]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/filemap.c
mm: memcontrol: prepare cgroup vmstat infrastructure for native anon counters
[thirdparty/linux.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4
LT
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c515e1fd 38#include <linux/cleancache.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
0f8053a5
NP
44#include "internal.h"
45
fe0bfaaf
RJ
46#define CREATE_TRACE_POINTS
47#include <trace/events/filemap.h>
48
1da177e4 49/*
1da177e4
LT
50 * FIXME: remove all knowledge of the buffer layer from the core VM
51 */
148f948b 52#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 53
1da177e4
LT
54#include <asm/mman.h>
55
56/*
57 * Shared mappings implemented 30.11.1994. It's not fully working yet,
58 * though.
59 *
60 * Shared mappings now work. 15.8.1995 Bruno.
61 *
62 * finished 'unifying' the page and buffer cache and SMP-threaded the
63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 *
65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 */
67
68/*
69 * Lock ordering:
70 *
c8c06efa 71 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 72 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 73 * ->swap_lock (exclusive_swap_page, others)
b93b0163 74 * ->i_pages lock
1da177e4 75 *
1b1dcc1b 76 * ->i_mutex
c8c06efa 77 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
78 *
79 * ->mmap_sem
c8c06efa 80 * ->i_mmap_rwsem
b8072f09 81 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4
LT
83 *
84 * ->mmap_sem
85 * ->lock_page (access_process_vm)
86 *
ccad2365 87 * ->i_mutex (generic_perform_write)
82591e6e 88 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 89 *
f758eeab 90 * bdi->wb.list_lock
a66979ab 91 * sb_lock (fs/fs-writeback.c)
b93b0163 92 * ->i_pages lock (__sync_single_inode)
1da177e4 93 *
c8c06efa 94 * ->i_mmap_rwsem
1da177e4
LT
95 * ->anon_vma.lock (vma_adjust)
96 *
97 * ->anon_vma.lock
b8072f09 98 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 99 *
b8072f09 100 * ->page_table_lock or pte_lock
5d337b91 101 * ->swap_lock (try_to_unmap_one)
1da177e4 102 * ->private_lock (try_to_unmap_one)
b93b0163 103 * ->i_pages lock (try_to_unmap_one)
f4b7e272
AR
104 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 106 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 107 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 109 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 112 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
114 *
c8c06efa 115 * ->i_mmap_rwsem
9a3c531d 116 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
117 */
118
5c024e6a 119static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
120 struct page *page, void *shadow)
121{
5c024e6a
MW
122 XA_STATE(xas, &mapping->i_pages, page->index);
123 unsigned int nr = 1;
c70b647d 124
5c024e6a 125 mapping_set_update(&xas, mapping);
c70b647d 126
5c024e6a
MW
127 /* hugetlb pages are represented by a single entry in the xarray */
128 if (!PageHuge(page)) {
129 xas_set_order(&xas, page->index, compound_order(page));
d8c6546b 130 nr = compound_nr(page);
5c024e6a 131 }
91b0abe3 132
83929372
KS
133 VM_BUG_ON_PAGE(!PageLocked(page), page);
134 VM_BUG_ON_PAGE(PageTail(page), page);
135 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 136
5c024e6a
MW
137 xas_store(&xas, shadow);
138 xas_init_marks(&xas);
d3798ae8 139
2300638b
JK
140 page->mapping = NULL;
141 /* Leave page->index set: truncation lookup relies upon it */
142
d3798ae8
JW
143 if (shadow) {
144 mapping->nrexceptional += nr;
145 /*
146 * Make sure the nrexceptional update is committed before
147 * the nrpages update so that final truncate racing
148 * with reclaim does not see both counters 0 at the
149 * same time and miss a shadow entry.
150 */
151 smp_wmb();
152 }
153 mapping->nrpages -= nr;
91b0abe3
JW
154}
155
5ecc4d85
JK
156static void unaccount_page_cache_page(struct address_space *mapping,
157 struct page *page)
1da177e4 158{
5ecc4d85 159 int nr;
1da177e4 160
c515e1fd
DM
161 /*
162 * if we're uptodate, flush out into the cleancache, otherwise
163 * invalidate any existing cleancache entries. We can't leave
164 * stale data around in the cleancache once our page is gone
165 */
166 if (PageUptodate(page) && PageMappedToDisk(page))
167 cleancache_put_page(page);
168 else
3167760f 169 cleancache_invalidate_page(mapping, page);
c515e1fd 170
83929372 171 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
172 VM_BUG_ON_PAGE(page_mapped(page), page);
173 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
174 int mapcount;
175
176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
177 current->comm, page_to_pfn(page));
178 dump_page(page, "still mapped when deleted");
179 dump_stack();
180 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181
182 mapcount = page_mapcount(page);
183 if (mapping_exiting(mapping) &&
184 page_count(page) >= mapcount + 2) {
185 /*
186 * All vmas have already been torn down, so it's
187 * a good bet that actually the page is unmapped,
188 * and we'd prefer not to leak it: if we're wrong,
189 * some other bad page check should catch it later.
190 */
191 page_mapcount_reset(page);
6d061f9f 192 page_ref_sub(page, mapcount);
06b241f3
HD
193 }
194 }
195
4165b9b4 196 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
197 if (PageHuge(page))
198 return;
09612fa6 199
5ecc4d85
JK
200 nr = hpage_nr_pages(page);
201
202 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
203 if (PageSwapBacked(page)) {
204 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
205 if (PageTransHuge(page))
206 __dec_node_page_state(page, NR_SHMEM_THPS);
99cb0dbd
SL
207 } else if (PageTransHuge(page)) {
208 __dec_node_page_state(page, NR_FILE_THPS);
09d91cda 209 filemap_nr_thps_dec(mapping);
800d8c63 210 }
5ecc4d85
JK
211
212 /*
213 * At this point page must be either written or cleaned by
214 * truncate. Dirty page here signals a bug and loss of
215 * unwritten data.
216 *
217 * This fixes dirty accounting after removing the page entirely
218 * but leaves PageDirty set: it has no effect for truncated
219 * page and anyway will be cleared before returning page into
220 * buddy allocator.
221 */
222 if (WARN_ON_ONCE(PageDirty(page)))
223 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224}
225
226/*
227 * Delete a page from the page cache and free it. Caller has to make
228 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 229 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
230 */
231void __delete_from_page_cache(struct page *page, void *shadow)
232{
233 struct address_space *mapping = page->mapping;
234
235 trace_mm_filemap_delete_from_page_cache(page);
236
237 unaccount_page_cache_page(mapping, page);
5c024e6a 238 page_cache_delete(mapping, page, shadow);
1da177e4
LT
239}
240
59c66c5f
JK
241static void page_cache_free_page(struct address_space *mapping,
242 struct page *page)
243{
244 void (*freepage)(struct page *);
245
246 freepage = mapping->a_ops->freepage;
247 if (freepage)
248 freepage(page);
249
250 if (PageTransHuge(page) && !PageHuge(page)) {
251 page_ref_sub(page, HPAGE_PMD_NR);
252 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
253 } else {
254 put_page(page);
255 }
256}
257
702cfbf9
MK
258/**
259 * delete_from_page_cache - delete page from page cache
260 * @page: the page which the kernel is trying to remove from page cache
261 *
262 * This must be called only on pages that have been verified to be in the page
263 * cache and locked. It will never put the page into the free list, the caller
264 * has a reference on the page.
265 */
266void delete_from_page_cache(struct page *page)
1da177e4 267{
83929372 268 struct address_space *mapping = page_mapping(page);
c4843a75 269 unsigned long flags;
1da177e4 270
cd7619d6 271 BUG_ON(!PageLocked(page));
b93b0163 272 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 273 __delete_from_page_cache(page, NULL);
b93b0163 274 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 275
59c66c5f 276 page_cache_free_page(mapping, page);
97cecb5a
MK
277}
278EXPORT_SYMBOL(delete_from_page_cache);
279
aa65c29c 280/*
ef8e5717 281 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
282 * @mapping: the mapping to which pages belong
283 * @pvec: pagevec with pages to delete
284 *
b93b0163 285 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
286 * from the mapping. The function expects @pvec to be sorted by page index
287 * and is optimised for it to be dense.
b93b0163 288 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 289 * modified). The function expects only THP head pages to be present in the
4101196b 290 * @pvec.
aa65c29c 291 *
b93b0163 292 * The function expects the i_pages lock to be held.
aa65c29c 293 */
ef8e5717 294static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
295 struct pagevec *pvec)
296{
ef8e5717 297 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 298 int total_pages = 0;
4101196b 299 int i = 0;
aa65c29c 300 struct page *page;
aa65c29c 301
ef8e5717
MW
302 mapping_set_update(&xas, mapping);
303 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 304 if (i >= pagevec_count(pvec))
aa65c29c 305 break;
4101196b
MWO
306
307 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 308 if (xa_is_value(page))
aa65c29c 309 continue;
4101196b
MWO
310 /*
311 * A page got inserted in our range? Skip it. We have our
312 * pages locked so they are protected from being removed.
313 * If we see a page whose index is higher than ours, it
314 * means our page has been removed, which shouldn't be
315 * possible because we're holding the PageLock.
316 */
317 if (page != pvec->pages[i]) {
318 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319 page);
320 continue;
321 }
322
323 WARN_ON_ONCE(!PageLocked(page));
324
325 if (page->index == xas.xa_index)
aa65c29c 326 page->mapping = NULL;
4101196b
MWO
327 /* Leave page->index set: truncation lookup relies on it */
328
329 /*
330 * Move to the next page in the vector if this is a regular
331 * page or the index is of the last sub-page of this compound
332 * page.
333 */
334 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 335 i++;
ef8e5717 336 xas_store(&xas, NULL);
aa65c29c
JK
337 total_pages++;
338 }
339 mapping->nrpages -= total_pages;
340}
341
342void delete_from_page_cache_batch(struct address_space *mapping,
343 struct pagevec *pvec)
344{
345 int i;
346 unsigned long flags;
347
348 if (!pagevec_count(pvec))
349 return;
350
b93b0163 351 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
352 for (i = 0; i < pagevec_count(pvec); i++) {
353 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354
355 unaccount_page_cache_page(mapping, pvec->pages[i]);
356 }
ef8e5717 357 page_cache_delete_batch(mapping, pvec);
b93b0163 358 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
359
360 for (i = 0; i < pagevec_count(pvec); i++)
361 page_cache_free_page(mapping, pvec->pages[i]);
362}
363
d72d9e2a 364int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
365{
366 int ret = 0;
367 /* Check for outstanding write errors */
7fcbbaf1
JA
368 if (test_bit(AS_ENOSPC, &mapping->flags) &&
369 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 370 ret = -ENOSPC;
7fcbbaf1
JA
371 if (test_bit(AS_EIO, &mapping->flags) &&
372 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
373 ret = -EIO;
374 return ret;
375}
d72d9e2a 376EXPORT_SYMBOL(filemap_check_errors);
865ffef3 377
76341cab
JL
378static int filemap_check_and_keep_errors(struct address_space *mapping)
379{
380 /* Check for outstanding write errors */
381 if (test_bit(AS_EIO, &mapping->flags))
382 return -EIO;
383 if (test_bit(AS_ENOSPC, &mapping->flags))
384 return -ENOSPC;
385 return 0;
386}
387
1da177e4 388/**
485bb99b 389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
390 * @mapping: address space structure to write
391 * @start: offset in bytes where the range starts
469eb4d0 392 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 393 * @sync_mode: enable synchronous operation
1da177e4 394 *
485bb99b
RD
395 * Start writeback against all of a mapping's dirty pages that lie
396 * within the byte offsets <start, end> inclusive.
397 *
1da177e4 398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 399 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
400 * these two operations is that if a dirty page/buffer is encountered, it must
401 * be waited upon, and not just skipped over.
a862f68a
MR
402 *
403 * Return: %0 on success, negative error code otherwise.
1da177e4 404 */
ebcf28e1
AM
405int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406 loff_t end, int sync_mode)
1da177e4
LT
407{
408 int ret;
409 struct writeback_control wbc = {
410 .sync_mode = sync_mode,
05fe478d 411 .nr_to_write = LONG_MAX,
111ebb6e
OH
412 .range_start = start,
413 .range_end = end,
1da177e4
LT
414 };
415
c3aab9a0
KK
416 if (!mapping_cap_writeback_dirty(mapping) ||
417 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1da177e4
LT
418 return 0;
419
b16b1deb 420 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 421 ret = do_writepages(mapping, &wbc);
b16b1deb 422 wbc_detach_inode(&wbc);
1da177e4
LT
423 return ret;
424}
425
426static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428{
111ebb6e 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
430}
431
432int filemap_fdatawrite(struct address_space *mapping)
433{
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435}
436EXPORT_SYMBOL(filemap_fdatawrite);
437
f4c0a0fd 438int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 439 loff_t end)
1da177e4
LT
440{
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442}
f4c0a0fd 443EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 444
485bb99b
RD
445/**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
1da177e4
LT
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
451 *
452 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
453 */
454int filemap_flush(struct address_space *mapping)
455{
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457}
458EXPORT_SYMBOL(filemap_flush);
459
7fc9e472
GR
460/**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
a862f68a
MR
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
7fc9e472
GR
471 */
472bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474{
f7b68046 475 struct page *page;
8fa8e538
MW
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
478
479 if (end_byte < start_byte)
480 return false;
481
8fa8e538
MW
482 rcu_read_lock();
483 for (;;) {
484 page = xas_find(&xas, max);
485 if (xas_retry(&xas, page))
486 continue;
487 /* Shadow entries don't count */
488 if (xa_is_value(page))
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
7fc9e472 498
8fa8e538 499 return page != NULL;
7fc9e472
GR
500}
501EXPORT_SYMBOL(filemap_range_has_page);
502
5e8fcc1a 503static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 504 loff_t start_byte, loff_t end_byte)
1da177e4 505{
09cbfeaf
KS
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
508 struct pagevec pvec;
509 int nr_pages;
1da177e4 510
94004ed7 511 if (end_byte < start_byte)
5e8fcc1a 512 return;
1da177e4 513
86679820 514 pagevec_init(&pvec);
312e9d2f 515 while (index <= end) {
1da177e4
LT
516 unsigned i;
517
312e9d2f 518 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 519 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
520 if (!nr_pages)
521 break;
522
1da177e4
LT
523 for (i = 0; i < nr_pages; i++) {
524 struct page *page = pvec.pages[i];
525
1da177e4 526 wait_on_page_writeback(page);
5e8fcc1a 527 ClearPageError(page);
1da177e4
LT
528 }
529 pagevec_release(&pvec);
530 cond_resched();
531 }
aa750fd7
JN
532}
533
534/**
535 * filemap_fdatawait_range - wait for writeback to complete
536 * @mapping: address space structure to wait for
537 * @start_byte: offset in bytes where the range starts
538 * @end_byte: offset in bytes where the range ends (inclusive)
539 *
540 * Walk the list of under-writeback pages of the given address space
541 * in the given range and wait for all of them. Check error status of
542 * the address space and return it.
