60637c8 2107
4101196b 2108 pages[ret] = find_subpage(page, xas.xa_index);
72b045ae 2109 if (++ret == nr_pages) {
5d3ee42f 2110 *index = xas.xa_index + 1;
72b045ae
JK
2111 goto out;
2112 }
a6906972
MW
2113 continue;
2114put_page:
4101196b 2115 put_page(page);
a6906972
MW
2116retry:
2117 xas_reset(&xas);
a60637c8 2118 }
5b280c0c 2119
72b045ae 2120 /*
a6906972 2121 * We come here when we got to @end. We take care to not overflow the
72b045ae 2122 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
2123 * iteration when there is a page at index -1 but that is already
2124 * broken anyway.
72b045ae
JK
2125 */
2126 if (end == (pgoff_t)-1)
2127 *index = (pgoff_t)-1;
2128 else
2129 *index = end + 1;
2130out:
a60637c8 2131 rcu_read_unlock();
1da177e4 2132
1da177e4
LT
2133 return ret;
2134}
72b045ae 2135EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 2136
76d42bd9
WF
2137/*
2138 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2139 * a _large_ part of the i/o request. Imagine the worst scenario:
2140 *
2141 * ---R__________________________________________B__________
2142 * ^ reading here ^ bad block(assume 4k)
2143 *
2144 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2145 * => failing the whole request => read(R) => read(R+1) =>
2146 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2147 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2148 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2149 *
2150 * It is going insane. Fix it by quickly scaling down the readahead size.
2151 */
0f8e2db4 2152static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2153{
76d42bd9 2154 ra->ra_pages /= 4;
76d42bd9
WF
2155}
2156
cbd59c48
MWO
2157/*
2158 * filemap_get_read_batch - Get a batch of pages for read
2159 *
2160 * Get a batch of pages which represent a contiguous range of bytes
2161 * in the file. No tail pages will be returned. If @index is in the
2162 * middle of a THP, the entire THP will be returned. The last page in
2163 * the batch may have Readahead set or be not Uptodate so that the
2164 * caller can take the appropriate action.
2165 */
2166static void filemap_get_read_batch(struct address_space *mapping,
2167 pgoff_t index, pgoff_t max, struct pagevec *pvec)
2168{
2169 XA_STATE(xas, &mapping->i_pages, index);
2170 struct page *head;
2171
2172 rcu_read_lock();
2173 for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2174 if (xas_retry(&xas, head))
2175 continue;
2176 if (xas.xa_index > max || xa_is_value(head))
2177 break;
2178 if (!page_cache_get_speculative(head))
2179 goto retry;
2180
2181 /* Has the page moved or been split? */
2182 if (unlikely(head != xas_reload(&xas)))
2183 goto put_page;
2184
2185 if (!pagevec_add(pvec, head))
2186 break;
2187 if (!PageUptodate(head))
2188 break;
2189 if (PageReadahead(head))
2190 break;
2191 xas.xa_index = head->index + thp_nr_pages(head) - 1;
2192 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2193 continue;
2194put_page:
2195 put_page(head);
2196retry:
2197 xas_reset(&xas);
2198 }
2199 rcu_read_unlock();
2200}
2201
68430303
MWO
2202static int filemap_read_page(struct file *file, struct address_space *mapping,
2203 struct page *page)
723ef24b 2204{
723ef24b
KO
2205 int error;
2206
723ef24b 2207 /*
68430303
MWO
2208 * A previous I/O error may have been due to temporary failures,
2209 * eg. multipath errors. PG_error will be set again if readpage
2210 * fails.
723ef24b
KO
2211 */
2212 ClearPageError(page);
2213 /* Start the actual read. The read will unlock the page. */
68430303
MWO
2214 error = mapping->a_ops->readpage(file, page);
2215 if (error)
2216 return error;
2217 if (PageUptodate(page))
2218 return 0;
723ef24b 2219
68430303
MWO
2220 error = lock_page_killable(page);
2221 if (error)
2222 return error;
723ef24b 2223 if (!PageUptodate(page)) {
68430303
MWO
2224 if (page->mapping == NULL) {
2225 /* page truncated */
2226 error = AOP_TRUNCATED_PAGE;
2227 } else {
2228 shrink_readahead_size_eio(&file->f_ra);
2229 error = -EIO;
723ef24b 2230 }
723ef24b 2231 }
68430303
MWO
2232 unlock_page(page);
2233 return error;
723ef24b
KO
2234}
2235
fce70da3
MWO
2236static bool filemap_range_uptodate(struct address_space *mapping,
2237 loff_t pos, struct iov_iter *iter, struct page *page)
2238{
2239 int count;
2240
2241 if (PageUptodate(page))
2242 return true;
2243 /* pipes can't handle partially uptodate pages */
2244 if (iov_iter_is_pipe(iter))
2245 return false;
2246 if (!mapping->a_ops->is_partially_uptodate)
2247 return false;
2248 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2249 return false;
2250
2251 count = iter->count;
2252 if (page_offset(page) > pos) {
2253 count -= page_offset(page) - pos;
2254 pos = 0;
2255 } else {
2256 pos -= page_offset(page);
2257 }
2258
2259 return mapping->a_ops->is_partially_uptodate(page, pos, count);
2260}
2261
4612aeef
MWO
2262static int filemap_update_page(struct kiocb *iocb,
2263 struct address_space *mapping, struct iov_iter *iter,
fce70da3 2264 struct page *page)
723ef24b 2265{
723ef24b
KO
2266 int error;
2267
87d1d7b6
MWO
2268 if (!trylock_page(page)) {
2269 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2270 return -EAGAIN;
2271 if (!(iocb->ki_flags & IOCB_WAITQ)) {
bd8a1f36 2272 put_and_wait_on_page_locked(page, TASK_KILLABLE);
4612aeef 2273 return AOP_TRUNCATED_PAGE;
bd8a1f36 2274 }
87d1d7b6
MWO
2275 error = __lock_page_async(page, iocb->ki_waitq);
2276 if (error)
2277 return error;
723ef24b 2278 }
723ef24b 2279
bd8a1f36
MWO
2280 if (!page->mapping)
2281 goto truncated;
723ef24b 2282
fce70da3
MWO
2283 error = 0;
2284 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2285 goto unlock;
2286
2287 error = -EAGAIN;
2288 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2289 goto unlock;
2290
68430303 2291 error = filemap_read_page(iocb->ki_filp, mapping, page);
68430303 2292 if (error == AOP_TRUNCATED_PAGE)
4612aeef
MWO
2293 put_page(page);
2294 return error;
bd8a1f36
MWO
2295truncated:
2296 unlock_page(page);
2297 put_page(page);
4612aeef 2298 return AOP_TRUNCATED_PAGE;
fce70da3
MWO
2299unlock:
2300 unlock_page(page);
2301 return error;
723ef24b
KO
2302}
2303
f253e185
MWO
