]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/gup.c
mm/gup: add an assertion that the mmap lock is locked
[thirdparty/linux.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
1027e443 21
33a709b2 22#include <asm/mmu_context.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
b6a2619c
DH
32static inline void sanity_check_pinned_pages(struct page **pages,
33 unsigned long npages)
34{
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 return;
37
38 /*
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
42 *
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
49 */
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
53
54 if (!folio_test_anon(folio))
55 continue;
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 else
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
62 }
63}
64
cd1adf1b 65/*
ece1ed7b 66 * Return the folio with ref appropriately incremented,
cd1adf1b 67 * or NULL if that failed.
a707cdd5 68 */
ece1ed7b 69static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 70{
ece1ed7b 71 struct folio *folio;
a707cdd5 72
59409373 73retry:
ece1ed7b
MWO
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 76 return NULL;
ece1ed7b 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
a707cdd5 78 return NULL;
c24d3732
JH
79
80 /*
ece1ed7b
MWO
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
c24d3732 85 * we were given anymore.
ece1ed7b
MWO
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
c24d3732 88 */
ece1ed7b 89 if (unlikely(page_folio(page) != folio)) {
f4f451a1
MS
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
59409373 92 goto retry;
c24d3732
JH
93 }
94
ece1ed7b 95 return folio;
a707cdd5
JH
96}
97
3967db22 98/**
ece1ed7b 99 * try_grab_folio() - Attempt to get or pin a folio.
3967db22 100 * @page: pointer to page to be grabbed
ece1ed7b 101 * @refs: the value to (effectively) add to the folio's refcount
3967db22
JH
102 * @flags: gup flags: these are the FOLL_* flag values.
103 *
3faa52c0 104 * "grab" names in this file mean, "look at flags to decide whether to use
ece1ed7b 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0
JH
106 *
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
110 *
ece1ed7b 111 * FOLL_GET: folio's refcount will be incremented by @refs.
3967db22 112 *
ece1ed7b 113 * FOLL_PIN on large folios: folio's refcount will be incremented by
94688e8e 114 * @refs, and its pincount will be incremented by @refs.
3967db22 115 *
ece1ed7b 116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
5232c63f 117 * @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0 118 *
ece1ed7b
MWO
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
3faa52c0 123 */
ece1ed7b 124struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
3faa52c0 125{
4003f107
LG
126 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
127 return NULL;
128
3faa52c0 129 if (flags & FOLL_GET)
ece1ed7b 130 return try_get_folio(page, refs);
3faa52c0 131 else if (flags & FOLL_PIN) {
ece1ed7b
MWO
132 struct folio *folio;
133
df3a0a21 134 /*
d1e153fe
PT
135 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
136 * right zone, so fail and let the caller fall back to the slow
137 * path.
df3a0a21 138 */
d1e153fe 139 if (unlikely((flags & FOLL_LONGTERM) &&
6077c943 140 !is_longterm_pinnable_page(page)))
df3a0a21
PL
141 return NULL;
142
c24d3732
JH
143 /*
144 * CAUTION: Don't use compound_head() on the page before this
145 * point, the result won't be stable.
146 */
ece1ed7b
MWO
147 folio = try_get_folio(page, refs);
148 if (!folio)
c24d3732
JH
149 return NULL;
150
47e29d32 151 /*
ece1ed7b 152 * When pinning a large folio, use an exact count to track it.
47e29d32 153 *
ece1ed7b
MWO
154 * However, be sure to *also* increment the normal folio
155 * refcount field at least once, so that the folio really
78d9d6ce 156 * is pinned. That's why the refcount from the earlier
ece1ed7b 157 * try_get_folio() is left intact.
47e29d32 158 */
ece1ed7b 159 if (folio_test_large(folio))
94688e8e 160 atomic_add(refs, &folio->_pincount);
c24d3732 161 else
ece1ed7b
MWO
162 folio_ref_add(folio,
163 refs * (GUP_PIN_COUNTING_BIAS - 1));
088b8aa5
DH
164 /*
165 * Adjust the pincount before re-checking the PTE for changes.
166 * This is essentially a smp_mb() and is paired with a memory
167 * barrier in page_try_share_anon_rmap().
168 */
169 smp_mb__after_atomic();
170
ece1ed7b 171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
47e29d32 172
ece1ed7b 173 return folio;
3faa52c0
JH
174 }
175
176 WARN_ON_ONCE(1);
177 return NULL;
178}
179
d8ddc099 180static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
181{
182 if (flags & FOLL_PIN) {
d8ddc099
MWO
183 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
184 if (folio_test_large(folio))
94688e8e 185 atomic_sub(refs, &folio->_pincount);
4509b42c
JG
186 else
187 refs *= GUP_PIN_COUNTING_BIAS;
188 }
189
f4f451a1
MS
190 if (!put_devmap_managed_page_refs(&folio->page, refs))
191 folio_put_refs(folio, refs);
4509b42c
JG
192}
193
3faa52c0
JH
194/**
195 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
5fec0719
MWO
196 * @page: pointer to page to be grabbed
197 * @flags: gup flags: these are the FOLL_* flag values.
3faa52c0
JH
198 *
199 * This might not do anything at all, depending on the flags argument.
200 *
201 * "grab" names in this file mean, "look at flags to decide whether to use
202 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
203 *
3faa52c0 204 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
ece1ed7b 205 * time. Cases: please see the try_grab_folio() documentation, with
3967db22 206 * "refs=1".
3faa52c0 207 *
0f089235
LG
208 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
209 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
210 *
211 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
212 * be grabbed.
3faa52c0 213 */
0f089235 214int __must_check try_grab_page(struct page *page, unsigned int flags)
3faa52c0 215{
5fec0719
MWO
216 struct folio *folio = page_folio(page);
217
5fec0719 218 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
0f089235 219 return -ENOMEM;
3faa52c0 220
4003f107
LG
221 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
222 return -EREMOTEIO;
3faa52c0 223
c36c04c2 224 if (flags & FOLL_GET)
5fec0719 225 folio_ref_inc(folio);
c36c04c2 226 else if (flags & FOLL_PIN) {
c36c04c2 227 /*
5fec0719 228 * Similar to try_grab_folio(): be sure to *also*
78d9d6ce
MWO
229 * increment the normal page refcount field at least once,
230 * so that the page really is pinned.
c36c04c2 231 */
5fec0719
MWO
232 if (folio_test_large(folio)) {
233 folio_ref_add(folio, 1);
94688e8e 234 atomic_add(1, &folio->_pincount);
8ea2979c 235 } else {
5fec0719 236 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
8ea2979c 237 }
c36c04c2 238
5fec0719 239 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
c36c04c2
JH
240 }
241
0f089235 242 return 0;
3faa52c0
JH
243}
244
3faa52c0
JH
245/**
246 * unpin_user_page() - release a dma-pinned page
247 * @page: pointer to page to be released
248 *
249 * Pages that were pinned via pin_user_pages*() must be released via either
250 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
251 * that such pages can be separately tracked and uniquely handled. In
252 * particular, interactions with RDMA and filesystems need special handling.
253 */
254void unpin_user_page(struct page *page)
255{
b6a2619c 256 sanity_check_pinned_pages(&page, 1);
d8ddc099 257 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
258}
259EXPORT_SYMBOL(unpin_user_page);
260
659508f9 261static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 262 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 263{
659508f9
MWO
264 struct page *next = nth_page(start, i);
265 struct folio *folio = page_folio(next);
458a4f78
JM
266 unsigned int nr = 1;
267
659508f9 268 if (folio_test_large(folio))
4c654229 269 nr = min_t(unsigned int, npages - i,
659508f9 270 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 271
458a4f78 272 *ntails = nr;
659508f9 273 return folio;
458a4f78
JM
274}
275
12521c76 276static inline struct folio *gup_folio_next(struct page **list,
28297dbc 277 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 278{
12521c76 279 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
280 unsigned int nr;
281
8745d7f6 282 for (nr = i + 1; nr < npages; nr++) {
12521c76 283 if (page_folio(list[nr]) != folio)
8745d7f6
JM
284 break;
285 }
286
8745d7f6 287 *ntails = nr - i;
12521c76 288 return folio;
8745d7f6
JM
289}
290
fc1d8e7c 291/**
f1f6a7dd 292 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 293 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 294 * @npages: number of pages in the @pages array.
2d15eb31 295 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
296 *
297 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
298 * variants called on that page.
299 *
300 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 301 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
302 * listed as clean. In any case, releases all pages using unpin_user_page(),
303 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 304 *
f1f6a7dd 305 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 306 *
2d15eb31
AM
307 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
308 * required, then the caller should a) verify that this is really correct,
309 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 310 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
311 *
312 */
f1f6a7dd
JH
313void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
314 bool make_dirty)
fc1d8e7c 315{
12521c76
MWO
316 unsigned long i;
317 struct folio *folio;
318 unsigned int nr;
2d15eb31
AM
319
320 if (!make_dirty) {
f1f6a7dd 321 unpin_user_pages(pages, npages);
2d15eb31
AM
322 return;
323 }
324
b6a2619c 325 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
326 for (i = 0; i < npages; i += nr) {
327 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31
AM
328 /*
329 * Checking PageDirty at this point may race with
330 * clear_page_dirty_for_io(), but that's OK. Two key
331 * cases:
332 *
333 * 1) This code sees the page as already dirty, so it
334 * skips the call to set_page_dirty(). That could happen
335 * because clear_page_dirty_for_io() called
336 * page_mkclean(), followed by set_page_dirty().
337 * However, now the page is going to get written back,
338 * which meets the original intention of setting it
339 * dirty, so all is well: clear_page_dirty_for_io() goes
340 * on to call TestClearPageDirty(), and write the page
341 * back.
342 *
343 * 2) This code sees the page as clean, so it calls
344 * set_page_dirty(). The page stays dirty, despite being
345 * written back, so it gets written back again in the
346 * next writeback cycle. This is harmless.
347 */
12521c76
MWO
348 if (!folio_test_dirty(folio)) {
349 folio_lock(folio);
350 folio_mark_dirty(folio);
351 folio_unlock(folio);
352 }
353 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 354 }
fc1d8e7c 355}
f1f6a7dd 356EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 357
458a4f78
JM
358/**
359 * unpin_user_page_range_dirty_lock() - release and optionally dirty
360 * gup-pinned page range
361 *
362 * @page: the starting page of a range maybe marked dirty, and definitely released.
363 * @npages: number of consecutive pages to release.
364 * @make_dirty: whether to mark the pages dirty
365 *
366 * "gup-pinned page range" refers to a range of pages that has had one of the
367 * pin_user_pages() variants called on that page.
368 *
369 * For the page ranges defined by [page .. page+npages], make that range (or
370 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
371 * page range was previously listed as clean.
372 *
373 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
374 * required, then the caller should a) verify that this is really correct,
375 * because _lock() is usually required, and b) hand code it:
376 * set_page_dirty_lock(), unpin_user_page().
377 *
378 */
379void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
380 bool make_dirty)
381{
659508f9
MWO
382 unsigned long i;
383 struct folio *folio;
384 unsigned int nr;
385
386 for (i = 0; i < npages; i += nr) {
387 folio = gup_folio_range_next(page, npages, i, &nr);
388 if (make_dirty && !folio_test_dirty(folio)) {
389 folio_lock(folio);
390 folio_mark_dirty(folio);
391 folio_unlock(folio);
392 }
393 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
394 }
395}
396EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
397
b6a2619c
DH
398static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
399{
400 unsigned long i;
401 struct folio *folio;
402 unsigned int nr;
403
404 /*
405 * Don't perform any sanity checks because we might have raced with
406 * fork() and some anonymous pages might now actually be shared --
407 * which is why we're unpinning after all.
408 */
409 for (i = 0; i < npages; i += nr) {
410 folio = gup_folio_next(pages, npages, i, &nr);
411 gup_put_folio(folio, nr, FOLL_PIN);
412 }
413}
414
fc1d8e7c 415/**
f1f6a7dd 416 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
417 * @pages: array of pages to be marked dirty and released.
418 * @npages: number of pages in the @pages array.
419 *
f1f6a7dd 420 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 421 *
f1f6a7dd 422 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 423 */
f1f6a7dd 424void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 425{
12521c76
MWO
426 unsigned long i;
427 struct folio *folio;
428 unsigned int nr;
fc1d8e7c 429
146608bb
JH
430 /*
431 * If this WARN_ON() fires, then the system *might* be leaking pages (by
432 * leaving them pinned), but probably not. More likely, gup/pup returned
433 * a hard -ERRNO error to the caller, who erroneously passed it here.
434 */
435 if (WARN_ON(IS_ERR_VALUE(npages)))
436 return;
31b912de 437
b6a2619c 438 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
439 for (i = 0; i < npages; i += nr) {
440 folio = gup_folio_next(pages, npages, i, &nr);
441 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 442 }
fc1d8e7c 443}
f1f6a7dd 444EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 445
a458b76a
AA
446/*
447 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
448 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
449 * cache bouncing on large SMP machines for concurrent pinned gups.