543 *
544 * Since the error status of the address space is cleared by this function,
545 * callers are responsible for checking the return value and handling and/or
546 * reporting the error.
a862f68a
MR
547 *
548 * Return: error status of the address space.
aa750fd7
JN
549 */
550int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 loff_t end_byte)
552{
5e8fcc1a
JL
553 __filemap_fdatawait_range(mapping, start_byte, end_byte);
554 return filemap_check_errors(mapping);
1da177e4 555}
d3bccb6f
JK
556EXPORT_SYMBOL(filemap_fdatawait_range);
557
aa0bfcd9
RZ
558/**
559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560 * @mapping: address space structure to wait for
561 * @start_byte: offset in bytes where the range starts
562 * @end_byte: offset in bytes where the range ends (inclusive)
563 *
564 * Walk the list of under-writeback pages of the given address space in the
565 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
566 * this function does not clear error status of the address space.
567 *
568 * Use this function if callers don't handle errors themselves. Expected
569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570 * fsfreeze(8)
571 */
572int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573 loff_t start_byte, loff_t end_byte)
574{
575 __filemap_fdatawait_range(mapping, start_byte, end_byte);
576 return filemap_check_and_keep_errors(mapping);
577}
578EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579
a823e458
JL
580/**
581 * file_fdatawait_range - wait for writeback to complete
582 * @file: file pointing to address space structure to wait for
583 * @start_byte: offset in bytes where the range starts
584 * @end_byte: offset in bytes where the range ends (inclusive)
585 *
586 * Walk the list of under-writeback pages of the address space that file
587 * refers to, in the given range and wait for all of them. Check error
588 * status of the address space vs. the file->f_wb_err cursor and return it.
589 *
590 * Since the error status of the file is advanced by this function,
591 * callers are responsible for checking the return value and handling and/or
592 * reporting the error.
a862f68a
MR
593 *
594 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
595 */
596int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597{
598 struct address_space *mapping = file->f_mapping;
599
600 __filemap_fdatawait_range(mapping, start_byte, end_byte);
601 return file_check_and_advance_wb_err(file);
602}
603EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 604
aa750fd7
JN
605/**
606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607 * @mapping: address space structure to wait for
608 *
609 * Walk the list of under-writeback pages of the given address space
610 * and wait for all of them. Unlike filemap_fdatawait(), this function
611 * does not clear error status of the address space.
612 *
613 * Use this function if callers don't handle errors themselves. Expected
614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615 * fsfreeze(8)
a862f68a
MR
616 *
617 * Return: error status of the address space.
aa750fd7 618 */
76341cab 619int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 620{
ffb959bb 621 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 622 return filemap_check_and_keep_errors(mapping);
aa750fd7 623}
76341cab 624EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 625
875d91b1 626/* Returns true if writeback might be needed or already in progress. */
9326c9b2 627static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 628{
875d91b1
KK
629 if (dax_mapping(mapping))
630 return mapping->nrexceptional;
631
632 return mapping->nrpages;
1da177e4 633}
1da177e4 634
485bb99b
RD
635/**
636 * filemap_write_and_wait_range - write out & wait on a file range
637 * @mapping: the address_space for the pages
638 * @lstart: offset in bytes where the range starts
639 * @lend: offset in bytes where the range ends (inclusive)
640 *
469eb4d0
AM
641 * Write out and wait upon file offsets lstart->lend, inclusive.
642 *
0e056eb5 643 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 644 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
645 *
646 * Return: error status of the address space.
469eb4d0 647 */
1da177e4
LT
648int filemap_write_and_wait_range(struct address_space *mapping,
649 loff_t lstart, loff_t lend)
650{
28fd1298 651 int err = 0;
1da177e4 652
9326c9b2 653 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
654 err = __filemap_fdatawrite_range(mapping, lstart, lend,
655 WB_SYNC_ALL);
ddf8f376
IW
656 /*
657 * Even if the above returned error, the pages may be
658 * written partially (e.g. -ENOSPC), so we wait for it.
659 * But the -EIO is special case, it may indicate the worst
660 * thing (e.g. bug) happened, so we avoid waiting for it.
661 */
28fd1298 662 if (err != -EIO) {
94004ed7
CH
663 int err2 = filemap_fdatawait_range(mapping,
664 lstart, lend);
28fd1298
OH
665 if (!err)
666 err = err2;
cbeaf951
JL
667 } else {
668 /* Clear any previously stored errors */
669 filemap_check_errors(mapping);
28fd1298 670 }
865ffef3
DM
671 } else {
672 err = filemap_check_errors(mapping);
1da177e4 673 }
28fd1298 674 return err;
1da177e4 675}
f6995585 676EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 677
5660e13d
JL
678void __filemap_set_wb_err(struct address_space *mapping, int err)
679{
3acdfd28 680 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
681
682 trace_filemap_set_wb_err(mapping, eseq);
683}
684EXPORT_SYMBOL(__filemap_set_wb_err);
685
686/**
687 * file_check_and_advance_wb_err - report wb error (if any) that was previously
688 * and advance wb_err to current one
689 * @file: struct file on which the error is being reported
690 *
691 * When userland calls fsync (or something like nfsd does the equivalent), we
692 * want to report any writeback errors that occurred since the last fsync (or
693 * since the file was opened if there haven't been any).
694 *
695 * Grab the wb_err from the mapping. If it matches what we have in the file,
696 * then just quickly return 0. The file is all caught up.
697 *
698 * If it doesn't match, then take the mapping value, set the "seen" flag in
699 * it and try to swap it into place. If it works, or another task beat us
700 * to it with the new value, then update the f_wb_err and return the error
701 * portion. The error at this point must be reported via proper channels
702 * (a'la fsync, or NFS COMMIT operation, etc.).
703 *
704 * While we handle mapping->wb_err with atomic operations, the f_wb_err
705 * value is protected by the f_lock since we must ensure that it reflects
706 * the latest value swapped in for this file descriptor.
a862f68a
MR
707 *
708 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
709 */
710int file_check_and_advance_wb_err(struct file *file)
711{
712 int err = 0;
713 errseq_t old = READ_ONCE(file->f_wb_err);
714 struct address_space *mapping = file->f_mapping;
715
716 /* Locklessly handle the common case where nothing has changed */
717 if (errseq_check(&mapping->wb_err, old)) {
718 /* Something changed, must use slow path */
719 spin_lock(&file->f_lock);
720 old = file->f_wb_err;
721 err = errseq_check_and_advance(&mapping->wb_err,
722 &file->f_wb_err);
723 trace_file_check_and_advance_wb_err(file, old);
724 spin_unlock(&file->f_lock);
725 }
f4e222c5
JL
726
727 /*
728 * We're mostly using this function as a drop in replacement for
729 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
730 * that the legacy code would have had on these flags.
731 */
732 clear_bit(AS_EIO, &mapping->flags);
733 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
734 return err;
735}
736EXPORT_SYMBOL(file_check_and_advance_wb_err);
737
738/**
739 * file_write_and_wait_range - write out & wait on a file range
740 * @file: file pointing to address_space with pages
741 * @lstart: offset in bytes where the range starts
742 * @lend: offset in bytes where the range ends (inclusive)
743 *
744 * Write out and wait upon file offsets lstart->lend, inclusive.
745 *
746 * Note that @lend is inclusive (describes the last byte to be written) so
747 * that this function can be used to write to the very end-of-file (end = -1).
748 *
749 * After writing out and waiting on the data, we check and advance the
750 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
751 *
752 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
753 */
754int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
755{
756 int err = 0, err2;
757 struct address_space *mapping = file->f_mapping;
758
9326c9b2 759 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
760 err = __filemap_fdatawrite_range(mapping, lstart, lend,
761 WB_SYNC_ALL);
762 /* See comment of filemap_write_and_wait() */
763 if (err != -EIO)
764 __filemap_fdatawait_range(mapping, lstart, lend);
765 }
766 err2 = file_check_and_advance_wb_err(file);
767 if (!err)
768 err = err2;
769 return err;
770}
771EXPORT_SYMBOL(file_write_and_wait_range);
772
ef6a3c63
MS
773/**
774 * replace_page_cache_page - replace a pagecache page with a new one
775 * @old: page to be replaced
776 * @new: page to replace with
777 * @gfp_mask: allocation mode
778 *
779 * This function replaces a page in the pagecache with a new one. On
780 * success it acquires the pagecache reference for the new page and
781 * drops it for the old page. Both the old and new pages must be
782 * locked. This function does not add the new page to the LRU, the
783 * caller must do that.
784 *
74d60958 785 * The remove + add is atomic. This function cannot fail.
a862f68a
MR
786 *
787 * Return: %0
ef6a3c63
MS
788 */
789int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
790{
74d60958
MW
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 pgoff_t offset = old->index;
794 XA_STATE(xas, &mapping->i_pages, offset);
795 unsigned long flags;
ef6a3c63 796
309381fe
SL
797 VM_BUG_ON_PAGE(!PageLocked(old), old);
798 VM_BUG_ON_PAGE(!PageLocked(new), new);
799 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 800
74d60958
MW
801 get_page(new);
802 new->mapping = mapping;
803 new->index = offset;
ef6a3c63 804
74d60958
MW
805 xas_lock_irqsave(&xas, flags);
806 xas_store(&xas, new);
4165b9b4 807
74d60958
MW
808 old->mapping = NULL;
809 /* hugetlb pages do not participate in page cache accounting. */
810 if (!PageHuge(old))
f4129ea3 811 __dec_node_page_state(old, NR_FILE_PAGES);
74d60958
MW
812 if (!PageHuge(new))
813 __inc_node_page_state(new, NR_FILE_PAGES);
814 if (PageSwapBacked(old))
f4129ea3 815 __dec_node_page_state(old, NR_SHMEM);
74d60958
MW
816 if (PageSwapBacked(new))
817 __inc_node_page_state(new, NR_SHMEM);
818 xas_unlock_irqrestore(&xas, flags);
819 mem_cgroup_migrate(old, new);
820 if (freepage)
821 freepage(old);
822 put_page(old);
ef6a3c63 823
74d60958 824 return 0;
ef6a3c63
MS
825}
826EXPORT_SYMBOL_GPL(replace_page_cache_page);
827
a528910e
JW
828static int __add_to_page_cache_locked(struct page *page,
829 struct address_space *mapping,
830 pgoff_t offset, gfp_t gfp_mask,
831 void **shadowp)
1da177e4 832{
74d60958 833 XA_STATE(xas, &mapping->i_pages, offset);
00501b53 834 int huge = PageHuge(page);
e286781d 835 int error;
74d60958 836 void *old;
e286781d 837
309381fe
SL
838 VM_BUG_ON_PAGE(!PageLocked(page), page);
839 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 840 mapping_set_update(&xas, mapping);
e286781d 841
09cbfeaf 842 get_page(page);
66a0c8ee
KS
843 page->mapping = mapping;
844 page->index = offset;
845
3fea5a49
JW
846 if (!huge) {
847 error = mem_cgroup_charge(page, current->mm, gfp_mask, false);
848 if (error)
849 goto error;
850 }
851
74d60958
MW
852 do {
853 xas_lock_irq(&xas);
854 old = xas_load(&xas);
855 if (old && !xa_is_value(old))
856 xas_set_err(&xas, -EEXIST);
857 xas_store(&xas, page);
858 if (xas_error(&xas))
859 goto unlock;
860
861 if (xa_is_value(old)) {
862 mapping->nrexceptional--;
863 if (shadowp)
864 *shadowp = old;
865 }
866 mapping->nrpages++;
867
868 /* hugetlb pages do not participate in page cache accounting */
869 if (!huge)
870 __inc_node_page_state(page, NR_FILE_PAGES);
871unlock:
872 xas_unlock_irq(&xas);
873 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
874
3fea5a49
JW
875 if (xas_error(&xas)) {
876 error = xas_error(&xas);
74d60958 877 goto error;
3fea5a49 878 }
4165b9b4 879
66a0c8ee
KS
880 trace_mm_filemap_add_to_page_cache(page);
881 return 0;
74d60958 882error:
66a0c8ee
KS
883 page->mapping = NULL;
884 /* Leave page->index set: truncation relies upon it */
09cbfeaf 885 put_page(page);
3fea5a49 886 return error;
1da177e4 887}
cfcbfb13 888ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
a528910e
JW
889
890/**
891 * add_to_page_cache_locked - add a locked page to the pagecache
892 * @page: page to add
893 * @mapping: the page's address_space
894 * @offset: page index
895 * @gfp_mask: page allocation mode
896 *
897 * This function is used to add a page to the pagecache. It must be locked.
898 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
899 *
900 * Return: %0 on success, negative error code otherwise.
a528910e
JW
901 */
902int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
903 pgoff_t offset, gfp_t gfp_mask)
904{
905 return __add_to_page_cache_locked(page, mapping, offset,
906 gfp_mask, NULL);
907}
e286781d 908EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
909
910int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 911 pgoff_t offset, gfp_t gfp_mask)
1da177e4 912{
a528910e 913 void *shadow = NULL;
4f98a2fe
RR
914 int ret;
915
48c935ad 916 __SetPageLocked(page);
a528910e
JW
917 ret = __add_to_page_cache_locked(page, mapping, offset,
918 gfp_mask, &shadow);
919 if (unlikely(ret))
48c935ad 920 __ClearPageLocked(page);
a528910e
JW
921 else {
922 /*
923 * The page might have been evicted from cache only
924 * recently, in which case it should be activated like
925 * any other repeatedly accessed page.
f0281a00
RR
926 * The exception is pages getting rewritten; evicting other
927 * data from the working set, only to cache data that will
928 * get overwritten with something else, is a waste of memory.
a528910e 929 */
1899ad18
JW
930 WARN_ON_ONCE(PageActive(page));
931 if (!(gfp_mask & __GFP_WRITE) && shadow)
932 workingset_refault(page, shadow);
a528910e
JW
933 lru_cache_add(page);
934 }
1da177e4
LT
935 return ret;
936}
18bc0bbd 937EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 938
44110fe3 939#ifdef CONFIG_NUMA
2ae88149 940struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 941{
c0ff7453
MX
942 int n;
943 struct page *page;
944
44110fe3 945 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
946 unsigned int cpuset_mems_cookie;
947 do {
d26914d1 948 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 949 n = cpuset_mem_spread_node();
96db800f 950 page = __alloc_pages_node(n, gfp, 0);
d26914d1 951 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 952
c0ff7453 953 return page;
44110fe3 954 }
2ae88149 955 return alloc_pages(gfp, 0);
44110fe3 956}
2ae88149 957EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
958#endif
959
1da177e4
LT
960/*
961 * In order to wait for pages to become available there must be
962 * waitqueues associated with pages. By using a hash table of
963 * waitqueues where the bucket discipline is to maintain all
964 * waiters on the same queue and wake all when any of the pages
965 * become available, and for the woken contexts to check to be
966 * sure the appropriate page became available, this saves space
967 * at a cost of "thundering herd" phenomena during rare hash
968 * collisions.