2304static int filemap_create_page(struct file *file,
2305 struct address_space *mapping, pgoff_t index,
2306 struct pagevec *pvec)
723ef24b 2307{
723ef24b
KO
2308 struct page *page;
2309 int error;
2310
723ef24b
KO
2311 page = page_cache_alloc(mapping);
2312 if (!page)
f253e185 2313 return -ENOMEM;
723ef24b
KO
2314
2315 error = add_to_page_cache_lru(page, mapping, index,
f253e185
MWO
2316 mapping_gfp_constraint(mapping, GFP_KERNEL));
2317 if (error == -EEXIST)
2318 error = AOP_TRUNCATED_PAGE;
2319 if (error)
2320 goto error;
2321
2322 error = filemap_read_page(file, mapping, page);
2323 if (error)
2324 goto error;
2325
2326 pagevec_add(pvec, page);
2327 return 0;
2328error:
68430303 2329 put_page(page);
f253e185 2330 return error;
723ef24b
KO
2331}
2332
5963fe03
MWO
2333static int filemap_readahead(struct kiocb *iocb, struct file *file,
2334 struct address_space *mapping, struct page *page,
2335 pgoff_t last_index)
2336{
2337 if (iocb->ki_flags & IOCB_NOIO)
2338 return -EAGAIN;
2339 page_cache_async_readahead(mapping, &file->f_ra, file, page,
2340 page->index, last_index - page->index);
2341 return 0;
2342}
2343
3a6bae48 2344static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
ff993ba1 2345 struct pagevec *pvec)
06c04442
KO
2346{
2347 struct file *filp = iocb->ki_filp;
2348 struct address_space *mapping = filp->f_mapping;
2349 struct file_ra_state *ra = &filp->f_ra;
2350 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48
MWO
2351 pgoff_t last_index;
2352 int err = 0;
06c04442 2353
cbd59c48 2354 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
06c04442
KO
2355find_page:
2356 if (fatal_signal_pending(current))
2357 return -EINTR;
2358
cbd59c48 2359 filemap_get_read_batch(mapping, index, last_index, pvec);
ff993ba1 2360 if (pvec->nr)
06c04442
KO
2361 goto got_pages;
2362
2363 if (iocb->ki_flags & IOCB_NOIO)
2364 return -EAGAIN;
2365
2366 page_cache_sync_readahead(mapping, ra, filp, index, last_index - index);
2367
cbd59c48 2368 filemap_get_read_batch(mapping, index, last_index, pvec);
f253e185
MWO
2369 if (!pagevec_count(pvec)) {
2370 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2371 return -EAGAIN;
2372 err = filemap_create_page(filp, mapping,
2373 iocb->ki_pos >> PAGE_SHIFT, pvec);
2374 if (err == AOP_TRUNCATED_PAGE)
2375 goto find_page;
2376 return err;
2377 }
06c04442 2378got_pages:
cbd59c48
MWO
2379 {
2380 struct page *page = pvec->pages[pvec->nr - 1];
06c04442
KO
2381
2382 if (PageReadahead(page)) {
5963fe03
MWO
2383 err = filemap_readahead(iocb, filp, mapping, page,
2384 last_index);
2385 if (err) {
cbd59c48
MWO
2386 put_page(page);
2387 pvec->nr--;
cbd59c48 2388 goto err;
06c04442 2389 }
06c04442
KO
2390 }
2391
2392 if (!PageUptodate(page)) {
87d1d7b6
MWO
2393 if ((iocb->ki_flags & IOCB_WAITQ) &&
2394 pagevec_count(pvec) > 1)
2395 iocb->ki_flags |= IOCB_NOWAIT;
fce70da3 2396 err = filemap_update_page(iocb, mapping, iter, page);
4612aeef
MWO
2397 if (err) {
2398 if (err < 0)
2399 put_page(page);
cbd59c48 2400 pvec->nr--;
06c04442
KO
2401 }
2402 }
2403 }
2404
cbd59c48 2405err:
ff993ba1
MWO
2406 if (likely(pvec->nr))
2407 return 0;
4612aeef
MWO
2408 if (err == AOP_TRUNCATED_PAGE)
2409 goto find_page;
06c04442
KO
2410 if (err)
2411 return err;
2412 /*
2413 * No pages and no error means we raced and should retry:
2414 */
2415 goto find_page;
2416}
2417
485bb99b 2418/**
47c27bc4
CH
2419 * generic_file_buffered_read - generic file read routine
2420 * @iocb: the iocb to read
6e58e79d
AV
2421 * @iter: data destination
2422 * @written: already copied
485bb99b 2423 *
1da177e4 2424 * This is a generic file read routine, and uses the
485bb99b 2425 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
2426 *
2427 * This is really ugly. But the goto's actually try to clarify some
2428 * of the logic when it comes to error handling etc.
a862f68a
MR
2429 *
2430 * Return:
2431 * * total number of bytes copied, including those the were already @written
2432 * * negative error code if nothing was copied
1da177e4 2433 */
d85dc2e1 2434ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 2435 struct iov_iter *iter, ssize_t written)
1da177e4 2436{
47c27bc4 2437 struct file *filp = iocb->ki_filp;
06c04442 2438 struct file_ra_state *ra = &filp->f_ra;
36e78914 2439 struct address_space *mapping = filp->f_mapping;
1da177e4 2440 struct inode *inode = mapping->host;
ff993ba1
MWO
2441 struct pagevec pvec;
2442 int i, error = 0;
06c04442
KO
2443 bool writably_mapped;
2444 loff_t isize, end_offset;
1da177e4 2445
723ef24b 2446 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2447 return 0;
3644e2d2
KO
2448 if (unlikely(!iov_iter_count(iter)))
2449 return 0;
2450
c2a9737f 2451 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
cbd59c48 2452 pagevec_init(&pvec);
c2a9737f 2453
06c04442 2454 do {
1da177e4 2455 cond_resched();
5abf186a 2456
723ef24b 2457 /*
06c04442
KO
2458 * If we've already successfully copied some data, then we
2459 * can no longer safely return -EIOCBQUEUED. Hence mark
2460 * an async read NOWAIT at that point.
723ef24b 2461 */
06c04442 2462 if ((iocb->ki_flags & IOCB_WAITQ) && written)
723ef24b
KO
2463 iocb->ki_flags |= IOCB_NOWAIT;
2464
ff993ba1
MWO
2465 error = filemap_get_pages(iocb, iter, &pvec);
2466 if (error < 0)
06c04442 2467 break;
1da177e4 2468
06c04442
KO
2469 /*
2470 * i_size must be checked after we know the pages are Uptodate.
2471 *
2472 * Checking i_size after the check allows us to calculate
2473 * the correct value for "nr", which means the zero-filled
2474 * part of the page is not copied back to userspace (unless
2475 * another truncate extends the file - this is desired though).
2476 */
2477 isize = i_size_read(inode);
2478 if (unlikely(iocb->ki_pos >= isize))
2479 goto put_pages;
06c04442
KO
2480 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2481
06c04442
KO
2482 /*
2483 * Once we start copying data, we don't want to be touching any
2484 * cachelines that might be contended:
2485 */
2486 writably_mapped = mapping_writably_mapped(mapping);
2487
2488 /*
2489 * When a sequential read accesses a page several times, only
2490 * mark it as accessed the first time.
