]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/filemap.c
mm/filemap: Add filemap_add_folio()
[thirdparty/linux.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4
LT
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c515e1fd 38#include <linux/cleancache.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
b9306a79 44#include <linux/page_idle.h>
f9ce0be7 45#include <asm/pgalloc.h>
de591a82 46#include <asm/tlbflush.h>
0f8053a5
NP
47#include "internal.h"
48
fe0bfaaf
RJ
49#define CREATE_TRACE_POINTS
50#include <trace/events/filemap.h>
51
1da177e4 52/*
1da177e4
LT
53 * FIXME: remove all knowledge of the buffer layer from the core VM
54 */
148f948b 55#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 56
1da177e4
LT
57#include <asm/mman.h>
58
59/*
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * though.
62 *
63 * Shared mappings now work. 15.8.1995 Bruno.
64 *
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 *
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 */
70
71/*
72 * Lock ordering:
73 *
c8c06efa 74 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 75 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 76 * ->swap_lock (exclusive_swap_page, others)
b93b0163 77 * ->i_pages lock
1da177e4 78 *
9608703e 79 * ->i_rwsem
730633f0
JK
80 * ->invalidate_lock (acquired by fs in truncate path)
81 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 82 *
c1e8d7c6 83 * ->mmap_lock
c8c06efa 84 * ->i_mmap_rwsem
b8072f09 85 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 87 *
c1e8d7c6 88 * ->mmap_lock
730633f0
JK
89 * ->invalidate_lock (filemap_fault)
90 * ->lock_page (filemap_fault, access_process_vm)
1da177e4 91 *
9608703e 92 * ->i_rwsem (generic_perform_write)
c1e8d7c6 93 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
1da177e4 94 *
f758eeab 95 * bdi->wb.list_lock
a66979ab 96 * sb_lock (fs/fs-writeback.c)
b93b0163 97 * ->i_pages lock (__sync_single_inode)
1da177e4 98 *
c8c06efa 99 * ->i_mmap_rwsem
1da177e4
LT
100 * ->anon_vma.lock (vma_adjust)
101 *
102 * ->anon_vma.lock
b8072f09 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 104 *
b8072f09 105 * ->page_table_lock or pte_lock
5d337b91 106 * ->swap_lock (try_to_unmap_one)
1da177e4 107 * ->private_lock (try_to_unmap_one)
b93b0163 108 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
109 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 111 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 112 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 117 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
118 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
119 *
c8c06efa 120 * ->i_mmap_rwsem
9a3c531d 121 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
122 */
123
5c024e6a 124static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
125 struct page *page, void *shadow)
126{
5c024e6a
MW
127 XA_STATE(xas, &mapping->i_pages, page->index);
128 unsigned int nr = 1;
c70b647d 129
5c024e6a 130 mapping_set_update(&xas, mapping);
c70b647d 131
5c024e6a
MW
132 /* hugetlb pages are represented by a single entry in the xarray */
133 if (!PageHuge(page)) {
134 xas_set_order(&xas, page->index, compound_order(page));
d8c6546b 135 nr = compound_nr(page);
5c024e6a 136 }
91b0abe3 137
83929372
KS
138 VM_BUG_ON_PAGE(!PageLocked(page), page);
139 VM_BUG_ON_PAGE(PageTail(page), page);
140 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 141
5c024e6a
MW
142 xas_store(&xas, shadow);
143 xas_init_marks(&xas);
d3798ae8 144
2300638b
JK
145 page->mapping = NULL;
146 /* Leave page->index set: truncation lookup relies upon it */
d3798ae8 147 mapping->nrpages -= nr;
91b0abe3
JW
148}
149
5ecc4d85
JK
150static void unaccount_page_cache_page(struct address_space *mapping,
151 struct page *page)
1da177e4 152{
5ecc4d85 153 int nr;
1da177e4 154
c515e1fd
DM
155 /*
156 * if we're uptodate, flush out into the cleancache, otherwise
157 * invalidate any existing cleancache entries. We can't leave
158 * stale data around in the cleancache once our page is gone
159 */
160 if (PageUptodate(page) && PageMappedToDisk(page))
161 cleancache_put_page(page);
162 else
3167760f 163 cleancache_invalidate_page(mapping, page);
c515e1fd 164
83929372 165 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
166 VM_BUG_ON_PAGE(page_mapped(page), page);
167 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
168 int mapcount;
169
170 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
171 current->comm, page_to_pfn(page));
172 dump_page(page, "still mapped when deleted");
173 dump_stack();
174 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
175
176 mapcount = page_mapcount(page);
177 if (mapping_exiting(mapping) &&
178 page_count(page) >= mapcount + 2) {
179 /*
180 * All vmas have already been torn down, so it's
181 * a good bet that actually the page is unmapped,
182 * and we'd prefer not to leak it: if we're wrong,
183 * some other bad page check should catch it later.
184 */
185 page_mapcount_reset(page);
6d061f9f 186 page_ref_sub(page, mapcount);
06b241f3
HD
187 }
188 }
189
4165b9b4 190 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
191 if (PageHuge(page))
192 return;
09612fa6 193
6c357848 194 nr = thp_nr_pages(page);
5ecc4d85 195
0d1c2072 196 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
5ecc4d85 197 if (PageSwapBacked(page)) {
0d1c2072 198 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
5ecc4d85 199 if (PageTransHuge(page))
57b2847d 200 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
99cb0dbd 201 } else if (PageTransHuge(page)) {
bf9ecead 202 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
09d91cda 203 filemap_nr_thps_dec(mapping);
800d8c63 204 }
5ecc4d85
JK
205
206 /*
207 * At this point page must be either written or cleaned by
208 * truncate. Dirty page here signals a bug and loss of
209 * unwritten data.
210 *
211 * This fixes dirty accounting after removing the page entirely
212 * but leaves PageDirty set: it has no effect for truncated
213 * page and anyway will be cleared before returning page into
214 * buddy allocator.
215 */
216 if (WARN_ON_ONCE(PageDirty(page)))
217 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
218}
219
220/*
221 * Delete a page from the page cache and free it. Caller has to make
222 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 223 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
224 */
225void __delete_from_page_cache(struct page *page, void *shadow)
226{
227 struct address_space *mapping = page->mapping;
228
229 trace_mm_filemap_delete_from_page_cache(page);
230
231 unaccount_page_cache_page(mapping, page);
5c024e6a 232 page_cache_delete(mapping, page, shadow);
1da177e4
LT
233}
234
59c66c5f
JK
235static void page_cache_free_page(struct address_space *mapping,
236 struct page *page)
237{
238 void (*freepage)(struct page *);
239
240 freepage = mapping->a_ops->freepage;
241 if (freepage)
242 freepage(page);
243
244 if (PageTransHuge(page) && !PageHuge(page)) {
887b22c6 245 page_ref_sub(page, thp_nr_pages(page));
59c66c5f
JK
246 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
247 } else {
248 put_page(page);
249 }
250}
251
702cfbf9
MK
252/**
253 * delete_from_page_cache - delete page from page cache
254 * @page: the page which the kernel is trying to remove from page cache
255 *
256 * This must be called only on pages that have been verified to be in the page
257 * cache and locked. It will never put the page into the free list, the caller
258 * has a reference on the page.
259 */
260void delete_from_page_cache(struct page *page)
1da177e4 261{
83929372 262 struct address_space *mapping = page_mapping(page);
1da177e4 263
cd7619d6 264 BUG_ON(!PageLocked(page));
30472509 265 xa_lock_irq(&mapping->i_pages);
62cccb8c 266 __delete_from_page_cache(page, NULL);
30472509 267 xa_unlock_irq(&mapping->i_pages);
6072d13c 268
59c66c5f 269 page_cache_free_page(mapping, page);
97cecb5a
MK
270}
271EXPORT_SYMBOL(delete_from_page_cache);
272
aa65c29c 273/*
ef8e5717 274 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
275 * @mapping: the mapping to which pages belong
276 * @pvec: pagevec with pages to delete
277 *
b93b0163 278 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
279 * from the mapping. The function expects @pvec to be sorted by page index
280 * and is optimised for it to be dense.
b93b0163 281 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 282 * modified). The function expects only THP head pages to be present in the
4101196b 283 * @pvec.
aa65c29c 284 *
b93b0163 285 * The function expects the i_pages lock to be held.
aa65c29c 286 */
ef8e5717 287static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
288 struct pagevec *pvec)
289{
ef8e5717 290 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 291 int total_pages = 0;
4101196b 292 int i = 0;
aa65c29c 293 struct page *page;
aa65c29c 294
ef8e5717
MW
295 mapping_set_update(&xas, mapping);
296 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 297 if (i >= pagevec_count(pvec))
aa65c29c 298 break;
4101196b
MWO
299
300 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 301 if (xa_is_value(page))
aa65c29c 302 continue;
4101196b
MWO
303 /*
304 * A page got inserted in our range? Skip it. We have our
305 * pages locked so they are protected from being removed.
306 * If we see a page whose index is higher than ours, it
307 * means our page has been removed, which shouldn't be
308 * possible because we're holding the PageLock.
309 */
310 if (page != pvec->pages[i]) {
311 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
312 page);
313 continue;
314 }
315
316 WARN_ON_ONCE(!PageLocked(page));
317
318 if (page->index == xas.xa_index)
aa65c29c 319 page->mapping = NULL;
4101196b
MWO
320 /* Leave page->index set: truncation lookup relies on it */
321
322 /*
323 * Move to the next page in the vector if this is a regular
324 * page or the index is of the last sub-page of this compound
325 * page.
326 */
327 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 328 i++;
ef8e5717 329 xas_store(&xas, NULL);
aa65c29c
JK
330 total_pages++;
331 }
332 mapping->nrpages -= total_pages;
333}
334
335void delete_from_page_cache_batch(struct address_space *mapping,
336 struct pagevec *pvec)
337{
338 int i;
aa65c29c
JK
339
340 if (!pagevec_count(pvec))
341 return;
342
30472509 343 xa_lock_irq(&mapping->i_pages);
aa65c29c
JK
344 for (i = 0; i < pagevec_count(pvec); i++) {
345 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
346
347 unaccount_page_cache_page(mapping, pvec->pages[i]);
348 }
ef8e5717 349 page_cache_delete_batch(mapping, pvec);
30472509 350 xa_unlock_irq(&mapping->i_pages);
aa65c29c
JK
351
352 for (i = 0; i < pagevec_count(pvec); i++)
353 page_cache_free_page(mapping, pvec->pages[i]);
354}
355
d72d9e2a 356int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
357{
358 int ret = 0;
359 /* Check for outstanding write errors */
7fcbbaf1
JA
360 if (test_bit(AS_ENOSPC, &mapping->flags) &&
361 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 362 ret = -ENOSPC;
7fcbbaf1
JA
363 if (test_bit(AS_EIO, &mapping->flags) &&
364 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
365 ret = -EIO;
366 return ret;
367}
d72d9e2a 368EXPORT_SYMBOL(filemap_check_errors);
865ffef3 369
76341cab
JL
370static int filemap_check_and_keep_errors(struct address_space *mapping)
371{
372 /* Check for outstanding write errors */
373 if (test_bit(AS_EIO, &mapping->flags))
374 return -EIO;
375 if (test_bit(AS_ENOSPC, &mapping->flags))
376 return -ENOSPC;
377 return 0;
378}
379
5a798493
JB
380/**
381 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
382 * @mapping: address space structure to write
383 * @wbc: the writeback_control controlling the writeout
384 *
385 * Call writepages on the mapping using the provided wbc to control the
386 * writeout.
387 *
388 * Return: %0 on success, negative error code otherwise.
389 */
390int filemap_fdatawrite_wbc(struct address_space *mapping,
391 struct writeback_control *wbc)
392{
393 int ret;
394
395 if (!mapping_can_writeback(mapping) ||
396 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
397 return 0;
398
399 wbc_attach_fdatawrite_inode(wbc, mapping->host);
400 ret = do_writepages(mapping, wbc);
401 wbc_detach_inode(wbc);
402 return ret;
403}
404EXPORT_SYMBOL(filemap_fdatawrite_wbc);
405
1da177e4 406/**
485bb99b 407 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
408 * @mapping: address space structure to write
409 * @start: offset in bytes where the range starts
469eb4d0 410 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 411 * @sync_mode: enable synchronous operation
1da177e4 412 *
485bb99b
RD
413 * Start writeback against all of a mapping's dirty pages that lie
414 * within the byte offsets <start, end> inclusive.
415 *
1da177e4 416 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 417 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
418 * these two operations is that if a dirty page/buffer is encountered, it must
419 * be waited upon, and not just skipped over.
a862f68a
MR
420 *
421 * Return: %0 on success, negative error code otherwise.
1da177e4 422 */
ebcf28e1
AM
423int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
424 loff_t end, int sync_mode)
1da177e4 425{
1da177e4
LT
426 struct writeback_control wbc = {
427 .sync_mode = sync_mode,
05fe478d 428 .nr_to_write = LONG_MAX,
111ebb6e
OH
429 .range_start = start,
430 .range_end = end,
1da177e4
LT
431 };
432
5a798493 433 return filemap_fdatawrite_wbc(mapping, &wbc);
1da177e4
LT
434}
435
436static inline int __filemap_fdatawrite(struct address_space *mapping,
437 int sync_mode)
438{
111ebb6e 439 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
440}
441
442int filemap_fdatawrite(struct address_space *mapping)
443{
444 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
445}
446EXPORT_SYMBOL(filemap_fdatawrite);
447
f4c0a0fd 448int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 449 loff_t end)
1da177e4
LT
450{
451 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
452}
f4c0a0fd 453EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 454
485bb99b
RD
455/**
456 * filemap_flush - mostly a non-blocking flush
457 * @mapping: target address_space
458 *
1da177e4
LT
459 * This is a mostly non-blocking flush. Not suitable for data-integrity
460 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
461 *
462 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
463 */
464int filemap_flush(struct address_space *mapping)
465{
466 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
467}
468EXPORT_SYMBOL(filemap_flush);
469
7fc9e472
GR
470/**
471 * filemap_range_has_page - check if a page exists in range.
472 * @mapping: address space within which to check
473 * @start_byte: offset in bytes where the range starts
474 * @end_byte: offset in bytes where the range ends (inclusive)
475 *
476 * Find at least one page in the range supplied, usually used to check if
477 * direct writing in this range will trigger a writeback.
a862f68a
MR
478 *
479 * Return: %true if at least one page exists in the specified range,
480 * %false otherwise.
7fc9e472
GR
481 */
482bool filemap_range_has_page(struct address_space *mapping,
483 loff_t start_byte, loff_t end_byte)
484{
f7b68046 485 struct page *page;
8fa8e538
MW
486 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
487 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
488
489 if (end_byte < start_byte)
490 return false;
491
8fa8e538
MW
492 rcu_read_lock();
493 for (;;) {
494 page = xas_find(&xas, max);
495 if (xas_retry(&xas, page))
496 continue;
497 /* Shadow entries don't count */
498 if (xa_is_value(page))
499 continue;
500 /*
501 * We don't need to try to pin this page; we're about to
502 * release the RCU lock anyway. It is enough to know that
503 * there was a page here recently.
504 */
505 break;
506 }
507 rcu_read_unlock();
7fc9e472 508
8fa8e538 509 return page != NULL;
7fc9e472
GR
510}
511EXPORT_SYMBOL(filemap_range_has_page);
512
5e8fcc1a 513static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 514 loff_t start_byte, loff_t end_byte)
1da177e4 515{
09cbfeaf
KS
516 pgoff_t index = start_byte >> PAGE_SHIFT;
517 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
518 struct pagevec pvec;
519 int nr_pages;
1da177e4 520
94004ed7 521 if (end_byte < start_byte)
5e8fcc1a 522 return;
1da177e4 523
86679820 524 pagevec_init(&pvec);
312e9d2f 525 while (index <= end) {
1da177e4
LT
526 unsigned i;
527
312e9d2f 528 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 529 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
530 if (!nr_pages)
531 break;
532
1da177e4
LT
533 for (i = 0; i < nr_pages; i++) {
534 struct page *page = pvec.pages[i];
535
1da177e4 536 wait_on_page_writeback(page);
5e8fcc1a 537 ClearPageError(page);
1da177e4
LT
538 }
539 pagevec_release(&pvec);
540 cond_resched();
541 }
aa750fd7
JN
542}
543
544/**
545 * filemap_fdatawait_range - wait for writeback to complete
546 * @mapping: address space structure to wait for
547 * @start_byte: offset in bytes where the range starts
548 * @end_byte: offset in bytes where the range ends (inclusive)
549 *
550 * Walk the list of under-writeback pages of the given address space
551 * in the given range and wait for all of them. Check error status of
552 * the address space and return it.
553 *
554 * Since the error status of the address space is cleared by this function,
555 * callers are responsible for checking the return value and handling and/or
556 * reporting the error.
a862f68a
MR
557 *
558 * Return: error status of the address space.
aa750fd7
JN
559 */
560int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
561 loff_t end_byte)
562{
5e8fcc1a
JL
563 __filemap_fdatawait_range(mapping, start_byte, end_byte);
564 return filemap_check_errors(mapping);
1da177e4 565}
d3bccb6f
JK
566EXPORT_SYMBOL(filemap_fdatawait_range);
567
aa0bfcd9
RZ
568/**
569 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
570 * @mapping: address space structure to wait for
571 * @start_byte: offset in bytes where the range starts
572 * @end_byte: offset in bytes where the range ends (inclusive)
573 *
574 * Walk the list of under-writeback pages of the given address space in the
575 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
576 * this function does not clear error status of the address space.