969 */
62906027
NP
970#define PAGE_WAIT_TABLE_BITS 8
971#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
972static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
973
974static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 975{
62906027 976 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 977}
1da177e4 978
62906027 979void __init pagecache_init(void)
1da177e4 980{
62906027 981 int i;
1da177e4 982
62906027
NP
983 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
984 init_waitqueue_head(&page_wait_table[i]);
985
986 page_writeback_init();
1da177e4 987}
1da177e4 988
3510ca20 989/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
62906027
NP
990struct wait_page_key {
991 struct page *page;
992 int bit_nr;
993 int page_match;
994};
995
996struct wait_page_queue {
997 struct page *page;
998 int bit_nr;
ac6424b9 999 wait_queue_entry_t wait;
62906027
NP
1000};
1001
ac6424b9 1002static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1003{
62906027
NP
1004 struct wait_page_key *key = arg;
1005 struct wait_page_queue *wait_page
1006 = container_of(wait, struct wait_page_queue, wait);
1007
1008 if (wait_page->page != key->page)
1009 return 0;
1010 key->page_match = 1;
f62e00cc 1011
62906027
NP
1012 if (wait_page->bit_nr != key->bit_nr)
1013 return 0;
3510ca20 1014
9a1ea439
HD
1015 /*
1016 * Stop walking if it's locked.
1017 * Is this safe if put_and_wait_on_page_locked() is in use?
1018 * Yes: the waker must hold a reference to this page, and if PG_locked
1019 * has now already been set by another task, that task must also hold
1020 * a reference to the *same usage* of this page; so there is no need
1021 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1022 */
62906027 1023 if (test_bit(key->bit_nr, &key->page->flags))
3510ca20 1024 return -1;
f62e00cc 1025
62906027 1026 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
1027}
1028
74d81bfa 1029static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1030{
62906027
NP
1031 wait_queue_head_t *q = page_waitqueue(page);
1032 struct wait_page_key key;
1033 unsigned long flags;
11a19c7b 1034 wait_queue_entry_t bookmark;
cbbce822 1035
62906027
NP
1036 key.page = page;
1037 key.bit_nr = bit_nr;
1038 key.page_match = 0;
1039
11a19c7b
TC
1040 bookmark.flags = 0;
1041 bookmark.private = NULL;
1042 bookmark.func = NULL;
1043 INIT_LIST_HEAD(&bookmark.entry);
1044
62906027 1045 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1046 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1047
1048 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1049 /*
1050 * Take a breather from holding the lock,
1051 * allow pages that finish wake up asynchronously
1052 * to acquire the lock and remove themselves
1053 * from wait queue
1054 */
1055 spin_unlock_irqrestore(&q->lock, flags);
1056 cpu_relax();
1057 spin_lock_irqsave(&q->lock, flags);
1058 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1059 }
1060
62906027
NP
1061 /*
1062 * It is possible for other pages to have collided on the waitqueue
1063 * hash, so in that case check for a page match. That prevents a long-
1064 * term waiter
1065 *
1066 * It is still possible to miss a case here, when we woke page waiters
1067 * and removed them from the waitqueue, but there are still other
1068 * page waiters.
1069 */
1070 if (!waitqueue_active(q) || !key.page_match) {
1071 ClearPageWaiters(page);
1072 /*
1073 * It's possible to miss clearing Waiters here, when we woke
1074 * our page waiters, but the hashed waitqueue has waiters for
1075 * other pages on it.
1076 *
1077 * That's okay, it's a rare case. The next waker will clear it.
1078 */
1079 }
1080 spin_unlock_irqrestore(&q->lock, flags);
1081}
74d81bfa
NP
1082
1083static void wake_up_page(struct page *page, int bit)
1084{
1085 if (!PageWaiters(page))
1086 return;
1087 wake_up_page_bit(page, bit);
1088}
62906027 1089
9a1ea439
HD
1090/*
1091 * A choice of three behaviors for wait_on_page_bit_common():
1092 */
1093enum behavior {
1094 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1095 * __lock_page() waiting on then setting PG_locked.
1096 */
1097 SHARED, /* Hold ref to page and check the bit when woken, like
1098 * wait_on_page_writeback() waiting on PG_writeback.
1099 */
1100 DROP, /* Drop ref to page before wait, no check when woken,
1101 * like put_and_wait_on_page_locked() on PG_locked.
1102 */
1103};
1104
62906027 1105static inline int wait_on_page_bit_common(wait_queue_head_t *q,
9a1ea439 1106 struct page *page, int bit_nr, int state, enum behavior behavior)
62906027
NP
1107{
1108 struct wait_page_queue wait_page;
ac6424b9 1109 wait_queue_entry_t *wait = &wait_page.wait;
9a1ea439 1110 bool bit_is_set;
b1d29ba8 1111 bool thrashing = false;
9a1ea439 1112 bool delayacct = false;
eb414681 1113 unsigned long pflags;
62906027
NP
1114 int ret = 0;
1115
eb414681 1116 if (bit_nr == PG_locked &&
b1d29ba8 1117 !PageUptodate(page) && PageWorkingset(page)) {
9a1ea439 1118 if (!PageSwapBacked(page)) {
eb414681 1119 delayacct_thrashing_start();
9a1ea439
HD
1120 delayacct = true;
1121 }
eb414681 1122 psi_memstall_enter(&pflags);
b1d29ba8
JW
1123 thrashing = true;
1124 }
1125
62906027 1126 init_wait(wait);
9a1ea439 1127 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
62906027
NP
1128 wait->func = wake_page_function;
1129 wait_page.page = page;
1130 wait_page.bit_nr = bit_nr;
1131
1132 for (;;) {
1133 spin_lock_irq(&q->lock);
1134
2055da97 1135 if (likely(list_empty(&wait->entry))) {
3510ca20 1136 __add_wait_queue_entry_tail(q, wait);
62906027
NP
1137 SetPageWaiters(page);
1138 }
1139
1140 set_current_state(state);
1141
1142 spin_unlock_irq(&q->lock);
1143
9a1ea439
HD
1144 bit_is_set = test_bit(bit_nr, &page->flags);
1145 if (behavior == DROP)
1146 put_page(page);
1147
1148 if (likely(bit_is_set))
62906027 1149 io_schedule();
62906027 1150
9a1ea439 1151 if (behavior == EXCLUSIVE) {
62906027
NP
1152 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1153 break;
9a1ea439 1154 } else if (behavior == SHARED) {
62906027
NP
1155 if (!test_bit(bit_nr, &page->flags))
1156 break;
1157 }
a8b169af 1158
fa45f116 1159 if (signal_pending_state(state, current)) {
a8b169af
LT
1160 ret = -EINTR;
1161 break;
1162 }
9a1ea439
HD
1163
1164 if (behavior == DROP) {
1165 /*
1166 * We can no longer safely access page->flags:
1167 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1168 * there is a risk of waiting forever on a page reused
1169 * for something that keeps it locked indefinitely.
1170 * But best check for -EINTR above before breaking.
1171 */
1172 break;
1173 }
62906027
NP
1174 }
1175
1176 finish_wait(q, wait);
1177
eb414681 1178 if (thrashing) {
9a1ea439 1179 if (delayacct)
eb414681
JW
1180 delayacct_thrashing_end();
1181 psi_memstall_leave(&pflags);
1182 }
b1d29ba8 1183
62906027
NP
1184 /*
1185 * A signal could leave PageWaiters set. Clearing it here if
1186 * !waitqueue_active would be possible (by open-coding finish_wait),
1187 * but still fail to catch it in the case of wait hash collision. We
1188 * already can fail to clear wait hash collision cases, so don't
1189 * bother with signals either.
1190 */
1191
1192 return ret;
1193}
1194
1195void wait_on_page_bit(struct page *page, int bit_nr)
1196{
1197 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1198 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027
NP
1199}
1200EXPORT_SYMBOL(wait_on_page_bit);
1201
1202int wait_on_page_bit_killable(struct page *page, int bit_nr)
1203{
1204 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1205 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1206}
4343d008 1207EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1208
9a1ea439
HD
1209/**
1210 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1211 * @page: The page to wait for.
1212 *
1213 * The caller should hold a reference on @page. They expect the page to
1214 * become unlocked relatively soon, but do not wish to hold up migration
1215 * (for example) by holding the reference while waiting for the page to
1216 * come unlocked. After this function returns, the caller should not
1217 * dereference @page.
1218 */
1219void put_and_wait_on_page_locked(struct page *page)
1220{
1221 wait_queue_head_t *q;
1222
1223 page = compound_head(page);
1224 q = page_waitqueue(page);
1225 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1226}
1227
385e1ca5
DH
1228/**
1229 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1230 * @page: Page defining the wait queue of interest
1231 * @waiter: Waiter to add to the queue
385e1ca5
DH
1232 *
1233 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1234 */
ac6424b9 1235void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1236{
1237 wait_queue_head_t *q = page_waitqueue(page);
1238 unsigned long flags;
1239
1240 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1241 __add_wait_queue_entry_tail(q, waiter);
62906027 1242 SetPageWaiters(page);
385e1ca5
DH
1243 spin_unlock_irqrestore(&q->lock, flags);
1244}
1245EXPORT_SYMBOL_GPL(add_page_wait_queue);
1246
b91e1302
LT
1247#ifndef clear_bit_unlock_is_negative_byte
1248
1249/*
1250 * PG_waiters is the high bit in the same byte as PG_lock.
1251 *
1252 * On x86 (and on many other architectures), we can clear PG_lock and
1253 * test the sign bit at the same time. But if the architecture does
1254 * not support that special operation, we just do this all by hand
1255 * instead.
1256 *
1257 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1258 * being cleared, but a memory barrier should be unneccssary since it is
1259 * in the same byte as PG_locked.
1260 */
1261static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1262{
1263 clear_bit_unlock(nr, mem);
1264 /* smp_mb__after_atomic(); */
98473f9f 1265 return test_bit(PG_waiters, mem);
b91e1302
LT
1266}
1267
1268#endif
1269
1da177e4 1270/**
485bb99b 1271 * unlock_page - unlock a locked page
1da177e4
LT
1272 * @page: the page
1273 *
1274 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1275 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1276 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1277 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1278 *
b91e1302
LT
1279 * Note that this depends on PG_waiters being the sign bit in the byte
1280 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1281 * clear the PG_locked bit and test PG_waiters at the same time fairly
1282 * portably (architectures that do LL/SC can test any bit, while x86 can
1283 * test the sign bit).
1da177e4 1284 */
920c7a5d 1285void unlock_page(struct page *page)
1da177e4 1286{
b91e1302 1287 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1288 page = compound_head(page);
309381fe 1289 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1290 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1291 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1292}
1293EXPORT_SYMBOL(unlock_page);
1294
485bb99b
RD
1295/**
1296 * end_page_writeback - end writeback against a page
1297 * @page: the page
1da177e4
LT
1298 */
1299void end_page_writeback(struct page *page)
1300{
888cf2db
MG
1301 /*
1302 * TestClearPageReclaim could be used here but it is an atomic
1303 * operation and overkill in this particular case. Failing to
1304 * shuffle a page marked for immediate reclaim is too mild to
1305 * justify taking an atomic operation penalty at the end of
1306 * ever page writeback.
1307 */
1308 if (PageReclaim(page)) {
1309 ClearPageReclaim(page);
ac6aadb2 1310 rotate_reclaimable_page(page);
888cf2db 1311 }
ac6aadb2
MS
1312
1313 if (!test_clear_page_writeback(page))
1314 BUG();
1315
4e857c58 1316 smp_mb__after_atomic();
1da177e4
LT
1317 wake_up_page(page, PG_writeback);
1318}
1319EXPORT_SYMBOL(end_page_writeback);
1320
57d99845
MW
1321/*
1322 * After completing I/O on a page, call this routine to update the page
1323 * flags appropriately
1324 */
c11f0c0b 1325void page_endio(struct page *page, bool is_write, int err)
57d99845 1326{
c11f0c0b 1327 if (!is_write) {
57d99845
MW
1328 if (!err) {
1329 SetPageUptodate(page);
1330 } else {
1331 ClearPageUptodate(page);
1332 SetPageError(page);
1333 }
1334 unlock_page(page);
abf54548 1335 } else {
57d99845 1336 if (err) {
dd8416c4
MK
1337 struct address_space *mapping;
1338
57d99845 1339 SetPageError(page);
dd8416c4
MK
1340 mapping = page_mapping(page);
1341 if (mapping)
1342 mapping_set_error(mapping, err);
57d99845
MW
1343 }
1344 end_page_writeback(page);
1345 }
1346}
1347EXPORT_SYMBOL_GPL(page_endio);
1348
485bb99b
RD
1349/**
1350 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1351 * @__page: the page to lock
1da177e4 1352 */
62906027 1353void __lock_page(struct page *__page)
1da177e4 1354{
62906027
NP
1355 struct page *page = compound_head(__page);
1356 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1357 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1358 EXCLUSIVE);
1da177e4
LT
1359}
1360EXPORT_SYMBOL(__lock_page);
1361
62906027 1362int __lock_page_killable(struct page *__page)
2687a356 1363{
62906027
NP
1364 struct page *page = compound_head(__page);
1365 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1366 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1367 EXCLUSIVE);
2687a356 1368}
18bc0bbd 1369EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1370
9a95f3cf
PC
1371/*
1372 * Return values:
1373 * 1 - page is locked; mmap_sem is still held.
1374 * 0 - page is not locked.
1375 * mmap_sem has been released (up_read()), unless flags had both
1376 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1377 * which case mmap_sem is still held.
1378 *
1379 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1380 * with the page locked and the mmap_sem unperturbed.
1381 */
d065bd81
ML
1382int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1383 unsigned int flags)
1384{
4064b982 1385 if (fault_flag_allow_retry_first(flags)) {
37b23e05
KM
1386 /*
1387 * CAUTION! In this case, mmap_sem is not released
1388 * even though return 0.
1389 */
1390 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1391 return 0;
1392
1393 up_read(&mm->mmap_sem);
1394 if (flags & FAULT_FLAG_KILLABLE)
1395 wait_on_page_locked_killable(page);
1396 else
318b275f 1397 wait_on_page_locked(page);
d065bd81 1398 return 0;
37b23e05
KM
1399 } else {
1400 if (flags & FAULT_FLAG_KILLABLE) {
1401 int ret;
1402
1403 ret = __lock_page_killable(page);
1404 if (ret) {
1405 up_read(&mm->mmap_sem);
1406 return 0;
1407 }
1408 } else
1409 __lock_page(page);
1410 return 1;
d065bd81
ML
1411 }
1412}
1413
e7b563bb 1414/**
0d3f9296
MW
1415 * page_cache_next_miss() - Find the next gap in the page cache.
1416 * @mapping: Mapping.
1417 * @index: Index.