2491 */
2492 if (iocb->ki_pos >> PAGE_SHIFT !=
2493 ra->prev_pos >> PAGE_SHIFT)
ff993ba1 2494 mark_page_accessed(pvec.pages[0]);
06c04442 2495
ff993ba1 2496 for (i = 0; i < pagevec_count(&pvec); i++) {
cbd59c48
MWO
2497 struct page *page = pvec.pages[i];
2498 size_t page_size = thp_size(page);
2499 size_t offset = iocb->ki_pos & (page_size - 1);
2500 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2501 page_size - offset);
2502 size_t copied;
06c04442 2503
cbd59c48
MWO
2504 if (end_offset < page_offset(page))
2505 break;
2506 if (i > 0)
2507 mark_page_accessed(page);
06c04442
KO
2508 /*
2509 * If users can be writing to this page using arbitrary
2510 * virtual addresses, take care about potential aliasing
2511 * before reading the page on the kernel side.
2512 */
cbd59c48
MWO
2513 if (writably_mapped) {
2514 int j;
2515
2516 for (j = 0; j < thp_nr_pages(page); j++)
2517 flush_dcache_page(page + j);
2518 }
06c04442 2519
cbd59c48 2520 copied = copy_page_to_iter(page, offset, bytes, iter);
06c04442
KO
2521
2522 written += copied;
2523 iocb->ki_pos += copied;
2524 ra->prev_pos = iocb->ki_pos;
2525
2526 if (copied < bytes) {
2527 error = -EFAULT;
2528 break;
2529 }
1da177e4 2530 }
06c04442 2531put_pages:
ff993ba1
MWO
2532 for (i = 0; i < pagevec_count(&pvec); i++)
2533 put_page(pvec.pages[i]);
cbd59c48 2534 pagevec_reinit(&pvec);
06c04442 2535 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2536
0c6aa263 2537 file_accessed(filp);
06c04442 2538
6e58e79d 2539 return written ? written : error;
1da177e4 2540}
d85dc2e1 2541EXPORT_SYMBOL_GPL(generic_file_buffered_read);
1da177e4 2542
485bb99b 2543/**
6abd2322 2544 * generic_file_read_iter - generic filesystem read routine
485bb99b 2545 * @iocb: kernel I/O control block
6abd2322 2546 * @iter: destination for the data read
485bb99b 2547 *
6abd2322 2548 * This is the "read_iter()" routine for all filesystems
1da177e4 2549 * that can use the page cache directly.
41da51bc
AG
2550 *
2551 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2552 * be returned when no data can be read without waiting for I/O requests
2553 * to complete; it doesn't prevent readahead.
2554 *
2555 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2556 * requests shall be made for the read or for readahead. When no data
2557 * can be read, -EAGAIN shall be returned. When readahead would be
2558 * triggered, a partial, possibly empty read shall be returned.
2559 *
a862f68a
MR
2560 * Return:
2561 * * number of bytes copied, even for partial reads
41da51bc 2562 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2563 */
2564ssize_t
ed978a81 2565generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2566{
e7080a43 2567 size_t count = iov_iter_count(iter);
47c27bc4 2568 ssize_t retval = 0;
e7080a43
NS
2569
2570 if (!count)
2571 goto out; /* skip atime */
1da177e4 2572
2ba48ce5 2573 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2574 struct file *file = iocb->ki_filp;
ed978a81
AV
2575 struct address_space *mapping = file->f_mapping;
2576 struct inode *inode = mapping->host;
543ade1f 2577 loff_t size;
1da177e4 2578
1da177e4 2579 size = i_size_read(inode);
6be96d3a
GR
2580 if (iocb->ki_flags & IOCB_NOWAIT) {
2581 if (filemap_range_has_page(mapping, iocb->ki_pos,
2582 iocb->ki_pos + count - 1))
2583 return -EAGAIN;
2584 } else {
2585 retval = filemap_write_and_wait_range(mapping,
2586 iocb->ki_pos,
2587 iocb->ki_pos + count - 1);
2588 if (retval < 0)
2589 goto out;
2590 }
d8d3d94b 2591
0d5b0cf2
CH
2592 file_accessed(file);
2593
5ecda137 2594 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2595 if (retval >= 0) {
c64fb5c7 2596 iocb->ki_pos += retval;
5ecda137 2597 count -= retval;
9fe55eea 2598 }
ab2125df
PB
2599 if (retval != -EIOCBQUEUED)
2600 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2601
9fe55eea
SW
2602 /*
2603 * Btrfs can have a short DIO read if we encounter
2604 * compressed extents, so if there was an error, or if
2605 * we've already read everything we wanted to, or if
2606 * there was a short read because we hit EOF, go ahead
2607 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2608 * the rest of the read. Buffered reads will not work for
2609 * DAX files, so don't bother trying.
9fe55eea 2610 */
5ecda137 2611 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2612 IS_DAX(inode))
9fe55eea 2613 goto out;
1da177e4
LT
2614 }
2615
47c27bc4 2616 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2617out:
2618 return retval;
2619}
ed978a81 2620EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2621
1da177e4 2622#ifdef CONFIG_MMU
1da177e4 2623#define MMAP_LOTSAMISS (100)
6b4c9f44 2624/*
c1e8d7c6 2625 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44
JB
2626 * @vmf - the vm_fault for this fault.
2627 * @page - the page to lock.
2628 * @fpin - the pointer to the file we may pin (or is already pinned).
2629 *
c1e8d7c6 2630 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
6b4c9f44 2631 * It differs in that it actually returns the page locked if it returns 1 and 0
c1e8d7c6 2632 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
6b4c9f44
JB
2633 * will point to the pinned file and needs to be fput()'ed at a later point.
2634 */
2635static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2636 struct file **fpin)
2637{
2638 if (trylock_page(page))
2639 return 1;
2640
8b0f9fa2
LT
2641 /*
2642 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 2643 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
2644 * is supposed to work. We have way too many special cases..
2645 */
6b4c9f44
JB
2646 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2647 return 0;
2648
2649 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2650 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2651 if (__lock_page_killable(page)) {
2652 /*
c1e8d7c6 2653 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
2654 * but all fault_handlers only check for fatal signals
2655 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 2656 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
2657 */
2658 if (*fpin == NULL)
d8ed45c5 2659 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
2660 return 0;
2661 }
2662 } else
2663 __lock_page(page);
2664 return 1;
2665}
2666
1da177e4 2667
ef00e08e 2668/*
6b4c9f44
JB
2669 * Synchronous readahead happens when we don't even find a page in the page
2670 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2671 * to drop the mmap sem we return the file that was pinned in order for us to do
2672 * that. If we didn't pin a file then we return NULL. The file that is
2673 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2674 */
6b4c9f44 2675static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2676{
2a1180f1
JB
2677 struct file *file = vmf->vma->vm_file;
2678 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2679 struct address_space *mapping = file->f_mapping;
db660d46 2680 DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff);
6b4c9f44 2681 struct file *fpin = NULL;
e630bfac 2682 unsigned int mmap_miss;
ef00e08e
LT
2683
2684 /* If we don't want any read-ahead, don't bother */
2a1180f1 2685 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2686 return fpin;
275b12bf 2687 if (!ra->ra_pages)
6b4c9f44 2688 return fpin;
ef00e08e 2689
2a1180f1 2690 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2691 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 2692 page_cache_sync_ra(&ractl, ra, ra->ra_pages);
6b4c9f44 2693 return fpin;
ef00e08e
LT
2694 }
2695
207d04ba 2696 /* Avoid banging the cache line if not needed */
e630bfac
KS
2697 mmap_miss = READ_ONCE(ra->mmap_miss);
2698 if (mmap_miss < MMAP_LOTSAMISS * 10)
2699 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
2700
2701 /*
2702 * Do we miss much more than hit in this file? If so,
2703 * stop bothering with read-ahead. It will only hurt.
