]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/gup.c
Revert ".gitignore: ignore *.cover and *.mbx"
[thirdparty/linux.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
a6e79df9 21#include <linux/shmem_fs.h>
1027e443 22
33a709b2 23#include <asm/mmu_context.h>
1027e443 24#include <asm/tlbflush.h>
2667f50e 25
4bbd4c77
KS
26#include "internal.h"
27
df06b37f
KB
28struct follow_page_context {
29 struct dev_pagemap *pgmap;
30 unsigned int page_mask;
31};
32
b6a2619c
DH
33static inline void sanity_check_pinned_pages(struct page **pages,
34 unsigned long npages)
35{
36 if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 return;
38
39 /*
40 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 * can no longer turn them possibly shared and PageAnonExclusive() will
42 * stick around until the page is freed.
43 *
44 * We'd like to verify that our pinned anonymous pages are still mapped
45 * exclusively. The issue with anon THP is that we don't know how
46 * they are/were mapped when pinning them. However, for anon
47 * THP we can assume that either the given page (PTE-mapped THP) or
48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 * neither is the case, there is certainly something wrong.
50 */
51 for (; npages; npages--, pages++) {
52 struct page *page = *pages;
53 struct folio *folio = page_folio(page);
54
c8070b78
DH
55 if (is_zero_page(page) ||
56 !folio_test_anon(folio))
b6a2619c
DH
57 continue;
58 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 else
61 /* Either a PTE-mapped or a PMD-mapped THP. */
62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 !PageAnonExclusive(page), page);
64 }
65}
66
cd1adf1b 67/*
ece1ed7b 68 * Return the folio with ref appropriately incremented,
cd1adf1b 69 * or NULL if that failed.
a707cdd5 70 */
ece1ed7b 71static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 72{
ece1ed7b 73 struct folio *folio;
a707cdd5 74
59409373 75retry:
ece1ed7b
MWO
76 folio = page_folio(page);
77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 78 return NULL;
ece1ed7b 79 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
a707cdd5 80 return NULL;
c24d3732
JH
81
82 /*
ece1ed7b
MWO
83 * At this point we have a stable reference to the folio; but it
84 * could be that between calling page_folio() and the refcount
85 * increment, the folio was split, in which case we'd end up
86 * holding a reference on a folio that has nothing to do with the page
c24d3732 87 * we were given anymore.
ece1ed7b
MWO
88 * So now that the folio is stable, recheck that the page still
89 * belongs to this folio.
c24d3732 90 */
ece1ed7b 91 if (unlikely(page_folio(page) != folio)) {
f4f451a1
MS
92 if (!put_devmap_managed_page_refs(&folio->page, refs))
93 folio_put_refs(folio, refs);
59409373 94 goto retry;
c24d3732
JH
95 }
96
ece1ed7b 97 return folio;
a707cdd5
JH
98}
99
3967db22 100/**
ece1ed7b 101 * try_grab_folio() - Attempt to get or pin a folio.
3967db22 102 * @page: pointer to page to be grabbed
ece1ed7b 103 * @refs: the value to (effectively) add to the folio's refcount
3967db22
JH
104 * @flags: gup flags: these are the FOLL_* flag values.
105 *
3faa52c0 106 * "grab" names in this file mean, "look at flags to decide whether to use
ece1ed7b 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0
JH
108 *
109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110 * same time. (That's true throughout the get_user_pages*() and
111 * pin_user_pages*() APIs.) Cases:
112 *
ece1ed7b 113 * FOLL_GET: folio's refcount will be incremented by @refs.
3967db22 114 *
ece1ed7b 115 * FOLL_PIN on large folios: folio's refcount will be incremented by
94688e8e 116 * @refs, and its pincount will be incremented by @refs.
3967db22 117 *
ece1ed7b 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
5232c63f 119 * @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0 120 *
ece1ed7b
MWO
121 * Return: The folio containing @page (with refcount appropriately
122 * incremented) for success, or NULL upon failure. If neither FOLL_GET
123 * nor FOLL_PIN was set, that's considered failure, and furthermore,
124 * a likely bug in the caller, so a warning is also emitted.
3faa52c0 125 */
ece1ed7b 126struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
3faa52c0 127{
503670ee
VMO
128 struct folio *folio;
129
130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 return NULL;
132
4003f107
LG
133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 return NULL;
135
3faa52c0 136 if (flags & FOLL_GET)
ece1ed7b 137 return try_get_folio(page, refs);
ece1ed7b 138
503670ee 139 /* FOLL_PIN is set */
c8070b78 140
6e17c6de
LT
141 /*
142 * Don't take a pin on the zero page - it's not going anywhere
143 * and it is used in a *lot* of places.
144 */
145 if (is_zero_page(page))
146 return page_folio(page);
df3a0a21 147
6e17c6de 148 folio = try_get_folio(page, refs);
503670ee
VMO
149 if (!folio)
150 return NULL;
c24d3732 151
503670ee
VMO
152 /*
153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 * right zone, so fail and let the caller fall back to the slow
155 * path.
156 */
157 if (unlikely((flags & FOLL_LONGTERM) &&
158 !folio_is_longterm_pinnable(folio))) {
159 if (!put_devmap_managed_page_refs(&folio->page, refs))
160 folio_put_refs(folio, refs);
161 return NULL;
3faa52c0 162 }
088b8aa5 163
503670ee
VMO
164 /*
165 * When pinning a large folio, use an exact count to track it.
166 *
167 * However, be sure to *also* increment the normal folio
168 * refcount field at least once, so that the folio really
169 * is pinned. That's why the refcount from the earlier
170 * try_get_folio() is left intact.
171 */
172 if (folio_test_large(folio))
173 atomic_add(refs, &folio->_pincount);
174 else
175 folio_ref_add(folio,
176 refs * (GUP_PIN_COUNTING_BIAS - 1));
177 /*
178 * Adjust the pincount before re-checking the PTE for changes.
179 * This is essentially a smp_mb() and is paired with a memory
180 * barrier in page_try_share_anon_rmap().