577 *
578 * Use this function if callers don't handle errors themselves. Expected
579 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
580 * fsfreeze(8)
581 */
582int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
583 loff_t start_byte, loff_t end_byte)
584{
585 __filemap_fdatawait_range(mapping, start_byte, end_byte);
586 return filemap_check_and_keep_errors(mapping);
587}
588EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
589
a823e458
JL
590/**
591 * file_fdatawait_range - wait for writeback to complete
592 * @file: file pointing to address space structure to wait for
593 * @start_byte: offset in bytes where the range starts
594 * @end_byte: offset in bytes where the range ends (inclusive)
595 *
596 * Walk the list of under-writeback pages of the address space that file
597 * refers to, in the given range and wait for all of them. Check error
598 * status of the address space vs. the file->f_wb_err cursor and return it.
599 *
600 * Since the error status of the file is advanced by this function,
601 * callers are responsible for checking the return value and handling and/or
602 * reporting the error.
a862f68a
MR
603 *
604 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
605 */
606int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
607{
608 struct address_space *mapping = file->f_mapping;
609
610 __filemap_fdatawait_range(mapping, start_byte, end_byte);
611 return file_check_and_advance_wb_err(file);
612}
613EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 614
aa750fd7
JN
615/**
616 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
617 * @mapping: address space structure to wait for
618 *
619 * Walk the list of under-writeback pages of the given address space
620 * and wait for all of them. Unlike filemap_fdatawait(), this function
621 * does not clear error status of the address space.
622 *
623 * Use this function if callers don't handle errors themselves. Expected
624 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
625 * fsfreeze(8)
a862f68a
MR
626 *
627 * Return: error status of the address space.
aa750fd7 628 */
76341cab 629int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 630{
ffb959bb 631 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 632 return filemap_check_and_keep_errors(mapping);
aa750fd7 633}
76341cab 634EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 635
875d91b1 636/* Returns true if writeback might be needed or already in progress. */
9326c9b2 637static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 638{
875d91b1 639 return mapping->nrpages;
1da177e4 640}
1da177e4 641
63135aa3
JA
642/**
643 * filemap_range_needs_writeback - check if range potentially needs writeback
644 * @mapping: address space within which to check
645 * @start_byte: offset in bytes where the range starts
646 * @end_byte: offset in bytes where the range ends (inclusive)
647 *
648 * Find at least one page in the range supplied, usually used to check if
649 * direct writing in this range will trigger a writeback. Used by O_DIRECT
650 * read/write with IOCB_NOWAIT, to see if the caller needs to do
651 * filemap_write_and_wait_range() before proceeding.
652 *
653 * Return: %true if the caller should do filemap_write_and_wait_range() before
654 * doing O_DIRECT to a page in this range, %false otherwise.
655 */
656bool filemap_range_needs_writeback(struct address_space *mapping,
657 loff_t start_byte, loff_t end_byte)
658{
659 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
660 pgoff_t max = end_byte >> PAGE_SHIFT;
661 struct page *page;
662
663 if (!mapping_needs_writeback(mapping))
664 return false;
665 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
666 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
667 return false;
668 if (end_byte < start_byte)
669 return false;
670
671 rcu_read_lock();
672 xas_for_each(&xas, page, max) {
673 if (xas_retry(&xas, page))
674 continue;
675 if (xa_is_value(page))
676 continue;
677 if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
678 break;
679 }
680 rcu_read_unlock();
681 return page != NULL;
682}
683EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
684
485bb99b
RD
685/**
686 * filemap_write_and_wait_range - write out & wait on a file range
687 * @mapping: the address_space for the pages
688 * @lstart: offset in bytes where the range starts
689 * @lend: offset in bytes where the range ends (inclusive)
690 *
469eb4d0
AM
691 * Write out and wait upon file offsets lstart->lend, inclusive.
692 *
0e056eb5 693 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 694 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
695 *
696 * Return: error status of the address space.
469eb4d0 697 */
1da177e4
LT
698int filemap_write_and_wait_range(struct address_space *mapping,
699 loff_t lstart, loff_t lend)
700{
28fd1298 701 int err = 0;
1da177e4 702
9326c9b2 703 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
704 err = __filemap_fdatawrite_range(mapping, lstart, lend,
705 WB_SYNC_ALL);
ddf8f376
IW
706 /*
707 * Even if the above returned error, the pages may be
708 * written partially (e.g. -ENOSPC), so we wait for it.
709 * But the -EIO is special case, it may indicate the worst
710 * thing (e.g. bug) happened, so we avoid waiting for it.
711 */
28fd1298 712 if (err != -EIO) {
94004ed7
CH
713 int err2 = filemap_fdatawait_range(mapping,
714 lstart, lend);
28fd1298
OH
715 if (!err)
716 err = err2;
cbeaf951
JL
717 } else {
718 /* Clear any previously stored errors */
719 filemap_check_errors(mapping);
28fd1298 720 }
865ffef3
DM
721 } else {
722 err = filemap_check_errors(mapping);
1da177e4 723 }
28fd1298 724 return err;
1da177e4 725}
f6995585 726EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 727
5660e13d
JL
728void __filemap_set_wb_err(struct address_space *mapping, int err)
729{
3acdfd28 730 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
731
732 trace_filemap_set_wb_err(mapping, eseq);
733}
734EXPORT_SYMBOL(__filemap_set_wb_err);
735
736/**
737 * file_check_and_advance_wb_err - report wb error (if any) that was previously
738 * and advance wb_err to current one
739 * @file: struct file on which the error is being reported
740 *
741 * When userland calls fsync (or something like nfsd does the equivalent), we
742 * want to report any writeback errors that occurred since the last fsync (or
743 * since the file was opened if there haven't been any).
744 *
745 * Grab the wb_err from the mapping. If it matches what we have in the file,
746 * then just quickly return 0. The file is all caught up.
747 *
748 * If it doesn't match, then take the mapping value, set the "seen" flag in
749 * it and try to swap it into place. If it works, or another task beat us
750 * to it with the new value, then update the f_wb_err and return the error
751 * portion. The error at this point must be reported via proper channels
752 * (a'la fsync, or NFS COMMIT operation, etc.).
753 *
754 * While we handle mapping->wb_err with atomic operations, the f_wb_err
755 * value is protected by the f_lock since we must ensure that it reflects
756 * the latest value swapped in for this file descriptor.
a862f68a
MR
757 *
758 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
759 */
760int file_check_and_advance_wb_err(struct file *file)
761{
762 int err = 0;
763 errseq_t old = READ_ONCE(file->f_wb_err);
764 struct address_space *mapping = file->f_mapping;
765
766 /* Locklessly handle the common case where nothing has changed */
767 if (errseq_check(&mapping->wb_err, old)) {
768 /* Something changed, must use slow path */
769 spin_lock(&file->f_lock);
770 old = file->f_wb_err;
771 err = errseq_check_and_advance(&mapping->wb_err,
772 &file->f_wb_err);
773 trace_file_check_and_advance_wb_err(file, old);
774 spin_unlock(&file->f_lock);
775 }
f4e222c5
JL
776
777 /*
778 * We're mostly using this function as a drop in replacement for
779 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
780 * that the legacy code would have had on these flags.
781 */
782 clear_bit(AS_EIO, &mapping->flags);
783 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
784 return err;
785}
786EXPORT_SYMBOL(file_check_and_advance_wb_err);
787
788/**
789 * file_write_and_wait_range - write out & wait on a file range
790 * @file: file pointing to address_space with pages
791 * @lstart: offset in bytes where the range starts
792 * @lend: offset in bytes where the range ends (inclusive)
793 *
794 * Write out and wait upon file offsets lstart->lend, inclusive.
795 *
796 * Note that @lend is inclusive (describes the last byte to be written) so
797 * that this function can be used to write to the very end-of-file (end = -1).
798 *
799 * After writing out and waiting on the data, we check and advance the
800 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
801 *
802 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
803 */
804int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
805{
806 int err = 0, err2;
807 struct address_space *mapping = file->f_mapping;
808
9326c9b2 809 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
810 err = __filemap_fdatawrite_range(mapping, lstart, lend,
811 WB_SYNC_ALL);
812 /* See comment of filemap_write_and_wait() */
813 if (err != -EIO)
814 __filemap_fdatawait_range(mapping, lstart, lend);
815 }
816 err2 = file_check_and_advance_wb_err(file);
817 if (!err)
818 err = err2;
819 return err;
820}
821EXPORT_SYMBOL(file_write_and_wait_range);
822
ef6a3c63
MS
823/**
824 * replace_page_cache_page - replace a pagecache page with a new one
825 * @old: page to be replaced
826 * @new: page to replace with
ef6a3c63
MS
827 *
828 * This function replaces a page in the pagecache with a new one. On
829 * success it acquires the pagecache reference for the new page and
830 * drops it for the old page. Both the old and new pages must be
831 * locked. This function does not add the new page to the LRU, the
832 * caller must do that.
833 *
74d60958 834 * The remove + add is atomic. This function cannot fail.
ef6a3c63 835 */
1f7ef657 836void replace_page_cache_page(struct page *old, struct page *new)
ef6a3c63 837{
d21bba2b
MWO
838 struct folio *fold = page_folio(old);
839 struct folio *fnew = page_folio(new);
74d60958
MW
840 struct address_space *mapping = old->mapping;
841 void (*freepage)(struct page *) = mapping->a_ops->freepage;
842 pgoff_t offset = old->index;
843 XA_STATE(xas, &mapping->i_pages, offset);
ef6a3c63 844
309381fe
SL
845 VM_BUG_ON_PAGE(!PageLocked(old), old);
846 VM_BUG_ON_PAGE(!PageLocked(new), new);
847 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 848
74d60958
MW
849 get_page(new);
850 new->mapping = mapping;
851 new->index = offset;
ef6a3c63 852
d21bba2b 853 mem_cgroup_migrate(fold, fnew);
0d1c2072 854
30472509 855 xas_lock_irq(&xas);
74d60958 856 xas_store(&xas, new);
4165b9b4 857
74d60958
MW
858 old->mapping = NULL;
859 /* hugetlb pages do not participate in page cache accounting. */
860 if (!PageHuge(old))
0d1c2072 861 __dec_lruvec_page_state(old, NR_FILE_PAGES);
74d60958 862 if (!PageHuge(new))
0d1c2072 863 __inc_lruvec_page_state(new, NR_FILE_PAGES);
74d60958 864 if (PageSwapBacked(old))
0d1c2072 865 __dec_lruvec_page_state(old, NR_SHMEM);
74d60958 866 if (PageSwapBacked(new))
0d1c2072 867 __inc_lruvec_page_state(new, NR_SHMEM);
30472509 868 xas_unlock_irq(&xas);
74d60958
MW
869 if (freepage)
870 freepage(old);
871 put_page(old);
ef6a3c63
MS
872}
873EXPORT_SYMBOL_GPL(replace_page_cache_page);
874
9dd3d069
MWO
875noinline int __filemap_add_folio(struct address_space *mapping,
876 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
1da177e4 877{
9dd3d069
MWO
878 XA_STATE(xas, &mapping->i_pages, index);
879 int huge = folio_test_hugetlb(folio);
e286781d 880 int error;
da74240e 881 bool charged = false;
e286781d 882
9dd3d069
MWO
883 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
884 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
74d60958 885 mapping_set_update(&xas, mapping);
e286781d 886
9dd3d069
MWO
887 folio_get(folio);
888 folio->mapping = mapping;
889 folio->index = index;
66a0c8ee 890
3fea5a49 891 if (!huge) {
9dd3d069
MWO
892 error = mem_cgroup_charge(folio, NULL, gfp);
893 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
3fea5a49
JW
894 if (error)
895 goto error;
da74240e 896 charged = true;
3fea5a49
JW
897 }
898
198b62f8
MWO
899 gfp &= GFP_RECLAIM_MASK;
900
74d60958 901 do {
198b62f8
MWO
902 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
903 void *entry, *old = NULL;
904
9dd3d069 905 if (order > folio_order(folio))
198b62f8
MWO
906 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
907 order, gfp);
74d60958 908 xas_lock_irq(&xas);
198b62f8
MWO
909 xas_for_each_conflict(&xas, entry) {
910 old = entry;
911 if (!xa_is_value(entry)) {
912 xas_set_err(&xas, -EEXIST);
913 goto unlock;
914 }
915 }
916
917 if (old) {
918 if (shadowp)
919 *shadowp = old;
920 /* entry may have been split before we acquired lock */
921 order = xa_get_order(xas.xa, xas.xa_index);
9dd3d069 922 if (order > folio_order(folio)) {
198b62f8
MWO
923 xas_split(&xas, old, order);
924 xas_reset(&xas);
925 }
926 }
927
9dd3d069 928 xas_store(&xas, folio);
74d60958
MW
929 if (xas_error(&xas))
930 goto unlock;
931
74d60958
MW
932 mapping->nrpages++;
933
934 /* hugetlb pages do not participate in page cache accounting */
935 if (!huge)
9dd3d069 936 __lruvec_stat_add_folio(folio, NR_FILE_PAGES);
74d60958
MW
937unlock:
938 xas_unlock_irq(&xas);
198b62f8 939 } while (xas_nomem(&xas, gfp));
74d60958 940
3fea5a49
JW
941 if (xas_error(&xas)) {
942 error = xas_error(&xas);
da74240e 943 if (charged)
9dd3d069 944 mem_cgroup_uncharge(folio);
74d60958 945 goto error;
3fea5a49 946 }
4165b9b4 947
9dd3d069 948 trace_mm_filemap_add_to_page_cache(&folio->page);
66a0c8ee 949 return 0;
74d60958 950error:
9dd3d069 951 folio->mapping = NULL;
66a0c8ee 952 /* Leave page->index set: truncation relies upon it */
9dd3d069 953 folio_put(folio);
3fea5a49 954 return error;
1da177e4 955}
9dd3d069 956ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
a528910e
JW
957
958/**
959 * add_to_page_cache_locked - add a locked page to the pagecache
960 * @page: page to add
961 * @mapping: the page's address_space
962 * @offset: page index
963 * @gfp_mask: page allocation mode
964 *
965 * This function is used to add a page to the pagecache. It must be locked.
966 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
967 *
968 * Return: %0 on success, negative error code otherwise.
a528910e
JW
969 */
970int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
971 pgoff_t offset, gfp_t gfp_mask)
972{
9dd3d069 973 return __filemap_add_folio(mapping, page_folio(page), offset,
a528910e
JW
974 gfp_mask, NULL);
975}
e286781d 976EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4 977
9dd3d069
MWO
978int filemap_add_folio(struct address_space *mapping, struct folio *folio,
979 pgoff_t index, gfp_t gfp)
1da177e4 980{
a528910e 981 void *shadow = NULL;
4f98a2fe
RR
982 int ret;
983
9dd3d069
MWO
984 __folio_set_locked(folio);
985 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
a528910e 986 if (unlikely(ret))
9dd3d069 987 __folio_clear_locked(folio);
a528910e
JW
988 else {
989 /*
9dd3d069 990 * The folio might have been evicted from cache only
a528910e 991 * recently, in which case it should be activated like
9dd3d069
MWO
992 * any other repeatedly accessed folio.
993 * The exception is folios getting rewritten; evicting other
f0281a00
RR
994 * data from the working set, only to cache data that will
995 * get overwritten with something else, is a waste of memory.
a528910e 996 */
9dd3d069
MWO
997 WARN_ON_ONCE(folio_test_active(folio));
998 if (!(gfp & __GFP_WRITE) && shadow)
999 workingset_refault(folio, shadow);
1000 folio_add_lru(folio);
a528910e 1001 }
1da177e4
LT
1002 return ret;
1003}
9dd3d069 1004EXPORT_SYMBOL_GPL(filemap_add_folio);
1da177e4 1005
44110fe3 1006#ifdef CONFIG_NUMA
bb3c579e 1007struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
44110fe3 1008{
c0ff7453 1009 int n;
bb3c579e 1010 struct folio *folio;
c0ff7453 1011
44110fe3 1012 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
1013 unsigned int cpuset_mems_cookie;
1014 do {
d26914d1 1015 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 1016 n = cpuset_mem_spread_node();
bb3c579e
MWO
1017 folio = __folio_alloc_node(gfp, order, n);
1018 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 1019
bb3c579e 1020 return folio;
44110fe3 1021 }
bb3c579e 1022 return folio_alloc(gfp, order);
44110fe3 1023}
bb3c579e 1024EXPORT_SYMBOL(filemap_alloc_folio);
44110fe3
PJ
1025#endif
1026
7506ae6a
JK
1027/*
1028 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1029 *
1030 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1031 *
1032 * @mapping1: the first mapping to lock
1033 * @mapping2: the second mapping to lock
1034 */
1035void filemap_invalidate_lock_two(struct address_space *mapping1,
1036 struct address_space *mapping2)
1037{
1038 if (mapping1 > mapping2)
1039 swap(mapping1, mapping2);
1040 if (mapping1)
1041 down_write(&mapping1->invalidate_lock);
1042 if (mapping2 && mapping1 != mapping2)
1043 down_write_nested(&mapping2->invalidate_lock, 1);
1044}
1045EXPORT_SYMBOL(filemap_invalidate_lock_two);
1046
1047/*
1048 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1049 *
1050 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1051 *
1052 * @mapping1: the first mapping to unlock
1053 * @mapping2: the second mapping to unlock
1054 */
1055void filemap_invalidate_unlock_two(struct address_space *mapping1,
1056 struct address_space *mapping2)
1057{
1058 if (mapping1)
1059 up_write(&mapping1->invalidate_lock);
1060 if (mapping2 && mapping1 != mapping2)
1061 up_write(&mapping2->invalidate_lock);
1062}
1063EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1064
1da177e4
LT
1065/*
1066 * In order to wait for pages to become available there must be
1067 * waitqueues associated with pages. By using a hash table of
1068 * waitqueues where the bucket discipline is to maintain all
1069 * waiters on the same queue and wake all when any of the pages
1070 * become available, and for the woken contexts to check to be
1071 * sure the appropriate page became available, this saves space
1072 * at a cost of "thundering herd" phenomena during rare hash
1073 * collisions.
