]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/gup.c
mm/hugetlb: add page_mask for hugetlb_follow_page_mask()
[thirdparty/linux.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
a6e79df9 21#include <linux/shmem_fs.h>
1027e443 22
33a709b2 23#include <asm/mmu_context.h>
1027e443 24#include <asm/tlbflush.h>
2667f50e 25
4bbd4c77
KS
26#include "internal.h"
27
df06b37f
KB
28struct follow_page_context {
29 struct dev_pagemap *pgmap;
30 unsigned int page_mask;
31};
32
b6a2619c
DH
33static inline void sanity_check_pinned_pages(struct page **pages,
34 unsigned long npages)
35{
36 if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 return;
38
39 /*
40 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 * can no longer turn them possibly shared and PageAnonExclusive() will
42 * stick around until the page is freed.
43 *
44 * We'd like to verify that our pinned anonymous pages are still mapped
45 * exclusively. The issue with anon THP is that we don't know how
46 * they are/were mapped when pinning them. However, for anon
47 * THP we can assume that either the given page (PTE-mapped THP) or
48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 * neither is the case, there is certainly something wrong.
50 */
51 for (; npages; npages--, pages++) {
52 struct page *page = *pages;
53 struct folio *folio = page_folio(page);
54
c8070b78
DH
55 if (is_zero_page(page) ||
56 !folio_test_anon(folio))
b6a2619c
DH
57 continue;
58 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 else
61 /* Either a PTE-mapped or a PMD-mapped THP. */
62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 !PageAnonExclusive(page), page);
64 }
65}
66
cd1adf1b 67/*
ece1ed7b 68 * Return the folio with ref appropriately incremented,
cd1adf1b 69 * or NULL if that failed.
a707cdd5 70 */
ece1ed7b 71static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 72{
ece1ed7b 73 struct folio *folio;
a707cdd5 74
59409373 75retry:
ece1ed7b
MWO
76 folio = page_folio(page);
77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 78 return NULL;
ece1ed7b 79 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
a707cdd5 80 return NULL;
c24d3732
JH
81
82 /*
ece1ed7b
MWO
83 * At this point we have a stable reference to the folio; but it
84 * could be that between calling page_folio() and the refcount
85 * increment, the folio was split, in which case we'd end up
86 * holding a reference on a folio that has nothing to do with the page
c24d3732 87 * we were given anymore.
ece1ed7b
MWO
88 * So now that the folio is stable, recheck that the page still
89 * belongs to this folio.
c24d3732 90 */
ece1ed7b 91 if (unlikely(page_folio(page) != folio)) {
f4f451a1
MS
92 if (!put_devmap_managed_page_refs(&folio->page, refs))
93 folio_put_refs(folio, refs);
59409373 94 goto retry;
c24d3732
JH
95 }
96
ece1ed7b 97 return folio;
a707cdd5
JH
98}
99
3967db22 100/**
ece1ed7b 101 * try_grab_folio() - Attempt to get or pin a folio.
3967db22 102 * @page: pointer to page to be grabbed
ece1ed7b 103 * @refs: the value to (effectively) add to the folio's refcount
3967db22
JH
104 * @flags: gup flags: these are the FOLL_* flag values.
105 *
3faa52c0 106 * "grab" names in this file mean, "look at flags to decide whether to use
ece1ed7b 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0
JH
108 *
109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110 * same time. (That's true throughout the get_user_pages*() and
111 * pin_user_pages*() APIs.) Cases:
112 *
ece1ed7b 113 * FOLL_GET: folio's refcount will be incremented by @refs.
3967db22 114 *
ece1ed7b 115 * FOLL_PIN on large folios: folio's refcount will be incremented by
94688e8e 116 * @refs, and its pincount will be incremented by @refs.
3967db22 117 *
ece1ed7b 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
5232c63f 119 * @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0 120 *
ece1ed7b
MWO
121 * Return: The folio containing @page (with refcount appropriately
122 * incremented) for success, or NULL upon failure. If neither FOLL_GET
123 * nor FOLL_PIN was set, that's considered failure, and furthermore,
124 * a likely bug in the caller, so a warning is also emitted.
3faa52c0 125 */
ece1ed7b 126struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
3faa52c0 127{
503670ee
VMO
128 struct folio *folio;
129
130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 return NULL;
132
4003f107
LG
133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 return NULL;
135
3faa52c0 136 if (flags & FOLL_GET)
ece1ed7b 137 return try_get_folio(page, refs);
ece1ed7b 138
503670ee 139 /* FOLL_PIN is set */
c8070b78 140
6e17c6de
LT
141 /*
142 * Don't take a pin on the zero page - it's not going anywhere
143 * and it is used in a *lot* of places.
144 */
145 if (is_zero_page(page))
146 return page_folio(page);
df3a0a21 147
6e17c6de 148 folio = try_get_folio(page, refs);
503670ee
VMO
149 if (!folio)
150 return NULL;
c24d3732 151
503670ee
VMO
152 /*
153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 * right zone, so fail and let the caller fall back to the slow
155 * path.
156 */
157 if (unlikely((flags & FOLL_LONGTERM) &&
158 !folio_is_longterm_pinnable(folio))) {
159 if (!put_devmap_managed_page_refs(&folio->page, refs))
160 folio_put_refs(folio, refs);
161 return NULL;
3faa52c0 162 }
088b8aa5 163
503670ee
VMO
164 /*
165 * When pinning a large folio, use an exact count to track it.
166 *
167 * However, be sure to *also* increment the normal folio
168 * refcount field at least once, so that the folio really
169 * is pinned. That's why the refcount from the earlier
170 * try_get_folio() is left intact.
171 */
172 if (folio_test_large(folio))
173 atomic_add(refs, &folio->_pincount);
174 else
175 folio_ref_add(folio,
176 refs * (GUP_PIN_COUNTING_BIAS - 1));
177 /*
178 * Adjust the pincount before re-checking the PTE for changes.
179 * This is essentially a smp_mb() and is paired with a memory
180 * barrier in page_try_share_anon_rmap().
181 */
182 smp_mb__after_atomic();
47e29d32 183
503670ee 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
3faa52c0 185
503670ee 186 return folio;
3faa52c0
JH
187}
188
d8ddc099 189static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
190{
191 if (flags & FOLL_PIN) {
c8070b78
DH
192 if (is_zero_folio(folio))
193 return;
d8ddc099
MWO
194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 if (folio_test_large(folio))
94688e8e 196 atomic_sub(refs, &folio->_pincount);
4509b42c
JG
197 else
198 refs *= GUP_PIN_COUNTING_BIAS;
199 }
200
f4f451a1
MS
201 if (!put_devmap_managed_page_refs(&folio->page, refs))
202 folio_put_refs(folio, refs);
4509b42c
JG
203}
204
3faa52c0
JH
205/**
206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
5fec0719
MWO
207 * @page: pointer to page to be grabbed
208 * @flags: gup flags: these are the FOLL_* flag values.
3faa52c0
JH
209 *
210 * This might not do anything at all, depending on the flags argument.
211 *
212 * "grab" names in this file mean, "look at flags to decide whether to use
213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214 *
3faa52c0 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
ece1ed7b 216 * time. Cases: please see the try_grab_folio() documentation, with
3967db22 217 * "refs=1".
3faa52c0 218 *
0f089235
LG
219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221 *
222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
223 * be grabbed.
3faa52c0 224 */
0f089235 225int __must_check try_grab_page(struct page *page, unsigned int flags)
3faa52c0 226{
5fec0719
MWO
227 struct folio *folio = page_folio(page);
228
5fec0719 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
0f089235 230 return -ENOMEM;
3faa52c0 231
4003f107
LG
232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 return -EREMOTEIO;
3faa52c0 234
c36c04c2 235 if (flags & FOLL_GET)
5fec0719 236 folio_ref_inc(folio);
c36c04c2 237 else if (flags & FOLL_PIN) {
c8070b78
DH
238 /*
239 * Don't take a pin on the zero page - it's not going anywhere
240 * and it is used in a *lot* of places.
241 */
242 if (is_zero_page(page))
243 return 0;
244
c36c04c2 245 /*
5fec0719 246 * Similar to try_grab_folio(): be sure to *also*
78d9d6ce
MWO
247 * increment the normal page refcount field at least once,
248 * so that the page really is pinned.
c36c04c2 249 */
5fec0719
MWO
250 if (folio_test_large(folio)) {
251 folio_ref_add(folio, 1);
94688e8e 252 atomic_add(1, &folio->_pincount);
8ea2979c 253 } else {
5fec0719 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
8ea2979c 255 }
c36c04c2 256
5fec0719 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
c36c04c2
JH
258 }
259
0f089235 260 return 0;
3faa52c0
JH
261}
262
3faa52c0
JH
263/**
264 * unpin_user_page() - release a dma-pinned page
265 * @page: pointer to page to be released
266 *
267 * Pages that were pinned via pin_user_pages*() must be released via either
268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269 * that such pages can be separately tracked and uniquely handled. In
270 * particular, interactions with RDMA and filesystems need special handling.
271 */
272void unpin_user_page(struct page *page)
273{
b6a2619c 274 sanity_check_pinned_pages(&page, 1);
d8ddc099 275 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
276}
277EXPORT_SYMBOL(unpin_user_page);
278
1101fb8f
DH
279/**
280 * folio_add_pin - Try to get an additional pin on a pinned folio
281 * @folio: The folio to be pinned
282 *
283 * Get an additional pin on a folio we already have a pin on. Makes no change
284 * if the folio is a zero_page.
285 */
286void folio_add_pin(struct folio *folio)
287{
288 if (is_zero_folio(folio))
289 return;
290
291 /*
292 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 * page refcount field at least once, so that the page really is
294 * pinned.
295 */
296 if (folio_test_large(folio)) {
297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 folio_ref_inc(folio);
299 atomic_inc(&folio->_pincount);
300 } else {
301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 }
304}
305
659508f9 306static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 307 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 308{
659508f9
MWO
309 struct page *next = nth_page(start, i);
310 struct folio *folio = page_folio(next);
458a4f78
JM
311 unsigned int nr = 1;
312
659508f9 313 if (folio_test_large(folio))
4c654229 314 nr = min_t(unsigned int, npages - i,
659508f9 315 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 316
458a4f78 317 *ntails = nr;
659508f9 318 return folio;
458a4f78
JM
319}
320
12521c76 321static inline struct folio *gup_folio_next(struct page **list,
28297dbc 322 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 323{
12521c76 324 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
325 unsigned int nr;
326
8745d7f6 327 for (nr = i + 1; nr < npages; nr++) {
12521c76 328 if (page_folio(list[nr]) != folio)
8745d7f6
JM
329 break;
330 }
331
8745d7f6 332 *ntails = nr - i;
12521c76 333 return folio;
8745d7f6
JM
334}
335
fc1d8e7c 336/**
f1f6a7dd 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 338 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 339 * @npages: number of pages in the @pages array.
2d15eb31 340 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
341 *
342 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343 * variants called on that page.
344 *
345 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 346 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
347 * listed as clean. In any case, releases all pages using unpin_user_page(),
348 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 349 *
f1f6a7dd 350 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 351 *
2d15eb31
AM
352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353 * required, then the caller should a) verify that this is really correct,
354 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 355 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
356 *
357 */
f1f6a7dd
JH
358void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 bool make_dirty)
fc1d8e7c 360{
12521c76
MWO
361 unsigned long i;
362 struct folio *folio;
363 unsigned int nr;
2d15eb31
AM
364
365 if (!make_dirty) {
f1f6a7dd 366 unpin_user_pages(pages, npages);
2d15eb31
AM
367 return;
368 }
369
b6a2619c 370 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
371 for (i = 0; i < npages; i += nr) {
372 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31
AM
373 /*
374 * Checking PageDirty at this point may race with
375 * clear_page_dirty_for_io(), but that's OK. Two key
376 * cases:
377 *
378 * 1) This code sees the page as already dirty, so it
379 * skips the call to set_page_dirty(). That could happen
380 * because clear_page_dirty_for_io() called
381 * page_mkclean(), followed by set_page_dirty().
382 * However, now the page is going to get written back,
383 * which meets the original intention of setting it
384 * dirty, so all is well: clear_page_dirty_for_io() goes
385 * on to call TestClearPageDirty(), and write the page
386 * back.
387 *
388 * 2) This code sees the page as clean, so it calls
389 * set_page_dirty(). The page stays dirty, despite being
390 * written back, so it gets written back again in the
391 * next writeback cycle. This is harmless.
392 */
12521c76
MWO
393 if (!folio_test_dirty(folio)) {
394 folio_lock(folio);
395 folio_mark_dirty(folio);
396 folio_unlock(folio);
397 }
398 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 399 }
fc1d8e7c 400}
f1f6a7dd 401EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 402
458a4f78
JM
403/**
404 * unpin_user_page_range_dirty_lock() - release and optionally dirty
405 * gup-pinned page range
406 *
407 * @page: the starting page of a range maybe marked dirty, and definitely released.
408 * @npages: number of consecutive pages to release.
409 * @make_dirty: whether to mark the pages dirty
410 *
411 * "gup-pinned page range" refers to a range of pages that has had one of the
412 * pin_user_pages() variants called on that page.
413 *
414 * For the page ranges defined by [page .. page+npages], make that range (or
415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416 * page range was previously listed as clean.
417 *
418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419 * required, then the caller should a) verify that this is really correct,
420 * because _lock() is usually required, and b) hand code it:
421 * set_page_dirty_lock(), unpin_user_page().
422 *
423 */
424void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 bool make_dirty)
426{
659508f9
MWO
427 unsigned long i;
428 struct folio *folio;
429 unsigned int nr;
430
431 for (i = 0; i < npages; i += nr) {
432 folio = gup_folio_range_next(page, npages, i, &nr);
433 if (make_dirty && !folio_test_dirty(folio)) {
434 folio_lock(folio);
435 folio_mark_dirty(folio);
436 folio_unlock(folio);
437 }
438 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
439 }
440}
441EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442
b6a2619c
DH
443static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444{
445 unsigned long i;
446 struct folio *folio;
447 unsigned int nr;
448
449 /*
450 * Don't perform any sanity checks because we might have raced with
451 * fork() and some anonymous pages might now actually be shared --
452 * which is why we're unpinning after all.