181 */
182 smp_mb__after_atomic();
47e29d32 183
503670ee 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
3faa52c0 185
503670ee 186 return folio;
3faa52c0
JH
187}
188
d8ddc099 189static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
190{
191 if (flags & FOLL_PIN) {
c8070b78
DH
192 if (is_zero_folio(folio))
193 return;
d8ddc099
MWO
194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 if (folio_test_large(folio))
94688e8e 196 atomic_sub(refs, &folio->_pincount);
4509b42c
JG
197 else
198 refs *= GUP_PIN_COUNTING_BIAS;
199 }
200
f4f451a1
MS
201 if (!put_devmap_managed_page_refs(&folio->page, refs))
202 folio_put_refs(folio, refs);
4509b42c
JG
203}
204
3faa52c0
JH
205/**
206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
5fec0719
MWO
207 * @page: pointer to page to be grabbed
208 * @flags: gup flags: these are the FOLL_* flag values.
3faa52c0
JH
209 *
210 * This might not do anything at all, depending on the flags argument.
211 *
212 * "grab" names in this file mean, "look at flags to decide whether to use
213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214 *
3faa52c0 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
ece1ed7b 216 * time. Cases: please see the try_grab_folio() documentation, with
3967db22 217 * "refs=1".
3faa52c0 218 *
0f089235
LG
219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221 *
222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
223 * be grabbed.
3faa52c0 224 */
0f089235 225int __must_check try_grab_page(struct page *page, unsigned int flags)
3faa52c0 226{
5fec0719
MWO
227 struct folio *folio = page_folio(page);
228
5fec0719 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
0f089235 230 return -ENOMEM;
3faa52c0 231
4003f107
LG
232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 return -EREMOTEIO;
3faa52c0 234
c36c04c2 235 if (flags & FOLL_GET)
5fec0719 236 folio_ref_inc(folio);
c36c04c2 237 else if (flags & FOLL_PIN) {
c8070b78
DH
238 /*
239 * Don't take a pin on the zero page - it's not going anywhere
240 * and it is used in a *lot* of places.
241 */
242 if (is_zero_page(page))
243 return 0;
244
c36c04c2 245 /*
5fec0719 246 * Similar to try_grab_folio(): be sure to *also*
78d9d6ce
MWO
247 * increment the normal page refcount field at least once,
248 * so that the page really is pinned.
c36c04c2 249 */
5fec0719
MWO
250 if (folio_test_large(folio)) {
251 folio_ref_add(folio, 1);
94688e8e 252 atomic_add(1, &folio->_pincount);
8ea2979c 253 } else {
5fec0719 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
8ea2979c 255 }
c36c04c2 256
5fec0719 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
c36c04c2
JH
258 }
259
0f089235 260 return 0;
3faa52c0
JH
261}
262
3faa52c0
JH
263/**
264 * unpin_user_page() - release a dma-pinned page
265 * @page: pointer to page to be released
266 *
267 * Pages that were pinned via pin_user_pages*() must be released via either
268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269 * that such pages can be separately tracked and uniquely handled. In
270 * particular, interactions with RDMA and filesystems need special handling.
271 */
272void unpin_user_page(struct page *page)
273{
b6a2619c 274 sanity_check_pinned_pages(&page, 1);
d8ddc099 275 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
276}
277EXPORT_SYMBOL(unpin_user_page);
278
1101fb8f
DH
279/**
280 * folio_add_pin - Try to get an additional pin on a pinned folio
281 * @folio: The folio to be pinned
282 *
283 * Get an additional pin on a folio we already have a pin on. Makes no change
284 * if the folio is a zero_page.
285 */
286void folio_add_pin(struct folio *folio)
287{
288 if (is_zero_folio(folio))
289 return;
290
291 /*
292 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 * page refcount field at least once, so that the page really is
294 * pinned.
295 */
296 if (folio_test_large(folio)) {
297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 folio_ref_inc(folio);
299 atomic_inc(&folio->_pincount);
300 } else {
301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 }
304}
305
659508f9 306static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 307 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 308{
659508f9
MWO
309 struct page *next = nth_page(start, i);
310 struct folio *folio = page_folio(next);
458a4f78
JM
311 unsigned int nr = 1;
312
659508f9 313 if (folio_test_large(folio))
4c654229 314 nr = min_t(unsigned int, npages - i,
659508f9 315 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 316
458a4f78 317 *ntails = nr;
659508f9 318 return folio;
458a4f78
JM
319}
320
12521c76 321static inline struct folio *gup_folio_next(struct page **list,
28297dbc 322 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 323{
12521c76 324 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
325 unsigned int nr;
326
8745d7f6 327 for (nr = i + 1; nr < npages; nr++) {
12521c76 328 if (page_folio(list[nr]) != folio)
8745d7f6
JM
329 break;
330 }
331
8745d7f6 332 *ntails = nr - i;
12521c76 333 return folio;
8745d7f6
JM
334}
335
fc1d8e7c 336/**
f1f6a7dd 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 338 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 339 * @npages: number of pages in the @pages array.
2d15eb31 340 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
341 *
342 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343 * variants called on that page.
344 *
345 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 346 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
347 * listed as clean. In any case, releases all pages using unpin_user_page(),
348 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 349 *
f1f6a7dd 350 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 351 *
2d15eb31
AM
352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353 * required, then the caller should a) verify that this is really correct,
354 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 355 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
356 *
357 */
f1f6a7dd
JH
358void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 bool make_dirty)
fc1d8e7c 360{
12521c76
MWO
361 unsigned long i;
362 struct folio *folio;
363 unsigned int nr;
2d15eb31
AM
364
365 if (!make_dirty) {
f1f6a7dd 366 unpin_user_pages(pages, npages);
2d15eb31
AM
367 return;
368 }
369
b6a2619c 370 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
371 for (i = 0; i < npages; i += nr) {
372 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31
AM
373 /*
374 * Checking PageDirty at this point may race with
375 * clear_page_dirty_for_io(), but that's OK. Two key
376 * cases:
377 *
378 * 1) This code sees the page as already dirty, so it
379 * skips the call to set_page_dirty(). That could happen
380 * because clear_page_dirty_for_io() called
381 * page_mkclean(), followed by set_page_dirty().