1074 */
62906027
NP
1075#define PAGE_WAIT_TABLE_BITS 8
1076#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
df4d4f12 1077static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
62906027 1078
df4d4f12 1079static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1da177e4 1080{
df4d4f12 1081 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1da177e4 1082}
1da177e4 1083
62906027 1084void __init pagecache_init(void)
1da177e4 1085{
62906027 1086 int i;
1da177e4 1087
62906027 1088 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
df4d4f12 1089 init_waitqueue_head(&folio_wait_table[i]);
62906027
NP
1090
1091 page_writeback_init();
1da177e4 1092}
1da177e4 1093
5ef64cc8
LT
1094/*
1095 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1096 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1097 * one.
1098 *
1099 * We have:
1100 *
1101 * (a) no special bits set:
1102 *
1103 * We're just waiting for the bit to be released, and when a waker
1104 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1105 * and remove it from the wait queue.
1106 *
1107 * Simple and straightforward.
1108 *
1109 * (b) WQ_FLAG_EXCLUSIVE:
1110 *
1111 * The waiter is waiting to get the lock, and only one waiter should
1112 * be woken up to avoid any thundering herd behavior. We'll set the
1113 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1114 *
1115 * This is the traditional exclusive wait.
1116 *
5868ec26 1117 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1118 *
1119 * The waiter is waiting to get the bit, and additionally wants the
1120 * lock to be transferred to it for fair lock behavior. If the lock
1121 * cannot be taken, we stop walking the wait queue without waking
1122 * the waiter.
1123 *
1124 * This is the "fair lock handoff" case, and in addition to setting
1125 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1126 * that it now has the lock.
1127 */
ac6424b9 1128static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1129{
5ef64cc8 1130 unsigned int flags;
62906027
NP
1131 struct wait_page_key *key = arg;
1132 struct wait_page_queue *wait_page
1133 = container_of(wait, struct wait_page_queue, wait);
1134
cdc8fcb4 1135 if (!wake_page_match(wait_page, key))
62906027 1136 return 0;
3510ca20 1137
9a1ea439 1138 /*
5ef64cc8
LT
1139 * If it's a lock handoff wait, we get the bit for it, and
1140 * stop walking (and do not wake it up) if we can't.
9a1ea439 1141 */
5ef64cc8
LT
1142 flags = wait->flags;
1143 if (flags & WQ_FLAG_EXCLUSIVE) {
df4d4f12 1144 if (test_bit(key->bit_nr, &key->folio->flags))
2a9127fc 1145 return -1;
5ef64cc8 1146 if (flags & WQ_FLAG_CUSTOM) {
df4d4f12 1147 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
5ef64cc8
LT
1148 return -1;
1149 flags |= WQ_FLAG_DONE;
1150 }
2a9127fc 1151 }
f62e00cc 1152
5ef64cc8
LT
1153 /*
1154 * We are holding the wait-queue lock, but the waiter that
1155 * is waiting for this will be checking the flags without
1156 * any locking.
1157 *
1158 * So update the flags atomically, and wake up the waiter
1159 * afterwards to avoid any races. This store-release pairs
101c0bf6 1160 * with the load-acquire in folio_wait_bit_common().
5ef64cc8
LT
1161 */
1162 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1163 wake_up_state(wait->private, mode);
1164
1165 /*
1166 * Ok, we have successfully done what we're waiting for,
1167 * and we can unconditionally remove the wait entry.
1168 *
5ef64cc8
LT
1169 * Note that this pairs with the "finish_wait()" in the
1170 * waiter, and has to be the absolute last thing we do.
1171 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1172 * might be de-allocated and the process might even have
1173 * exited.
2a9127fc 1174 */
c6fe44d9 1175 list_del_init_careful(&wait->entry);
5ef64cc8 1176 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1177}
1178
6974d7c9 1179static void folio_wake_bit(struct folio *folio, int bit_nr)
cbbce822 1180{
df4d4f12 1181 wait_queue_head_t *q = folio_waitqueue(folio);
62906027
NP
1182 struct wait_page_key key;
1183 unsigned long flags;
11a19c7b 1184 wait_queue_entry_t bookmark;
cbbce822 1185
df4d4f12 1186 key.folio = folio;
62906027
NP
1187 key.bit_nr = bit_nr;
1188 key.page_match = 0;
1189
11a19c7b
TC
1190 bookmark.flags = 0;
1191 bookmark.private = NULL;
1192 bookmark.func = NULL;
1193 INIT_LIST_HEAD(&bookmark.entry);
1194
62906027 1195 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1196 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1197
1198 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1199 /*
1200 * Take a breather from holding the lock,
1201 * allow pages that finish wake up asynchronously
1202 * to acquire the lock and remove themselves
1203 * from wait queue
1204 */
1205 spin_unlock_irqrestore(&q->lock, flags);
1206 cpu_relax();
1207 spin_lock_irqsave(&q->lock, flags);
1208 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1209 }
1210
62906027
NP
1211 /*
1212 * It is possible for other pages to have collided on the waitqueue
1213 * hash, so in that case check for a page match. That prevents a long-
1214 * term waiter
1215 *
1216 * It is still possible to miss a case here, when we woke page waiters
1217 * and removed them from the waitqueue, but there are still other
1218 * page waiters.
1219 */
1220 if (!waitqueue_active(q) || !key.page_match) {
6974d7c9 1221 folio_clear_waiters(folio);
62906027
NP
1222 /*
1223 * It's possible to miss clearing Waiters here, when we woke
1224 * our page waiters, but the hashed waitqueue has waiters for
1225 * other pages on it.
1226 *
1227 * That's okay, it's a rare case. The next waker will clear it.
1228 */
1229 }
1230 spin_unlock_irqrestore(&q->lock, flags);
1231}
74d81bfa 1232
4268b480 1233static void folio_wake(struct folio *folio, int bit)
74d81bfa 1234{
4268b480 1235 if (!folio_test_waiters(folio))
74d81bfa 1236 return;
6974d7c9 1237 folio_wake_bit(folio, bit);
74d81bfa 1238}
62906027 1239
9a1ea439 1240/*
101c0bf6 1241 * A choice of three behaviors for folio_wait_bit_common():
9a1ea439
HD
1242 */
1243enum behavior {
1244 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
7c23c782 1245 * __folio_lock() waiting on then setting PG_locked.
9a1ea439
HD
1246 */
1247 SHARED, /* Hold ref to page and check the bit when woken, like
1248 * wait_on_page_writeback() waiting on PG_writeback.
1249 */
1250 DROP, /* Drop ref to page before wait, no check when woken,
1251 * like put_and_wait_on_page_locked() on PG_locked.
1252 */
1253};
1254
2a9127fc 1255/*
101c0bf6 1256 * Attempt to check (or get) the folio flag, and mark us done
5ef64cc8 1257 * if successful.
2a9127fc 1258 */
101c0bf6 1259static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
2a9127fc
LT
1260 struct wait_queue_entry *wait)
1261{
1262 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
101c0bf6 1263 if (test_and_set_bit(bit_nr, &folio->flags))
2a9127fc 1264 return false;
101c0bf6 1265 } else if (test_bit(bit_nr, &folio->flags))
2a9127fc
LT
1266 return false;
1267
5ef64cc8 1268 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1269 return true;
1270}
1271
5ef64cc8
LT
1272/* How many times do we accept lock stealing from under a waiter? */
1273int sysctl_page_lock_unfairness = 5;
1274
101c0bf6
MWO
1275static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1276 int state, enum behavior behavior)
62906027 1277{
df4d4f12 1278 wait_queue_head_t *q = folio_waitqueue(folio);
5ef64cc8 1279 int unfairness = sysctl_page_lock_unfairness;
62906027 1280 struct wait_page_queue wait_page;
ac6424b9 1281 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1282 bool thrashing = false;
9a1ea439 1283 bool delayacct = false;
eb414681 1284 unsigned long pflags;
62906027 1285
eb414681 1286 if (bit_nr == PG_locked &&
101c0bf6
MWO
1287 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1288 if (!folio_test_swapbacked(folio)) {
eb414681 1289 delayacct_thrashing_start();
9a1ea439
HD
1290 delayacct = true;
1291 }
eb414681 1292 psi_memstall_enter(&pflags);
b1d29ba8
JW
1293 thrashing = true;
1294 }
1295
62906027
NP
1296 init_wait(wait);
1297 wait->func = wake_page_function;
df4d4f12 1298 wait_page.folio = folio;
62906027
NP
1299 wait_page.bit_nr = bit_nr;
1300
5ef64cc8
LT
1301repeat:
1302 wait->flags = 0;
1303 if (behavior == EXCLUSIVE) {
1304 wait->flags = WQ_FLAG_EXCLUSIVE;
1305 if (--unfairness < 0)
1306 wait->flags |= WQ_FLAG_CUSTOM;
1307 }
1308
2a9127fc
LT
1309 /*
1310 * Do one last check whether we can get the
1311 * page bit synchronously.
1312 *
101c0bf6 1313 * Do the folio_set_waiters() marking before that
2a9127fc
LT
1314 * to let any waker we _just_ missed know they
1315 * need to wake us up (otherwise they'll never
1316 * even go to the slow case that looks at the
1317 * page queue), and add ourselves to the wait
1318 * queue if we need to sleep.
1319 *
1320 * This part needs to be done under the queue
1321 * lock to avoid races.
1322 */
1323 spin_lock_irq(&q->lock);
101c0bf6
MWO
1324 folio_set_waiters(folio);
1325 if (!folio_trylock_flag(folio, bit_nr, wait))
2a9127fc
LT
1326 __add_wait_queue_entry_tail(q, wait);
1327 spin_unlock_irq(&q->lock);
62906027 1328
2a9127fc
LT
1329 /*
1330 * From now on, all the logic will be based on
5ef64cc8
LT
1331 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1332 * see whether the page bit testing has already
1333 * been done by the wake function.
2a9127fc 1334 *
101c0bf6 1335 * We can drop our reference to the folio.
2a9127fc
LT
1336 */
1337 if (behavior == DROP)
101c0bf6 1338 folio_put(folio);
62906027 1339
5ef64cc8
LT
1340 /*
1341 * Note that until the "finish_wait()", or until
1342 * we see the WQ_FLAG_WOKEN flag, we need to
1343 * be very careful with the 'wait->flags', because
1344 * we may race with a waker that sets them.
1345 */
2a9127fc 1346 for (;;) {
5ef64cc8
LT
1347 unsigned int flags;
1348
62906027
NP
1349 set_current_state(state);
1350
5ef64cc8
LT
1351 /* Loop until we've been woken or interrupted */
1352 flags = smp_load_acquire(&wait->flags);
1353 if (!(flags & WQ_FLAG_WOKEN)) {
1354 if (signal_pending_state(state, current))
1355 break;
1356
1357 io_schedule();
1358 continue;
1359 }
1360
1361 /* If we were non-exclusive, we're done */
1362 if (behavior != EXCLUSIVE)
a8b169af 1363 break;
9a1ea439 1364
5ef64cc8
LT
1365 /* If the waker got the lock for us, we're done */
1366 if (flags & WQ_FLAG_DONE)
9a1ea439 1367 break;
2a9127fc 1368
5ef64cc8
LT
1369 /*
1370 * Otherwise, if we're getting the lock, we need to
1371 * try to get it ourselves.
1372 *
1373 * And if that fails, we'll have to retry this all.
1374 */
101c0bf6 1375 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
5ef64cc8
LT
1376 goto repeat;
1377
1378 wait->flags |= WQ_FLAG_DONE;
1379 break;
62906027
NP
1380 }
1381
5ef64cc8
LT
1382 /*
1383 * If a signal happened, this 'finish_wait()' may remove the last
101c0bf6 1384 * waiter from the wait-queues, but the folio waiters bit will remain
5ef64cc8
LT
1385 * set. That's ok. The next wakeup will take care of it, and trying
1386 * to do it here would be difficult and prone to races.
1387 */
62906027
NP
1388 finish_wait(q, wait);
1389
eb414681 1390 if (thrashing) {
9a1ea439 1391 if (delayacct)
eb414681
JW
1392 delayacct_thrashing_end();
1393 psi_memstall_leave(&pflags);
1394 }
b1d29ba8 1395
62906027 1396 /*
5ef64cc8
LT
1397 * NOTE! The wait->flags weren't stable until we've done the
1398 * 'finish_wait()', and we could have exited the loop above due
1399 * to a signal, and had a wakeup event happen after the signal
1400 * test but before the 'finish_wait()'.
1401 *
1402 * So only after the finish_wait() can we reliably determine
1403 * if we got woken up or not, so we can now figure out the final
1404 * return value based on that state without races.
1405 *
1406 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1407 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1408 */
5ef64cc8
LT
1409 if (behavior == EXCLUSIVE)
1410 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1411
2a9127fc 1412 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1413}
1414
101c0bf6 1415void folio_wait_bit(struct folio *folio, int bit_nr)
62906027 1416{
101c0bf6 1417 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027 1418}
101c0bf6 1419EXPORT_SYMBOL(folio_wait_bit);
62906027 1420
101c0bf6 1421int folio_wait_bit_killable(struct folio *folio, int bit_nr)
62906027 1422{
101c0bf6 1423 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1424}
101c0bf6 1425EXPORT_SYMBOL(folio_wait_bit_killable);
cbbce822 1426
9a1ea439
HD
1427/**
1428 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1429 * @page: The page to wait for.
48054625 1430 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439
HD
1431 *
1432 * The caller should hold a reference on @page. They expect the page to
1433 * become unlocked relatively soon, but do not wish to hold up migration
1434 * (for example) by holding the reference while waiting for the page to
1435 * come unlocked. After this function returns, the caller should not
1436 * dereference @page.
48054625
MWO
1437 *
1438 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1439 */
48054625 1440int put_and_wait_on_page_locked(struct page *page, int state)
9a1ea439 1441{
101c0bf6
MWO
1442 return folio_wait_bit_common(page_folio(page), PG_locked, state,
1443 DROP);
9a1ea439
HD
1444}
1445
385e1ca5 1446/**
df4d4f12
MWO
1447 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1448 * @folio: Folio defining the wait queue of interest
697f619f 1449 * @waiter: Waiter to add to the queue
385e1ca5 1450 *
df4d4f12 1451 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
385e1ca5 1452 */
df4d4f12 1453void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
385e1ca5 1454{
df4d4f12 1455 wait_queue_head_t *q = folio_waitqueue(folio);
385e1ca5
DH
1456 unsigned long flags;
1457
1458 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1459 __add_wait_queue_entry_tail(q, waiter);
df4d4f12 1460 folio_set_waiters(folio);
385e1ca5
DH
1461 spin_unlock_irqrestore(&q->lock, flags);
1462}
df4d4f12 1463EXPORT_SYMBOL_GPL(folio_add_wait_queue);
385e1ca5 1464
b91e1302
LT
1465#ifndef clear_bit_unlock_is_negative_byte
1466
1467/*
1468 * PG_waiters is the high bit in the same byte as PG_lock.
1469 *
1470 * On x86 (and on many other architectures), we can clear PG_lock and
1471 * test the sign bit at the same time. But if the architecture does
1472 * not support that special operation, we just do this all by hand
1473 * instead.
1474 *
1475 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1476 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1477 * in the same byte as PG_locked.
1478 */
1479static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1480{
1481 clear_bit_unlock(nr, mem);
1482 /* smp_mb__after_atomic(); */
98473f9f 1483 return test_bit(PG_waiters, mem);
b91e1302
LT
1484}
1485
1486#endif
1487
1da177e4 1488/**
4e136428
MWO
1489 * folio_unlock - Unlock a locked folio.
1490 * @folio: The folio.
1491 *
1492 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1493 *
1494 * Context: May be called from interrupt or process context. May not be
1495 * called from NMI context.
1da177e4 1496 */
4e136428 1497void folio_unlock(struct folio *folio)
1da177e4 1498{
4e136428 1499 /* Bit 7 allows x86 to check the byte's sign bit */
b91e1302 1500 BUILD_BUG_ON(PG_waiters != 7);
4e136428
MWO
1501 BUILD_BUG_ON(PG_locked > 7);
1502 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1503 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
6974d7c9 1504 folio_wake_bit(folio, PG_locked);
1da177e4 1505}
4e136428 1506EXPORT_SYMBOL(folio_unlock);
1da177e4 1507
73e10ded 1508/**
b47393f8
MWO
1509 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1510 * @folio: The folio.
73e10ded 1511 *
b47393f8
MWO
1512 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1513 * it. The folio reference held for PG_private_2 being set is released.
73e10ded 1514 *
b47393f8
MWO
1515 * This is, for example, used when a netfs folio is being written to a local
1516 * disk cache, thereby allowing writes to the cache for the same folio to be
73e10ded
DH
1517 * serialised.
1518 */
b47393f8 1519void folio_end_private_2(struct folio *folio)
73e10ded 1520{
6974d7c9
MWO
1521 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1522 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1523 folio_wake_bit(folio, PG_private_2);
1524 folio_put(folio);
73e10ded 1525}
b47393f8 1526EXPORT_SYMBOL(folio_end_private_2);
73e10ded
DH
1527
1528/**
b47393f8
MWO
1529 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1530 * @folio: The folio to wait on.
73e10ded 1531 *
b47393f8 1532 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
73e10ded 1533 */
b47393f8 1534void folio_wait_private_2(struct folio *folio)
73e10ded 1535{
101c0bf6
MWO
1536 while (folio_test_private_2(folio))
1537 folio_wait_bit(folio, PG_private_2);
73e10ded 1538}
b47393f8 1539EXPORT_SYMBOL(folio_wait_private_2);
73e10ded
DH
1540
1541/**
b47393f8
MWO
1542 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1543 * @folio: The folio to wait on.