453 */
454 for (i = 0; i < npages; i += nr) {
455 folio = gup_folio_next(pages, npages, i, &nr);
456 gup_put_folio(folio, nr, FOLL_PIN);
457 }
458}
459
fc1d8e7c 460/**
f1f6a7dd 461 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
462 * @pages: array of pages to be marked dirty and released.
463 * @npages: number of pages in the @pages array.
464 *
f1f6a7dd 465 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 466 *
f1f6a7dd 467 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 468 */
f1f6a7dd 469void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 470{
12521c76
MWO
471 unsigned long i;
472 struct folio *folio;
473 unsigned int nr;
fc1d8e7c 474
146608bb
JH
475 /*
476 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 * leaving them pinned), but probably not. More likely, gup/pup returned
478 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 */
480 if (WARN_ON(IS_ERR_VALUE(npages)))
481 return;
31b912de 482
b6a2619c 483 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
484 for (i = 0; i < npages; i += nr) {
485 folio = gup_folio_next(pages, npages, i, &nr);
486 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 487 }
fc1d8e7c 488}
f1f6a7dd 489EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 490
a458b76a
AA
491/*
492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
494 * cache bouncing on large SMP machines for concurrent pinned gups.
495 */
496static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497{
498 if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 set_bit(MMF_HAS_PINNED, mm_flags);
500}
501
050a9adc 502#ifdef CONFIG_MMU
69e68b4f
KS
503static struct page *no_page_table(struct vm_area_struct *vma,
504 unsigned int flags)
4bbd4c77 505{
69e68b4f
KS
506 /*
507 * When core dumping an enormous anonymous area that nobody
508 * has touched so far, we don't want to allocate unnecessary pages or
509 * page tables. Return error instead of NULL to skip handle_mm_fault,
510 * then get_dump_page() will return NULL to leave a hole in the dump.
511 * But we can only make this optimization where a hole would surely
512 * be zero-filled if handle_mm_fault() actually did handle it.
513 */
a0137f16
AK
514 if ((flags & FOLL_DUMP) &&
515 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
516 return ERR_PTR(-EFAULT);
517 return NULL;
518}
4bbd4c77 519
1027e443
KS
520static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
521 pte_t *pte, unsigned int flags)
522{
1027e443 523 if (flags & FOLL_TOUCH) {
c33c7948
RR
524 pte_t orig_entry = ptep_get(pte);
525 pte_t entry = orig_entry;
1027e443
KS
526
527 if (flags & FOLL_WRITE)
528 entry = pte_mkdirty(entry);
529 entry = pte_mkyoung(entry);
530
c33c7948 531 if (!pte_same(orig_entry, entry)) {
1027e443
KS
532 set_pte_at(vma->vm_mm, address, pte, entry);
533 update_mmu_cache(vma, address, pte);
534 }
535 }
536
537 /* Proper page table entry exists, but no corresponding struct page */
538 return -EEXIST;
539}
540
5535be30
DH
541/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
542static inline bool can_follow_write_pte(pte_t pte, struct page *page,
543 struct vm_area_struct *vma,
544 unsigned int flags)
19be0eaf 545{
5535be30
DH
546 /* If the pte is writable, we can write to the page. */
547 if (pte_write(pte))
548 return true;
549
550 /* Maybe FOLL_FORCE is set to override it? */
551 if (!(flags & FOLL_FORCE))
552 return false;
553
554 /* But FOLL_FORCE has no effect on shared mappings */
555 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
556 return false;
557
558 /* ... or read-only private ones */
559 if (!(vma->vm_flags & VM_MAYWRITE))
560 return false;
561
562 /* ... or already writable ones that just need to take a write fault */
563 if (vma->vm_flags & VM_WRITE)
564 return false;
565
566 /*
567 * See can_change_pte_writable(): we broke COW and could map the page
568 * writable if we have an exclusive anonymous page ...
569 */
570 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
571 return false;
572
573 /* ... and a write-fault isn't required for other reasons. */
574 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
575 return false;
576 return !userfaultfd_pte_wp(vma, pte);
19be0eaf
LT
577}
578
69e68b4f 579static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
580 unsigned long address, pmd_t *pmd, unsigned int flags,
581 struct dev_pagemap **pgmap)
69e68b4f
KS
582{
583 struct mm_struct *mm = vma->vm_mm;
584 struct page *page;
585 spinlock_t *ptl;
586 pte_t *ptep, pte;
f28d4363 587 int ret;
4bbd4c77 588
eddb1c22
JH
589 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
590 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
591 (FOLL_PIN | FOLL_GET)))
592 return ERR_PTR(-EINVAL);
4bbd4c77
KS
593
594 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
04dee9e8
HD
595 if (!ptep)
596 return no_page_table(vma, flags);
c33c7948 597 pte = ptep_get(ptep);
f7355e99
DH
598 if (!pte_present(pte))
599 goto no_page;
474098ed 600 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
4bbd4c77 601 goto no_page;
4bbd4c77
KS
602
603 page = vm_normal_page(vma, address, pte);
5535be30
DH
604
605 /*
606 * We only care about anon pages in can_follow_write_pte() and don't
607 * have to worry about pte_devmap() because they are never anon.
608 */
609 if ((flags & FOLL_WRITE) &&
610 !can_follow_write_pte(pte, page, vma, flags)) {
611 page = NULL;
612 goto out;
613 }
614
3faa52c0 615 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 616 /*
3faa52c0
JH
617 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
618 * case since they are only valid while holding the pgmap
619 * reference.
3565fce3 620 */
df06b37f
KB
621 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
622 if (*pgmap)
3565fce3
DW
623 page = pte_page(pte);
624 else
625 goto no_page;
626 } else if (unlikely(!page)) {
1027e443
KS
627 if (flags & FOLL_DUMP) {
628 /* Avoid special (like zero) pages in core dumps */
629 page = ERR_PTR(-EFAULT);
630 goto out;
631 }
632
633 if (is_zero_pfn(pte_pfn(pte))) {
634 page = pte_page(pte);
635 } else {
1027e443
KS
636 ret = follow_pfn_pte(vma, address, ptep, flags);
637 page = ERR_PTR(ret);
638 goto out;
639 }
4bbd4c77
KS
640 }
641
84209e87 642 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
a7f22660
DH
643 page = ERR_PTR(-EMLINK);
644 goto out;
645 }
b6a2619c
DH
646
647 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
648 !PageAnonExclusive(page), page);
649
3faa52c0 650 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
0f089235
LG
651 ret = try_grab_page(page, flags);
652 if (unlikely(ret)) {
653 page = ERR_PTR(ret);
3faa52c0 654 goto out;
8fde12ca 655 }
4003f107 656
f28d4363
CI
657 /*
658 * We need to make the page accessible if and only if we are going
659 * to access its content (the FOLL_PIN case). Please see
660 * Documentation/core-api/pin_user_pages.rst for details.
661 */
662 if (flags & FOLL_PIN) {
663 ret = arch_make_page_accessible(page);
664 if (ret) {
665 unpin_user_page(page);
666 page = ERR_PTR(ret);
667 goto out;
668 }
669 }
4bbd4c77
KS
670 if (flags & FOLL_TOUCH) {
671 if ((flags & FOLL_WRITE) &&
672 !pte_dirty(pte) && !PageDirty(page))
673 set_page_dirty(page);
674 /*
675 * pte_mkyoung() would be more correct here, but atomic care
676 * is needed to avoid losing the dirty bit: it is easier to use
677 * mark_page_accessed().
678 */
679 mark_page_accessed(page);
680 }
1027e443 681out:
4bbd4c77 682 pte_unmap_unlock(ptep, ptl);
4bbd4c77 683 return page;
4bbd4c77
KS
684no_page:
685 pte_unmap_unlock(ptep, ptl);
686 if (!pte_none(pte))
69e68b4f
KS
687 return NULL;
688 return no_page_table(vma, flags);
689}
690
080dbb61
AK
691static struct page *follow_pmd_mask(struct vm_area_struct *vma,
692 unsigned long address, pud_t *pudp,
df06b37f
KB
693 unsigned int flags,
694 struct follow_page_context *ctx)
69e68b4f 695{
68827280 696 pmd_t *pmd, pmdval;
69e68b4f
KS
697 spinlock_t *ptl;
698 struct page *page;
699 struct mm_struct *mm = vma->vm_mm;
700
080dbb61 701 pmd = pmd_offset(pudp, address);
26e1a0c3 702 pmdval = pmdp_get_lockless(pmd);
68827280 703 if (pmd_none(pmdval))
69e68b4f 704 return no_page_table(vma, flags);
f7355e99 705 if (!pmd_present(pmdval))
e66f17ff 706 return no_page_table(vma, flags);
68827280 707 if (pmd_devmap(pmdval)) {
3565fce3 708 ptl = pmd_lock(mm, pmd);
df06b37f 709 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
710 spin_unlock(ptl);
711 if (page)
712 return page;
713 }
68827280 714 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 715 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 716
474098ed 717 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
db08f203
AK
718 return no_page_table(vma, flags);
719
6742d293 720 ptl = pmd_lock(mm, pmd);
84c3fc4e
ZY
721 if (unlikely(!pmd_present(*pmd))) {
722 spin_unlock(ptl);
f7355e99 723 return no_page_table(vma, flags);
84c3fc4e 724 }
6742d293
KS
725 if (unlikely(!pmd_trans_huge(*pmd))) {
726 spin_unlock(ptl);
df06b37f 727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 728 }
4066c119 729 if (flags & FOLL_SPLIT_PMD) {
2378118b
HD
730 spin_unlock(ptl);
731 split_huge_pmd(vma, pmd, address);
732 /* If pmd was left empty, stuff a page table in there quickly */
733 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
df06b37f 734 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 735 }
6742d293
KS
736 page = follow_trans_huge_pmd(vma, address, pmd, flags);
737 spin_unlock(ptl);
df06b37f 738 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 739 return page;
4bbd4c77
KS
740}
741
080dbb61
AK
742static struct page *follow_pud_mask(struct vm_area_struct *vma,
743 unsigned long address, p4d_t *p4dp,
df06b37f
KB
744 unsigned int flags,
745 struct follow_page_context *ctx)
080dbb61
AK
746{
747 pud_t *pud;
748 spinlock_t *ptl;
749 struct page *page;
750 struct mm_struct *mm = vma->vm_mm;
751
752 pud = pud_offset(p4dp, address);
753 if (pud_none(*pud))
754 return no_page_table(vma, flags);
080dbb61
AK
755 if (pud_devmap(*pud)) {
756 ptl = pud_lock(mm, pud);
df06b37f 757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
758 spin_unlock(ptl);
759 if (page)
760 return page;
761 }
762 if (unlikely(pud_bad(*pud)))
763 return no_page_table(vma, flags);
764
df06b37f 765 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
766}
767
080dbb61
AK
768static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 unsigned long address, pgd_t *pgdp,
df06b37f
KB
770 unsigned int flags,
771 struct follow_page_context *ctx)
080dbb61
AK
772{
773 p4d_t *p4d;
774
775 p4d = p4d_offset(pgdp, address);
776 if (p4d_none(*p4d))
777 return no_page_table(vma, flags);
778 BUILD_BUG_ON(p4d_huge(*p4d));
779 if (unlikely(p4d_bad(*p4d)))
780 return no_page_table(vma, flags);
781
df06b37f 782 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
783}
784
785/**
786 * follow_page_mask - look up a page descriptor from a user-virtual address
787 * @vma: vm_area_struct mapping @address
788 * @address: virtual address to look up
789 * @flags: flags modifying lookup behaviour
78179556
MR
790 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791 * pointer to output page_mask
080dbb61
AK
792 *
793 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
794 *
78179556
MR
795 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
797 *
a7f22660
DH
798 * When getting an anonymous page and the caller has to trigger unsharing
799 * of a shared anonymous page first, -EMLINK is returned. The caller should
800 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
801 * relevant with FOLL_PIN and !FOLL_WRITE.
802 *
78179556
MR
803 * On output, the @ctx->page_mask is set according to the size of the page.
804 *
805 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
806 * an error pointer if there is a mapping to something not represented
807 * by a page descriptor (see also vm_normal_page()).
808 */
a7030aea 809static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 810 unsigned long address, unsigned int flags,
df06b37f 811 struct follow_page_context *ctx)
080dbb61
AK
812{
813 pgd_t *pgd;
080dbb61
AK
814 struct mm_struct *mm = vma->vm_mm;
815
df06b37f 816 ctx->page_mask = 0;
080dbb61 817
57a196a5
MK
818 /*
819 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
820 * special hugetlb page table walking code. This eliminates the
821 * need to check for hugetlb entries in the general walking code.
822 *
823 * hugetlb_follow_page_mask is only for follow_page() handling here.