382 * However, now the page is going to get written back,
383 * which meets the original intention of setting it
384 * dirty, so all is well: clear_page_dirty_for_io() goes
385 * on to call TestClearPageDirty(), and write the page
386 * back.
387 *
388 * 2) This code sees the page as clean, so it calls
389 * set_page_dirty(). The page stays dirty, despite being
390 * written back, so it gets written back again in the
391 * next writeback cycle. This is harmless.
392 */
12521c76
MWO
393 if (!folio_test_dirty(folio)) {
394 folio_lock(folio);
395 folio_mark_dirty(folio);
396 folio_unlock(folio);
397 }
398 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 399 }
fc1d8e7c 400}
f1f6a7dd 401EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 402
458a4f78
JM
403/**
404 * unpin_user_page_range_dirty_lock() - release and optionally dirty
405 * gup-pinned page range
406 *
407 * @page: the starting page of a range maybe marked dirty, and definitely released.
408 * @npages: number of consecutive pages to release.
409 * @make_dirty: whether to mark the pages dirty
410 *
411 * "gup-pinned page range" refers to a range of pages that has had one of the
412 * pin_user_pages() variants called on that page.
413 *
414 * For the page ranges defined by [page .. page+npages], make that range (or
415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416 * page range was previously listed as clean.
417 *
418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419 * required, then the caller should a) verify that this is really correct,
420 * because _lock() is usually required, and b) hand code it:
421 * set_page_dirty_lock(), unpin_user_page().
422 *
423 */
424void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 bool make_dirty)
426{
659508f9
MWO
427 unsigned long i;
428 struct folio *folio;
429 unsigned int nr;
430
431 for (i = 0; i < npages; i += nr) {
432 folio = gup_folio_range_next(page, npages, i, &nr);
433 if (make_dirty && !folio_test_dirty(folio)) {
434 folio_lock(folio);
435 folio_mark_dirty(folio);
436 folio_unlock(folio);
437 }
438 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
439 }
440}
441EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442
b6a2619c
DH
443static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444{
445 unsigned long i;
446 struct folio *folio;
447 unsigned int nr;
448
449 /*
450 * Don't perform any sanity checks because we might have raced with
451 * fork() and some anonymous pages might now actually be shared --
452 * which is why we're unpinning after all.
453 */
454 for (i = 0; i < npages; i += nr) {
455 folio = gup_folio_next(pages, npages, i, &nr);
456 gup_put_folio(folio, nr, FOLL_PIN);
457 }
458}
459
fc1d8e7c 460/**
f1f6a7dd 461 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
462 * @pages: array of pages to be marked dirty and released.
463 * @npages: number of pages in the @pages array.
464 *
f1f6a7dd 465 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 466 *
f1f6a7dd 467 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 468 */
f1f6a7dd 469void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 470{
12521c76
MWO
471 unsigned long i;
472 struct folio *folio;
473 unsigned int nr;
fc1d8e7c 474
146608bb
JH
475 /*
476 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 * leaving them pinned), but probably not. More likely, gup/pup returned
478 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 */
480 if (WARN_ON(IS_ERR_VALUE(npages)))
481 return;
31b912de 482
b6a2619c 483 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
484 for (i = 0; i < npages; i += nr) {
485 folio = gup_folio_next(pages, npages, i, &nr);
486 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 487 }
fc1d8e7c 488}
f1f6a7dd 489EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 490
a458b76a
AA
491/*
492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
494 * cache bouncing on large SMP machines for concurrent pinned gups.
495 */
496static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497{
498 if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 set_bit(MMF_HAS_PINNED, mm_flags);
500}
501
050a9adc 502#ifdef CONFIG_MMU
69e68b4f
KS
503static struct page *no_page_table(struct vm_area_struct *vma,
504 unsigned int flags)
4bbd4c77 505{
69e68b4f
KS
506 /*
507 * When core dumping an enormous anonymous area that nobody
508 * has touched so far, we don't want to allocate unnecessary pages or
509 * page tables. Return error instead of NULL to skip handle_mm_fault,
510 * then get_dump_page() will return NULL to leave a hole in the dump.
511 * But we can only make this optimization where a hole would surely
512 * be zero-filled if handle_mm_fault() actually did handle it.
513 */
a0137f16
AK
514 if ((flags & FOLL_DUMP) &&
515 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
516 return ERR_PTR(-EFAULT);
517 return NULL;
518}
4bbd4c77 519
1027e443
KS
520static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
521 pte_t *pte, unsigned int flags)
522{
1027e443 523 if (flags & FOLL_TOUCH) {
c33c7948
RR
524 pte_t orig_entry = ptep_get(pte);
525 pte_t entry = orig_entry;
1027e443
KS
526
527 if (flags & FOLL_WRITE)
528 entry = pte_mkdirty(entry);
529 entry = pte_mkyoung(entry);
530
c33c7948 531 if (!pte_same(orig_entry, entry)) {
1027e443
KS
532 set_pte_at(vma->vm_mm, address, pte, entry);
533 update_mmu_cache(vma, address, pte);
534 }
535 }
536
537 /* Proper page table entry exists, but no corresponding struct page */
538 return -EEXIST;
539}
540
5535be30
DH
541/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
542static inline bool can_follow_write_pte(pte_t pte, struct page *page,
543 struct vm_area_struct *vma,
544 unsigned int flags)
19be0eaf 545{
5535be30
DH
546 /* If the pte is writable, we can write to the page. */
547 if (pte_write(pte))
548 return true;
549
550 /* Maybe FOLL_FORCE is set to override it? */
551 if (!(flags & FOLL_FORCE))
552 return false;
553
554 /* But FOLL_FORCE has no effect on shared mappings */
555 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
556 return false;
557
558 /* ... or read-only private ones */
559 if (!(vma->vm_flags & VM_MAYWRITE))
560 return false;
561
562 /* ... or already writable ones that just need to take a write fault */
563 if (vma->vm_flags & VM_WRITE)
564 return false;
565
566 /*
567 * See can_change_pte_writable(): we broke COW and could map the page
568 * writable if we have an exclusive anonymous page ...