73e10ded 1544 *
b47393f8 1545 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
73e10ded
DH
1546 * fatal signal is received by the calling task.
1547 *
1548 * Return:
1549 * - 0 if successful.
1550 * - -EINTR if a fatal signal was encountered.
1551 */
b47393f8 1552int folio_wait_private_2_killable(struct folio *folio)
73e10ded
DH
1553{
1554 int ret = 0;
1555
101c0bf6
MWO
1556 while (folio_test_private_2(folio)) {
1557 ret = folio_wait_bit_killable(folio, PG_private_2);
73e10ded
DH
1558 if (ret < 0)
1559 break;
1560 }
1561
1562 return ret;
1563}
b47393f8 1564EXPORT_SYMBOL(folio_wait_private_2_killable);
73e10ded 1565
485bb99b 1566/**
4268b480
MWO
1567 * folio_end_writeback - End writeback against a folio.
1568 * @folio: The folio.
1da177e4 1569 */
4268b480 1570void folio_end_writeback(struct folio *folio)
1da177e4 1571{
888cf2db 1572 /*
4268b480
MWO
1573 * folio_test_clear_reclaim() could be used here but it is an
1574 * atomic operation and overkill in this particular case. Failing
1575 * to shuffle a folio marked for immediate reclaim is too mild
1576 * a gain to justify taking an atomic operation penalty at the
1577 * end of every folio writeback.
888cf2db 1578 */
4268b480
MWO
1579 if (folio_test_reclaim(folio)) {
1580 folio_clear_reclaim(folio);
575ced1c 1581 folio_rotate_reclaimable(folio);
888cf2db 1582 }
ac6aadb2 1583
073861ed 1584 /*
4268b480 1585 * Writeback does not hold a folio reference of its own, relying
073861ed 1586 * on truncation to wait for the clearing of PG_writeback.
4268b480
MWO
1587 * But here we must make sure that the folio is not freed and
1588 * reused before the folio_wake().
073861ed 1589 */
4268b480 1590 folio_get(folio);
269ccca3 1591 if (!__folio_end_writeback(folio))
ac6aadb2
MS
1592 BUG();
1593
4e857c58 1594 smp_mb__after_atomic();
4268b480
MWO
1595 folio_wake(folio, PG_writeback);
1596 folio_put(folio);
1da177e4 1597}
4268b480 1598EXPORT_SYMBOL(folio_end_writeback);
1da177e4 1599
57d99845
MW
1600/*
1601 * After completing I/O on a page, call this routine to update the page
1602 * flags appropriately
1603 */
c11f0c0b 1604void page_endio(struct page *page, bool is_write, int err)
57d99845 1605{
c11f0c0b 1606 if (!is_write) {
57d99845
MW
1607 if (!err) {
1608 SetPageUptodate(page);
1609 } else {
1610 ClearPageUptodate(page);
1611 SetPageError(page);
1612 }
1613 unlock_page(page);
abf54548 1614 } else {
57d99845 1615 if (err) {
dd8416c4
MK
1616 struct address_space *mapping;
1617
57d99845 1618 SetPageError(page);
dd8416c4
MK
1619 mapping = page_mapping(page);
1620 if (mapping)
1621 mapping_set_error(mapping, err);
57d99845
MW
1622 }
1623 end_page_writeback(page);
1624 }
1625}
1626EXPORT_SYMBOL_GPL(page_endio);
1627
485bb99b 1628/**
7c23c782
MWO
1629 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1630 * @folio: The folio to lock
1da177e4 1631 */
7c23c782 1632void __folio_lock(struct folio *folio)
1da177e4 1633{
101c0bf6 1634 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
9a1ea439 1635 EXCLUSIVE);
1da177e4 1636}
7c23c782 1637EXPORT_SYMBOL(__folio_lock);
1da177e4 1638
af7f29d9 1639int __folio_lock_killable(struct folio *folio)
2687a356 1640{
101c0bf6 1641 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
9a1ea439 1642 EXCLUSIVE);
2687a356 1643}
af7f29d9 1644EXPORT_SYMBOL_GPL(__folio_lock_killable);
2687a356 1645
ffdc8dab 1646static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
dd3e6d50 1647{
df4d4f12 1648 struct wait_queue_head *q = folio_waitqueue(folio);
f32b5dd7
MWO
1649 int ret = 0;
1650
df4d4f12 1651 wait->folio = folio;
f32b5dd7
MWO
1652 wait->bit_nr = PG_locked;
1653
1654 spin_lock_irq(&q->lock);
1655 __add_wait_queue_entry_tail(q, &wait->wait);
ffdc8dab
MWO
1656 folio_set_waiters(folio);
1657 ret = !folio_trylock(folio);
f32b5dd7
MWO
1658 /*
1659 * If we were successful now, we know we're still on the
1660 * waitqueue as we're still under the lock. This means it's
1661 * safe to remove and return success, we know the callback
1662 * isn't going to trigger.
1663 */
1664 if (!ret)
1665 __remove_wait_queue(q, &wait->wait);
1666 else
1667 ret = -EIOCBQUEUED;
1668 spin_unlock_irq(&q->lock);
1669 return ret;
dd3e6d50
JA
1670}
1671
9a95f3cf
PC
1672/*
1673 * Return values:
9138e47e
MWO
1674 * true - folio is locked; mmap_lock is still held.
1675 * false - folio is not locked.
3e4e28c5 1676 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1677 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1678 * which case mmap_lock is still held.
9a95f3cf 1679 *
9138e47e
MWO
1680 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1681 * with the folio locked and the mmap_lock unperturbed.
9a95f3cf 1682 */
9138e47e 1683bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
d065bd81
ML
1684 unsigned int flags)
1685{
4064b982 1686 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1687 /*
c1e8d7c6 1688 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1689 * even though return 0.
1690 */
1691 if (flags & FAULT_FLAG_RETRY_NOWAIT)
9138e47e 1692 return false;
37b23e05 1693
d8ed45c5 1694 mmap_read_unlock(mm);
37b23e05 1695 if (flags & FAULT_FLAG_KILLABLE)
6baa8d60 1696 folio_wait_locked_killable(folio);
37b23e05 1697 else
6baa8d60 1698 folio_wait_locked(folio);
9138e47e 1699 return false;
800bca7c
HL
1700 }
1701 if (flags & FAULT_FLAG_KILLABLE) {
9138e47e 1702 bool ret;
37b23e05 1703
af7f29d9 1704 ret = __folio_lock_killable(folio);
800bca7c
HL
1705 if (ret) {
1706 mmap_read_unlock(mm);
9138e47e 1707 return false;
800bca7c
HL
1708 }
1709 } else {
af7f29d9 1710 __folio_lock(folio);
d065bd81 1711 }
800bca7c 1712
9138e47e 1713 return true;
d065bd81
ML
1714}
1715
e7b563bb 1716/**
0d3f9296
MW
1717 * page_cache_next_miss() - Find the next gap in the page cache.
1718 * @mapping: Mapping.
1719 * @index: Index.
1720 * @max_scan: Maximum range to search.
e7b563bb 1721 *
0d3f9296
MW
1722 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1723 * gap with the lowest index.
e7b563bb 1724 *
0d3f9296
MW
1725 * This function may be called under the rcu_read_lock. However, this will
1726 * not atomically search a snapshot of the cache at a single point in time.
1727 * For example, if a gap is created at index 5, then subsequently a gap is
1728 * created at index 10, page_cache_next_miss covering both indices may
1729 * return 10 if called under the rcu_read_lock.
e7b563bb 1730 *
0d3f9296
MW
1731 * Return: The index of the gap if found, otherwise an index outside the
1732 * range specified (in which case 'return - index >= max_scan' will be true).
1733 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1734 */
0d3f9296 1735pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1736 pgoff_t index, unsigned long max_scan)
1737{
0d3f9296 1738 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1739
0d3f9296
MW
1740 while (max_scan--) {
1741 void *entry = xas_next(&xas);
1742 if (!entry || xa_is_value(entry))
e7b563bb 1743 break;
0d3f9296 1744 if (xas.xa_index == 0)
e7b563bb
JW
1745 break;
1746 }
1747
0d3f9296 1748 return xas.xa_index;
e7b563bb 1749}
0d3f9296 1750EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1751
1752/**
2346a560 1753 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1754 * @mapping: Mapping.
1755 * @index: Index.
1756 * @max_scan: Maximum range to search.
e7b563bb 1757 *
0d3f9296
MW
1758 * Search the range [max(index - max_scan + 1, 0), index] for the
1759 * gap with the highest index.
e7b563bb 1760 *
0d3f9296
MW
1761 * This function may be called under the rcu_read_lock. However, this will
1762 * not atomically search a snapshot of the cache at a single point in time.
1763 * For example, if a gap is created at index 10, then subsequently a gap is
1764 * created at index 5, page_cache_prev_miss() covering both indices may
1765 * return 5 if called under the rcu_read_lock.
e7b563bb 1766 *
0d3f9296
MW
1767 * Return: The index of the gap if found, otherwise an index outside the
1768 * range specified (in which case 'index - return >= max_scan' will be true).
1769 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1770 */
0d3f9296 1771pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1772 pgoff_t index, unsigned long max_scan)
1773{
0d3f9296 1774 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1775
0d3f9296
MW
1776 while (max_scan--) {
1777 void *entry = xas_prev(&xas);
1778 if (!entry || xa_is_value(entry))
e7b563bb 1779 break;
0d3f9296 1780 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1781 break;
1782 }
1783
0d3f9296 1784 return xas.xa_index;
e7b563bb 1785}
0d3f9296 1786EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1787
020853b6
MWO
1788/*
1789 * Lockless page cache protocol:
1790 * On the lookup side:
1791 * 1. Load the folio from i_pages
1792 * 2. Increment the refcount if it's not zero
1793 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1794 *
1795 * On the removal side:
1796 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1797 * B. Remove the page from i_pages
1798 * C. Return the page to the page allocator
1799 *
1800 * This means that any page may have its reference count temporarily
1801 * increased by a speculative page cache (or fast GUP) lookup as it can
1802 * be allocated by another user before the RCU grace period expires.
1803 * Because the refcount temporarily acquired here may end up being the
1804 * last refcount on the page, any page allocation must be freeable by
1805 * folio_put().
1806 */
1807
44835d20 1808/*
bc5a3011 1809 * mapping_get_entry - Get a page cache entry.
485bb99b 1810 * @mapping: the address_space to search
a6de4b48 1811 * @index: The page cache index.
0cd6144a 1812 *
4b17f030 1813 * Looks up the page cache slot at @mapping & @index. If there is a
a6de4b48 1814 * page cache page, the head page is returned with an increased refcount.
485bb99b 1815 *
139b6a6f
JW
1816 * If the slot holds a shadow entry of a previously evicted page, or a
1817 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1818 *
a6de4b48 1819 * Return: The head page or shadow entry, %NULL if nothing is found.
1da177e4 1820 */
bc5a3011
MWO
1821static struct page *mapping_get_entry(struct address_space *mapping,
1822 pgoff_t index)
1da177e4 1823{
a6de4b48 1824 XA_STATE(xas, &mapping->i_pages, index);
4101196b 1825 struct page *page;
1da177e4 1826
a60637c8
NP
1827 rcu_read_lock();
1828repeat:
4c7472c0
MW
1829 xas_reset(&xas);
1830 page = xas_load(&xas);
1831 if (xas_retry(&xas, page))
1832 goto repeat;
1833 /*
1834 * A shadow entry of a recently evicted page, or a swap entry from
1835 * shmem/tmpfs. Return it without attempting to raise page count.
1836 */
1837 if (!page || xa_is_value(page))
1838 goto out;
83929372 1839
4101196b 1840 if (!page_cache_get_speculative(page))
4c7472c0 1841 goto repeat;
83929372 1842
4c7472c0 1843 /*
4101196b 1844 * Has the page moved or been split?
4c7472c0
MW
1845 * This is part of the lockless pagecache protocol. See
1846 * include/linux/pagemap.h for details.
1847 */
1848 if (unlikely(page != xas_reload(&xas))) {
4101196b 1849 put_page(page);
4c7472c0 1850 goto repeat;
a60637c8 1851 }
27d20fdd 1852out:
a60637c8
NP
1853 rcu_read_unlock();
1854
1da177e4
LT
1855 return page;
1856}
1da177e4 1857
0cd6144a 1858/**
2294b32e
MWO
1859 * pagecache_get_page - Find and get a reference to a page.
1860 * @mapping: The address_space to search.
1861 * @index: The page index.
1862 * @fgp_flags: %FGP flags modify how the page is returned.
1863 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1864 *
2294b32e 1865 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1866 *
2294b32e 1867 * @fgp_flags can be zero or more of these flags:
0e056eb5 1868 *
2294b32e
MWO
1869 * * %FGP_ACCESSED - The page will be marked accessed.
1870 * * %FGP_LOCK - The page is returned locked.
a8cf7f27
MWO
1871 * * %FGP_HEAD - If the page is present and a THP, return the head page
1872 * rather than the exact page specified by the index.
44835d20
MWO
1873 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1874 * instead of allocating a new page to replace it.
2294b32e
MWO
1875 * * %FGP_CREAT - If no page is present then a new page is allocated using
1876 * @gfp_mask and added to the page cache and the VM's LRU list.
1877 * The page is returned locked and with an increased refcount.
1878 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1879 * page is already in cache. If the page was allocated, unlock it before
1880 * returning so the caller can do the same dance.
605cad83
YS
1881 * * %FGP_WRITE - The page will be written
1882 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1883 * * %FGP_NOWAIT - Don't get blocked by page lock
1da177e4 1884 *
2294b32e
MWO
1885 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1886 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1887 *
2457aec6 1888 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1889 *
2294b32e 1890 * Return: The found page or %NULL otherwise.
1da177e4 1891 */
2294b32e
MWO
1892struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1893 int fgp_flags, gfp_t gfp_mask)
1da177e4 1894{
eb2be189 1895 struct page *page;
2457aec6 1896
1da177e4 1897repeat:
bc5a3011 1898 page = mapping_get_entry(mapping, index);
44835d20
MWO
1899 if (xa_is_value(page)) {
1900 if (fgp_flags & FGP_ENTRY)
1901 return page;
2457aec6 1902 page = NULL;
44835d20 1903 }
2457aec6
MG
1904 if (!page)
1905 goto no_page;
1906
1907 if (fgp_flags & FGP_LOCK) {
1908 if (fgp_flags & FGP_NOWAIT) {
1909 if (!trylock_page(page)) {
09cbfeaf 1910 put_page(page);
2457aec6
MG
1911 return NULL;
1912 }
1913 } else {
1914 lock_page(page);
1915 }
1916
1917 /* Has the page been truncated? */
a8cf7f27 1918 if (unlikely(page->mapping != mapping)) {
2457aec6 1919 unlock_page(page);
09cbfeaf 1920 put_page(page);
2457aec6
MG
1921 goto repeat;
1922 }
a8cf7f27 1923 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
2457aec6
MG
1924 }
1925
c16eb000 1926 if (fgp_flags & FGP_ACCESSED)
2457aec6 1927 mark_page_accessed(page);
b9306a79
YS
1928 else if (fgp_flags & FGP_WRITE) {
1929 /* Clear idle flag for buffer write */
1930 if (page_is_idle(page))
1931 clear_page_idle(page);
1932 }
a8cf7f27
MWO
1933 if (!(fgp_flags & FGP_HEAD))
1934 page = find_subpage(page, index);
2457aec6
MG
1935
1936no_page:
1937 if (!page && (fgp_flags & FGP_CREAT)) {
1938 int err;
f56753ac 1939 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
45f87de5
MH
1940 gfp_mask |= __GFP_WRITE;
1941 if (fgp_flags & FGP_NOFS)
1942 gfp_mask &= ~__GFP_FS;
2457aec6 1943
45f87de5 1944 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1945 if (!page)
1946 return NULL;
2457aec6 1947
a75d4c33 1948 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1949 fgp_flags |= FGP_LOCK;
1950
eb39d618 1951 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1952 if (fgp_flags & FGP_ACCESSED)
eb39d618 1953 __SetPageReferenced(page);
2457aec6 1954
2294b32e 1955 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
eb2be189 1956 if (unlikely(err)) {
09cbfeaf 1957 put_page(page);
eb2be189
NP
1958 page = NULL;
1959 if (err == -EEXIST)
1960 goto repeat;
1da177e4 1961 }
a75d4c33
JB
1962
1963 /*
1964 * add_to_page_cache_lru locks the page, and for mmap we expect
1965 * an unlocked page.
1966 */
1967 if (page && (fgp_flags & FGP_FOR_MMAP))
1968 unlock_page(page);
1da177e4 1969 }
2457aec6 1970
1da177e4
LT
1971 return page;
1972}
2457aec6 1973EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1974
c7bad633
MWO
1975static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1976 xa_mark_t mark)
1977{
1978 struct page *page;
1979
1980retry:
1981 if (mark == XA_PRESENT)
1982 page = xas_find(xas, max);
1983 else
1984 page = xas_find_marked(xas, max, mark);
1985
1986 if (xas_retry(xas, page))
1987 goto retry;
1988 /*
1989 * A shadow entry of a recently evicted page, a swap
1990 * entry from shmem/tmpfs or a DAX entry. Return it
1991 * without attempting to raise page count.
1992 */
1993 if (!page || xa_is_value(page))
1994 return page;
1995
1996 if (!page_cache_get_speculative(page))
1997 goto reset;
1998
1999 /* Has the page moved or been split? */
2000 if (unlikely(page != xas_reload(xas))) {
2001 put_page(page);
2002 goto reset;
2003 }
2004
2005 return page;
2006reset:
2007 xas_reset(xas);
2008 goto retry;
2009}
2010
0cd6144a
JW
2011/**
2012 * find_get_entries - gang pagecache lookup
2013 * @mapping: The address_space to search
2014 * @start: The starting page cache index
ca122fe4 2015 * @end: The final page index (inclusive).
cf2039af 2016 * @pvec: Where the resulting entries are placed.