824 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
825 */
dd767aaa 826 if (is_vm_hugetlb_page(vma))
5502ea44
PX
827 return hugetlb_follow_page_mask(vma, address, flags,
828 &ctx->page_mask);
080dbb61
AK
829
830 pgd = pgd_offset(mm, address);
831
832 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
833 return no_page_table(vma, flags);
834
df06b37f
KB
835 return follow_p4d_mask(vma, address, pgd, flags, ctx);
836}
837
838struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
839 unsigned int foll_flags)
840{
841 struct follow_page_context ctx = { NULL };
842 struct page *page;
843
1507f512
MR
844 if (vma_is_secretmem(vma))
845 return NULL;
846
d64e2dbc 847 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
8909691b
DH
848 return NULL;
849
df06b37f
KB
850 page = follow_page_mask(vma, address, foll_flags, &ctx);
851 if (ctx.pgmap)
852 put_dev_pagemap(ctx.pgmap);
853 return page;
080dbb61
AK
854}
855
f2b495ca
KS
856static int get_gate_page(struct mm_struct *mm, unsigned long address,
857 unsigned int gup_flags, struct vm_area_struct **vma,
858 struct page **page)
859{
860 pgd_t *pgd;
c2febafc 861 p4d_t *p4d;
f2b495ca
KS
862 pud_t *pud;
863 pmd_t *pmd;
864 pte_t *pte;
c33c7948 865 pte_t entry;
f2b495ca
KS
866 int ret = -EFAULT;
867
868 /* user gate pages are read-only */
869 if (gup_flags & FOLL_WRITE)
870 return -EFAULT;
871 if (address > TASK_SIZE)
872 pgd = pgd_offset_k(address);
873 else
874 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
875 if (pgd_none(*pgd))
876 return -EFAULT;
c2febafc 877 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
878 if (p4d_none(*p4d))
879 return -EFAULT;
c2febafc 880 pud = pud_offset(p4d, address);
b5d1c39f
AL
881 if (pud_none(*pud))
882 return -EFAULT;
f2b495ca 883 pmd = pmd_offset(pud, address);
84c3fc4e 884 if (!pmd_present(*pmd))
f2b495ca 885 return -EFAULT;
f2b495ca 886 pte = pte_offset_map(pmd, address);
04dee9e8
HD
887 if (!pte)
888 return -EFAULT;
c33c7948
RR
889 entry = ptep_get(pte);
890 if (pte_none(entry))
f2b495ca
KS
891 goto unmap;
892 *vma = get_gate_vma(mm);
893 if (!page)
894 goto out;
c33c7948 895 *page = vm_normal_page(*vma, address, entry);
f2b495ca 896 if (!*page) {
c33c7948 897 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
f2b495ca 898 goto unmap;
c33c7948 899 *page = pte_page(entry);
f2b495ca 900 }
0f089235
LG
901 ret = try_grab_page(*page, gup_flags);
902 if (unlikely(ret))
8fde12ca 903 goto unmap;
f2b495ca
KS
904out:
905 ret = 0;
906unmap:
907 pte_unmap(pte);
908 return ret;
909}
910
9a95f3cf 911/*
9a863a6a
JG
912 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
913 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
914 * to 0 and -EBUSY returned.
9a95f3cf 915 */
64019a2e 916static int faultin_page(struct vm_area_struct *vma,
a7f22660
DH
917 unsigned long address, unsigned int *flags, bool unshare,
918 int *locked)
16744483 919{
16744483 920 unsigned int fault_flags = 0;
2b740303 921 vm_fault_t ret;
16744483 922
55b8fe70
AG
923 if (*flags & FOLL_NOFAULT)
924 return -EFAULT;
16744483
KS
925 if (*flags & FOLL_WRITE)
926 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
927 if (*flags & FOLL_REMOTE)
928 fault_flags |= FAULT_FLAG_REMOTE;
f04740f5 929 if (*flags & FOLL_UNLOCKABLE) {
71335f37 930 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
93c5c61d
PX
931 /*
932 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
933 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
934 * That's because some callers may not be prepared to
935 * handle early exits caused by non-fatal signals.
936 */
937 if (*flags & FOLL_INTERRUPTIBLE)
938 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
939 }
16744483
KS
940 if (*flags & FOLL_NOWAIT)
941 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 942 if (*flags & FOLL_TRIED) {
4426e945
PX
943 /*
944 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
945 * can co-exist
946 */
234b239b
ALC
947 fault_flags |= FAULT_FLAG_TRIED;
948 }
a7f22660
DH
949 if (unshare) {
950 fault_flags |= FAULT_FLAG_UNSHARE;
951 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
952 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
953 }
16744483 954
bce617ed 955 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
956
957 if (ret & VM_FAULT_COMPLETED) {
958 /*
959 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
960 * mmap lock in the page fault handler. Sanity check this.
961 */
962 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
9a863a6a
JG
963 *locked = 0;
964
d9272525
PX
965 /*
966 * We should do the same as VM_FAULT_RETRY, but let's not
967 * return -EBUSY since that's not reflecting the reality of
968 * what has happened - we've just fully completed a page
969 * fault, with the mmap lock released. Use -EAGAIN to show
970 * that we want to take the mmap lock _again_.
971 */
972 return -EAGAIN;
973 }
974
16744483 975 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
976 int err = vm_fault_to_errno(ret, *flags);
977
978 if (err)
979 return err;
16744483
KS
980 BUG();
981 }
982
16744483 983 if (ret & VM_FAULT_RETRY) {
9a863a6a 984 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 985 *locked = 0;
16744483
KS
986 return -EBUSY;
987 }
988
16744483
KS
989 return 0;
990}
991
8ac26843
LS
992/*
993 * Writing to file-backed mappings which require folio dirty tracking using GUP
994 * is a fundamentally broken operation, as kernel write access to GUP mappings
995 * do not adhere to the semantics expected by a file system.
996 *
997 * Consider the following scenario:-
998 *
999 * 1. A folio is written to via GUP which write-faults the memory, notifying
1000 * the file system and dirtying the folio.
1001 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1002 * the PTE being marked read-only.
1003 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1004 * direct mapping.
1005 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1006 * (though it does not have to).
1007 *
1008 * This results in both data being written to a folio without writenotify, and
1009 * the folio being dirtied unexpectedly (if the caller decides to do so).
1010 */
1011static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1012 unsigned long gup_flags)
1013{
1014 /*
1015 * If we aren't pinning then no problematic write can occur. A long term
1016 * pin is the most egregious case so this is the case we disallow.
1017 */
1018 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1019 (FOLL_PIN | FOLL_LONGTERM))
1020 return true;
1021
1022 /*
1023 * If the VMA does not require dirty tracking then no problematic write
1024 * can occur either.
1025 */
1026 return !vma_needs_dirty_tracking(vma);
1027}
1028
fa5bb209
KS
1029static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1030{
1031 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
1032 int write = (gup_flags & FOLL_WRITE);
1033 int foreign = (gup_flags & FOLL_REMOTE);
8ac26843 1034 bool vma_anon = vma_is_anonymous(vma);
fa5bb209
KS
1035
1036 if (vm_flags & (VM_IO | VM_PFNMAP))
1037 return -EFAULT;
1038
8ac26843 1039 if ((gup_flags & FOLL_ANON) && !vma_anon)
7f7ccc2c
WT
1040 return -EFAULT;
1041
52650c8b
JG
1042 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1043 return -EOPNOTSUPP;
1044
1507f512
MR
1045 if (vma_is_secretmem(vma))
1046 return -EFAULT;
1047
1b2ee126 1048 if (write) {
8ac26843
LS
1049 if (!vma_anon &&
1050 !writable_file_mapping_allowed(vma, gup_flags))
1051 return -EFAULT;
1052
fa5bb209
KS
1053 if (!(vm_flags & VM_WRITE)) {
1054 if (!(gup_flags & FOLL_FORCE))
1055 return -EFAULT;
f347454d
DH
1056 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1057 if (is_vm_hugetlb_page(vma))
1058 return -EFAULT;
fa5bb209
KS
1059 /*
1060 * We used to let the write,force case do COW in a
1061 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1062 * set a breakpoint in a read-only mapping of an
1063 * executable, without corrupting the file (yet only
1064 * when that file had been opened for writing!).
1065 * Anon pages in shared mappings are surprising: now
1066 * just reject it.
1067 */
46435364 1068 if (!is_cow_mapping(vm_flags))
fa5bb209 1069 return -EFAULT;
fa5bb209
KS
1070 }
1071 } else if (!(vm_flags & VM_READ)) {
1072 if (!(gup_flags & FOLL_FORCE))
1073 return -EFAULT;
1074 /*
1075 * Is there actually any vma we can reach here which does not
1076 * have VM_MAYREAD set?
1077 */
1078 if (!(vm_flags & VM_MAYREAD))
1079 return -EFAULT;
1080 }
d61172b4
DH
1081 /*
1082 * gups are always data accesses, not instruction
1083 * fetches, so execute=false here
1084 */
1085 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1086 return -EFAULT;
fa5bb209
KS
1087 return 0;
1088}
1089
6cd06ab1
LT
1090/*
1091 * This is "vma_lookup()", but with a warning if we would have
1092 * historically expanded the stack in the GUP code.
1093 */
1094static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1095 unsigned long addr)
1096{
1097#ifdef CONFIG_STACK_GROWSUP
1098 return vma_lookup(mm, addr);
1099#else
1100 static volatile unsigned long next_warn;
1101 struct vm_area_struct *vma;
1102 unsigned long now, next;
1103
1104 vma = find_vma(mm, addr);
1105 if (!vma || (addr >= vma->vm_start))
1106 return vma;
1107
1108 /* Only warn for half-way relevant accesses */
1109 if (!(vma->vm_flags & VM_GROWSDOWN))
1110 return NULL;
1111 if (vma->vm_start - addr > 65536)
1112 return NULL;
1113
1114 /* Let's not warn more than once an hour.. */
1115 now = jiffies; next = next_warn;
1116 if (next && time_before(now, next))
1117 return NULL;
1118 next_warn = now + 60*60*HZ;
1119
1120 /* Let people know things may have changed. */
1121 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1122 current->comm, task_pid_nr(current),
1123 vma->vm_start, vma->vm_end, addr);
1124 dump_stack();
1125 return NULL;
1126#endif
1127}
1128
4bbd4c77
KS
1129/**
1130 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1131 * @mm: mm_struct of target mm
1132 * @start: starting user address
1133 * @nr_pages: number of pages from start to pin
1134 * @gup_flags: flags modifying pin behaviour
1135 * @pages: array that receives pointers to the pages pinned.
1136 * Should be at least nr_pages long. Or NULL, if caller
1137 * only intends to ensure the pages are faulted in.
c1e8d7c6 1138 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1139 *
d2dfbe47
LX
1140 * Returns either number of pages pinned (which may be less than the
1141 * number requested), or an error. Details about the return value:
1142 *
1143 * -- If nr_pages is 0, returns 0.
1144 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1145 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1146 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1147 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1148 *
1149 * The caller is responsible for releasing returned @pages, via put_page().
1150 *
c1e8d7c6 1151 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1152 *
1153 * __get_user_pages walks a process's page tables and takes a reference to
1154 * each struct page that each user address corresponds to at a given
1155 * instant. That is, it takes the page that would be accessed if a user
1156 * thread accesses the given user virtual address at that instant.
1157 *
1158 * This does not guarantee that the page exists in the user mappings when
1159 * __get_user_pages returns, and there may even be a completely different
1160 * page there in some cases (eg. if mmapped pagecache has been invalidated
c5acf1f6 1161 * and subsequently re-faulted). However it does guarantee that the page
4bbd4c77
KS
1162 * won't be freed completely. And mostly callers simply care that the page
1163 * contains data that was valid *at some point in time*. Typically, an IO
1164 * or similar operation cannot guarantee anything stronger anyway because
1165 * locks can't be held over the syscall boundary.
1166 *
1167 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1168 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1169 * appropriate) must be called after the page is finished with, and
1170 * before put_page is called.
1171 *
9a863a6a
JG
1172 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1173 * be released. If this happens *@locked will be set to 0 on return.
9a95f3cf 1174 *
9a863a6a
JG
1175 * A caller using such a combination of @gup_flags must therefore hold the
1176 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1177 * it must be held for either reading or writing and will not be released.
4bbd4c77
KS
1178 *
1179 * In most cases, get_user_pages or get_user_pages_fast should be used
1180 * instead of __get_user_pages. __get_user_pages should be used only if
1181 * you need some special @gup_flags.
1182 */
64019a2e 1183static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1184 unsigned long start, unsigned long nr_pages,
1185 unsigned int gup_flags, struct page **pages,
b2cac248 1186 int *locked)
4bbd4c77 1187{
df06b37f 1188 long ret = 0, i = 0;
fa5bb209 1189 struct vm_area_struct *vma = NULL;
df06b37f 1190 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1191
1192 if (!nr_pages)
1193 return 0;
1194
428e106a 1195 start = untagged_addr_remote(mm, start);
f9652594 1196
eddb1c22 1197 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77 1198
4bbd4c77 1199 do {
fa5bb209
KS
1200 struct page *page;
1201 unsigned int foll_flags = gup_flags;
1202 unsigned int page_increm;
1203
1204 /* first iteration or cross vma bound */
1205 if (!vma || start >= vma->vm_end) {
6cd06ab1 1206 vma = gup_vma_lookup(mm, start);
fa5bb209 1207 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1208 ret = get_gate_page(mm, start & PAGE_MASK,
1209 gup_flags, &vma,
1210 pages ? &pages[i] : NULL);
1211 if (ret)
08be37b7 1212 goto out;
df06b37f 1213 ctx.page_mask = 0;
fa5bb209
KS
1214 goto next_page;
1215 }
4bbd4c77 1216
52650c8b 1217 if (!vma) {
df06b37f
KB
1218 ret = -EFAULT;
1219 goto out;
1220 }
52650c8b
JG
1221 ret = check_vma_flags(vma, gup_flags);
1222 if (ret)
1223 goto out;
1224
fa5bb209 1225 if (is_vm_hugetlb_page(vma)) {
b2cac248
LS
1226 i = follow_hugetlb_page(mm, vma, pages,
1227 &start, &nr_pages, i,
1228 gup_flags, locked);
9a863a6a 1229 if (!*locked) {
ad415db8
PX
1230 /*
1231 * We've got a VM_FAULT_RETRY
c1e8d7c6 1232 * and we've lost mmap_lock.
ad415db8
PX
1233 * We must stop here.
1234 */
1235 BUG_ON(gup_flags & FOLL_NOWAIT);
ad415db8
PX
1236 goto out;
1237 }
fa5bb209 1238 continue;
4bbd4c77 1239 }
fa5bb209
KS
1240 }
1241retry:
1242 /*
1243 * If we have a pending SIGKILL, don't keep faulting pages and
1244 * potentially allocating memory.
1245 */
fa45f116 1246 if (fatal_signal_pending(current)) {
d180870d 1247 ret = -EINTR;
df06b37f
KB
1248 goto out;
1249 }
fa5bb209 1250 cond_resched();
df06b37f
KB
1251
1252 page = follow_page_mask(vma, start, foll_flags, &ctx);
a7f22660
DH
1253 if (!page || PTR_ERR(page) == -EMLINK) {
1254 ret = faultin_page(vma, start, &foll_flags,
1255 PTR_ERR(page) == -EMLINK, locked);
fa5bb209
KS
1256 switch (ret) {
1257 case 0:
1258 goto retry;
df06b37f 1259 case -EBUSY:
d9272525 1260 case -EAGAIN:
df06b37f 1261 ret = 0;
e4a9bc58 1262 fallthrough;
fa5bb209
KS
1263 case -EFAULT:
1264 case -ENOMEM:
1265 case -EHWPOISON:
df06b37f 1266 goto out;
4bbd4c77 1267 }
fa5bb209 1268 BUG();
1027e443
KS
1269 } else if (PTR_ERR(page) == -EEXIST) {
1270 /*
1271 * Proper page table entry exists, but no corresponding
65462462
JH
1272 * struct page. If the caller expects **pages to be
1273 * filled in, bail out now, because that can't be done
1274 * for this page.