569 */
570 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
571 return false;
572
573 /* ... and a write-fault isn't required for other reasons. */
574 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
575 return false;
576 return !userfaultfd_pte_wp(vma, pte);
19be0eaf
LT
577}
578
69e68b4f 579static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
580 unsigned long address, pmd_t *pmd, unsigned int flags,
581 struct dev_pagemap **pgmap)
69e68b4f
KS
582{
583 struct mm_struct *mm = vma->vm_mm;
584 struct page *page;
585 spinlock_t *ptl;
586 pte_t *ptep, pte;
f28d4363 587 int ret;
4bbd4c77 588
eddb1c22
JH
589 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
590 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
591 (FOLL_PIN | FOLL_GET)))
592 return ERR_PTR(-EINVAL);
4bbd4c77
KS
593
594 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
04dee9e8
HD
595 if (!ptep)
596 return no_page_table(vma, flags);
c33c7948 597 pte = ptep_get(ptep);
f7355e99
DH
598 if (!pte_present(pte))
599 goto no_page;
474098ed 600 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
4bbd4c77 601 goto no_page;
4bbd4c77
KS
602
603 page = vm_normal_page(vma, address, pte);
5535be30
DH
604
605 /*
606 * We only care about anon pages in can_follow_write_pte() and don't
607 * have to worry about pte_devmap() because they are never anon.
608 */
609 if ((flags & FOLL_WRITE) &&
610 !can_follow_write_pte(pte, page, vma, flags)) {
611 page = NULL;
612 goto out;
613 }
614
3faa52c0 615 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 616 /*
3faa52c0
JH
617 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
618 * case since they are only valid while holding the pgmap
619 * reference.
3565fce3 620 */
df06b37f
KB
621 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
622 if (*pgmap)
3565fce3
DW
623 page = pte_page(pte);
624 else
625 goto no_page;
626 } else if (unlikely(!page)) {
1027e443
KS
627 if (flags & FOLL_DUMP) {
628 /* Avoid special (like zero) pages in core dumps */
629 page = ERR_PTR(-EFAULT);
630 goto out;
631 }
632
633 if (is_zero_pfn(pte_pfn(pte))) {
634 page = pte_page(pte);
635 } else {
1027e443
KS
636 ret = follow_pfn_pte(vma, address, ptep, flags);
637 page = ERR_PTR(ret);
638 goto out;
639 }
4bbd4c77
KS
640 }
641
84209e87 642 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
a7f22660
DH
643 page = ERR_PTR(-EMLINK);
644 goto out;
645 }
b6a2619c
DH
646
647 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
648 !PageAnonExclusive(page), page);
649
3faa52c0 650 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
0f089235
LG
651 ret = try_grab_page(page, flags);
652 if (unlikely(ret)) {
653 page = ERR_PTR(ret);
3faa52c0 654 goto out;
8fde12ca 655 }
4003f107 656
f28d4363
CI
657 /*
658 * We need to make the page accessible if and only if we are going
659 * to access its content (the FOLL_PIN case). Please see
660 * Documentation/core-api/pin_user_pages.rst for details.
661 */
662 if (flags & FOLL_PIN) {
663 ret = arch_make_page_accessible(page);
664 if (ret) {
665 unpin_user_page(page);
666 page = ERR_PTR(ret);
667 goto out;
668 }
669 }
4bbd4c77
KS
670 if (flags & FOLL_TOUCH) {
671 if ((flags & FOLL_WRITE) &&
672 !pte_dirty(pte) && !PageDirty(page))
673 set_page_dirty(page);
674 /*
675 * pte_mkyoung() would be more correct here, but atomic care
676 * is needed to avoid losing the dirty bit: it is easier to use
677 * mark_page_accessed().
678 */
679 mark_page_accessed(page);
680 }
1027e443 681out:
4bbd4c77 682 pte_unmap_unlock(ptep, ptl);
4bbd4c77 683 return page;
4bbd4c77
KS
684no_page:
685 pte_unmap_unlock(ptep, ptl);
686 if (!pte_none(pte))
69e68b4f
KS
687 return NULL;
688 return no_page_table(vma, flags);
689}
690
080dbb61
AK
691static struct page *follow_pmd_mask(struct vm_area_struct *vma,
692 unsigned long address, pud_t *pudp,
df06b37f
KB
693 unsigned int flags,
694 struct follow_page_context *ctx)
69e68b4f 695{
68827280 696 pmd_t *pmd, pmdval;
69e68b4f
KS
697 spinlock_t *ptl;
698 struct page *page;
699 struct mm_struct *mm = vma->vm_mm;
700
080dbb61 701 pmd = pmd_offset(pudp, address);
26e1a0c3 702 pmdval = pmdp_get_lockless(pmd);
68827280 703 if (pmd_none(pmdval))
69e68b4f 704 return no_page_table(vma, flags);
f7355e99 705 if (!pmd_present(pmdval))
e66f17ff 706 return no_page_table(vma, flags);
68827280 707 if (pmd_devmap(pmdval)) {
3565fce3 708 ptl = pmd_lock(mm, pmd);
df06b37f 709 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
710 spin_unlock(ptl);
711 if (page)
712 return page;
713 }
68827280 714 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 715 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 716
474098ed 717 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
db08f203
AK
718 return no_page_table(vma, flags);
719
6742d293 720 ptl = pmd_lock(mm, pmd);
84c3fc4e
ZY
721 if (unlikely(!pmd_present(*pmd))) {
722 spin_unlock(ptl);
f7355e99 723 return no_page_table(vma, flags);
84c3fc4e 724 }
6742d293
KS
725 if (unlikely(!pmd_trans_huge(*pmd))) {
726 spin_unlock(ptl);
df06b37f 727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 728 }
4066c119 729 if (flags & FOLL_SPLIT_PMD) {
2378118b
HD
730 spin_unlock(ptl);
731 split_huge_pmd(vma, pmd, address);
732 /* If pmd was left empty, stuff a page table in there quickly */
733 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
df06b37f 734 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 735 }
6742d293
KS
736 page = follow_trans_huge_pmd(vma, address, pmd, flags);
737 spin_unlock(ptl);
df06b37f 738 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 739 return page;
4bbd4c77
KS
740}
741
080dbb61
AK