0cd6144a
JW
2017 * @indices: The cache indices corresponding to the entries in @entries
2018 *
cf2039af
MWO
2019 * find_get_entries() will search for and return a batch of entries in
2020 * the mapping. The entries are placed in @pvec. find_get_entries()
2021 * takes a reference on any actual pages it returns.
0cd6144a
JW
2022 *
2023 * The search returns a group of mapping-contiguous page cache entries
2024 * with ascending indexes. There may be holes in the indices due to
2025 * not-present pages.
2026 *
139b6a6f
JW
2027 * Any shadow entries of evicted pages, or swap entries from
2028 * shmem/tmpfs, are included in the returned array.
0cd6144a 2029 *
71725ed1
HD
2030 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
2031 * stops at that page: the caller is likely to have a better way to handle
2032 * the compound page as a whole, and then skip its extent, than repeatedly
2033 * calling find_get_entries() to return all its tails.
2034 *
a862f68a 2035 * Return: the number of pages and shadow entries which were found.
0cd6144a 2036 */
ca122fe4 2037unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
cf2039af 2038 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
0cd6144a 2039{
f280bf09
MW
2040 XA_STATE(xas, &mapping->i_pages, start);
2041 struct page *page;
0cd6144a 2042 unsigned int ret = 0;
cf2039af 2043 unsigned nr_entries = PAGEVEC_SIZE;
0cd6144a
JW
2044
2045 rcu_read_lock();
ca122fe4 2046 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
71725ed1
HD
2047 /*
2048 * Terminate early on finding a THP, to allow the caller to
2049 * handle it all at once; but continue if this is hugetlbfs.
2050 */
c7bad633
MWO
2051 if (!xa_is_value(page) && PageTransHuge(page) &&
2052 !PageHuge(page)) {
71725ed1
HD
2053 page = find_subpage(page, xas.xa_index);
2054 nr_entries = ret + 1;
2055 }
c7bad633 2056
f280bf09 2057 indices[ret] = xas.xa_index;
cf2039af 2058 pvec->pages[ret] = page;
0cd6144a
JW
2059 if (++ret == nr_entries)
2060 break;
2061 }
2062 rcu_read_unlock();
cf2039af
MWO
2063
2064 pvec->nr = ret;
0cd6144a
JW
2065 return ret;
2066}
2067
5c211ba2
MWO
2068/**
2069 * find_lock_entries - Find a batch of pagecache entries.
2070 * @mapping: The address_space to search.
2071 * @start: The starting page cache index.
2072 * @end: The final page index (inclusive).
2073 * @pvec: Where the resulting entries are placed.
2074 * @indices: The cache indices of the entries in @pvec.
2075 *
2076 * find_lock_entries() will return a batch of entries from @mapping.
2077 * Swap, shadow and DAX entries are included. Pages are returned
2078 * locked and with an incremented refcount. Pages which are locked by
2079 * somebody else or under writeback are skipped. Only the head page of
2080 * a THP is returned. Pages which are partially outside the range are
2081 * not returned.
2082 *
2083 * The entries have ascending indexes. The indices may not be consecutive
2084 * due to not-present entries, THP pages, pages which could not be locked
2085 * or pages under writeback.
2086 *
2087 * Return: The number of entries which were found.
2088 */
2089unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2090 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2091{
2092 XA_STATE(xas, &mapping->i_pages, start);
2093 struct page *page;
2094
2095 rcu_read_lock();
2096 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2097 if (!xa_is_value(page)) {
2098 if (page->index < start)
2099 goto put;
2100 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2101 if (page->index + thp_nr_pages(page) - 1 > end)
2102 goto put;
2103 if (!trylock_page(page))
2104 goto put;
2105 if (page->mapping != mapping || PageWriteback(page))
2106 goto unlock;
2107 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2108 page);
2109 }
2110 indices[pvec->nr] = xas.xa_index;
2111 if (!pagevec_add(pvec, page))
2112 break;
2113 goto next;
2114unlock:
2115 unlock_page(page);
2116put:
2117 put_page(page);
2118next:
2d11e738
HD
2119 if (!xa_is_value(page) && PageTransHuge(page)) {
2120 unsigned int nr_pages = thp_nr_pages(page);
2121
2122 /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2123 xas_set(&xas, page->index + nr_pages);
2124 if (xas.xa_index < nr_pages)
2125 break;
2126 }
5c211ba2
MWO
2127 }
2128 rcu_read_unlock();
2129
2130 return pagevec_count(pvec);
2131}
2132
1da177e4 2133/**
b947cee4 2134 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
2135 * @mapping: The address_space to search
2136 * @start: The starting page index
b947cee4 2137 * @end: The final page index (inclusive)
1da177e4
LT
2138 * @nr_pages: The maximum number of pages
2139 * @pages: Where the resulting pages are placed
2140 *
b947cee4
JK
2141 * find_get_pages_range() will search for and return a group of up to @nr_pages
2142 * pages in the mapping starting at index @start and up to index @end
2143 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
2144 * a reference against the returned pages.
1da177e4
LT
2145 *
2146 * The search returns a group of mapping-contiguous pages with ascending
2147 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 2148 * We also update @start to index the next page for the traversal.
1da177e4 2149 *
a862f68a
MR
2150 * Return: the number of pages which were found. If this number is
2151 * smaller than @nr_pages, the end of specified range has been
b947cee4 2152 * reached.
1da177e4 2153 */
b947cee4
JK
2154unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2155 pgoff_t end, unsigned int nr_pages,
2156 struct page **pages)
1da177e4 2157{
fd1b3cee
MW
2158 XA_STATE(xas, &mapping->i_pages, *start);
2159 struct page *page;
0fc9d104
KK
2160 unsigned ret = 0;
2161
2162 if (unlikely(!nr_pages))
2163 return 0;
a60637c8
NP
2164
2165 rcu_read_lock();
c7bad633 2166 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
fd1b3cee
MW
2167 /* Skip over shadow, swap and DAX entries */
2168 if (xa_is_value(page))
8079b1c8 2169 continue;
a60637c8 2170
4101196b 2171 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 2172 if (++ret == nr_pages) {
5d3ee42f 2173 *start = xas.xa_index + 1;
b947cee4
JK
2174 goto out;
2175 }
a60637c8 2176 }
5b280c0c 2177
b947cee4
JK
2178 /*
2179 * We come here when there is no page beyond @end. We take care to not
2180 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 2181 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
2182 * already broken anyway.
2183 */
2184 if (end == (pgoff_t)-1)
2185 *start = (pgoff_t)-1;
2186 else
2187 *start = end + 1;
2188out:
a60637c8 2189 rcu_read_unlock();
d72dc8a2 2190
1da177e4
LT
2191 return ret;
2192}
2193
ebf43500
JA
2194/**
2195 * find_get_pages_contig - gang contiguous pagecache lookup
2196 * @mapping: The address_space to search
2197 * @index: The starting page index
2198 * @nr_pages: The maximum number of pages
2199 * @pages: Where the resulting pages are placed
2200 *
2201 * find_get_pages_contig() works exactly like find_get_pages(), except
2202 * that the returned number of pages are guaranteed to be contiguous.
2203 *
a862f68a 2204 * Return: the number of pages which were found.
ebf43500
JA
2205 */
2206unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2207 unsigned int nr_pages, struct page **pages)
2208{
3ece58a2
MW
2209 XA_STATE(xas, &mapping->i_pages, index);
2210 struct page *page;
0fc9d104
KK
2211 unsigned int ret = 0;
2212
2213 if (unlikely(!nr_pages))
2214 return 0;
a60637c8
NP
2215
2216 rcu_read_lock();
3ece58a2 2217 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
2218 if (xas_retry(&xas, page))
2219 continue;
2220 /*
2221 * If the entry has been swapped out, we can stop looking.
2222 * No current caller is looking for DAX entries.
2223 */
2224 if (xa_is_value(page))
8079b1c8 2225 break;
ebf43500 2226
4101196b 2227 if (!page_cache_get_speculative(page))
3ece58a2 2228 goto retry;
83929372 2229
4101196b 2230 /* Has the page moved or been split? */
3ece58a2
MW
2231 if (unlikely(page != xas_reload(&xas)))
2232 goto put_page;
a60637c8 2233
4101196b 2234 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
2235 if (++ret == nr_pages)
2236 break;
3ece58a2
MW
2237 continue;
2238put_page:
4101196b 2239 put_page(page);
3ece58a2
MW
2240retry:
2241 xas_reset(&xas);
ebf43500 2242 }
a60637c8
NP
2243 rcu_read_unlock();
2244 return ret;
ebf43500 2245}
ef71c15c 2246EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 2247
485bb99b 2248/**
c49f50d1 2249 * find_get_pages_range_tag - Find and return head pages matching @tag.
485bb99b
RD
2250 * @mapping: the address_space to search
2251 * @index: the starting page index
72b045ae 2252 * @end: The final page index (inclusive)
485bb99b
RD
2253 * @tag: the tag index
2254 * @nr_pages: the maximum number of pages
2255 * @pages: where the resulting pages are placed
2256 *
c49f50d1
MWO
2257 * Like find_get_pages(), except we only return head pages which are tagged
2258 * with @tag. @index is updated to the index immediately after the last
2259 * page we return, ready for the next iteration.
a862f68a
MR
2260 *
2261 * Return: the number of pages which were found.
1da177e4 2262 */
72b045ae 2263unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 2264 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 2265 struct page **pages)
1da177e4 2266{
a6906972
MW
2267 XA_STATE(xas, &mapping->i_pages, *index);
2268 struct page *page;
0fc9d104
KK
2269 unsigned ret = 0;
2270
2271 if (unlikely(!nr_pages))
2272 return 0;
a60637c8
NP
2273
2274 rcu_read_lock();
c7bad633 2275 while ((page = find_get_entry(&xas, end, tag))) {
a6906972
MW
2276 /*
2277 * Shadow entries should never be tagged, but this iteration
2278 * is lockless so there is a window for page reclaim to evict
2279 * a page we saw tagged. Skip over it.
2280 */
2281 if (xa_is_value(page))
139b6a6f 2282 continue;
a60637c8 2283
c49f50d1 2284 pages[ret] = page;
72b045ae 2285 if (++ret == nr_pages) {
c49f50d1 2286 *index = page->index + thp_nr_pages(page);
72b045ae
JK
2287 goto out;
2288 }
a60637c8 2289 }
5b280c0c 2290
72b045ae 2291 /*
a6906972 2292 * We come here when we got to @end. We take care to not overflow the
72b045ae 2293 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
2294 * iteration when there is a page at index -1 but that is already
2295 * broken anyway.
72b045ae
JK
2296 */
2297 if (end == (pgoff_t)-1)
2298 *index = (pgoff_t)-1;
2299 else
2300 *index = end + 1;
2301out:
a60637c8 2302 rcu_read_unlock();
1da177e4 2303
1da177e4
LT
2304 return ret;
2305}
72b045ae 2306EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 2307
76d42bd9
WF
2308/*
2309 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2310 * a _large_ part of the i/o request. Imagine the worst scenario:
2311 *
2312 * ---R__________________________________________B__________
2313 * ^ reading here ^ bad block(assume 4k)
2314 *
2315 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2316 * => failing the whole request => read(R) => read(R+1) =>
2317 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2318 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2319 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2320 *
2321 * It is going insane. Fix it by quickly scaling down the readahead size.
2322 */
0f8e2db4 2323static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2324{
76d42bd9 2325 ra->ra_pages /= 4;
76d42bd9
WF
2326}
2327
cbd59c48
MWO
2328/*
2329 * filemap_get_read_batch - Get a batch of pages for read
2330 *
2331 * Get a batch of pages which represent a contiguous range of bytes
2332 * in the file. No tail pages will be returned. If @index is in the
2333 * middle of a THP, the entire THP will be returned. The last page in
2334 * the batch may have Readahead set or be not Uptodate so that the
2335 * caller can take the appropriate action.
2336 */
2337static void filemap_get_read_batch(struct address_space *mapping,
2338 pgoff_t index, pgoff_t max, struct pagevec *pvec)
2339{
2340 XA_STATE(xas, &mapping->i_pages, index);
2341 struct page *head;
2342
2343 rcu_read_lock();
2344 for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2345 if (xas_retry(&xas, head))
2346 continue;
2347 if (xas.xa_index > max || xa_is_value(head))
2348 break;
2349 if (!page_cache_get_speculative(head))
2350 goto retry;
2351
2352 /* Has the page moved or been split? */
2353 if (unlikely(head != xas_reload(&xas)))
2354 goto put_page;
2355
2356 if (!pagevec_add(pvec, head))
2357 break;
2358 if (!PageUptodate(head))
2359 break;
2360 if (PageReadahead(head))
2361 break;
2362 xas.xa_index = head->index + thp_nr_pages(head) - 1;
2363 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2364 continue;
2365put_page:
2366 put_page(head);
2367retry:
2368 xas_reset(&xas);
2369 }
2370 rcu_read_unlock();
2371}
2372
68430303
MWO
2373static int filemap_read_page(struct file *file, struct address_space *mapping,
2374 struct page *page)
723ef24b 2375{
723ef24b
KO
2376 int error;
2377
723ef24b 2378 /*
68430303
MWO
2379 * A previous I/O error may have been due to temporary failures,
2380 * eg. multipath errors. PG_error will be set again if readpage
2381 * fails.
723ef24b
KO
2382 */
2383 ClearPageError(page);
2384 /* Start the actual read. The read will unlock the page. */
68430303
MWO
2385 error = mapping->a_ops->readpage(file, page);
2386 if (error)
2387 return error;
723ef24b 2388
aa1ec2f6 2389 error = wait_on_page_locked_killable(page);
68430303
MWO
2390 if (error)
2391 return error;
aa1ec2f6
MWO
2392 if (PageUptodate(page))
2393 return 0;
aa1ec2f6
MWO
2394 shrink_readahead_size_eio(&file->f_ra);
2395 return -EIO;
723ef24b
KO
2396}
2397
fce70da3
MWO
2398static bool filemap_range_uptodate(struct address_space *mapping,
2399 loff_t pos, struct iov_iter *iter, struct page *page)
2400{
2401 int count;
2402
2403 if (PageUptodate(page))
2404 return true;
2405 /* pipes can't handle partially uptodate pages */
2406 if (iov_iter_is_pipe(iter))
2407 return false;
2408 if (!mapping->a_ops->is_partially_uptodate)
2409 return false;
2410 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2411 return false;
2412
2413 count = iter->count;
2414 if (page_offset(page) > pos) {
2415 count -= page_offset(page) - pos;
2416 pos = 0;
2417 } else {
2418 pos -= page_offset(page);
2419 }
2420
2421 return mapping->a_ops->is_partially_uptodate(page, pos, count);
2422}
2423
4612aeef
MWO
2424static int filemap_update_page(struct kiocb *iocb,
2425 struct address_space *mapping, struct iov_iter *iter,
fce70da3 2426 struct page *page)
723ef24b 2427{
ffdc8dab 2428 struct folio *folio = page_folio(page);
723ef24b
KO
2429 int error;
2430
730633f0
JK
2431 if (iocb->ki_flags & IOCB_NOWAIT) {
2432 if (!filemap_invalidate_trylock_shared(mapping))
2433 return -EAGAIN;
2434 } else {
2435 filemap_invalidate_lock_shared(mapping);
2436 }
2437
ffdc8dab 2438 if (!folio_trylock(folio)) {
730633f0 2439 error = -EAGAIN;
87d1d7b6 2440 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
730633f0 2441 goto unlock_mapping;
87d1d7b6 2442 if (!(iocb->ki_flags & IOCB_WAITQ)) {
730633f0 2443 filemap_invalidate_unlock_shared(mapping);
ffdc8dab 2444 put_and_wait_on_page_locked(&folio->page, TASK_KILLABLE);
4612aeef 2445 return AOP_TRUNCATED_PAGE;
bd8a1f36 2446 }
ffdc8dab 2447 error = __folio_lock_async(folio, iocb->ki_waitq);
87d1d7b6 2448 if (error)
730633f0 2449 goto unlock_mapping;
723ef24b 2450 }
723ef24b 2451
730633f0 2452 error = AOP_TRUNCATED_PAGE;
ffdc8dab 2453 if (!folio->mapping)
730633f0 2454 goto unlock;
723ef24b 2455
fce70da3 2456 error = 0;
ffdc8dab 2457 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, &folio->page))
fce70da3
MWO
2458 goto unlock;
2459
2460 error = -EAGAIN;
2461 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2462 goto unlock;
2463
ffdc8dab 2464 error = filemap_read_page(iocb->ki_filp, mapping, &folio->page);
730633f0 2465 goto unlock_mapping;
fce70da3 2466unlock:
ffdc8dab 2467 folio_unlock(folio);
730633f0
JK
2468unlock_mapping:
2469 filemap_invalidate_unlock_shared(mapping);
2470 if (error == AOP_TRUNCATED_PAGE)
ffdc8dab 2471 folio_put(folio);
fce70da3 2472 return error;
723ef24b
KO
2473}
2474
f253e185
MWO
2475static int filemap_create_page(struct file *file,
2476 struct address_space *mapping, pgoff_t index,
2477 struct pagevec *pvec)
723ef24b 2478{
723ef24b
KO
2479 struct page *page;
2480 int error;
2481
723ef24b
KO
2482 page = page_cache_alloc(mapping);
2483 if (!page)
f253e185 2484 return -ENOMEM;
723ef24b 2485
730633f0
JK
2486 /*
2487 * Protect against truncate / hole punch. Grabbing invalidate_lock here
2488 * assures we cannot instantiate and bring uptodate new pagecache pages
2489 * after evicting page cache during truncate and before actually
2490 * freeing blocks. Note that we could release invalidate_lock after
2491 * inserting the page into page cache as the locked page would then be
2492 * enough to synchronize with hole punching. But there are code paths
2493 * such as filemap_update_page() filling in partially uptodate pages or
2494 * ->readpages() that need to hold invalidate_lock while mapping blocks
2495 * for IO so let's hold the lock here as well to keep locking rules
2496 * simple.
