]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/filemap.c
i915: use find_lock_page instead of find_lock_entry
[thirdparty/linux.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4
LT
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c515e1fd 38#include <linux/cleancache.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
b9306a79 44#include <linux/page_idle.h>
0f8053a5
NP
45#include "internal.h"
46
fe0bfaaf
RJ
47#define CREATE_TRACE_POINTS
48#include <trace/events/filemap.h>
49
1da177e4 50/*
1da177e4
LT
51 * FIXME: remove all knowledge of the buffer layer from the core VM
52 */
148f948b 53#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 54
1da177e4
LT
55#include <asm/mman.h>
56
57/*
58 * Shared mappings implemented 30.11.1994. It's not fully working yet,
59 * though.
60 *
61 * Shared mappings now work. 15.8.1995 Bruno.
62 *
63 * finished 'unifying' the page and buffer cache and SMP-threaded the
64 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
65 *
66 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
67 */
68
69/*
70 * Lock ordering:
71 *
c8c06efa 72 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 73 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 74 * ->swap_lock (exclusive_swap_page, others)
b93b0163 75 * ->i_pages lock
1da177e4 76 *
1b1dcc1b 77 * ->i_mutex
c8c06efa 78 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 79 *
c1e8d7c6 80 * ->mmap_lock
c8c06efa 81 * ->i_mmap_rwsem
b8072f09 82 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 83 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 84 *
c1e8d7c6 85 * ->mmap_lock
1da177e4
LT
86 * ->lock_page (access_process_vm)
87 *
ccad2365 88 * ->i_mutex (generic_perform_write)
c1e8d7c6 89 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
1da177e4 90 *
f758eeab 91 * bdi->wb.list_lock
a66979ab 92 * sb_lock (fs/fs-writeback.c)
b93b0163 93 * ->i_pages lock (__sync_single_inode)
1da177e4 94 *
c8c06efa 95 * ->i_mmap_rwsem
1da177e4
LT
96 * ->anon_vma.lock (vma_adjust)
97 *
98 * ->anon_vma.lock
b8072f09 99 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 100 *
b8072f09 101 * ->page_table_lock or pte_lock
5d337b91 102 * ->swap_lock (try_to_unmap_one)
1da177e4 103 * ->private_lock (try_to_unmap_one)
b93b0163 104 * ->i_pages lock (try_to_unmap_one)
f4b7e272
AR
105 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
106 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 107 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 108 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 109 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 110 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 111 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 112 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 113 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
114 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
115 *
c8c06efa 116 * ->i_mmap_rwsem
9a3c531d 117 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
118 */
119
5c024e6a 120static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
121 struct page *page, void *shadow)
122{
5c024e6a
MW
123 XA_STATE(xas, &mapping->i_pages, page->index);
124 unsigned int nr = 1;
c70b647d 125
5c024e6a 126 mapping_set_update(&xas, mapping);
c70b647d 127
5c024e6a
MW
128 /* hugetlb pages are represented by a single entry in the xarray */
129 if (!PageHuge(page)) {
130 xas_set_order(&xas, page->index, compound_order(page));
d8c6546b 131 nr = compound_nr(page);
5c024e6a 132 }
91b0abe3 133
83929372
KS
134 VM_BUG_ON_PAGE(!PageLocked(page), page);
135 VM_BUG_ON_PAGE(PageTail(page), page);
136 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 137
5c024e6a
MW
138 xas_store(&xas, shadow);
139 xas_init_marks(&xas);
d3798ae8 140
2300638b
JK
141 page->mapping = NULL;
142 /* Leave page->index set: truncation lookup relies upon it */
143
d3798ae8
JW
144 if (shadow) {
145 mapping->nrexceptional += nr;
146 /*
147 * Make sure the nrexceptional update is committed before
148 * the nrpages update so that final truncate racing
149 * with reclaim does not see both counters 0 at the
150 * same time and miss a shadow entry.
151 */
152 smp_wmb();
153 }
154 mapping->nrpages -= nr;
91b0abe3
JW
155}
156
5ecc4d85
JK
157static void unaccount_page_cache_page(struct address_space *mapping,
158 struct page *page)
1da177e4 159{
5ecc4d85 160 int nr;
1da177e4 161
c515e1fd
DM
162 /*
163 * if we're uptodate, flush out into the cleancache, otherwise
164 * invalidate any existing cleancache entries. We can't leave
165 * stale data around in the cleancache once our page is gone
166 */
167 if (PageUptodate(page) && PageMappedToDisk(page))
168 cleancache_put_page(page);
169 else
3167760f 170 cleancache_invalidate_page(mapping, page);
c515e1fd 171
83929372 172 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
173 VM_BUG_ON_PAGE(page_mapped(page), page);
174 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
175 int mapcount;
176
177 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
178 current->comm, page_to_pfn(page));
179 dump_page(page, "still mapped when deleted");
180 dump_stack();
181 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
182
183 mapcount = page_mapcount(page);
184 if (mapping_exiting(mapping) &&
185 page_count(page) >= mapcount + 2) {
186 /*
187 * All vmas have already been torn down, so it's
188 * a good bet that actually the page is unmapped,
189 * and we'd prefer not to leak it: if we're wrong,
190 * some other bad page check should catch it later.
191 */
192 page_mapcount_reset(page);
6d061f9f 193 page_ref_sub(page, mapcount);
06b241f3
HD
194 }
195 }
196
4165b9b4 197 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
198 if (PageHuge(page))
199 return;
09612fa6 200
6c357848 201 nr = thp_nr_pages(page);
5ecc4d85 202
0d1c2072 203 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
5ecc4d85 204 if (PageSwapBacked(page)) {
0d1c2072 205 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
5ecc4d85
JK
206 if (PageTransHuge(page))
207 __dec_node_page_state(page, NR_SHMEM_THPS);
99cb0dbd
SL
208 } else if (PageTransHuge(page)) {
209 __dec_node_page_state(page, NR_FILE_THPS);
09d91cda 210 filemap_nr_thps_dec(mapping);
800d8c63 211 }
5ecc4d85
JK
212
213 /*
214 * At this point page must be either written or cleaned by
215 * truncate. Dirty page here signals a bug and loss of
216 * unwritten data.
217 *
218 * This fixes dirty accounting after removing the page entirely
219 * but leaves PageDirty set: it has no effect for truncated
220 * page and anyway will be cleared before returning page into
221 * buddy allocator.
222 */
223 if (WARN_ON_ONCE(PageDirty(page)))
224 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
225}
226
227/*
228 * Delete a page from the page cache and free it. Caller has to make
229 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 230 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
231 */
232void __delete_from_page_cache(struct page *page, void *shadow)
233{
234 struct address_space *mapping = page->mapping;
235
236 trace_mm_filemap_delete_from_page_cache(page);
237
238 unaccount_page_cache_page(mapping, page);
5c024e6a 239 page_cache_delete(mapping, page, shadow);
1da177e4
LT
240}
241
59c66c5f
JK
242static void page_cache_free_page(struct address_space *mapping,
243 struct page *page)
244{
245 void (*freepage)(struct page *);
246
247 freepage = mapping->a_ops->freepage;
248 if (freepage)
249 freepage(page);
250
251 if (PageTransHuge(page) && !PageHuge(page)) {
252 page_ref_sub(page, HPAGE_PMD_NR);
253 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
254 } else {
255 put_page(page);
256 }
257}
258
702cfbf9
MK
259/**
260 * delete_from_page_cache - delete page from page cache
261 * @page: the page which the kernel is trying to remove from page cache
262 *
263 * This must be called only on pages that have been verified to be in the page
264 * cache and locked. It will never put the page into the free list, the caller
265 * has a reference on the page.
266 */
267void delete_from_page_cache(struct page *page)
1da177e4 268{
83929372 269 struct address_space *mapping = page_mapping(page);
c4843a75 270 unsigned long flags;
1da177e4 271
cd7619d6 272 BUG_ON(!PageLocked(page));
b93b0163 273 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 274 __delete_from_page_cache(page, NULL);
b93b0163 275 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 276
59c66c5f 277 page_cache_free_page(mapping, page);
97cecb5a
MK
278}
279EXPORT_SYMBOL(delete_from_page_cache);
280
aa65c29c 281/*
ef8e5717 282 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
283 * @mapping: the mapping to which pages belong
284 * @pvec: pagevec with pages to delete
285 *
b93b0163 286 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
287 * from the mapping. The function expects @pvec to be sorted by page index
288 * and is optimised for it to be dense.
b93b0163 289 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 290 * modified). The function expects only THP head pages to be present in the
4101196b 291 * @pvec.
aa65c29c 292 *
b93b0163 293 * The function expects the i_pages lock to be held.
aa65c29c 294 */
ef8e5717 295static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
296 struct pagevec *pvec)
297{
ef8e5717 298 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 299 int total_pages = 0;
4101196b 300 int i = 0;
aa65c29c 301 struct page *page;
aa65c29c 302
ef8e5717
MW
303 mapping_set_update(&xas, mapping);
304 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 305 if (i >= pagevec_count(pvec))
aa65c29c 306 break;
4101196b
MWO
307
308 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 309 if (xa_is_value(page))
aa65c29c 310 continue;
4101196b
MWO
311 /*
312 * A page got inserted in our range? Skip it. We have our
313 * pages locked so they are protected from being removed.
314 * If we see a page whose index is higher than ours, it
315 * means our page has been removed, which shouldn't be
316 * possible because we're holding the PageLock.
317 */
318 if (page != pvec->pages[i]) {
319 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
320 page);
321 continue;
322 }
323
324 WARN_ON_ONCE(!PageLocked(page));
325
326 if (page->index == xas.xa_index)
aa65c29c 327 page->mapping = NULL;
4101196b
MWO
328 /* Leave page->index set: truncation lookup relies on it */
329
330 /*
331 * Move to the next page in the vector if this is a regular
332 * page or the index is of the last sub-page of this compound
333 * page.
334 */
335 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 336 i++;
ef8e5717 337 xas_store(&xas, NULL);
aa65c29c
JK
338 total_pages++;
339 }
340 mapping->nrpages -= total_pages;
341}
342
343void delete_from_page_cache_batch(struct address_space *mapping,
344 struct pagevec *pvec)
345{
346 int i;
347 unsigned long flags;
348
349 if (!pagevec_count(pvec))
350 return;
351
b93b0163 352 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
353 for (i = 0; i < pagevec_count(pvec); i++) {
354 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
355
356 unaccount_page_cache_page(mapping, pvec->pages[i]);
357 }
ef8e5717 358 page_cache_delete_batch(mapping, pvec);
b93b0163 359 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
360
361 for (i = 0; i < pagevec_count(pvec); i++)
362 page_cache_free_page(mapping, pvec->pages[i]);
363}
364
d72d9e2a 365int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
366{
367 int ret = 0;
368 /* Check for outstanding write errors */
7fcbbaf1
JA
369 if (test_bit(AS_ENOSPC, &mapping->flags) &&
370 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 371 ret = -ENOSPC;
7fcbbaf1
JA
372 if (test_bit(AS_EIO, &mapping->flags) &&
373 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
374 ret = -EIO;
375 return ret;
376}
d72d9e2a 377EXPORT_SYMBOL(filemap_check_errors);
865ffef3 378
76341cab
JL
379static int filemap_check_and_keep_errors(struct address_space *mapping)
380{
381 /* Check for outstanding write errors */
382 if (test_bit(AS_EIO, &mapping->flags))
383 return -EIO;
384 if (test_bit(AS_ENOSPC, &mapping->flags))
385 return -ENOSPC;
386 return 0;
387}
388
1da177e4 389/**
485bb99b 390 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
391 * @mapping: address space structure to write
392 * @start: offset in bytes where the range starts
469eb4d0 393 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 394 * @sync_mode: enable synchronous operation
1da177e4 395 *
485bb99b
RD
396 * Start writeback against all of a mapping's dirty pages that lie
397 * within the byte offsets <start, end> inclusive.
398 *
1da177e4 399 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 400 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
401 * these two operations is that if a dirty page/buffer is encountered, it must
402 * be waited upon, and not just skipped over.
a862f68a
MR
403 *
404 * Return: %0 on success, negative error code otherwise.
1da177e4 405 */
ebcf28e1
AM
406int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
407 loff_t end, int sync_mode)
1da177e4
LT
408{
409 int ret;
410 struct writeback_control wbc = {
411 .sync_mode = sync_mode,
05fe478d 412 .nr_to_write = LONG_MAX,
111ebb6e
OH
413 .range_start = start,
414 .range_end = end,
1da177e4
LT
415 };
416
f56753ac 417 if (!mapping_can_writeback(mapping) ||
c3aab9a0 418 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1da177e4
LT
419 return 0;
420
b16b1deb 421 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 422 ret = do_writepages(mapping, &wbc);
b16b1deb 423 wbc_detach_inode(&wbc);
1da177e4
LT
424 return ret;
425}
426
427static inline int __filemap_fdatawrite(struct address_space *mapping,
428 int sync_mode)
429{
111ebb6e 430 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
431}
432
433int filemap_fdatawrite(struct address_space *mapping)
434{
435 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
436}
437EXPORT_SYMBOL(filemap_fdatawrite);
438
f4c0a0fd 439int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 440 loff_t end)
1da177e4
LT
441{
442 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
443}
f4c0a0fd 444EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 445
485bb99b
RD
446/**
447 * filemap_flush - mostly a non-blocking flush
448 * @mapping: target address_space
449 *
1da177e4
LT
450 * This is a mostly non-blocking flush. Not suitable for data-integrity
451 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
452 *
453 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
454 */
455int filemap_flush(struct address_space *mapping)
456{
457 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
458}
459EXPORT_SYMBOL(filemap_flush);
460
7fc9e472
GR
461/**
462 * filemap_range_has_page - check if a page exists in range.
463 * @mapping: address space within which to check
464 * @start_byte: offset in bytes where the range starts
465 * @end_byte: offset in bytes where the range ends (inclusive)
466 *
467 * Find at least one page in the range supplied, usually used to check if
468 * direct writing in this range will trigger a writeback.
a862f68a
MR
469 *
470 * Return: %true if at least one page exists in the specified range,
471 * %false otherwise.
7fc9e472
GR
472 */
473bool filemap_range_has_page(struct address_space *mapping,
474 loff_t start_byte, loff_t end_byte)
475{
f7b68046 476 struct page *page;
8fa8e538
MW
477 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
478 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
479
480 if (end_byte < start_byte)
481 return false;
482
8fa8e538
MW
483 rcu_read_lock();
484 for (;;) {
485 page = xas_find(&xas, max);
486 if (xas_retry(&xas, page))
487 continue;
488 /* Shadow entries don't count */
489 if (xa_is_value(page))
490 continue;
491 /*
492 * We don't need to try to pin this page; we're about to
493 * release the RCU lock anyway. It is enough to know that
494 * there was a page here recently.
495 */
496 break;
497 }
498 rcu_read_unlock();
7fc9e472 499
8fa8e538 500 return page != NULL;
7fc9e472
GR
501}
502EXPORT_SYMBOL(filemap_range_has_page);
503
5e8fcc1a 504static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 505 loff_t start_byte, loff_t end_byte)
1da177e4 506{
09cbfeaf
KS
507 pgoff_t index = start_byte >> PAGE_SHIFT;
508 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
509 struct pagevec pvec;
510 int nr_pages;
1da177e4 511
94004ed7 512 if (end_byte < start_byte)
5e8fcc1a 513 return;
1da177e4 514
86679820 515 pagevec_init(&pvec);
312e9d2f 516 while (index <= end) {
1da177e4
LT
517 unsigned i;
518
312e9d2f 519 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 520 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
521 if (!nr_pages)
522 break;
523
1da177e4
LT
524 for (i = 0; i < nr_pages; i++) {
525 struct page *page = pvec.pages[i];
526
1da177e4 527 wait_on_page_writeback(page);
5e8fcc1a 528 ClearPageError(page);
1da177e4
LT
529 }
530 pagevec_release(&pvec);
531 cond_resched();
532 }
aa750fd7
JN
533}
534
535/**
536 * filemap_fdatawait_range - wait for writeback to complete
537 * @mapping: address space structure to wait for
538 * @start_byte: offset in bytes where the range starts
539 * @end_byte: offset in bytes where the range ends (inclusive)
540 *
541 * Walk the list of under-writeback pages of the given address space
542 * in the given range and wait for all of them. Check error status of
543 * the address space and return it.