2704 */
e630bfac 2705 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2706 return fpin;
ef00e08e 2707
d30a1100
WF
2708 /*
2709 * mmap read-around
2710 */
6b4c9f44 2711 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 2712 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
2713 ra->size = ra->ra_pages;
2714 ra->async_size = ra->ra_pages / 4;
db660d46
DH
2715 ractl._index = ra->start;
2716 do_page_cache_ra(&ractl, ra->size, ra->async_size);
6b4c9f44 2717 return fpin;
ef00e08e
LT
2718}
2719
2720/*
2721 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 2722 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 2723 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 2724 */
6b4c9f44
JB
2725static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2726 struct page *page)
ef00e08e 2727{
2a1180f1
JB
2728 struct file *file = vmf->vma->vm_file;
2729 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2730 struct address_space *mapping = file->f_mapping;
6b4c9f44 2731 struct file *fpin = NULL;
e630bfac 2732 unsigned int mmap_miss;
2a1180f1 2733 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2734
2735 /* If we don't want any read-ahead, don't bother */
5c72feee 2736 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 2737 return fpin;
e630bfac
KS
2738 mmap_miss = READ_ONCE(ra->mmap_miss);
2739 if (mmap_miss)
2740 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
6b4c9f44
JB
2741 if (PageReadahead(page)) {
2742 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
2743 page_cache_async_readahead(mapping, ra, file,
2744 page, offset, ra->ra_pages);
6b4c9f44
JB
2745 }
2746 return fpin;
ef00e08e
LT
2747}
2748
485bb99b 2749/**
54cb8821 2750 * filemap_fault - read in file data for page fault handling
d0217ac0 2751 * @vmf: struct vm_fault containing details of the fault
485bb99b 2752 *
54cb8821 2753 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2754 * mapped memory region to read in file data during a page fault.
2755 *
2756 * The goto's are kind of ugly, but this streamlines the normal case of having
2757 * it in the page cache, and handles the special cases reasonably without
2758 * having a lot of duplicated code.
9a95f3cf 2759 *
c1e8d7c6 2760 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 2761 *
c1e8d7c6 2762 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
a4985833 2763 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf 2764 *
c1e8d7c6 2765 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
2766 * has not been released.
2767 *
2768 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
2769 *
2770 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 2771 */
2bcd6454 2772vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2773{
2774 int error;
11bac800 2775 struct file *file = vmf->vma->vm_file;
6b4c9f44 2776 struct file *fpin = NULL;
1da177e4
LT
2777 struct address_space *mapping = file->f_mapping;
2778 struct file_ra_state *ra = &file->f_ra;
2779 struct inode *inode = mapping->host;
ef00e08e 2780 pgoff_t offset = vmf->pgoff;
9ab2594f 2781 pgoff_t max_off;
1da177e4 2782 struct page *page;
2bcd6454 2783 vm_fault_t ret = 0;
1da177e4 2784
9ab2594f
MW
2785 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2786 if (unlikely(offset >= max_off))
5307cc1a 2787 return VM_FAULT_SIGBUS;
1da177e4 2788
1da177e4 2789 /*
49426420 2790 * Do we have something in the page cache already?
1da177e4 2791 */
ef00e08e 2792 page = find_get_page(mapping, offset);
45cac65b 2793 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2794 /*
ef00e08e
LT
2795 * We found the page, so try async readahead before
2796 * waiting for the lock.
1da177e4 2797 */
6b4c9f44 2798 fpin = do_async_mmap_readahead(vmf, page);
45cac65b 2799 } else if (!page) {
ef00e08e 2800 /* No page in the page cache at all */
ef00e08e 2801 count_vm_event(PGMAJFAULT);
2262185c 2802 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 2803 ret = VM_FAULT_MAJOR;
6b4c9f44 2804 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 2805retry_find:
a75d4c33
JB
2806 page = pagecache_get_page(mapping, offset,
2807 FGP_CREAT|FGP_FOR_MMAP,
2808 vmf->gfp_mask);
6b4c9f44
JB
2809 if (!page) {
2810 if (fpin)
2811 goto out_retry;
e520e932 2812 return VM_FAULT_OOM;
6b4c9f44 2813 }
1da177e4
LT
2814 }
2815
6b4c9f44
JB
2816 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2817 goto out_retry;
b522c94d
ML
2818
2819 /* Did it get truncated? */
585e5a7b 2820 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
2821 unlock_page(page);
2822 put_page(page);
2823 goto retry_find;
2824 }
520e5ba4 2825 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 2826
1da177e4 2827 /*
d00806b1
NP
2828 * We have a locked page in the page cache, now we need to check
2829 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2830 */
d00806b1 2831 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2832 goto page_not_uptodate;
2833
6b4c9f44 2834 /*
c1e8d7c6 2835 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
2836 * time to return to the upper layer and have it re-find the vma and
2837 * redo the fault.
2838 */
2839 if (fpin) {
2840 unlock_page(page);
2841 goto out_retry;
2842 }
2843
ef00e08e
LT
2844 /*
2845 * Found the page and have a reference on it.
2846 * We must recheck i_size under page lock.
2847 */
9ab2594f
MW
2848 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2849 if (unlikely(offset >= max_off)) {
d00806b1 2850 unlock_page(page);
09cbfeaf 2851 put_page(page);
5307cc1a 2852 return VM_FAULT_SIGBUS;
d00806b1
NP
2853 }
2854
d0217ac0 2855 vmf->page = page;
83c54070 2856 return ret | VM_FAULT_LOCKED;
1da177e4 2857
1da177e4 2858page_not_uptodate:
1da177e4
LT
2859 /*
2860 * Umm, take care of errors if the page isn't up-to-date.
2861 * Try to re-read it _once_. We do this synchronously,
2862 * because there really aren't any performance issues here
2863 * and we need to check for errors.