450 */
451static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
452{
453 if (!test_bit(MMF_HAS_PINNED, mm_flags))
454 set_bit(MMF_HAS_PINNED, mm_flags);
455}
456
050a9adc 457#ifdef CONFIG_MMU
69e68b4f
KS
458static struct page *no_page_table(struct vm_area_struct *vma,
459 unsigned int flags)
4bbd4c77 460{
69e68b4f
KS
461 /*
462 * When core dumping an enormous anonymous area that nobody
463 * has touched so far, we don't want to allocate unnecessary pages or
464 * page tables. Return error instead of NULL to skip handle_mm_fault,
465 * then get_dump_page() will return NULL to leave a hole in the dump.
466 * But we can only make this optimization where a hole would surely
467 * be zero-filled if handle_mm_fault() actually did handle it.
468 */
a0137f16
AK
469 if ((flags & FOLL_DUMP) &&
470 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
471 return ERR_PTR(-EFAULT);
472 return NULL;
473}
4bbd4c77 474
1027e443
KS
475static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
476 pte_t *pte, unsigned int flags)
477{
1027e443
KS
478 if (flags & FOLL_TOUCH) {
479 pte_t entry = *pte;
480
481 if (flags & FOLL_WRITE)
482 entry = pte_mkdirty(entry);
483 entry = pte_mkyoung(entry);
484
485 if (!pte_same(*pte, entry)) {
486 set_pte_at(vma->vm_mm, address, pte, entry);
487 update_mmu_cache(vma, address, pte);
488 }
489 }
490
491 /* Proper page table entry exists, but no corresponding struct page */
492 return -EEXIST;
493}
494
5535be30
DH
495/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
496static inline bool can_follow_write_pte(pte_t pte, struct page *page,
497 struct vm_area_struct *vma,
498 unsigned int flags)
19be0eaf 499{
5535be30
DH
500 /* If the pte is writable, we can write to the page. */
501 if (pte_write(pte))
502 return true;
503
504 /* Maybe FOLL_FORCE is set to override it? */
505 if (!(flags & FOLL_FORCE))
506 return false;
507
508 /* But FOLL_FORCE has no effect on shared mappings */
509 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
510 return false;
511
512 /* ... or read-only private ones */
513 if (!(vma->vm_flags & VM_MAYWRITE))
514 return false;
515
516 /* ... or already writable ones that just need to take a write fault */
517 if (vma->vm_flags & VM_WRITE)
518 return false;
519
520 /*
521 * See can_change_pte_writable(): we broke COW and could map the page
522 * writable if we have an exclusive anonymous page ...
523 */
524 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
525 return false;
526
527 /* ... and a write-fault isn't required for other reasons. */
528 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
529 return false;
530 return !userfaultfd_pte_wp(vma, pte);
19be0eaf
LT
531}
532
69e68b4f 533static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
534 unsigned long address, pmd_t *pmd, unsigned int flags,
535 struct dev_pagemap **pgmap)
69e68b4f
KS
536{
537 struct mm_struct *mm = vma->vm_mm;
538 struct page *page;
539 spinlock_t *ptl;
540 pte_t *ptep, pte;
f28d4363 541 int ret;
4bbd4c77 542
eddb1c22
JH
543 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
544 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
545 (FOLL_PIN | FOLL_GET)))
546 return ERR_PTR(-EINVAL);
4bbd4c77 547 if (unlikely(pmd_bad(*pmd)))
69e68b4f 548 return no_page_table(vma, flags);
4bbd4c77
KS
549
550 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77 551 pte = *ptep;
f7355e99
DH
552 if (!pte_present(pte))
553 goto no_page;
474098ed 554 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
4bbd4c77 555 goto no_page;
4bbd4c77
KS
556
557 page = vm_normal_page(vma, address, pte);
5535be30
DH
558
559 /*
560 * We only care about anon pages in can_follow_write_pte() and don't
561 * have to worry about pte_devmap() because they are never anon.
562 */
563 if ((flags & FOLL_WRITE) &&
564 !can_follow_write_pte(pte, page, vma, flags)) {
565 page = NULL;
566 goto out;
567 }
568
3faa52c0 569 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 570 /*
3faa52c0
JH
571 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
572 * case since they are only valid while holding the pgmap
573 * reference.
3565fce3 574 */
df06b37f
KB
575 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
576 if (*pgmap)
3565fce3
DW
577 page = pte_page(pte);
578 else
579 goto no_page;
580 } else if (unlikely(!page)) {
1027e443
KS
581 if (flags & FOLL_DUMP) {
582 /* Avoid special (like zero) pages in core dumps */
583 page = ERR_PTR(-EFAULT);
584 goto out;
585 }
586
587 if (is_zero_pfn(pte_pfn(pte))) {
588 page = pte_page(pte);
589 } else {
1027e443
KS
590 ret = follow_pfn_pte(vma, address, ptep, flags);
591 page = ERR_PTR(ret);
592 goto out;
593 }
4bbd4c77
KS
594 }
595
84209e87 596 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
a7f22660
DH
597 page = ERR_PTR(-EMLINK);
598 goto out;
599 }
b6a2619c
DH
600
601 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
602 !PageAnonExclusive(page), page);
603
3faa52c0 604 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
0f089235
LG
605 ret = try_grab_page(page, flags);
606 if (unlikely(ret)) {
607 page = ERR_PTR(ret);
3faa52c0 608 goto out;
8fde12ca 609 }
4003f107 610
f28d4363
CI
611 /*
612 * We need to make the page accessible if and only if we are going
613 * to access its content (the FOLL_PIN case). Please see
614 * Documentation/core-api/pin_user_pages.rst for details.
615 */
616 if (flags & FOLL_PIN) {
617 ret = arch_make_page_accessible(page);
618 if (ret) {
619 unpin_user_page(page);
620 page = ERR_PTR(ret);
621 goto out;
622 }
623 }
4bbd4c77
KS
624 if (flags & FOLL_TOUCH) {
625 if ((flags & FOLL_WRITE) &&
626 !pte_dirty(pte) && !PageDirty(page))
627 set_page_dirty(page);
628 /*
629 * pte_mkyoung() would be more correct here, but atomic care
630 * is needed to avoid losing the dirty bit: it is easier to use
631 * mark_page_accessed().
632 */
633 mark_page_accessed(page);
634 }
1027e443 635out:
4bbd4c77 636 pte_unmap_unlock(ptep, ptl);
4bbd4c77 637 return page;
4bbd4c77
KS
638no_page:
639 pte_unmap_unlock(ptep, ptl);
640 if (!pte_none(pte))
69e68b4f
KS
641 return NULL;
642 return no_page_table(vma, flags);
643}
644
080dbb61
AK
645static struct page *follow_pmd_mask(struct vm_area_struct *vma,
646 unsigned long address, pud_t *pudp,
df06b37f
KB
647 unsigned int flags,
648 struct follow_page_context *ctx)
69e68b4f 649{
68827280 650 pmd_t *pmd, pmdval;
69e68b4f
KS
651 spinlock_t *ptl;
652 struct page *page;
653 struct mm_struct *mm = vma->vm_mm;
654
080dbb61 655 pmd = pmd_offset(pudp, address);
68827280
HY
656 /*
657 * The READ_ONCE() will stabilize the pmdval in a register or
658 * on the stack so that it will stop changing under the code.
659 */
660 pmdval = READ_ONCE(*pmd);
661 if (pmd_none(pmdval))
69e68b4f 662 return no_page_table(vma, flags);
f7355e99 663 if (!pmd_present(pmdval))
e66f17ff 664 return no_page_table(vma, flags);
68827280 665 if (pmd_devmap(pmdval)) {
3565fce3 666 ptl = pmd_lock(mm, pmd);
df06b37f 667 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
668 spin_unlock(ptl);
669 if (page)
670 return page;
671 }
68827280 672 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 673 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 674
474098ed 675 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
db08f203
AK
676 return no_page_table(vma, flags);
677
6742d293 678 ptl = pmd_lock(mm, pmd);
84c3fc4e
ZY
679 if (unlikely(!pmd_present(*pmd))) {
680 spin_unlock(ptl);
f7355e99 681 return no_page_table(vma, flags);
84c3fc4e 682 }
6742d293
KS
683 if (unlikely(!pmd_trans_huge(*pmd))) {
684 spin_unlock(ptl);
df06b37f 685 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 686 }
4066c119 687 if (flags & FOLL_SPLIT_PMD) {
6742d293
KS
688 int ret;
689 page = pmd_page(*pmd);
690 if (is_huge_zero_page(page)) {
691 spin_unlock(ptl);
692 ret = 0;
78ddc534 693 split_huge_pmd(vma, pmd, address);
337d9abf
NH
694 if (pmd_trans_unstable(pmd))
695 ret = -EBUSY;
4066c119 696 } else {
bfe7b00d
SL
697 spin_unlock(ptl);
698 split_huge_pmd(vma, pmd, address);
699 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
700 }
701
702 return ret ? ERR_PTR(ret) :
df06b37f 703 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 704 }
6742d293
KS
705 page = follow_trans_huge_pmd(vma, address, pmd, flags);
706 spin_unlock(ptl);
df06b37f 707 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 708 return page;
4bbd4c77
KS
709}
710
080dbb61
AK
711static struct page *follow_pud_mask(struct vm_area_struct *vma,
712 unsigned long address, p4d_t *p4dp,
df06b37f
KB
713 unsigned int flags,
714 struct follow_page_context *ctx)
080dbb61
AK
715{
716 pud_t *pud;
717 spinlock_t *ptl;
718 struct page *page;
719 struct mm_struct *mm = vma->vm_mm;
720
721 pud = pud_offset(p4dp, address);
722 if (pud_none(*pud))
723 return no_page_table(vma, flags);
080dbb61
AK
724 if (pud_devmap(*pud)) {
725 ptl = pud_lock(mm, pud);
df06b37f 726 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
727 spin_unlock(ptl);
728 if (page)
729 return page;
730 }
731 if (unlikely(pud_bad(*pud)))
732 return no_page_table(vma, flags);
733
df06b37f 734 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
735}
736
080dbb61
AK
737static struct page *follow_p4d_mask(struct vm_area_struct *vma,
738 unsigned long address, pgd_t *pgdp,
df06b37f
KB
739 unsigned int flags,
740 struct follow_page_context *ctx)
080dbb61
AK
741{
742 p4d_t *p4d;
743
744 p4d = p4d_offset(pgdp, address);
745 if (p4d_none(*p4d))
746 return no_page_table(vma, flags);
747 BUILD_BUG_ON(p4d_huge(*p4d));
748 if (unlikely(p4d_bad(*p4d)))
749 return no_page_table(vma, flags);
750
df06b37f 751 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
752}
753
754/**
755 * follow_page_mask - look up a page descriptor from a user-virtual address
756 * @vma: vm_area_struct mapping @address
757 * @address: virtual address to look up
758 * @flags: flags modifying lookup behaviour
78179556
MR
759 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
760 * pointer to output page_mask
080dbb61
AK
761 *
762 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
763 *
78179556
MR
764 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
765 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
766 *
a7f22660
DH
767 * When getting an anonymous page and the caller has to trigger unsharing
768 * of a shared anonymous page first, -EMLINK is returned. The caller should
769 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
770 * relevant with FOLL_PIN and !FOLL_WRITE.
771 *
78179556
MR
772 * On output, the @ctx->page_mask is set according to the size of the page.
773 *
774 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
775 * an error pointer if there is a mapping to something not represented
776 * by a page descriptor (see also vm_normal_page()).
777 */
a7030aea 778static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 779 unsigned long address, unsigned int flags,
df06b37f 780 struct follow_page_context *ctx)
080dbb61
AK
781{
782 pgd_t *pgd;
783 struct page *page;
784 struct mm_struct *mm = vma->vm_mm;
785
df06b37f 786 ctx->page_mask = 0;
080dbb61 787
57a196a5
MK
788 /*
789 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
790 * special hugetlb page table walking code. This eliminates the
791 * need to check for hugetlb entries in the general walking code.
792 *
793 * hugetlb_follow_page_mask is only for follow_page() handling here.