544 *
545 * Since the error status of the address space is cleared by this function,
546 * callers are responsible for checking the return value and handling and/or
547 * reporting the error.
a862f68a
MR
548 *
549 * Return: error status of the address space.
aa750fd7
JN
550 */
551int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
552 loff_t end_byte)
553{
5e8fcc1a
JL
554 __filemap_fdatawait_range(mapping, start_byte, end_byte);
555 return filemap_check_errors(mapping);
1da177e4 556}
d3bccb6f
JK
557EXPORT_SYMBOL(filemap_fdatawait_range);
558
aa0bfcd9
RZ
559/**
560 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
561 * @mapping: address space structure to wait for
562 * @start_byte: offset in bytes where the range starts
563 * @end_byte: offset in bytes where the range ends (inclusive)
564 *
565 * Walk the list of under-writeback pages of the given address space in the
566 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
567 * this function does not clear error status of the address space.
568 *
569 * Use this function if callers don't handle errors themselves. Expected
570 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
571 * fsfreeze(8)
572 */
573int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
574 loff_t start_byte, loff_t end_byte)
575{
576 __filemap_fdatawait_range(mapping, start_byte, end_byte);
577 return filemap_check_and_keep_errors(mapping);
578}
579EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
580
a823e458
JL
581/**
582 * file_fdatawait_range - wait for writeback to complete
583 * @file: file pointing to address space structure to wait for
584 * @start_byte: offset in bytes where the range starts
585 * @end_byte: offset in bytes where the range ends (inclusive)
586 *
587 * Walk the list of under-writeback pages of the address space that file
588 * refers to, in the given range and wait for all of them. Check error
589 * status of the address space vs. the file->f_wb_err cursor and return it.
590 *
591 * Since the error status of the file is advanced by this function,
592 * callers are responsible for checking the return value and handling and/or
593 * reporting the error.
a862f68a
MR
594 *
595 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
596 */
597int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
598{
599 struct address_space *mapping = file->f_mapping;
600
601 __filemap_fdatawait_range(mapping, start_byte, end_byte);
602 return file_check_and_advance_wb_err(file);
603}
604EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 605
aa750fd7
JN
606/**
607 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
608 * @mapping: address space structure to wait for
609 *
610 * Walk the list of under-writeback pages of the given address space
611 * and wait for all of them. Unlike filemap_fdatawait(), this function
612 * does not clear error status of the address space.
613 *
614 * Use this function if callers don't handle errors themselves. Expected
615 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
616 * fsfreeze(8)
a862f68a
MR
617 *
618 * Return: error status of the address space.
aa750fd7 619 */
76341cab 620int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 621{
ffb959bb 622 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 623 return filemap_check_and_keep_errors(mapping);
aa750fd7 624}
76341cab 625EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 626
875d91b1 627/* Returns true if writeback might be needed or already in progress. */
9326c9b2 628static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 629{
875d91b1
KK
630 if (dax_mapping(mapping))
631 return mapping->nrexceptional;
632
633 return mapping->nrpages;
1da177e4 634}
1da177e4 635
485bb99b
RD
636/**
637 * filemap_write_and_wait_range - write out & wait on a file range
638 * @mapping: the address_space for the pages
639 * @lstart: offset in bytes where the range starts
640 * @lend: offset in bytes where the range ends (inclusive)
641 *
469eb4d0
AM
642 * Write out and wait upon file offsets lstart->lend, inclusive.
643 *
0e056eb5 644 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 645 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
646 *
647 * Return: error status of the address space.
469eb4d0 648 */
1da177e4
LT
649int filemap_write_and_wait_range(struct address_space *mapping,
650 loff_t lstart, loff_t lend)
651{
28fd1298 652 int err = 0;
1da177e4 653
9326c9b2 654 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
655 err = __filemap_fdatawrite_range(mapping, lstart, lend,
656 WB_SYNC_ALL);
ddf8f376
IW
657 /*
658 * Even if the above returned error, the pages may be
659 * written partially (e.g. -ENOSPC), so we wait for it.
660 * But the -EIO is special case, it may indicate the worst
661 * thing (e.g. bug) happened, so we avoid waiting for it.
662 */
28fd1298 663 if (err != -EIO) {
94004ed7
CH
664 int err2 = filemap_fdatawait_range(mapping,
665 lstart, lend);
28fd1298
OH
666 if (!err)
667 err = err2;
cbeaf951
JL
668 } else {
669 /* Clear any previously stored errors */
670 filemap_check_errors(mapping);
28fd1298 671 }
865ffef3
DM
672 } else {
673 err = filemap_check_errors(mapping);
1da177e4 674 }
28fd1298 675 return err;
1da177e4 676}
f6995585 677EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 678
5660e13d
JL
679void __filemap_set_wb_err(struct address_space *mapping, int err)
680{
3acdfd28 681 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
682
683 trace_filemap_set_wb_err(mapping, eseq);
684}
685EXPORT_SYMBOL(__filemap_set_wb_err);
686
687/**
688 * file_check_and_advance_wb_err - report wb error (if any) that was previously
689 * and advance wb_err to current one
690 * @file: struct file on which the error is being reported
691 *
692 * When userland calls fsync (or something like nfsd does the equivalent), we
693 * want to report any writeback errors that occurred since the last fsync (or
694 * since the file was opened if there haven't been any).
695 *
696 * Grab the wb_err from the mapping. If it matches what we have in the file,
697 * then just quickly return 0. The file is all caught up.
698 *
699 * If it doesn't match, then take the mapping value, set the "seen" flag in
700 * it and try to swap it into place. If it works, or another task beat us
701 * to it with the new value, then update the f_wb_err and return the error
702 * portion. The error at this point must be reported via proper channels
703 * (a'la fsync, or NFS COMMIT operation, etc.).
704 *
705 * While we handle mapping->wb_err with atomic operations, the f_wb_err
706 * value is protected by the f_lock since we must ensure that it reflects
707 * the latest value swapped in for this file descriptor.
a862f68a
MR
708 *
709 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
710 */
711int file_check_and_advance_wb_err(struct file *file)
712{
713 int err = 0;
714 errseq_t old = READ_ONCE(file->f_wb_err);
715 struct address_space *mapping = file->f_mapping;
716
717 /* Locklessly handle the common case where nothing has changed */
718 if (errseq_check(&mapping->wb_err, old)) {
719 /* Something changed, must use slow path */
720 spin_lock(&file->f_lock);
721 old = file->f_wb_err;
722 err = errseq_check_and_advance(&mapping->wb_err,
723 &file->f_wb_err);
724 trace_file_check_and_advance_wb_err(file, old);
725 spin_unlock(&file->f_lock);
726 }
f4e222c5
JL
727
728 /*
729 * We're mostly using this function as a drop in replacement for
730 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
731 * that the legacy code would have had on these flags.
732 */
733 clear_bit(AS_EIO, &mapping->flags);
734 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
735 return err;
736}
737EXPORT_SYMBOL(file_check_and_advance_wb_err);
738
739/**
740 * file_write_and_wait_range - write out & wait on a file range
741 * @file: file pointing to address_space with pages
742 * @lstart: offset in bytes where the range starts
743 * @lend: offset in bytes where the range ends (inclusive)
744 *
745 * Write out and wait upon file offsets lstart->lend, inclusive.
746 *
747 * Note that @lend is inclusive (describes the last byte to be written) so
748 * that this function can be used to write to the very end-of-file (end = -1).
749 *
750 * After writing out and waiting on the data, we check and advance the
751 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
752 *
753 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
754 */
755int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
756{
757 int err = 0, err2;
758 struct address_space *mapping = file->f_mapping;
759
9326c9b2 760 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
761 err = __filemap_fdatawrite_range(mapping, lstart, lend,
762 WB_SYNC_ALL);
763 /* See comment of filemap_write_and_wait() */
764 if (err != -EIO)
765 __filemap_fdatawait_range(mapping, lstart, lend);
766 }
767 err2 = file_check_and_advance_wb_err(file);
768 if (!err)
769 err = err2;
770 return err;
771}
772EXPORT_SYMBOL(file_write_and_wait_range);
773
ef6a3c63
MS
774/**
775 * replace_page_cache_page - replace a pagecache page with a new one
776 * @old: page to be replaced
777 * @new: page to replace with
778 * @gfp_mask: allocation mode
779 *
780 * This function replaces a page in the pagecache with a new one. On
781 * success it acquires the pagecache reference for the new page and
782 * drops it for the old page. Both the old and new pages must be
783 * locked. This function does not add the new page to the LRU, the
784 * caller must do that.
785 *
74d60958 786 * The remove + add is atomic. This function cannot fail.
a862f68a
MR
787 *
788 * Return: %0
ef6a3c63
MS
789 */
790int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
791{
74d60958
MW
792 struct address_space *mapping = old->mapping;
793 void (*freepage)(struct page *) = mapping->a_ops->freepage;
794 pgoff_t offset = old->index;
795 XA_STATE(xas, &mapping->i_pages, offset);
796 unsigned long flags;
ef6a3c63 797
309381fe
SL
798 VM_BUG_ON_PAGE(!PageLocked(old), old);
799 VM_BUG_ON_PAGE(!PageLocked(new), new);
800 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 801
74d60958
MW
802 get_page(new);
803 new->mapping = mapping;
804 new->index = offset;
ef6a3c63 805
0d1c2072
JW
806 mem_cgroup_migrate(old, new);
807
74d60958
MW
808 xas_lock_irqsave(&xas, flags);
809 xas_store(&xas, new);
4165b9b4 810
74d60958
MW
811 old->mapping = NULL;
812 /* hugetlb pages do not participate in page cache accounting. */
813 if (!PageHuge(old))
0d1c2072 814 __dec_lruvec_page_state(old, NR_FILE_PAGES);
74d60958 815 if (!PageHuge(new))
0d1c2072 816 __inc_lruvec_page_state(new, NR_FILE_PAGES);
74d60958 817 if (PageSwapBacked(old))
0d1c2072 818 __dec_lruvec_page_state(old, NR_SHMEM);
74d60958 819 if (PageSwapBacked(new))
0d1c2072 820 __inc_lruvec_page_state(new, NR_SHMEM);
74d60958 821 xas_unlock_irqrestore(&xas, flags);
74d60958
MW
822 if (freepage)
823 freepage(old);
824 put_page(old);
ef6a3c63 825
74d60958 826 return 0;
ef6a3c63
MS
827}
828EXPORT_SYMBOL_GPL(replace_page_cache_page);
829
a528910e
JW
830static int __add_to_page_cache_locked(struct page *page,
831 struct address_space *mapping,
832 pgoff_t offset, gfp_t gfp_mask,
833 void **shadowp)
1da177e4 834{
74d60958 835 XA_STATE(xas, &mapping->i_pages, offset);
00501b53 836 int huge = PageHuge(page);
e286781d 837 int error;
74d60958 838 void *old;
e286781d 839
309381fe
SL
840 VM_BUG_ON_PAGE(!PageLocked(page), page);
841 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 842 mapping_set_update(&xas, mapping);
e286781d 843
09cbfeaf 844 get_page(page);
66a0c8ee
KS
845 page->mapping = mapping;
846 page->index = offset;
847
3fea5a49 848 if (!huge) {
d9eb1ea2 849 error = mem_cgroup_charge(page, current->mm, gfp_mask);
3fea5a49
JW
850 if (error)
851 goto error;
852 }
853
74d60958
MW
854 do {
855 xas_lock_irq(&xas);
856 old = xas_load(&xas);
857 if (old && !xa_is_value(old))
858 xas_set_err(&xas, -EEXIST);
859 xas_store(&xas, page);
860 if (xas_error(&xas))
861 goto unlock;
862
863 if (xa_is_value(old)) {
864 mapping->nrexceptional--;
865 if (shadowp)
866 *shadowp = old;
867 }
868 mapping->nrpages++;
869
870 /* hugetlb pages do not participate in page cache accounting */
871 if (!huge)
0d1c2072 872 __inc_lruvec_page_state(page, NR_FILE_PAGES);
74d60958
MW
873unlock:
874 xas_unlock_irq(&xas);
875 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
876
3fea5a49
JW
877 if (xas_error(&xas)) {
878 error = xas_error(&xas);
74d60958 879 goto error;
3fea5a49 880 }
4165b9b4 881
66a0c8ee
KS
882 trace_mm_filemap_add_to_page_cache(page);
883 return 0;
74d60958 884error:
66a0c8ee
KS
885 page->mapping = NULL;
886 /* Leave page->index set: truncation relies upon it */
09cbfeaf 887 put_page(page);
3fea5a49 888 return error;
1da177e4 889}
cfcbfb13 890ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
a528910e
JW
891
892/**
893 * add_to_page_cache_locked - add a locked page to the pagecache
894 * @page: page to add
895 * @mapping: the page's address_space
896 * @offset: page index
897 * @gfp_mask: page allocation mode
898 *
899 * This function is used to add a page to the pagecache. It must be locked.
900 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
901 *
902 * Return: %0 on success, negative error code otherwise.
a528910e
JW
903 */
904int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
905 pgoff_t offset, gfp_t gfp_mask)
906{
907 return __add_to_page_cache_locked(page, mapping, offset,
908 gfp_mask, NULL);
909}
e286781d 910EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
911
912int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 913 pgoff_t offset, gfp_t gfp_mask)
1da177e4 914{
a528910e 915 void *shadow = NULL;
4f98a2fe
RR
916 int ret;
917
48c935ad 918 __SetPageLocked(page);
a528910e
JW
919 ret = __add_to_page_cache_locked(page, mapping, offset,
920 gfp_mask, &shadow);
921 if (unlikely(ret))
48c935ad 922 __ClearPageLocked(page);
a528910e
JW
923 else {
924 /*
925 * The page might have been evicted from cache only
926 * recently, in which case it should be activated like
927 * any other repeatedly accessed page.
f0281a00
RR
928 * The exception is pages getting rewritten; evicting other
929 * data from the working set, only to cache data that will
930 * get overwritten with something else, is a waste of memory.
a528910e 931 */
1899ad18
JW
932 WARN_ON_ONCE(PageActive(page));
933 if (!(gfp_mask & __GFP_WRITE) && shadow)
934 workingset_refault(page, shadow);
a528910e
JW
935 lru_cache_add(page);
936 }
1da177e4
LT
937 return ret;
938}
18bc0bbd 939EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 940
44110fe3 941#ifdef CONFIG_NUMA
2ae88149 942struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 943{
c0ff7453
MX
944 int n;
945 struct page *page;
946
44110fe3 947 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
948 unsigned int cpuset_mems_cookie;
949 do {
d26914d1 950 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 951 n = cpuset_mem_spread_node();
96db800f 952 page = __alloc_pages_node(n, gfp, 0);
d26914d1 953 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 954
c0ff7453 955 return page;
44110fe3 956 }
2ae88149 957 return alloc_pages(gfp, 0);
44110fe3 958}
2ae88149 959EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
960#endif
961
1da177e4
LT
962/*
963 * In order to wait for pages to become available there must be
964 * waitqueues associated with pages. By using a hash table of
965 * waitqueues where the bucket discipline is to maintain all
966 * waiters on the same queue and wake all when any of the pages
967 * become available, and for the woken contexts to check to be
968 * sure the appropriate page became available, this saves space
969 * at a cost of "thundering herd" phenomena during rare hash
970 * collisions.
971 */
62906027
NP
972#define PAGE_WAIT_TABLE_BITS 8
973#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
974static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
975
976static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 977{
62906027 978 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 979}
1da177e4 980
62906027 981void __init pagecache_init(void)
1da177e4 982{
62906027 983 int i;
1da177e4 984
62906027
NP
985 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
986 init_waitqueue_head(&page_wait_table[i]);
987
988 page_writeback_init();
1da177e4 989}
1da177e4 990
5ef64cc8
LT
991/*
992 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 993 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
994 * one.