2864 */
1da177e4 2865 ClearPageError(page);
6b4c9f44 2866 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
994fc28c 2867 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2868 if (!error) {
2869 wait_on_page_locked(page);
2870 if (!PageUptodate(page))
2871 error = -EIO;
2872 }
6b4c9f44
JB
2873 if (fpin)
2874 goto out_retry;
09cbfeaf 2875 put_page(page);
d00806b1
NP
2876
2877 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2878 goto retry_find;
1da177e4 2879
0f8e2db4 2880 shrink_readahead_size_eio(ra);
d0217ac0 2881 return VM_FAULT_SIGBUS;
6b4c9f44
JB
2882
2883out_retry:
2884 /*
c1e8d7c6 2885 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
2886 * re-find the vma and come back and find our hopefully still populated
2887 * page.
2888 */
2889 if (page)
2890 put_page(page);
2891 if (fpin)
2892 fput(fpin);
2893 return ret | VM_FAULT_RETRY;
54cb8821
NP
2894}
2895EXPORT_SYMBOL(filemap_fault);
2896
f9ce0be7 2897static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
f1820361 2898{
f9ce0be7
KS
2899 struct mm_struct *mm = vmf->vma->vm_mm;
2900
2901 /* Huge page is mapped? No need to proceed. */
2902 if (pmd_trans_huge(*vmf->pmd)) {
2903 unlock_page(page);
2904 put_page(page);
2905 return true;
2906 }
2907
2908 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
2909 vm_fault_t ret = do_set_pmd(vmf, page);
2910 if (!ret) {
2911 /* The page is mapped successfully, reference consumed. */
2912 unlock_page(page);
2913 return true;
2914 }
2915 }
2916
2917 if (pmd_none(*vmf->pmd)) {
2918 vmf->ptl = pmd_lock(mm, vmf->pmd);
2919 if (likely(pmd_none(*vmf->pmd))) {
2920 mm_inc_nr_ptes(mm);
2921 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
2922 vmf->prealloc_pte = NULL;
2923 }
2924 spin_unlock(vmf->ptl);
2925 }
2926
2927 /* See comment in handle_pte_fault() */
2928 if (pmd_devmap_trans_unstable(vmf->pmd)) {
2929 unlock_page(page);
2930 put_page(page);
2931 return true;
2932 }
2933
2934 return false;
2935}
2936
2937static struct page *next_uptodate_page(struct page *page,
2938 struct address_space *mapping,
2939 struct xa_state *xas, pgoff_t end_pgoff)
2940{
2941 unsigned long max_idx;
2942
2943 do {
2944 if (!page)
2945 return NULL;
2946 if (xas_retry(xas, page))
2947 continue;
2948 if (xa_is_value(page))
2949 continue;
2950 if (PageLocked(page))
2951 continue;
2952 if (!page_cache_get_speculative(page))
2953 continue;
2954 /* Has the page moved or been split? */
2955 if (unlikely(page != xas_reload(xas)))
2956 goto skip;
2957 if (!PageUptodate(page) || PageReadahead(page))
2958 goto skip;
2959 if (PageHWPoison(page))
2960 goto skip;
2961 if (!trylock_page(page))
2962 goto skip;
2963 if (page->mapping != mapping)
2964 goto unlock;
2965 if (!PageUptodate(page))
2966 goto unlock;
2967 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2968 if (xas->xa_index >= max_idx)
2969 goto unlock;
2970 return page;
2971unlock:
2972 unlock_page(page);
2973skip:
2974 put_page(page);
2975 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
2976
2977 return NULL;
2978}
2979
2980static inline struct page *first_map_page(struct address_space *mapping,
2981 struct xa_state *xas,
2982 pgoff_t end_pgoff)
2983{
2984 return next_uptodate_page(xas_find(xas, end_pgoff),
2985 mapping, xas, end_pgoff);
2986}
2987
2988static inline struct page *next_map_page(struct address_space *mapping,
2989 struct xa_state *xas,
2990 pgoff_t end_pgoff)
2991{
2992 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
2993 mapping, xas, end_pgoff);
2994}
2995
2996vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2997 pgoff_t start_pgoff, pgoff_t end_pgoff)
2998{
2999 struct vm_area_struct *vma = vmf->vma;
3000 struct file *file = vma->vm_file;
f1820361 3001 struct address_space *mapping = file->f_mapping;
bae473a4 3002 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3003 unsigned long addr;
070e807c 3004 XA_STATE(xas, &mapping->i_pages, start_pgoff);
27a83a60 3005 struct page *head, *page;
e630bfac 3006 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
f9ce0be7 3007 vm_fault_t ret = 0;
f1820361
KS
3008
3009 rcu_read_lock();
f9ce0be7
KS
3010 head = first_map_page(mapping, &xas, end_pgoff);
3011 if (!head)
3012 goto out;
f1820361 3013
f9ce0be7
KS
3014 if (filemap_map_pmd(vmf, head)) {
3015 ret = VM_FAULT_NOPAGE;
3016 goto out;
3017 }
f1820361 3018
9d3af4b4
WD
3019 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3020 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
f9ce0be7 3021 do {
27a83a60 3022 page = find_subpage(head, xas.xa_index);
f9ce0be7 3023 if (PageHWPoison(page))
f1820361
KS
3024 goto unlock;
3025
e630bfac
KS
3026 if (mmap_miss > 0)
3027 mmap_miss--;
7267ec00 3028
9d3af4b4 3029 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3030 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3031 last_pgoff = xas.xa_index;
f9ce0be7
KS
3032
3033 if (!pte_none(*vmf->pte))
7267ec00 3034 goto unlock;
f9ce0be7 3035
46bdb427 3036 /* We're about to handle the fault */
9d3af4b4 3037 if (vmf->address == addr)
46bdb427 3038 ret = VM_FAULT_NOPAGE;
46bdb427 3039
9d3af4b4 3040 do_set_pte(vmf, page, addr);
f9ce0be7 3041 /* no need to invalidate: a not-present page won't be cached */
9d3af4b4 3042 update_mmu_cache(vma, addr, vmf->pte);
27a83a60 3043 unlock_page(head);
f9ce0be7 3044 continue;
f1820361 3045unlock:
27a83a60 3046 unlock_page(head);
27a83a60 3047 put_page(head);
f9ce0be7
KS
3048 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3049 pte_unmap_unlock(vmf->pte, vmf->ptl);
3050out:
f1820361 3051 rcu_read_unlock();
e630bfac 3052 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
f9ce0be7 3053 return ret;
f1820361
KS
3054}
3055EXPORT_SYMBOL(filemap_map_pages);
3056
2bcd6454 3057vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3058{
5df1a672 3059 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
4fcf1c62 3060 struct page *page = vmf->page;
2bcd6454 3061 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3062
5df1a672 3063 sb_start_pagefault(mapping->host->i_sb);
11bac800 3064 file_update_time(vmf->vma->vm_file);
4fcf1c62 3065 lock_page(page);
5df1a672 3066 if (page->mapping != mapping) {
4fcf1c62
JK
3067 unlock_page(page);
3068 ret = VM_FAULT_NOPAGE;
3069 goto out;
3070 }
14da9200
JK
3071 /*
3072 * We mark the page dirty already here so that when freeze is in
3073 * progress, we are guaranteed that writeback during freezing will
3074 * see the dirty page and writeprotect it again.