794 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
795 */
796 if (is_vm_hugetlb_page(vma)) {
797 page = hugetlb_follow_page_mask(vma, address, flags);
798 if (!page)
799 page = no_page_table(vma, flags);
080dbb61
AK
800 return page;
801 }
802
803 pgd = pgd_offset(mm, address);
804
805 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
806 return no_page_table(vma, flags);
807
df06b37f
KB
808 return follow_p4d_mask(vma, address, pgd, flags, ctx);
809}
810
811struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
812 unsigned int foll_flags)
813{
814 struct follow_page_context ctx = { NULL };
815 struct page *page;
816
1507f512
MR
817 if (vma_is_secretmem(vma))
818 return NULL;
819
d64e2dbc 820 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
8909691b
DH
821 return NULL;
822
df06b37f
KB
823 page = follow_page_mask(vma, address, foll_flags, &ctx);
824 if (ctx.pgmap)
825 put_dev_pagemap(ctx.pgmap);
826 return page;
080dbb61
AK
827}
828
f2b495ca
KS
829static int get_gate_page(struct mm_struct *mm, unsigned long address,
830 unsigned int gup_flags, struct vm_area_struct **vma,
831 struct page **page)
832{
833 pgd_t *pgd;
c2febafc 834 p4d_t *p4d;
f2b495ca
KS
835 pud_t *pud;
836 pmd_t *pmd;
837 pte_t *pte;
838 int ret = -EFAULT;
839
840 /* user gate pages are read-only */
841 if (gup_flags & FOLL_WRITE)
842 return -EFAULT;
843 if (address > TASK_SIZE)
844 pgd = pgd_offset_k(address);
845 else
846 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
847 if (pgd_none(*pgd))
848 return -EFAULT;
c2febafc 849 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
850 if (p4d_none(*p4d))
851 return -EFAULT;
c2febafc 852 pud = pud_offset(p4d, address);
b5d1c39f
AL
853 if (pud_none(*pud))
854 return -EFAULT;
f2b495ca 855 pmd = pmd_offset(pud, address);
84c3fc4e 856 if (!pmd_present(*pmd))
f2b495ca
KS
857 return -EFAULT;
858 VM_BUG_ON(pmd_trans_huge(*pmd));
859 pte = pte_offset_map(pmd, address);
860 if (pte_none(*pte))
861 goto unmap;
862 *vma = get_gate_vma(mm);
863 if (!page)
864 goto out;
865 *page = vm_normal_page(*vma, address, *pte);
866 if (!*page) {
867 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
868 goto unmap;
869 *page = pte_page(*pte);
870 }
0f089235
LG
871 ret = try_grab_page(*page, gup_flags);
872 if (unlikely(ret))
8fde12ca 873 goto unmap;
f2b495ca
KS
874out:
875 ret = 0;
876unmap:
877 pte_unmap(pte);
878 return ret;
879}
880
9a95f3cf 881/*
c1e8d7c6
ML
882 * mmap_lock must be held on entry. If @locked != NULL and *@flags
883 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 884 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 885 */
64019a2e 886static int faultin_page(struct vm_area_struct *vma,
a7f22660
DH
887 unsigned long address, unsigned int *flags, bool unshare,
888 int *locked)
16744483 889{
16744483 890 unsigned int fault_flags = 0;
2b740303 891 vm_fault_t ret;
16744483 892
55b8fe70
AG
893 if (*flags & FOLL_NOFAULT)
894 return -EFAULT;
16744483
KS
895 if (*flags & FOLL_WRITE)
896 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
897 if (*flags & FOLL_REMOTE)
898 fault_flags |= FAULT_FLAG_REMOTE;
93c5c61d 899 if (locked) {
71335f37 900 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
93c5c61d
PX
901 /*
902 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
903 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
904 * That's because some callers may not be prepared to
905 * handle early exits caused by non-fatal signals.
906 */
907 if (*flags & FOLL_INTERRUPTIBLE)
908 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
909 }
16744483
KS
910 if (*flags & FOLL_NOWAIT)
911 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 912 if (*flags & FOLL_TRIED) {
4426e945
PX
913 /*
914 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
915 * can co-exist
916 */
234b239b
ALC
917 fault_flags |= FAULT_FLAG_TRIED;
918 }
a7f22660
DH
919 if (unshare) {
920 fault_flags |= FAULT_FLAG_UNSHARE;
921 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
922 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
923 }
16744483 924
bce617ed 925 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
926
927 if (ret & VM_FAULT_COMPLETED) {
928 /*
929 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
930 * mmap lock in the page fault handler. Sanity check this.
931 */
932 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
933 if (locked)
934 *locked = 0;
935 /*
936 * We should do the same as VM_FAULT_RETRY, but let's not
937 * return -EBUSY since that's not reflecting the reality of
938 * what has happened - we've just fully completed a page
939 * fault, with the mmap lock released. Use -EAGAIN to show
940 * that we want to take the mmap lock _again_.
941 */
942 return -EAGAIN;
943 }
944
16744483 945 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
946 int err = vm_fault_to_errno(ret, *flags);
947
948 if (err)
949 return err;
16744483
KS
950 BUG();
951 }
952
16744483 953 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
954 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
955 *locked = 0;
16744483
KS
956 return -EBUSY;
957 }
958
16744483
KS
959 return 0;
960}
961
fa5bb209
KS
962static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
963{
964 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
965 int write = (gup_flags & FOLL_WRITE);
966 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
967
968 if (vm_flags & (VM_IO | VM_PFNMAP))
969 return -EFAULT;
970
7f7ccc2c
WT
971 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
972 return -EFAULT;
973
52650c8b
JG
974 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
975 return -EOPNOTSUPP;
976
1507f512
MR
977 if (vma_is_secretmem(vma))
978 return -EFAULT;
979
1b2ee126 980 if (write) {
fa5bb209
KS
981 if (!(vm_flags & VM_WRITE)) {
982 if (!(gup_flags & FOLL_FORCE))
983 return -EFAULT;
f347454d
DH
984 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
985 if (is_vm_hugetlb_page(vma))
986 return -EFAULT;
fa5bb209
KS
987 /*
988 * We used to let the write,force case do COW in a
989 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
990 * set a breakpoint in a read-only mapping of an
991 * executable, without corrupting the file (yet only
992 * when that file had been opened for writing!).
993 * Anon pages in shared mappings are surprising: now
994 * just reject it.
995 */
46435364 996 if (!is_cow_mapping(vm_flags))
fa5bb209 997 return -EFAULT;
fa5bb209
KS
998 }
999 } else if (!(vm_flags & VM_READ)) {
1000 if (!(gup_flags & FOLL_FORCE))
1001 return -EFAULT;
1002 /*
1003 * Is there actually any vma we can reach here which does not
1004 * have VM_MAYREAD set?
1005 */
1006 if (!(vm_flags & VM_MAYREAD))
1007 return -EFAULT;
1008 }
d61172b4
DH
1009 /*
1010 * gups are always data accesses, not instruction
1011 * fetches, so execute=false here
1012 */
1013 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1014 return -EFAULT;
fa5bb209
KS
1015 return 0;
1016}
1017
4bbd4c77
KS
1018/**
1019 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1020 * @mm: mm_struct of target mm
1021 * @start: starting user address
1022 * @nr_pages: number of pages from start to pin
1023 * @gup_flags: flags modifying pin behaviour
1024 * @pages: array that receives pointers to the pages pinned.
1025 * Should be at least nr_pages long. Or NULL, if caller
1026 * only intends to ensure the pages are faulted in.
1027 * @vmas: array of pointers to vmas corresponding to each page.
1028 * Or NULL if the caller does not require them.
c1e8d7c6 1029 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1030 *
d2dfbe47
LX
1031 * Returns either number of pages pinned (which may be less than the
1032 * number requested), or an error. Details about the return value:
1033 *
1034 * -- If nr_pages is 0, returns 0.
1035 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1036 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1037 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1038 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1039 *
1040 * The caller is responsible for releasing returned @pages, via put_page().
1041 *
c1e8d7c6 1042 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 1043 *
c1e8d7c6 1044 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1045 *
1046 * __get_user_pages walks a process's page tables and takes a reference to
1047 * each struct page that each user address corresponds to at a given
1048 * instant. That is, it takes the page that would be accessed if a user
1049 * thread accesses the given user virtual address at that instant.
1050 *
1051 * This does not guarantee that the page exists in the user mappings when
1052 * __get_user_pages returns, and there may even be a completely different
1053 * page there in some cases (eg. if mmapped pagecache has been invalidated
c5acf1f6 1054 * and subsequently re-faulted). However it does guarantee that the page
4bbd4c77
KS
1055 * won't be freed completely. And mostly callers simply care that the page
1056 * contains data that was valid *at some point in time*. Typically, an IO
1057 * or similar operation cannot guarantee anything stronger anyway because
1058 * locks can't be held over the syscall boundary.
1059 *
1060 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1061 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1062 * appropriate) must be called after the page is finished with, and
1063 * before put_page is called.
1064 *
c1e8d7c6 1065 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
1066 * released by an up_read(). That can happen if @gup_flags does not
1067 * have FOLL_NOWAIT.
9a95f3cf 1068 *
4f6da934 1069 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 1070 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
1071 * when it's been released. Otherwise, it must be held for either
1072 * reading or writing and will not be released.
4bbd4c77
KS
1073 *
1074 * In most cases, get_user_pages or get_user_pages_fast should be used
1075 * instead of __get_user_pages. __get_user_pages should be used only if
1076 * you need some special @gup_flags.
1077 */
64019a2e 1078static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1079 unsigned long start, unsigned long nr_pages,
1080 unsigned int gup_flags, struct page **pages,
4f6da934 1081 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1082{
df06b37f 1083 long ret = 0, i = 0;
fa5bb209 1084 struct vm_area_struct *vma = NULL;
df06b37f 1085 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1086
1087 if (!nr_pages)
1088 return 0;
1089
f9652594
AK
1090 start = untagged_addr(start);
1091
eddb1c22 1092 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77 1093
4bbd4c77 1094 do {
fa5bb209
KS
1095 struct page *page;
1096 unsigned int foll_flags = gup_flags;
1097 unsigned int page_increm;
1098
1099 /* first iteration or cross vma bound */
1100 if (!vma || start >= vma->vm_end) {
1101 vma = find_extend_vma(mm, start);
1102 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1103 ret = get_gate_page(mm, start & PAGE_MASK,
1104 gup_flags, &vma,
1105 pages ? &pages[i] : NULL);
1106 if (ret)
08be37b7 1107 goto out;
df06b37f 1108 ctx.page_mask = 0;
fa5bb209
KS
1109 goto next_page;
1110 }
4bbd4c77 1111
52650c8b 1112 if (!vma) {
df06b37f
KB
1113 ret = -EFAULT;
1114 goto out;
1115 }
52650c8b
JG
1116 ret = check_vma_flags(vma, gup_flags);
1117 if (ret)
1118 goto out;
1119
fa5bb209
KS
1120 if (is_vm_hugetlb_page(vma)) {
1121 i = follow_hugetlb_page(mm, vma, pages, vmas,
1122 &start, &nr_pages, i,
a308c71b 1123 gup_flags, locked);
ad415db8
PX
1124 if (locked && *locked == 0) {
1125 /*
1126 * We've got a VM_FAULT_RETRY
c1e8d7c6 1127 * and we've lost mmap_lock.
ad415db8
PX
1128 * We must stop here.
1129 */
1130 BUG_ON(gup_flags & FOLL_NOWAIT);
ad415db8
PX
1131 goto out;
1132 }
fa5bb209 1133 continue;
4bbd4c77 1134 }
fa5bb209
KS
1135 }
1136retry:
1137 /*
1138 * If we have a pending SIGKILL, don't keep faulting pages and
1139 * potentially allocating memory.
1140 */
fa45f116 1141 if (fatal_signal_pending(current)) {
d180870d 1142 ret = -EINTR;
df06b37f
KB
1143 goto out;
1144 }
fa5bb209 1145 cond_resched();
df06b37f
KB
1146
1147 page = follow_page_mask(vma, start, foll_flags, &ctx);
a7f22660
DH
1148 if (!page || PTR_ERR(page) == -EMLINK) {
1149 ret = faultin_page(vma, start, &foll_flags,
1150 PTR_ERR(page) == -EMLINK, locked);
fa5bb209
KS
1151 switch (ret) {
1152 case 0:
1153 goto retry;
df06b37f 1154 case -EBUSY:
d9272525 1155 case -EAGAIN:
df06b37f 1156 ret = 0;
e4a9bc58 1157 fallthrough;
fa5bb209
KS
1158 case -EFAULT:
1159 case -ENOMEM:
1160 case -EHWPOISON:
df06b37f 1161 goto out;
4bbd4c77 1162 }
fa5bb209 1163 BUG();
1027e443
KS
1164 } else if (PTR_ERR(page) == -EEXIST) {
1165 /*
1166 * Proper page table entry exists, but no corresponding
65462462
JH
1167 * struct page. If the caller expects **pages to be
1168 * filled in, bail out now, because that can't be done
1169 * for this page.
1027e443 1170 */
65462462
JH
1171 if (pages) {
1172 ret = PTR_ERR(page);
1173 goto out;
1174 }
1175
1027e443
KS
1176 goto next_page;
1177 } else if (IS_ERR(page)) {
df06b37f
KB
1178 ret = PTR_ERR(page);
1179 goto out;
1027e443 1180 }
fa5bb209
KS
1181 if (pages) {
1182 pages[i] = page;
1183 flush_anon_page(vma, page, start);
1184 flush_dcache_page(page);
df06b37f 1185 ctx.page_mask = 0;
4bbd4c77 1186 }
4bbd4c77 1187next_page:
fa5bb209
KS
1188 if (vmas) {
1189 vmas[i] = vma;
df06b37f 1190 ctx.page_mask = 0;
fa5bb209 1191 }
df06b37f 1192 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1193 if (page_increm > nr_pages)
1194 page_increm = nr_pages;
1195 i += page_increm;
1196 start += page_increm * PAGE_SIZE;
1197 nr_pages -= page_increm;
4bbd4c77 1198 } while (nr_pages);
df06b37f
KB
1199out:
1200 if (ctx.pgmap)
1201 put_dev_pagemap(ctx.pgmap);
1202 return i ? i : ret;
4bbd4c77 1203}
4bbd4c77 1204
771ab430
TK
1205static bool vma_permits_fault(struct vm_area_struct *vma,
1206 unsigned int fault_flags)
d4925e00 1207{
1b2ee126
DH
1208 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1209 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1210 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1211
1212 if (!(vm_flags & vma->vm_flags))
1213 return false;
1214
33a709b2
DH
1215 /*
1216 * The architecture might have a hardware protection
1b2ee126 1217 * mechanism other than read/write that can deny access.
d61172b4
DH
1218 *
1219 * gup always represents data access, not instruction
1220 * fetches, so execute=false here:
33a709b2 1221 */
d61172b4 1222 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1223 return false;
1224
d4925e00
DH
1225 return true;
1226}
1227
adc8cb40 1228/**
4bbd4c77 1229 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1230 * @mm: mm_struct of target mm
1231 * @address: user address
1232 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1233 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1234 * does not allow retry. If NULL, the caller must guarantee
1235 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1236 *
1237 * This is meant to be called in the specific scenario where for locking reasons
1238 * we try to access user memory in atomic context (within a pagefault_disable()
1239 * section), this returns -EFAULT, and we want to resolve the user fault before
1240 * trying again.