995 *
996 * We have:
997 *
998 * (a) no special bits set:
999 *
1000 * We're just waiting for the bit to be released, and when a waker
1001 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1002 * and remove it from the wait queue.
1003 *
1004 * Simple and straightforward.
1005 *
1006 * (b) WQ_FLAG_EXCLUSIVE:
1007 *
1008 * The waiter is waiting to get the lock, and only one waiter should
1009 * be woken up to avoid any thundering herd behavior. We'll set the
1010 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1011 *
1012 * This is the traditional exclusive wait.
1013 *
5868ec26 1014 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1015 *
1016 * The waiter is waiting to get the bit, and additionally wants the
1017 * lock to be transferred to it for fair lock behavior. If the lock
1018 * cannot be taken, we stop walking the wait queue without waking
1019 * the waiter.
1020 *
1021 * This is the "fair lock handoff" case, and in addition to setting
1022 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1023 * that it now has the lock.
1024 */
ac6424b9 1025static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1026{
5ef64cc8 1027 unsigned int flags;
62906027
NP
1028 struct wait_page_key *key = arg;
1029 struct wait_page_queue *wait_page
1030 = container_of(wait, struct wait_page_queue, wait);
1031
cdc8fcb4 1032 if (!wake_page_match(wait_page, key))
62906027 1033 return 0;
3510ca20 1034
9a1ea439 1035 /*
5ef64cc8
LT
1036 * If it's a lock handoff wait, we get the bit for it, and
1037 * stop walking (and do not wake it up) if we can't.
9a1ea439 1038 */
5ef64cc8
LT
1039 flags = wait->flags;
1040 if (flags & WQ_FLAG_EXCLUSIVE) {
1041 if (test_bit(key->bit_nr, &key->page->flags))
2a9127fc 1042 return -1;
5ef64cc8
LT
1043 if (flags & WQ_FLAG_CUSTOM) {
1044 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1045 return -1;
1046 flags |= WQ_FLAG_DONE;
1047 }
2a9127fc 1048 }
f62e00cc 1049
5ef64cc8
LT
1050 /*
1051 * We are holding the wait-queue lock, but the waiter that
1052 * is waiting for this will be checking the flags without
1053 * any locking.
1054 *
1055 * So update the flags atomically, and wake up the waiter
1056 * afterwards to avoid any races. This store-release pairs
1057 * with the load-acquire in wait_on_page_bit_common().
1058 */
1059 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1060 wake_up_state(wait->private, mode);
1061
1062 /*
1063 * Ok, we have successfully done what we're waiting for,
1064 * and we can unconditionally remove the wait entry.
1065 *
5ef64cc8
LT
1066 * Note that this pairs with the "finish_wait()" in the
1067 * waiter, and has to be the absolute last thing we do.
1068 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1069 * might be de-allocated and the process might even have
1070 * exited.
2a9127fc 1071 */
c6fe44d9 1072 list_del_init_careful(&wait->entry);
5ef64cc8 1073 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1074}
1075
74d81bfa 1076static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1077{
62906027
NP
1078 wait_queue_head_t *q = page_waitqueue(page);
1079 struct wait_page_key key;
1080 unsigned long flags;
11a19c7b 1081 wait_queue_entry_t bookmark;
cbbce822 1082
62906027
NP
1083 key.page = page;
1084 key.bit_nr = bit_nr;
1085 key.page_match = 0;
1086
11a19c7b
TC
1087 bookmark.flags = 0;
1088 bookmark.private = NULL;
1089 bookmark.func = NULL;
1090 INIT_LIST_HEAD(&bookmark.entry);
1091
62906027 1092 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1093 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1094
1095 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1096 /*
1097 * Take a breather from holding the lock,
1098 * allow pages that finish wake up asynchronously
1099 * to acquire the lock and remove themselves
1100 * from wait queue
1101 */
1102 spin_unlock_irqrestore(&q->lock, flags);
1103 cpu_relax();
1104 spin_lock_irqsave(&q->lock, flags);
1105 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1106 }
1107
62906027
NP
1108 /*
1109 * It is possible for other pages to have collided on the waitqueue
1110 * hash, so in that case check for a page match. That prevents a long-
1111 * term waiter
1112 *
1113 * It is still possible to miss a case here, when we woke page waiters
1114 * and removed them from the waitqueue, but there are still other
1115 * page waiters.
1116 */
1117 if (!waitqueue_active(q) || !key.page_match) {
1118 ClearPageWaiters(page);
1119 /*
1120 * It's possible to miss clearing Waiters here, when we woke
1121 * our page waiters, but the hashed waitqueue has waiters for
1122 * other pages on it.
1123 *
1124 * That's okay, it's a rare case. The next waker will clear it.
1125 */
1126 }
1127 spin_unlock_irqrestore(&q->lock, flags);
1128}
74d81bfa
NP
1129
1130static void wake_up_page(struct page *page, int bit)
1131{
1132 if (!PageWaiters(page))
1133 return;
1134 wake_up_page_bit(page, bit);
1135}
62906027 1136
9a1ea439
HD
1137/*
1138 * A choice of three behaviors for wait_on_page_bit_common():
1139 */
1140enum behavior {
1141 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1142 * __lock_page() waiting on then setting PG_locked.
1143 */
1144 SHARED, /* Hold ref to page and check the bit when woken, like
1145 * wait_on_page_writeback() waiting on PG_writeback.
1146 */
1147 DROP, /* Drop ref to page before wait, no check when woken,
1148 * like put_and_wait_on_page_locked() on PG_locked.
1149 */
1150};
1151
2a9127fc 1152/*
5ef64cc8
LT
1153 * Attempt to check (or get) the page bit, and mark us done
1154 * if successful.
2a9127fc
LT
1155 */
1156static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1157 struct wait_queue_entry *wait)
1158{
1159 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1160 if (test_and_set_bit(bit_nr, &page->flags))
1161 return false;
1162 } else if (test_bit(bit_nr, &page->flags))
1163 return false;
1164
5ef64cc8 1165 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1166 return true;
1167}
1168
5ef64cc8
LT
1169/* How many times do we accept lock stealing from under a waiter? */
1170int sysctl_page_lock_unfairness = 5;
1171
62906027 1172static inline int wait_on_page_bit_common(wait_queue_head_t *q,
9a1ea439 1173 struct page *page, int bit_nr, int state, enum behavior behavior)
62906027 1174{
5ef64cc8 1175 int unfairness = sysctl_page_lock_unfairness;
62906027 1176 struct wait_page_queue wait_page;
ac6424b9 1177 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1178 bool thrashing = false;
9a1ea439 1179 bool delayacct = false;
eb414681 1180 unsigned long pflags;
62906027 1181
eb414681 1182 if (bit_nr == PG_locked &&
b1d29ba8 1183 !PageUptodate(page) && PageWorkingset(page)) {
9a1ea439 1184 if (!PageSwapBacked(page)) {
eb414681 1185 delayacct_thrashing_start();
9a1ea439
HD
1186 delayacct = true;
1187 }
eb414681 1188 psi_memstall_enter(&pflags);
b1d29ba8
JW
1189 thrashing = true;
1190 }
1191
62906027
NP
1192 init_wait(wait);
1193 wait->func = wake_page_function;
1194 wait_page.page = page;
1195 wait_page.bit_nr = bit_nr;
1196
5ef64cc8
LT
1197repeat:
1198 wait->flags = 0;
1199 if (behavior == EXCLUSIVE) {
1200 wait->flags = WQ_FLAG_EXCLUSIVE;
1201 if (--unfairness < 0)
1202 wait->flags |= WQ_FLAG_CUSTOM;
1203 }
1204
2a9127fc
LT
1205 /*
1206 * Do one last check whether we can get the
1207 * page bit synchronously.
1208 *
1209 * Do the SetPageWaiters() marking before that
1210 * to let any waker we _just_ missed know they
1211 * need to wake us up (otherwise they'll never
1212 * even go to the slow case that looks at the
1213 * page queue), and add ourselves to the wait
1214 * queue if we need to sleep.
1215 *
1216 * This part needs to be done under the queue
1217 * lock to avoid races.
1218 */
1219 spin_lock_irq(&q->lock);
1220 SetPageWaiters(page);
1221 if (!trylock_page_bit_common(page, bit_nr, wait))
1222 __add_wait_queue_entry_tail(q, wait);
1223 spin_unlock_irq(&q->lock);
62906027 1224
2a9127fc
LT
1225 /*
1226 * From now on, all the logic will be based on
5ef64cc8
LT
1227 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1228 * see whether the page bit testing has already
1229 * been done by the wake function.
2a9127fc
LT
1230 *
1231 * We can drop our reference to the page.
1232 */
1233 if (behavior == DROP)
1234 put_page(page);
62906027 1235
5ef64cc8
LT
1236 /*
1237 * Note that until the "finish_wait()", or until
1238 * we see the WQ_FLAG_WOKEN flag, we need to
1239 * be very careful with the 'wait->flags', because
1240 * we may race with a waker that sets them.
1241 */
2a9127fc 1242 for (;;) {
5ef64cc8
LT
1243 unsigned int flags;
1244
62906027
NP
1245 set_current_state(state);
1246
5ef64cc8
LT
1247 /* Loop until we've been woken or interrupted */
1248 flags = smp_load_acquire(&wait->flags);
1249 if (!(flags & WQ_FLAG_WOKEN)) {
1250 if (signal_pending_state(state, current))
1251 break;
1252
1253 io_schedule();
1254 continue;
1255 }
1256
1257 /* If we were non-exclusive, we're done */
1258 if (behavior != EXCLUSIVE)
a8b169af 1259 break;
9a1ea439 1260
5ef64cc8
LT
1261 /* If the waker got the lock for us, we're done */
1262 if (flags & WQ_FLAG_DONE)
9a1ea439 1263 break;
2a9127fc 1264
5ef64cc8
LT
1265 /*
1266 * Otherwise, if we're getting the lock, we need to
1267 * try to get it ourselves.
1268 *
1269 * And if that fails, we'll have to retry this all.
1270 */
1271 if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1272 goto repeat;
1273
1274 wait->flags |= WQ_FLAG_DONE;
1275 break;
62906027
NP
1276 }
1277
5ef64cc8
LT
1278 /*
1279 * If a signal happened, this 'finish_wait()' may remove the last
1280 * waiter from the wait-queues, but the PageWaiters bit will remain
1281 * set. That's ok. The next wakeup will take care of it, and trying
1282 * to do it here would be difficult and prone to races.
1283 */
62906027
NP
1284 finish_wait(q, wait);
1285
eb414681 1286 if (thrashing) {
9a1ea439 1287 if (delayacct)
eb414681
JW
1288 delayacct_thrashing_end();
1289 psi_memstall_leave(&pflags);
1290 }
b1d29ba8 1291
62906027 1292 /*
5ef64cc8
LT
1293 * NOTE! The wait->flags weren't stable until we've done the
1294 * 'finish_wait()', and we could have exited the loop above due
1295 * to a signal, and had a wakeup event happen after the signal
1296 * test but before the 'finish_wait()'.
1297 *
1298 * So only after the finish_wait() can we reliably determine
1299 * if we got woken up or not, so we can now figure out the final
1300 * return value based on that state without races.
1301 *
1302 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1303 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1304 */
5ef64cc8
LT
1305 if (behavior == EXCLUSIVE)
1306 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1307
2a9127fc 1308 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1309}
1310
1311void wait_on_page_bit(struct page *page, int bit_nr)
1312{
1313 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1314 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027
NP
1315}
1316EXPORT_SYMBOL(wait_on_page_bit);
1317
1318int wait_on_page_bit_killable(struct page *page, int bit_nr)
1319{
1320 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1321 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1322}
4343d008 1323EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1324
dd3e6d50
JA
1325static int __wait_on_page_locked_async(struct page *page,
1326 struct wait_page_queue *wait, bool set)
1327{
1328 struct wait_queue_head *q = page_waitqueue(page);
1329 int ret = 0;
1330
1331 wait->page = page;
1332 wait->bit_nr = PG_locked;
1333
1334 spin_lock_irq(&q->lock);
1335 __add_wait_queue_entry_tail(q, &wait->wait);
1336 SetPageWaiters(page);
1337 if (set)
1338 ret = !trylock_page(page);
1339 else
1340 ret = PageLocked(page);
1341 /*
1342 * If we were succesful now, we know we're still on the
1343 * waitqueue as we're still under the lock. This means it's
1344 * safe to remove and return success, we know the callback
1345 * isn't going to trigger.
1346 */
1347 if (!ret)
1348 __remove_wait_queue(q, &wait->wait);
1349 else
1350 ret = -EIOCBQUEUED;
1351 spin_unlock_irq(&q->lock);
1352 return ret;
1353}
1354
1a0a7853
JA
1355static int wait_on_page_locked_async(struct page *page,
1356 struct wait_page_queue *wait)
1357{
1358 if (!PageLocked(page))
1359 return 0;
1360 return __wait_on_page_locked_async(compound_head(page), wait, false);
1361}
1362
9a1ea439
HD
1363/**
1364 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1365 * @page: The page to wait for.
1366 *
1367 * The caller should hold a reference on @page. They expect the page to
1368 * become unlocked relatively soon, but do not wish to hold up migration
1369 * (for example) by holding the reference while waiting for the page to
1370 * come unlocked. After this function returns, the caller should not
1371 * dereference @page.
1372 */
1373void put_and_wait_on_page_locked(struct page *page)
1374{
1375 wait_queue_head_t *q;
1376
1377 page = compound_head(page);
1378 q = page_waitqueue(page);
1379 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1380}
1381
385e1ca5
DH
1382/**
1383 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1384 * @page: Page defining the wait queue of interest
1385 * @waiter: Waiter to add to the queue
385e1ca5
DH
1386 *
1387 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1388 */
ac6424b9 1389void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1390{
1391 wait_queue_head_t *q = page_waitqueue(page);
1392 unsigned long flags;
1393
1394 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1395 __add_wait_queue_entry_tail(q, waiter);
62906027 1396 SetPageWaiters(page);
385e1ca5
DH
1397 spin_unlock_irqrestore(&q->lock, flags);
1398}
1399EXPORT_SYMBOL_GPL(add_page_wait_queue);
1400
b91e1302
LT
1401#ifndef clear_bit_unlock_is_negative_byte
1402
1403/*
1404 * PG_waiters is the high bit in the same byte as PG_lock.
1405 *
1406 * On x86 (and on many other architectures), we can clear PG_lock and
1407 * test the sign bit at the same time. But if the architecture does
1408 * not support that special operation, we just do this all by hand
1409 * instead.
1410 *
1411 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1412 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1413 * in the same byte as PG_locked.
1414 */
1415static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1416{
1417 clear_bit_unlock(nr, mem);
1418 /* smp_mb__after_atomic(); */
98473f9f 1419 return test_bit(PG_waiters, mem);
b91e1302
LT
1420}
1421
1422#endif
1423
1da177e4 1424/**
485bb99b 1425 * unlock_page - unlock a locked page
1da177e4
LT
1426 * @page: the page
1427 *
1428 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1429 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1430 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1431 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1432 *
b91e1302
LT
1433 * Note that this depends on PG_waiters being the sign bit in the byte
1434 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1435 * clear the PG_locked bit and test PG_waiters at the same time fairly
1436 * portably (architectures that do LL/SC can test any bit, while x86 can
1437 * test the sign bit).
1da177e4 1438 */
920c7a5d 1439void unlock_page(struct page *page)
1da177e4 1440{
b91e1302 1441 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1442 page = compound_head(page);
309381fe 1443 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1444 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1445 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1446}
1447EXPORT_SYMBOL(unlock_page);
1448
485bb99b
RD
1449/**
1450 * end_page_writeback - end writeback against a page
1451 * @page: the page
1da177e4
LT
1452 */
1453void end_page_writeback(struct page *page)
1454{
888cf2db
MG
1455 /*
1456 * TestClearPageReclaim could be used here but it is an atomic
1457 * operation and overkill in this particular case. Failing to
1458 * shuffle a page marked for immediate reclaim is too mild to
1459 * justify taking an atomic operation penalty at the end of
1460 * ever page writeback.