3075 */
3076 set_page_dirty(page);
1d1d1a76 3077 wait_for_stable_page(page);
4fcf1c62 3078out:
5df1a672 3079 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3080 return ret;
3081}
4fcf1c62 3082
f0f37e2f 3083const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3084 .fault = filemap_fault,
f1820361 3085 .map_pages = filemap_map_pages,
4fcf1c62 3086 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3087};
3088
3089/* This is used for a general mmap of a disk file */
3090
3091int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3092{
3093 struct address_space *mapping = file->f_mapping;
3094
3095 if (!mapping->a_ops->readpage)
3096 return -ENOEXEC;
3097 file_accessed(file);
3098 vma->vm_ops = &generic_file_vm_ops;
3099 return 0;
3100}
1da177e4
LT
3101
3102/*
3103 * This is for filesystems which do not implement ->writepage.
3104 */
3105int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3106{
3107 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3108 return -EINVAL;
3109 return generic_file_mmap(file, vma);
3110}
3111#else
4b96a37d 3112vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3113{
4b96a37d 3114 return VM_FAULT_SIGBUS;
45397228 3115}
1da177e4
LT
3116int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3117{
3118 return -ENOSYS;
3119}
3120int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
3121{
3122 return -ENOSYS;
3123}
3124#endif /* CONFIG_MMU */
3125
45397228 3126EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3127EXPORT_SYMBOL(generic_file_mmap);
3128EXPORT_SYMBOL(generic_file_readonly_mmap);
3129
67f9fd91
SL
3130static struct page *wait_on_page_read(struct page *page)
3131{
3132 if (!IS_ERR(page)) {
3133 wait_on_page_locked(page);
3134 if (!PageUptodate(page)) {
09cbfeaf 3135 put_page(page);
67f9fd91
SL
3136 page = ERR_PTR(-EIO);
3137 }
3138 }
3139 return page;
3140}
3141
32b63529 3142static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 3143 pgoff_t index,
5e5358e7 3144 int (*filler)(void *, struct page *),
0531b2aa
LT
3145 void *data,
3146 gfp_t gfp)
1da177e4 3147{
eb2be189 3148 struct page *page;
1da177e4
LT
3149 int err;
3150repeat:
3151 page = find_get_page(mapping, index);
3152 if (!page) {
453f85d4 3153 page = __page_cache_alloc(gfp);
eb2be189
NP
3154 if (!page)
3155 return ERR_PTR(-ENOMEM);
e6f67b8c 3156 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 3157 if (unlikely(err)) {
09cbfeaf 3158 put_page(page);
eb2be189
NP
3159 if (err == -EEXIST)
3160 goto repeat;
22ecdb4f 3161 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3162 return ERR_PTR(err);
3163 }
32b63529
MG
3164
3165filler:
6c45b454
CH
3166 if (filler)
3167 err = filler(data, page);
3168 else
3169 err = mapping->a_ops->readpage(data, page);
3170
1da177e4 3171 if (err < 0) {
09cbfeaf 3172 put_page(page);
32b63529 3173 return ERR_PTR(err);
1da177e4 3174 }
1da177e4 3175
32b63529
MG
3176 page = wait_on_page_read(page);
3177 if (IS_ERR(page))
3178 return page;
3179 goto out;
3180 }
1da177e4
LT
3181 if (PageUptodate(page))
3182 goto out;
3183
ebded027 3184 /*
0e9aa675 3185 * Page is not up to date and may be locked due to one of the following
ebded027
MG
3186 * case a: Page is being filled and the page lock is held
3187 * case b: Read/write error clearing the page uptodate status
3188 * case c: Truncation in progress (page locked)
3189 * case d: Reclaim in progress
3190 *
3191 * Case a, the page will be up to date when the page is unlocked.
3192 * There is no need to serialise on the page lock here as the page
3193 * is pinned so the lock gives no additional protection. Even if the
ce89fddf 3194 * page is truncated, the data is still valid if PageUptodate as
ebded027
MG
3195 * it's a race vs truncate race.
3196 * Case b, the page will not be up to date
3197 * Case c, the page may be truncated but in itself, the data may still
3198 * be valid after IO completes as it's a read vs truncate race. The
3199 * operation must restart if the page is not uptodate on unlock but
3200 * otherwise serialising on page lock to stabilise the mapping gives
3201 * no additional guarantees to the caller as the page lock is
3202 * released before return.
3203 * Case d, similar to truncation. If reclaim holds the page lock, it
3204 * will be a race with remove_mapping that determines if the mapping
3205 * is valid on unlock but otherwise the data is valid and there is
3206 * no need to serialise with page lock.
3207 *
3208 * As the page lock gives no additional guarantee, we optimistically
3209 * wait on the page to be unlocked and check if it's up to date and
3210 * use the page if it is. Otherwise, the page lock is required to
3211 * distinguish between the different cases. The motivation is that we
3212 * avoid spurious serialisations and wakeups when multiple processes
3213 * wait on the same page for IO to complete.
3214 */
3215 wait_on_page_locked(page);
3216 if (PageUptodate(page))
3217 goto out;
3218
3219 /* Distinguish between all the cases under the safety of the lock */
1da177e4 3220 lock_page(page);
ebded027
MG
3221
3222 /* Case c or d, restart the operation */
1da177e4
LT
3223 if (!page->mapping) {
3224 unlock_page(page);
09cbfeaf 3225 put_page(page);
32b63529 3226 goto repeat;
1da177e4 3227 }
ebded027
MG
3228
3229 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
3230 if (PageUptodate(page)) {
3231 unlock_page(page);
3232 goto out;
3233 }
faffdfa0
XT
3234
3235 /*
3236 * A previous I/O error may have been due to temporary
3237 * failures.
3238 * Clear page error before actual read, PG_error will be
3239 * set again if read page fails.
3240 */
3241 ClearPageError(page);
32b63529
MG
3242 goto filler;
3243
c855ff37 3244out:
6fe6900e
NP
3245 mark_page_accessed(page);
3246 return page;
3247}
0531b2aa
LT
3248
3249/**
67f9fd91 3250 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
3251 * @mapping: the page's address_space
3252 * @index: the page index
3253 * @filler: function to perform the read
5e5358e7 3254 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 3255 *
0531b2aa 3256 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 3257 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
3258 *
3259 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
3260 *
3261 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 3262 */
67f9fd91 3263struct page *read_cache_page(struct address_space *mapping,
0531b2aa 3264 pgoff_t index,
5e5358e7 3265 int (*filler)(void *, struct page *),
0531b2aa
LT
3266 void *data)
3267{
d322a8e5
CH
3268 return do_read_cache_page(mapping, index, filler, data,
3269 mapping_gfp_mask(mapping));
0531b2aa 3270}
67f9fd91 3271EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3272
3273/**
3274 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3275 * @mapping: the page's address_space
3276 * @index: the page index
3277 * @gfp: the page allocator flags to use if allocating
3278 *
3279 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3280 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3281 *
3282 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
3283 *
3284 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3285 */
3286struct page *read_cache_page_gfp(struct address_space *mapping,
3287 pgoff_t index,
3288 gfp_t gfp)
3289{
6c45b454 3290 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3291}
3292EXPORT_SYMBOL(read_cache_page_gfp);
3293
afddba49
NP
3294int pagecache_write_begin(struct file *file, struct address_space *mapping,
3295 loff_t pos, unsigned len, unsigned flags,
3296 struct page **pagep, void **fsdata)
3297{
3298 const struct address_space_operations *aops = mapping->a_ops;
3299
4e02ed4b 3300 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3301 pagep, fsdata);
afddba49
NP
3302}
3303EXPORT_SYMBOL(pagecache_write_begin);
3304
3305int pagecache_write_end(struct file *file, struct address_space *mapping,
3306 loff_t pos, unsigned len, unsigned copied,
3307 struct page *page, void *fsdata)
3308{
3309 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3310
4e02ed4b 3311 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3312}
3313EXPORT_SYMBOL(pagecache_write_end);
3314
a92853b6
KK
3315/*
3316 * Warn about a page cache invalidation failure during a direct I/O write.