1241 *
1242 * Typically this is meant to be used by the futex code.
1243 *
1244 * The main difference with get_user_pages() is that this function will
1245 * unconditionally call handle_mm_fault() which will in turn perform all the
1246 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1247 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1248 *
1249 * This is important for some architectures where those bits also gate the
1250 * access permission to the page because they are maintained in software. On
1251 * such architectures, gup() will not be enough to make a subsequent access
1252 * succeed.
1253 *
c1e8d7c6
ML
1254 * This function will not return with an unlocked mmap_lock. So it has not the
1255 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1256 */
64019a2e 1257int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1258 unsigned long address, unsigned int fault_flags,
1259 bool *unlocked)
4bbd4c77
KS
1260{
1261 struct vm_area_struct *vma;
8fed2f3c 1262 vm_fault_t ret;
4a9e1cda 1263
f9652594
AK
1264 address = untagged_addr(address);
1265
4a9e1cda 1266 if (unlocked)
71335f37 1267 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1268
4a9e1cda 1269retry:
4bbd4c77
KS
1270 vma = find_extend_vma(mm, address);
1271 if (!vma || address < vma->vm_start)
1272 return -EFAULT;
1273
d4925e00 1274 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1275 return -EFAULT;
1276
475f4dfc
PX
1277 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1278 fatal_signal_pending(current))
1279 return -EINTR;
1280
bce617ed 1281 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1282
1283 if (ret & VM_FAULT_COMPLETED) {
1284 /*
1285 * NOTE: it's a pity that we need to retake the lock here
1286 * to pair with the unlock() in the callers. Ideally we
1287 * could tell the callers so they do not need to unlock.
1288 */
1289 mmap_read_lock(mm);
1290 *unlocked = true;
1291 return 0;
1292 }
1293
4bbd4c77 1294 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1295 int err = vm_fault_to_errno(ret, 0);
1296
1297 if (err)
1298 return err;
4bbd4c77
KS
1299 BUG();
1300 }
4a9e1cda
DD
1301
1302 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1303 mmap_read_lock(mm);
475f4dfc
PX
1304 *unlocked = true;
1305 fault_flags |= FAULT_FLAG_TRIED;
1306 goto retry;
4a9e1cda
DD
1307 }
1308
4bbd4c77
KS
1309 return 0;
1310}
add6a0cd 1311EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1312
93c5c61d
PX
1313/*
1314 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1315 * specified, it'll also respond to generic signals. The caller of GUP
1316 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1317 */
1318static bool gup_signal_pending(unsigned int flags)
1319{
1320 if (fatal_signal_pending(current))
1321 return true;
1322
1323 if (!(flags & FOLL_INTERRUPTIBLE))
1324 return false;
1325
1326 return signal_pending(current);
1327}
1328
2d3a36a4 1329/*
b2a72dff
JG
1330 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1331 * the caller. This function may drop the mmap_lock. If it does so, then it will
1332 * set (*locked = 0).
1333 *
1334 * (*locked == 0) means that the caller expects this function to acquire and
1335 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1336 * the function returns, even though it may have changed temporarily during
1337 * function execution.
1338 *
1339 * Please note that this function, unlike __get_user_pages(), will not return 0
1340 * for nr_pages > 0, unless FOLL_NOWAIT is used.
2d3a36a4 1341 */
64019a2e 1342static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1343 unsigned long start,
1344 unsigned long nr_pages,
f0818f47
AA
1345 struct page **pages,
1346 struct vm_area_struct **vmas,
e716712f 1347 int *locked,
0fd71a56 1348 unsigned int flags)
f0818f47 1349{
f0818f47 1350 long ret, pages_done;
b2a72dff 1351 bool must_unlock = false;
f0818f47 1352
b2a72dff
JG
1353 /*
1354 * The internal caller expects GUP to manage the lock internally and the
1355 * lock must be released when this returns.
1356 */
1357 if (locked && !*locked) {
1358 if (mmap_read_lock_killable(mm))
1359 return -EAGAIN;
1360 must_unlock = true;
1361 *locked = 1;
f0818f47 1362 }
961ba472
JG
1363 else
1364 mmap_assert_locked(mm);
f0818f47 1365
a458b76a
AA
1366 if (flags & FOLL_PIN)
1367 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1368
eddb1c22
JH
1369 /*
1370 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1371 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1372 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1373 * for FOLL_GET, not for the newer FOLL_PIN.
1374 *
1375 * FOLL_PIN always expects pages to be non-null, but no need to assert
1376 * that here, as any failures will be obvious enough.
1377 */
1378 if (pages && !(flags & FOLL_PIN))
f0818f47 1379 flags |= FOLL_GET;
f0818f47
AA
1380
1381 pages_done = 0;
f0818f47 1382 for (;;) {
64019a2e 1383 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47
AA
1384 vmas, locked);
1385 if (!locked)
1386 /* VM_FAULT_RETRY couldn't trigger, bypass */
1387 return ret;
1388
d9272525 1389 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
f0818f47
AA
1390 if (!*locked) {
1391 BUG_ON(ret < 0);
1392 BUG_ON(ret >= nr_pages);
1393 }
1394
f0818f47
AA
1395 if (ret > 0) {
1396 nr_pages -= ret;
1397 pages_done += ret;
1398 if (!nr_pages)
1399 break;
1400 }
1401 if (*locked) {
96312e61
AA
1402 /*
1403 * VM_FAULT_RETRY didn't trigger or it was a
1404 * FOLL_NOWAIT.
1405 */
f0818f47
AA
1406 if (!pages_done)
1407 pages_done = ret;
1408 break;
1409 }
df17277b
MR
1410 /*
1411 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1412 * For the prefault case (!pages) we only update counts.
1413 */
1414 if (likely(pages))
1415 pages += ret;
f0818f47 1416 start += ret << PAGE_SHIFT;
b2a72dff
JG
1417
1418 /* The lock was temporarily dropped, so we must unlock later */
1419 must_unlock = true;
f0818f47 1420
4426e945 1421retry:
f0818f47
AA
1422 /*
1423 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1424 * with both FAULT_FLAG_ALLOW_RETRY and
1425 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
93c5c61d
PX
1426 * by fatal signals of even common signals, depending on
1427 * the caller's request. So we need to check it before we
4426e945 1428 * start trying again otherwise it can loop forever.
f0818f47 1429 */
93c5c61d 1430 if (gup_signal_pending(flags)) {
ae46d2aa
HD
1431 if (!pages_done)
1432 pages_done = -EINTR;
4426e945 1433 break;
ae46d2aa 1434 }
4426e945 1435
d8ed45c5 1436 ret = mmap_read_lock_killable(mm);
71335f37
PX
1437 if (ret) {
1438 BUG_ON(ret > 0);
1439 if (!pages_done)
1440 pages_done = ret;
1441 break;
1442 }
4426e945 1443
c7b6a566 1444 *locked = 1;
64019a2e 1445 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1446 pages, NULL, locked);
1447 if (!*locked) {
1448 /* Continue to retry until we succeeded */
1449 BUG_ON(ret != 0);
1450 goto retry;
1451 }
f0818f47
AA
1452 if (ret != 1) {
1453 BUG_ON(ret > 1);
1454 if (!pages_done)
1455 pages_done = ret;
1456 break;
1457 }
1458 nr_pages--;
1459 pages_done++;
1460 if (!nr_pages)
1461 break;
df17277b
MR
1462 if (likely(pages))
1463 pages++;
f0818f47
AA
1464 start += PAGE_SIZE;
1465 }
b2a72dff 1466 if (must_unlock && *locked) {
f0818f47 1467 /*
b2a72dff
JG
1468 * We either temporarily dropped the lock, or the caller
1469 * requested that we both acquire and drop the lock. Either way,
1470 * we must now unlock, and notify the caller of that state.
f0818f47 1471 */
d8ed45c5 1472 mmap_read_unlock(mm);
f0818f47
AA
1473 *locked = 0;
1474 }
1475 return pages_done;
1476}
1477
d3649f68
CH
1478/**
1479 * populate_vma_page_range() - populate a range of pages in the vma.
1480 * @vma: target vma
1481 * @start: start address
1482 * @end: end address
c1e8d7c6 1483 * @locked: whether the mmap_lock is still held
d3649f68
CH
1484 *
1485 * This takes care of mlocking the pages too if VM_LOCKED is set.
1486 *
0a36f7f8
TY
1487 * Return either number of pages pinned in the vma, or a negative error
1488 * code on error.
d3649f68 1489 *
c1e8d7c6 1490 * vma->vm_mm->mmap_lock must be held.
d3649f68 1491 *
4f6da934 1492 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1493 * be unperturbed.
1494 *
4f6da934
PX
1495 * If @locked is non-NULL, it must held for read only and may be
1496 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1497 */
1498long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1499 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1500{
1501 struct mm_struct *mm = vma->vm_mm;
1502 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1503 int gup_flags;
ece369c7 1504 long ret;
d3649f68 1505
be51eb18
ML
1506 VM_BUG_ON(!PAGE_ALIGNED(start));
1507 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1508 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1509 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1510 mmap_assert_locked(mm);
d3649f68 1511
b67bf49c
HD
1512 /*
1513 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1514 * faultin_page() to break COW, so it has no work to do here.
1515 */
d3649f68 1516 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1517 return nr_pages;
1518
1519 gup_flags = FOLL_TOUCH;
d3649f68
CH
1520 /*
1521 * We want to touch writable mappings with a write fault in order
1522 * to break COW, except for shared mappings because these don't COW
1523 * and we would not want to dirty them for nothing.
1524 */
1525 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1526 gup_flags |= FOLL_WRITE;
1527
1528 /*
1529 * We want mlock to succeed for regions that have any permissions
1530 * other than PROT_NONE.
1531 */
3122e80e 1532 if (vma_is_accessible(vma))
d3649f68
CH
1533 gup_flags |= FOLL_FORCE;
1534
1535 /*
1536 * We made sure addr is within a VMA, so the following will
1537 * not result in a stack expansion that recurses back here.
1538 */
ece369c7 1539 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
4f6da934 1540 NULL, NULL, locked);
ece369c7
HD
1541 lru_add_drain();
1542 return ret;
d3649f68
CH
1543}
1544
4ca9b385
DH
1545/*
1546 * faultin_vma_page_range() - populate (prefault) page tables inside the
1547 * given VMA range readable/writable
1548 *
1549 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1550 *
1551 * @vma: target vma
1552 * @start: start address
1553 * @end: end address
1554 * @write: whether to prefault readable or writable
1555 * @locked: whether the mmap_lock is still held
1556 *
1557 * Returns either number of processed pages in the vma, or a negative error
1558 * code on error (see __get_user_pages()).
1559 *
1560 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1561 * covered by the VMA.
1562 *
1563 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1564 *
1565 * If @locked is non-NULL, it must held for read only and may be released. If
1566 * it's released, *@locked will be set to 0.
1567 */
1568long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1569 unsigned long end, bool write, int *locked)
1570{
1571 struct mm_struct *mm = vma->vm_mm;
1572 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1573 int gup_flags;
ece369c7 1574 long ret;
4ca9b385
DH
1575
1576 VM_BUG_ON(!PAGE_ALIGNED(start));
1577 VM_BUG_ON(!PAGE_ALIGNED(end));
1578 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1579 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1580 mmap_assert_locked(mm);
1581
1582 /*
1583 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1584 * the page dirty with FOLL_WRITE -- which doesn't make a
1585 * difference with !FOLL_FORCE, because the page is writable
1586 * in the page table.
1587 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1588 * a poisoned page.
4ca9b385
DH
1589 * !FOLL_FORCE: Require proper access permissions.
1590 */
b67bf49c 1591 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
4ca9b385
DH
1592 if (write)
1593 gup_flags |= FOLL_WRITE;
1594
1595 /*
eb2faa51
DH
1596 * We want to report -EINVAL instead of -EFAULT for any permission
1597 * problems or incompatible mappings.
4ca9b385 1598 */
eb2faa51
DH
1599 if (check_vma_flags(vma, gup_flags))
1600 return -EINVAL;
1601
ece369c7 1602 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
4ca9b385 1603 NULL, NULL, locked);
ece369c7
HD
1604 lru_add_drain();
1605 return ret;
4ca9b385
DH
1606}
1607
d3649f68
CH
1608/*
1609 * __mm_populate - populate and/or mlock pages within a range of address space.
1610 *
1611 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1612 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1613 * mmap_lock must not be held.
d3649f68
CH
1614 */
1615int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1616{
1617 struct mm_struct *mm = current->mm;
1618 unsigned long end, nstart, nend;
1619 struct vm_area_struct *vma = NULL;
1620 int locked = 0;
1621 long ret = 0;
1622
1623 end = start + len;
1624
1625 for (nstart = start; nstart < end; nstart = nend) {
1626 /*
1627 * We want to fault in pages for [nstart; end) address range.