1461 */
1462 if (PageReclaim(page)) {
1463 ClearPageReclaim(page);
ac6aadb2 1464 rotate_reclaimable_page(page);
888cf2db 1465 }
ac6aadb2
MS
1466
1467 if (!test_clear_page_writeback(page))
1468 BUG();
1469
4e857c58 1470 smp_mb__after_atomic();
1da177e4
LT
1471 wake_up_page(page, PG_writeback);
1472}
1473EXPORT_SYMBOL(end_page_writeback);
1474
57d99845
MW
1475/*
1476 * After completing I/O on a page, call this routine to update the page
1477 * flags appropriately
1478 */
c11f0c0b 1479void page_endio(struct page *page, bool is_write, int err)
57d99845 1480{
c11f0c0b 1481 if (!is_write) {
57d99845
MW
1482 if (!err) {
1483 SetPageUptodate(page);
1484 } else {
1485 ClearPageUptodate(page);
1486 SetPageError(page);
1487 }
1488 unlock_page(page);
abf54548 1489 } else {
57d99845 1490 if (err) {
dd8416c4
MK
1491 struct address_space *mapping;
1492
57d99845 1493 SetPageError(page);
dd8416c4
MK
1494 mapping = page_mapping(page);
1495 if (mapping)
1496 mapping_set_error(mapping, err);
57d99845
MW
1497 }
1498 end_page_writeback(page);
1499 }
1500}
1501EXPORT_SYMBOL_GPL(page_endio);
1502
485bb99b
RD
1503/**
1504 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1505 * @__page: the page to lock
1da177e4 1506 */
62906027 1507void __lock_page(struct page *__page)
1da177e4 1508{
62906027
NP
1509 struct page *page = compound_head(__page);
1510 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1511 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1512 EXCLUSIVE);
1da177e4
LT
1513}
1514EXPORT_SYMBOL(__lock_page);
1515
62906027 1516int __lock_page_killable(struct page *__page)
2687a356 1517{
62906027
NP
1518 struct page *page = compound_head(__page);
1519 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1520 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1521 EXCLUSIVE);
2687a356 1522}
18bc0bbd 1523EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1524
dd3e6d50
JA
1525int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1526{
1527 return __wait_on_page_locked_async(page, wait, true);
1528}
1529
9a95f3cf
PC
1530/*
1531 * Return values:
c1e8d7c6 1532 * 1 - page is locked; mmap_lock is still held.
9a95f3cf 1533 * 0 - page is not locked.
3e4e28c5 1534 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1535 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1536 * which case mmap_lock is still held.
9a95f3cf
PC
1537 *
1538 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
c1e8d7c6 1539 * with the page locked and the mmap_lock unperturbed.
9a95f3cf 1540 */
d065bd81
ML
1541int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1542 unsigned int flags)
1543{
4064b982 1544 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1545 /*
c1e8d7c6 1546 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1547 * even though return 0.
1548 */
1549 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1550 return 0;
1551
d8ed45c5 1552 mmap_read_unlock(mm);
37b23e05
KM
1553 if (flags & FAULT_FLAG_KILLABLE)
1554 wait_on_page_locked_killable(page);
1555 else
318b275f 1556 wait_on_page_locked(page);
d065bd81 1557 return 0;
37b23e05
KM
1558 } else {
1559 if (flags & FAULT_FLAG_KILLABLE) {
1560 int ret;
1561
1562 ret = __lock_page_killable(page);
1563 if (ret) {
d8ed45c5 1564 mmap_read_unlock(mm);
37b23e05
KM
1565 return 0;
1566 }
1567 } else
1568 __lock_page(page);
1569 return 1;
d065bd81
ML
1570 }
1571}
1572
e7b563bb 1573/**
0d3f9296
MW
1574 * page_cache_next_miss() - Find the next gap in the page cache.
1575 * @mapping: Mapping.
1576 * @index: Index.
1577 * @max_scan: Maximum range to search.
e7b563bb 1578 *
0d3f9296
MW
1579 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1580 * gap with the lowest index.
e7b563bb 1581 *
0d3f9296
MW
1582 * This function may be called under the rcu_read_lock. However, this will
1583 * not atomically search a snapshot of the cache at a single point in time.
1584 * For example, if a gap is created at index 5, then subsequently a gap is
1585 * created at index 10, page_cache_next_miss covering both indices may
1586 * return 10 if called under the rcu_read_lock.
e7b563bb 1587 *
0d3f9296
MW
1588 * Return: The index of the gap if found, otherwise an index outside the
1589 * range specified (in which case 'return - index >= max_scan' will be true).
1590 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1591 */
0d3f9296 1592pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1593 pgoff_t index, unsigned long max_scan)
1594{
0d3f9296 1595 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1596
0d3f9296
MW
1597 while (max_scan--) {
1598 void *entry = xas_next(&xas);
1599 if (!entry || xa_is_value(entry))
e7b563bb 1600 break;
0d3f9296 1601 if (xas.xa_index == 0)
e7b563bb
JW
1602 break;
1603 }
1604
0d3f9296 1605 return xas.xa_index;
e7b563bb 1606}
0d3f9296 1607EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1608
1609/**
2346a560 1610 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1611 * @mapping: Mapping.
1612 * @index: Index.
1613 * @max_scan: Maximum range to search.
e7b563bb 1614 *
0d3f9296
MW
1615 * Search the range [max(index - max_scan + 1, 0), index] for the
1616 * gap with the highest index.
e7b563bb 1617 *
0d3f9296
MW
1618 * This function may be called under the rcu_read_lock. However, this will
1619 * not atomically search a snapshot of the cache at a single point in time.
1620 * For example, if a gap is created at index 10, then subsequently a gap is
1621 * created at index 5, page_cache_prev_miss() covering both indices may
1622 * return 5 if called under the rcu_read_lock.
e7b563bb 1623 *
0d3f9296
MW
1624 * Return: The index of the gap if found, otherwise an index outside the
1625 * range specified (in which case 'index - return >= max_scan' will be true).
1626 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1627 */
0d3f9296 1628pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1629 pgoff_t index, unsigned long max_scan)
1630{
0d3f9296 1631 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1632
0d3f9296
MW
1633 while (max_scan--) {
1634 void *entry = xas_prev(&xas);
1635 if (!entry || xa_is_value(entry))
e7b563bb 1636 break;
0d3f9296 1637 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1638 break;
1639 }
1640
0d3f9296 1641 return xas.xa_index;
e7b563bb 1642}
0d3f9296 1643EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1644
485bb99b 1645/**
0cd6144a 1646 * find_get_entry - find and get a page cache entry
485bb99b 1647 * @mapping: the address_space to search
0cd6144a
JW
1648 * @offset: the page cache index
1649 *
1650 * Looks up the page cache slot at @mapping & @offset. If there is a
1651 * page cache page, it is returned with an increased refcount.
485bb99b 1652 *
139b6a6f
JW
1653 * If the slot holds a shadow entry of a previously evicted page, or a
1654 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1655 *
a862f68a 1656 * Return: the found page or shadow entry, %NULL if nothing is found.
1da177e4 1657 */
0cd6144a 1658struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1659{
4c7472c0 1660 XA_STATE(xas, &mapping->i_pages, offset);
4101196b 1661 struct page *page;
1da177e4 1662
a60637c8
NP
1663 rcu_read_lock();
1664repeat:
4c7472c0
MW
1665 xas_reset(&xas);
1666 page = xas_load(&xas);
1667 if (xas_retry(&xas, page))
1668 goto repeat;
1669 /*
1670 * A shadow entry of a recently evicted page, or a swap entry from
1671 * shmem/tmpfs. Return it without attempting to raise page count.
1672 */
1673 if (!page || xa_is_value(page))
1674 goto out;
83929372 1675
4101196b 1676 if (!page_cache_get_speculative(page))
4c7472c0 1677 goto repeat;
83929372 1678
4c7472c0 1679 /*
4101196b 1680 * Has the page moved or been split?
4c7472c0
MW
1681 * This is part of the lockless pagecache protocol. See
1682 * include/linux/pagemap.h for details.
1683 */
1684 if (unlikely(page != xas_reload(&xas))) {
4101196b 1685 put_page(page);
4c7472c0 1686 goto repeat;
a60637c8 1687 }
4101196b 1688 page = find_subpage(page, offset);
27d20fdd 1689out:
a60637c8
NP
1690 rcu_read_unlock();
1691
1da177e4
LT
1692 return page;
1693}
1da177e4 1694
0cd6144a
JW
1695/**
1696 * find_lock_entry - locate, pin and lock a page cache entry
1697 * @mapping: the address_space to search
1698 * @offset: the page cache index
1699 *
1700 * Looks up the page cache slot at @mapping & @offset. If there is a
1701 * page cache page, it is returned locked and with an increased
1702 * refcount.
1703 *
139b6a6f
JW
1704 * If the slot holds a shadow entry of a previously evicted page, or a
1705 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1706 *
0cd6144a 1707 * find_lock_entry() may sleep.
a862f68a
MR
1708 *
1709 * Return: the found page or shadow entry, %NULL if nothing is found.
0cd6144a
JW
1710 */
1711struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1712{
1713 struct page *page;
1714
1da177e4 1715repeat:
0cd6144a 1716 page = find_get_entry(mapping, offset);
4c7472c0 1717 if (page && !xa_is_value(page)) {
a60637c8
NP
1718 lock_page(page);
1719 /* Has the page been truncated? */
83929372 1720 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1721 unlock_page(page);
09cbfeaf 1722 put_page(page);
a60637c8 1723 goto repeat;
1da177e4 1724 }
83929372 1725 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1726 }
1da177e4
LT
1727 return page;
1728}
0cd6144a
JW
1729
1730/**
2294b32e
MWO
1731 * pagecache_get_page - Find and get a reference to a page.
1732 * @mapping: The address_space to search.
1733 * @index: The page index.
1734 * @fgp_flags: %FGP flags modify how the page is returned.
1735 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1736 *
2294b32e 1737 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1738 *
2294b32e 1739 * @fgp_flags can be zero or more of these flags:
0e056eb5 1740 *
2294b32e
MWO
1741 * * %FGP_ACCESSED - The page will be marked accessed.
1742 * * %FGP_LOCK - The page is returned locked.
1743 * * %FGP_CREAT - If no page is present then a new page is allocated using
1744 * @gfp_mask and added to the page cache and the VM's LRU list.
1745 * The page is returned locked and with an increased refcount.
1746 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1747 * page is already in cache. If the page was allocated, unlock it before
1748 * returning so the caller can do the same dance.
605cad83
YS
1749 * * %FGP_WRITE - The page will be written
1750 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1751 * * %FGP_NOWAIT - Don't get blocked by page lock
1da177e4 1752 *
2294b32e
MWO
1753 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1754 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1755 *
2457aec6 1756 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1757 *
2294b32e 1758 * Return: The found page or %NULL otherwise.
1da177e4 1759 */
2294b32e
MWO
1760struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1761 int fgp_flags, gfp_t gfp_mask)
1da177e4 1762{
eb2be189 1763 struct page *page;
2457aec6 1764
1da177e4 1765repeat:
2294b32e 1766 page = find_get_entry(mapping, index);
3159f943 1767 if (xa_is_value(page))
2457aec6
MG
1768 page = NULL;
1769 if (!page)
1770 goto no_page;
1771
1772 if (fgp_flags & FGP_LOCK) {
1773 if (fgp_flags & FGP_NOWAIT) {
1774 if (!trylock_page(page)) {
09cbfeaf 1775 put_page(page);
2457aec6
MG
1776 return NULL;
1777 }
1778 } else {
1779 lock_page(page);
1780 }
1781
1782 /* Has the page been truncated? */
31895438 1783 if (unlikely(compound_head(page)->mapping != mapping)) {
2457aec6 1784 unlock_page(page);
09cbfeaf 1785 put_page(page);
2457aec6
MG
1786 goto repeat;
1787 }
2294b32e 1788 VM_BUG_ON_PAGE(page->index != index, page);
2457aec6
MG
1789 }
1790
c16eb000 1791 if (fgp_flags & FGP_ACCESSED)
2457aec6 1792 mark_page_accessed(page);
b9306a79
YS
1793 else if (fgp_flags & FGP_WRITE) {
1794 /* Clear idle flag for buffer write */
1795 if (page_is_idle(page))
1796 clear_page_idle(page);
1797 }
2457aec6
MG
1798
1799no_page:
1800 if (!page && (fgp_flags & FGP_CREAT)) {
1801 int err;
f56753ac 1802 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
45f87de5
MH
1803 gfp_mask |= __GFP_WRITE;
1804 if (fgp_flags & FGP_NOFS)
1805 gfp_mask &= ~__GFP_FS;
2457aec6 1806
45f87de5 1807 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1808 if (!page)
1809 return NULL;
2457aec6 1810
a75d4c33 1811 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1812 fgp_flags |= FGP_LOCK;
1813
eb39d618 1814 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1815 if (fgp_flags & FGP_ACCESSED)
eb39d618 1816 __SetPageReferenced(page);
2457aec6 1817
2294b32e 1818 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
eb2be189 1819 if (unlikely(err)) {
09cbfeaf 1820 put_page(page);
eb2be189
NP
1821 page = NULL;
1822 if (err == -EEXIST)
1823 goto repeat;
1da177e4 1824 }
a75d4c33
JB
1825
1826 /*
1827 * add_to_page_cache_lru locks the page, and for mmap we expect
1828 * an unlocked page.
1829 */
1830 if (page && (fgp_flags & FGP_FOR_MMAP))
1831 unlock_page(page);
1da177e4 1832 }
2457aec6 1833
1da177e4
LT
1834 return page;
1835}
2457aec6 1836EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1837
0cd6144a
JW
1838/**
1839 * find_get_entries - gang pagecache lookup
1840 * @mapping: The address_space to search
1841 * @start: The starting page cache index
1842 * @nr_entries: The maximum number of entries
1843 * @entries: Where the resulting entries are placed
1844 * @indices: The cache indices corresponding to the entries in @entries
1845 *
1846 * find_get_entries() will search for and return a group of up to
1847 * @nr_entries entries in the mapping. The entries are placed at
1848 * @entries. find_get_entries() takes a reference against any actual
1849 * pages it returns.
1850 *
1851 * The search returns a group of mapping-contiguous page cache entries
1852 * with ascending indexes. There may be holes in the indices due to
1853 * not-present pages.
1854 *
139b6a6f
JW
1855 * Any shadow entries of evicted pages, or swap entries from
1856 * shmem/tmpfs, are included in the returned array.
0cd6144a 1857 *
71725ed1
HD
1858 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1859 * stops at that page: the caller is likely to have a better way to handle
1860 * the compound page as a whole, and then skip its extent, than repeatedly
1861 * calling find_get_entries() to return all its tails.
1862 *
a862f68a 1863 * Return: the number of pages and shadow entries which were found.
0cd6144a
JW
1864 */
1865unsigned find_get_entries(struct address_space *mapping,
1866 pgoff_t start, unsigned int nr_entries,
1867 struct page **entries, pgoff_t *indices)
1868{
f280bf09
MW
1869 XA_STATE(xas, &mapping->i_pages, start);
1870 struct page *page;
0cd6144a 1871 unsigned int ret = 0;
0cd6144a
JW
1872
1873 if (!nr_entries)
1874 return 0;
1875
1876 rcu_read_lock();
f280bf09 1877 xas_for_each(&xas, page, ULONG_MAX) {
f280bf09 1878 if (xas_retry(&xas, page))
0cd6144a 1879 continue;
f280bf09
MW
1880 /*
1881 * A shadow entry of a recently evicted page, a swap
1882 * entry from shmem/tmpfs or a DAX entry. Return it
1883 * without attempting to raise page count.
1884 */
1885 if (xa_is_value(page))
0cd6144a 1886 goto export;
83929372 1887
4101196b 1888 if (!page_cache_get_speculative(page))
f280bf09 1889 goto retry;
83929372 1890
4101196b 1891 /* Has the page moved or been split? */
f280bf09
MW
1892 if (unlikely(page != xas_reload(&xas)))
1893 goto put_page;
1894
71725ed1
HD
1895 /*
1896 * Terminate early on finding a THP, to allow the caller to
1897 * handle it all at once; but continue if this is hugetlbfs.