742static struct page *follow_pud_mask(struct vm_area_struct *vma,
743 unsigned long address, p4d_t *p4dp,
df06b37f
KB
744 unsigned int flags,
745 struct follow_page_context *ctx)
080dbb61
AK
746{
747 pud_t *pud;
748 spinlock_t *ptl;
749 struct page *page;
750 struct mm_struct *mm = vma->vm_mm;
751
752 pud = pud_offset(p4dp, address);
753 if (pud_none(*pud))
754 return no_page_table(vma, flags);
080dbb61
AK
755 if (pud_devmap(*pud)) {
756 ptl = pud_lock(mm, pud);
df06b37f 757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
758 spin_unlock(ptl);
759 if (page)
760 return page;
761 }
762 if (unlikely(pud_bad(*pud)))
763 return no_page_table(vma, flags);
764
df06b37f 765 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
766}
767
080dbb61
AK
768static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 unsigned long address, pgd_t *pgdp,
df06b37f
KB
770 unsigned int flags,
771 struct follow_page_context *ctx)
080dbb61
AK
772{
773 p4d_t *p4d;
774
775 p4d = p4d_offset(pgdp, address);
776 if (p4d_none(*p4d))
777 return no_page_table(vma, flags);
778 BUILD_BUG_ON(p4d_huge(*p4d));
779 if (unlikely(p4d_bad(*p4d)))
780 return no_page_table(vma, flags);
781
df06b37f 782 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
783}
784
785/**
786 * follow_page_mask - look up a page descriptor from a user-virtual address
787 * @vma: vm_area_struct mapping @address
788 * @address: virtual address to look up
789 * @flags: flags modifying lookup behaviour
78179556
MR
790 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791 * pointer to output page_mask
080dbb61
AK
792 *
793 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
794 *
78179556
MR
795 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
797 *
a7f22660
DH
798 * When getting an anonymous page and the caller has to trigger unsharing
799 * of a shared anonymous page first, -EMLINK is returned. The caller should
800 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
801 * relevant with FOLL_PIN and !FOLL_WRITE.
802 *
78179556
MR
803 * On output, the @ctx->page_mask is set according to the size of the page.
804 *
805 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
806 * an error pointer if there is a mapping to something not represented
807 * by a page descriptor (see also vm_normal_page()).
808 */
a7030aea 809static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 810 unsigned long address, unsigned int flags,
df06b37f 811 struct follow_page_context *ctx)
080dbb61
AK
812{
813 pgd_t *pgd;
814 struct page *page;
815 struct mm_struct *mm = vma->vm_mm;
816
df06b37f 817 ctx->page_mask = 0;
080dbb61 818
57a196a5
MK
819 /*
820 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
821 * special hugetlb page table walking code. This eliminates the
822 * need to check for hugetlb entries in the general walking code.
823 *
824 * hugetlb_follow_page_mask is only for follow_page() handling here.
825 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
826 */
827 if (is_vm_hugetlb_page(vma)) {
828 page = hugetlb_follow_page_mask(vma, address, flags);
829 if (!page)
830 page = no_page_table(vma, flags);
080dbb61
AK
831 return page;
832 }
833
834 pgd = pgd_offset(mm, address);
835
836 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
837 return no_page_table(vma, flags);
838
df06b37f
KB
839 return follow_p4d_mask(vma, address, pgd, flags, ctx);
840}
841
842struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
843 unsigned int foll_flags)
844{
845 struct follow_page_context ctx = { NULL };
846 struct page *page;
847
1507f512
MR
848 if (vma_is_secretmem(vma))
849 return NULL;
850
d64e2dbc 851 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
8909691b
DH
852 return NULL;
853
df06b37f
KB
854 page = follow_page_mask(vma, address, foll_flags, &ctx);
855 if (ctx.pgmap)
856 put_dev_pagemap(ctx.pgmap);
857 return page;
080dbb61
AK
858}
859
f2b495ca
KS
860static int get_gate_page(struct mm_struct *mm, unsigned long address,
861 unsigned int gup_flags, struct vm_area_struct **vma,
862 struct page **page)
863{
864 pgd_t *pgd;
c2febafc 865 p4d_t *p4d;
f2b495ca
KS
866 pud_t *pud;
867 pmd_t *pmd;
868 pte_t *pte;
c33c7948 869 pte_t entry;
f2b495ca
KS
870 int ret = -EFAULT;
871
872 /* user gate pages are read-only */
873 if (gup_flags & FOLL_WRITE)
874 return -EFAULT;
875 if (address > TASK_SIZE)
876 pgd = pgd_offset_k(address);
877 else
878 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
879 if (pgd_none(*pgd))
880 return -EFAULT;
c2febafc 881 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
882 if (p4d_none(*p4d))
883 return -EFAULT;
c2febafc 884 pud = pud_offset(p4d, address);
b5d1c39f
AL
885 if (pud_none(*pud))
886 return -EFAULT;
f2b495ca 887 pmd = pmd_offset(pud, address);
84c3fc4e 888 if (!pmd_present(*pmd))
f2b495ca 889 return -EFAULT;
f2b495ca 890 pte = pte_offset_map(pmd, address);
04dee9e8
HD
891 if (!pte)
892 return -EFAULT;
c33c7948
RR
893 entry = ptep_get(pte);
894 if (pte_none(entry))
f2b495ca
KS
895 goto unmap;
896 *vma = get_gate_vma(mm);
897 if (!page)
898 goto out;
c33c7948 899 *page = vm_normal_page(*vma, address, entry);
f2b495ca 900 if (!*page) {
c33c7948 901 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
f2b495ca 902 goto unmap;
c33c7948 903 *page = pte_page(entry);
f2b495ca 904 }
0f089235
LG
905 ret = try_grab_page(*page, gup_flags);
906 if (unlikely(ret))
8fde12ca 907 goto unmap;
f2b495ca
KS
908out:
909 ret = 0;
910unmap:
911 pte_unmap(pte);
912 return ret;
913}
914
9a95f3cf 915/*
9a863a6a
JG
916 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
917 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
918 * to 0 and -EBUSY returned.