1628 * Find first corresponding VMA.
1629 */
1630 if (!locked) {
1631 locked = 1;
d8ed45c5 1632 mmap_read_lock(mm);
c4d1a92d 1633 vma = find_vma_intersection(mm, nstart, end);
d3649f68 1634 } else if (nstart >= vma->vm_end)
c4d1a92d
LH
1635 vma = find_vma_intersection(mm, vma->vm_end, end);
1636
1637 if (!vma)
d3649f68
CH
1638 break;
1639 /*
1640 * Set [nstart; nend) to intersection of desired address
1641 * range with the first VMA. Also, skip undesirable VMA types.
1642 */
1643 nend = min(end, vma->vm_end);
1644 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1645 continue;
1646 if (nstart < vma->vm_start)
1647 nstart = vma->vm_start;
1648 /*
1649 * Now fault in a range of pages. populate_vma_page_range()
1650 * double checks the vma flags, so that it won't mlock pages
1651 * if the vma was already munlocked.
1652 */
1653 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1654 if (ret < 0) {
1655 if (ignore_errors) {
1656 ret = 0;
1657 continue; /* continue at next VMA */
1658 }
1659 break;
1660 }
1661 nend = nstart + ret * PAGE_SIZE;
1662 ret = 0;
1663 }
1664 if (locked)
d8ed45c5 1665 mmap_read_unlock(mm);
d3649f68
CH
1666 return ret; /* 0 or negative error code */
1667}
050a9adc 1668#else /* CONFIG_MMU */
64019a2e 1669static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1670 unsigned long nr_pages, struct page **pages,
1671 struct vm_area_struct **vmas, int *locked,
1672 unsigned int foll_flags)
1673{
1674 struct vm_area_struct *vma;
b2a72dff 1675 bool must_unlock = false;
050a9adc 1676 unsigned long vm_flags;
24dc20c7 1677 long i;
050a9adc 1678
b2a72dff
JG
1679 if (!nr_pages)
1680 return 0;
1681
1682 /*
1683 * The internal caller expects GUP to manage the lock internally and the
1684 * lock must be released when this returns.
1685 */
1686 if (locked && !*locked) {
1687 if (mmap_read_lock_killable(mm))
1688 return -EAGAIN;
1689 must_unlock = true;
1690 *locked = 1;
1691 }
1692
050a9adc
CH
1693 /* calculate required read or write permissions.
1694 * If FOLL_FORCE is set, we only require the "MAY" flags.
1695 */
1696 vm_flags = (foll_flags & FOLL_WRITE) ?
1697 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1698 vm_flags &= (foll_flags & FOLL_FORCE) ?
1699 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1700
1701 for (i = 0; i < nr_pages; i++) {
1702 vma = find_vma(mm, start);
1703 if (!vma)
b2a72dff 1704 break;
050a9adc
CH
1705
1706 /* protect what we can, including chardevs */
1707 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1708 !(vm_flags & vma->vm_flags))
b2a72dff 1709 break;
050a9adc
CH
1710
1711 if (pages) {
396a400b 1712 pages[i] = virt_to_page((void *)start);
050a9adc
CH
1713 if (pages[i])
1714 get_page(pages[i]);
1715 }
1716 if (vmas)
1717 vmas[i] = vma;
1718 start = (start + PAGE_SIZE) & PAGE_MASK;
1719 }
1720
b2a72dff
JG
1721 if (must_unlock && *locked) {
1722 mmap_read_unlock(mm);
1723 *locked = 0;
1724 }
050a9adc 1725
050a9adc
CH
1726 return i ? : -EFAULT;
1727}
1728#endif /* !CONFIG_MMU */
d3649f68 1729
bb523b40
AG
1730/**
1731 * fault_in_writeable - fault in userspace address range for writing
1732 * @uaddr: start of address range
1733 * @size: size of address range
1734 *
1735 * Returns the number of bytes not faulted in (like copy_to_user() and
1736 * copy_from_user()).
1737 */
1738size_t fault_in_writeable(char __user *uaddr, size_t size)
1739{
1740 char __user *start = uaddr, *end;
1741
1742 if (unlikely(size == 0))
1743 return 0;
677b2a8c
CL
1744 if (!user_write_access_begin(uaddr, size))
1745 return size;
bb523b40 1746 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1747 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1748 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1749 }
1750 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1751 if (unlikely(end < start))
1752 end = NULL;
1753 while (uaddr != end) {
677b2a8c 1754 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1755 uaddr += PAGE_SIZE;
1756 }
1757
1758out:
677b2a8c 1759 user_write_access_end();
bb523b40
AG
1760 if (size > uaddr - start)
1761 return size - (uaddr - start);
1762 return 0;
1763}
1764EXPORT_SYMBOL(fault_in_writeable);
1765
da32b581
CM
1766/**
1767 * fault_in_subpage_writeable - fault in an address range for writing
1768 * @uaddr: start of address range
1769 * @size: size of address range
1770 *
1771 * Fault in a user address range for writing while checking for permissions at
1772 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1773 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1774 *
1775 * Returns the number of bytes not faulted in (like copy_to_user() and
1776 * copy_from_user()).
1777 */
1778size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1779{
1780 size_t faulted_in;
1781
1782 /*
1783 * Attempt faulting in at page granularity first for page table
1784 * permission checking. The arch-specific probe_subpage_writeable()
1785 * functions may not check for this.
1786 */
1787 faulted_in = size - fault_in_writeable(uaddr, size);
1788 if (faulted_in)
1789 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1790
1791 return size - faulted_in;
1792}
1793EXPORT_SYMBOL(fault_in_subpage_writeable);
1794
cdd591fc
AG
1795/*
1796 * fault_in_safe_writeable - fault in an address range for writing
1797 * @uaddr: start of address range
1798 * @size: length of address range
1799 *
fe673d3f
LT
1800 * Faults in an address range for writing. This is primarily useful when we
1801 * already know that some or all of the pages in the address range aren't in
1802 * memory.
cdd591fc 1803 *
fe673d3f 1804 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
1805 *
1806 * Note that we don't pin or otherwise hold the pages referenced that we fault
1807 * in. There's no guarantee that they'll stay in memory for any duration of
1808 * time.
1809 *
1810 * Returns the number of bytes not faulted in, like copy_to_user() and
1811 * copy_from_user().
1812 */
1813size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1814{
fe673d3f 1815 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 1816 struct mm_struct *mm = current->mm;
fe673d3f 1817 bool unlocked = false;
cdd591fc 1818
fe673d3f
LT
1819 if (unlikely(size == 0))
1820 return 0;
cdd591fc 1821 end = PAGE_ALIGN(start + size);
fe673d3f 1822 if (end < start)
cdd591fc 1823 end = 0;
cdd591fc 1824
fe673d3f
LT
1825 mmap_read_lock(mm);
1826 do {
1827 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 1828 break;
fe673d3f
LT
1829 start = (start + PAGE_SIZE) & PAGE_MASK;
1830 } while (start != end);
1831 mmap_read_unlock(mm);
1832
1833 if (size > (unsigned long)uaddr - start)
1834 return size - ((unsigned long)uaddr - start);
1835 return 0;
cdd591fc
AG
1836}
1837EXPORT_SYMBOL(fault_in_safe_writeable);
1838
bb523b40
AG
1839/**
1840 * fault_in_readable - fault in userspace address range for reading
1841 * @uaddr: start of user address range
1842 * @size: size of user address range
1843 *
1844 * Returns the number of bytes not faulted in (like copy_to_user() and
1845 * copy_from_user()).
1846 */
1847size_t fault_in_readable(const char __user *uaddr, size_t size)
1848{
1849 const char __user *start = uaddr, *end;
1850 volatile char c;
1851
1852 if (unlikely(size == 0))
1853 return 0;
677b2a8c
CL
1854 if (!user_read_access_begin(uaddr, size))
1855 return size;
bb523b40 1856 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1857 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1858 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1859 }
1860 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1861 if (unlikely(end < start))
1862 end = NULL;
1863 while (uaddr != end) {
677b2a8c 1864 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1865 uaddr += PAGE_SIZE;
1866 }
1867
1868out:
677b2a8c 1869 user_read_access_end();
bb523b40
AG
1870 (void)c;
1871 if (size > uaddr - start)
1872 return size - (uaddr - start);
1873 return 0;
1874}
1875EXPORT_SYMBOL(fault_in_readable);
1876
8f942eea
JH
1877/**
1878 * get_dump_page() - pin user page in memory while writing it to core dump
1879 * @addr: user address
1880 *
1881 * Returns struct page pointer of user page pinned for dump,
1882 * to be freed afterwards by put_page().
1883 *
1884 * Returns NULL on any kind of failure - a hole must then be inserted into
1885 * the corefile, to preserve alignment with its headers; and also returns
1886 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1887 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1888 *
7f3bfab5 1889 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1890 */
1891#ifdef CONFIG_ELF_CORE
1892struct page *get_dump_page(unsigned long addr)
1893{
8f942eea 1894 struct page *page;
b2a72dff 1895 int locked = 0;
7f3bfab5 1896 int ret;
8f942eea 1897
b2a72dff
JG
1898 ret = __get_user_pages_locked(current->mm, addr, 1, &page, NULL,
1899 &locked,
7f3bfab5 1900 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
7f3bfab5 1901 return (ret == 1) ? page : NULL;
8f942eea
JH
1902}
1903#endif /* CONFIG_ELF_CORE */
1904
d1e153fe 1905#ifdef CONFIG_MIGRATION
f68749ec 1906/*
67e139b0 1907 * Returns the number of collected pages. Return value is always >= 0.
f68749ec 1908 */
67e139b0
AP
1909static unsigned long collect_longterm_unpinnable_pages(
1910 struct list_head *movable_page_list,
1911 unsigned long nr_pages,
1912 struct page **pages)
9a4e9f3b 1913{
67e139b0 1914 unsigned long i, collected = 0;
1b7f7e58 1915 struct folio *prev_folio = NULL;
67e139b0 1916 bool drain_allow = true;
9a4e9f3b 1917
83c02c23 1918 for (i = 0; i < nr_pages; i++) {
1b7f7e58 1919 struct folio *folio = page_folio(pages[i]);
f9f38f78 1920
1b7f7e58 1921 if (folio == prev_folio)
83c02c23 1922 continue;
1b7f7e58 1923 prev_folio = folio;
f9f38f78 1924
67e139b0
AP
1925 if (folio_is_longterm_pinnable(folio))
1926 continue;
b05a79d4 1927
67e139b0 1928 collected++;
b05a79d4 1929
67e139b0 1930 if (folio_is_device_coherent(folio))
f9f38f78
CH
1931 continue;
1932
1b7f7e58 1933 if (folio_test_hugetlb(folio)) {
67e139b0 1934 isolate_hugetlb(&folio->page, movable_page_list);
f9f38f78
CH
1935 continue;
1936 }
9a4e9f3b 1937
1b7f7e58 1938 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
1939 lru_add_drain_all();
1940 drain_allow = false;
1941 }
1942
67e139b0 1943 if (!folio_isolate_lru(folio))
f9f38f78 1944 continue;
67e139b0
AP
1945
1946 list_add_tail(&folio->lru, movable_page_list);
1b7f7e58
MWO
1947 node_stat_mod_folio(folio,
1948 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1949 folio_nr_pages(folio));
9a4e9f3b
AK
1950 }
1951
67e139b0
AP
1952 return collected;
1953}
1954
1955/*
1956 * Unpins all pages and migrates device coherent pages and movable_page_list.
1957 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1958 * (or partial success).
1959 */
1960static int migrate_longterm_unpinnable_pages(
1961 struct list_head *movable_page_list,
1962 unsigned long nr_pages,
1963 struct page **pages)
1964{
1965 int ret;
1966 unsigned long i;
6e7f34eb 1967
b05a79d4 1968 for (i = 0; i < nr_pages; i++) {
67e139b0
AP
1969 struct folio *folio = page_folio(pages[i]);
1970
1971 if (folio_is_device_coherent(folio)) {
1972 /*
1973 * Migration will fail if the page is pinned, so convert
1974 * the pin on the source page to a normal reference.
1975 */
1976 pages[i] = NULL;
1977 folio_get(folio);
1978 gup_put_folio(folio, 1, FOLL_PIN);
1979
1980 if (migrate_device_coherent_page(&folio->page)) {
1981 ret = -EBUSY;
1982 goto err;
1983 }
1984
b05a79d4 1985 continue;
67e139b0 1986 }
b05a79d4 1987
67e139b0
AP
1988 /*
1989 * We can't migrate pages with unexpected references, so drop
1990 * the reference obtained by __get_user_pages_locked().
1991 * Migrating pages have been added to movable_page_list after
1992 * calling folio_isolate_lru() which takes a reference so the
1993 * page won't be freed if it's migrating.