1898 */
1899 if (PageTransHuge(page) && !PageHuge(page)) {
1900 page = find_subpage(page, xas.xa_index);
1901 nr_entries = ret + 1;
1902 }
0cd6144a 1903export:
f280bf09 1904 indices[ret] = xas.xa_index;
0cd6144a
JW
1905 entries[ret] = page;
1906 if (++ret == nr_entries)
1907 break;
f280bf09
MW
1908 continue;
1909put_page:
4101196b 1910 put_page(page);
f280bf09
MW
1911retry:
1912 xas_reset(&xas);
0cd6144a
JW
1913 }
1914 rcu_read_unlock();
1915 return ret;
1916}
1917
1da177e4 1918/**
b947cee4 1919 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1920 * @mapping: The address_space to search
1921 * @start: The starting page index
b947cee4 1922 * @end: The final page index (inclusive)
1da177e4
LT
1923 * @nr_pages: The maximum number of pages
1924 * @pages: Where the resulting pages are placed
1925 *
b947cee4
JK
1926 * find_get_pages_range() will search for and return a group of up to @nr_pages
1927 * pages in the mapping starting at index @start and up to index @end
1928 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1929 * a reference against the returned pages.
1da177e4
LT
1930 *
1931 * The search returns a group of mapping-contiguous pages with ascending
1932 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1933 * We also update @start to index the next page for the traversal.
1da177e4 1934 *
a862f68a
MR
1935 * Return: the number of pages which were found. If this number is
1936 * smaller than @nr_pages, the end of specified range has been
b947cee4 1937 * reached.
1da177e4 1938 */
b947cee4
JK
1939unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1940 pgoff_t end, unsigned int nr_pages,
1941 struct page **pages)
1da177e4 1942{
fd1b3cee
MW
1943 XA_STATE(xas, &mapping->i_pages, *start);
1944 struct page *page;
0fc9d104
KK
1945 unsigned ret = 0;
1946
1947 if (unlikely(!nr_pages))
1948 return 0;
a60637c8
NP
1949
1950 rcu_read_lock();
fd1b3cee 1951 xas_for_each(&xas, page, end) {
fd1b3cee 1952 if (xas_retry(&xas, page))
a60637c8 1953 continue;
fd1b3cee
MW
1954 /* Skip over shadow, swap and DAX entries */
1955 if (xa_is_value(page))
8079b1c8 1956 continue;
a60637c8 1957
4101196b 1958 if (!page_cache_get_speculative(page))
fd1b3cee 1959 goto retry;
83929372 1960
4101196b 1961 /* Has the page moved or been split? */
fd1b3cee
MW
1962 if (unlikely(page != xas_reload(&xas)))
1963 goto put_page;
1da177e4 1964
4101196b 1965 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 1966 if (++ret == nr_pages) {
5d3ee42f 1967 *start = xas.xa_index + 1;
b947cee4
JK
1968 goto out;
1969 }
fd1b3cee
MW
1970 continue;
1971put_page:
4101196b 1972 put_page(page);
fd1b3cee
MW
1973retry:
1974 xas_reset(&xas);
a60637c8 1975 }
5b280c0c 1976
b947cee4
JK
1977 /*
1978 * We come here when there is no page beyond @end. We take care to not
1979 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 1980 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
1981 * already broken anyway.
1982 */
1983 if (end == (pgoff_t)-1)
1984 *start = (pgoff_t)-1;
1985 else
1986 *start = end + 1;
1987out:
a60637c8 1988 rcu_read_unlock();
d72dc8a2 1989
1da177e4
LT
1990 return ret;
1991}
1992
ebf43500
JA
1993/**
1994 * find_get_pages_contig - gang contiguous pagecache lookup
1995 * @mapping: The address_space to search
1996 * @index: The starting page index
1997 * @nr_pages: The maximum number of pages
1998 * @pages: Where the resulting pages are placed
1999 *
2000 * find_get_pages_contig() works exactly like find_get_pages(), except
2001 * that the returned number of pages are guaranteed to be contiguous.
2002 *
a862f68a 2003 * Return: the number of pages which were found.
ebf43500
JA
2004 */
2005unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2006 unsigned int nr_pages, struct page **pages)
2007{
3ece58a2
MW
2008 XA_STATE(xas, &mapping->i_pages, index);
2009 struct page *page;
0fc9d104
KK
2010 unsigned int ret = 0;
2011
2012 if (unlikely(!nr_pages))
2013 return 0;
a60637c8
NP
2014
2015 rcu_read_lock();
3ece58a2 2016 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
2017 if (xas_retry(&xas, page))
2018 continue;
2019 /*
2020 * If the entry has been swapped out, we can stop looking.
2021 * No current caller is looking for DAX entries.
2022 */
2023 if (xa_is_value(page))
8079b1c8 2024 break;
ebf43500 2025
4101196b 2026 if (!page_cache_get_speculative(page))
3ece58a2 2027 goto retry;
83929372 2028
4101196b 2029 /* Has the page moved or been split? */
3ece58a2
MW
2030 if (unlikely(page != xas_reload(&xas)))
2031 goto put_page;
a60637c8 2032
4101196b 2033 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
2034 if (++ret == nr_pages)
2035 break;
3ece58a2
MW
2036 continue;
2037put_page:
4101196b 2038 put_page(page);
3ece58a2
MW
2039retry:
2040 xas_reset(&xas);
ebf43500 2041 }
a60637c8
NP
2042 rcu_read_unlock();
2043 return ret;
ebf43500 2044}
ef71c15c 2045EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 2046
485bb99b 2047/**
72b045ae 2048 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
2049 * @mapping: the address_space to search
2050 * @index: the starting page index
72b045ae 2051 * @end: The final page index (inclusive)
485bb99b
RD
2052 * @tag: the tag index
2053 * @nr_pages: the maximum number of pages
2054 * @pages: where the resulting pages are placed
2055 *
1da177e4 2056 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 2057 * @tag. We update @index to index the next page for the traversal.
a862f68a
MR
2058 *
2059 * Return: the number of pages which were found.
1da177e4 2060 */
72b045ae 2061unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 2062 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 2063 struct page **pages)
1da177e4 2064{
a6906972
MW
2065 XA_STATE(xas, &mapping->i_pages, *index);
2066 struct page *page;
0fc9d104
KK
2067 unsigned ret = 0;
2068
2069 if (unlikely(!nr_pages))
2070 return 0;
a60637c8
NP
2071
2072 rcu_read_lock();
a6906972 2073 xas_for_each_marked(&xas, page, end, tag) {
a6906972 2074 if (xas_retry(&xas, page))
a60637c8 2075 continue;
a6906972
MW
2076 /*
2077 * Shadow entries should never be tagged, but this iteration
2078 * is lockless so there is a window for page reclaim to evict
2079 * a page we saw tagged. Skip over it.
2080 */
2081 if (xa_is_value(page))
139b6a6f 2082 continue;
a60637c8 2083
4101196b 2084 if (!page_cache_get_speculative(page))
a6906972 2085 goto retry;
a60637c8 2086
4101196b 2087 /* Has the page moved or been split? */
a6906972
MW
2088 if (unlikely(page != xas_reload(&xas)))
2089 goto put_page;
a60637c8 2090
4101196b 2091 pages[ret] = find_subpage(page, xas.xa_index);
72b045ae 2092 if (++ret == nr_pages) {
5d3ee42f 2093 *index = xas.xa_index + 1;
72b045ae
JK
2094 goto out;
2095 }
a6906972
MW
2096 continue;
2097put_page:
4101196b 2098 put_page(page);
a6906972
MW
2099retry:
2100 xas_reset(&xas);
a60637c8 2101 }
5b280c0c 2102
72b045ae 2103 /*
a6906972 2104 * We come here when we got to @end. We take care to not overflow the
72b045ae 2105 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
2106 * iteration when there is a page at index -1 but that is already
2107 * broken anyway.
72b045ae
JK
2108 */
2109 if (end == (pgoff_t)-1)
2110 *index = (pgoff_t)-1;
2111 else
2112 *index = end + 1;
2113out:
a60637c8 2114 rcu_read_unlock();
1da177e4 2115
1da177e4
LT
2116 return ret;
2117}
72b045ae 2118EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 2119
76d42bd9
WF
2120/*
2121 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2122 * a _large_ part of the i/o request. Imagine the worst scenario:
2123 *
2124 * ---R__________________________________________B__________
2125 * ^ reading here ^ bad block(assume 4k)
2126 *
2127 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2128 * => failing the whole request => read(R) => read(R+1) =>
2129 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2130 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2131 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2132 *
2133 * It is going insane. Fix it by quickly scaling down the readahead size.
2134 */
0f8e2db4 2135static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2136{
76d42bd9 2137 ra->ra_pages /= 4;
76d42bd9
WF
2138}
2139
485bb99b 2140/**
47c27bc4
CH
2141 * generic_file_buffered_read - generic file read routine
2142 * @iocb: the iocb to read
6e58e79d
AV
2143 * @iter: data destination
2144 * @written: already copied
485bb99b 2145 *
1da177e4 2146 * This is a generic file read routine, and uses the
485bb99b 2147 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
2148 *
2149 * This is really ugly. But the goto's actually try to clarify some
2150 * of the logic when it comes to error handling etc.
a862f68a
MR
2151 *
2152 * Return:
2153 * * total number of bytes copied, including those the were already @written
2154 * * negative error code if nothing was copied
1da177e4 2155 */
d85dc2e1 2156ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 2157 struct iov_iter *iter, ssize_t written)
1da177e4 2158{
47c27bc4 2159 struct file *filp = iocb->ki_filp;
36e78914 2160 struct address_space *mapping = filp->f_mapping;
1da177e4 2161 struct inode *inode = mapping->host;
36e78914 2162 struct file_ra_state *ra = &filp->f_ra;
47c27bc4 2163 loff_t *ppos = &iocb->ki_pos;
57f6b96c
FW
2164 pgoff_t index;
2165 pgoff_t last_index;
2166 pgoff_t prev_index;
2167 unsigned long offset; /* offset into pagecache page */
ec0f1637 2168 unsigned int prev_offset;
6e58e79d 2169 int error = 0;
1da177e4 2170
c2a9737f 2171 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 2172 return 0;
c2a9737f
WF
2173 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2174
09cbfeaf
KS
2175 index = *ppos >> PAGE_SHIFT;
2176 prev_index = ra->prev_pos >> PAGE_SHIFT;
2177 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2178 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2179 offset = *ppos & ~PAGE_MASK;
1da177e4 2180
1da177e4
LT
2181 for (;;) {
2182 struct page *page;
57f6b96c 2183 pgoff_t end_index;
a32ea1e1 2184 loff_t isize;
1da177e4
LT
2185 unsigned long nr, ret;
2186
1da177e4 2187 cond_resched();
1da177e4 2188find_page:
5abf186a
MH
2189 if (fatal_signal_pending(current)) {
2190 error = -EINTR;
2191 goto out;
2192 }
2193
1da177e4 2194 page = find_get_page(mapping, index);
3ea89ee8 2195 if (!page) {
cdc8fcb4 2196 if (iocb->ki_flags & IOCB_NOIO)
3239d834 2197 goto would_block;
cf914a7d 2198 page_cache_sync_readahead(mapping,
7ff81078 2199 ra, filp,
3ea89ee8
FW
2200 index, last_index - index);
2201 page = find_get_page(mapping, index);
2202 if (unlikely(page == NULL))
2203 goto no_cached_page;
2204 }
2205 if (PageReadahead(page)) {
41da51bc
AG
2206 if (iocb->ki_flags & IOCB_NOIO) {
2207 put_page(page);
2208 goto out;
2209 }
cf914a7d 2210 page_cache_async_readahead(mapping,
7ff81078 2211 ra, filp, page,
3ea89ee8 2212 index, last_index - index);
1da177e4 2213 }
8ab22b9a 2214 if (!PageUptodate(page)) {
ebded027
MG
2215 /*
2216 * See comment in do_read_cache_page on why
2217 * wait_on_page_locked is used to avoid unnecessarily
2218 * serialisations and why it's safe.
2219 */
1a0a7853
JA
2220 if (iocb->ki_flags & IOCB_WAITQ) {
2221 if (written) {
2222 put_page(page);
2223 goto out;
2224 }
2225 error = wait_on_page_locked_async(page,
2226 iocb->ki_waitq);
2227 } else {
2228 if (iocb->ki_flags & IOCB_NOWAIT) {
2229 put_page(page);
2230 goto would_block;
2231 }
2232 error = wait_on_page_locked_killable(page);
2233 }
c4b209a4
BVA
2234 if (unlikely(error))
2235 goto readpage_error;
ebded027
MG
2236 if (PageUptodate(page))
2237 goto page_ok;
2238
09cbfeaf 2239 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
2240 !mapping->a_ops->is_partially_uptodate)
2241 goto page_not_up_to_date;
6d6d36bc 2242 /* pipes can't handle partially uptodate pages */
00e23707 2243 if (unlikely(iov_iter_is_pipe(iter)))
6d6d36bc 2244 goto page_not_up_to_date;
529ae9aa 2245 if (!trylock_page(page))
8ab22b9a 2246 goto page_not_up_to_date;
8d056cb9
DH
2247 /* Did it get truncated before we got the lock? */
2248 if (!page->mapping)
2249 goto page_not_up_to_date_locked;
8ab22b9a 2250 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 2251 offset, iter->count))
8ab22b9a
HH
2252 goto page_not_up_to_date_locked;
2253 unlock_page(page);
2254 }
1da177e4 2255page_ok:
a32ea1e1
N
2256 /*
2257 * i_size must be checked after we know the page is Uptodate.
2258 *
2259 * Checking i_size after the check allows us to calculate
2260 * the correct value for "nr", which means the zero-filled
2261 * part of the page is not copied back to userspace (unless
2262 * another truncate extends the file - this is desired though).
2263 */
2264
2265 isize = i_size_read(inode);
09cbfeaf 2266 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 2267 if (unlikely(!isize || index > end_index)) {
09cbfeaf 2268 put_page(page);
a32ea1e1
N
2269 goto out;
2270 }
2271
2272 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 2273 nr = PAGE_SIZE;
a32ea1e1 2274 if (index == end_index) {
09cbfeaf 2275 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 2276 if (nr <= offset) {
09cbfeaf 2277 put_page(page);
a32ea1e1
N
2278 goto out;
2279 }
2280 }
2281 nr = nr - offset;
1da177e4
LT
2282
2283 /* If users can be writing to this page using arbitrary
2284 * virtual addresses, take care about potential aliasing
2285 * before reading the page on the kernel side.
2286 */
2287 if (mapping_writably_mapped(mapping))
2288 flush_dcache_page(page);
2289
2290 /*
ec0f1637
JK
2291 * When a sequential read accesses a page several times,
2292 * only mark it as accessed the first time.
1da177e4 2293 */
ec0f1637 2294 if (prev_index != index || offset != prev_offset)
1da177e4
LT
2295 mark_page_accessed(page);
2296 prev_index = index;
2297
2298 /*
2299 * Ok, we have the page, and it's up-to-date, so
2300 * now we can copy it to user space...
1da177e4 2301 */
6e58e79d
AV
2302
2303 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 2304 offset += ret;
09cbfeaf
KS
2305 index += offset >> PAGE_SHIFT;
2306 offset &= ~PAGE_MASK;
6ce745ed 2307 prev_offset = offset;
1da177e4 2308
09cbfeaf 2309 put_page(page);
6e58e79d
AV
2310 written += ret;
2311 if (!iov_iter_count(iter))
2312 goto out;
2313 if (ret < nr) {
2314 error = -EFAULT;
2315 goto out;
2316 }
2317 continue;
1da177e4
LT
2318
2319page_not_up_to_date:
2320 /* Get exclusive access to the page ... */
1a0a7853
JA
2321 if (iocb->ki_flags & IOCB_WAITQ)
2322 error = lock_page_async(page, iocb->ki_waitq);
2323 else
2324 error = lock_page_killable(page);
85462323
ON
2325 if (unlikely(error))
2326 goto readpage_error;
1da177e4 2327
8ab22b9a 2328page_not_up_to_date_locked:
da6052f7 2329 /* Did it get truncated before we got the lock? */
1da177e4
LT
2330 if (!page->mapping) {
2331 unlock_page(page);
09cbfeaf 2332 put_page(page);
1da177e4
LT
2333 continue;
2334 }
2335
2336 /* Did somebody else fill it already? */
2337 if (PageUptodate(page)) {
2338 unlock_page(page);
2339 goto page_ok;
2340 }
2341
2342readpage:
cdc8fcb4 2343 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
41da51bc
AG
2344 unlock_page(page);
2345 put_page(page);
2346 goto would_block;
2347 }
91803b49
JM
2348 /*
2349 * A previous I/O error may have been due to temporary
2350 * failures, eg. multipath errors.