9a95f3cf 919 */
64019a2e 920static int faultin_page(struct vm_area_struct *vma,
a7f22660
DH
921 unsigned long address, unsigned int *flags, bool unshare,
922 int *locked)
16744483 923{
16744483 924 unsigned int fault_flags = 0;
2b740303 925 vm_fault_t ret;
16744483 926
55b8fe70
AG
927 if (*flags & FOLL_NOFAULT)
928 return -EFAULT;
16744483
KS
929 if (*flags & FOLL_WRITE)
930 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
931 if (*flags & FOLL_REMOTE)
932 fault_flags |= FAULT_FLAG_REMOTE;
f04740f5 933 if (*flags & FOLL_UNLOCKABLE) {
71335f37 934 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
93c5c61d
PX
935 /*
936 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
937 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
938 * That's because some callers may not be prepared to
939 * handle early exits caused by non-fatal signals.
940 */
941 if (*flags & FOLL_INTERRUPTIBLE)
942 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
943 }
16744483
KS
944 if (*flags & FOLL_NOWAIT)
945 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 946 if (*flags & FOLL_TRIED) {
4426e945
PX
947 /*
948 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
949 * can co-exist
950 */
234b239b
ALC
951 fault_flags |= FAULT_FLAG_TRIED;
952 }
a7f22660
DH
953 if (unshare) {
954 fault_flags |= FAULT_FLAG_UNSHARE;
955 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
956 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
957 }
16744483 958
bce617ed 959 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
960
961 if (ret & VM_FAULT_COMPLETED) {
962 /*
963 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
964 * mmap lock in the page fault handler. Sanity check this.
965 */
966 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
9a863a6a
JG
967 *locked = 0;
968
d9272525
PX
969 /*
970 * We should do the same as VM_FAULT_RETRY, but let's not
971 * return -EBUSY since that's not reflecting the reality of
972 * what has happened - we've just fully completed a page
973 * fault, with the mmap lock released. Use -EAGAIN to show
974 * that we want to take the mmap lock _again_.
975 */
976 return -EAGAIN;
977 }
978
16744483 979 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
980 int err = vm_fault_to_errno(ret, *flags);
981
982 if (err)
983 return err;
16744483
KS
984 BUG();
985 }
986
16744483 987 if (ret & VM_FAULT_RETRY) {
9a863a6a 988 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 989 *locked = 0;
16744483
KS
990 return -EBUSY;
991 }
992
16744483
KS
993 return 0;
994}
995
8ac26843
LS
996/*
997 * Writing to file-backed mappings which require folio dirty tracking using GUP
998 * is a fundamentally broken operation, as kernel write access to GUP mappings
999 * do not adhere to the semantics expected by a file system.
1000 *
1001 * Consider the following scenario:-
1002 *
1003 * 1. A folio is written to via GUP which write-faults the memory, notifying
1004 * the file system and dirtying the folio.
1005 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1006 * the PTE being marked read-only.
1007 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1008 * direct mapping.
1009 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1010 * (though it does not have to).
1011 *
1012 * This results in both data being written to a folio without writenotify, and
1013 * the folio being dirtied unexpectedly (if the caller decides to do so).
1014 */
1015static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1016 unsigned long gup_flags)
1017{
1018 /*
1019 * If we aren't pinning then no problematic write can occur. A long term
1020 * pin is the most egregious case so this is the case we disallow.
1021 */
1022 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1023 (FOLL_PIN | FOLL_LONGTERM))
1024 return true;
1025
1026 /*
1027 * If the VMA does not require dirty tracking then no problematic write
1028 * can occur either.
1029 */
1030 return !vma_needs_dirty_tracking(vma);
1031}
1032
fa5bb209
KS
1033static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1034{
1035 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
1036 int write = (gup_flags & FOLL_WRITE);
1037 int foreign = (gup_flags & FOLL_REMOTE);
8ac26843 1038 bool vma_anon = vma_is_anonymous(vma);
fa5bb209
KS
1039
1040 if (vm_flags & (VM_IO | VM_PFNMAP))
1041 return -EFAULT;
1042
8ac26843 1043 if ((gup_flags & FOLL_ANON) && !vma_anon)
7f7ccc2c
WT
1044 return -EFAULT;
1045
52650c8b
JG
1046 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1047 return -EOPNOTSUPP;
1048
1507f512
MR
1049 if (vma_is_secretmem(vma))
1050 return -EFAULT;
1051
1b2ee126 1052 if (write) {
8ac26843
LS
1053 if (!vma_anon &&
1054 !writable_file_mapping_allowed(vma, gup_flags))
1055 return -EFAULT;
1056
fa5bb209
KS
1057 if (!(vm_flags & VM_WRITE)) {
1058 if (!(gup_flags & FOLL_FORCE))
1059 return -EFAULT;
f347454d
DH
1060 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1061 if (is_vm_hugetlb_page(vma))
1062 return -EFAULT;
fa5bb209
KS
1063 /*
1064 * We used to let the write,force case do COW in a
1065 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1066 * set a breakpoint in a read-only mapping of an
1067 * executable, without corrupting the file (yet only
1068 * when that file had been opened for writing!).
1069 * Anon pages in shared mappings are surprising: now
1070 * just reject it.
1071 */
46435364 1072 if (!is_cow_mapping(vm_flags))
fa5bb209 1073 return -EFAULT;
fa5bb209
KS
1074 }
1075 } else if (!(vm_flags & VM_READ)) {
1076 if (!(gup_flags & FOLL_FORCE))
1077 return -EFAULT;
1078 /*
1079 * Is there actually any vma we can reach here which does not
1080 * have VM_MAYREAD set?
1081 */
1082 if (!(vm_flags & VM_MAYREAD))
1083 return -EFAULT;
1084 }
d61172b4
DH
1085 /*
1086 * gups are always data accesses, not instruction
1087 * fetches, so execute=false here
1088 */
1089 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1090 return -EFAULT;
fa5bb209
KS
1091 return 0;
1092}
1093
4bbd4c77
KS
1094/**
1095 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1096 * @mm: mm_struct of target mm
1097 * @start: starting user address
1098 * @nr_pages: number of pages from start to pin
1099 * @gup_flags: flags modifying pin behaviour
1100 * @pages: array that receives pointers to the pages pinned.