1994 */
f6d299ec 1995 unpin_user_page(pages[i]);
67e139b0 1996 pages[i] = NULL;
f68749ec 1997 }
f9f38f78 1998
67e139b0 1999 if (!list_empty(movable_page_list)) {
f9f38f78
CH
2000 struct migration_target_control mtc = {
2001 .nid = NUMA_NO_NODE,
2002 .gfp_mask = GFP_USER | __GFP_NOWARN,
2003 };
2004
67e139b0
AP
2005 if (migrate_pages(movable_page_list, alloc_migration_target,
2006 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2007 MR_LONGTERM_PIN, NULL)) {
f9f38f78 2008 ret = -ENOMEM;
67e139b0
AP
2009 goto err;
2010 }
9a4e9f3b
AK
2011 }
2012
67e139b0
AP
2013 putback_movable_pages(movable_page_list);
2014
2015 return -EAGAIN;
2016
2017err:
2018 for (i = 0; i < nr_pages; i++)
2019 if (pages[i])
2020 unpin_user_page(pages[i]);
2021 putback_movable_pages(movable_page_list);
24a95998 2022
67e139b0
AP
2023 return ret;
2024}
2025
2026/*
2027 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2028 * pages in the range are required to be pinned via FOLL_PIN, before calling
2029 * this routine.
2030 *
2031 * If any pages in the range are not allowed to be pinned, then this routine
2032 * will migrate those pages away, unpin all the pages in the range and return
2033 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2034 * call this routine again.
2035 *
2036 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2037 * The caller should give up, and propagate the error back up the call stack.
2038 *
2039 * If everything is OK and all pages in the range are allowed to be pinned, then
2040 * this routine leaves all pages pinned and returns zero for success.
2041 */
2042static long check_and_migrate_movable_pages(unsigned long nr_pages,
2043 struct page **pages)
2044{
2045 unsigned long collected;
2046 LIST_HEAD(movable_page_list);
2047
2048 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2049 nr_pages, pages);
2050 if (!collected)
2051 return 0;
2052
2053 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2054 pages);
9a4e9f3b
AK
2055}
2056#else
f68749ec 2057static long check_and_migrate_movable_pages(unsigned long nr_pages,
f6d299ec 2058 struct page **pages)
9a4e9f3b 2059{
24a95998 2060 return 0;
9a4e9f3b 2061}
d1e153fe 2062#endif /* CONFIG_MIGRATION */
9a4e9f3b 2063
2bb6d283 2064/*
932f4a63
IW
2065 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2066 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 2067 */
64019a2e 2068static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
2069 unsigned long start,
2070 unsigned long nr_pages,
2071 struct page **pages,
2072 struct vm_area_struct **vmas,
53b2d09b 2073 int *locked,
932f4a63 2074 unsigned int gup_flags)
2bb6d283 2075{
f68749ec 2076 unsigned int flags;
24a95998 2077 long rc, nr_pinned_pages;
2bb6d283 2078
f68749ec
PT
2079 if (!(gup_flags & FOLL_LONGTERM))
2080 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
53b2d09b 2081 locked, gup_flags);
67e139b0 2082
f68749ec
PT
2083 flags = memalloc_pin_save();
2084 do {
24a95998 2085 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
53b2d09b 2086 pages, vmas, locked,
24a95998
AP
2087 gup_flags);
2088 if (nr_pinned_pages <= 0) {
2089 rc = nr_pinned_pages;
f68749ec 2090 break;
24a95998 2091 }
d64e2dbc
JG
2092
2093 /* FOLL_LONGTERM implies FOLL_PIN */
f6d299ec 2094 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
24a95998 2095 } while (rc == -EAGAIN);
f68749ec 2096 memalloc_pin_restore(flags);
24a95998 2097 return rc ? rc : nr_pinned_pages;
2bb6d283 2098}
932f4a63 2099
d64e2dbc
JG
2100/*
2101 * Check that the given flags are valid for the exported gup/pup interface, and
2102 * update them with the required flags that the caller must have set.
2103 */
2104static bool is_valid_gup_args(struct page **pages, struct vm_area_struct **vmas,
2105 int *locked, unsigned int *gup_flags_p,
2106 unsigned int to_set)
447f3e45 2107{
d64e2dbc
JG
2108 unsigned int gup_flags = *gup_flags_p;
2109
447f3e45 2110 /*
d64e2dbc
JG
2111 * These flags not allowed to be specified externally to the gup
2112 * interfaces:
2113 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2114 * - FOLL_REMOTE is internal only and used on follow_page()
447f3e45 2115 */
d64e2dbc
JG
2116 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED |
2117 FOLL_REMOTE | FOLL_FAST_ONLY)))
2118 return false;
2119
2120 gup_flags |= to_set;
2121
2122 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2123 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2124 (FOLL_PIN | FOLL_GET)))
2125 return false;
2126
2127 /* LONGTERM can only be specified when pinning */
2128 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2129 return false;
2130
2131 /* Pages input must be given if using GET/PIN */
2132 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
447f3e45 2133 return false;
d64e2dbc
JG
2134
2135 /* At the external interface locked must be set */
2136 if (WARN_ON_ONCE(locked && *locked != 1))
2137 return false;
2138
2139 /* We want to allow the pgmap to be hot-unplugged at all times */
2140 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2141 (gup_flags & FOLL_PCI_P2PDMA)))
2142 return false;
2143
447f3e45 2144 /*
d64e2dbc
JG
2145 * Can't use VMAs with locked, as locked allows GUP to unlock
2146 * which invalidates the vmas array
447f3e45 2147 */
d64e2dbc 2148 if (WARN_ON_ONCE(vmas && locked))
447f3e45
BS
2149 return false;
2150
d64e2dbc 2151 *gup_flags_p = gup_flags;
447f3e45
BS
2152 return true;
2153}
2154
22bf29b6 2155#ifdef CONFIG_MMU
adc8cb40 2156/**
c4237f8b 2157 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2158 * @mm: mm_struct of target mm
2159 * @start: starting user address
2160 * @nr_pages: number of pages from start to pin
2161 * @gup_flags: flags modifying lookup behaviour
2162 * @pages: array that receives pointers to the pages pinned.
2163 * Should be at least nr_pages long. Or NULL, if caller
2164 * only intends to ensure the pages are faulted in.
2165 * @vmas: array of pointers to vmas corresponding to each page.
2166 * Or NULL if the caller does not require them.
2167 * @locked: pointer to lock flag indicating whether lock is held and
2168 * subsequently whether VM_FAULT_RETRY functionality can be
2169 * utilised. Lock must initially be held.
2170 *
2171 * Returns either number of pages pinned (which may be less than the
2172 * number requested), or an error. Details about the return value:
2173 *
2174 * -- If nr_pages is 0, returns 0.
2175 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2176 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2177 * pages pinned. Again, this may be less than nr_pages.
2178 *
2179 * The caller is responsible for releasing returned @pages, via put_page().
2180 *
c1e8d7c6 2181 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 2182 *
c1e8d7c6 2183 * Must be called with mmap_lock held for read or write.
c4237f8b 2184 *
adc8cb40
SJ
2185 * get_user_pages_remote walks a process's page tables and takes a reference
2186 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2187 * instant. That is, it takes the page that would be accessed if a user
2188 * thread accesses the given user virtual address at that instant.
2189 *
2190 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2191 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
2192 * page there in some cases (eg. if mmapped pagecache has been invalidated
2193 * and subsequently re faulted). However it does guarantee that the page
2194 * won't be freed completely. And mostly callers simply care that the page
2195 * contains data that was valid *at some point in time*. Typically, an IO
2196 * or similar operation cannot guarantee anything stronger anyway because
2197 * locks can't be held over the syscall boundary.
2198 *
2199 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2200 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2201 * be called after the page is finished with, and before put_page is called.
2202 *
adc8cb40
SJ
2203 * get_user_pages_remote is typically used for fewer-copy IO operations,
2204 * to get a handle on the memory by some means other than accesses
2205 * via the user virtual addresses. The pages may be submitted for
2206 * DMA to devices or accessed via their kernel linear mapping (via the
2207 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2208 *
2209 * See also get_user_pages_fast, for performance critical applications.
2210 *
adc8cb40 2211 * get_user_pages_remote should be phased out in favor of
c4237f8b 2212 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2213 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2214 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2215 */
64019a2e 2216long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2217 unsigned long start, unsigned long nr_pages,
2218 unsigned int gup_flags, struct page **pages,
2219 struct vm_area_struct **vmas, int *locked)
2220{
d64e2dbc
JG
2221 if (!is_valid_gup_args(pages, vmas, locked, &gup_flags,
2222 FOLL_TOUCH | FOLL_REMOTE))
eddb1c22
JH
2223 return -EINVAL;
2224
afa3c33e 2225 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, locked,
d64e2dbc 2226 gup_flags);
c4237f8b
JH
2227}
2228EXPORT_SYMBOL(get_user_pages_remote);
2229
eddb1c22 2230#else /* CONFIG_MMU */
64019a2e 2231long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2232 unsigned long start, unsigned long nr_pages,
2233 unsigned int gup_flags, struct page **pages,
2234 struct vm_area_struct **vmas, int *locked)
2235{
2236 return 0;
2237}
2238#endif /* !CONFIG_MMU */
2239
adc8cb40
SJ
2240/**
2241 * get_user_pages() - pin user pages in memory
2242 * @start: starting user address
2243 * @nr_pages: number of pages from start to pin
2244 * @gup_flags: flags modifying lookup behaviour
2245 * @pages: array that receives pointers to the pages pinned.
2246 * Should be at least nr_pages long. Or NULL, if caller
2247 * only intends to ensure the pages are faulted in.
2248 * @vmas: array of pointers to vmas corresponding to each page.
2249 * Or NULL if the caller does not require them.
2250 *
64019a2e
PX
2251 * This is the same as get_user_pages_remote(), just with a less-flexible
2252 * calling convention where we assume that the mm being operated on belongs to
2253 * the current task, and doesn't allow passing of a locked parameter. We also
2254 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2255 */
2256long get_user_pages(unsigned long start, unsigned long nr_pages,
2257 unsigned int gup_flags, struct page **pages,
2258 struct vm_area_struct **vmas)
2259{
d64e2dbc 2260 if (!is_valid_gup_args(pages, vmas, NULL, &gup_flags, FOLL_TOUCH))
eddb1c22
JH
2261 return -EINVAL;
2262
afa3c33e 2263 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
d64e2dbc 2264 vmas, NULL, gup_flags);
932f4a63
IW
2265}
2266EXPORT_SYMBOL(get_user_pages);
2bb6d283 2267
acc3c8d1 2268/*
d3649f68 2269 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2270 *
3e4e28c5 2271 * mmap_read_lock(mm);
64019a2e 2272 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2273 * mmap_read_unlock(mm);
d3649f68
CH
2274 *
2275 * with:
2276 *
64019a2e 2277 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2278 *
2279 * It is functionally equivalent to get_user_pages_fast so
2280 * get_user_pages_fast should be used instead if specific gup_flags
2281 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2282 */
d3649f68
CH
2283long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2284 struct page **pages, unsigned int gup_flags)
acc3c8d1 2285{
b2a72dff 2286 int locked = 0;
acc3c8d1 2287
d64e2dbc
JG
2288 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_TOUCH))
2289 return -EINVAL;
2290
afa3c33e 2291 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
d64e2dbc 2292 NULL, &locked, gup_flags);
4bbd4c77 2293}
d3649f68 2294EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2295
2296/*
67a929e0 2297 * Fast GUP
2667f50e
SC
2298 *
2299 * get_user_pages_fast attempts to pin user pages by walking the page
2300 * tables directly and avoids taking locks. Thus the walker needs to be
2301 * protected from page table pages being freed from under it, and should
2302 * block any THP splits.
2303 *
2304 * One way to achieve this is to have the walker disable interrupts, and
2305 * rely on IPIs from the TLB flushing code blocking before the page table
2306 * pages are freed. This is unsuitable for architectures that do not need
2307 * to broadcast an IPI when invalidating TLBs.
2308 *
2309 * Another way to achieve this is to batch up page table containing pages
2310 * belonging to more than one mm_user, then rcu_sched a callback to free those
2311 * pages. Disabling interrupts will allow the fast_gup walker to both block
2312 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2313 * (which is a relatively rare event). The code below adopts this strategy.
2314 *
2315 * Before activating this code, please be aware that the following assumptions
2316 * are currently made:
2317 *
ff2e6d72 2318 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2319 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2320 *
2667f50e
SC
2321 * *) ptes can be read atomically by the architecture.
2322 *
2323 * *) access_ok is sufficient to validate userspace address ranges.
2324 *
2325 * The last two assumptions can be relaxed by the addition of helper functions.
2326 *
2327 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2328 */
67a929e0 2329#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2330
790c7369 2331static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2332 unsigned int flags,
790c7369 2333 struct page **pages)
b59f65fa
KS
2334{
2335 while ((*nr) - nr_start) {
2336 struct page *page = pages[--(*nr)];
2337
2338 ClearPageReferenced(page);
3faa52c0
JH
2339 if (flags & FOLL_PIN)
2340 unpin_user_page(page);
2341 else
2342 put_page(page);
b59f65fa
KS
2343 }
2344}
2345
3010a5ea 2346#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
70cbc3cc
YS
2347/*
2348 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2349 * operations.
2350 *
2351 * To pin the page, fast-gup needs to do below in order:
2352 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2353 *
2354 * For the rest of pgtable operations where pgtable updates can be racy
2355 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2356 * is pinned.
2357 *
2358 * Above will work for all pte-level operations, including THP split.