1418 * @max_scan: Maximum range to search.
e7b563bb 1419 *
0d3f9296
MW
1420 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1421 * gap with the lowest index.
e7b563bb 1422 *
0d3f9296
MW
1423 * This function may be called under the rcu_read_lock. However, this will
1424 * not atomically search a snapshot of the cache at a single point in time.
1425 * For example, if a gap is created at index 5, then subsequently a gap is
1426 * created at index 10, page_cache_next_miss covering both indices may
1427 * return 10 if called under the rcu_read_lock.
e7b563bb 1428 *
0d3f9296
MW
1429 * Return: The index of the gap if found, otherwise an index outside the
1430 * range specified (in which case 'return - index >= max_scan' will be true).
1431 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1432 */
0d3f9296 1433pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1434 pgoff_t index, unsigned long max_scan)
1435{
0d3f9296 1436 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1437
0d3f9296
MW
1438 while (max_scan--) {
1439 void *entry = xas_next(&xas);
1440 if (!entry || xa_is_value(entry))
e7b563bb 1441 break;
0d3f9296 1442 if (xas.xa_index == 0)
e7b563bb
JW
1443 break;
1444 }
1445
0d3f9296 1446 return xas.xa_index;
e7b563bb 1447}
0d3f9296 1448EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1449
1450/**
2346a560 1451 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1452 * @mapping: Mapping.
1453 * @index: Index.
1454 * @max_scan: Maximum range to search.
e7b563bb 1455 *
0d3f9296
MW
1456 * Search the range [max(index - max_scan + 1, 0), index] for the
1457 * gap with the highest index.
e7b563bb 1458 *
0d3f9296
MW
1459 * This function may be called under the rcu_read_lock. However, this will
1460 * not atomically search a snapshot of the cache at a single point in time.
1461 * For example, if a gap is created at index 10, then subsequently a gap is
1462 * created at index 5, page_cache_prev_miss() covering both indices may
1463 * return 5 if called under the rcu_read_lock.
e7b563bb 1464 *
0d3f9296
MW
1465 * Return: The index of the gap if found, otherwise an index outside the
1466 * range specified (in which case 'index - return >= max_scan' will be true).
1467 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1468 */
0d3f9296 1469pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1470 pgoff_t index, unsigned long max_scan)
1471{
0d3f9296 1472 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1473
0d3f9296
MW
1474 while (max_scan--) {
1475 void *entry = xas_prev(&xas);
1476 if (!entry || xa_is_value(entry))
e7b563bb 1477 break;
0d3f9296 1478 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1479 break;
1480 }
1481
0d3f9296 1482 return xas.xa_index;
e7b563bb 1483}
0d3f9296 1484EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1485
485bb99b 1486/**
0cd6144a 1487 * find_get_entry - find and get a page cache entry
485bb99b 1488 * @mapping: the address_space to search
0cd6144a
JW
1489 * @offset: the page cache index
1490 *
1491 * Looks up the page cache slot at @mapping & @offset. If there is a
1492 * page cache page, it is returned with an increased refcount.
485bb99b 1493 *
139b6a6f
JW
1494 * If the slot holds a shadow entry of a previously evicted page, or a
1495 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1496 *
a862f68a 1497 * Return: the found page or shadow entry, %NULL if nothing is found.
1da177e4 1498 */
0cd6144a 1499struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1500{
4c7472c0 1501 XA_STATE(xas, &mapping->i_pages, offset);
4101196b 1502 struct page *page;
1da177e4 1503
a60637c8
NP
1504 rcu_read_lock();
1505repeat:
4c7472c0
MW
1506 xas_reset(&xas);
1507 page = xas_load(&xas);
1508 if (xas_retry(&xas, page))
1509 goto repeat;
1510 /*
1511 * A shadow entry of a recently evicted page, or a swap entry from
1512 * shmem/tmpfs. Return it without attempting to raise page count.
1513 */
1514 if (!page || xa_is_value(page))
1515 goto out;
83929372 1516
4101196b 1517 if (!page_cache_get_speculative(page))
4c7472c0 1518 goto repeat;
83929372 1519
4c7472c0 1520 /*
4101196b 1521 * Has the page moved or been split?
4c7472c0
MW
1522 * This is part of the lockless pagecache protocol. See
1523 * include/linux/pagemap.h for details.
1524 */
1525 if (unlikely(page != xas_reload(&xas))) {
4101196b 1526 put_page(page);
4c7472c0 1527 goto repeat;
a60637c8 1528 }
4101196b 1529 page = find_subpage(page, offset);
27d20fdd 1530out:
a60637c8
NP
1531 rcu_read_unlock();
1532
1da177e4
LT
1533 return page;
1534}
1da177e4 1535
0cd6144a
JW
1536/**
1537 * find_lock_entry - locate, pin and lock a page cache entry
1538 * @mapping: the address_space to search
1539 * @offset: the page cache index
1540 *
1541 * Looks up the page cache slot at @mapping & @offset. If there is a
1542 * page cache page, it is returned locked and with an increased
1543 * refcount.
1544 *
139b6a6f
JW
1545 * If the slot holds a shadow entry of a previously evicted page, or a
1546 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1547 *
0cd6144a 1548 * find_lock_entry() may sleep.
a862f68a
MR
1549 *
1550 * Return: the found page or shadow entry, %NULL if nothing is found.
0cd6144a
JW
1551 */
1552struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1553{
1554 struct page *page;
1555
1da177e4 1556repeat:
0cd6144a 1557 page = find_get_entry(mapping, offset);
4c7472c0 1558 if (page && !xa_is_value(page)) {
a60637c8
NP
1559 lock_page(page);
1560 /* Has the page been truncated? */
83929372 1561 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1562 unlock_page(page);
09cbfeaf 1563 put_page(page);
a60637c8 1564 goto repeat;
1da177e4 1565 }
83929372 1566 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1567 }
1da177e4
LT
1568 return page;
1569}
0cd6144a
JW
1570EXPORT_SYMBOL(find_lock_entry);
1571
1572/**
2294b32e
MWO
1573 * pagecache_get_page - Find and get a reference to a page.
1574 * @mapping: The address_space to search.
1575 * @index: The page index.
1576 * @fgp_flags: %FGP flags modify how the page is returned.
1577 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1578 *
2294b32e 1579 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1580 *
2294b32e 1581 * @fgp_flags can be zero or more of these flags:
0e056eb5 1582 *
2294b32e
MWO
1583 * * %FGP_ACCESSED - The page will be marked accessed.
1584 * * %FGP_LOCK - The page is returned locked.
1585 * * %FGP_CREAT - If no page is present then a new page is allocated using
1586 * @gfp_mask and added to the page cache and the VM's LRU list.
1587 * The page is returned locked and with an increased refcount.
1588 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1589 * page is already in cache. If the page was allocated, unlock it before
1590 * returning so the caller can do the same dance.
1da177e4 1591 *
2294b32e
MWO
1592 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1593 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1594 *
2457aec6 1595 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1596 *
2294b32e 1597 * Return: The found page or %NULL otherwise.
1da177e4 1598 */
2294b32e
MWO
1599struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1600 int fgp_flags, gfp_t gfp_mask)
1da177e4 1601{
eb2be189 1602 struct page *page;
2457aec6 1603
1da177e4 1604repeat:
2294b32e 1605 page = find_get_entry(mapping, index);
3159f943 1606 if (xa_is_value(page))
2457aec6
MG
1607 page = NULL;
1608 if (!page)
1609 goto no_page;
1610
1611 if (fgp_flags & FGP_LOCK) {
1612 if (fgp_flags & FGP_NOWAIT) {
1613 if (!trylock_page(page)) {
09cbfeaf 1614 put_page(page);
2457aec6
MG
1615 return NULL;
1616 }
1617 } else {
1618 lock_page(page);
1619 }
1620
1621 /* Has the page been truncated? */
31895438 1622 if (unlikely(compound_head(page)->mapping != mapping)) {
2457aec6 1623 unlock_page(page);
09cbfeaf 1624 put_page(page);
2457aec6
MG
1625 goto repeat;
1626 }
2294b32e 1627 VM_BUG_ON_PAGE(page->index != index, page);
2457aec6
MG
1628 }
1629
c16eb000 1630 if (fgp_flags & FGP_ACCESSED)
2457aec6
MG
1631 mark_page_accessed(page);
1632
1633no_page:
1634 if (!page && (fgp_flags & FGP_CREAT)) {
1635 int err;
1636 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1637 gfp_mask |= __GFP_WRITE;
1638 if (fgp_flags & FGP_NOFS)
1639 gfp_mask &= ~__GFP_FS;
2457aec6 1640
45f87de5 1641 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1642 if (!page)
1643 return NULL;
2457aec6 1644
a75d4c33 1645 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1646 fgp_flags |= FGP_LOCK;
1647
eb39d618 1648 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1649 if (fgp_flags & FGP_ACCESSED)
eb39d618 1650 __SetPageReferenced(page);
2457aec6 1651
2294b32e 1652 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
eb2be189 1653 if (unlikely(err)) {
09cbfeaf 1654 put_page(page);
eb2be189
NP
1655 page = NULL;
1656 if (err == -EEXIST)
1657 goto repeat;
1da177e4 1658 }
a75d4c33
JB
1659
1660 /*
1661 * add_to_page_cache_lru locks the page, and for mmap we expect
1662 * an unlocked page.
1663 */
1664 if (page && (fgp_flags & FGP_FOR_MMAP))
1665 unlock_page(page);
1da177e4 1666 }
2457aec6 1667
1da177e4
LT
1668 return page;
1669}
2457aec6 1670EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1671
0cd6144a
JW
1672/**
1673 * find_get_entries - gang pagecache lookup
1674 * @mapping: The address_space to search
1675 * @start: The starting page cache index
1676 * @nr_entries: The maximum number of entries
1677 * @entries: Where the resulting entries are placed
1678 * @indices: The cache indices corresponding to the entries in @entries
1679 *
1680 * find_get_entries() will search for and return a group of up to
1681 * @nr_entries entries in the mapping. The entries are placed at
1682 * @entries. find_get_entries() takes a reference against any actual
1683 * pages it returns.
1684 *
1685 * The search returns a group of mapping-contiguous page cache entries
1686 * with ascending indexes. There may be holes in the indices due to
1687 * not-present pages.
1688 *
139b6a6f
JW
1689 * Any shadow entries of evicted pages, or swap entries from
1690 * shmem/tmpfs, are included in the returned array.
0cd6144a 1691 *
71725ed1
HD
1692 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1693 * stops at that page: the caller is likely to have a better way to handle
1694 * the compound page as a whole, and then skip its extent, than repeatedly
1695 * calling find_get_entries() to return all its tails.
1696 *
a862f68a 1697 * Return: the number of pages and shadow entries which were found.
0cd6144a
JW
1698 */
1699unsigned find_get_entries(struct address_space *mapping,
1700 pgoff_t start, unsigned int nr_entries,
1701 struct page **entries, pgoff_t *indices)
1702{
f280bf09
MW
1703 XA_STATE(xas, &mapping->i_pages, start);
1704 struct page *page;
0cd6144a 1705 unsigned int ret = 0;
0cd6144a
JW
1706
1707 if (!nr_entries)
1708 return 0;
1709
1710 rcu_read_lock();
f280bf09 1711 xas_for_each(&xas, page, ULONG_MAX) {
f280bf09 1712 if (xas_retry(&xas, page))
0cd6144a 1713 continue;
f280bf09
MW
1714 /*
1715 * A shadow entry of a recently evicted page, a swap
1716 * entry from shmem/tmpfs or a DAX entry. Return it
1717 * without attempting to raise page count.
1718 */
1719 if (xa_is_value(page))
0cd6144a 1720 goto export;
83929372 1721
4101196b 1722 if (!page_cache_get_speculative(page))
f280bf09 1723 goto retry;
83929372 1724
4101196b 1725 /* Has the page moved or been split? */
f280bf09
MW
1726 if (unlikely(page != xas_reload(&xas)))
1727 goto put_page;
1728
71725ed1
HD
1729 /*
1730 * Terminate early on finding a THP, to allow the caller to
1731 * handle it all at once; but continue if this is hugetlbfs.
1732 */
1733 if (PageTransHuge(page) && !PageHuge(page)) {
1734 page = find_subpage(page, xas.xa_index);
1735 nr_entries = ret + 1;
1736 }
0cd6144a 1737export:
f280bf09 1738 indices[ret] = xas.xa_index;
0cd6144a
JW
1739 entries[ret] = page;
1740 if (++ret == nr_entries)
1741 break;
f280bf09
MW
1742 continue;
1743put_page:
4101196b 1744 put_page(page);
f280bf09
MW
1745retry:
1746 xas_reset(&xas);
0cd6144a
JW
1747 }
1748 rcu_read_unlock();
1749 return ret;
1750}
1751
1da177e4 1752/**
b947cee4 1753 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1754 * @mapping: The address_space to search
1755 * @start: The starting page index
b947cee4 1756 * @end: The final page index (inclusive)
1da177e4
LT
1757 * @nr_pages: The maximum number of pages
1758 * @pages: Where the resulting pages are placed
1759 *
b947cee4
JK
1760 * find_get_pages_range() will search for and return a group of up to @nr_pages
1761 * pages in the mapping starting at index @start and up to index @end
1762 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1763 * a reference against the returned pages.
1da177e4
LT
1764 *
1765 * The search returns a group of mapping-contiguous pages with ascending
1766 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1767 * We also update @start to index the next page for the traversal.
1da177e4 1768 *
a862f68a
MR
1769 * Return: the number of pages which were found. If this number is
1770 * smaller than @nr_pages, the end of specified range has been
b947cee4 1771 * reached.
1da177e4 1772 */
b947cee4
JK
1773unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1774 pgoff_t end, unsigned int nr_pages,
1775 struct page **pages)
1da177e4 1776{
fd1b3cee
MW
1777 XA_STATE(xas, &mapping->i_pages, *start);
1778 struct page *page;
0fc9d104
KK
1779 unsigned ret = 0;
1780
1781 if (unlikely(!nr_pages))
1782 return 0;
a60637c8
NP
1783
1784 rcu_read_lock();
fd1b3cee 1785 xas_for_each(&xas, page, end) {
fd1b3cee 1786 if (xas_retry(&xas, page))
a60637c8 1787 continue;
fd1b3cee
MW
1788 /* Skip over shadow, swap and DAX entries */
1789 if (xa_is_value(page))
8079b1c8 1790 continue;
a60637c8 1791
4101196b 1792 if (!page_cache_get_speculative(page))
fd1b3cee 1793 goto retry;
83929372 1794
4101196b 1795 /* Has the page moved or been split? */
fd1b3cee
MW
1796 if (unlikely(page != xas_reload(&xas)))
1797 goto put_page;
1da177e4 1798
4101196b 1799 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 1800 if (++ret == nr_pages) {
5d3ee42f 1801 *start = xas.xa_index + 1;
b947cee4
JK
1802 goto out;
1803 }
fd1b3cee
MW
1804 continue;
1805put_page:
4101196b 1806 put_page(page);
fd1b3cee
MW
1807retry:
1808 xas_reset(&xas);
a60637c8 1809 }
5b280c0c 1810
b947cee4
JK
1811 /*
1812 * We come here when there is no page beyond @end. We take care to not
1813 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 1814 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
1815 * already broken anyway.