1101 * Should be at least nr_pages long. Or NULL, if caller
1102 * only intends to ensure the pages are faulted in.
c1e8d7c6 1103 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1104 *
d2dfbe47
LX
1105 * Returns either number of pages pinned (which may be less than the
1106 * number requested), or an error. Details about the return value:
1107 *
1108 * -- If nr_pages is 0, returns 0.
1109 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1110 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1111 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1112 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1113 *
1114 * The caller is responsible for releasing returned @pages, via put_page().
1115 *
c1e8d7c6 1116 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1117 *
1118 * __get_user_pages walks a process's page tables and takes a reference to
1119 * each struct page that each user address corresponds to at a given
1120 * instant. That is, it takes the page that would be accessed if a user
1121 * thread accesses the given user virtual address at that instant.
1122 *
1123 * This does not guarantee that the page exists in the user mappings when
1124 * __get_user_pages returns, and there may even be a completely different
1125 * page there in some cases (eg. if mmapped pagecache has been invalidated
c5acf1f6 1126 * and subsequently re-faulted). However it does guarantee that the page
4bbd4c77
KS
1127 * won't be freed completely. And mostly callers simply care that the page
1128 * contains data that was valid *at some point in time*. Typically, an IO
1129 * or similar operation cannot guarantee anything stronger anyway because
1130 * locks can't be held over the syscall boundary.
1131 *
1132 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1133 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1134 * appropriate) must be called after the page is finished with, and
1135 * before put_page is called.
1136 *
9a863a6a
JG
1137 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1138 * be released. If this happens *@locked will be set to 0 on return.
9a95f3cf 1139 *
9a863a6a
JG
1140 * A caller using such a combination of @gup_flags must therefore hold the
1141 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1142 * it must be held for either reading or writing and will not be released.
4bbd4c77
KS
1143 *
1144 * In most cases, get_user_pages or get_user_pages_fast should be used
1145 * instead of __get_user_pages. __get_user_pages should be used only if
1146 * you need some special @gup_flags.
1147 */
64019a2e 1148static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1149 unsigned long start, unsigned long nr_pages,
1150 unsigned int gup_flags, struct page **pages,
b2cac248 1151 int *locked)
4bbd4c77 1152{
df06b37f 1153 long ret = 0, i = 0;
fa5bb209 1154 struct vm_area_struct *vma = NULL;
df06b37f 1155 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1156
1157 if (!nr_pages)
1158 return 0;
1159
428e106a 1160 start = untagged_addr_remote(mm, start);
f9652594 1161
eddb1c22 1162 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77 1163
4bbd4c77 1164 do {
fa5bb209
KS
1165 struct page *page;
1166 unsigned int foll_flags = gup_flags;
1167 unsigned int page_increm;
1168
1169 /* first iteration or cross vma bound */
1170 if (!vma || start >= vma->vm_end) {
a425ac53
LT
1171 vma = find_vma(mm, start);
1172 if (vma && (start < vma->vm_start)) {
1173 WARN_ON_ONCE(vma->vm_flags & VM_GROWSDOWN);
1174 vma = NULL;
1175 }
fa5bb209 1176 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1177 ret = get_gate_page(mm, start & PAGE_MASK,
1178 gup_flags, &vma,
1179 pages ? &pages[i] : NULL);
1180 if (ret)
08be37b7 1181 goto out;
df06b37f 1182 ctx.page_mask = 0;
fa5bb209
KS
1183 goto next_page;
1184 }
4bbd4c77 1185
52650c8b 1186 if (!vma) {
df06b37f
KB
1187 ret = -EFAULT;
1188 goto out;
1189 }
52650c8b
JG
1190 ret = check_vma_flags(vma, gup_flags);
1191 if (ret)
1192 goto out;
1193
fa5bb209 1194 if (is_vm_hugetlb_page(vma)) {
b2cac248
LS
1195 i = follow_hugetlb_page(mm, vma, pages,
1196 &start, &nr_pages, i,
1197 gup_flags, locked);
9a863a6a 1198 if (!*locked) {
ad415db8
PX
1199 /*
1200 * We've got a VM_FAULT_RETRY
c1e8d7c6 1201 * and we've lost mmap_lock.
ad415db8
PX
1202 * We must stop here.
1203 */
1204 BUG_ON(gup_flags & FOLL_NOWAIT);
ad415db8
PX
1205 goto out;
1206 }
fa5bb209 1207 continue;
4bbd4c77 1208 }
fa5bb209
KS
1209 }
1210retry:
1211 /*
1212 * If we have a pending SIGKILL, don't keep faulting pages and
1213 * potentially allocating memory.
1214 */
fa45f116 1215 if (fatal_signal_pending(current)) {
d180870d 1216 ret = -EINTR;
df06b37f
KB
1217 goto out;
1218 }
fa5bb209 1219 cond_resched();
df06b37f
KB
1220
1221 page = follow_page_mask(vma, start, foll_flags, &ctx);
a7f22660
DH
1222 if (!page || PTR_ERR(page) == -EMLINK) {
1223 ret = faultin_page(vma, start, &foll_flags,
1224 PTR_ERR(page) == -EMLINK, locked);
fa5bb209
KS
1225 switch (ret) {
1226 case 0:
1227 goto retry;
df06b37f 1228 case -EBUSY:
d9272525 1229 case -EAGAIN:
df06b37f 1230 ret = 0;
e4a9bc58 1231 fallthrough;
fa5bb209
KS
1232 case -EFAULT:
1233 case -ENOMEM:
1234 case -EHWPOISON:
df06b37f 1235 goto out;
4bbd4c77 1236 }
fa5bb209 1237 BUG();
1027e443
KS
1238 } else if (PTR_ERR(page) == -EEXIST) {
1239 /*
1240 * Proper page table entry exists, but no corresponding
65462462
JH
1241 * struct page. If the caller expects **pages to be
1242 * filled in, bail out now, because that can't be done
1243 * for this page.