2359 *
2360 * For THP collapse, it's a bit more complicated because fast-gup may be
2361 * walking a pgtable page that is being freed (pte is still valid but pmd
2362 * can be cleared already). To avoid race in such condition, we need to
2363 * also check pmd here to make sure pmd doesn't change (corresponds to
2364 * pmdp_collapse_flush() in the THP collapse code path).
2365 */
2366static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2367 unsigned long end, unsigned int flags,
2368 struct page **pages, int *nr)
2667f50e 2369{
b59f65fa
KS
2370 struct dev_pagemap *pgmap = NULL;
2371 int nr_start = *nr, ret = 0;
2667f50e 2372 pte_t *ptep, *ptem;
2667f50e
SC
2373
2374 ptem = ptep = pte_offset_map(&pmd, addr);
2375 do {
2a4a06da 2376 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2377 struct page *page;
2378 struct folio *folio;
2667f50e 2379
0cf45986 2380 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
e7884f8e
KS
2381 goto pte_unmap;
2382
b798bec4 2383 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2384 goto pte_unmap;
2385
b59f65fa 2386 if (pte_devmap(pte)) {
7af75561
IW
2387 if (unlikely(flags & FOLL_LONGTERM))
2388 goto pte_unmap;
2389
b59f65fa
KS
2390 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2391 if (unlikely(!pgmap)) {
3b78d834 2392 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2393 goto pte_unmap;
2394 }
2395 } else if (pte_special(pte))
2667f50e
SC
2396 goto pte_unmap;
2397
2398 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2399 page = pte_page(pte);
2400
b0496fe4
MWO
2401 folio = try_grab_folio(page, 1, flags);
2402 if (!folio)
2667f50e
SC
2403 goto pte_unmap;
2404
1507f512 2405 if (unlikely(page_is_secretmem(page))) {
b0496fe4 2406 gup_put_folio(folio, 1, flags);
1507f512
MR
2407 goto pte_unmap;
2408 }
2409
70cbc3cc
YS
2410 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2411 unlikely(pte_val(pte) != pte_val(*ptep))) {
b0496fe4 2412 gup_put_folio(folio, 1, flags);
2667f50e
SC
2413 goto pte_unmap;
2414 }
2415
84209e87 2416 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
a7f22660
DH
2417 gup_put_folio(folio, 1, flags);
2418 goto pte_unmap;
2419 }
2420
f28d4363
CI
2421 /*
2422 * We need to make the page accessible if and only if we are
2423 * going to access its content (the FOLL_PIN case). Please
2424 * see Documentation/core-api/pin_user_pages.rst for
2425 * details.
2426 */
2427 if (flags & FOLL_PIN) {
2428 ret = arch_make_page_accessible(page);
2429 if (ret) {
b0496fe4 2430 gup_put_folio(folio, 1, flags);
f28d4363
CI
2431 goto pte_unmap;
2432 }
2433 }
b0496fe4 2434 folio_set_referenced(folio);
2667f50e
SC
2435 pages[*nr] = page;
2436 (*nr)++;
2667f50e
SC
2437 } while (ptep++, addr += PAGE_SIZE, addr != end);
2438
2439 ret = 1;
2440
2441pte_unmap:
832d7aa0
CH
2442 if (pgmap)
2443 put_dev_pagemap(pgmap);
2667f50e
SC
2444 pte_unmap(ptem);
2445 return ret;
2446}
2447#else
2448
2449/*
2450 * If we can't determine whether or not a pte is special, then fail immediately
2451 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2452 * to be special.
2453 *
2454 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2455 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2456 * useful to have gup_huge_pmd even if we can't operate on ptes.
2457 */
70cbc3cc
YS
2458static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2459 unsigned long end, unsigned int flags,
2460 struct page **pages, int *nr)
2667f50e
SC
2461{
2462 return 0;
2463}
3010a5ea 2464#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2465
17596731 2466#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2467static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2468 unsigned long end, unsigned int flags,
2469 struct page **pages, int *nr)
b59f65fa
KS
2470{
2471 int nr_start = *nr;
2472 struct dev_pagemap *pgmap = NULL;
2473
2474 do {
2475 struct page *page = pfn_to_page(pfn);
2476
2477 pgmap = get_dev_pagemap(pfn, pgmap);
2478 if (unlikely(!pgmap)) {
3b78d834 2479 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2480 break;
b59f65fa 2481 }
4003f107
LG
2482
2483 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2484 undo_dev_pagemap(nr, nr_start, flags, pages);
2485 break;
2486 }
2487
b59f65fa
KS
2488 SetPageReferenced(page);
2489 pages[*nr] = page;
0f089235 2490 if (unlikely(try_grab_page(page, flags))) {
3faa52c0 2491 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2492 break;
3faa52c0 2493 }
b59f65fa
KS
2494 (*nr)++;
2495 pfn++;
2496 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2497
6401c4eb 2498 put_dev_pagemap(pgmap);
20b7fee7 2499 return addr == end;
b59f65fa
KS
2500}
2501
a9b6de77 2502static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2503 unsigned long end, unsigned int flags,
2504 struct page **pages, int *nr)
b59f65fa
KS
2505{
2506 unsigned long fault_pfn;
a9b6de77
DW
2507 int nr_start = *nr;
2508
2509 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2510 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2511 return 0;
b59f65fa 2512
a9b6de77 2513 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2514 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2515 return 0;
2516 }
2517 return 1;
b59f65fa
KS
2518}
2519
a9b6de77 2520static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2521 unsigned long end, unsigned int flags,
2522 struct page **pages, int *nr)
b59f65fa
KS
2523{
2524 unsigned long fault_pfn;
a9b6de77
DW
2525 int nr_start = *nr;
2526
2527 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2528 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2529 return 0;
b59f65fa 2530
a9b6de77 2531 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2532 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2533 return 0;
2534 }
2535 return 1;
b59f65fa
KS
2536}
2537#else
a9b6de77 2538static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2539 unsigned long end, unsigned int flags,
2540 struct page **pages, int *nr)
b59f65fa
KS
2541{
2542 BUILD_BUG();
2543 return 0;
2544}
2545
a9b6de77 2546static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2547 unsigned long end, unsigned int flags,
2548 struct page **pages, int *nr)
b59f65fa
KS
2549{
2550 BUILD_BUG();
2551 return 0;
2552}
2553#endif
2554
a43e9820
JH
2555static int record_subpages(struct page *page, unsigned long addr,
2556 unsigned long end, struct page **pages)
2557{
2558 int nr;
2559
c228afb1
MWO
2560 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2561 pages[nr] = nth_page(page, nr);
a43e9820
JH
2562
2563 return nr;
2564}
2565
cbd34da7
CH
2566#ifdef CONFIG_ARCH_HAS_HUGEPD
2567static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2568 unsigned long sz)
2569{
2570 unsigned long __boundary = (addr + sz) & ~(sz-1);
2571 return (__boundary - 1 < end - 1) ? __boundary : end;
2572}
2573
2574static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2575 unsigned long end, unsigned int flags,
2576 struct page **pages, int *nr)
cbd34da7
CH
2577{
2578 unsigned long pte_end;
09a1626e
MWO
2579 struct page *page;
2580 struct folio *folio;
cbd34da7
CH
2581 pte_t pte;
2582 int refs;
2583
2584 pte_end = (addr + sz) & ~(sz-1);
2585 if (pte_end < end)
2586 end = pte_end;
2587
55ca2263 2588 pte = huge_ptep_get(ptep);
cbd34da7 2589
0cd22afd 2590 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2591 return 0;
2592
2593 /* hugepages are never "special" */
2594 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2595
09a1626e 2596 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
a43e9820 2597 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2598
09a1626e
MWO
2599 folio = try_grab_folio(page, refs, flags);
2600 if (!folio)
cbd34da7 2601 return 0;
cbd34da7
CH
2602
2603 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
09a1626e 2604 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2605 return 0;
2606 }
2607
84209e87 2608 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2609 gup_put_folio(folio, refs, flags);
2610 return 0;
2611 }
2612
a43e9820 2613 *nr += refs;
09a1626e 2614 folio_set_referenced(folio);
cbd34da7
CH
2615 return 1;
2616}
2617
2618static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2619 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2620 struct page **pages, int *nr)
2621{
2622 pte_t *ptep;
2623 unsigned long sz = 1UL << hugepd_shift(hugepd);
2624 unsigned long next;
2625
2626 ptep = hugepte_offset(hugepd, addr, pdshift);
2627 do {
2628 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2629 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2630 return 0;
2631 } while (ptep++, addr = next, addr != end);
2632
2633 return 1;
2634}
2635#else
2636static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2637 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2638 struct page **pages, int *nr)
2639{
2640 return 0;
2641}
2642#endif /* CONFIG_ARCH_HAS_HUGEPD */
2643
2667f50e 2644static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2645 unsigned long end, unsigned int flags,
2646 struct page **pages, int *nr)
2667f50e 2647{
667ed1f7
MWO
2648 struct page *page;
2649 struct folio *folio;
2667f50e
SC
2650 int refs;
2651
b798bec4 2652 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2653 return 0;
2654
7af75561
IW
2655 if (pmd_devmap(orig)) {
2656 if (unlikely(flags & FOLL_LONGTERM))
2657 return 0;
86dfbed4
JH
2658 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2659 pages, nr);
7af75561 2660 }
b59f65fa 2661
c228afb1 2662 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2663 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2664
667ed1f7
MWO
2665 folio = try_grab_folio(page, refs, flags);
2666 if (!folio)
2667f50e 2667 return 0;
2667f50e
SC
2668
2669 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 2670 gup_put_folio(folio, refs, flags);
2667f50e
SC
2671 return 0;
2672 }
2673
84209e87 2674 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2675 gup_put_folio(folio, refs, flags);
2676 return 0;
2677 }
2678
a43e9820 2679 *nr += refs;
667ed1f7 2680 folio_set_referenced(folio);
2667f50e
SC
2681 return 1;
2682}
2683
2684static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2685 unsigned long end, unsigned int flags,
2686 struct page **pages, int *nr)
2667f50e 2687{
83afb52e
MWO
2688 struct page *page;
2689 struct folio *folio;
2667f50e
SC
2690 int refs;
2691
b798bec4 2692 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2693 return 0;
2694
7af75561
IW
2695 if (pud_devmap(orig)) {
2696 if (unlikely(flags & FOLL_LONGTERM))
2697 return 0;
86dfbed4
JH
2698 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2699 pages, nr);
7af75561 2700 }
b59f65fa 2701
c228afb1 2702 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2703 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2704
83afb52e
MWO
2705 folio = try_grab_folio(page, refs, flags);
2706 if (!folio)
2667f50e 2707 return 0;
2667f50e
SC
2708
2709 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 2710 gup_put_folio(folio, refs, flags);
2667f50e
SC
2711 return 0;
2712 }
2713
84209e87 2714 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2715 gup_put_folio(folio, refs, flags);
2716 return 0;
2717 }
2718
a43e9820 2719 *nr += refs;
83afb52e 2720 folio_set_referenced(folio);
2667f50e
SC
2721 return 1;
2722}
2723
f30c59e9 2724static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2725 unsigned long end, unsigned int flags,
f30c59e9
AK
2726 struct page **pages, int *nr)
2727{
2728 int refs;
2d7919a2
MWO
2729 struct page *page;
2730 struct folio *folio;
f30c59e9 2731
b798bec4 2732 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2733 return 0;
2734
b59f65fa 2735 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2736
c228afb1 2737 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2738 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2739
2d7919a2
MWO
2740 folio = try_grab_folio(page, refs, flags);
2741 if (!folio)
f30c59e9 2742 return 0;
f30c59e9
AK
2743
2744 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 2745 gup_put_folio(folio, refs, flags);
f30c59e9
AK
2746 return 0;
2747 }
2748
a43e9820 2749 *nr += refs;
2d7919a2 2750 folio_set_referenced(folio);
f30c59e9
AK
2751 return 1;
2752}
2753
d3f7b1bb 2754static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2755 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2756{
2757 unsigned long next;
2758 pmd_t *pmdp;
2759
d3f7b1bb 2760 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2761 do {
1180e732 2762 pmd_t pmd = pmdp_get_lockless(pmdp);
2667f50e
SC
2763
2764 next = pmd_addr_end(addr, end);
84c3fc4e 2765 if (!pmd_present(pmd))
2667f50e
SC
2766 return 0;
2767
414fd080
YZ
2768 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2769 pmd_devmap(pmd))) {
0cf45986
DH
2770 if (pmd_protnone(pmd) &&
2771 !gup_can_follow_protnone(flags))
2667f50e
SC
2772 return 0;
2773
b798bec4 2774 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2775 pages, nr))
2776 return 0;
2777
f30c59e9
AK
2778 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2779 /*
2780 * architecture have different format for hugetlbfs
2781 * pmd format and THP pmd format
2782 */
2783 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2784 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2785 return 0;
70cbc3cc 2786 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2923117b 2787 return 0;
2667f50e
SC
2788 } while (pmdp++, addr = next, addr != end);
2789
2790 return 1;
2791}
2792
d3f7b1bb 2793static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2794 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2795{
2796 unsigned long next;
2797 pud_t *pudp;
2798
d3f7b1bb 2799 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2800 do {
e37c6982 2801 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2802
2803 next = pud_addr_end(addr, end);
15494520 2804 if (unlikely(!pud_present(pud)))
2667f50e 2805 return 0;
fcd0ccd8 2806 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
b798bec4 2807 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2808 pages, nr))
2809 return 0;
2810 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2811 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2812 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2813 return 0;
d3f7b1bb 2814 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2815 return 0;
2816 } while (pudp++, addr = next, addr != end);
2817
2818 return 1;
2819}
2820
d3f7b1bb 2821static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2822 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2823{
2824 unsigned long next;
2825 p4d_t *p4dp;
2826
d3f7b1bb 2827 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2828 do {
2829 p4d_t p4d = READ_ONCE(*p4dp);
2830
2831 next = p4d_addr_end(addr, end);
2832 if (p4d_none(p4d))
2833 return 0;
2834 BUILD_BUG_ON(p4d_huge(p4d));
2835 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2836 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2837 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2838 return 0;
d3f7b1bb 2839 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2840 return 0;
2841 } while (p4dp++, addr = next, addr != end);
2842
2843 return 1;
2844}
2845
5b65c467 2846static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2847 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2848{
2849 unsigned long next;
2850 pgd_t *pgdp;
2851
2852 pgdp = pgd_offset(current->mm, addr);
2853 do {
2854 pgd_t pgd = READ_ONCE(*pgdp);
2855
2856 next = pgd_addr_end(addr, end);
2857 if (pgd_none(pgd))
2858 return;
2859 if (unlikely(pgd_huge(pgd))) {
b798bec4 2860 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2861 pages, nr))
2862 return;
2863 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2864 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2865 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2866 return;
d3f7b1bb 2867 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2868 return;
2869 } while (pgdp++, addr = next, addr != end);
2870}
050a9adc
CH
2871#else
2872static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2873 unsigned int flags, struct page **pages, int *nr)
2874{
2875}
2876#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2877
2878#ifndef gup_fast_permitted
2879/*
dadbb612 2880 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2881 * we need to fall back to the slow version:
2882 */
26f4c328 2883static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2884{
26f4c328 2885 return true;
5b65c467
KS
2886}
2887#endif
2888
c28b1fc7
JG
2889static unsigned long lockless_pages_from_mm(unsigned long start,
2890 unsigned long end,
2891 unsigned int gup_flags,
2892 struct page **pages)
2893{
2894 unsigned long flags;
2895 int nr_pinned = 0;
57efa1fe 2896 unsigned seq;
c28b1fc7
JG
2897
2898 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2899 !gup_fast_permitted(start, end))
2900 return 0;
2901
57efa1fe
JG
2902 if (gup_flags & FOLL_PIN) {
2903 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2904 if (seq & 1)
2905 return 0;
2906 }
2907
c28b1fc7
JG
2908 /*
2909 * Disable interrupts. The nested form is used, in order to allow full,
2910 * general purpose use of this routine.