1027e443 1275 */
65462462
JH
1276 if (pages) {
1277 ret = PTR_ERR(page);
1278 goto out;
1279 }
1280
1027e443
KS
1281 goto next_page;
1282 } else if (IS_ERR(page)) {
df06b37f
KB
1283 ret = PTR_ERR(page);
1284 goto out;
1027e443 1285 }
fa5bb209
KS
1286 if (pages) {
1287 pages[i] = page;
1288 flush_anon_page(vma, page, start);
1289 flush_dcache_page(page);
df06b37f 1290 ctx.page_mask = 0;
4bbd4c77 1291 }
4bbd4c77 1292next_page:
df06b37f 1293 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1294 if (page_increm > nr_pages)
1295 page_increm = nr_pages;
1296 i += page_increm;
1297 start += page_increm * PAGE_SIZE;
1298 nr_pages -= page_increm;
4bbd4c77 1299 } while (nr_pages);
df06b37f
KB
1300out:
1301 if (ctx.pgmap)
1302 put_dev_pagemap(ctx.pgmap);
1303 return i ? i : ret;
4bbd4c77 1304}
4bbd4c77 1305
771ab430
TK
1306static bool vma_permits_fault(struct vm_area_struct *vma,
1307 unsigned int fault_flags)
d4925e00 1308{
1b2ee126
DH
1309 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1310 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1311 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1312
1313 if (!(vm_flags & vma->vm_flags))
1314 return false;
1315
33a709b2
DH
1316 /*
1317 * The architecture might have a hardware protection
1b2ee126 1318 * mechanism other than read/write that can deny access.
d61172b4
DH
1319 *
1320 * gup always represents data access, not instruction
1321 * fetches, so execute=false here:
33a709b2 1322 */
d61172b4 1323 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1324 return false;
1325
d4925e00
DH
1326 return true;
1327}
1328
adc8cb40 1329/**
4bbd4c77 1330 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1331 * @mm: mm_struct of target mm
1332 * @address: user address
1333 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1334 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1335 * does not allow retry. If NULL, the caller must guarantee
1336 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1337 *
1338 * This is meant to be called in the specific scenario where for locking reasons
1339 * we try to access user memory in atomic context (within a pagefault_disable()
1340 * section), this returns -EFAULT, and we want to resolve the user fault before
1341 * trying again.
1342 *
1343 * Typically this is meant to be used by the futex code.
1344 *
1345 * The main difference with get_user_pages() is that this function will
1346 * unconditionally call handle_mm_fault() which will in turn perform all the
1347 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1348 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1349 *
1350 * This is important for some architectures where those bits also gate the
1351 * access permission to the page because they are maintained in software. On
1352 * such architectures, gup() will not be enough to make a subsequent access
1353 * succeed.
1354 *
c1e8d7c6
ML
1355 * This function will not return with an unlocked mmap_lock. So it has not the
1356 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1357 */
64019a2e 1358int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1359 unsigned long address, unsigned int fault_flags,
1360 bool *unlocked)
4bbd4c77
KS
1361{
1362 struct vm_area_struct *vma;
8fed2f3c 1363 vm_fault_t ret;
4a9e1cda 1364
428e106a 1365 address = untagged_addr_remote(mm, address);
f9652594 1366
4a9e1cda 1367 if (unlocked)
71335f37 1368 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1369
4a9e1cda 1370retry:
6cd06ab1 1371 vma = gup_vma_lookup(mm, address);
8d7071af 1372 if (!vma)
4bbd4c77
KS
1373 return -EFAULT;
1374
d4925e00 1375 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1376 return -EFAULT;
1377
475f4dfc
PX
1378 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1379 fatal_signal_pending(current))
1380 return -EINTR;
1381
bce617ed 1382 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1383
1384 if (ret & VM_FAULT_COMPLETED) {
1385 /*
1386 * NOTE: it's a pity that we need to retake the lock here
1387 * to pair with the unlock() in the callers. Ideally we
1388 * could tell the callers so they do not need to unlock.
1389 */
1390 mmap_read_lock(mm);
1391 *unlocked = true;
1392 return 0;
1393 }
1394
4bbd4c77 1395 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1396 int err = vm_fault_to_errno(ret, 0);
1397
1398 if (err)
1399 return err;
4bbd4c77
KS
1400 BUG();
1401 }
4a9e1cda
DD
1402
1403 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1404 mmap_read_lock(mm);
475f4dfc
PX
1405 *unlocked = true;
1406 fault_flags |= FAULT_FLAG_TRIED;
1407 goto retry;
4a9e1cda
DD
1408 }
1409
4bbd4c77
KS
1410 return 0;
1411}
add6a0cd 1412EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1413
93c5c61d
PX
1414/*
1415 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1416 * specified, it'll also respond to generic signals. The caller of GUP
1417 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1418 */
1419static bool gup_signal_pending(unsigned int flags)
1420{
1421 if (fatal_signal_pending(current))
1422 return true;
1423
1424 if (!(flags & FOLL_INTERRUPTIBLE))
1425 return false;
1426
1427 return signal_pending(current);
1428}
1429
2d3a36a4 1430/*
b2a72dff
JG
1431 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1432 * the caller. This function may drop the mmap_lock. If it does so, then it will
1433 * set (*locked = 0).
1434 *
1435 * (*locked == 0) means that the caller expects this function to acquire and
1436 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1437 * the function returns, even though it may have changed temporarily during
1438 * function execution.
1439 *
1440 * Please note that this function, unlike __get_user_pages(), will not return 0
1441 * for nr_pages > 0, unless FOLL_NOWAIT is used.
2d3a36a4 1442 */
64019a2e 1443static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1444 unsigned long start,
1445 unsigned long nr_pages,
f0818f47 1446 struct page **pages,
e716712f 1447 int *locked,
0fd71a56 1448 unsigned int flags)
f0818f47 1449{
f0818f47 1450 long ret, pages_done;
b2a72dff 1451 bool must_unlock = false;
f0818f47 1452
b2a72dff
JG
1453 /*
1454 * The internal caller expects GUP to manage the lock internally and the
1455 * lock must be released when this returns.
1456 */
9a863a6a 1457 if (!*locked) {
b2a72dff
JG
1458 if (mmap_read_lock_killable(mm))
1459 return -EAGAIN;
1460 must_unlock = true;
1461 *locked = 1;
f0818f47 1462 }
961ba472
JG
1463 else
1464 mmap_assert_locked(mm);
f0818f47 1465
a458b76a
AA
1466 if (flags & FOLL_PIN)
1467 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1468
eddb1c22
JH
1469 /*
1470 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1471 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1472 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1473 * for FOLL_GET, not for the newer FOLL_PIN.
1474 *
1475 * FOLL_PIN always expects pages to be non-null, but no need to assert
1476 * that here, as any failures will be obvious enough.
1477 */
1478 if (pages && !(flags & FOLL_PIN))
f0818f47 1479 flags |= FOLL_GET;
f0818f47
AA
1480
1481 pages_done = 0;
f0818f47 1482 for (;;) {
64019a2e 1483 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
b2cac248 1484 locked);
f04740f5 1485 if (!(flags & FOLL_UNLOCKABLE)) {
f0818f47 1486 /* VM_FAULT_RETRY couldn't trigger, bypass */
f04740f5
JG
1487 pages_done = ret;
1488 break;
1489 }
f0818f47 1490
d9272525 1491 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
f0818f47
AA
1492 if (!*locked) {
1493 BUG_ON(ret < 0);
1494 BUG_ON(ret >= nr_pages);
1495 }
1496
f0818f47
AA
1497 if (ret > 0) {
1498 nr_pages -= ret;
1499 pages_done += ret;
1500 if (!nr_pages)
1501 break;
1502 }
1503 if (*locked) {
96312e61
AA
1504 /*
1505 * VM_FAULT_RETRY didn't trigger or it was a
1506 * FOLL_NOWAIT.
1507 */
f0818f47
AA
1508 if (!pages_done)
1509 pages_done = ret;
1510 break;
1511 }
df17277b
MR
1512 /*
1513 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1514 * For the prefault case (!pages) we only update counts.
1515 */
1516 if (likely(pages))
1517 pages += ret;
f0818f47 1518 start += ret << PAGE_SHIFT;
b2a72dff
JG
1519
1520 /* The lock was temporarily dropped, so we must unlock later */
1521 must_unlock = true;
f0818f47 1522
4426e945 1523retry:
f0818f47
AA
1524 /*
1525 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1526 * with both FAULT_FLAG_ALLOW_RETRY and
1527 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
93c5c61d
PX
1528 * by fatal signals of even common signals, depending on
1529 * the caller's request. So we need to check it before we
4426e945 1530 * start trying again otherwise it can loop forever.
f0818f47 1531 */
93c5c61d 1532 if (gup_signal_pending(flags)) {
ae46d2aa
HD
1533 if (!pages_done)
1534 pages_done = -EINTR;
4426e945 1535 break;
ae46d2aa 1536 }
4426e945 1537
d8ed45c5 1538 ret = mmap_read_lock_killable(mm);
71335f37
PX
1539 if (ret) {
1540 BUG_ON(ret > 0);
1541 if (!pages_done)
1542 pages_done = ret;
1543 break;
1544 }
4426e945 1545
c7b6a566 1546 *locked = 1;
64019a2e 1547 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
b2cac248 1548 pages, locked);
4426e945
PX
1549 if (!*locked) {
1550 /* Continue to retry until we succeeded */
1551 BUG_ON(ret != 0);
1552 goto retry;
1553 }
f0818f47
AA
1554 if (ret != 1) {
1555 BUG_ON(ret > 1);
1556 if (!pages_done)
1557 pages_done = ret;
1558 break;
1559 }
1560 nr_pages--;
1561 pages_done++;
1562 if (!nr_pages)
1563 break;
df17277b
MR
1564 if (likely(pages))
1565 pages++;
f0818f47
AA
1566 start += PAGE_SIZE;
1567 }
b2a72dff 1568 if (must_unlock && *locked) {
f0818f47 1569 /*
b2a72dff
JG
1570 * We either temporarily dropped the lock, or the caller
1571 * requested that we both acquire and drop the lock. Either way,
1572 * we must now unlock, and notify the caller of that state.
f0818f47 1573 */
d8ed45c5 1574 mmap_read_unlock(mm);
f0818f47
AA
1575 *locked = 0;
1576 }
1577 return pages_done;
1578}
1579
d3649f68
CH
1580/**
1581 * populate_vma_page_range() - populate a range of pages in the vma.
1582 * @vma: target vma
1583 * @start: start address
1584 * @end: end address
c1e8d7c6 1585 * @locked: whether the mmap_lock is still held
d3649f68
CH
1586 *
1587 * This takes care of mlocking the pages too if VM_LOCKED is set.
1588 *
0a36f7f8
TY
1589 * Return either number of pages pinned in the vma, or a negative error
1590 * code on error.
d3649f68 1591 *
c1e8d7c6 1592 * vma->vm_mm->mmap_lock must be held.
d3649f68 1593 *
4f6da934 1594 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1595 * be unperturbed.
1596 *
4f6da934
PX
1597 * If @locked is non-NULL, it must held for read only and may be
1598 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1599 */
1600long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1601 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1602{
1603 struct mm_struct *mm = vma->vm_mm;
1604 unsigned long nr_pages = (end - start) / PAGE_SIZE;
9a863a6a 1605 int local_locked = 1;
d3649f68 1606 int gup_flags;
ece369c7 1607 long ret;
d3649f68 1608
be51eb18
ML
1609 VM_BUG_ON(!PAGE_ALIGNED(start));
1610 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1611 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1612 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1613 mmap_assert_locked(mm);
d3649f68 1614
b67bf49c
HD
1615 /*
1616 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1617 * faultin_page() to break COW, so it has no work to do here.
1618 */
d3649f68 1619 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1620 return nr_pages;
1621
1622 gup_flags = FOLL_TOUCH;
d3649f68
CH
1623 /*
1624 * We want to touch writable mappings with a write fault in order
1625 * to break COW, except for shared mappings because these don't COW
1626 * and we would not want to dirty them for nothing.
1627 */
1628 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1629 gup_flags |= FOLL_WRITE;
1630
1631 /*
1632 * We want mlock to succeed for regions that have any permissions
1633 * other than PROT_NONE.
1634 */
3122e80e 1635 if (vma_is_accessible(vma))
d3649f68
CH
1636 gup_flags |= FOLL_FORCE;
1637
f04740f5
JG
1638 if (locked)
1639 gup_flags |= FOLL_UNLOCKABLE;
1640
d3649f68
CH
1641 /*
1642 * We made sure addr is within a VMA, so the following will
1643 * not result in a stack expansion that recurses back here.
1644 */
ece369c7 1645 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
b2cac248 1646 NULL, locked ? locked : &local_locked);
ece369c7
HD
1647 lru_add_drain();
1648 return ret;
d3649f68
CH
1649}
1650
4ca9b385
DH
1651/*
1652 * faultin_vma_page_range() - populate (prefault) page tables inside the
1653 * given VMA range readable/writable
1654 *
1655 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1656 *
1657 * @vma: target vma
1658 * @start: start address
1659 * @end: end address
1660 * @write: whether to prefault readable or writable
1661 * @locked: whether the mmap_lock is still held
1662 *
1663 * Returns either number of processed pages in the vma, or a negative error
1664 * code on error (see __get_user_pages()).
1665 *
1666 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
6e4382c7 1667 * covered by the VMA. If it's released, *@locked will be set to 0.