2351 * PG_error will be set again if readpage fails.
2352 */
2353 ClearPageError(page);
1da177e4
LT
2354 /* Start the actual read. The read will unlock the page. */
2355 error = mapping->a_ops->readpage(filp, page);
2356
994fc28c
ZB
2357 if (unlikely(error)) {
2358 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 2359 put_page(page);
6e58e79d 2360 error = 0;
994fc28c
ZB
2361 goto find_page;
2362 }
1da177e4 2363 goto readpage_error;
994fc28c 2364 }
1da177e4
LT
2365
2366 if (!PageUptodate(page)) {
c8d317aa
HX
2367 if (iocb->ki_flags & IOCB_WAITQ)
2368 error = lock_page_async(page, iocb->ki_waitq);
2369 else
2370 error = lock_page_killable(page);
2371
85462323
ON
2372 if (unlikely(error))
2373 goto readpage_error;
1da177e4
LT
2374 if (!PageUptodate(page)) {
2375 if (page->mapping == NULL) {
2376 /*
2ecdc82e 2377 * invalidate_mapping_pages got it
1da177e4
LT
2378 */
2379 unlock_page(page);
09cbfeaf 2380 put_page(page);
1da177e4
LT
2381 goto find_page;
2382 }
2383 unlock_page(page);
0f8e2db4 2384 shrink_readahead_size_eio(ra);
85462323
ON
2385 error = -EIO;
2386 goto readpage_error;
1da177e4
LT
2387 }
2388 unlock_page(page);
2389 }
2390
1da177e4
LT
2391 goto page_ok;
2392
2393readpage_error:
2394 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2395 put_page(page);
1da177e4
LT
2396 goto out;
2397
2398no_cached_page:
2399 /*
2400 * Ok, it wasn't cached, so we need to create a new
2401 * page..
2402 */
453f85d4 2403 page = page_cache_alloc(mapping);
eb2be189 2404 if (!page) {
6e58e79d 2405 error = -ENOMEM;
eb2be189 2406 goto out;
1da177e4 2407 }
6afdb859 2408 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2409 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2410 if (error) {
09cbfeaf 2411 put_page(page);
6e58e79d
AV
2412 if (error == -EEXIST) {
2413 error = 0;
1da177e4 2414 goto find_page;
6e58e79d 2415 }
1da177e4
LT
2416 goto out;
2417 }
1da177e4
LT
2418 goto readpage;
2419 }
2420
3239d834
MT
2421would_block:
2422 error = -EAGAIN;
1da177e4 2423out:
7ff81078 2424 ra->prev_pos = prev_index;
09cbfeaf 2425 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2426 ra->prev_pos |= prev_offset;
1da177e4 2427
09cbfeaf 2428 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2429 file_accessed(filp);
6e58e79d 2430 return written ? written : error;
1da177e4 2431}
d85dc2e1 2432EXPORT_SYMBOL_GPL(generic_file_buffered_read);
1da177e4 2433
485bb99b 2434/**
6abd2322 2435 * generic_file_read_iter - generic filesystem read routine
485bb99b 2436 * @iocb: kernel I/O control block
6abd2322 2437 * @iter: destination for the data read
485bb99b 2438 *
6abd2322 2439 * This is the "read_iter()" routine for all filesystems
1da177e4 2440 * that can use the page cache directly.
41da51bc
AG
2441 *
2442 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2443 * be returned when no data can be read without waiting for I/O requests
2444 * to complete; it doesn't prevent readahead.
2445 *
2446 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2447 * requests shall be made for the read or for readahead. When no data
2448 * can be read, -EAGAIN shall be returned. When readahead would be
2449 * triggered, a partial, possibly empty read shall be returned.
2450 *
a862f68a
MR
2451 * Return:
2452 * * number of bytes copied, even for partial reads
41da51bc 2453 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2454 */
2455ssize_t
ed978a81 2456generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2457{
e7080a43 2458 size_t count = iov_iter_count(iter);
47c27bc4 2459 ssize_t retval = 0;
e7080a43
NS
2460
2461 if (!count)
2462 goto out; /* skip atime */
1da177e4 2463
2ba48ce5 2464 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2465 struct file *file = iocb->ki_filp;
ed978a81
AV
2466 struct address_space *mapping = file->f_mapping;
2467 struct inode *inode = mapping->host;
543ade1f 2468 loff_t size;
1da177e4 2469
1da177e4 2470 size = i_size_read(inode);
6be96d3a
GR
2471 if (iocb->ki_flags & IOCB_NOWAIT) {
2472 if (filemap_range_has_page(mapping, iocb->ki_pos,
2473 iocb->ki_pos + count - 1))
2474 return -EAGAIN;
2475 } else {
2476 retval = filemap_write_and_wait_range(mapping,
2477 iocb->ki_pos,
2478 iocb->ki_pos + count - 1);
2479 if (retval < 0)
2480 goto out;
2481 }
d8d3d94b 2482
0d5b0cf2
CH
2483 file_accessed(file);
2484
5ecda137 2485 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2486 if (retval >= 0) {
c64fb5c7 2487 iocb->ki_pos += retval;
5ecda137 2488 count -= retval;
9fe55eea 2489 }
5b47d59a 2490 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2491
9fe55eea
SW
2492 /*
2493 * Btrfs can have a short DIO read if we encounter
2494 * compressed extents, so if there was an error, or if
2495 * we've already read everything we wanted to, or if
2496 * there was a short read because we hit EOF, go ahead
2497 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2498 * the rest of the read. Buffered reads will not work for
2499 * DAX files, so don't bother trying.
9fe55eea 2500 */
5ecda137 2501 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2502 IS_DAX(inode))
9fe55eea 2503 goto out;
1da177e4
LT
2504 }
2505
47c27bc4 2506 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2507out:
2508 return retval;
2509}
ed978a81 2510EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2511
1da177e4 2512#ifdef CONFIG_MMU
1da177e4 2513#define MMAP_LOTSAMISS (100)
6b4c9f44 2514/*
c1e8d7c6 2515 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44
JB
2516 * @vmf - the vm_fault for this fault.
2517 * @page - the page to lock.
2518 * @fpin - the pointer to the file we may pin (or is already pinned).
2519 *
c1e8d7c6 2520 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
6b4c9f44 2521 * It differs in that it actually returns the page locked if it returns 1 and 0
c1e8d7c6 2522 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
6b4c9f44
JB
2523 * will point to the pinned file and needs to be fput()'ed at a later point.
2524 */
2525static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2526 struct file **fpin)
2527{
2528 if (trylock_page(page))
2529 return 1;
2530
8b0f9fa2
LT
2531 /*
2532 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 2533 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
2534 * is supposed to work. We have way too many special cases..
2535 */
6b4c9f44
JB
2536 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2537 return 0;
2538
2539 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2540 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2541 if (__lock_page_killable(page)) {
2542 /*
c1e8d7c6 2543 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
2544 * but all fault_handlers only check for fatal signals
2545 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 2546 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
2547 */
2548 if (*fpin == NULL)
d8ed45c5 2549 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
2550 return 0;
2551 }
2552 } else
2553 __lock_page(page);
2554 return 1;
2555}
2556
1da177e4 2557
ef00e08e 2558/*
6b4c9f44
JB
2559 * Synchronous readahead happens when we don't even find a page in the page
2560 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2561 * to drop the mmap sem we return the file that was pinned in order for us to do
2562 * that. If we didn't pin a file then we return NULL. The file that is
2563 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2564 */
6b4c9f44 2565static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2566{
2a1180f1
JB
2567 struct file *file = vmf->vma->vm_file;
2568 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2569 struct address_space *mapping = file->f_mapping;
6b4c9f44 2570 struct file *fpin = NULL;
2a1180f1 2571 pgoff_t offset = vmf->pgoff;
e630bfac 2572 unsigned int mmap_miss;
ef00e08e
LT
2573
2574 /* If we don't want any read-ahead, don't bother */
2a1180f1 2575 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2576 return fpin;
275b12bf 2577 if (!ra->ra_pages)
6b4c9f44 2578 return fpin;
ef00e08e 2579
2a1180f1 2580 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2581 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
7ffc59b4
WF
2582 page_cache_sync_readahead(mapping, ra, file, offset,
2583 ra->ra_pages);
6b4c9f44 2584 return fpin;
ef00e08e
LT
2585 }
2586
207d04ba 2587 /* Avoid banging the cache line if not needed */
e630bfac
KS
2588 mmap_miss = READ_ONCE(ra->mmap_miss);
2589 if (mmap_miss < MMAP_LOTSAMISS * 10)
2590 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
2591
2592 /*
2593 * Do we miss much more than hit in this file? If so,
2594 * stop bothering with read-ahead. It will only hurt.
2595 */
e630bfac 2596 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2597 return fpin;
ef00e08e 2598
d30a1100
WF
2599 /*
2600 * mmap read-around
2601 */
6b4c9f44 2602 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
600e19af
RG
2603 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2604 ra->size = ra->ra_pages;
2605 ra->async_size = ra->ra_pages / 4;
275b12bf 2606 ra_submit(ra, mapping, file);
6b4c9f44 2607 return fpin;
ef00e08e
LT
2608}
2609
2610/*
2611 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 2612 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 2613 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 2614 */
6b4c9f44
JB
2615static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2616 struct page *page)
ef00e08e 2617{
2a1180f1
JB
2618 struct file *file = vmf->vma->vm_file;
2619 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2620 struct address_space *mapping = file->f_mapping;
6b4c9f44 2621 struct file *fpin = NULL;
e630bfac 2622 unsigned int mmap_miss;
2a1180f1 2623 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2624
2625 /* If we don't want any read-ahead, don't bother */
5c72feee 2626 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 2627 return fpin;
e630bfac
KS
2628 mmap_miss = READ_ONCE(ra->mmap_miss);
2629 if (mmap_miss)
2630 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
6b4c9f44
JB
2631 if (PageReadahead(page)) {
2632 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
2633 page_cache_async_readahead(mapping, ra, file,
2634 page, offset, ra->ra_pages);
6b4c9f44
JB
2635 }
2636 return fpin;
ef00e08e
LT
2637}
2638
485bb99b 2639/**
54cb8821 2640 * filemap_fault - read in file data for page fault handling
d0217ac0 2641 * @vmf: struct vm_fault containing details of the fault
485bb99b 2642 *
54cb8821 2643 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2644 * mapped memory region to read in file data during a page fault.
2645 *
2646 * The goto's are kind of ugly, but this streamlines the normal case of having
2647 * it in the page cache, and handles the special cases reasonably without
2648 * having a lot of duplicated code.
9a95f3cf 2649 *
c1e8d7c6 2650 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 2651 *
c1e8d7c6 2652 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
a4985833 2653 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf 2654 *
c1e8d7c6 2655 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
2656 * has not been released.
2657 *
2658 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
2659 *
2660 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 2661 */
2bcd6454 2662vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2663{
2664 int error;
11bac800 2665 struct file *file = vmf->vma->vm_file;
6b4c9f44 2666 struct file *fpin = NULL;
1da177e4
LT
2667 struct address_space *mapping = file->f_mapping;
2668 struct file_ra_state *ra = &file->f_ra;
2669 struct inode *inode = mapping->host;
ef00e08e 2670 pgoff_t offset = vmf->pgoff;
9ab2594f 2671 pgoff_t max_off;
1da177e4 2672 struct page *page;
2bcd6454 2673 vm_fault_t ret = 0;
1da177e4 2674
9ab2594f
MW
2675 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2676 if (unlikely(offset >= max_off))
5307cc1a 2677 return VM_FAULT_SIGBUS;
1da177e4 2678
1da177e4 2679 /*
49426420 2680 * Do we have something in the page cache already?
1da177e4 2681 */
ef00e08e 2682 page = find_get_page(mapping, offset);
45cac65b 2683 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2684 /*
ef00e08e
LT
2685 * We found the page, so try async readahead before
2686 * waiting for the lock.
1da177e4 2687 */
6b4c9f44 2688 fpin = do_async_mmap_readahead(vmf, page);
45cac65b 2689 } else if (!page) {
ef00e08e 2690 /* No page in the page cache at all */
ef00e08e 2691 count_vm_event(PGMAJFAULT);
2262185c 2692 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 2693 ret = VM_FAULT_MAJOR;
6b4c9f44 2694 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 2695retry_find:
a75d4c33
JB
2696 page = pagecache_get_page(mapping, offset,
2697 FGP_CREAT|FGP_FOR_MMAP,
2698 vmf->gfp_mask);
6b4c9f44
JB
2699 if (!page) {
2700 if (fpin)
2701 goto out_retry;
e520e932 2702 return VM_FAULT_OOM;
6b4c9f44 2703 }
1da177e4
LT
2704 }
2705
6b4c9f44
JB
2706 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2707 goto out_retry;
b522c94d
ML
2708
2709 /* Did it get truncated? */
585e5a7b 2710 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
2711 unlock_page(page);
2712 put_page(page);
2713 goto retry_find;
2714 }
520e5ba4 2715 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 2716
1da177e4 2717 /*
d00806b1
NP
2718 * We have a locked page in the page cache, now we need to check
2719 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2720 */
d00806b1 2721 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2722 goto page_not_uptodate;
2723
6b4c9f44 2724 /*
c1e8d7c6 2725 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
2726 * time to return to the upper layer and have it re-find the vma and
2727 * redo the fault.
2728 */
2729 if (fpin) {
2730 unlock_page(page);
2731 goto out_retry;
2732 }
2733
ef00e08e
LT
2734 /*
2735 * Found the page and have a reference on it.
2736 * We must recheck i_size under page lock.
2737 */
9ab2594f
MW
2738 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2739 if (unlikely(offset >= max_off)) {
d00806b1 2740 unlock_page(page);
09cbfeaf 2741 put_page(page);
5307cc1a 2742 return VM_FAULT_SIGBUS;
d00806b1
NP
2743 }
2744
d0217ac0 2745 vmf->page = page;
83c54070 2746 return ret | VM_FAULT_LOCKED;
1da177e4 2747
1da177e4 2748page_not_uptodate:
1da177e4
LT
2749 /*
2750 * Umm, take care of errors if the page isn't up-to-date.
2751 * Try to re-read it _once_. We do this synchronously,
2752 * because there really aren't any performance issues here
2753 * and we need to check for errors.
2754 */
1da177e4 2755 ClearPageError(page);
6b4c9f44 2756 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
994fc28c 2757 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2758 if (!error) {
2759 wait_on_page_locked(page);
2760 if (!PageUptodate(page))
2761 error = -EIO;
2762 }
6b4c9f44
JB
2763 if (fpin)
2764 goto out_retry;
09cbfeaf 2765 put_page(page);
d00806b1
NP
2766
2767 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2768 goto retry_find;
1da177e4 2769
0f8e2db4 2770 shrink_readahead_size_eio(ra);
d0217ac0 2771 return VM_FAULT_SIGBUS;
6b4c9f44
JB
2772
2773out_retry:
2774 /*
c1e8d7c6 2775 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
2776 * re-find the vma and come back and find our hopefully still populated
2777 * page.