2497 */
2498 filemap_invalidate_lock_shared(mapping);
723ef24b 2499 error = add_to_page_cache_lru(page, mapping, index,
f253e185
MWO
2500 mapping_gfp_constraint(mapping, GFP_KERNEL));
2501 if (error == -EEXIST)
2502 error = AOP_TRUNCATED_PAGE;
2503 if (error)
2504 goto error;
2505
2506 error = filemap_read_page(file, mapping, page);
2507 if (error)
2508 goto error;
2509
730633f0 2510 filemap_invalidate_unlock_shared(mapping);
f253e185
MWO
2511 pagevec_add(pvec, page);
2512 return 0;
2513error:
730633f0 2514 filemap_invalidate_unlock_shared(mapping);
68430303 2515 put_page(page);
f253e185 2516 return error;
723ef24b
KO
2517}
2518
5963fe03
MWO
2519static int filemap_readahead(struct kiocb *iocb, struct file *file,
2520 struct address_space *mapping, struct page *page,
2521 pgoff_t last_index)
2522{
2523 if (iocb->ki_flags & IOCB_NOIO)
2524 return -EAGAIN;
2525 page_cache_async_readahead(mapping, &file->f_ra, file, page,
2526 page->index, last_index - page->index);
2527 return 0;
2528}
2529
3a6bae48 2530static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
ff993ba1 2531 struct pagevec *pvec)
06c04442
KO
2532{
2533 struct file *filp = iocb->ki_filp;
2534 struct address_space *mapping = filp->f_mapping;
2535 struct file_ra_state *ra = &filp->f_ra;
2536 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2537 pgoff_t last_index;
2642fca6 2538 struct page *page;
cbd59c48 2539 int err = 0;
06c04442 2540
cbd59c48 2541 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2642fca6 2542retry:
06c04442
KO
2543 if (fatal_signal_pending(current))
2544 return -EINTR;
2545
cbd59c48 2546 filemap_get_read_batch(mapping, index, last_index, pvec);
2642fca6
MWO
2547 if (!pagevec_count(pvec)) {
2548 if (iocb->ki_flags & IOCB_NOIO)
2549 return -EAGAIN;
2550 page_cache_sync_readahead(mapping, ra, filp, index,
2551 last_index - index);
2552 filemap_get_read_batch(mapping, index, last_index, pvec);
2553 }
f253e185
MWO
2554 if (!pagevec_count(pvec)) {
2555 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2556 return -EAGAIN;
2557 err = filemap_create_page(filp, mapping,
2558 iocb->ki_pos >> PAGE_SHIFT, pvec);
2559 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2560 goto retry;
f253e185
MWO
2561 return err;
2562 }
06c04442 2563
2642fca6
MWO
2564 page = pvec->pages[pagevec_count(pvec) - 1];
2565 if (PageReadahead(page)) {
2566 err = filemap_readahead(iocb, filp, mapping, page, last_index);
2567 if (err)
2568 goto err;
2569 }
2570 if (!PageUptodate(page)) {
2571 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2572 iocb->ki_flags |= IOCB_NOWAIT;
2573 err = filemap_update_page(iocb, mapping, iter, page);
2574 if (err)
2575 goto err;
06c04442
KO
2576 }
2577
2642fca6 2578 return 0;
cbd59c48 2579err:
2642fca6
MWO
2580 if (err < 0)
2581 put_page(page);
2582 if (likely(--pvec->nr))
ff993ba1 2583 return 0;
4612aeef 2584 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2585 goto retry;
2586 return err;
06c04442
KO
2587}
2588
485bb99b 2589/**
87fa0f3e
CH
2590 * filemap_read - Read data from the page cache.
2591 * @iocb: The iocb to read.
2592 * @iter: Destination for the data.
2593 * @already_read: Number of bytes already read by the caller.
485bb99b 2594 *
87fa0f3e
CH
2595 * Copies data from the page cache. If the data is not currently present,
2596 * uses the readahead and readpage address_space operations to fetch it.
1da177e4 2597 *
87fa0f3e
CH
2598 * Return: Total number of bytes copied, including those already read by
2599 * the caller. If an error happens before any bytes are copied, returns
2600 * a negative error number.
1da177e4 2601 */
87fa0f3e
CH
2602ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2603 ssize_t already_read)
1da177e4 2604{
47c27bc4 2605 struct file *filp = iocb->ki_filp;
06c04442 2606 struct file_ra_state *ra = &filp->f_ra;
36e78914 2607 struct address_space *mapping = filp->f_mapping;
1da177e4 2608 struct inode *inode = mapping->host;
ff993ba1
MWO
2609 struct pagevec pvec;
2610 int i, error = 0;
06c04442
KO
2611 bool writably_mapped;
2612 loff_t isize, end_offset;
1da177e4 2613
723ef24b 2614 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2615 return 0;
3644e2d2
KO
2616 if (unlikely(!iov_iter_count(iter)))
2617 return 0;
2618
c2a9737f 2619 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
cbd59c48 2620 pagevec_init(&pvec);
c2a9737f 2621
06c04442 2622 do {
1da177e4 2623 cond_resched();
5abf186a 2624
723ef24b 2625 /*
06c04442
KO
2626 * If we've already successfully copied some data, then we
2627 * can no longer safely return -EIOCBQUEUED. Hence mark
2628 * an async read NOWAIT at that point.
723ef24b 2629 */
87fa0f3e 2630 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2631 iocb->ki_flags |= IOCB_NOWAIT;
2632
ff993ba1
MWO
2633 error = filemap_get_pages(iocb, iter, &pvec);
2634 if (error < 0)
06c04442 2635 break;
1da177e4 2636
06c04442
KO
2637 /*
2638 * i_size must be checked after we know the pages are Uptodate.
2639 *
2640 * Checking i_size after the check allows us to calculate
2641 * the correct value for "nr", which means the zero-filled
2642 * part of the page is not copied back to userspace (unless
2643 * another truncate extends the file - this is desired though).
2644 */
2645 isize = i_size_read(inode);
2646 if (unlikely(iocb->ki_pos >= isize))
2647 goto put_pages;
06c04442
KO
2648 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2649
06c04442
KO
2650 /*
2651 * Once we start copying data, we don't want to be touching any
2652 * cachelines that might be contended:
2653 */
2654 writably_mapped = mapping_writably_mapped(mapping);
2655
2656 /*
2657 * When a sequential read accesses a page several times, only
2658 * mark it as accessed the first time.
2659 */
2660 if (iocb->ki_pos >> PAGE_SHIFT !=
2661 ra->prev_pos >> PAGE_SHIFT)
ff993ba1 2662 mark_page_accessed(pvec.pages[0]);
06c04442 2663
ff993ba1 2664 for (i = 0; i < pagevec_count(&pvec); i++) {
cbd59c48
MWO
2665 struct page *page = pvec.pages[i];
2666 size_t page_size = thp_size(page);
2667 size_t offset = iocb->ki_pos & (page_size - 1);
2668 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2669 page_size - offset);
2670 size_t copied;
06c04442 2671
cbd59c48
MWO
2672 if (end_offset < page_offset(page))
2673 break;
2674 if (i > 0)
2675 mark_page_accessed(page);
06c04442
KO
2676 /*
2677 * If users can be writing to this page using arbitrary
2678 * virtual addresses, take care about potential aliasing
2679 * before reading the page on the kernel side.
2680 */
cbd59c48
MWO
2681 if (writably_mapped) {
2682 int j;
2683
2684 for (j = 0; j < thp_nr_pages(page); j++)
2685 flush_dcache_page(page + j);
2686 }
06c04442 2687
cbd59c48 2688 copied = copy_page_to_iter(page, offset, bytes, iter);
06c04442 2689
87fa0f3e 2690 already_read += copied;
06c04442
KO
2691 iocb->ki_pos += copied;
2692 ra->prev_pos = iocb->ki_pos;
2693
2694 if (copied < bytes) {
2695 error = -EFAULT;
2696 break;
2697 }
1da177e4 2698 }
06c04442 2699put_pages:
ff993ba1
MWO
2700 for (i = 0; i < pagevec_count(&pvec); i++)
2701 put_page(pvec.pages[i]);
cbd59c48 2702 pagevec_reinit(&pvec);
06c04442 2703 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2704
0c6aa263 2705 file_accessed(filp);
06c04442 2706
87fa0f3e 2707 return already_read ? already_read : error;
1da177e4 2708}
87fa0f3e 2709EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2710
485bb99b 2711/**
6abd2322 2712 * generic_file_read_iter - generic filesystem read routine
485bb99b 2713 * @iocb: kernel I/O control block
6abd2322 2714 * @iter: destination for the data read
485bb99b 2715 *
6abd2322 2716 * This is the "read_iter()" routine for all filesystems
1da177e4 2717 * that can use the page cache directly.
41da51bc
AG
2718 *
2719 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2720 * be returned when no data can be read without waiting for I/O requests
2721 * to complete; it doesn't prevent readahead.
2722 *
2723 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2724 * requests shall be made for the read or for readahead. When no data
2725 * can be read, -EAGAIN shall be returned. When readahead would be
2726 * triggered, a partial, possibly empty read shall be returned.
2727 *
a862f68a
MR
2728 * Return:
2729 * * number of bytes copied, even for partial reads
41da51bc 2730 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2731 */
2732ssize_t
ed978a81 2733generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2734{
e7080a43 2735 size_t count = iov_iter_count(iter);
47c27bc4 2736 ssize_t retval = 0;
e7080a43
NS
2737
2738 if (!count)
826ea860 2739 return 0; /* skip atime */
1da177e4 2740
2ba48ce5 2741 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2742 struct file *file = iocb->ki_filp;
ed978a81
AV
2743 struct address_space *mapping = file->f_mapping;
2744 struct inode *inode = mapping->host;
543ade1f 2745 loff_t size;
1da177e4 2746
1da177e4 2747 size = i_size_read(inode);
6be96d3a 2748 if (iocb->ki_flags & IOCB_NOWAIT) {
7a60d6d7
JA
2749 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2750 iocb->ki_pos + count - 1))
6be96d3a
GR
2751 return -EAGAIN;
2752 } else {
2753 retval = filemap_write_and_wait_range(mapping,
2754 iocb->ki_pos,
2755 iocb->ki_pos + count - 1);
2756 if (retval < 0)
826ea860 2757 return retval;
6be96d3a 2758 }
d8d3d94b 2759
0d5b0cf2
CH
2760 file_accessed(file);
2761
5ecda137 2762 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2763 if (retval >= 0) {
c64fb5c7 2764 iocb->ki_pos += retval;
5ecda137 2765 count -= retval;
9fe55eea 2766 }
ab2125df
PB
2767 if (retval != -EIOCBQUEUED)
2768 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2769
9fe55eea
SW
2770 /*
2771 * Btrfs can have a short DIO read if we encounter
2772 * compressed extents, so if there was an error, or if
2773 * we've already read everything we wanted to, or if
2774 * there was a short read because we hit EOF, go ahead
2775 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2776 * the rest of the read. Buffered reads will not work for
2777 * DAX files, so don't bother trying.
9fe55eea 2778 */
5ecda137 2779 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2780 IS_DAX(inode))
826ea860 2781 return retval;
1da177e4
LT
2782 }
2783
826ea860 2784 return filemap_read(iocb, iter, retval);
1da177e4 2785}
ed978a81 2786EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2787
54fa39ac
MWO
2788static inline loff_t page_seek_hole_data(struct xa_state *xas,
2789 struct address_space *mapping, struct page *page,
2790 loff_t start, loff_t end, bool seek_data)
41139aa4 2791{
54fa39ac
MWO
2792 const struct address_space_operations *ops = mapping->a_ops;
2793 size_t offset, bsz = i_blocksize(mapping->host);
2794
41139aa4 2795 if (xa_is_value(page) || PageUptodate(page))
54fa39ac
MWO
2796 return seek_data ? start : end;
2797 if (!ops->is_partially_uptodate)
2798 return seek_data ? end : start;
2799
2800 xas_pause(xas);
2801 rcu_read_unlock();
2802 lock_page(page);
2803 if (unlikely(page->mapping != mapping))
2804 goto unlock;
2805
2806 offset = offset_in_thp(page, start) & ~(bsz - 1);
2807
2808 do {
2809 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2810 break;
2811 start = (start + bsz) & ~(bsz - 1);
2812 offset += bsz;
2813 } while (offset < thp_size(page));
2814unlock:
2815 unlock_page(page);
2816 rcu_read_lock();
2817 return start;
41139aa4
MWO
2818}
2819
2820static inline
2821unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2822{
2823 if (xa_is_value(page))
2824 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2825 return thp_size(page);
2826}
2827
2828/**
2829 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2830 * @mapping: Address space to search.
2831 * @start: First byte to consider.
2832 * @end: Limit of search (exclusive).
2833 * @whence: Either SEEK_HOLE or SEEK_DATA.
2834 *
2835 * If the page cache knows which blocks contain holes and which blocks
2836 * contain data, your filesystem can use this function to implement
2837 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2838 * entirely memory-based such as tmpfs, and filesystems which support
2839 * unwritten extents.
2840 *
f0953a1b 2841 * Return: The requested offset on success, or -ENXIO if @whence specifies
41139aa4
MWO
2842 * SEEK_DATA and there is no data after @start. There is an implicit hole
2843 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2844 * and @end contain data.
2845 */
2846loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2847 loff_t end, int whence)
2848{
2849 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 2850 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4
MWO
2851 bool seek_data = (whence == SEEK_DATA);
2852 struct page *page;
2853
2854 if (end <= start)
2855 return -ENXIO;
2856
2857 rcu_read_lock();
2858 while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015
HD
2859 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2860 unsigned int seek_size;
41139aa4
MWO
2861
2862 if (start < pos) {
2863 if (!seek_data)
2864 goto unlock;
2865 start = pos;
2866 }
2867
ed98b015
HD
2868 seek_size = seek_page_size(&xas, page);
2869 pos = round_up(pos + 1, seek_size);
54fa39ac
MWO
2870 start = page_seek_hole_data(&xas, mapping, page, start, pos,
2871 seek_data);
2872 if (start < pos)
41139aa4 2873 goto unlock;
ed98b015
HD
2874 if (start >= end)
2875 break;
2876 if (seek_size > PAGE_SIZE)
2877 xas_set(&xas, pos >> PAGE_SHIFT);
41139aa4
MWO
2878 if (!xa_is_value(page))
2879 put_page(page);
2880 }
41139aa4 2881 if (seek_data)
ed98b015 2882 start = -ENXIO;
41139aa4
MWO
2883unlock:
2884 rcu_read_unlock();
ed98b015 2885 if (page && !xa_is_value(page))
41139aa4 2886 put_page(page);
41139aa4
MWO
2887 if (start > end)
2888 return end;
2889 return start;
2890}
2891
1da177e4 2892#ifdef CONFIG_MMU
1da177e4 2893#define MMAP_LOTSAMISS (100)
6b4c9f44 2894/*
c1e8d7c6 2895 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44
JB
2896 * @vmf - the vm_fault for this fault.
2897 * @page - the page to lock.
2898 * @fpin - the pointer to the file we may pin (or is already pinned).
2899 *
c1e8d7c6 2900 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
6b4c9f44 2901 * It differs in that it actually returns the page locked if it returns 1 and 0
c1e8d7c6 2902 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
6b4c9f44
JB
2903 * will point to the pinned file and needs to be fput()'ed at a later point.
2904 */
2905static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2906 struct file **fpin)
2907{
7c23c782
MWO
2908 struct folio *folio = page_folio(page);
2909
2910 if (folio_trylock(folio))
6b4c9f44
JB
2911 return 1;
2912
8b0f9fa2
LT
2913 /*
2914 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 2915 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
2916 * is supposed to work. We have way too many special cases..
2917 */
6b4c9f44
JB
2918 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2919 return 0;
2920
2921 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2922 if (vmf->flags & FAULT_FLAG_KILLABLE) {
af7f29d9 2923 if (__folio_lock_killable(folio)) {
6b4c9f44 2924 /*
c1e8d7c6 2925 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
2926 * but all fault_handlers only check for fatal signals
2927 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 2928 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
2929 */
2930 if (*fpin == NULL)
d8ed45c5 2931 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
2932 return 0;
2933 }
2934 } else
7c23c782
MWO
2935 __folio_lock(folio);
2936
6b4c9f44
JB
2937 return 1;
2938}
2939
ef00e08e 2940/*
6b4c9f44
JB
2941 * Synchronous readahead happens when we don't even find a page in the page
2942 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2943 * to drop the mmap sem we return the file that was pinned in order for us to do
2944 * that. If we didn't pin a file then we return NULL. The file that is
2945 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2946 */
6b4c9f44 2947static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2948{
2a1180f1
JB
2949 struct file *file = vmf->vma->vm_file;
2950 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2951 struct address_space *mapping = file->f_mapping;
fcd9ae4f 2952 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 2953 struct file *fpin = NULL;
e630bfac 2954 unsigned int mmap_miss;
ef00e08e
LT
2955
2956 /* If we don't want any read-ahead, don't bother */
2a1180f1 2957 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2958 return fpin;
275b12bf 2959 if (!ra->ra_pages)
6b4c9f44 2960 return fpin;
ef00e08e 2961
2a1180f1 2962 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2963 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 2964 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 2965 return fpin;
ef00e08e
LT
2966 }
2967
207d04ba 2968 /* Avoid banging the cache line if not needed */
e630bfac
KS
2969 mmap_miss = READ_ONCE(ra->mmap_miss);
2970 if (mmap_miss < MMAP_LOTSAMISS * 10)
2971 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
2972
2973 /*
2974 * Do we miss much more than hit in this file? If so,
2975 * stop bothering with read-ahead. It will only hurt.