1816 */
1817 if (end == (pgoff_t)-1)
1818 *start = (pgoff_t)-1;
1819 else
1820 *start = end + 1;
1821out:
a60637c8 1822 rcu_read_unlock();
d72dc8a2 1823
1da177e4
LT
1824 return ret;
1825}
1826
ebf43500
JA
1827/**
1828 * find_get_pages_contig - gang contiguous pagecache lookup
1829 * @mapping: The address_space to search
1830 * @index: The starting page index
1831 * @nr_pages: The maximum number of pages
1832 * @pages: Where the resulting pages are placed
1833 *
1834 * find_get_pages_contig() works exactly like find_get_pages(), except
1835 * that the returned number of pages are guaranteed to be contiguous.
1836 *
a862f68a 1837 * Return: the number of pages which were found.
ebf43500
JA
1838 */
1839unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1840 unsigned int nr_pages, struct page **pages)
1841{
3ece58a2
MW
1842 XA_STATE(xas, &mapping->i_pages, index);
1843 struct page *page;
0fc9d104
KK
1844 unsigned int ret = 0;
1845
1846 if (unlikely(!nr_pages))
1847 return 0;
a60637c8
NP
1848
1849 rcu_read_lock();
3ece58a2 1850 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
1851 if (xas_retry(&xas, page))
1852 continue;
1853 /*
1854 * If the entry has been swapped out, we can stop looking.
1855 * No current caller is looking for DAX entries.
1856 */
1857 if (xa_is_value(page))
8079b1c8 1858 break;
ebf43500 1859
4101196b 1860 if (!page_cache_get_speculative(page))
3ece58a2 1861 goto retry;
83929372 1862
4101196b 1863 /* Has the page moved or been split? */
3ece58a2
MW
1864 if (unlikely(page != xas_reload(&xas)))
1865 goto put_page;
a60637c8 1866
4101196b 1867 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
1868 if (++ret == nr_pages)
1869 break;
3ece58a2
MW
1870 continue;
1871put_page:
4101196b 1872 put_page(page);
3ece58a2
MW
1873retry:
1874 xas_reset(&xas);
ebf43500 1875 }
a60637c8
NP
1876 rcu_read_unlock();
1877 return ret;
ebf43500 1878}
ef71c15c 1879EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1880
485bb99b 1881/**
72b045ae 1882 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
1883 * @mapping: the address_space to search
1884 * @index: the starting page index
72b045ae 1885 * @end: The final page index (inclusive)
485bb99b
RD
1886 * @tag: the tag index
1887 * @nr_pages: the maximum number of pages
1888 * @pages: where the resulting pages are placed
1889 *
1da177e4 1890 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1891 * @tag. We update @index to index the next page for the traversal.
a862f68a
MR
1892 *
1893 * Return: the number of pages which were found.
1da177e4 1894 */
72b045ae 1895unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 1896 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 1897 struct page **pages)
1da177e4 1898{
a6906972
MW
1899 XA_STATE(xas, &mapping->i_pages, *index);
1900 struct page *page;
0fc9d104
KK
1901 unsigned ret = 0;
1902
1903 if (unlikely(!nr_pages))
1904 return 0;
a60637c8
NP
1905
1906 rcu_read_lock();
a6906972 1907 xas_for_each_marked(&xas, page, end, tag) {
a6906972 1908 if (xas_retry(&xas, page))
a60637c8 1909 continue;
a6906972
MW
1910 /*
1911 * Shadow entries should never be tagged, but this iteration
1912 * is lockless so there is a window for page reclaim to evict
1913 * a page we saw tagged. Skip over it.
1914 */
1915 if (xa_is_value(page))
139b6a6f 1916 continue;
a60637c8 1917
4101196b 1918 if (!page_cache_get_speculative(page))
a6906972 1919 goto retry;
a60637c8 1920
4101196b 1921 /* Has the page moved or been split? */
a6906972
MW
1922 if (unlikely(page != xas_reload(&xas)))
1923 goto put_page;
a60637c8 1924
4101196b 1925 pages[ret] = find_subpage(page, xas.xa_index);
72b045ae 1926 if (++ret == nr_pages) {
5d3ee42f 1927 *index = xas.xa_index + 1;
72b045ae
JK
1928 goto out;
1929 }
a6906972
MW
1930 continue;
1931put_page:
4101196b 1932 put_page(page);
a6906972
MW
1933retry:
1934 xas_reset(&xas);
a60637c8 1935 }
5b280c0c 1936
72b045ae 1937 /*
a6906972 1938 * We come here when we got to @end. We take care to not overflow the
72b045ae 1939 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
1940 * iteration when there is a page at index -1 but that is already
1941 * broken anyway.
72b045ae
JK
1942 */
1943 if (end == (pgoff_t)-1)
1944 *index = (pgoff_t)-1;
1945 else
1946 *index = end + 1;
1947out:
a60637c8 1948 rcu_read_unlock();
1da177e4 1949
1da177e4
LT
1950 return ret;
1951}
72b045ae 1952EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 1953
76d42bd9
WF
1954/*
1955 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1956 * a _large_ part of the i/o request. Imagine the worst scenario:
1957 *
1958 * ---R__________________________________________B__________
1959 * ^ reading here ^ bad block(assume 4k)
1960 *
1961 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1962 * => failing the whole request => read(R) => read(R+1) =>
1963 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1964 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1965 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1966 *
1967 * It is going insane. Fix it by quickly scaling down the readahead size.
1968 */
0f8e2db4 1969static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 1970{
76d42bd9 1971 ra->ra_pages /= 4;
76d42bd9
WF
1972}
1973
485bb99b 1974/**
47c27bc4
CH
1975 * generic_file_buffered_read - generic file read routine
1976 * @iocb: the iocb to read
6e58e79d
AV
1977 * @iter: data destination
1978 * @written: already copied
485bb99b 1979 *
1da177e4 1980 * This is a generic file read routine, and uses the
485bb99b 1981 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1982 *
1983 * This is really ugly. But the goto's actually try to clarify some
1984 * of the logic when it comes to error handling etc.
a862f68a
MR
1985 *
1986 * Return:
1987 * * total number of bytes copied, including those the were already @written
1988 * * negative error code if nothing was copied
1da177e4 1989 */
d85dc2e1 1990ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 1991 struct iov_iter *iter, ssize_t written)
1da177e4 1992{
47c27bc4 1993 struct file *filp = iocb->ki_filp;
36e78914 1994 struct address_space *mapping = filp->f_mapping;
1da177e4 1995 struct inode *inode = mapping->host;
36e78914 1996 struct file_ra_state *ra = &filp->f_ra;
47c27bc4 1997 loff_t *ppos = &iocb->ki_pos;
57f6b96c
FW
1998 pgoff_t index;
1999 pgoff_t last_index;
2000 pgoff_t prev_index;
2001 unsigned long offset; /* offset into pagecache page */
ec0f1637 2002 unsigned int prev_offset;
6e58e79d 2003 int error = 0;
1da177e4 2004
c2a9737f 2005 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 2006 return 0;
c2a9737f
WF
2007 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2008
09cbfeaf
KS
2009 index = *ppos >> PAGE_SHIFT;
2010 prev_index = ra->prev_pos >> PAGE_SHIFT;
2011 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2012 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2013 offset = *ppos & ~PAGE_MASK;
1da177e4 2014
1da177e4
LT
2015 for (;;) {
2016 struct page *page;
57f6b96c 2017 pgoff_t end_index;
a32ea1e1 2018 loff_t isize;
1da177e4
LT
2019 unsigned long nr, ret;
2020
1da177e4 2021 cond_resched();
1da177e4 2022find_page:
5abf186a
MH
2023 if (fatal_signal_pending(current)) {
2024 error = -EINTR;
2025 goto out;
2026 }
2027
1da177e4 2028 page = find_get_page(mapping, index);
3ea89ee8 2029 if (!page) {
3239d834
MT
2030 if (iocb->ki_flags & IOCB_NOWAIT)
2031 goto would_block;
cf914a7d 2032 page_cache_sync_readahead(mapping,
7ff81078 2033 ra, filp,
3ea89ee8
FW
2034 index, last_index - index);
2035 page = find_get_page(mapping, index);
2036 if (unlikely(page == NULL))
2037 goto no_cached_page;
2038 }
2039 if (PageReadahead(page)) {
cf914a7d 2040 page_cache_async_readahead(mapping,
7ff81078 2041 ra, filp, page,
3ea89ee8 2042 index, last_index - index);
1da177e4 2043 }
8ab22b9a 2044 if (!PageUptodate(page)) {
3239d834
MT
2045 if (iocb->ki_flags & IOCB_NOWAIT) {
2046 put_page(page);
2047 goto would_block;
2048 }
2049
ebded027
MG
2050 /*
2051 * See comment in do_read_cache_page on why
2052 * wait_on_page_locked is used to avoid unnecessarily
2053 * serialisations and why it's safe.
2054 */
c4b209a4
BVA
2055 error = wait_on_page_locked_killable(page);
2056 if (unlikely(error))
2057 goto readpage_error;
ebded027
MG
2058 if (PageUptodate(page))
2059 goto page_ok;
2060
09cbfeaf 2061 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
2062 !mapping->a_ops->is_partially_uptodate)
2063 goto page_not_up_to_date;
6d6d36bc 2064 /* pipes can't handle partially uptodate pages */
00e23707 2065 if (unlikely(iov_iter_is_pipe(iter)))
6d6d36bc 2066 goto page_not_up_to_date;
529ae9aa 2067 if (!trylock_page(page))
8ab22b9a 2068 goto page_not_up_to_date;
8d056cb9
DH
2069 /* Did it get truncated before we got the lock? */
2070 if (!page->mapping)
2071 goto page_not_up_to_date_locked;
8ab22b9a 2072 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 2073 offset, iter->count))
8ab22b9a
HH
2074 goto page_not_up_to_date_locked;
2075 unlock_page(page);
2076 }
1da177e4 2077page_ok:
a32ea1e1
N
2078 /*
2079 * i_size must be checked after we know the page is Uptodate.
2080 *
2081 * Checking i_size after the check allows us to calculate
2082 * the correct value for "nr", which means the zero-filled
2083 * part of the page is not copied back to userspace (unless
2084 * another truncate extends the file - this is desired though).
2085 */
2086
2087 isize = i_size_read(inode);
09cbfeaf 2088 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 2089 if (unlikely(!isize || index > end_index)) {
09cbfeaf 2090 put_page(page);
a32ea1e1
N
2091 goto out;
2092 }
2093
2094 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2095 nr = PAGE_SIZE;
a32ea1e1 2096 if (index == end_index) {
09cbfeaf 2097 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2098 if (nr <= offset) {
09cbfeaf 2099 put_page(page);
a32ea1e1
N
2100 goto out;
2101 }
2102 }
2103 nr = nr - offset;
1da177e4
LT
2104
2105 /* If users can be writing to this page using arbitrary
2106 * virtual addresses, take care about potential aliasing
2107 * before reading the page on the kernel side.
2108 */
2109 if (mapping_writably_mapped(mapping))
2110 flush_dcache_page(page);
2111
2112 /*
ec0f1637
JK
2113 * When a sequential read accesses a page several times,
2114 * only mark it as accessed the first time.
1da177e4 2115 */
ec0f1637 2116 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2117 mark_page_accessed(page);
2118 prev_index = index;
2119
2120 /*
2121 * Ok, we have the page, and it's up-to-date, so
2122 * now we can copy it to user space...
1da177e4 2123 */
6e58e79d
AV
2124
2125 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2126 offset += ret;
09cbfeaf
KS
2127 index += offset >> PAGE_SHIFT;
2128 offset &= ~PAGE_MASK;
6ce745ed 2129 prev_offset = offset;
1da177e4 2130
09cbfeaf 2131 put_page(page);
6e58e79d
AV
2132 written += ret;
2133 if (!iov_iter_count(iter))
2134 goto out;
2135 if (ret < nr) {
2136 error = -EFAULT;
2137 goto out;
2138 }
2139 continue;
1da177e4
LT
2140
2141page_not_up_to_date:
2142 /* Get exclusive access to the page ... */
85462323
ON
2143 error = lock_page_killable(page);
2144 if (unlikely(error))
2145 goto readpage_error;
1da177e4 2146
8ab22b9a 2147page_not_up_to_date_locked:
da6052f7 2148 /* Did it get truncated before we got the lock? */
1da177e4
LT
2149 if (!page->mapping) {
2150 unlock_page(page);
09cbfeaf 2151 put_page(page);
1da177e4
LT
2152 continue;
2153 }
2154
2155 /* Did somebody else fill it already? */
2156 if (PageUptodate(page)) {
2157 unlock_page(page);
2158 goto page_ok;
2159 }
2160
2161readpage:
91803b49
JM
2162 /*
2163 * A previous I/O error may have been due to temporary
2164 * failures, eg. multipath errors.
2165 * PG_error will be set again if readpage fails.
2166 */
2167 ClearPageError(page);
1da177e4
LT
2168 /* Start the actual read. The read will unlock the page. */
2169 error = mapping->a_ops->readpage(filp, page);
2170
994fc28c
ZB
2171 if (unlikely(error)) {
2172 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2173 put_page(page);
6e58e79d 2174 error = 0;
994fc28c
ZB
2175 goto find_page;
2176 }
1da177e4 2177 goto readpage_error;
994fc28c 2178 }
1da177e4
LT
2179
2180 if (!PageUptodate(page)) {
85462323
ON
2181 error = lock_page_killable(page);
2182 if (unlikely(error))
2183 goto readpage_error;
1da177e4
LT
2184 if (!PageUptodate(page)) {
2185 if (page->mapping == NULL) {
2186 /*
2ecdc82e 2187 * invalidate_mapping_pages got it
1da177e4
LT
2188 */
2189 unlock_page(page);
09cbfeaf 2190 put_page(page);
1da177e4
LT
2191 goto find_page;
2192 }
2193 unlock_page(page);
0f8e2db4 2194 shrink_readahead_size_eio(ra);
85462323
ON
2195 error = -EIO;
2196 goto readpage_error;
1da177e4
LT
2197 }
2198 unlock_page(page);
2199 }
2200
1da177e4
LT
2201 goto page_ok;
2202
2203readpage_error:
2204 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2205 put_page(page);
1da177e4
LT
2206 goto out;
2207
2208no_cached_page:
2209 /*
2210 * Ok, it wasn't cached, so we need to create a new
2211 * page..