4ca9b385
DH
1668 */
1669long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1670 unsigned long end, bool write, int *locked)
1671{
1672 struct mm_struct *mm = vma->vm_mm;
1673 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1674 int gup_flags;
ece369c7 1675 long ret;
4ca9b385
DH
1676
1677 VM_BUG_ON(!PAGE_ALIGNED(start));
1678 VM_BUG_ON(!PAGE_ALIGNED(end));
1679 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1680 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1681 mmap_assert_locked(mm);
1682
1683 /*
1684 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1685 * the page dirty with FOLL_WRITE -- which doesn't make a
1686 * difference with !FOLL_FORCE, because the page is writable
1687 * in the page table.
1688 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1689 * a poisoned page.
4ca9b385
DH
1690 * !FOLL_FORCE: Require proper access permissions.
1691 */
f04740f5 1692 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
4ca9b385
DH
1693 if (write)
1694 gup_flags |= FOLL_WRITE;
1695
1696 /*
eb2faa51
DH
1697 * We want to report -EINVAL instead of -EFAULT for any permission
1698 * problems or incompatible mappings.
4ca9b385 1699 */
eb2faa51
DH
1700 if (check_vma_flags(vma, gup_flags))
1701 return -EINVAL;
1702
ece369c7 1703 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
b2cac248 1704 NULL, locked);
ece369c7
HD
1705 lru_add_drain();
1706 return ret;
4ca9b385
DH
1707}
1708
d3649f68
CH
1709/*
1710 * __mm_populate - populate and/or mlock pages within a range of address space.
1711 *
1712 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1713 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1714 * mmap_lock must not be held.
d3649f68
CH
1715 */
1716int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1717{
1718 struct mm_struct *mm = current->mm;
1719 unsigned long end, nstart, nend;
1720 struct vm_area_struct *vma = NULL;
1721 int locked = 0;
1722 long ret = 0;
1723
1724 end = start + len;
1725
1726 for (nstart = start; nstart < end; nstart = nend) {
1727 /*
1728 * We want to fault in pages for [nstart; end) address range.
1729 * Find first corresponding VMA.
1730 */
1731 if (!locked) {
1732 locked = 1;
d8ed45c5 1733 mmap_read_lock(mm);
c4d1a92d 1734 vma = find_vma_intersection(mm, nstart, end);
d3649f68 1735 } else if (nstart >= vma->vm_end)
c4d1a92d
LH
1736 vma = find_vma_intersection(mm, vma->vm_end, end);
1737
1738 if (!vma)
d3649f68
CH
1739 break;
1740 /*
1741 * Set [nstart; nend) to intersection of desired address
1742 * range with the first VMA. Also, skip undesirable VMA types.
1743 */
1744 nend = min(end, vma->vm_end);
1745 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1746 continue;
1747 if (nstart < vma->vm_start)
1748 nstart = vma->vm_start;
1749 /*
1750 * Now fault in a range of pages. populate_vma_page_range()
1751 * double checks the vma flags, so that it won't mlock pages
1752 * if the vma was already munlocked.
1753 */
1754 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1755 if (ret < 0) {
1756 if (ignore_errors) {
1757 ret = 0;
1758 continue; /* continue at next VMA */
1759 }
1760 break;
1761 }
1762 nend = nstart + ret * PAGE_SIZE;
1763 ret = 0;
1764 }
1765 if (locked)
d8ed45c5 1766 mmap_read_unlock(mm);
d3649f68
CH
1767 return ret; /* 0 or negative error code */
1768}
050a9adc 1769#else /* CONFIG_MMU */
64019a2e 1770static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc 1771 unsigned long nr_pages, struct page **pages,
b2cac248 1772 int *locked, unsigned int foll_flags)
050a9adc
CH
1773{
1774 struct vm_area_struct *vma;
b2a72dff 1775 bool must_unlock = false;
050a9adc 1776 unsigned long vm_flags;
24dc20c7 1777 long i;
050a9adc 1778
b2a72dff
JG
1779 if (!nr_pages)
1780 return 0;
1781
1782 /*
1783 * The internal caller expects GUP to manage the lock internally and the
1784 * lock must be released when this returns.
1785 */
9a863a6a 1786 if (!*locked) {
b2a72dff
JG
1787 if (mmap_read_lock_killable(mm))
1788 return -EAGAIN;
1789 must_unlock = true;
1790 *locked = 1;
1791 }
1792
050a9adc
CH
1793 /* calculate required read or write permissions.
1794 * If FOLL_FORCE is set, we only require the "MAY" flags.
1795 */
1796 vm_flags = (foll_flags & FOLL_WRITE) ?
1797 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1798 vm_flags &= (foll_flags & FOLL_FORCE) ?
1799 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1800
1801 for (i = 0; i < nr_pages; i++) {
1802 vma = find_vma(mm, start);
1803 if (!vma)
b2a72dff 1804 break;
050a9adc
CH
1805
1806 /* protect what we can, including chardevs */
1807 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1808 !(vm_flags & vma->vm_flags))
b2a72dff 1809 break;
050a9adc
CH
1810
1811 if (pages) {
396a400b 1812 pages[i] = virt_to_page((void *)start);
050a9adc
CH
1813 if (pages[i])
1814 get_page(pages[i]);
1815 }
b2cac248 1816
050a9adc
CH
1817 start = (start + PAGE_SIZE) & PAGE_MASK;
1818 }
1819
b2a72dff
JG
1820 if (must_unlock && *locked) {
1821 mmap_read_unlock(mm);
1822 *locked = 0;
1823 }
050a9adc 1824
050a9adc
CH
1825 return i ? : -EFAULT;
1826}
1827#endif /* !CONFIG_MMU */
d3649f68 1828
bb523b40
AG
1829/**
1830 * fault_in_writeable - fault in userspace address range for writing
1831 * @uaddr: start of address range
1832 * @size: size of address range
1833 *
1834 * Returns the number of bytes not faulted in (like copy_to_user() and
1835 * copy_from_user()).
1836 */
1837size_t fault_in_writeable(char __user *uaddr, size_t size)
1838{
1839 char __user *start = uaddr, *end;
1840
1841 if (unlikely(size == 0))
1842 return 0;
677b2a8c
CL
1843 if (!user_write_access_begin(uaddr, size))
1844 return size;
bb523b40 1845 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1846 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1847 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1848 }
1849 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1850 if (unlikely(end < start))
1851 end = NULL;
1852 while (uaddr != end) {
677b2a8c 1853 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1854 uaddr += PAGE_SIZE;
1855 }
1856
1857out:
677b2a8c 1858 user_write_access_end();
bb523b40
AG
1859 if (size > uaddr - start)
1860 return size - (uaddr - start);
1861 return 0;
1862}
1863EXPORT_SYMBOL(fault_in_writeable);
1864
da32b581
CM
1865/**
1866 * fault_in_subpage_writeable - fault in an address range for writing
1867 * @uaddr: start of address range
1868 * @size: size of address range
1869 *
1870 * Fault in a user address range for writing while checking for permissions at
1871 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1872 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1873 *
1874 * Returns the number of bytes not faulted in (like copy_to_user() and
1875 * copy_from_user()).
1876 */
1877size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1878{
1879 size_t faulted_in;
1880
1881 /*
1882 * Attempt faulting in at page granularity first for page table
1883 * permission checking. The arch-specific probe_subpage_writeable()
1884 * functions may not check for this.
1885 */
1886 faulted_in = size - fault_in_writeable(uaddr, size);
1887 if (faulted_in)
1888 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1889
1890 return size - faulted_in;
1891}
1892EXPORT_SYMBOL(fault_in_subpage_writeable);
1893
cdd591fc
AG
1894/*
1895 * fault_in_safe_writeable - fault in an address range for writing
1896 * @uaddr: start of address range
1897 * @size: length of address range
1898 *
fe673d3f
LT
1899 * Faults in an address range for writing. This is primarily useful when we
1900 * already know that some or all of the pages in the address range aren't in
1901 * memory.
cdd591fc 1902 *
fe673d3f 1903 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
1904 *
1905 * Note that we don't pin or otherwise hold the pages referenced that we fault
1906 * in. There's no guarantee that they'll stay in memory for any duration of
1907 * time.
1908 *
1909 * Returns the number of bytes not faulted in, like copy_to_user() and
1910 * copy_from_user().
1911 */
1912size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1913{
fe673d3f 1914 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 1915 struct mm_struct *mm = current->mm;
fe673d3f 1916 bool unlocked = false;
cdd591fc 1917
fe673d3f
LT
1918 if (unlikely(size == 0))
1919 return 0;
cdd591fc 1920 end = PAGE_ALIGN(start + size);
fe673d3f 1921 if (end < start)
cdd591fc 1922 end = 0;
cdd591fc 1923
fe673d3f
LT
1924 mmap_read_lock(mm);
1925 do {
1926 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 1927 break;
fe673d3f
LT
1928 start = (start + PAGE_SIZE) & PAGE_MASK;
1929 } while (start != end);
1930 mmap_read_unlock(mm);
1931
1932 if (size > (unsigned long)uaddr - start)
1933 return size - ((unsigned long)uaddr - start);
1934 return 0;
cdd591fc
AG
1935}
1936EXPORT_SYMBOL(fault_in_safe_writeable);
1937
bb523b40
AG
1938/**
1939 * fault_in_readable - fault in userspace address range for reading
1940 * @uaddr: start of user address range
1941 * @size: size of user address range
1942 *
1943 * Returns the number of bytes not faulted in (like copy_to_user() and
1944 * copy_from_user()).
1945 */
1946size_t fault_in_readable(const char __user *uaddr, size_t size)
1947{
1948 const char __user *start = uaddr, *end;
1949 volatile char c;
1950
1951 if (unlikely(size == 0))
1952 return 0;
677b2a8c
CL
1953 if (!user_read_access_begin(uaddr, size))
1954 return size;
bb523b40 1955 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1956 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1957 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1958 }
1959 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1960 if (unlikely(end < start))
1961 end = NULL;
1962 while (uaddr != end) {
677b2a8c 1963 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1964 uaddr += PAGE_SIZE;
1965 }
1966
1967out:
677b2a8c 1968 user_read_access_end();
bb523b40
AG
1969 (void)c;
1970 if (size > uaddr - start)
1971 return size - (uaddr - start);
1972 return 0;
1973}
1974EXPORT_SYMBOL(fault_in_readable);
1975
8f942eea
JH
1976/**
1977 * get_dump_page() - pin user page in memory while writing it to core dump
1978 * @addr: user address
1979 *
1980 * Returns struct page pointer of user page pinned for dump,
1981 * to be freed afterwards by put_page().
1982 *
1983 * Returns NULL on any kind of failure - a hole must then be inserted into
1984 * the corefile, to preserve alignment with its headers; and also returns
1985 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1986 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1987 *
7f3bfab5 1988 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1989 */
1990#ifdef CONFIG_ELF_CORE
1991struct page *get_dump_page(unsigned long addr)
1992{
8f942eea 1993 struct page *page;
b2a72dff 1994 int locked = 0;
7f3bfab5 1995 int ret;
8f942eea 1996
b2cac248 1997 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
7f3bfab5 1998 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
7f3bfab5 1999 return (ret == 1) ? page : NULL;
8f942eea
JH
2000}
2001#endif /* CONFIG_ELF_CORE */
2002
d1e153fe 2003#ifdef CONFIG_MIGRATION
f68749ec 2004/*
67e139b0 2005 * Returns the number of collected pages. Return value is always >= 0.
f68749ec 2006 */
67e139b0
AP
2007static unsigned long collect_longterm_unpinnable_pages(
2008 struct list_head *movable_page_list,
2009 unsigned long nr_pages,
2010 struct page **pages)
9a4e9f3b 2011{
67e139b0 2012 unsigned long i, collected = 0;
1b7f7e58 2013 struct folio *prev_folio = NULL;
67e139b0 2014 bool drain_allow = true;
9a4e9f3b 2015
83c02c23 2016 for (i = 0; i < nr_pages; i++) {
1b7f7e58 2017 struct folio *folio = page_folio(pages[i]);
f9f38f78 2018
1b7f7e58 2019 if (folio == prev_folio)
83c02c23 2020 continue;
1b7f7e58 2021 prev_folio = folio;
f9f38f78 2022
67e139b0
AP
2023 if (folio_is_longterm_pinnable(folio))
2024 continue;
b05a79d4 2025
67e139b0 2026 collected++;
b05a79d4 2027
67e139b0 2028 if (folio_is_device_coherent(folio))
f9f38f78
CH
2029 continue;
2030
1b7f7e58 2031 if (folio_test_hugetlb(folio)) {
6aa3a920 2032 isolate_hugetlb(folio, movable_page_list);
f9f38f78
CH
2033 continue;
2034 }
9a4e9f3b 2035
1b7f7e58 2036 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
2037 lru_add_drain_all();
2038 drain_allow = false;
2039 }
2040
be2d5756 2041 if (!folio_isolate_lru(folio))
f9f38f78 2042 continue;
67e139b0
AP
2043
2044 list_add_tail(&folio->lru, movable_page_list);
1b7f7e58
MWO
2045 node_stat_mod_folio(folio,
2046 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2047 folio_nr_pages(folio));
9a4e9f3b
AK
2048 }
2049
67e139b0
AP
2050 return collected;
2051}
2052
2053/*
2054 * Unpins all pages and migrates device coherent pages and movable_page_list.
2055 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2056 * (or partial success).
2057 */
2058static int migrate_longterm_unpinnable_pages(
2059 struct list_head *movable_page_list,
2060 unsigned long nr_pages,
2061 struct page **pages)
2062{
2063 int ret;
2064 unsigned long i;
6e7f34eb 2065
b05a79d4 2066 for (i = 0; i < nr_pages; i++) {
67e139b0
AP
2067 struct folio *folio = page_folio(pages[i]);
2068
2069 if (folio_is_device_coherent(folio)) {
2070 /*
2071 * Migration will fail if the page is pinned, so convert
2072 * the pin on the source page to a normal reference.
2073 */
2074 pages[i] = NULL;
2075 folio_get(folio);
2076 gup_put_folio(folio, 1, FOLL_PIN);
2077
2078 if (migrate_device_coherent_page(&folio->page)) {
2079 ret = -EBUSY;
2080 goto err;
2081 }
2082
b05a79d4 2083 continue;
67e139b0 2084 }
b05a79d4 2085
67e139b0
AP
2086 /*
2087 * We can't migrate pages with unexpected references, so drop
2088 * the reference obtained by __get_user_pages_locked().