2976 */
e630bfac 2977 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2978 return fpin;
ef00e08e 2979
d30a1100
WF
2980 /*
2981 * mmap read-around
2982 */
6b4c9f44 2983 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 2984 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
2985 ra->size = ra->ra_pages;
2986 ra->async_size = ra->ra_pages / 4;
db660d46
DH
2987 ractl._index = ra->start;
2988 do_page_cache_ra(&ractl, ra->size, ra->async_size);
6b4c9f44 2989 return fpin;
ef00e08e
LT
2990}
2991
2992/*
2993 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 2994 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 2995 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 2996 */
6b4c9f44
JB
2997static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2998 struct page *page)
ef00e08e 2999{
2a1180f1
JB
3000 struct file *file = vmf->vma->vm_file;
3001 struct file_ra_state *ra = &file->f_ra;
ef00e08e 3002 struct address_space *mapping = file->f_mapping;
6b4c9f44 3003 struct file *fpin = NULL;
e630bfac 3004 unsigned int mmap_miss;
2a1180f1 3005 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
3006
3007 /* If we don't want any read-ahead, don't bother */
5c72feee 3008 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 3009 return fpin;
e630bfac
KS
3010 mmap_miss = READ_ONCE(ra->mmap_miss);
3011 if (mmap_miss)
3012 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
6b4c9f44
JB
3013 if (PageReadahead(page)) {
3014 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
3015 page_cache_async_readahead(mapping, ra, file,
3016 page, offset, ra->ra_pages);
6b4c9f44
JB
3017 }
3018 return fpin;
ef00e08e
LT
3019}
3020
485bb99b 3021/**
54cb8821 3022 * filemap_fault - read in file data for page fault handling
d0217ac0 3023 * @vmf: struct vm_fault containing details of the fault
485bb99b 3024 *
54cb8821 3025 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
3026 * mapped memory region to read in file data during a page fault.
3027 *
3028 * The goto's are kind of ugly, but this streamlines the normal case of having
3029 * it in the page cache, and handles the special cases reasonably without
3030 * having a lot of duplicated code.
9a95f3cf 3031 *
c1e8d7c6 3032 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 3033 *
c1e8d7c6 3034 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
a4985833 3035 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf 3036 *
c1e8d7c6 3037 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
3038 * has not been released.
3039 *
3040 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
3041 *
3042 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 3043 */
2bcd6454 3044vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
3045{
3046 int error;
11bac800 3047 struct file *file = vmf->vma->vm_file;
6b4c9f44 3048 struct file *fpin = NULL;
1da177e4 3049 struct address_space *mapping = file->f_mapping;
1da177e4 3050 struct inode *inode = mapping->host;
ef00e08e 3051 pgoff_t offset = vmf->pgoff;
9ab2594f 3052 pgoff_t max_off;
1da177e4 3053 struct page *page;
2bcd6454 3054 vm_fault_t ret = 0;
730633f0 3055 bool mapping_locked = false;
1da177e4 3056
9ab2594f
MW
3057 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3058 if (unlikely(offset >= max_off))
5307cc1a 3059 return VM_FAULT_SIGBUS;
1da177e4 3060
1da177e4 3061 /*
49426420 3062 * Do we have something in the page cache already?
1da177e4 3063 */
ef00e08e 3064 page = find_get_page(mapping, offset);
730633f0 3065 if (likely(page)) {
1da177e4 3066 /*
730633f0
JK
3067 * We found the page, so try async readahead before waiting for
3068 * the lock.
1da177e4 3069 */
730633f0
JK
3070 if (!(vmf->flags & FAULT_FLAG_TRIED))
3071 fpin = do_async_mmap_readahead(vmf, page);
3072 if (unlikely(!PageUptodate(page))) {
3073 filemap_invalidate_lock_shared(mapping);
3074 mapping_locked = true;
3075 }
3076 } else {
ef00e08e 3077 /* No page in the page cache at all */
ef00e08e 3078 count_vm_event(PGMAJFAULT);
2262185c 3079 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 3080 ret = VM_FAULT_MAJOR;
6b4c9f44 3081 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 3082retry_find:
730633f0
JK
3083 /*
3084 * See comment in filemap_create_page() why we need
3085 * invalidate_lock
3086 */
3087 if (!mapping_locked) {
3088 filemap_invalidate_lock_shared(mapping);
3089 mapping_locked = true;
3090 }
a75d4c33
JB
3091 page = pagecache_get_page(mapping, offset,
3092 FGP_CREAT|FGP_FOR_MMAP,
3093 vmf->gfp_mask);
6b4c9f44
JB
3094 if (!page) {
3095 if (fpin)
3096 goto out_retry;
730633f0 3097 filemap_invalidate_unlock_shared(mapping);
e520e932 3098 return VM_FAULT_OOM;
6b4c9f44 3099 }
1da177e4
LT
3100 }
3101
6b4c9f44
JB
3102 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3103 goto out_retry;
b522c94d
ML
3104
3105 /* Did it get truncated? */
585e5a7b 3106 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
3107 unlock_page(page);
3108 put_page(page);
3109 goto retry_find;
3110 }
520e5ba4 3111 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 3112
1da177e4 3113 /*
d00806b1
NP
3114 * We have a locked page in the page cache, now we need to check
3115 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 3116 */
730633f0
JK
3117 if (unlikely(!PageUptodate(page))) {
3118 /*
3119 * The page was in cache and uptodate and now it is not.
3120 * Strange but possible since we didn't hold the page lock all
3121 * the time. Let's drop everything get the invalidate lock and
3122 * try again.
3123 */
3124 if (!mapping_locked) {
3125 unlock_page(page);
3126 put_page(page);
3127 goto retry_find;
3128 }
1da177e4 3129 goto page_not_uptodate;
730633f0 3130 }
1da177e4 3131
6b4c9f44 3132 /*
c1e8d7c6 3133 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
3134 * time to return to the upper layer and have it re-find the vma and
3135 * redo the fault.
3136 */
3137 if (fpin) {
3138 unlock_page(page);
3139 goto out_retry;
3140 }
730633f0
JK
3141 if (mapping_locked)
3142 filemap_invalidate_unlock_shared(mapping);
6b4c9f44 3143
ef00e08e
LT
3144 /*
3145 * Found the page and have a reference on it.
3146 * We must recheck i_size under page lock.
3147 */
9ab2594f
MW
3148 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3149 if (unlikely(offset >= max_off)) {
d00806b1 3150 unlock_page(page);
09cbfeaf 3151 put_page(page);
5307cc1a 3152 return VM_FAULT_SIGBUS;
d00806b1
NP
3153 }
3154
d0217ac0 3155 vmf->page = page;
83c54070 3156 return ret | VM_FAULT_LOCKED;
1da177e4 3157
1da177e4 3158page_not_uptodate:
1da177e4
LT
3159 /*
3160 * Umm, take care of errors if the page isn't up-to-date.
3161 * Try to re-read it _once_. We do this synchronously,
3162 * because there really aren't any performance issues here
3163 * and we need to check for errors.
3164 */
6b4c9f44 3165 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
d31fa86a 3166 error = filemap_read_page(file, mapping, page);
6b4c9f44
JB
3167 if (fpin)
3168 goto out_retry;
09cbfeaf 3169 put_page(page);
d00806b1
NP
3170
3171 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3172 goto retry_find;
730633f0 3173 filemap_invalidate_unlock_shared(mapping);
1da177e4 3174
d0217ac0 3175 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3176
3177out_retry:
3178 /*
c1e8d7c6 3179 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3180 * re-find the vma and come back and find our hopefully still populated
3181 * page.
3182 */
3183 if (page)
3184 put_page(page);
730633f0
JK
3185 if (mapping_locked)
3186 filemap_invalidate_unlock_shared(mapping);
6b4c9f44
JB
3187 if (fpin)
3188 fput(fpin);
3189 return ret | VM_FAULT_RETRY;
54cb8821
NP
3190}
3191EXPORT_SYMBOL(filemap_fault);
3192
f9ce0be7 3193static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
f1820361 3194{
f9ce0be7
KS
3195 struct mm_struct *mm = vmf->vma->vm_mm;
3196
3197 /* Huge page is mapped? No need to proceed. */
3198 if (pmd_trans_huge(*vmf->pmd)) {
3199 unlock_page(page);
3200 put_page(page);
3201 return true;
3202 }
3203
3204 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3205 vm_fault_t ret = do_set_pmd(vmf, page);
3206 if (!ret) {
3207 /* The page is mapped successfully, reference consumed. */
3208 unlock_page(page);
3209 return true;
3210 }
3211 }
3212
3213 if (pmd_none(*vmf->pmd)) {
3214 vmf->ptl = pmd_lock(mm, vmf->pmd);
3215 if (likely(pmd_none(*vmf->pmd))) {
3216 mm_inc_nr_ptes(mm);
3217 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3218 vmf->prealloc_pte = NULL;
3219 }
3220 spin_unlock(vmf->ptl);
3221 }
3222
3223 /* See comment in handle_pte_fault() */
3224 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3225 unlock_page(page);
3226 put_page(page);
3227 return true;
3228 }
3229
3230 return false;
3231}
3232
3233static struct page *next_uptodate_page(struct page *page,
3234 struct address_space *mapping,
3235 struct xa_state *xas, pgoff_t end_pgoff)
3236{
3237 unsigned long max_idx;
3238
3239 do {
3240 if (!page)
3241 return NULL;
3242 if (xas_retry(xas, page))
3243 continue;
3244 if (xa_is_value(page))
3245 continue;
3246 if (PageLocked(page))
3247 continue;
3248 if (!page_cache_get_speculative(page))
3249 continue;
3250 /* Has the page moved or been split? */
3251 if (unlikely(page != xas_reload(xas)))
3252 goto skip;
3253 if (!PageUptodate(page) || PageReadahead(page))
3254 goto skip;
3255 if (PageHWPoison(page))
3256 goto skip;
3257 if (!trylock_page(page))
3258 goto skip;
3259 if (page->mapping != mapping)
3260 goto unlock;
3261 if (!PageUptodate(page))
3262 goto unlock;
3263 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3264 if (xas->xa_index >= max_idx)
3265 goto unlock;
3266 return page;
3267unlock:
3268 unlock_page(page);
3269skip:
3270 put_page(page);
3271 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3272
3273 return NULL;
3274}
3275
3276static inline struct page *first_map_page(struct address_space *mapping,
3277 struct xa_state *xas,
3278 pgoff_t end_pgoff)
3279{
3280 return next_uptodate_page(xas_find(xas, end_pgoff),
3281 mapping, xas, end_pgoff);
3282}
3283
3284static inline struct page *next_map_page(struct address_space *mapping,
3285 struct xa_state *xas,
3286 pgoff_t end_pgoff)
3287{
3288 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3289 mapping, xas, end_pgoff);
3290}
3291
3292vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3293 pgoff_t start_pgoff, pgoff_t end_pgoff)
3294{
3295 struct vm_area_struct *vma = vmf->vma;
3296 struct file *file = vma->vm_file;
f1820361 3297 struct address_space *mapping = file->f_mapping;
bae473a4 3298 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3299 unsigned long addr;
070e807c 3300 XA_STATE(xas, &mapping->i_pages, start_pgoff);
27a83a60 3301 struct page *head, *page;
e630bfac 3302 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
f9ce0be7 3303 vm_fault_t ret = 0;
f1820361
KS
3304
3305 rcu_read_lock();
f9ce0be7
KS
3306 head = first_map_page(mapping, &xas, end_pgoff);
3307 if (!head)
3308 goto out;
f1820361 3309
f9ce0be7
KS
3310 if (filemap_map_pmd(vmf, head)) {
3311 ret = VM_FAULT_NOPAGE;
3312 goto out;
3313 }
f1820361 3314
9d3af4b4
WD
3315 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3316 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
f9ce0be7 3317 do {
27a83a60 3318 page = find_subpage(head, xas.xa_index);
f9ce0be7 3319 if (PageHWPoison(page))
f1820361
KS
3320 goto unlock;
3321
e630bfac
KS
3322 if (mmap_miss > 0)
3323 mmap_miss--;
7267ec00 3324
9d3af4b4 3325 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3326 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3327 last_pgoff = xas.xa_index;
f9ce0be7
KS
3328
3329 if (!pte_none(*vmf->pte))
7267ec00 3330 goto unlock;
f9ce0be7 3331
46bdb427 3332 /* We're about to handle the fault */
9d3af4b4 3333 if (vmf->address == addr)
46bdb427 3334 ret = VM_FAULT_NOPAGE;
46bdb427 3335
9d3af4b4 3336 do_set_pte(vmf, page, addr);
f9ce0be7 3337 /* no need to invalidate: a not-present page won't be cached */
9d3af4b4 3338 update_mmu_cache(vma, addr, vmf->pte);
27a83a60 3339 unlock_page(head);
f9ce0be7 3340 continue;
f1820361 3341unlock:
27a83a60 3342 unlock_page(head);
27a83a60 3343 put_page(head);
f9ce0be7
KS
3344 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3345 pte_unmap_unlock(vmf->pte, vmf->ptl);
3346out:
f1820361 3347 rcu_read_unlock();
e630bfac 3348 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
f9ce0be7 3349 return ret;
f1820361
KS
3350}
3351EXPORT_SYMBOL(filemap_map_pages);
3352
2bcd6454 3353vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3354{
5df1a672 3355 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
4fcf1c62 3356 struct page *page = vmf->page;
2bcd6454 3357 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3358
5df1a672 3359 sb_start_pagefault(mapping->host->i_sb);
11bac800 3360 file_update_time(vmf->vma->vm_file);
4fcf1c62 3361 lock_page(page);
5df1a672 3362 if (page->mapping != mapping) {
4fcf1c62
JK
3363 unlock_page(page);
3364 ret = VM_FAULT_NOPAGE;
3365 goto out;
3366 }
14da9200
JK
3367 /*
3368 * We mark the page dirty already here so that when freeze is in
3369 * progress, we are guaranteed that writeback during freezing will
3370 * see the dirty page and writeprotect it again.
3371 */
3372 set_page_dirty(page);
1d1d1a76 3373 wait_for_stable_page(page);
4fcf1c62 3374out:
5df1a672 3375 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3376 return ret;
3377}
4fcf1c62 3378
f0f37e2f 3379const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3380 .fault = filemap_fault,
f1820361 3381 .map_pages = filemap_map_pages,
4fcf1c62 3382 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3383};
3384
3385/* This is used for a general mmap of a disk file */
3386
68d68ff6 3387int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3388{
3389 struct address_space *mapping = file->f_mapping;
3390
3391 if (!mapping->a_ops->readpage)
3392 return -ENOEXEC;
3393 file_accessed(file);
3394 vma->vm_ops = &generic_file_vm_ops;
3395 return 0;
3396}
1da177e4
LT
3397
3398/*
3399 * This is for filesystems which do not implement ->writepage.
3400 */
3401int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3402{
3403 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3404 return -EINVAL;
3405 return generic_file_mmap(file, vma);
3406}
3407#else
4b96a37d 3408vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3409{
4b96a37d 3410 return VM_FAULT_SIGBUS;
45397228 3411}
68d68ff6 3412int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3413{
3414 return -ENOSYS;
3415}
68d68ff6 3416int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3417{
3418 return -ENOSYS;
3419}
3420#endif /* CONFIG_MMU */
3421
45397228 3422EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3423EXPORT_SYMBOL(generic_file_mmap);
3424EXPORT_SYMBOL(generic_file_readonly_mmap);
3425
67f9fd91
SL
3426static struct page *wait_on_page_read(struct page *page)
3427{
3428 if (!IS_ERR(page)) {
3429 wait_on_page_locked(page);
3430 if (!PageUptodate(page)) {
09cbfeaf 3431 put_page(page);
67f9fd91
SL
3432 page = ERR_PTR(-EIO);
3433 }
3434 }
3435 return page;
3436}
3437
32b63529 3438static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 3439 pgoff_t index,
5e5358e7 3440 int (*filler)(void *, struct page *),
0531b2aa
LT
3441 void *data,
3442 gfp_t gfp)
1da177e4 3443{
eb2be189 3444 struct page *page;
1da177e4
LT
3445 int err;
3446repeat:
3447 page = find_get_page(mapping, index);
3448 if (!page) {
453f85d4 3449 page = __page_cache_alloc(gfp);
eb2be189
NP
3450 if (!page)
3451 return ERR_PTR(-ENOMEM);
e6f67b8c 3452 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 3453 if (unlikely(err)) {
09cbfeaf 3454 put_page(page);
eb2be189
NP
3455 if (err == -EEXIST)
3456 goto repeat;
22ecdb4f 3457 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3458 return ERR_PTR(err);
3459 }
32b63529
MG
3460
3461filler:
6c45b454
CH
3462 if (filler)
3463 err = filler(data, page);
3464 else
3465 err = mapping->a_ops->readpage(data, page);
3466
1da177e4 3467 if (err < 0) {
09cbfeaf 3468 put_page(page);
32b63529 3469 return ERR_PTR(err);
1da177e4 3470 }
1da177e4 3471
32b63529
MG
3472 page = wait_on_page_read(page);
3473 if (IS_ERR(page))
3474 return page;
3475 goto out;
3476 }
1da177e4
LT
3477 if (PageUptodate(page))
3478 goto out;
3479
ebded027 3480 /*
0e9aa675 3481 * Page is not up to date and may be locked due to one of the following
ebded027
MG
3482 * case a: Page is being filled and the page lock is held
3483 * case b: Read/write error clearing the page uptodate status
3484 * case c: Truncation in progress (page locked)
3485 * case d: Reclaim in progress
3486 *
3487 * Case a, the page will be up to date when the page is unlocked.