2212 */
453f85d4 2213 page = page_cache_alloc(mapping);
eb2be189 2214 if (!page) {
6e58e79d 2215 error = -ENOMEM;
eb2be189 2216 goto out;
1da177e4 2217 }
6afdb859 2218 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2219 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2220 if (error) {
09cbfeaf 2221 put_page(page);
6e58e79d
AV
2222 if (error == -EEXIST) {
2223 error = 0;
1da177e4 2224 goto find_page;
6e58e79d 2225 }
1da177e4
LT
2226 goto out;
2227 }
1da177e4
LT
2228 goto readpage;
2229 }
2230
3239d834
MT
2231would_block:
2232 error = -EAGAIN;
1da177e4 2233out:
7ff81078 2234 ra->prev_pos = prev_index;
09cbfeaf 2235 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2236 ra->prev_pos |= prev_offset;
1da177e4 2237
09cbfeaf 2238 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2239 file_accessed(filp);
6e58e79d 2240 return written ? written : error;
1da177e4 2241}
d85dc2e1 2242EXPORT_SYMBOL_GPL(generic_file_buffered_read);
1da177e4 2243
485bb99b 2244/**
6abd2322 2245 * generic_file_read_iter - generic filesystem read routine
485bb99b 2246 * @iocb: kernel I/O control block
6abd2322 2247 * @iter: destination for the data read
485bb99b 2248 *
6abd2322 2249 * This is the "read_iter()" routine for all filesystems
1da177e4 2250 * that can use the page cache directly.
a862f68a
MR
2251 * Return:
2252 * * number of bytes copied, even for partial reads
2253 * * negative error code if nothing was read
1da177e4
LT
2254 */
2255ssize_t
ed978a81 2256generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2257{
e7080a43 2258 size_t count = iov_iter_count(iter);
47c27bc4 2259 ssize_t retval = 0;
e7080a43
NS
2260
2261 if (!count)
2262 goto out; /* skip atime */
1da177e4 2263
2ba48ce5 2264 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2265 struct file *file = iocb->ki_filp;
ed978a81
AV
2266 struct address_space *mapping = file->f_mapping;
2267 struct inode *inode = mapping->host;
543ade1f 2268 loff_t size;
1da177e4 2269
1da177e4 2270 size = i_size_read(inode);
6be96d3a
GR
2271 if (iocb->ki_flags & IOCB_NOWAIT) {
2272 if (filemap_range_has_page(mapping, iocb->ki_pos,
2273 iocb->ki_pos + count - 1))
2274 return -EAGAIN;
2275 } else {
2276 retval = filemap_write_and_wait_range(mapping,
2277 iocb->ki_pos,
2278 iocb->ki_pos + count - 1);
2279 if (retval < 0)
2280 goto out;
2281 }
d8d3d94b 2282
0d5b0cf2
CH
2283 file_accessed(file);
2284
5ecda137 2285 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2286 if (retval >= 0) {
c64fb5c7 2287 iocb->ki_pos += retval;
5ecda137 2288 count -= retval;
9fe55eea 2289 }
5b47d59a 2290 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2291
9fe55eea
SW
2292 /*
2293 * Btrfs can have a short DIO read if we encounter
2294 * compressed extents, so if there was an error, or if
2295 * we've already read everything we wanted to, or if
2296 * there was a short read because we hit EOF, go ahead
2297 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2298 * the rest of the read. Buffered reads will not work for
2299 * DAX files, so don't bother trying.
9fe55eea 2300 */
5ecda137 2301 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2302 IS_DAX(inode))
9fe55eea 2303 goto out;
1da177e4
LT
2304 }
2305
47c27bc4 2306 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2307out:
2308 return retval;
2309}
ed978a81 2310EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2311
1da177e4 2312#ifdef CONFIG_MMU
1da177e4 2313#define MMAP_LOTSAMISS (100)
6b4c9f44
JB
2314/*
2315 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2316 * @vmf - the vm_fault for this fault.
2317 * @page - the page to lock.
2318 * @fpin - the pointer to the file we may pin (or is already pinned).
2319 *
2320 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2321 * It differs in that it actually returns the page locked if it returns 1 and 0
2322 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2323 * will point to the pinned file and needs to be fput()'ed at a later point.
2324 */
2325static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2326 struct file **fpin)
2327{
2328 if (trylock_page(page))
2329 return 1;
2330
8b0f9fa2
LT
2331 /*
2332 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2333 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2334 * is supposed to work. We have way too many special cases..
2335 */
6b4c9f44
JB
2336 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2337 return 0;
2338
2339 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2340 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2341 if (__lock_page_killable(page)) {
2342 /*
2343 * We didn't have the right flags to drop the mmap_sem,
2344 * but all fault_handlers only check for fatal signals
2345 * if we return VM_FAULT_RETRY, so we need to drop the
2346 * mmap_sem here and return 0 if we don't have a fpin.
2347 */
2348 if (*fpin == NULL)
2349 up_read(&vmf->vma->vm_mm->mmap_sem);
2350 return 0;
2351 }
2352 } else
2353 __lock_page(page);
2354 return 1;
2355}
2356
1da177e4 2357
ef00e08e 2358/*
6b4c9f44
JB
2359 * Synchronous readahead happens when we don't even find a page in the page
2360 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2361 * to drop the mmap sem we return the file that was pinned in order for us to do
2362 * that. If we didn't pin a file then we return NULL. The file that is
2363 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2364 */
6b4c9f44 2365static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2366{
2a1180f1
JB
2367 struct file *file = vmf->vma->vm_file;
2368 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2369 struct address_space *mapping = file->f_mapping;
6b4c9f44 2370 struct file *fpin = NULL;
2a1180f1 2371 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2372
2373 /* If we don't want any read-ahead, don't bother */
2a1180f1 2374 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2375 return fpin;
275b12bf 2376 if (!ra->ra_pages)
6b4c9f44 2377 return fpin;
ef00e08e 2378
2a1180f1 2379 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2380 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
7ffc59b4
WF
2381 page_cache_sync_readahead(mapping, ra, file, offset,
2382 ra->ra_pages);
6b4c9f44 2383 return fpin;
ef00e08e
LT
2384 }
2385
207d04ba
AK
2386 /* Avoid banging the cache line if not needed */
2387 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2388 ra->mmap_miss++;
2389
2390 /*
2391 * Do we miss much more than hit in this file? If so,
2392 * stop bothering with read-ahead. It will only hurt.
2393 */
2394 if (ra->mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2395 return fpin;
ef00e08e 2396
d30a1100
WF
2397 /*
2398 * mmap read-around
2399 */
6b4c9f44 2400 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
600e19af
RG
2401 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2402 ra->size = ra->ra_pages;
2403 ra->async_size = ra->ra_pages / 4;
275b12bf 2404 ra_submit(ra, mapping, file);
6b4c9f44 2405 return fpin;
ef00e08e
LT
2406}
2407
2408/*
2409 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44
JB
2410 * so we want to possibly extend the readahead further. We return the file that
2411 * was pinned if we have to drop the mmap_sem in order to do IO.
ef00e08e 2412 */
6b4c9f44
JB
2413static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2414 struct page *page)
ef00e08e 2415{
2a1180f1
JB
2416 struct file *file = vmf->vma->vm_file;
2417 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2418 struct address_space *mapping = file->f_mapping;
6b4c9f44 2419 struct file *fpin = NULL;
2a1180f1 2420 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2421
2422 /* If we don't want any read-ahead, don't bother */
5c72feee 2423 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 2424 return fpin;
ef00e08e
LT
2425 if (ra->mmap_miss > 0)
2426 ra->mmap_miss--;
6b4c9f44
JB
2427 if (PageReadahead(page)) {
2428 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
2429 page_cache_async_readahead(mapping, ra, file,
2430 page, offset, ra->ra_pages);
6b4c9f44
JB
2431 }
2432 return fpin;
ef00e08e
LT
2433}
2434
485bb99b 2435/**
54cb8821 2436 * filemap_fault - read in file data for page fault handling
d0217ac0 2437 * @vmf: struct vm_fault containing details of the fault
485bb99b 2438 *
54cb8821 2439 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2440 * mapped memory region to read in file data during a page fault.
2441 *
2442 * The goto's are kind of ugly, but this streamlines the normal case of having
2443 * it in the page cache, and handles the special cases reasonably without
2444 * having a lot of duplicated code.
9a95f3cf
PC
2445 *
2446 * vma->vm_mm->mmap_sem must be held on entry.
2447 *
a4985833
YS
2448 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2449 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf
PC
2450 *
2451 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2452 * has not been released.
2453 *
2454 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
2455 *
2456 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 2457 */
2bcd6454 2458vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2459{
2460 int error;
11bac800 2461 struct file *file = vmf->vma->vm_file;
6b4c9f44 2462 struct file *fpin = NULL;
1da177e4
LT
2463 struct address_space *mapping = file->f_mapping;
2464 struct file_ra_state *ra = &file->f_ra;
2465 struct inode *inode = mapping->host;
ef00e08e 2466 pgoff_t offset = vmf->pgoff;
9ab2594f 2467 pgoff_t max_off;
1da177e4 2468 struct page *page;
2bcd6454 2469 vm_fault_t ret = 0;
1da177e4 2470
9ab2594f
MW
2471 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2472 if (unlikely(offset >= max_off))
5307cc1a 2473 return VM_FAULT_SIGBUS;
1da177e4 2474
1da177e4 2475 /*
49426420 2476 * Do we have something in the page cache already?
1da177e4 2477 */
ef00e08e 2478 page = find_get_page(mapping, offset);
45cac65b 2479 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2480 /*
ef00e08e
LT
2481 * We found the page, so try async readahead before
2482 * waiting for the lock.
1da177e4 2483 */
6b4c9f44 2484 fpin = do_async_mmap_readahead(vmf, page);
45cac65b 2485 } else if (!page) {
ef00e08e 2486 /* No page in the page cache at all */
ef00e08e 2487 count_vm_event(PGMAJFAULT);
2262185c 2488 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 2489 ret = VM_FAULT_MAJOR;
6b4c9f44 2490 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 2491retry_find:
a75d4c33
JB
2492 page = pagecache_get_page(mapping, offset,
2493 FGP_CREAT|FGP_FOR_MMAP,
2494 vmf->gfp_mask);
6b4c9f44
JB
2495 if (!page) {
2496 if (fpin)
2497 goto out_retry;
e520e932 2498 return VM_FAULT_OOM;
6b4c9f44 2499 }
1da177e4
LT
2500 }
2501
6b4c9f44
JB
2502 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2503 goto out_retry;
b522c94d
ML
2504
2505 /* Did it get truncated? */
585e5a7b 2506 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
2507 unlock_page(page);
2508 put_page(page);
2509 goto retry_find;
2510 }
520e5ba4 2511 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 2512
1da177e4 2513 /*
d00806b1
NP
2514 * We have a locked page in the page cache, now we need to check
2515 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2516 */
d00806b1 2517 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2518 goto page_not_uptodate;
2519
6b4c9f44
JB
2520 /*
2521 * We've made it this far and we had to drop our mmap_sem, now is the
2522 * time to return to the upper layer and have it re-find the vma and
2523 * redo the fault.
2524 */
2525 if (fpin) {
2526 unlock_page(page);
2527 goto out_retry;
2528 }
2529
ef00e08e
LT
2530 /*
2531 * Found the page and have a reference on it.
2532 * We must recheck i_size under page lock.
2533 */
9ab2594f
MW
2534 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2535 if (unlikely(offset >= max_off)) {
d00806b1 2536 unlock_page(page);
09cbfeaf 2537 put_page(page);
5307cc1a 2538 return VM_FAULT_SIGBUS;
d00806b1
NP
2539 }
2540
d0217ac0 2541 vmf->page = page;
83c54070 2542 return ret | VM_FAULT_LOCKED;
1da177e4 2543
1da177e4 2544page_not_uptodate:
1da177e4
LT
2545 /*
2546 * Umm, take care of errors if the page isn't up-to-date.
2547 * Try to re-read it _once_. We do this synchronously,
2548 * because there really aren't any performance issues here
2549 * and we need to check for errors.
2550 */
1da177e4 2551 ClearPageError(page);
6b4c9f44 2552 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
994fc28c 2553 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2554 if (!error) {
2555 wait_on_page_locked(page);
2556 if (!PageUptodate(page))
2557 error = -EIO;
2558 }
6b4c9f44
JB
2559 if (fpin)
2560 goto out_retry;
09cbfeaf 2561 put_page(page);
d00806b1
NP
2562
2563 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2564 goto retry_find;
1da177e4 2565
0f8e2db4 2566 shrink_readahead_size_eio(ra);
d0217ac0 2567 return VM_FAULT_SIGBUS;
6b4c9f44
JB
2568
2569out_retry:
2570 /*
2571 * We dropped the mmap_sem, we need to return to the fault handler to
2572 * re-find the vma and come back and find our hopefully still populated
2573 * page.
2574 */
2575 if (page)
2576 put_page(page);
2577 if (fpin)
2578 fput(fpin);
2579 return ret | VM_FAULT_RETRY;
54cb8821
NP
2580}
2581EXPORT_SYMBOL(filemap_fault);
2582
82b0f8c3 2583void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2584 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361 2585{
82b0f8c3 2586 struct file *file = vmf->vma->vm_file;
f1820361 2587 struct address_space *mapping = file->f_mapping;
bae473a4 2588 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2589 unsigned long max_idx;
070e807c 2590 XA_STATE(xas, &mapping->i_pages, start_pgoff);
4101196b 2591 struct page *page;
f1820361
KS
2592
2593 rcu_read_lock();
070e807c
MW
2594 xas_for_each(&xas, page, end_pgoff) {
2595 if (xas_retry(&xas, page))
2596 continue;
2597 if (xa_is_value(page))
2cf938aa 2598 goto next;
f1820361 2599
e0975b2a
MH
2600 /*
2601 * Check for a locked page first, as a speculative
2602 * reference may adversely influence page migration.
2603 */
4101196b 2604 if (PageLocked(page))
e0975b2a 2605 goto next;
4101196b 2606 if (!page_cache_get_speculative(page))
070e807c 2607 goto next;
f1820361 2608
4101196b 2609 /* Has the page moved or been split? */
070e807c
MW
2610 if (unlikely(page != xas_reload(&xas)))
2611 goto skip;
4101196b 2612 page = find_subpage(page, xas.xa_index);
f1820361
KS
2613
2614 if (!PageUptodate(page) ||
2615 PageReadahead(page) ||
2616 PageHWPoison(page))
2617 goto skip;
2618 if (!trylock_page(page))
2619 goto skip;
2620
2621 if (page->mapping != mapping || !PageUptodate(page))
2622 goto unlock;
2623
9ab2594f
MW
2624 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2625 if (page->index >= max_idx)
f1820361
KS
2626 goto unlock;
2627
f1820361
KS
2628 if (file->f_ra.mmap_miss > 0)
2629 file->f_ra.mmap_miss--;
7267ec00 2630
070e807c 2631 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
82b0f8c3 2632 if (vmf->pte)
070e807c
MW
2633 vmf->pte += xas.xa_index - last_pgoff;
2634 last_pgoff = xas.xa_index;
82b0f8c3 2635 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2636 goto unlock;
f1820361
KS
2637 unlock_page(page);
2638 goto next;
2639unlock:
2640 unlock_page(page);
2641skip:
09cbfeaf 2642 put_page(page);
f1820361 2643next:
7267ec00 2644 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2645 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2646 break;
f1820361
KS
2647 }
2648 rcu_read_unlock();
2649}
2650EXPORT_SYMBOL(filemap_map_pages);
2651
2bcd6454 2652vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2653{
2654 struct page *page = vmf->page;
11bac800 2655 struct inode *inode = file_inode(vmf->vma->vm_file);
2bcd6454 2656 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 2657
14da9200 2658 sb_start_pagefault(inode->i_sb);
11bac800 2659 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2660 lock_page(page);
2661 if (page->mapping != inode->i_mapping) {
2662 unlock_page(page);
2663 ret = VM_FAULT_NOPAGE;
2664 goto out;
2665 }
14da9200
JK
2666 /*
2667 * We mark the page dirty already here so that when freeze is in
2668 * progress, we are guaranteed that writeback during freezing will
2669 * see the dirty page and writeprotect it again.