2089 * Migrating pages have been added to movable_page_list after
2090 * calling folio_isolate_lru() which takes a reference so the
2091 * page won't be freed if it's migrating.
2092 */
f6d299ec 2093 unpin_user_page(pages[i]);
67e139b0 2094 pages[i] = NULL;
f68749ec 2095 }
f9f38f78 2096
67e139b0 2097 if (!list_empty(movable_page_list)) {
f9f38f78
CH
2098 struct migration_target_control mtc = {
2099 .nid = NUMA_NO_NODE,
2100 .gfp_mask = GFP_USER | __GFP_NOWARN,
2101 };
2102
67e139b0
AP
2103 if (migrate_pages(movable_page_list, alloc_migration_target,
2104 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2105 MR_LONGTERM_PIN, NULL)) {
f9f38f78 2106 ret = -ENOMEM;
67e139b0
AP
2107 goto err;
2108 }
9a4e9f3b
AK
2109 }
2110
67e139b0
AP
2111 putback_movable_pages(movable_page_list);
2112
2113 return -EAGAIN;
2114
2115err:
2116 for (i = 0; i < nr_pages; i++)
2117 if (pages[i])
2118 unpin_user_page(pages[i]);
2119 putback_movable_pages(movable_page_list);
24a95998 2120
67e139b0
AP
2121 return ret;
2122}
2123
2124/*
2125 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2126 * pages in the range are required to be pinned via FOLL_PIN, before calling
2127 * this routine.
2128 *
2129 * If any pages in the range are not allowed to be pinned, then this routine
2130 * will migrate those pages away, unpin all the pages in the range and return
2131 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2132 * call this routine again.
2133 *
2134 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2135 * The caller should give up, and propagate the error back up the call stack.
2136 *
2137 * If everything is OK and all pages in the range are allowed to be pinned, then
2138 * this routine leaves all pages pinned and returns zero for success.
2139 */
2140static long check_and_migrate_movable_pages(unsigned long nr_pages,
2141 struct page **pages)
2142{
2143 unsigned long collected;
2144 LIST_HEAD(movable_page_list);
2145
2146 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2147 nr_pages, pages);
2148 if (!collected)
2149 return 0;
2150
2151 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2152 pages);
9a4e9f3b
AK
2153}
2154#else
f68749ec 2155static long check_and_migrate_movable_pages(unsigned long nr_pages,
f6d299ec 2156 struct page **pages)
9a4e9f3b 2157{
24a95998 2158 return 0;
9a4e9f3b 2159}
d1e153fe 2160#endif /* CONFIG_MIGRATION */
9a4e9f3b 2161
2bb6d283 2162/*
932f4a63
IW
2163 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2164 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 2165 */
64019a2e 2166static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
2167 unsigned long start,
2168 unsigned long nr_pages,
2169 struct page **pages,
53b2d09b 2170 int *locked,
932f4a63 2171 unsigned int gup_flags)
2bb6d283 2172{
f68749ec 2173 unsigned int flags;
24a95998 2174 long rc, nr_pinned_pages;
2bb6d283 2175
f68749ec 2176 if (!(gup_flags & FOLL_LONGTERM))
b2cac248 2177 return __get_user_pages_locked(mm, start, nr_pages, pages,
53b2d09b 2178 locked, gup_flags);
67e139b0 2179
f68749ec
PT
2180 flags = memalloc_pin_save();
2181 do {
24a95998 2182 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
b2cac248 2183 pages, locked,
24a95998
AP
2184 gup_flags);
2185 if (nr_pinned_pages <= 0) {
2186 rc = nr_pinned_pages;
f68749ec 2187 break;
24a95998 2188 }
d64e2dbc
JG
2189
2190 /* FOLL_LONGTERM implies FOLL_PIN */
f6d299ec 2191 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
24a95998 2192 } while (rc == -EAGAIN);
f68749ec 2193 memalloc_pin_restore(flags);
24a95998 2194 return rc ? rc : nr_pinned_pages;
2bb6d283 2195}
932f4a63 2196
d64e2dbc
JG
2197/*
2198 * Check that the given flags are valid for the exported gup/pup interface, and
2199 * update them with the required flags that the caller must have set.
2200 */
b2cac248
LS
2201static bool is_valid_gup_args(struct page **pages, int *locked,
2202 unsigned int *gup_flags_p, unsigned int to_set)
447f3e45 2203{
d64e2dbc
JG
2204 unsigned int gup_flags = *gup_flags_p;
2205
447f3e45 2206 /*
d64e2dbc
JG
2207 * These flags not allowed to be specified externally to the gup
2208 * interfaces:
2209 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2210 * - FOLL_REMOTE is internal only and used on follow_page()
f04740f5 2211 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
447f3e45 2212 */
f04740f5 2213 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
d64e2dbc
JG
2214 FOLL_REMOTE | FOLL_FAST_ONLY)))
2215 return false;
2216
2217 gup_flags |= to_set;
f04740f5
JG
2218 if (locked) {
2219 /* At the external interface locked must be set */
2220 if (WARN_ON_ONCE(*locked != 1))
2221 return false;
2222
2223 gup_flags |= FOLL_UNLOCKABLE;
2224 }
d64e2dbc
JG
2225
2226 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2227 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2228 (FOLL_PIN | FOLL_GET)))
2229 return false;
2230
2231 /* LONGTERM can only be specified when pinning */
2232 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2233 return false;
2234
2235 /* Pages input must be given if using GET/PIN */
2236 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
447f3e45 2237 return false;
d64e2dbc 2238
d64e2dbc
JG
2239 /* We want to allow the pgmap to be hot-unplugged at all times */
2240 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2241 (gup_flags & FOLL_PCI_P2PDMA)))
2242 return false;
2243
d64e2dbc 2244 *gup_flags_p = gup_flags;
447f3e45
BS
2245 return true;
2246}
2247
22bf29b6 2248#ifdef CONFIG_MMU
adc8cb40 2249/**
c4237f8b 2250 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2251 * @mm: mm_struct of target mm
2252 * @start: starting user address
2253 * @nr_pages: number of pages from start to pin
2254 * @gup_flags: flags modifying lookup behaviour
2255 * @pages: array that receives pointers to the pages pinned.
2256 * Should be at least nr_pages long. Or NULL, if caller
2257 * only intends to ensure the pages are faulted in.
c4237f8b
JH
2258 * @locked: pointer to lock flag indicating whether lock is held and
2259 * subsequently whether VM_FAULT_RETRY functionality can be
2260 * utilised. Lock must initially be held.
2261 *
2262 * Returns either number of pages pinned (which may be less than the
2263 * number requested), or an error. Details about the return value:
2264 *
2265 * -- If nr_pages is 0, returns 0.
2266 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2267 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2268 * pages pinned. Again, this may be less than nr_pages.
2269 *
2270 * The caller is responsible for releasing returned @pages, via put_page().
2271 *
c1e8d7c6 2272 * Must be called with mmap_lock held for read or write.
c4237f8b 2273 *
adc8cb40
SJ
2274 * get_user_pages_remote walks a process's page tables and takes a reference
2275 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2276 * instant. That is, it takes the page that would be accessed if a user
2277 * thread accesses the given user virtual address at that instant.
2278 *
2279 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2280 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b 2281 * page there in some cases (eg. if mmapped pagecache has been invalidated
5da1a868 2282 * and subsequently re-faulted). However it does guarantee that the page
c4237f8b
JH
2283 * won't be freed completely. And mostly callers simply care that the page
2284 * contains data that was valid *at some point in time*. Typically, an IO
2285 * or similar operation cannot guarantee anything stronger anyway because
2286 * locks can't be held over the syscall boundary.
2287 *
2288 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2289 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2290 * be called after the page is finished with, and before put_page is called.
2291 *
adc8cb40
SJ
2292 * get_user_pages_remote is typically used for fewer-copy IO operations,
2293 * to get a handle on the memory by some means other than accesses
2294 * via the user virtual addresses. The pages may be submitted for
2295 * DMA to devices or accessed via their kernel linear mapping (via the
2296 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2297 *
2298 * See also get_user_pages_fast, for performance critical applications.
2299 *
adc8cb40 2300 * get_user_pages_remote should be phased out in favor of
c4237f8b 2301 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2302 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2303 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2304 */
64019a2e 2305long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2306 unsigned long start, unsigned long nr_pages,
2307 unsigned int gup_flags, struct page **pages,
ca5e8632 2308 int *locked)
c4237f8b 2309{
9a863a6a
JG
2310 int local_locked = 1;
2311
b2cac248 2312 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc 2313 FOLL_TOUCH | FOLL_REMOTE))
eddb1c22
JH
2314 return -EINVAL;
2315
b2cac248 2316 return __get_user_pages_locked(mm, start, nr_pages, pages,
9a863a6a 2317 locked ? locked : &local_locked,
d64e2dbc 2318 gup_flags);
c4237f8b
JH
2319}
2320EXPORT_SYMBOL(get_user_pages_remote);
2321
eddb1c22 2322#else /* CONFIG_MMU */
64019a2e 2323long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2324 unsigned long start, unsigned long nr_pages,
2325 unsigned int gup_flags, struct page **pages,
ca5e8632 2326 int *locked)
eddb1c22
JH
2327{
2328 return 0;
2329}
2330#endif /* !CONFIG_MMU */
2331
adc8cb40
SJ
2332/**
2333 * get_user_pages() - pin user pages in memory
2334 * @start: starting user address
2335 * @nr_pages: number of pages from start to pin
2336 * @gup_flags: flags modifying lookup behaviour
2337 * @pages: array that receives pointers to the pages pinned.
2338 * Should be at least nr_pages long. Or NULL, if caller
2339 * only intends to ensure the pages are faulted in.
adc8cb40 2340 *
64019a2e
PX
2341 * This is the same as get_user_pages_remote(), just with a less-flexible
2342 * calling convention where we assume that the mm being operated on belongs to
2343 * the current task, and doesn't allow passing of a locked parameter. We also
2344 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2345 */
2346long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2347 unsigned int gup_flags, struct page **pages)
932f4a63 2348{
9a863a6a
JG
2349 int locked = 1;
2350
b2cac248 2351 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
eddb1c22
JH
2352 return -EINVAL;
2353
afa3c33e 2354 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2355 &locked, gup_flags);
932f4a63
IW
2356}
2357EXPORT_SYMBOL(get_user_pages);
2bb6d283 2358
acc3c8d1 2359/*
d3649f68 2360 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2361 *
3e4e28c5 2362 * mmap_read_lock(mm);
64019a2e 2363 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2364 * mmap_read_unlock(mm);
d3649f68
CH
2365 *
2366 * with:
2367 *
64019a2e 2368 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2369 *
2370 * It is functionally equivalent to get_user_pages_fast so
2371 * get_user_pages_fast should be used instead if specific gup_flags
2372 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2373 */
d3649f68
CH
2374long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2375 struct page **pages, unsigned int gup_flags)
acc3c8d1 2376{
b2a72dff 2377 int locked = 0;
acc3c8d1 2378
b2cac248 2379 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 2380 FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc
JG
2381 return -EINVAL;
2382
afa3c33e 2383 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2384 &locked, gup_flags);
4bbd4c77 2385}
d3649f68 2386EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2387
2388/*
67a929e0 2389 * Fast GUP
2667f50e
SC
2390 *
2391 * get_user_pages_fast attempts to pin user pages by walking the page
2392 * tables directly and avoids taking locks. Thus the walker needs to be
2393 * protected from page table pages being freed from under it, and should
2394 * block any THP splits.
2395 *
2396 * One way to achieve this is to have the walker disable interrupts, and
2397 * rely on IPIs from the TLB flushing code blocking before the page table
2398 * pages are freed. This is unsuitable for architectures that do not need
2399 * to broadcast an IPI when invalidating TLBs.
2400 *
2401 * Another way to achieve this is to batch up page table containing pages
2402 * belonging to more than one mm_user, then rcu_sched a callback to free those
2403 * pages. Disabling interrupts will allow the fast_gup walker to both block
2404 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2405 * (which is a relatively rare event). The code below adopts this strategy.
2406 *
2407 * Before activating this code, please be aware that the following assumptions
2408 * are currently made:
2409 *
ff2e6d72 2410 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2411 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2412 *
2667f50e
SC
2413 * *) ptes can be read atomically by the architecture.
2414 *
2415 * *) access_ok is sufficient to validate userspace address ranges.
2416 *
2417 * The last two assumptions can be relaxed by the addition of helper functions.
2418 *
2419 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2420 */
67a929e0 2421#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2422
a6e79df9
LS
2423/*
2424 * Used in the GUP-fast path to determine whether a pin is permitted for a
2425 * specific folio.
2426 *
2427 * This call assumes the caller has pinned the folio, that the lowest page table
2428 * level still points to this folio, and that interrupts have been disabled.
2429 *
2430 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2431 * (see comment describing the writable_file_mapping_allowed() function). We
2432 * therefore try to avoid the most egregious case of a long-term mapping doing
2433 * so.
2434 *
2435 * This function cannot be as thorough as that one as the VMA is not available
2436 * in the fast path, so instead we whitelist known good cases and if in doubt,
2437 * fall back to the slow path.
2438 */
2439static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2440{
2441 struct address_space *mapping;
2442 unsigned long mapping_flags;
2443
2444 /*
2445 * If we aren't pinning then no problematic write can occur. A long term
2446 * pin is the most egregious case so this is the one we disallow.
2447 */
2448 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2449 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2450 return true;
2451
2452 /* The folio is pinned, so we can safely access folio fields. */
2453
2454 if (WARN_ON_ONCE(folio_test_slab(folio)))
2455 return false;
2456
2457 /* hugetlb mappings do not require dirty-tracking. */
2458 if (folio_test_hugetlb(folio))
2459 return true;
2460
2461 /*
2462 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2463 * cannot proceed, which means no actions performed under RCU can
2464 * proceed either.
2465 *
2466 * inodes and thus their mappings are freed under RCU, which means the
2467 * mapping cannot be freed beneath us and thus we can safely dereference
2468 * it.
2469 */
2470 lockdep_assert_irqs_disabled();
2471
2472 /*
2473 * However, there may be operations which _alter_ the mapping, so ensure
2474 * we read it once and only once.