2778 */
2779 if (page)
2780 put_page(page);
2781 if (fpin)
2782 fput(fpin);
2783 return ret | VM_FAULT_RETRY;
54cb8821
NP
2784}
2785EXPORT_SYMBOL(filemap_fault);
2786
82b0f8c3 2787void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2788 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361 2789{
82b0f8c3 2790 struct file *file = vmf->vma->vm_file;
f1820361 2791 struct address_space *mapping = file->f_mapping;
bae473a4 2792 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2793 unsigned long max_idx;
070e807c 2794 XA_STATE(xas, &mapping->i_pages, start_pgoff);
4101196b 2795 struct page *page;
e630bfac 2796 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
f1820361
KS
2797
2798 rcu_read_lock();
070e807c
MW
2799 xas_for_each(&xas, page, end_pgoff) {
2800 if (xas_retry(&xas, page))
2801 continue;
2802 if (xa_is_value(page))
2cf938aa 2803 goto next;
f1820361 2804
e0975b2a
MH
2805 /*
2806 * Check for a locked page first, as a speculative
2807 * reference may adversely influence page migration.
2808 */
4101196b 2809 if (PageLocked(page))
e0975b2a 2810 goto next;
4101196b 2811 if (!page_cache_get_speculative(page))
070e807c 2812 goto next;
f1820361 2813
4101196b 2814 /* Has the page moved or been split? */
070e807c
MW
2815 if (unlikely(page != xas_reload(&xas)))
2816 goto skip;
4101196b 2817 page = find_subpage(page, xas.xa_index);
f1820361
KS
2818
2819 if (!PageUptodate(page) ||
2820 PageReadahead(page) ||
2821 PageHWPoison(page))
2822 goto skip;
2823 if (!trylock_page(page))
2824 goto skip;
2825
2826 if (page->mapping != mapping || !PageUptodate(page))
2827 goto unlock;
2828
9ab2594f
MW
2829 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2830 if (page->index >= max_idx)
f1820361
KS
2831 goto unlock;
2832
e630bfac
KS
2833 if (mmap_miss > 0)
2834 mmap_miss--;
7267ec00 2835
070e807c 2836 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
82b0f8c3 2837 if (vmf->pte)
070e807c
MW
2838 vmf->pte += xas.xa_index - last_pgoff;
2839 last_pgoff = xas.xa_index;
9d82c694 2840 if (alloc_set_pte(vmf, page))
7267ec00 2841 goto unlock;
f1820361
KS
2842 unlock_page(page);
2843 goto next;
2844unlock:
2845 unlock_page(page);
2846skip:
09cbfeaf 2847 put_page(page);
f1820361 2848next:
7267ec00 2849 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2850 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2851 break;
f1820361
KS
2852 }
2853 rcu_read_unlock();
e630bfac 2854 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
f1820361
KS
2855}
2856EXPORT_SYMBOL(filemap_map_pages);
2857
2bcd6454 2858vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2859{
2860 struct page *page = vmf->page;
11bac800 2861 struct inode *inode = file_inode(vmf->vma->vm_file);
2bcd6454 2862 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 2863
14da9200 2864 sb_start_pagefault(inode->i_sb);
11bac800 2865 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2866 lock_page(page);
2867 if (page->mapping != inode->i_mapping) {
2868 unlock_page(page);
2869 ret = VM_FAULT_NOPAGE;
2870 goto out;
2871 }
14da9200
JK
2872 /*
2873 * We mark the page dirty already here so that when freeze is in
2874 * progress, we are guaranteed that writeback during freezing will
2875 * see the dirty page and writeprotect it again.
2876 */
2877 set_page_dirty(page);
1d1d1a76 2878 wait_for_stable_page(page);
4fcf1c62 2879out:
14da9200 2880 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2881 return ret;
2882}
4fcf1c62 2883
f0f37e2f 2884const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2885 .fault = filemap_fault,
f1820361 2886 .map_pages = filemap_map_pages,
4fcf1c62 2887 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2888};
2889
2890/* This is used for a general mmap of a disk file */
2891
2892int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2893{
2894 struct address_space *mapping = file->f_mapping;
2895
2896 if (!mapping->a_ops->readpage)
2897 return -ENOEXEC;
2898 file_accessed(file);
2899 vma->vm_ops = &generic_file_vm_ops;
2900 return 0;
2901}
1da177e4
LT
2902
2903/*
2904 * This is for filesystems which do not implement ->writepage.
2905 */
2906int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2907{
2908 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2909 return -EINVAL;
2910 return generic_file_mmap(file, vma);
2911}
2912#else
4b96a37d 2913vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 2914{
4b96a37d 2915 return VM_FAULT_SIGBUS;
45397228 2916}
1da177e4
LT
2917int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2918{
2919 return -ENOSYS;
2920}
2921int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2922{
2923 return -ENOSYS;
2924}
2925#endif /* CONFIG_MMU */
2926
45397228 2927EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
2928EXPORT_SYMBOL(generic_file_mmap);
2929EXPORT_SYMBOL(generic_file_readonly_mmap);
2930
67f9fd91
SL
2931static struct page *wait_on_page_read(struct page *page)
2932{
2933 if (!IS_ERR(page)) {
2934 wait_on_page_locked(page);
2935 if (!PageUptodate(page)) {
09cbfeaf 2936 put_page(page);
67f9fd91
SL
2937 page = ERR_PTR(-EIO);
2938 }
2939 }
2940 return page;
2941}
2942
32b63529 2943static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2944 pgoff_t index,
5e5358e7 2945 int (*filler)(void *, struct page *),
0531b2aa
LT
2946 void *data,
2947 gfp_t gfp)
1da177e4 2948{
eb2be189 2949 struct page *page;
1da177e4
LT
2950 int err;
2951repeat:
2952 page = find_get_page(mapping, index);
2953 if (!page) {
453f85d4 2954 page = __page_cache_alloc(gfp);
eb2be189
NP
2955 if (!page)
2956 return ERR_PTR(-ENOMEM);
e6f67b8c 2957 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2958 if (unlikely(err)) {
09cbfeaf 2959 put_page(page);
eb2be189
NP
2960 if (err == -EEXIST)
2961 goto repeat;
22ecdb4f 2962 /* Presumably ENOMEM for xarray node */
1da177e4
LT
2963 return ERR_PTR(err);
2964 }
32b63529
MG
2965
2966filler:
6c45b454
CH
2967 if (filler)
2968 err = filler(data, page);
2969 else
2970 err = mapping->a_ops->readpage(data, page);
2971
1da177e4 2972 if (err < 0) {
09cbfeaf 2973 put_page(page);
32b63529 2974 return ERR_PTR(err);
1da177e4 2975 }
1da177e4 2976
32b63529
MG
2977 page = wait_on_page_read(page);
2978 if (IS_ERR(page))
2979 return page;
2980 goto out;
2981 }
1da177e4
LT
2982 if (PageUptodate(page))
2983 goto out;
2984
ebded027
MG
2985 /*
2986 * Page is not up to date and may be locked due one of the following
2987 * case a: Page is being filled and the page lock is held
2988 * case b: Read/write error clearing the page uptodate status
2989 * case c: Truncation in progress (page locked)
2990 * case d: Reclaim in progress
2991 *
2992 * Case a, the page will be up to date when the page is unlocked.
2993 * There is no need to serialise on the page lock here as the page
2994 * is pinned so the lock gives no additional protection. Even if the
ce89fddf 2995 * page is truncated, the data is still valid if PageUptodate as
ebded027
MG
2996 * it's a race vs truncate race.
2997 * Case b, the page will not be up to date
2998 * Case c, the page may be truncated but in itself, the data may still
2999 * be valid after IO completes as it's a read vs truncate race. The
3000 * operation must restart if the page is not uptodate on unlock but
3001 * otherwise serialising on page lock to stabilise the mapping gives
3002 * no additional guarantees to the caller as the page lock is
3003 * released before return.
3004 * Case d, similar to truncation. If reclaim holds the page lock, it
3005 * will be a race with remove_mapping that determines if the mapping
3006 * is valid on unlock but otherwise the data is valid and there is
3007 * no need to serialise with page lock.
3008 *
3009 * As the page lock gives no additional guarantee, we optimistically
3010 * wait on the page to be unlocked and check if it's up to date and
3011 * use the page if it is. Otherwise, the page lock is required to
3012 * distinguish between the different cases. The motivation is that we
3013 * avoid spurious serialisations and wakeups when multiple processes
3014 * wait on the same page for IO to complete.
3015 */
3016 wait_on_page_locked(page);
3017 if (PageUptodate(page))
3018 goto out;
3019
3020 /* Distinguish between all the cases under the safety of the lock */
1da177e4 3021 lock_page(page);
ebded027
MG
3022
3023 /* Case c or d, restart the operation */
1da177e4
LT
3024 if (!page->mapping) {
3025 unlock_page(page);
09cbfeaf 3026 put_page(page);
32b63529 3027 goto repeat;
1da177e4 3028 }
ebded027
MG
3029
3030 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
3031 if (PageUptodate(page)) {
3032 unlock_page(page);
3033 goto out;
3034 }
faffdfa0
XT
3035
3036 /*
3037 * A previous I/O error may have been due to temporary
3038 * failures.
3039 * Clear page error before actual read, PG_error will be
3040 * set again if read page fails.
3041 */
3042 ClearPageError(page);
32b63529
MG
3043 goto filler;
3044
c855ff37 3045out:
6fe6900e
NP
3046 mark_page_accessed(page);
3047 return page;
3048}
0531b2aa
LT
3049
3050/**
67f9fd91 3051 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
3052 * @mapping: the page's address_space
3053 * @index: the page index
3054 * @filler: function to perform the read
5e5358e7 3055 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 3056 *
0531b2aa 3057 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 3058 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
3059 *
3060 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
3061 *
3062 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 3063 */
67f9fd91 3064struct page *read_cache_page(struct address_space *mapping,
0531b2aa 3065 pgoff_t index,
5e5358e7 3066 int (*filler)(void *, struct page *),
0531b2aa
LT
3067 void *data)
3068{
d322a8e5
CH
3069 return do_read_cache_page(mapping, index, filler, data,
3070 mapping_gfp_mask(mapping));
0531b2aa 3071}
67f9fd91 3072EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3073
3074/**
3075 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3076 * @mapping: the page's address_space
3077 * @index: the page index
3078 * @gfp: the page allocator flags to use if allocating
3079 *
3080 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3081 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3082 *
3083 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
3084 *
3085 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3086 */
3087struct page *read_cache_page_gfp(struct address_space *mapping,
3088 pgoff_t index,
3089 gfp_t gfp)
3090{
6c45b454 3091 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3092}
3093EXPORT_SYMBOL(read_cache_page_gfp);
3094
9fd91a90
DW
3095/*
3096 * Don't operate on ranges the page cache doesn't support, and don't exceed the
3097 * LFS limits. If pos is under the limit it becomes a short access. If it
3098 * exceeds the limit we return -EFBIG.
3099 */
9fd91a90
DW
3100static int generic_write_check_limits(struct file *file, loff_t pos,
3101 loff_t *count)
3102{
646955cd
AG
3103 struct inode *inode = file->f_mapping->host;
3104 loff_t max_size = inode->i_sb->s_maxbytes;
9fd91a90
DW
3105 loff_t limit = rlimit(RLIMIT_FSIZE);
3106
3107 if (limit != RLIM_INFINITY) {
3108 if (pos >= limit) {
3109 send_sig(SIGXFSZ, current, 0);
3110 return -EFBIG;
3111 }
3112 *count = min(*count, limit - pos);
3113 }
3114
646955cd
AG
3115 if (!(file->f_flags & O_LARGEFILE))
3116 max_size = MAX_NON_LFS;
3117
3118 if (unlikely(pos >= max_size))
3119 return -EFBIG;
3120
3121 *count = min(*count, max_size - pos);
3122
3123 return 0;
9fd91a90
DW
3124}
3125
1da177e4
LT
3126/*
3127 * Performs necessary checks before doing a write
3128 *
485bb99b 3129 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
3130 * Returns appropriate error code that caller should return or
3131 * zero in case that write should be allowed.
3132 */
3309dd04 3133inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 3134{
3309dd04 3135 struct file *file = iocb->ki_filp;
1da177e4 3136 struct inode *inode = file->f_mapping->host;
9fd91a90
DW
3137 loff_t count;
3138 int ret;
1da177e4 3139
dc617f29
DW
3140 if (IS_SWAPFILE(inode))
3141 return -ETXTBSY;
3142
3309dd04
AV
3143 if (!iov_iter_count(from))
3144 return 0;
1da177e4 3145
0fa6b005 3146 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 3147 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 3148 iocb->ki_pos = i_size_read(inode);
1da177e4 3149
6be96d3a
GR
3150 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3151 return -EINVAL;
3152
9fd91a90
DW
3153 count = iov_iter_count(from);
3154 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
3155 if (ret)
3156 return ret;
1da177e4 3157
9fd91a90 3158 iov_iter_truncate(from, count);
3309dd04 3159 return iov_iter_count(from);
1da177e4
LT
3160}
3161EXPORT_SYMBOL(generic_write_checks);
3162
1383a7ed
DW
3163/*
3164 * Performs necessary checks before doing a clone.
3165 *
646955cd 3166 * Can adjust amount of bytes to clone via @req_count argument.
1383a7ed
DW
3167 * Returns appropriate error code that caller should return or
3168 * zero in case the clone should be allowed.
3169 */
3170int generic_remap_checks(struct file *file_in, loff_t pos_in,
3171 struct file *file_out, loff_t pos_out,
42ec3d4c 3172 loff_t *req_count, unsigned int remap_flags)
1383a7ed
DW
3173{
3174 struct inode *inode_in = file_in->f_mapping->host;
3175 struct inode *inode_out = file_out->f_mapping->host;
3176 uint64_t count = *req_count;
3177 uint64_t bcount;
3178 loff_t size_in, size_out;
3179 loff_t bs = inode_out->i_sb->s_blocksize;
9fd91a90 3180 int ret;
1383a7ed
DW
3181
3182 /* The start of both ranges must be aligned to an fs block. */
3183 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3184 return -EINVAL;
3185
3186 /* Ensure offsets don't wrap. */
3187 if (pos_in + count < pos_in || pos_out + count < pos_out)
3188 return -EINVAL;
3189
3190 size_in = i_size_read(inode_in);
3191 size_out = i_size_read(inode_out);
3192
3193 /* Dedupe requires both ranges to be within EOF. */
3d28193e 3194 if ((remap_flags & REMAP_FILE_DEDUP) &&
1383a7ed
DW
3195 (pos_in >= size_in || pos_in + count > size_in ||
3196 pos_out >= size_out || pos_out + count > size_out))
3197 return -EINVAL;
3198
3199 /* Ensure the infile range is within the infile. */
3200 if (pos_in >= size_in)
3201 return -EINVAL;
3202 count = min(count, size_in - (uint64_t)pos_in);
3203
9fd91a90
DW
3204 ret = generic_write_check_limits(file_out, pos_out, &count);
3205 if (ret)
3206 return ret;
1da177e4
LT
3207
3208 /*
1383a7ed
DW
3209 * If the user wanted us to link to the infile's EOF, round up to the
3210 * next block boundary for this check.
3211 *
3212 * Otherwise, make sure the count is also block-aligned, having
3213 * already confirmed the starting offsets' block alignment.
1da177e4 3214 */
1383a7ed
DW
3215 if (pos_in + count == size_in) {
3216 bcount = ALIGN(size_in, bs) - pos_in;
3217 } else {
3218 if (!IS_ALIGNED(count, bs))
eca3654e 3219 count = ALIGN_DOWN(count, bs);
1383a7ed 3220 bcount = count;
1da177e4
LT
3221 }
3222
1383a7ed
DW
3223 /* Don't allow overlapped cloning within the same file. */
3224 if (inode_in == inode_out &&
3225 pos_out + bcount > pos_in &&
3226 pos_out < pos_in + bcount)
3227 return -EINVAL;
3228
1da177e4 3229 /*
eca3654e
DW
3230 * We shortened the request but the caller can't deal with that, so
3231 * bounce the request back to userspace.
1da177e4 3232 */
eca3654e 3233 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
1383a7ed 3234 return -EINVAL;
1da177e4 3235
eca3654e 3236 *req_count = count;
1383a7ed 3237 return 0;
1da177e4 3238}
1da177e4 3239
a3171351
AG
3240
3241/*
3242 * Performs common checks before doing a file copy/clone
3243 * from @file_in to @file_out.