2670 */
2671 set_page_dirty(page);
1d1d1a76 2672 wait_for_stable_page(page);
4fcf1c62 2673out:
14da9200 2674 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2675 return ret;
2676}
4fcf1c62 2677
f0f37e2f 2678const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2679 .fault = filemap_fault,
f1820361 2680 .map_pages = filemap_map_pages,
4fcf1c62 2681 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2682};
2683
2684/* This is used for a general mmap of a disk file */
2685
2686int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2687{
2688 struct address_space *mapping = file->f_mapping;
2689
2690 if (!mapping->a_ops->readpage)
2691 return -ENOEXEC;
2692 file_accessed(file);
2693 vma->vm_ops = &generic_file_vm_ops;
2694 return 0;
2695}
1da177e4
LT
2696
2697/*
2698 * This is for filesystems which do not implement ->writepage.
2699 */
2700int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2701{
2702 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2703 return -EINVAL;
2704 return generic_file_mmap(file, vma);
2705}
2706#else
4b96a37d 2707vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 2708{
4b96a37d 2709 return VM_FAULT_SIGBUS;
45397228 2710}
1da177e4
LT
2711int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2712{
2713 return -ENOSYS;
2714}
2715int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2716{
2717 return -ENOSYS;
2718}
2719#endif /* CONFIG_MMU */
2720
45397228 2721EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
2722EXPORT_SYMBOL(generic_file_mmap);
2723EXPORT_SYMBOL(generic_file_readonly_mmap);
2724
67f9fd91
SL
2725static struct page *wait_on_page_read(struct page *page)
2726{
2727 if (!IS_ERR(page)) {
2728 wait_on_page_locked(page);
2729 if (!PageUptodate(page)) {
09cbfeaf 2730 put_page(page);
67f9fd91
SL
2731 page = ERR_PTR(-EIO);
2732 }
2733 }
2734 return page;
2735}
2736
32b63529 2737static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2738 pgoff_t index,
5e5358e7 2739 int (*filler)(void *, struct page *),
0531b2aa
LT
2740 void *data,
2741 gfp_t gfp)
1da177e4 2742{
eb2be189 2743 struct page *page;
1da177e4
LT
2744 int err;
2745repeat:
2746 page = find_get_page(mapping, index);
2747 if (!page) {
453f85d4 2748 page = __page_cache_alloc(gfp);
eb2be189
NP
2749 if (!page)
2750 return ERR_PTR(-ENOMEM);
e6f67b8c 2751 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2752 if (unlikely(err)) {
09cbfeaf 2753 put_page(page);
eb2be189
NP
2754 if (err == -EEXIST)
2755 goto repeat;
22ecdb4f 2756 /* Presumably ENOMEM for xarray node */
1da177e4
LT
2757 return ERR_PTR(err);
2758 }
32b63529
MG
2759
2760filler:
6c45b454
CH
2761 if (filler)
2762 err = filler(data, page);
2763 else
2764 err = mapping->a_ops->readpage(data, page);
2765
1da177e4 2766 if (err < 0) {
09cbfeaf 2767 put_page(page);
32b63529 2768 return ERR_PTR(err);
1da177e4 2769 }
1da177e4 2770
32b63529
MG
2771 page = wait_on_page_read(page);
2772 if (IS_ERR(page))
2773 return page;
2774 goto out;
2775 }
1da177e4
LT
2776 if (PageUptodate(page))
2777 goto out;
2778
ebded027
MG
2779 /*
2780 * Page is not up to date and may be locked due one of the following
2781 * case a: Page is being filled and the page lock is held
2782 * case b: Read/write error clearing the page uptodate status
2783 * case c: Truncation in progress (page locked)
2784 * case d: Reclaim in progress
2785 *
2786 * Case a, the page will be up to date when the page is unlocked.
2787 * There is no need to serialise on the page lock here as the page
2788 * is pinned so the lock gives no additional protection. Even if the
2789 * the page is truncated, the data is still valid if PageUptodate as
2790 * it's a race vs truncate race.
2791 * Case b, the page will not be up to date
2792 * Case c, the page may be truncated but in itself, the data may still
2793 * be valid after IO completes as it's a read vs truncate race. The
2794 * operation must restart if the page is not uptodate on unlock but
2795 * otherwise serialising on page lock to stabilise the mapping gives
2796 * no additional guarantees to the caller as the page lock is
2797 * released before return.
2798 * Case d, similar to truncation. If reclaim holds the page lock, it
2799 * will be a race with remove_mapping that determines if the mapping
2800 * is valid on unlock but otherwise the data is valid and there is
2801 * no need to serialise with page lock.
2802 *
2803 * As the page lock gives no additional guarantee, we optimistically
2804 * wait on the page to be unlocked and check if it's up to date and
2805 * use the page if it is. Otherwise, the page lock is required to
2806 * distinguish between the different cases. The motivation is that we
2807 * avoid spurious serialisations and wakeups when multiple processes
2808 * wait on the same page for IO to complete.
2809 */
2810 wait_on_page_locked(page);
2811 if (PageUptodate(page))
2812 goto out;
2813
2814 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2815 lock_page(page);
ebded027
MG
2816
2817 /* Case c or d, restart the operation */
1da177e4
LT
2818 if (!page->mapping) {
2819 unlock_page(page);
09cbfeaf 2820 put_page(page);
32b63529 2821 goto repeat;
1da177e4 2822 }
ebded027
MG
2823
2824 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2825 if (PageUptodate(page)) {
2826 unlock_page(page);
2827 goto out;
2828 }
faffdfa0
XT
2829
2830 /*
2831 * A previous I/O error may have been due to temporary
2832 * failures.
2833 * Clear page error before actual read, PG_error will be
2834 * set again if read page fails.
2835 */
2836 ClearPageError(page);
32b63529
MG
2837 goto filler;
2838
c855ff37 2839out:
6fe6900e
NP
2840 mark_page_accessed(page);
2841 return page;
2842}
0531b2aa
LT
2843
2844/**
67f9fd91 2845 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2846 * @mapping: the page's address_space
2847 * @index: the page index
2848 * @filler: function to perform the read
5e5358e7 2849 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2850 *
0531b2aa 2851 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2852 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2853 *
2854 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2855 *
2856 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 2857 */
67f9fd91 2858struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2859 pgoff_t index,
5e5358e7 2860 int (*filler)(void *, struct page *),
0531b2aa
LT
2861 void *data)
2862{
d322a8e5
CH
2863 return do_read_cache_page(mapping, index, filler, data,
2864 mapping_gfp_mask(mapping));
0531b2aa 2865}
67f9fd91 2866EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2867
2868/**
2869 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2870 * @mapping: the page's address_space
2871 * @index: the page index
2872 * @gfp: the page allocator flags to use if allocating
2873 *
2874 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2875 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2876 *
2877 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
2878 *
2879 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
2880 */
2881struct page *read_cache_page_gfp(struct address_space *mapping,
2882 pgoff_t index,
2883 gfp_t gfp)
2884{
6c45b454 2885 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
2886}
2887EXPORT_SYMBOL(read_cache_page_gfp);
2888
9fd91a90
DW
2889/*
2890 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2891 * LFS limits. If pos is under the limit it becomes a short access. If it
2892 * exceeds the limit we return -EFBIG.
2893 */
9fd91a90
DW
2894static int generic_write_check_limits(struct file *file, loff_t pos,
2895 loff_t *count)
2896{
646955cd
AG
2897 struct inode *inode = file->f_mapping->host;
2898 loff_t max_size = inode->i_sb->s_maxbytes;
9fd91a90
DW
2899 loff_t limit = rlimit(RLIMIT_FSIZE);
2900
2901 if (limit != RLIM_INFINITY) {
2902 if (pos >= limit) {
2903 send_sig(SIGXFSZ, current, 0);
2904 return -EFBIG;
2905 }
2906 *count = min(*count, limit - pos);
2907 }
2908
646955cd
AG
2909 if (!(file->f_flags & O_LARGEFILE))
2910 max_size = MAX_NON_LFS;
2911
2912 if (unlikely(pos >= max_size))
2913 return -EFBIG;
2914
2915 *count = min(*count, max_size - pos);
2916
2917 return 0;
9fd91a90
DW
2918}
2919
1da177e4
LT
2920/*
2921 * Performs necessary checks before doing a write
2922 *
485bb99b 2923 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2924 * Returns appropriate error code that caller should return or
2925 * zero in case that write should be allowed.
2926 */
3309dd04 2927inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2928{
3309dd04 2929 struct file *file = iocb->ki_filp;
1da177e4 2930 struct inode *inode = file->f_mapping->host;
9fd91a90
DW
2931 loff_t count;
2932 int ret;
1da177e4 2933
dc617f29
DW
2934 if (IS_SWAPFILE(inode))
2935 return -ETXTBSY;
2936
3309dd04
AV
2937 if (!iov_iter_count(from))
2938 return 0;
1da177e4 2939
0fa6b005 2940 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2941 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2942 iocb->ki_pos = i_size_read(inode);
1da177e4 2943
6be96d3a
GR
2944 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2945 return -EINVAL;
2946
9fd91a90
DW
2947 count = iov_iter_count(from);
2948 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2949 if (ret)
2950 return ret;
1da177e4 2951
9fd91a90 2952 iov_iter_truncate(from, count);
3309dd04 2953 return iov_iter_count(from);
1da177e4
LT
2954}
2955EXPORT_SYMBOL(generic_write_checks);
2956
1383a7ed
DW
2957/*
2958 * Performs necessary checks before doing a clone.
2959 *
646955cd 2960 * Can adjust amount of bytes to clone via @req_count argument.
1383a7ed
DW
2961 * Returns appropriate error code that caller should return or
2962 * zero in case the clone should be allowed.
2963 */
2964int generic_remap_checks(struct file *file_in, loff_t pos_in,
2965 struct file *file_out, loff_t pos_out,
42ec3d4c 2966 loff_t *req_count, unsigned int remap_flags)
1383a7ed
DW
2967{
2968 struct inode *inode_in = file_in->f_mapping->host;
2969 struct inode *inode_out = file_out->f_mapping->host;
2970 uint64_t count = *req_count;
2971 uint64_t bcount;
2972 loff_t size_in, size_out;
2973 loff_t bs = inode_out->i_sb->s_blocksize;
9fd91a90 2974 int ret;
1383a7ed
DW
2975
2976 /* The start of both ranges must be aligned to an fs block. */
2977 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2978 return -EINVAL;
2979
2980 /* Ensure offsets don't wrap. */
2981 if (pos_in + count < pos_in || pos_out + count < pos_out)
2982 return -EINVAL;
2983
2984 size_in = i_size_read(inode_in);
2985 size_out = i_size_read(inode_out);
2986
2987 /* Dedupe requires both ranges to be within EOF. */
3d28193e 2988 if ((remap_flags & REMAP_FILE_DEDUP) &&
1383a7ed
DW
2989 (pos_in >= size_in || pos_in + count > size_in ||
2990 pos_out >= size_out || pos_out + count > size_out))
2991 return -EINVAL;
2992
2993 /* Ensure the infile range is within the infile. */
2994 if (pos_in >= size_in)
2995 return -EINVAL;
2996 count = min(count, size_in - (uint64_t)pos_in);
2997
9fd91a90
DW
2998 ret = generic_write_check_limits(file_out, pos_out, &count);
2999 if (ret)
3000 return ret;
1da177e4
LT
3001
3002 /*
1383a7ed
DW
3003 * If the user wanted us to link to the infile's EOF, round up to the
3004 * next block boundary for this check.
3005 *
3006 * Otherwise, make sure the count is also block-aligned, having
3007 * already confirmed the starting offsets' block alignment.
1da177e4 3008 */
1383a7ed
DW
3009 if (pos_in + count == size_in) {
3010 bcount = ALIGN(size_in, bs) - pos_in;
3011 } else {
3012 if (!IS_ALIGNED(count, bs))
eca3654e 3013 count = ALIGN_DOWN(count, bs);
1383a7ed 3014 bcount = count;
1da177e4
LT
3015 }
3016
1383a7ed
DW
3017 /* Don't allow overlapped cloning within the same file. */
3018 if (inode_in == inode_out &&
3019 pos_out + bcount > pos_in &&
3020 pos_out < pos_in + bcount)
3021 return -EINVAL;
3022
1da177e4 3023 /*
eca3654e
DW
3024 * We shortened the request but the caller can't deal with that, so
3025 * bounce the request back to userspace.
1da177e4 3026 */
eca3654e 3027 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
1383a7ed 3028 return -EINVAL;
1da177e4 3029
eca3654e 3030 *req_count = count;
1383a7ed 3031 return 0;
1da177e4 3032}
1da177e4 3033
a3171351
AG
3034
3035/*
3036 * Performs common checks before doing a file copy/clone
3037 * from @file_in to @file_out.
3038 */
3039int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3040{
3041 struct inode *inode_in = file_inode(file_in);
3042 struct inode *inode_out = file_inode(file_out);
3043
3044 /* Don't copy dirs, pipes, sockets... */
3045 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3046 return -EISDIR;
3047 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3048 return -EINVAL;
3049
3050 if (!(file_in->f_mode & FMODE_READ) ||
3051 !(file_out->f_mode & FMODE_WRITE) ||
3052 (file_out->f_flags & O_APPEND))
3053 return -EBADF;
3054
3055 return 0;
3056}
3057
96e6e8f4
AG
3058/*
3059 * Performs necessary checks before doing a file copy
3060 *
3061 * Can adjust amount of bytes to copy via @req_count argument.
3062 * Returns appropriate error code that caller should return or
3063 * zero in case the copy should be allowed.