2475 */
2476 mapping = READ_ONCE(folio->mapping);
2477
2478 /*
2479 * The mapping may have been truncated, in any case we cannot determine
2480 * if this mapping is safe - fall back to slow path to determine how to
2481 * proceed.
2482 */
2483 if (!mapping)
2484 return false;
2485
2486 /* Anonymous folios pose no problem. */
2487 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2488 if (mapping_flags)
2489 return mapping_flags & PAGE_MAPPING_ANON;
2490
2491 /*
2492 * At this point, we know the mapping is non-null and points to an
2493 * address_space object. The only remaining whitelisted file system is
2494 * shmem.
2495 */
2496 return shmem_mapping(mapping);
2497}
2498
790c7369 2499static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2500 unsigned int flags,
790c7369 2501 struct page **pages)
b59f65fa
KS
2502{
2503 while ((*nr) - nr_start) {
2504 struct page *page = pages[--(*nr)];
2505
2506 ClearPageReferenced(page);
3faa52c0
JH
2507 if (flags & FOLL_PIN)
2508 unpin_user_page(page);
2509 else
2510 put_page(page);
b59f65fa
KS
2511 }
2512}
2513
3010a5ea 2514#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
70cbc3cc
YS
2515/*
2516 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2517 * operations.
2518 *
2519 * To pin the page, fast-gup needs to do below in order:
2520 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2521 *
2522 * For the rest of pgtable operations where pgtable updates can be racy
2523 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2524 * is pinned.
2525 *
2526 * Above will work for all pte-level operations, including THP split.
2527 *
2528 * For THP collapse, it's a bit more complicated because fast-gup may be
2529 * walking a pgtable page that is being freed (pte is still valid but pmd
2530 * can be cleared already). To avoid race in such condition, we need to
2531 * also check pmd here to make sure pmd doesn't change (corresponds to
2532 * pmdp_collapse_flush() in the THP collapse code path).
2533 */
2534static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2535 unsigned long end, unsigned int flags,
2536 struct page **pages, int *nr)
2667f50e 2537{
b59f65fa
KS
2538 struct dev_pagemap *pgmap = NULL;
2539 int nr_start = *nr, ret = 0;
2667f50e 2540 pte_t *ptep, *ptem;
2667f50e
SC
2541
2542 ptem = ptep = pte_offset_map(&pmd, addr);
04dee9e8
HD
2543 if (!ptep)
2544 return 0;
2667f50e 2545 do {
2a4a06da 2546 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2547 struct page *page;
2548 struct folio *folio;
2667f50e 2549
0cf45986 2550 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
e7884f8e
KS
2551 goto pte_unmap;
2552
b798bec4 2553 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2554 goto pte_unmap;
2555
b59f65fa 2556 if (pte_devmap(pte)) {
7af75561
IW
2557 if (unlikely(flags & FOLL_LONGTERM))
2558 goto pte_unmap;
2559
b59f65fa
KS
2560 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2561 if (unlikely(!pgmap)) {
3b78d834 2562 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2563 goto pte_unmap;
2564 }
2565 } else if (pte_special(pte))
2667f50e
SC
2566 goto pte_unmap;
2567
2568 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2569 page = pte_page(pte);
2570
b0496fe4
MWO
2571 folio = try_grab_folio(page, 1, flags);
2572 if (!folio)
2667f50e
SC
2573 goto pte_unmap;
2574
1507f512 2575 if (unlikely(page_is_secretmem(page))) {
b0496fe4 2576 gup_put_folio(folio, 1, flags);
1507f512
MR
2577 goto pte_unmap;
2578 }
2579
70cbc3cc 2580 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
c33c7948 2581 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
b0496fe4 2582 gup_put_folio(folio, 1, flags);
2667f50e
SC
2583 goto pte_unmap;
2584 }
2585
a6e79df9 2586 if (!folio_fast_pin_allowed(folio, flags)) {
b0496fe4 2587 gup_put_folio(folio, 1, flags);
2667f50e
SC
2588 goto pte_unmap;
2589 }
2590
84209e87 2591 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
a7f22660
DH
2592 gup_put_folio(folio, 1, flags);
2593 goto pte_unmap;
2594 }
2595
f28d4363
CI
2596 /*
2597 * We need to make the page accessible if and only if we are
2598 * going to access its content (the FOLL_PIN case). Please
2599 * see Documentation/core-api/pin_user_pages.rst for
2600 * details.
2601 */
2602 if (flags & FOLL_PIN) {
2603 ret = arch_make_page_accessible(page);
2604 if (ret) {
b0496fe4 2605 gup_put_folio(folio, 1, flags);
f28d4363
CI
2606 goto pte_unmap;
2607 }
2608 }
b0496fe4 2609 folio_set_referenced(folio);
2667f50e
SC
2610 pages[*nr] = page;
2611 (*nr)++;
2667f50e
SC
2612 } while (ptep++, addr += PAGE_SIZE, addr != end);
2613
2614 ret = 1;
2615
2616pte_unmap:
832d7aa0
CH
2617 if (pgmap)
2618 put_dev_pagemap(pgmap);
2667f50e
SC
2619 pte_unmap(ptem);
2620 return ret;
2621}
2622#else
2623
2624/*
2625 * If we can't determine whether or not a pte is special, then fail immediately
2626 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2627 * to be special.
2628 *
2629 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2630 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2631 * useful to have gup_huge_pmd even if we can't operate on ptes.
2632 */
70cbc3cc
YS
2633static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2634 unsigned long end, unsigned int flags,
2635 struct page **pages, int *nr)
2667f50e
SC
2636{
2637 return 0;
2638}
3010a5ea 2639#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2640
17596731 2641#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2642static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2643 unsigned long end, unsigned int flags,
2644 struct page **pages, int *nr)
b59f65fa
KS
2645{
2646 int nr_start = *nr;
2647 struct dev_pagemap *pgmap = NULL;
2648
2649 do {
2650 struct page *page = pfn_to_page(pfn);
2651
2652 pgmap = get_dev_pagemap(pfn, pgmap);
2653 if (unlikely(!pgmap)) {
3b78d834 2654 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2655 break;
b59f65fa 2656 }
4003f107
LG
2657
2658 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2659 undo_dev_pagemap(nr, nr_start, flags, pages);
2660 break;
2661 }
2662
b59f65fa
KS
2663 SetPageReferenced(page);
2664 pages[*nr] = page;
0f089235 2665 if (unlikely(try_grab_page(page, flags))) {
3faa52c0 2666 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2667 break;
3faa52c0 2668 }
b59f65fa
KS
2669 (*nr)++;
2670 pfn++;
2671 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2672
6401c4eb 2673 put_dev_pagemap(pgmap);
20b7fee7 2674 return addr == end;
b59f65fa
KS
2675}
2676
a9b6de77 2677static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2678 unsigned long end, unsigned int flags,
2679 struct page **pages, int *nr)
b59f65fa
KS
2680{
2681 unsigned long fault_pfn;
a9b6de77
DW
2682 int nr_start = *nr;
2683
2684 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2685 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2686 return 0;
b59f65fa 2687
a9b6de77 2688 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2689 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2690 return 0;
2691 }
2692 return 1;
b59f65fa
KS
2693}
2694
a9b6de77 2695static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2696 unsigned long end, unsigned int flags,
2697 struct page **pages, int *nr)
b59f65fa
KS
2698{
2699 unsigned long fault_pfn;
a9b6de77
DW
2700 int nr_start = *nr;
2701
2702 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2703 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2704 return 0;
b59f65fa 2705
a9b6de77 2706 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2707 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2708 return 0;
2709 }
2710 return 1;
b59f65fa
KS
2711}
2712#else
a9b6de77 2713static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2714 unsigned long end, unsigned int flags,
2715 struct page **pages, int *nr)
b59f65fa
KS
2716{
2717 BUILD_BUG();
2718 return 0;
2719}
2720
a9b6de77 2721static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2722 unsigned long end, unsigned int flags,
2723 struct page **pages, int *nr)
b59f65fa
KS
2724{
2725 BUILD_BUG();
2726 return 0;
2727}
2728#endif
2729
a43e9820
JH
2730static int record_subpages(struct page *page, unsigned long addr,
2731 unsigned long end, struct page **pages)
2732{
2733 int nr;
2734
c228afb1
MWO
2735 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2736 pages[nr] = nth_page(page, nr);
a43e9820
JH
2737
2738 return nr;
2739}
2740
cbd34da7
CH
2741#ifdef CONFIG_ARCH_HAS_HUGEPD
2742static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2743 unsigned long sz)
2744{
2745 unsigned long __boundary = (addr + sz) & ~(sz-1);
2746 return (__boundary - 1 < end - 1) ? __boundary : end;
2747}
2748
2749static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2750 unsigned long end, unsigned int flags,
2751 struct page **pages, int *nr)
cbd34da7
CH
2752{
2753 unsigned long pte_end;
09a1626e
MWO
2754 struct page *page;
2755 struct folio *folio;
cbd34da7
CH
2756 pte_t pte;
2757 int refs;
2758
2759 pte_end = (addr + sz) & ~(sz-1);
2760 if (pte_end < end)
2761 end = pte_end;
2762
55ca2263 2763 pte = huge_ptep_get(ptep);
cbd34da7 2764
0cd22afd 2765 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2766 return 0;
2767
2768 /* hugepages are never "special" */
2769 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2770
09a1626e 2771 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
a43e9820 2772 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2773
09a1626e
MWO
2774 folio = try_grab_folio(page, refs, flags);
2775 if (!folio)
cbd34da7 2776 return 0;
cbd34da7 2777
c33c7948 2778 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
09a1626e 2779 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2780 return 0;
2781 }
2782
a6e79df9 2783 if (!folio_fast_pin_allowed(folio, flags)) {
09a1626e 2784 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2785 return 0;
2786 }
2787
84209e87 2788 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2789 gup_put_folio(folio, refs, flags);
2790 return 0;
2791 }
2792
a43e9820 2793 *nr += refs;
09a1626e 2794 folio_set_referenced(folio);
cbd34da7
CH
2795 return 1;
2796}
2797
2798static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2799 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2800 struct page **pages, int *nr)
2801{
2802 pte_t *ptep;
2803 unsigned long sz = 1UL << hugepd_shift(hugepd);
2804 unsigned long next;
2805
2806 ptep = hugepte_offset(hugepd, addr, pdshift);
2807 do {
2808 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2809 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2810 return 0;
2811 } while (ptep++, addr = next, addr != end);
2812
2813 return 1;
2814}
2815#else
2816static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2817 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2818 struct page **pages, int *nr)
2819{
2820 return 0;
2821}
2822#endif /* CONFIG_ARCH_HAS_HUGEPD */
2823
2667f50e 2824static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2825 unsigned long end, unsigned int flags,
2826 struct page **pages, int *nr)
2667f50e 2827{
667ed1f7
MWO
2828 struct page *page;
2829 struct folio *folio;
2667f50e
SC
2830 int refs;
2831
b798bec4 2832 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2833 return 0;
2834
7af75561
IW
2835 if (pmd_devmap(orig)) {
2836 if (unlikely(flags & FOLL_LONGTERM))
2837 return 0;
86dfbed4
JH
2838 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2839 pages, nr);
7af75561 2840 }
b59f65fa 2841
c228afb1 2842 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2843 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2844
667ed1f7
MWO
2845 folio = try_grab_folio(page, refs, flags);
2846 if (!folio)
2667f50e 2847 return 0;
2667f50e
SC
2848
2849 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 2850 gup_put_folio(folio, refs, flags);
2667f50e
SC
2851 return 0;
2852 }
2853
a6e79df9
LS
2854 if (!folio_fast_pin_allowed(folio, flags)) {
2855 gup_put_folio(folio, refs, flags);
2856 return 0;
2857 }
84209e87 2858 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2859 gup_put_folio(folio, refs, flags);
2860 return 0;
2861 }
2862
a43e9820 2863 *nr += refs;
667ed1f7 2864 folio_set_referenced(folio);
2667f50e
SC
2865 return 1;
2866}
2867
2868static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2869 unsigned long end, unsigned int flags,
2870 struct page **pages, int *nr)
2667f50e 2871{
83afb52e
MWO
2872 struct page *page;
2873 struct folio *folio;
2667f50e
SC
2874 int refs;
2875
b798bec4 2876 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2877 return 0;
2878
7af75561
IW
2879 if (pud_devmap(orig)) {
2880 if (unlikely(flags & FOLL_LONGTERM))
2881 return 0;
86dfbed4
JH
2882 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2883 pages, nr);
7af75561 2884 }
b59f65fa 2885
c228afb1 2886 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2887 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2888
83afb52e
MWO
2889 folio = try_grab_folio(page, refs, flags);
2890 if (!folio)
2667f50e 2891 return 0;
2667f50e
SC
2892
2893 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 2894 gup_put_folio(folio, refs, flags);
2667f50e
SC
2895 return 0;
2896 }
2897
a6e79df9
LS
2898 if (!folio_fast_pin_allowed(folio, flags)) {
2899 gup_put_folio(folio, refs, flags);
2900 return 0;
2901 }
2902
84209e87 2903 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2904 gup_put_folio(folio, refs, flags);
2905 return 0;
2906 }
2907
a43e9820 2908 *nr += refs;
83afb52e 2909 folio_set_referenced(folio);
2667f50e
SC
2910 return 1;
2911}
2912
f30c59e9 2913static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2914 unsigned long end, unsigned int flags,
f30c59e9
AK
2915 struct page **pages, int *nr)
2916{
2917 int refs;
2d7919a2
MWO
2918 struct page *page;
2919 struct folio *folio;
f30c59e9 2920
b798bec4 2921 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2922 return 0;
2923
b59f65fa 2924 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2925
c228afb1 2926 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2927 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2928
2d7919a2
MWO
2929 folio = try_grab_folio(page, refs, flags);
2930 if (!folio)
f30c59e9 2931 return 0;
f30c59e9
AK
2932
2933 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 2934 gup_put_folio(folio, refs, flags);
f30c59e9
AK
2935 return 0;
2936 }
2937
31115034
LS
2938 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2939 gup_put_folio(folio, refs, flags);
2940 return 0;
2941 }
2942
a6e79df9
LS
2943 if (!folio_fast_pin_allowed(folio, flags)) {
2944 gup_put_folio(folio, refs, flags);
2945 return 0;
2946 }
2947
a43e9820 2948 *nr += refs;
2d7919a2 2949 folio_set_referenced(folio);
f30c59e9
AK
2950 return 1;
2951}
2952
d3f7b1bb 2953static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2954 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2955{
2956 unsigned long next;
2957 pmd_t *pmdp;
2958
d3f7b1bb 2959 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2960 do {
1180e732 2961 pmd_t pmd = pmdp_get_lockless(pmdp);
2667f50e
SC
2962
2963 next = pmd_addr_end(addr, end);
84c3fc4e 2964 if (!pmd_present(pmd))
2667f50e
SC
2965 return 0;
2966