3488 * There is no need to serialise on the page lock here as the page
3489 * is pinned so the lock gives no additional protection. Even if the
ce89fddf 3490 * page is truncated, the data is still valid if PageUptodate as
ebded027
MG
3491 * it's a race vs truncate race.
3492 * Case b, the page will not be up to date
3493 * Case c, the page may be truncated but in itself, the data may still
3494 * be valid after IO completes as it's a read vs truncate race. The
3495 * operation must restart if the page is not uptodate on unlock but
3496 * otherwise serialising on page lock to stabilise the mapping gives
3497 * no additional guarantees to the caller as the page lock is
3498 * released before return.
3499 * Case d, similar to truncation. If reclaim holds the page lock, it
3500 * will be a race with remove_mapping that determines if the mapping
3501 * is valid on unlock but otherwise the data is valid and there is
3502 * no need to serialise with page lock.
3503 *
3504 * As the page lock gives no additional guarantee, we optimistically
3505 * wait on the page to be unlocked and check if it's up to date and
3506 * use the page if it is. Otherwise, the page lock is required to
3507 * distinguish between the different cases. The motivation is that we
3508 * avoid spurious serialisations and wakeups when multiple processes
3509 * wait on the same page for IO to complete.
3510 */
3511 wait_on_page_locked(page);
3512 if (PageUptodate(page))
3513 goto out;
3514
3515 /* Distinguish between all the cases under the safety of the lock */
1da177e4 3516 lock_page(page);
ebded027
MG
3517
3518 /* Case c or d, restart the operation */
1da177e4
LT
3519 if (!page->mapping) {
3520 unlock_page(page);
09cbfeaf 3521 put_page(page);
32b63529 3522 goto repeat;
1da177e4 3523 }
ebded027
MG
3524
3525 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
3526 if (PageUptodate(page)) {
3527 unlock_page(page);
3528 goto out;
3529 }
faffdfa0
XT
3530
3531 /*
3532 * A previous I/O error may have been due to temporary
3533 * failures.
3534 * Clear page error before actual read, PG_error will be
3535 * set again if read page fails.
3536 */
3537 ClearPageError(page);
32b63529
MG
3538 goto filler;
3539
c855ff37 3540out:
6fe6900e
NP
3541 mark_page_accessed(page);
3542 return page;
3543}
0531b2aa
LT
3544
3545/**
67f9fd91 3546 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
3547 * @mapping: the page's address_space
3548 * @index: the page index
3549 * @filler: function to perform the read
5e5358e7 3550 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 3551 *
0531b2aa 3552 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 3553 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
3554 *
3555 * If the page does not get brought uptodate, return -EIO.
a862f68a 3556 *
730633f0
JK
3557 * The function expects mapping->invalidate_lock to be already held.
3558 *
a862f68a 3559 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 3560 */
67f9fd91 3561struct page *read_cache_page(struct address_space *mapping,
0531b2aa 3562 pgoff_t index,
5e5358e7 3563 int (*filler)(void *, struct page *),
0531b2aa
LT
3564 void *data)
3565{
d322a8e5
CH
3566 return do_read_cache_page(mapping, index, filler, data,
3567 mapping_gfp_mask(mapping));
0531b2aa 3568}
67f9fd91 3569EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3570
3571/**
3572 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3573 * @mapping: the page's address_space
3574 * @index: the page index
3575 * @gfp: the page allocator flags to use if allocating
3576 *
3577 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3578 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3579 *
3580 * If the page does not get brought uptodate, return -EIO.
a862f68a 3581 *
730633f0
JK
3582 * The function expects mapping->invalidate_lock to be already held.
3583 *
a862f68a 3584 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3585 */
3586struct page *read_cache_page_gfp(struct address_space *mapping,
3587 pgoff_t index,
3588 gfp_t gfp)
3589{
6c45b454 3590 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3591}
3592EXPORT_SYMBOL(read_cache_page_gfp);
3593
afddba49
NP
3594int pagecache_write_begin(struct file *file, struct address_space *mapping,
3595 loff_t pos, unsigned len, unsigned flags,
3596 struct page **pagep, void **fsdata)
3597{
3598 const struct address_space_operations *aops = mapping->a_ops;
3599
4e02ed4b 3600 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3601 pagep, fsdata);
afddba49
NP
3602}
3603EXPORT_SYMBOL(pagecache_write_begin);
3604
3605int pagecache_write_end(struct file *file, struct address_space *mapping,
3606 loff_t pos, unsigned len, unsigned copied,
3607 struct page *page, void *fsdata)
3608{
3609 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3610
4e02ed4b 3611 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3612}
3613EXPORT_SYMBOL(pagecache_write_end);
3614
a92853b6
KK
3615/*
3616 * Warn about a page cache invalidation failure during a direct I/O write.
3617 */
3618void dio_warn_stale_pagecache(struct file *filp)
3619{
3620 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3621 char pathname[128];
a92853b6
KK
3622 char *path;
3623
5df1a672 3624 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3625 if (__ratelimit(&_rs)) {
3626 path = file_path(filp, pathname, sizeof(pathname));
3627 if (IS_ERR(path))
3628 path = "(unknown)";
3629 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3630 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3631 current->comm);
3632 }
3633}
3634
1da177e4 3635ssize_t
1af5bb49 3636generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3637{
3638 struct file *file = iocb->ki_filp;
3639 struct address_space *mapping = file->f_mapping;
3640 struct inode *inode = mapping->host;
1af5bb49 3641 loff_t pos = iocb->ki_pos;
1da177e4 3642 ssize_t written;
a969e903
CH
3643 size_t write_len;
3644 pgoff_t end;
1da177e4 3645
0c949334 3646 write_len = iov_iter_count(from);
09cbfeaf 3647 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3648
6be96d3a
GR
3649 if (iocb->ki_flags & IOCB_NOWAIT) {
3650 /* If there are pages to writeback, return */
5df1a672 3651 if (filemap_range_has_page(file->f_mapping, pos,
35f12f0f 3652 pos + write_len - 1))
6be96d3a
GR
3653 return -EAGAIN;
3654 } else {
3655 written = filemap_write_and_wait_range(mapping, pos,
3656 pos + write_len - 1);
3657 if (written)
3658 goto out;
3659 }
a969e903
CH
3660
3661 /*
3662 * After a write we want buffered reads to be sure to go to disk to get
3663 * the new data. We invalidate clean cached page from the region we're
3664 * about to write. We do this *before* the write so that we can return
6ccfa806 3665 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3666 */
55635ba7 3667 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3668 pos >> PAGE_SHIFT, end);
55635ba7
AR
3669 /*
3670 * If a page can not be invalidated, return 0 to fall back
3671 * to buffered write.
3672 */
3673 if (written) {
3674 if (written == -EBUSY)
3675 return 0;
3676 goto out;
a969e903
CH
3677 }
3678
639a93a5 3679 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3680
3681 /*
3682 * Finally, try again to invalidate clean pages which might have been
3683 * cached by non-direct readahead, or faulted in by get_user_pages()
3684 * if the source of the write was an mmap'ed region of the file
3685 * we're writing. Either one is a pretty crazy thing to do,
3686 * so we don't support it 100%. If this invalidation
3687 * fails, tough, the write still worked...
332391a9
LC
3688 *
3689 * Most of the time we do not need this since dio_complete() will do
3690 * the invalidation for us. However there are some file systems that
3691 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3692 * them by removing it completely.
3693 *
9266a140
KK
3694 * Noticeable example is a blkdev_direct_IO().
3695 *
80c1fe90 3696 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3697 */
9266a140
KK
3698 if (written > 0 && mapping->nrpages &&
3699 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3700 dio_warn_stale_pagecache(file);
a969e903 3701
1da177e4 3702 if (written > 0) {
0116651c 3703 pos += written;
639a93a5 3704 write_len -= written;
0116651c
NK
3705 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3706 i_size_write(inode, pos);
1da177e4
LT
3707 mark_inode_dirty(inode);
3708 }
5cb6c6c7 3709 iocb->ki_pos = pos;
1da177e4 3710 }
ab2125df
PB
3711 if (written != -EIOCBQUEUED)
3712 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3713out:
1da177e4
LT
3714 return written;
3715}
3716EXPORT_SYMBOL(generic_file_direct_write);
3717
eb2be189
NP
3718/*
3719 * Find or create a page at the given pagecache position. Return the locked
3720 * page. This function is specifically for buffered writes.
3721 */
54566b2c
NP
3722struct page *grab_cache_page_write_begin(struct address_space *mapping,
3723 pgoff_t index, unsigned flags)
eb2be189 3724{
eb2be189 3725 struct page *page;
bbddabe2 3726 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3727
54566b2c 3728 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3729 fgp_flags |= FGP_NOFS;
3730
3731 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3732 mapping_gfp_mask(mapping));
c585a267 3733 if (page)
2457aec6 3734 wait_for_stable_page(page);
eb2be189 3735
eb2be189
NP
3736 return page;
3737}
54566b2c 3738EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3739
3b93f911 3740ssize_t generic_perform_write(struct file *file,
afddba49
NP
3741 struct iov_iter *i, loff_t pos)
3742{
3743 struct address_space *mapping = file->f_mapping;
3744 const struct address_space_operations *a_ops = mapping->a_ops;
3745 long status = 0;
3746 ssize_t written = 0;
674b892e
NP
3747 unsigned int flags = 0;
3748
afddba49
NP
3749 do {
3750 struct page *page;
afddba49
NP
3751 unsigned long offset; /* Offset into pagecache page */
3752 unsigned long bytes; /* Bytes to write to page */
3753 size_t copied; /* Bytes copied from user */
3754 void *fsdata;
3755
09cbfeaf
KS
3756 offset = (pos & (PAGE_SIZE - 1));
3757 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3758 iov_iter_count(i));
3759
3760again:
00a3d660
LT
3761 /*
3762 * Bring in the user page that we will copy from _first_.
3763 * Otherwise there's a nasty deadlock on copying from the
3764 * same page as we're writing to, without it being marked
3765 * up-to-date.
00a3d660
LT
3766 */
3767 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3768 status = -EFAULT;
3769 break;
3770 }
3771
296291cd
JK
3772 if (fatal_signal_pending(current)) {
3773 status = -EINTR;
3774 break;
3775 }
3776
674b892e 3777 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3778 &page, &fsdata);
2457aec6 3779 if (unlikely(status < 0))
afddba49
NP
3780 break;
3781
931e80e4 3782 if (mapping_writably_mapped(mapping))
3783 flush_dcache_page(page);
00a3d660 3784
f0b65f39 3785 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
afddba49
NP
3786 flush_dcache_page(page);
3787
3788 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3789 page, fsdata);
f0b65f39
AV
3790 if (unlikely(status != copied)) {
3791 iov_iter_revert(i, copied - max(status, 0L));
3792 if (unlikely(status < 0))
3793 break;
3794 }
afddba49
NP
3795 cond_resched();
3796
bc1bb416 3797 if (unlikely(status == 0)) {
afddba49 3798 /*
bc1bb416
AV
3799 * A short copy made ->write_end() reject the
3800 * thing entirely. Might be memory poisoning
3801 * halfway through, might be a race with munmap,
3802 * might be severe memory pressure.
afddba49 3803 */
bc1bb416
AV
3804 if (copied)
3805 bytes = copied;
afddba49
NP
3806 goto again;
3807 }
f0b65f39
AV
3808 pos += status;
3809 written += status;
afddba49
NP
3810
3811 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3812 } while (iov_iter_count(i));
3813
3814 return written ? written : status;
3815}
3b93f911 3816EXPORT_SYMBOL(generic_perform_write);
1da177e4 3817
e4dd9de3 3818/**
8174202b 3819 * __generic_file_write_iter - write data to a file
e4dd9de3 3820 * @iocb: IO state structure (file, offset, etc.)
8174202b 3821 * @from: iov_iter with data to write
e4dd9de3
JK
3822 *
3823 * This function does all the work needed for actually writing data to a
3824 * file. It does all basic checks, removes SUID from the file, updates
3825 * modification times and calls proper subroutines depending on whether we
3826 * do direct IO or a standard buffered write.
3827 *
9608703e 3828 * It expects i_rwsem to be grabbed unless we work on a block device or similar
e4dd9de3
JK
3829 * object which does not need locking at all.
3830 *
3831 * This function does *not* take care of syncing data in case of O_SYNC write.
3832 * A caller has to handle it. This is mainly due to the fact that we want to
9608703e 3833 * avoid syncing under i_rwsem.
a862f68a
MR
3834 *
3835 * Return:
3836 * * number of bytes written, even for truncated writes
3837 * * negative error code if no data has been written at all
e4dd9de3 3838 */
8174202b 3839ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3840{
3841 struct file *file = iocb->ki_filp;
68d68ff6 3842 struct address_space *mapping = file->f_mapping;
1da177e4 3843 struct inode *inode = mapping->host;
3b93f911 3844 ssize_t written = 0;
1da177e4 3845 ssize_t err;
3b93f911 3846 ssize_t status;
1da177e4 3847
1da177e4 3848 /* We can write back this queue in page reclaim */
de1414a6 3849 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3850 err = file_remove_privs(file);
1da177e4
LT
3851 if (err)
3852 goto out;
3853
c3b2da31
JB
3854 err = file_update_time(file);
3855 if (err)
3856 goto out;
1da177e4 3857
2ba48ce5 3858 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3859 loff_t pos, endbyte;
fb5527e6 3860
1af5bb49 3861 written = generic_file_direct_write(iocb, from);
1da177e4 3862 /*
fbbbad4b
MW
3863 * If the write stopped short of completing, fall back to
3864 * buffered writes. Some filesystems do this for writes to
3865 * holes, for example. For DAX files, a buffered write will
3866 * not succeed (even if it did, DAX does not handle dirty
3867 * page-cache pages correctly).
1da177e4 3868 */
0b8def9d 3869 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3870 goto out;
3871
0b8def9d 3872 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3873 /*
3b93f911 3874 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3875 * then we want to return the number of bytes which were
3876 * direct-written, or the error code if that was zero. Note
3877 * that this differs from normal direct-io semantics, which
3878 * will return -EFOO even if some bytes were written.
3879 */
60bb4529 3880 if (unlikely(status < 0)) {
3b93f911 3881 err = status;
fb5527e6
JM
3882 goto out;
3883 }
fb5527e6
JM
3884 /*
3885 * We need to ensure that the page cache pages are written to
3886 * disk and invalidated to preserve the expected O_DIRECT
3887 * semantics.
3888 */
3b93f911 3889 endbyte = pos + status - 1;
0b8def9d 3890 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3891 if (err == 0) {
0b8def9d 3892 iocb->ki_pos = endbyte + 1;
3b93f911 3893 written += status;
fb5527e6 3894 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3895 pos >> PAGE_SHIFT,
3896 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3897 } else {
3898 /*
3899 * We don't know how much we wrote, so just return
3900 * the number of bytes which were direct-written
3901 */
3902 }
3903 } else {
0b8def9d
AV
3904 written = generic_perform_write(file, from, iocb->ki_pos);
3905 if (likely(written > 0))
3906 iocb->ki_pos += written;
fb5527e6 3907 }
1da177e4
LT
3908out:
3909 current->backing_dev_info = NULL;
3910 return written ? written : err;
3911}
8174202b 3912EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3913
e4dd9de3 3914/**
8174202b 3915 * generic_file_write_iter - write data to a file
e4dd9de3 3916 * @iocb: IO state structure
8174202b 3917 * @from: iov_iter with data to write
e4dd9de3 3918 *
8174202b 3919 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3 3920 * filesystems. It takes care of syncing the file in case of O_SYNC file
9608703e 3921 * and acquires i_rwsem as needed.
a862f68a
MR
3922 * Return:
3923 * * negative error code if no data has been written at all of
3924 * vfs_fsync_range() failed for a synchronous write
3925 * * number of bytes written, even for truncated writes
e4dd9de3 3926 */
8174202b 3927ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3928{
3929 struct file *file = iocb->ki_filp;
148f948b 3930 struct inode *inode = file->f_mapping->host;
1da177e4 3931 ssize_t ret;
1da177e4 3932
5955102c 3933 inode_lock(inode);
3309dd04
AV
3934 ret = generic_write_checks(iocb, from);
3935 if (ret > 0)
5f380c7f 3936 ret = __generic_file_write_iter(iocb, from);
5955102c 3937 inode_unlock(inode);
1da177e4 3938
e2592217
CH
3939 if (ret > 0)
3940 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3941 return ret;
3942}
8174202b 3943EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3944
cf9a2ae8
DH
3945/**
3946 * try_to_release_page() - release old fs-specific metadata on a page
3947 *
3948 * @page: the page which the kernel is trying to free
3949 * @gfp_mask: memory allocation flags (and I/O mode)
3950 *
3951 * The address_space is to try to release any data against the page
a862f68a 3952 * (presumably at page->private).
cf9a2ae8 3953 *
266cf658
DH
3954 * This may also be called if PG_fscache is set on a page, indicating that the
3955 * page is known to the local caching routines.
3956 *
cf9a2ae8 3957 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3958 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3959 *
a862f68a 3960 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3961 */
3962int try_to_release_page(struct page *page, gfp_t gfp_mask)
3963{
3964 struct address_space * const mapping = page->mapping;
3965
3966 BUG_ON(!PageLocked(page));
3967 if (PageWriteback(page))
3968 return 0;
3969
3970 if (mapping && mapping->a_ops->releasepage)
3971 return mapping->a_ops->releasepage(page, gfp_mask);
3972 return try_to_free_buffers(page);
3973}
3974
3975EXPORT_SYMBOL(try_to_release_page);