3317 */
3318void dio_warn_stale_pagecache(struct file *filp)
3319{
3320 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3321 char pathname[128];
a92853b6
KK
3322 char *path;
3323
5df1a672 3324 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3325 if (__ratelimit(&_rs)) {
3326 path = file_path(filp, pathname, sizeof(pathname));
3327 if (IS_ERR(path))
3328 path = "(unknown)";
3329 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3330 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3331 current->comm);
3332 }
3333}
3334
1da177e4 3335ssize_t
1af5bb49 3336generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3337{
3338 struct file *file = iocb->ki_filp;
3339 struct address_space *mapping = file->f_mapping;
3340 struct inode *inode = mapping->host;
1af5bb49 3341 loff_t pos = iocb->ki_pos;
1da177e4 3342 ssize_t written;
a969e903
CH
3343 size_t write_len;
3344 pgoff_t end;
1da177e4 3345
0c949334 3346 write_len = iov_iter_count(from);
09cbfeaf 3347 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3348
6be96d3a
GR
3349 if (iocb->ki_flags & IOCB_NOWAIT) {
3350 /* If there are pages to writeback, return */
5df1a672 3351 if (filemap_range_has_page(file->f_mapping, pos,
35f12f0f 3352 pos + write_len - 1))
6be96d3a
GR
3353 return -EAGAIN;
3354 } else {
3355 written = filemap_write_and_wait_range(mapping, pos,
3356 pos + write_len - 1);
3357 if (written)
3358 goto out;
3359 }
a969e903
CH
3360
3361 /*
3362 * After a write we want buffered reads to be sure to go to disk to get
3363 * the new data. We invalidate clean cached page from the region we're
3364 * about to write. We do this *before* the write so that we can return
6ccfa806 3365 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3366 */
55635ba7 3367 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3368 pos >> PAGE_SHIFT, end);
55635ba7
AR
3369 /*
3370 * If a page can not be invalidated, return 0 to fall back
3371 * to buffered write.
3372 */
3373 if (written) {
3374 if (written == -EBUSY)
3375 return 0;
3376 goto out;
a969e903
CH
3377 }
3378
639a93a5 3379 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3380
3381 /*
3382 * Finally, try again to invalidate clean pages which might have been
3383 * cached by non-direct readahead, or faulted in by get_user_pages()
3384 * if the source of the write was an mmap'ed region of the file
3385 * we're writing. Either one is a pretty crazy thing to do,
3386 * so we don't support it 100%. If this invalidation
3387 * fails, tough, the write still worked...
332391a9
LC
3388 *
3389 * Most of the time we do not need this since dio_complete() will do
3390 * the invalidation for us. However there are some file systems that
3391 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3392 * them by removing it completely.
3393 *
9266a140
KK
3394 * Noticeable example is a blkdev_direct_IO().
3395 *
80c1fe90 3396 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3397 */
9266a140
KK
3398 if (written > 0 && mapping->nrpages &&
3399 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3400 dio_warn_stale_pagecache(file);
a969e903 3401
1da177e4 3402 if (written > 0) {
0116651c 3403 pos += written;
639a93a5 3404 write_len -= written;
0116651c
NK
3405 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3406 i_size_write(inode, pos);
1da177e4
LT
3407 mark_inode_dirty(inode);
3408 }
5cb6c6c7 3409 iocb->ki_pos = pos;
1da177e4 3410 }
ab2125df
PB
3411 if (written != -EIOCBQUEUED)
3412 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3413out:
1da177e4
LT
3414 return written;
3415}
3416EXPORT_SYMBOL(generic_file_direct_write);
3417
eb2be189
NP
3418/*
3419 * Find or create a page at the given pagecache position. Return the locked
3420 * page. This function is specifically for buffered writes.
3421 */
54566b2c
NP
3422struct page *grab_cache_page_write_begin(struct address_space *mapping,
3423 pgoff_t index, unsigned flags)
eb2be189 3424{
eb2be189 3425 struct page *page;
bbddabe2 3426 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3427
54566b2c 3428 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3429 fgp_flags |= FGP_NOFS;
3430
3431 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3432 mapping_gfp_mask(mapping));
c585a267 3433 if (page)
2457aec6 3434 wait_for_stable_page(page);
eb2be189 3435
eb2be189
NP
3436 return page;
3437}
54566b2c 3438EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3439
3b93f911 3440ssize_t generic_perform_write(struct file *file,
afddba49
NP
3441 struct iov_iter *i, loff_t pos)
3442{
3443 struct address_space *mapping = file->f_mapping;
3444 const struct address_space_operations *a_ops = mapping->a_ops;
3445 long status = 0;
3446 ssize_t written = 0;
674b892e
NP
3447 unsigned int flags = 0;
3448
afddba49
NP
3449 do {
3450 struct page *page;
afddba49
NP
3451 unsigned long offset; /* Offset into pagecache page */
3452 unsigned long bytes; /* Bytes to write to page */
3453 size_t copied; /* Bytes copied from user */
3454 void *fsdata;
3455
09cbfeaf
KS
3456 offset = (pos & (PAGE_SIZE - 1));
3457 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3458 iov_iter_count(i));
3459
3460again:
00a3d660
LT
3461 /*
3462 * Bring in the user page that we will copy from _first_.
3463 * Otherwise there's a nasty deadlock on copying from the
3464 * same page as we're writing to, without it being marked
3465 * up-to-date.
3466 *
3467 * Not only is this an optimisation, but it is also required
3468 * to check that the address is actually valid, when atomic
3469 * usercopies are used, below.
3470 */
3471 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3472 status = -EFAULT;
3473 break;
3474 }
3475
296291cd
JK
3476 if (fatal_signal_pending(current)) {
3477 status = -EINTR;
3478 break;
3479 }
3480
674b892e 3481 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3482 &page, &fsdata);
2457aec6 3483 if (unlikely(status < 0))
afddba49
NP
3484 break;
3485
931e80e4 3486 if (mapping_writably_mapped(mapping))
3487 flush_dcache_page(page);
00a3d660 3488
afddba49 3489 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3490 flush_dcache_page(page);
3491
3492 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3493 page, fsdata);
3494 if (unlikely(status < 0))
3495 break;
3496 copied = status;
3497
3498 cond_resched();
3499
124d3b70 3500 iov_iter_advance(i, copied);
afddba49
NP
3501 if (unlikely(copied == 0)) {
3502 /*
3503 * If we were unable to copy any data at all, we must
3504 * fall back to a single segment length write.