414fd080
YZ
2967 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2968 pmd_devmap(pmd))) {
0cf45986
DH
2969 if (pmd_protnone(pmd) &&
2970 !gup_can_follow_protnone(flags))
2667f50e
SC
2971 return 0;
2972
b798bec4 2973 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2974 pages, nr))
2975 return 0;
2976
f30c59e9
AK
2977 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2978 /*
2979 * architecture have different format for hugetlbfs
2980 * pmd format and THP pmd format
2981 */
2982 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2983 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2984 return 0;
70cbc3cc 2985 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2923117b 2986 return 0;
2667f50e
SC
2987 } while (pmdp++, addr = next, addr != end);
2988
2989 return 1;
2990}
2991
d3f7b1bb 2992static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2993 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2994{
2995 unsigned long next;
2996 pud_t *pudp;
2997
d3f7b1bb 2998 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2999 do {
e37c6982 3000 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
3001
3002 next = pud_addr_end(addr, end);
15494520 3003 if (unlikely(!pud_present(pud)))
2667f50e 3004 return 0;
fcd0ccd8 3005 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
b798bec4 3006 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
3007 pages, nr))
3008 return 0;
3009 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3010 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 3011 PUD_SHIFT, next, flags, pages, nr))
2667f50e 3012 return 0;
d3f7b1bb 3013 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
3014 return 0;
3015 } while (pudp++, addr = next, addr != end);
3016
3017 return 1;
3018}
3019
d3f7b1bb 3020static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 3021 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
3022{
3023 unsigned long next;
3024 p4d_t *p4dp;
3025
d3f7b1bb 3026 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
3027 do {
3028 p4d_t p4d = READ_ONCE(*p4dp);
3029
3030 next = p4d_addr_end(addr, end);
3031 if (p4d_none(p4d))
3032 return 0;
3033 BUILD_BUG_ON(p4d_huge(p4d));
3034 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3035 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 3036 P4D_SHIFT, next, flags, pages, nr))
c2febafc 3037 return 0;
d3f7b1bb 3038 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
3039 return 0;
3040 } while (p4dp++, addr = next, addr != end);
3041
3042 return 1;
3043}
3044
5b65c467 3045static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 3046 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
3047{
3048 unsigned long next;
3049 pgd_t *pgdp;
3050
3051 pgdp = pgd_offset(current->mm, addr);
3052 do {
3053 pgd_t pgd = READ_ONCE(*pgdp);
3054
3055 next = pgd_addr_end(addr, end);
3056 if (pgd_none(pgd))
3057 return;
3058 if (unlikely(pgd_huge(pgd))) {
b798bec4 3059 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
3060 pages, nr))
3061 return;
3062 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3063 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 3064 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 3065 return;
d3f7b1bb 3066 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
3067 return;
3068 } while (pgdp++, addr = next, addr != end);
3069}
050a9adc
CH
3070#else
3071static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3072 unsigned int flags, struct page **pages, int *nr)
3073{
3074}
3075#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
3076
3077#ifndef gup_fast_permitted
3078/*
dadbb612 3079 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
3080 * we need to fall back to the slow version:
3081 */
26f4c328 3082static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 3083{
26f4c328 3084 return true;
5b65c467
KS
3085}
3086#endif
3087
c28b1fc7
JG
3088static unsigned long lockless_pages_from_mm(unsigned long start,
3089 unsigned long end,
3090 unsigned int gup_flags,
3091 struct page **pages)
3092{
3093 unsigned long flags;
3094 int nr_pinned = 0;
57efa1fe 3095 unsigned seq;
c28b1fc7
JG
3096
3097 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3098 !gup_fast_permitted(start, end))
3099 return 0;
3100
57efa1fe
JG
3101 if (gup_flags & FOLL_PIN) {
3102 seq = raw_read_seqcount(&current->mm->write_protect_seq);
3103 if (seq & 1)
3104 return 0;
3105 }
3106
c28b1fc7
JG
3107 /*
3108 * Disable interrupts. The nested form is used, in order to allow full,
3109 * general purpose use of this routine.
3110 *
3111 * With interrupts disabled, we block page table pages from being freed
3112 * from under us. See struct mmu_table_batch comments in
3113 * include/asm-generic/tlb.h for more details.
3114 *
3115 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3116 * that come from THPs splitting.
3117 */
3118 local_irq_save(flags);
3119 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3120 local_irq_restore(flags);
57efa1fe
JG
3121
3122 /*
3123 * When pinning pages for DMA there could be a concurrent write protect
3124 * from fork() via copy_page_range(), in this case always fail fast GUP.
3125 */
3126 if (gup_flags & FOLL_PIN) {
3127 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
b6a2619c 3128 unpin_user_pages_lockless(pages, nr_pinned);
57efa1fe 3129 return 0;
b6a2619c
DH
3130 } else {
3131 sanity_check_pinned_pages(pages, nr_pinned);
57efa1fe
JG
3132 }
3133 }
c28b1fc7
JG
3134 return nr_pinned;
3135}
3136
3137static int internal_get_user_pages_fast(unsigned long start,
3138 unsigned long nr_pages,
eddb1c22
JH
3139 unsigned int gup_flags,
3140 struct page **pages)
2667f50e 3141{
c28b1fc7
JG
3142 unsigned long len, end;
3143 unsigned long nr_pinned;
b2a72dff 3144 int locked = 0;
c28b1fc7 3145 int ret;
2667f50e 3146
f4000fdf 3147 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 3148 FOLL_FORCE | FOLL_PIN | FOLL_GET |
4003f107
LG
3149 FOLL_FAST_ONLY | FOLL_NOFAULT |
3150 FOLL_PCI_P2PDMA)))
817be129
CH
3151 return -EINVAL;
3152
a458b76a
AA
3153 if (gup_flags & FOLL_PIN)
3154 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 3155
f81cd178 3156 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 3157 might_lock_read(&current->mm->mmap_lock);
f81cd178 3158
f455c854 3159 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
3160 len = nr_pages << PAGE_SHIFT;
3161 if (check_add_overflow(start, len, &end))
9883c7f8 3162 return -EOVERFLOW;
6014bc27
LT
3163 if (end > TASK_SIZE_MAX)
3164 return -EFAULT;
96d4f267 3165 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 3166 return -EFAULT;
73e10a61 3167
c28b1fc7
JG
3168 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3169 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3170 return nr_pinned;
2667f50e 3171
c28b1fc7
JG
3172 /* Slow path: try to get the remaining pages with get_user_pages */
3173 start += nr_pinned << PAGE_SHIFT;
3174 pages += nr_pinned;
b2a72dff 3175 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
b2cac248 3176 pages, &locked,
f04740f5 3177 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
c28b1fc7
JG
3178 if (ret < 0) {
3179 /*
3180 * The caller has to unpin the pages we already pinned so
3181 * returning -errno is not an option
3182 */
3183 if (nr_pinned)
3184 return nr_pinned;
3185 return ret;
2667f50e 3186 }
c28b1fc7 3187 return ret + nr_pinned;
2667f50e 3188}
c28b1fc7 3189
dadbb612
SJ
3190/**
3191 * get_user_pages_fast_only() - pin user pages in memory
3192 * @start: starting user address
3193 * @nr_pages: number of pages from start to pin
3194 * @gup_flags: flags modifying pin behaviour
3195 * @pages: array that receives pointers to the pages pinned.
3196 * Should be at least nr_pages long.
3197 *
9e1f0580
JH
3198 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3199 * the regular GUP.
9e1f0580
JH
3200 *
3201 * If the architecture does not support this function, simply return with no
3202 * pages pinned.
3203 *
3204 * Careful, careful! COW breaking can go either way, so a non-write
3205 * access can get ambiguous page results. If you call this function without
3206 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3207 */
dadbb612
SJ
3208int get_user_pages_fast_only(unsigned long start, int nr_pages,
3209 unsigned int gup_flags, struct page **pages)
9e1f0580 3210{
9e1f0580
JH
3211 /*
3212 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3213 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
3214 *
3215 * FOLL_FAST_ONLY is required in order to match the API description of
3216 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 3217 */
b2cac248 3218 if (!is_valid_gup_args(pages, NULL, &gup_flags,
d64e2dbc
JG
3219 FOLL_GET | FOLL_FAST_ONLY))
3220 return -EINVAL;
9e1f0580 3221
9198a919 3222 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
9e1f0580 3223}
dadbb612 3224EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 3225
eddb1c22
JH
3226/**
3227 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
3228 * @start: starting user address
3229 * @nr_pages: number of pages from start to pin
3230 * @gup_flags: flags modifying pin behaviour
3231 * @pages: array that receives pointers to the pages pinned.
3232 * Should be at least nr_pages long.
eddb1c22 3233 *
c1e8d7c6 3234 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
3235 * If not successful, it will fall back to taking the lock and
3236 * calling get_user_pages().
3237 *
3238 * Returns number of pages pinned. This may be fewer than the number requested.
3239 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3240 * -errno.
3241 */
3242int get_user_pages_fast(unsigned long start, int nr_pages,
3243 unsigned int gup_flags, struct page **pages)
3244{
94202f12
JH
3245 /*
3246 * The caller may or may not have explicitly set FOLL_GET; either way is
3247 * OK. However, internally (within mm/gup.c), gup fast variants must set
3248 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3249 * request.
3250 */
b2cac248 3251 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
d64e2dbc 3252 return -EINVAL;
eddb1c22
JH
3253 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3254}
050a9adc 3255EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
3256
3257/**
3258 * pin_user_pages_fast() - pin user pages in memory without taking locks
3259 *
3faa52c0
JH
3260 * @start: starting user address
3261 * @nr_pages: number of pages from start to pin
3262 * @gup_flags: flags modifying pin behaviour
3263 * @pages: array that receives pointers to the pages pinned.
3264 * Should be at least nr_pages long.
3265 *
3266 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3267 * get_user_pages_fast() for documentation on the function arguments, because
3268 * the arguments here are identical.
3269 *
3270 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3271 * see Documentation/core-api/pin_user_pages.rst for further details.
c8070b78
DH
3272 *
3273 * Note that if a zero_page is amongst the returned pages, it will not have
3274 * pins in it and unpin_user_page() will not remove pins from it.
eddb1c22
JH
3275 */
3276int pin_user_pages_fast(unsigned long start, int nr_pages,
3277 unsigned int gup_flags, struct page **pages)
3278{
b2cac248 3279 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3faa52c0 3280 return -EINVAL;
3faa52c0 3281 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
3282}
3283EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3284
3285/**
64019a2e 3286 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3287 *
3faa52c0
JH
3288 * @mm: mm_struct of target mm
3289 * @start: starting user address
3290 * @nr_pages: number of pages from start to pin
3291 * @gup_flags: flags modifying lookup behaviour
3292 * @pages: array that receives pointers to the pages pinned.
0768c8de 3293 * Should be at least nr_pages long.
3faa52c0
JH
3294 * @locked: pointer to lock flag indicating whether lock is held and
3295 * subsequently whether VM_FAULT_RETRY functionality can be
3296 * utilised. Lock must initially be held.
3297 *
3298 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3299 * get_user_pages_remote() for documentation on the function arguments, because
3300 * the arguments here are identical.
3301 *
3302 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3303 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3304 *
3305 * Note that if a zero_page is amongst the returned pages, it will not have
3306 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22 3307 */
64019a2e 3308long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3309 unsigned long start, unsigned long nr_pages,
3310 unsigned int gup_flags, struct page **pages,
0b295316 3311 int *locked)
eddb1c22 3312{
9a863a6a
JG
3313 int local_locked = 1;
3314
b2cac248 3315 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc
JG
3316 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3317 return 0;
b2cac248 3318 return __gup_longterm_locked(mm, start, nr_pages, pages,
9a863a6a 3319 locked ? locked : &local_locked,
d64e2dbc 3320 gup_flags);
eddb1c22
JH
3321}
3322EXPORT_SYMBOL(pin_user_pages_remote);
3323
3324/**
3325 * pin_user_pages() - pin user pages in memory for use by other devices
3326 *
3faa52c0
JH
3327 * @start: starting user address
3328 * @nr_pages: number of pages from start to pin
3329 * @gup_flags: flags modifying lookup behaviour
3330 * @pages: array that receives pointers to the pages pinned.
0768c8de 3331 * Should be at least nr_pages long.
3faa52c0
JH
3332 *
3333 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3334 * FOLL_PIN is set.
3335 *
3336 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3337 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3338 *
3339 * Note that if a zero_page is amongst the returned pages, it will not have
3340 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22
JH
3341 */
3342long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 3343 unsigned int gup_flags, struct page **pages)
eddb1c22 3344{
9a863a6a
JG
3345 int locked = 1;
3346
b2cac248 3347 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
d64e2dbc 3348 return 0;
64019a2e 3349 return __gup_longterm_locked(current->mm, start, nr_pages,
b2cac248 3350 pages, &locked, gup_flags);
eddb1c22
JH
3351}
3352EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3353
3354/*
3355 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3356 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3357 * FOLL_PIN and rejects FOLL_GET.
c8070b78
DH
3358 *
3359 * Note that if a zero_page is amongst the returned pages, it will not have
3360 * pins in it and unpin_user_page*() will not remove pins from it.
91429023
JH
3361 */
3362long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3363 struct page **pages, unsigned int gup_flags)
3364{
b2a72dff 3365 int locked = 0;
91429023 3366
b2cac248 3367 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 3368 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc 3369 return 0;
0768c8de 3370
b2cac248 3371 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
b2a72dff 3372 &locked, gup_flags);
91429023
JH
3373}
3374EXPORT_SYMBOL(pin_user_pages_unlocked);