3064 */
3065int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3066 struct file *file_out, loff_t pos_out,
3067 size_t *req_count, unsigned int flags)
3068{
3069 struct inode *inode_in = file_inode(file_in);
3070 struct inode *inode_out = file_inode(file_out);
3071 uint64_t count = *req_count;
3072 loff_t size_in;
3073 int ret;
3074
3075 ret = generic_file_rw_checks(file_in, file_out);
3076 if (ret)
3077 return ret;
3078
3079 /* Don't touch certain kinds of inodes */
3080 if (IS_IMMUTABLE(inode_out))
3081 return -EPERM;
3082
3083 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3084 return -ETXTBSY;
3085
3086 /* Ensure offsets don't wrap. */
3087 if (pos_in + count < pos_in || pos_out + count < pos_out)
3088 return -EOVERFLOW;
3089
3090 /* Shorten the copy to EOF */
3091 size_in = i_size_read(inode_in);
3092 if (pos_in >= size_in)
3093 count = 0;
3094 else
3095 count = min(count, size_in - (uint64_t)pos_in);
3096
3097 ret = generic_write_check_limits(file_out, pos_out, &count);
3098 if (ret)
3099 return ret;
3100
3101 /* Don't allow overlapped copying within the same file. */
3102 if (inode_in == inode_out &&
3103 pos_out + count > pos_in &&
3104 pos_out < pos_in + count)
3105 return -EINVAL;
3106
3107 *req_count = count;
3108 return 0;
3109}
3110
afddba49
NP
3111int pagecache_write_begin(struct file *file, struct address_space *mapping,
3112 loff_t pos, unsigned len, unsigned flags,
3113 struct page **pagep, void **fsdata)
3114{
3115 const struct address_space_operations *aops = mapping->a_ops;
3116
4e02ed4b 3117 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3118 pagep, fsdata);
afddba49
NP
3119}
3120EXPORT_SYMBOL(pagecache_write_begin);
3121
3122int pagecache_write_end(struct file *file, struct address_space *mapping,
3123 loff_t pos, unsigned len, unsigned copied,
3124 struct page *page, void *fsdata)
3125{
3126 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3127
4e02ed4b 3128 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3129}
3130EXPORT_SYMBOL(pagecache_write_end);
3131
a92853b6
KK
3132/*
3133 * Warn about a page cache invalidation failure during a direct I/O write.
3134 */
3135void dio_warn_stale_pagecache(struct file *filp)
3136{
3137 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3138 char pathname[128];
3139 struct inode *inode = file_inode(filp);
3140 char *path;
3141
3142 errseq_set(&inode->i_mapping->wb_err, -EIO);
3143 if (__ratelimit(&_rs)) {
3144 path = file_path(filp, pathname, sizeof(pathname));
3145 if (IS_ERR(path))
3146 path = "(unknown)";
3147 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3148 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3149 current->comm);
3150 }
3151}
3152
1da177e4 3153ssize_t
1af5bb49 3154generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3155{
3156 struct file *file = iocb->ki_filp;
3157 struct address_space *mapping = file->f_mapping;
3158 struct inode *inode = mapping->host;
1af5bb49 3159 loff_t pos = iocb->ki_pos;
1da177e4 3160 ssize_t written;
a969e903
CH
3161 size_t write_len;
3162 pgoff_t end;
1da177e4 3163
0c949334 3164 write_len = iov_iter_count(from);
09cbfeaf 3165 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3166
6be96d3a
GR
3167 if (iocb->ki_flags & IOCB_NOWAIT) {
3168 /* If there are pages to writeback, return */
3169 if (filemap_range_has_page(inode->i_mapping, pos,
35f12f0f 3170 pos + write_len - 1))
6be96d3a
GR
3171 return -EAGAIN;
3172 } else {
3173 written = filemap_write_and_wait_range(mapping, pos,
3174 pos + write_len - 1);
3175 if (written)
3176 goto out;
3177 }
a969e903
CH
3178
3179 /*
3180 * After a write we want buffered reads to be sure to go to disk to get
3181 * the new data. We invalidate clean cached page from the region we're
3182 * about to write. We do this *before* the write so that we can return
6ccfa806 3183 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3184 */
55635ba7 3185 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3186 pos >> PAGE_SHIFT, end);
55635ba7
AR
3187 /*
3188 * If a page can not be invalidated, return 0 to fall back
3189 * to buffered write.
3190 */
3191 if (written) {
3192 if (written == -EBUSY)
3193 return 0;
3194 goto out;
a969e903
CH
3195 }
3196
639a93a5 3197 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3198
3199 /*
3200 * Finally, try again to invalidate clean pages which might have been
3201 * cached by non-direct readahead, or faulted in by get_user_pages()
3202 * if the source of the write was an mmap'ed region of the file
3203 * we're writing. Either one is a pretty crazy thing to do,
3204 * so we don't support it 100%. If this invalidation
3205 * fails, tough, the write still worked...
332391a9
LC
3206 *
3207 * Most of the time we do not need this since dio_complete() will do
3208 * the invalidation for us. However there are some file systems that
3209 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3210 * them by removing it completely.
3211 *
9266a140
KK
3212 * Noticeable example is a blkdev_direct_IO().
3213 *
80c1fe90 3214 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3215 */
9266a140
KK
3216 if (written > 0 && mapping->nrpages &&
3217 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3218 dio_warn_stale_pagecache(file);
a969e903 3219
1da177e4 3220 if (written > 0) {
0116651c 3221 pos += written;
639a93a5 3222 write_len -= written;
0116651c
NK
3223 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3224 i_size_write(inode, pos);
1da177e4
LT
3225 mark_inode_dirty(inode);
3226 }
5cb6c6c7 3227 iocb->ki_pos = pos;
1da177e4 3228 }
639a93a5 3229 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3230out:
1da177e4
LT
3231 return written;
3232}
3233EXPORT_SYMBOL(generic_file_direct_write);
3234
eb2be189
NP
3235/*
3236 * Find or create a page at the given pagecache position. Return the locked
3237 * page. This function is specifically for buffered writes.
3238 */
54566b2c
NP
3239struct page *grab_cache_page_write_begin(struct address_space *mapping,
3240 pgoff_t index, unsigned flags)
eb2be189 3241{
eb2be189 3242 struct page *page;
bbddabe2 3243 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3244
54566b2c 3245 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3246 fgp_flags |= FGP_NOFS;
3247
3248 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3249 mapping_gfp_mask(mapping));
c585a267 3250 if (page)
2457aec6 3251 wait_for_stable_page(page);
eb2be189 3252
eb2be189
NP
3253 return page;
3254}
54566b2c 3255EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3256
3b93f911 3257ssize_t generic_perform_write(struct file *file,
afddba49
NP
3258 struct iov_iter *i, loff_t pos)
3259{
3260 struct address_space *mapping = file->f_mapping;
3261 const struct address_space_operations *a_ops = mapping->a_ops;
3262 long status = 0;
3263 ssize_t written = 0;
674b892e
NP
3264 unsigned int flags = 0;
3265
afddba49
NP
3266 do {
3267 struct page *page;
afddba49
NP
3268 unsigned long offset; /* Offset into pagecache page */
3269 unsigned long bytes; /* Bytes to write to page */
3270 size_t copied; /* Bytes copied from user */
3271 void *fsdata;
3272
09cbfeaf
KS
3273 offset = (pos & (PAGE_SIZE - 1));
3274 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3275 iov_iter_count(i));
3276
3277again:
00a3d660
LT
3278 /*
3279 * Bring in the user page that we will copy from _first_.
3280 * Otherwise there's a nasty deadlock on copying from the
3281 * same page as we're writing to, without it being marked
3282 * up-to-date.
3283 *
3284 * Not only is this an optimisation, but it is also required
3285 * to check that the address is actually valid, when atomic
3286 * usercopies are used, below.
3287 */
3288 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3289 status = -EFAULT;
3290 break;
3291 }
3292
296291cd
JK
3293 if (fatal_signal_pending(current)) {
3294 status = -EINTR;
3295 break;
3296 }
3297
674b892e 3298 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3299 &page, &fsdata);
2457aec6 3300 if (unlikely(status < 0))
afddba49
NP
3301 break;
3302
931e80e4 3303 if (mapping_writably_mapped(mapping))
3304 flush_dcache_page(page);
00a3d660 3305
afddba49 3306 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3307 flush_dcache_page(page);
3308
3309 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3310 page, fsdata);
3311 if (unlikely(status < 0))
3312 break;
3313 copied = status;
3314
3315 cond_resched();
3316
124d3b70 3317 iov_iter_advance(i, copied);
afddba49
NP
3318 if (unlikely(copied == 0)) {
3319 /*
3320 * If we were unable to copy any data at all, we must
3321 * fall back to a single segment length write.
3322 *
3323 * If we didn't fallback here, we could livelock
3324 * because not all segments in the iov can be copied at
3325 * once without a pagefault.
3326 */
09cbfeaf 3327 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3328 iov_iter_single_seg_count(i));
3329 goto again;
3330 }
afddba49
NP
3331 pos += copied;
3332 written += copied;
3333
3334 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3335 } while (iov_iter_count(i));
3336
3337 return written ? written : status;
3338}
3b93f911 3339EXPORT_SYMBOL(generic_perform_write);
1da177e4 3340
e4dd9de3 3341/**
8174202b 3342 * __generic_file_write_iter - write data to a file
e4dd9de3 3343 * @iocb: IO state structure (file, offset, etc.)
8174202b 3344 * @from: iov_iter with data to write
e4dd9de3
JK
3345 *
3346 * This function does all the work needed for actually writing data to a
3347 * file. It does all basic checks, removes SUID from the file, updates
3348 * modification times and calls proper subroutines depending on whether we
3349 * do direct IO or a standard buffered write.
3350 *
3351 * It expects i_mutex to be grabbed unless we work on a block device or similar
3352 * object which does not need locking at all.
3353 *
3354 * This function does *not* take care of syncing data in case of O_SYNC write.
3355 * A caller has to handle it. This is mainly due to the fact that we want to
3356 * avoid syncing under i_mutex.
a862f68a
MR
3357 *
3358 * Return:
3359 * * number of bytes written, even for truncated writes
3360 * * negative error code if no data has been written at all
e4dd9de3 3361 */
8174202b 3362ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3363{
3364 struct file *file = iocb->ki_filp;
fb5527e6 3365 struct address_space * mapping = file->f_mapping;
1da177e4 3366 struct inode *inode = mapping->host;
3b93f911 3367 ssize_t written = 0;
1da177e4 3368 ssize_t err;
3b93f911 3369 ssize_t status;
1da177e4 3370
1da177e4 3371 /* We can write back this queue in page reclaim */
de1414a6 3372 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3373 err = file_remove_privs(file);
1da177e4
LT
3374 if (err)
3375 goto out;
3376
c3b2da31
JB
3377 err = file_update_time(file);
3378 if (err)
3379 goto out;
1da177e4 3380
2ba48ce5 3381 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3382 loff_t pos, endbyte;
fb5527e6 3383
1af5bb49 3384 written = generic_file_direct_write(iocb, from);
1da177e4 3385 /*
fbbbad4b
MW
3386 * If the write stopped short of completing, fall back to
3387 * buffered writes. Some filesystems do this for writes to
3388 * holes, for example. For DAX files, a buffered write will
3389 * not succeed (even if it did, DAX does not handle dirty
3390 * page-cache pages correctly).
1da177e4 3391 */
0b8def9d 3392 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3393 goto out;
3394
0b8def9d 3395 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3396 /*
3b93f911 3397 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3398 * then we want to return the number of bytes which were
3399 * direct-written, or the error code if that was zero. Note
3400 * that this differs from normal direct-io semantics, which
3401 * will return -EFOO even if some bytes were written.
3402 */
60bb4529 3403 if (unlikely(status < 0)) {
3b93f911 3404 err = status;
fb5527e6
JM
3405 goto out;
3406 }
fb5527e6
JM
3407 /*
3408 * We need to ensure that the page cache pages are written to
3409 * disk and invalidated to preserve the expected O_DIRECT
3410 * semantics.
3411 */
3b93f911 3412 endbyte = pos + status - 1;
0b8def9d 3413 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3414 if (err == 0) {
0b8def9d 3415 iocb->ki_pos = endbyte + 1;
3b93f911 3416 written += status;
fb5527e6 3417 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3418 pos >> PAGE_SHIFT,
3419 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3420 } else {
3421 /*
3422 * We don't know how much we wrote, so just return
3423 * the number of bytes which were direct-written
3424 */
3425 }
3426 } else {
0b8def9d
AV
3427 written = generic_perform_write(file, from, iocb->ki_pos);
3428 if (likely(written > 0))
3429 iocb->ki_pos += written;
fb5527e6 3430 }
1da177e4
LT
3431out:
3432 current->backing_dev_info = NULL;
3433 return written ? written : err;
3434}
8174202b 3435EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3436
e4dd9de3 3437/**
8174202b 3438 * generic_file_write_iter - write data to a file
e4dd9de3 3439 * @iocb: IO state structure
8174202b 3440 * @from: iov_iter with data to write
e4dd9de3 3441 *
8174202b 3442 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3443 * filesystems. It takes care of syncing the file in case of O_SYNC file
3444 * and acquires i_mutex as needed.
a862f68a
MR
3445 * Return:
3446 * * negative error code if no data has been written at all of
3447 * vfs_fsync_range() failed for a synchronous write
3448 * * number of bytes written, even for truncated writes
e4dd9de3 3449 */
8174202b 3450ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3451{
3452 struct file *file = iocb->ki_filp;
148f948b 3453 struct inode *inode = file->f_mapping->host;
1da177e4 3454 ssize_t ret;
1da177e4 3455
5955102c 3456 inode_lock(inode);
3309dd04
AV
3457 ret = generic_write_checks(iocb, from);
3458 if (ret > 0)
5f380c7f 3459 ret = __generic_file_write_iter(iocb, from);
5955102c 3460 inode_unlock(inode);
1da177e4 3461
e2592217
CH
3462 if (ret > 0)
3463 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3464 return ret;
3465}
8174202b 3466EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3467
cf9a2ae8
DH
3468/**
3469 * try_to_release_page() - release old fs-specific metadata on a page
3470 *
3471 * @page: the page which the kernel is trying to free
3472 * @gfp_mask: memory allocation flags (and I/O mode)
3473 *
3474 * The address_space is to try to release any data against the page
a862f68a 3475 * (presumably at page->private).
cf9a2ae8 3476 *
266cf658
DH
3477 * This may also be called if PG_fscache is set on a page, indicating that the
3478 * page is known to the local caching routines.
3479 *
cf9a2ae8 3480 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3481 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3482 *
a862f68a 3483 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3484 */
3485int try_to_release_page(struct page *page, gfp_t gfp_mask)
3486{
3487 struct address_space * const mapping = page->mapping;
3488
3489 BUG_ON(!PageLocked(page));
3490 if (PageWriteback(page))
3491 return 0;
3492
3493 if (mapping && mapping->a_ops->releasepage)
3494 return mapping->a_ops->releasepage(page, gfp_mask);
3495 return try_to_free_buffers(page);
3496}
3497
3498EXPORT_SYMBOL(try_to_release_page);