2911 *
2912 * With interrupts disabled, we block page table pages from being freed
2913 * from under us. See struct mmu_table_batch comments in
2914 * include/asm-generic/tlb.h for more details.
2915 *
2916 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2917 * that come from THPs splitting.
2918 */
2919 local_irq_save(flags);
2920 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2921 local_irq_restore(flags);
57efa1fe
JG
2922
2923 /*
2924 * When pinning pages for DMA there could be a concurrent write protect
2925 * from fork() via copy_page_range(), in this case always fail fast GUP.
2926 */
2927 if (gup_flags & FOLL_PIN) {
2928 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
b6a2619c 2929 unpin_user_pages_lockless(pages, nr_pinned);
57efa1fe 2930 return 0;
b6a2619c
DH
2931 } else {
2932 sanity_check_pinned_pages(pages, nr_pinned);
57efa1fe
JG
2933 }
2934 }
c28b1fc7
JG
2935 return nr_pinned;
2936}
2937
2938static int internal_get_user_pages_fast(unsigned long start,
2939 unsigned long nr_pages,
eddb1c22
JH
2940 unsigned int gup_flags,
2941 struct page **pages)
2667f50e 2942{
c28b1fc7
JG
2943 unsigned long len, end;
2944 unsigned long nr_pinned;
b2a72dff 2945 int locked = 0;
c28b1fc7 2946 int ret;
2667f50e 2947
f4000fdf 2948 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 2949 FOLL_FORCE | FOLL_PIN | FOLL_GET |
4003f107
LG
2950 FOLL_FAST_ONLY | FOLL_NOFAULT |
2951 FOLL_PCI_P2PDMA)))
817be129
CH
2952 return -EINVAL;
2953
a458b76a
AA
2954 if (gup_flags & FOLL_PIN)
2955 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 2956
f81cd178 2957 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2958 might_lock_read(&current->mm->mmap_lock);
f81cd178 2959
f455c854 2960 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
2961 len = nr_pages << PAGE_SHIFT;
2962 if (check_add_overflow(start, len, &end))
c61611f7 2963 return 0;
96d4f267 2964 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2965 return -EFAULT;
73e10a61 2966
c28b1fc7
JG
2967 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2968 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2969 return nr_pinned;
2667f50e 2970
c28b1fc7
JG
2971 /* Slow path: try to get the remaining pages with get_user_pages */
2972 start += nr_pinned << PAGE_SHIFT;
2973 pages += nr_pinned;
b2a72dff
JG
2974 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
2975 pages, NULL, &locked,
2976 gup_flags | FOLL_TOUCH);
c28b1fc7
JG
2977 if (ret < 0) {
2978 /*
2979 * The caller has to unpin the pages we already pinned so
2980 * returning -errno is not an option
2981 */
2982 if (nr_pinned)
2983 return nr_pinned;
2984 return ret;
2667f50e 2985 }
c28b1fc7 2986 return ret + nr_pinned;
2667f50e 2987}
c28b1fc7 2988
dadbb612
SJ
2989/**
2990 * get_user_pages_fast_only() - pin user pages in memory
2991 * @start: starting user address
2992 * @nr_pages: number of pages from start to pin
2993 * @gup_flags: flags modifying pin behaviour
2994 * @pages: array that receives pointers to the pages pinned.
2995 * Should be at least nr_pages long.
2996 *
9e1f0580
JH
2997 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2998 * the regular GUP.
2999 * Note a difference with get_user_pages_fast: this always returns the
3000 * number of pages pinned, 0 if no pages were pinned.
3001 *
3002 * If the architecture does not support this function, simply return with no
3003 * pages pinned.
3004 *
3005 * Careful, careful! COW breaking can go either way, so a non-write
3006 * access can get ambiguous page results. If you call this function without
3007 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3008 */
dadbb612
SJ
3009int get_user_pages_fast_only(unsigned long start, int nr_pages,
3010 unsigned int gup_flags, struct page **pages)
9e1f0580 3011{
376a34ef 3012 int nr_pinned;
9e1f0580
JH
3013 /*
3014 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3015 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
3016 *
3017 * FOLL_FAST_ONLY is required in order to match the API description of
3018 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 3019 */
d64e2dbc
JG
3020 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
3021 FOLL_GET | FOLL_FAST_ONLY))
3022 return -EINVAL;
9e1f0580 3023
376a34ef
JH
3024 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3025 pages);
9e1f0580
JH
3026
3027 /*
376a34ef
JH
3028 * As specified in the API description above, this routine is not
3029 * allowed to return negative values. However, the common core
3030 * routine internal_get_user_pages_fast() *can* return -errno.
3031 * Therefore, correct for that here:
9e1f0580 3032 */
376a34ef
JH
3033 if (nr_pinned < 0)
3034 nr_pinned = 0;
9e1f0580
JH
3035
3036 return nr_pinned;
3037}
dadbb612 3038EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 3039
eddb1c22
JH
3040/**
3041 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
3042 * @start: starting user address
3043 * @nr_pages: number of pages from start to pin
3044 * @gup_flags: flags modifying pin behaviour
3045 * @pages: array that receives pointers to the pages pinned.
3046 * Should be at least nr_pages long.
eddb1c22 3047 *
c1e8d7c6 3048 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
3049 * If not successful, it will fall back to taking the lock and
3050 * calling get_user_pages().
3051 *
3052 * Returns number of pages pinned. This may be fewer than the number requested.
3053 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3054 * -errno.
3055 */
3056int get_user_pages_fast(unsigned long start, int nr_pages,
3057 unsigned int gup_flags, struct page **pages)
3058{
94202f12
JH
3059 /*
3060 * The caller may or may not have explicitly set FOLL_GET; either way is
3061 * OK. However, internally (within mm/gup.c), gup fast variants must set
3062 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3063 * request.
3064 */
d64e2dbc
JG
3065 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_GET))
3066 return -EINVAL;
eddb1c22
JH
3067 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3068}
050a9adc 3069EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
3070
3071/**
3072 * pin_user_pages_fast() - pin user pages in memory without taking locks
3073 *
3faa52c0
JH
3074 * @start: starting user address
3075 * @nr_pages: number of pages from start to pin
3076 * @gup_flags: flags modifying pin behaviour
3077 * @pages: array that receives pointers to the pages pinned.
3078 * Should be at least nr_pages long.
3079 *
3080 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3081 * get_user_pages_fast() for documentation on the function arguments, because
3082 * the arguments here are identical.
3083 *
3084 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3085 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
3086 */
3087int pin_user_pages_fast(unsigned long start, int nr_pages,
3088 unsigned int gup_flags, struct page **pages)
3089{
d64e2dbc 3090 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_PIN))
3faa52c0 3091 return -EINVAL;
3faa52c0 3092 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
3093}
3094EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3095
104acc32 3096/*
dadbb612
SJ
3097 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3098 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
3099 *
3100 * The API rules are the same, too: no negative values may be returned.
3101 */
3102int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3103 unsigned int gup_flags, struct page **pages)
3104{
3105 int nr_pinned;
3106
104acc32
JH
3107 /*
3108 * FOLL_FAST_ONLY is required in order to match the API description of
3109 * this routine: no fall back to regular ("slow") GUP.
3110 */
d64e2dbc
JG
3111 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
3112 FOLL_PIN | FOLL_FAST_ONLY))
3113 return 0;
3114
104acc32
JH
3115 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3116 pages);
3117 /*
3118 * This routine is not allowed to return negative values. However,
3119 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3120 * correct for that here:
3121 */
3122 if (nr_pinned < 0)
3123 nr_pinned = 0;
3124
3125 return nr_pinned;
3126}
3127EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3128
eddb1c22 3129/**
64019a2e 3130 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3131 *
3faa52c0
JH
3132 * @mm: mm_struct of target mm
3133 * @start: starting user address
3134 * @nr_pages: number of pages from start to pin
3135 * @gup_flags: flags modifying lookup behaviour
3136 * @pages: array that receives pointers to the pages pinned.
0768c8de 3137 * Should be at least nr_pages long.
3faa52c0
JH
3138 * @vmas: array of pointers to vmas corresponding to each page.
3139 * Or NULL if the caller does not require them.
3140 * @locked: pointer to lock flag indicating whether lock is held and
3141 * subsequently whether VM_FAULT_RETRY functionality can be
3142 * utilised. Lock must initially be held.
3143 *
3144 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3145 * get_user_pages_remote() for documentation on the function arguments, because
3146 * the arguments here are identical.
3147 *
3148 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3149 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 3150 */
64019a2e 3151long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3152 unsigned long start, unsigned long nr_pages,
3153 unsigned int gup_flags, struct page **pages,
3154 struct vm_area_struct **vmas, int *locked)
3155{
d64e2dbc
JG
3156 if (!is_valid_gup_args(pages, vmas, locked, &gup_flags,
3157 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3158 return 0;
53b2d09b 3159 return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
d64e2dbc 3160 gup_flags);
eddb1c22
JH
3161}
3162EXPORT_SYMBOL(pin_user_pages_remote);
3163
3164/**
3165 * pin_user_pages() - pin user pages in memory for use by other devices
3166 *
3faa52c0
JH
3167 * @start: starting user address
3168 * @nr_pages: number of pages from start to pin
3169 * @gup_flags: flags modifying lookup behaviour
3170 * @pages: array that receives pointers to the pages pinned.
0768c8de 3171 * Should be at least nr_pages long.
3faa52c0
JH
3172 * @vmas: array of pointers to vmas corresponding to each page.
3173 * Or NULL if the caller does not require them.
3174 *
3175 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3176 * FOLL_PIN is set.
3177 *
3178 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3179 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
3180 */
3181long pin_user_pages(unsigned long start, unsigned long nr_pages,
3182 unsigned int gup_flags, struct page **pages,
3183 struct vm_area_struct **vmas)
3184{
d64e2dbc
JG
3185 if (!is_valid_gup_args(pages, vmas, NULL, &gup_flags, FOLL_PIN))
3186 return 0;
64019a2e 3187 return __gup_longterm_locked(current->mm, start, nr_pages,
53b2d09b 3188 pages, vmas, NULL, gup_flags);
eddb1c22
JH
3189}
3190EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3191
3192/*
3193 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3194 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3195 * FOLL_PIN and rejects FOLL_GET.
3196 */
3197long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3198 struct page **pages, unsigned int gup_flags)
3199{
b2a72dff 3200 int locked = 0;
91429023 3201
d64e2dbc
JG
3202 if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
3203 FOLL_PIN | FOLL_TOUCH))
3204 return 0;
0768c8de 3205
b2a72dff
JG
3206 return __gup_longterm_locked(current->mm, start, nr_pages, pages, NULL,
3207 &locked, gup_flags);
91429023
JH
3208}
3209EXPORT_SYMBOL(pin_user_pages_unlocked);