3244 */
3245int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3246{
3247 struct inode *inode_in = file_inode(file_in);
3248 struct inode *inode_out = file_inode(file_out);
3249
3250 /* Don't copy dirs, pipes, sockets... */
3251 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3252 return -EISDIR;
3253 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3254 return -EINVAL;
3255
3256 if (!(file_in->f_mode & FMODE_READ) ||
3257 !(file_out->f_mode & FMODE_WRITE) ||
3258 (file_out->f_flags & O_APPEND))
3259 return -EBADF;
3260
3261 return 0;
3262}
3263
96e6e8f4
AG
3264/*
3265 * Performs necessary checks before doing a file copy
3266 *
3267 * Can adjust amount of bytes to copy via @req_count argument.
3268 * Returns appropriate error code that caller should return or
3269 * zero in case the copy should be allowed.
3270 */
3271int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3272 struct file *file_out, loff_t pos_out,
3273 size_t *req_count, unsigned int flags)
3274{
3275 struct inode *inode_in = file_inode(file_in);
3276 struct inode *inode_out = file_inode(file_out);
3277 uint64_t count = *req_count;
3278 loff_t size_in;
3279 int ret;
3280
3281 ret = generic_file_rw_checks(file_in, file_out);
3282 if (ret)
3283 return ret;
3284
3285 /* Don't touch certain kinds of inodes */
3286 if (IS_IMMUTABLE(inode_out))
3287 return -EPERM;
3288
3289 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3290 return -ETXTBSY;
3291
3292 /* Ensure offsets don't wrap. */
3293 if (pos_in + count < pos_in || pos_out + count < pos_out)
3294 return -EOVERFLOW;
3295
3296 /* Shorten the copy to EOF */
3297 size_in = i_size_read(inode_in);
3298 if (pos_in >= size_in)
3299 count = 0;
3300 else
3301 count = min(count, size_in - (uint64_t)pos_in);
3302
3303 ret = generic_write_check_limits(file_out, pos_out, &count);
3304 if (ret)
3305 return ret;
3306
3307 /* Don't allow overlapped copying within the same file. */
3308 if (inode_in == inode_out &&
3309 pos_out + count > pos_in &&
3310 pos_out < pos_in + count)
3311 return -EINVAL;
3312
3313 *req_count = count;
3314 return 0;
3315}
3316
afddba49
NP
3317int pagecache_write_begin(struct file *file, struct address_space *mapping,
3318 loff_t pos, unsigned len, unsigned flags,
3319 struct page **pagep, void **fsdata)
3320{
3321 const struct address_space_operations *aops = mapping->a_ops;
3322
4e02ed4b 3323 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3324 pagep, fsdata);
afddba49
NP
3325}
3326EXPORT_SYMBOL(pagecache_write_begin);
3327
3328int pagecache_write_end(struct file *file, struct address_space *mapping,
3329 loff_t pos, unsigned len, unsigned copied,
3330 struct page *page, void *fsdata)
3331{
3332 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3333
4e02ed4b 3334 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3335}
3336EXPORT_SYMBOL(pagecache_write_end);
3337
a92853b6
KK
3338/*
3339 * Warn about a page cache invalidation failure during a direct I/O write.
3340 */
3341void dio_warn_stale_pagecache(struct file *filp)
3342{
3343 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3344 char pathname[128];
3345 struct inode *inode = file_inode(filp);
3346 char *path;
3347
3348 errseq_set(&inode->i_mapping->wb_err, -EIO);
3349 if (__ratelimit(&_rs)) {
3350 path = file_path(filp, pathname, sizeof(pathname));
3351 if (IS_ERR(path))
3352 path = "(unknown)";
3353 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3354 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3355 current->comm);
3356 }
3357}
3358
1da177e4 3359ssize_t
1af5bb49 3360generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3361{
3362 struct file *file = iocb->ki_filp;
3363 struct address_space *mapping = file->f_mapping;
3364 struct inode *inode = mapping->host;
1af5bb49 3365 loff_t pos = iocb->ki_pos;
1da177e4 3366 ssize_t written;
a969e903
CH
3367 size_t write_len;
3368 pgoff_t end;
1da177e4 3369
0c949334 3370 write_len = iov_iter_count(from);
09cbfeaf 3371 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3372
6be96d3a
GR
3373 if (iocb->ki_flags & IOCB_NOWAIT) {
3374 /* If there are pages to writeback, return */
3375 if (filemap_range_has_page(inode->i_mapping, pos,
35f12f0f 3376 pos + write_len - 1))
6be96d3a
GR
3377 return -EAGAIN;
3378 } else {
3379 written = filemap_write_and_wait_range(mapping, pos,
3380 pos + write_len - 1);
3381 if (written)
3382 goto out;
3383 }
a969e903
CH
3384
3385 /*
3386 * After a write we want buffered reads to be sure to go to disk to get
3387 * the new data. We invalidate clean cached page from the region we're
3388 * about to write. We do this *before* the write so that we can return
6ccfa806 3389 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3390 */
55635ba7 3391 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3392 pos >> PAGE_SHIFT, end);
55635ba7
AR
3393 /*
3394 * If a page can not be invalidated, return 0 to fall back
3395 * to buffered write.
3396 */
3397 if (written) {
3398 if (written == -EBUSY)
3399 return 0;
3400 goto out;
a969e903
CH
3401 }
3402
639a93a5 3403 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3404
3405 /*
3406 * Finally, try again to invalidate clean pages which might have been
3407 * cached by non-direct readahead, or faulted in by get_user_pages()
3408 * if the source of the write was an mmap'ed region of the file
3409 * we're writing. Either one is a pretty crazy thing to do,
3410 * so we don't support it 100%. If this invalidation
3411 * fails, tough, the write still worked...
332391a9
LC
3412 *
3413 * Most of the time we do not need this since dio_complete() will do
3414 * the invalidation for us. However there are some file systems that
3415 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3416 * them by removing it completely.
3417 *
9266a140
KK
3418 * Noticeable example is a blkdev_direct_IO().
3419 *
80c1fe90 3420 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3421 */
9266a140
KK
3422 if (written > 0 && mapping->nrpages &&
3423 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3424 dio_warn_stale_pagecache(file);
a969e903 3425
1da177e4 3426 if (written > 0) {
0116651c 3427 pos += written;
639a93a5 3428 write_len -= written;
0116651c
NK
3429 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3430 i_size_write(inode, pos);
1da177e4
LT
3431 mark_inode_dirty(inode);
3432 }
5cb6c6c7 3433 iocb->ki_pos = pos;
1da177e4 3434 }
639a93a5 3435 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3436out:
1da177e4
LT
3437 return written;
3438}
3439EXPORT_SYMBOL(generic_file_direct_write);
3440
eb2be189
NP
3441/*
3442 * Find or create a page at the given pagecache position. Return the locked
3443 * page. This function is specifically for buffered writes.
3444 */
54566b2c
NP
3445struct page *grab_cache_page_write_begin(struct address_space *mapping,
3446 pgoff_t index, unsigned flags)
eb2be189 3447{
eb2be189 3448 struct page *page;
bbddabe2 3449 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3450
54566b2c 3451 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3452 fgp_flags |= FGP_NOFS;
3453
3454 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3455 mapping_gfp_mask(mapping));
c585a267 3456 if (page)
2457aec6 3457 wait_for_stable_page(page);
eb2be189 3458
eb2be189
NP
3459 return page;
3460}
54566b2c 3461EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3462
3b93f911 3463ssize_t generic_perform_write(struct file *file,
afddba49
NP
3464 struct iov_iter *i, loff_t pos)
3465{
3466 struct address_space *mapping = file->f_mapping;
3467 const struct address_space_operations *a_ops = mapping->a_ops;
3468 long status = 0;
3469 ssize_t written = 0;
674b892e
NP
3470 unsigned int flags = 0;
3471
afddba49
NP
3472 do {
3473 struct page *page;
afddba49
NP
3474 unsigned long offset; /* Offset into pagecache page */
3475 unsigned long bytes; /* Bytes to write to page */
3476 size_t copied; /* Bytes copied from user */
3477 void *fsdata;
3478
09cbfeaf
KS
3479 offset = (pos & (PAGE_SIZE - 1));
3480 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3481 iov_iter_count(i));
3482
3483again:
00a3d660
LT
3484 /*
3485 * Bring in the user page that we will copy from _first_.
3486 * Otherwise there's a nasty deadlock on copying from the
3487 * same page as we're writing to, without it being marked
3488 * up-to-date.
3489 *
3490 * Not only is this an optimisation, but it is also required
3491 * to check that the address is actually valid, when atomic
3492 * usercopies are used, below.
3493 */
3494 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3495 status = -EFAULT;
3496 break;
3497 }
3498
296291cd
JK
3499 if (fatal_signal_pending(current)) {
3500 status = -EINTR;
3501 break;
3502 }
3503
674b892e 3504 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3505 &page, &fsdata);
2457aec6 3506 if (unlikely(status < 0))
afddba49
NP
3507 break;
3508
931e80e4 3509 if (mapping_writably_mapped(mapping))
3510 flush_dcache_page(page);
00a3d660 3511
afddba49 3512 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3513 flush_dcache_page(page);
3514
3515 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3516 page, fsdata);
3517 if (unlikely(status < 0))
3518 break;
3519 copied = status;
3520
3521 cond_resched();
3522
124d3b70 3523 iov_iter_advance(i, copied);
afddba49
NP
3524 if (unlikely(copied == 0)) {
3525 /*
3526 * If we were unable to copy any data at all, we must
3527 * fall back to a single segment length write.
3528 *
3529 * If we didn't fallback here, we could livelock
3530 * because not all segments in the iov can be copied at
3531 * once without a pagefault.
3532 */
09cbfeaf 3533 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3534 iov_iter_single_seg_count(i));
3535 goto again;
3536 }
afddba49
NP
3537 pos += copied;
3538 written += copied;
3539
3540 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3541 } while (iov_iter_count(i));
3542
3543 return written ? written : status;
3544}
3b93f911 3545EXPORT_SYMBOL(generic_perform_write);
1da177e4 3546
e4dd9de3 3547/**
8174202b 3548 * __generic_file_write_iter - write data to a file
e4dd9de3 3549 * @iocb: IO state structure (file, offset, etc.)
8174202b 3550 * @from: iov_iter with data to write
e4dd9de3
JK
3551 *
3552 * This function does all the work needed for actually writing data to a
3553 * file. It does all basic checks, removes SUID from the file, updates
3554 * modification times and calls proper subroutines depending on whether we
3555 * do direct IO or a standard buffered write.
3556 *
3557 * It expects i_mutex to be grabbed unless we work on a block device or similar
3558 * object which does not need locking at all.
3559 *
3560 * This function does *not* take care of syncing data in case of O_SYNC write.
3561 * A caller has to handle it. This is mainly due to the fact that we want to
3562 * avoid syncing under i_mutex.
a862f68a
MR
3563 *
3564 * Return:
3565 * * number of bytes written, even for truncated writes
3566 * * negative error code if no data has been written at all
e4dd9de3 3567 */
8174202b 3568ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3569{
3570 struct file *file = iocb->ki_filp;
fb5527e6 3571 struct address_space * mapping = file->f_mapping;
1da177e4 3572 struct inode *inode = mapping->host;
3b93f911 3573 ssize_t written = 0;
1da177e4 3574 ssize_t err;
3b93f911 3575 ssize_t status;
1da177e4 3576
1da177e4 3577 /* We can write back this queue in page reclaim */
de1414a6 3578 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3579 err = file_remove_privs(file);
1da177e4
LT
3580 if (err)
3581 goto out;
3582
c3b2da31
JB
3583 err = file_update_time(file);
3584 if (err)
3585 goto out;
1da177e4 3586
2ba48ce5 3587 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3588 loff_t pos, endbyte;
fb5527e6 3589
1af5bb49 3590 written = generic_file_direct_write(iocb, from);
1da177e4 3591 /*
fbbbad4b
MW
3592 * If the write stopped short of completing, fall back to
3593 * buffered writes. Some filesystems do this for writes to
3594 * holes, for example. For DAX files, a buffered write will
3595 * not succeed (even if it did, DAX does not handle dirty
3596 * page-cache pages correctly).
1da177e4 3597 */
0b8def9d 3598 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3599 goto out;
3600
0b8def9d 3601 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3602 /*
3b93f911 3603 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3604 * then we want to return the number of bytes which were
3605 * direct-written, or the error code if that was zero. Note
3606 * that this differs from normal direct-io semantics, which
3607 * will return -EFOO even if some bytes were written.
3608 */
60bb4529 3609 if (unlikely(status < 0)) {
3b93f911 3610 err = status;
fb5527e6
JM
3611 goto out;
3612 }
fb5527e6
JM
3613 /*
3614 * We need to ensure that the page cache pages are written to
3615 * disk and invalidated to preserve the expected O_DIRECT
3616 * semantics.
3617 */
3b93f911 3618 endbyte = pos + status - 1;
0b8def9d 3619 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3620 if (err == 0) {
0b8def9d 3621 iocb->ki_pos = endbyte + 1;
3b93f911 3622 written += status;
fb5527e6 3623 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3624 pos >> PAGE_SHIFT,
3625 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3626 } else {
3627 /*
3628 * We don't know how much we wrote, so just return
3629 * the number of bytes which were direct-written
3630 */
3631 }
3632 } else {
0b8def9d
AV
3633 written = generic_perform_write(file, from, iocb->ki_pos);
3634 if (likely(written > 0))
3635 iocb->ki_pos += written;
fb5527e6 3636 }
1da177e4
LT
3637out:
3638 current->backing_dev_info = NULL;
3639 return written ? written : err;
3640}
8174202b 3641EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3642
e4dd9de3 3643/**
8174202b 3644 * generic_file_write_iter - write data to a file
e4dd9de3 3645 * @iocb: IO state structure
8174202b 3646 * @from: iov_iter with data to write
e4dd9de3 3647 *
8174202b 3648 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3649 * filesystems. It takes care of syncing the file in case of O_SYNC file
3650 * and acquires i_mutex as needed.
a862f68a
MR
3651 * Return:
3652 * * negative error code if no data has been written at all of
3653 * vfs_fsync_range() failed for a synchronous write
3654 * * number of bytes written, even for truncated writes
e4dd9de3 3655 */
8174202b 3656ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3657{
3658 struct file *file = iocb->ki_filp;
148f948b 3659 struct inode *inode = file->f_mapping->host;
1da177e4 3660 ssize_t ret;
1da177e4 3661
5955102c 3662 inode_lock(inode);
3309dd04
AV
3663 ret = generic_write_checks(iocb, from);
3664 if (ret > 0)
5f380c7f 3665 ret = __generic_file_write_iter(iocb, from);
5955102c 3666 inode_unlock(inode);
1da177e4 3667
e2592217
CH
3668 if (ret > 0)
3669 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3670 return ret;
3671}
8174202b 3672EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3673
cf9a2ae8
DH
3674/**
3675 * try_to_release_page() - release old fs-specific metadata on a page
3676 *
3677 * @page: the page which the kernel is trying to free
3678 * @gfp_mask: memory allocation flags (and I/O mode)
3679 *
3680 * The address_space is to try to release any data against the page
a862f68a 3681 * (presumably at page->private).
cf9a2ae8 3682 *
266cf658
DH
3683 * This may also be called if PG_fscache is set on a page, indicating that the
3684 * page is known to the local caching routines.
3685 *
cf9a2ae8 3686 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3687 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3688 *
a862f68a 3689 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3690 */
3691int try_to_release_page(struct page *page, gfp_t gfp_mask)
3692{
3693 struct address_space * const mapping = page->mapping;
3694
3695 BUG_ON(!PageLocked(page));
3696 if (PageWriteback(page))
3697 return 0;
3698
3699 if (mapping && mapping->a_ops->releasepage)
3700 return mapping->a_ops->releasepage(page, gfp_mask);
3701 return try_to_free_buffers(page);
3702}
3703
3704EXPORT_SYMBOL(try_to_release_page);