3505 *
3506 * If we didn't fallback here, we could livelock
3507 * because not all segments in the iov can be copied at
3508 * once without a pagefault.
3509 */
09cbfeaf 3510 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3511 iov_iter_single_seg_count(i));
3512 goto again;
3513 }
afddba49
NP
3514 pos += copied;
3515 written += copied;
3516
3517 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3518 } while (iov_iter_count(i));
3519
3520 return written ? written : status;
3521}
3b93f911 3522EXPORT_SYMBOL(generic_perform_write);
1da177e4 3523
e4dd9de3 3524/**
8174202b 3525 * __generic_file_write_iter - write data to a file
e4dd9de3 3526 * @iocb: IO state structure (file, offset, etc.)
8174202b 3527 * @from: iov_iter with data to write
e4dd9de3
JK
3528 *
3529 * This function does all the work needed for actually writing data to a
3530 * file. It does all basic checks, removes SUID from the file, updates
3531 * modification times and calls proper subroutines depending on whether we
3532 * do direct IO or a standard buffered write.
3533 *
3534 * It expects i_mutex to be grabbed unless we work on a block device or similar
3535 * object which does not need locking at all.
3536 *
3537 * This function does *not* take care of syncing data in case of O_SYNC write.
3538 * A caller has to handle it. This is mainly due to the fact that we want to
3539 * avoid syncing under i_mutex.
a862f68a
MR
3540 *
3541 * Return:
3542 * * number of bytes written, even for truncated writes
3543 * * negative error code if no data has been written at all
e4dd9de3 3544 */
8174202b 3545ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3546{
3547 struct file *file = iocb->ki_filp;
fb5527e6 3548 struct address_space * mapping = file->f_mapping;
1da177e4 3549 struct inode *inode = mapping->host;
3b93f911 3550 ssize_t written = 0;
1da177e4 3551 ssize_t err;
3b93f911 3552 ssize_t status;
1da177e4 3553
1da177e4 3554 /* We can write back this queue in page reclaim */
de1414a6 3555 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3556 err = file_remove_privs(file);
1da177e4
LT
3557 if (err)
3558 goto out;
3559
c3b2da31
JB
3560 err = file_update_time(file);
3561 if (err)
3562 goto out;
1da177e4 3563
2ba48ce5 3564 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3565 loff_t pos, endbyte;
fb5527e6 3566
1af5bb49 3567 written = generic_file_direct_write(iocb, from);
1da177e4 3568 /*
fbbbad4b
MW
3569 * If the write stopped short of completing, fall back to
3570 * buffered writes. Some filesystems do this for writes to
3571 * holes, for example. For DAX files, a buffered write will
3572 * not succeed (even if it did, DAX does not handle dirty
3573 * page-cache pages correctly).
1da177e4 3574 */
0b8def9d 3575 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3576 goto out;
3577
0b8def9d 3578 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3579 /*
3b93f911 3580 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3581 * then we want to return the number of bytes which were
3582 * direct-written, or the error code if that was zero. Note
3583 * that this differs from normal direct-io semantics, which
3584 * will return -EFOO even if some bytes were written.
3585 */
60bb4529 3586 if (unlikely(status < 0)) {
3b93f911 3587 err = status;
fb5527e6
JM
3588 goto out;
3589 }
fb5527e6
JM
3590 /*
3591 * We need to ensure that the page cache pages are written to
3592 * disk and invalidated to preserve the expected O_DIRECT
3593 * semantics.
3594 */
3b93f911 3595 endbyte = pos + status - 1;
0b8def9d 3596 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3597 if (err == 0) {
0b8def9d 3598 iocb->ki_pos = endbyte + 1;
3b93f911 3599 written += status;
fb5527e6 3600 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3601 pos >> PAGE_SHIFT,
3602 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3603 } else {
3604 /*
3605 * We don't know how much we wrote, so just return
3606 * the number of bytes which were direct-written
3607 */
3608 }
3609 } else {
0b8def9d
AV
3610 written = generic_perform_write(file, from, iocb->ki_pos);
3611 if (likely(written > 0))
3612 iocb->ki_pos += written;
fb5527e6 3613 }
1da177e4
LT
3614out:
3615 current->backing_dev_info = NULL;
3616 return written ? written : err;
3617}
8174202b 3618EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3619
e4dd9de3 3620/**
8174202b 3621 * generic_file_write_iter - write data to a file
e4dd9de3 3622 * @iocb: IO state structure
8174202b 3623 * @from: iov_iter with data to write
e4dd9de3 3624 *
8174202b 3625 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3626 * filesystems. It takes care of syncing the file in case of O_SYNC file
3627 * and acquires i_mutex as needed.
a862f68a
MR
3628 * Return:
3629 * * negative error code if no data has been written at all of
3630 * vfs_fsync_range() failed for a synchronous write
3631 * * number of bytes written, even for truncated writes
e4dd9de3 3632 */
8174202b 3633ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3634{
3635 struct file *file = iocb->ki_filp;
148f948b 3636 struct inode *inode = file->f_mapping->host;
1da177e4 3637 ssize_t ret;
1da177e4 3638
5955102c 3639 inode_lock(inode);
3309dd04
AV
3640 ret = generic_write_checks(iocb, from);
3641 if (ret > 0)
5f380c7f 3642 ret = __generic_file_write_iter(iocb, from);
5955102c 3643 inode_unlock(inode);
1da177e4 3644
e2592217
CH
3645 if (ret > 0)
3646 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3647 return ret;
3648}
8174202b 3649EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3650
cf9a2ae8
DH
3651/**
3652 * try_to_release_page() - release old fs-specific metadata on a page
3653 *
3654 * @page: the page which the kernel is trying to free
3655 * @gfp_mask: memory allocation flags (and I/O mode)
3656 *
3657 * The address_space is to try to release any data against the page
a862f68a 3658 * (presumably at page->private).
cf9a2ae8 3659 *
266cf658
DH
3660 * This may also be called if PG_fscache is set on a page, indicating that the
3661 * page is known to the local caching routines.
3662 *
cf9a2ae8 3663 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3664 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3665 *
a862f68a 3666 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3667 */
3668int try_to_release_page(struct page *page, gfp_t gfp_mask)
3669{
3670 struct address_space * const mapping = page->mapping;
3671
3672 BUG_ON(!PageLocked(page));
3673 if (PageWriteback(page))
3674 return 0;
3675
3676 if (mapping && mapping->a_ops->releasepage)
3677 return mapping->a_ops->releasepage(page, gfp_mask);
3678 return try_to_free_buffers(page);
3679}
3680
3681EXPORT_SYMBOL(try_to_release_page);