1027e443 1244 */
65462462
JH
1245 if (pages) {
1246 ret = PTR_ERR(page);
1247 goto out;
1248 }
1249
1027e443
KS
1250 goto next_page;
1251 } else if (IS_ERR(page)) {
df06b37f
KB
1252 ret = PTR_ERR(page);
1253 goto out;
1027e443 1254 }
fa5bb209
KS
1255 if (pages) {
1256 pages[i] = page;
1257 flush_anon_page(vma, page, start);
1258 flush_dcache_page(page);
df06b37f 1259 ctx.page_mask = 0;
4bbd4c77 1260 }
4bbd4c77 1261next_page:
df06b37f 1262 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1263 if (page_increm > nr_pages)
1264 page_increm = nr_pages;
1265 i += page_increm;
1266 start += page_increm * PAGE_SIZE;
1267 nr_pages -= page_increm;
4bbd4c77 1268 } while (nr_pages);
df06b37f
KB
1269out:
1270 if (ctx.pgmap)
1271 put_dev_pagemap(ctx.pgmap);
1272 return i ? i : ret;
4bbd4c77 1273}
4bbd4c77 1274
771ab430
TK
1275static bool vma_permits_fault(struct vm_area_struct *vma,
1276 unsigned int fault_flags)
d4925e00 1277{
1b2ee126
DH
1278 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1279 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1280 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1281
1282 if (!(vm_flags & vma->vm_flags))
1283 return false;
1284
33a709b2
DH
1285 /*
1286 * The architecture might have a hardware protection
1b2ee126 1287 * mechanism other than read/write that can deny access.
d61172b4
DH
1288 *
1289 * gup always represents data access, not instruction
1290 * fetches, so execute=false here:
33a709b2 1291 */
d61172b4 1292 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1293 return false;
1294
d4925e00
DH
1295 return true;
1296}
1297
adc8cb40 1298/**
4bbd4c77 1299 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1300 * @mm: mm_struct of target mm
1301 * @address: user address
1302 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1303 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1304 * does not allow retry. If NULL, the caller must guarantee
1305 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1306 *
1307 * This is meant to be called in the specific scenario where for locking reasons
1308 * we try to access user memory in atomic context (within a pagefault_disable()
1309 * section), this returns -EFAULT, and we want to resolve the user fault before
1310 * trying again.
1311 *
1312 * Typically this is meant to be used by the futex code.
1313 *
1314 * The main difference with get_user_pages() is that this function will
1315 * unconditionally call handle_mm_fault() which will in turn perform all the
1316 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1317 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1318 *
1319 * This is important for some architectures where those bits also gate the
1320 * access permission to the page because they are maintained in software. On
1321 * such architectures, gup() will not be enough to make a subsequent access
1322 * succeed.
1323 *
c1e8d7c6
ML
1324 * This function will not return with an unlocked mmap_lock. So it has not the
1325 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1326 */
64019a2e 1327int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1328 unsigned long address, unsigned int fault_flags,
1329 bool *unlocked)
4bbd4c77
KS
1330{
1331 struct vm_area_struct *vma;
8fed2f3c 1332 vm_fault_t ret;
4a9e1cda 1333
428e106a 1334 address = untagged_addr_remote(mm, address);
f9652594 1335
4a9e1cda 1336 if (unlocked)
71335f37 1337 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1338
4a9e1cda 1339retry:
a425ac53 1340 vma = find_vma(mm, address);
8d7071af 1341 if (!vma)
4bbd4c77 1342 return -EFAULT;
a425ac53
LT
1343 if (address < vma->vm_start ) {
1344 WARN_ON_ONCE(vma->vm_flags & VM_GROWSDOWN);
4bbd4c77 1345 return -EFAULT;
a425ac53 1346 }
4bbd4c77 1347
d4925e00 1348 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1349 return -EFAULT;
1350
475f4dfc
PX
1351 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1352 fatal_signal_pending(current))
1353 return -EINTR;
1354
bce617ed 1355 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1356
1357 if (ret & VM_FAULT_COMPLETED) {
1358 /*
1359 * NOTE: it's a pity that we need to retake the lock here
1360 * to pair with the unlock() in the callers. Ideally we
1361 * could tell the callers so they do not need to unlock.
1362 */
1363 mmap_read_lock(mm);
1364 *unlocked = true;
1365 return 0;
1366 }
1367
4bbd4c77 1368 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1369 int err = vm_fault_to_errno(ret, 0);
1370
1371 if (err)
1372 return err;
4bbd4c77
KS
1373 BUG();
1374 }
4a9e1cda
DD
1375
1376 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1377 mmap_read_lock(mm);
475f4dfc
PX
1378 *unlocked = true;
1379 fault_flags |= FAULT_FLAG_TRIED;
1380 goto retry;
4a9e1cda
DD
1381 }
1382
4bbd4c77
KS
1383 return 0;
1384}
add6a0cd 1385EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1386
93c5c61d
PX
1387/*
1388 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1389 * specified, it'll also respond to generic signals. The caller of GUP
1390 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1391 */
1392static bool gup_signal_pending(unsigned int flags)
1393{
1394 if (fatal_signal_pending(current))
1395 return true;
1396
1397 if (!(flags & FOLL_INTERRUPTIBLE))
1398 return false;
1399
1400 return signal_pending(current);
1401}
1402
2d3a36a4 1403/*
b2a72dff
JG
1404 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1405 * the caller. This function may drop the mmap_lock. If it does so, then it will
1406 * set (*locked = 0).
1407 *
1408 * (*locked == 0) means that the caller expects this function to acquire and
1409 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1410 * the function returns, even though it may have changed temporarily during
1411 * function execution.
1412 *
1413 * Please note that this function, unlike __get_user_pages(), will not return 0
1414 * for nr_pages > 0, unless FOLL_NOWAIT is used.
2d3a36a4 1415 */
64019a2e 1416static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1417 unsigned long start,
1418 unsigned long nr_pages,
f0818f47 1419 struct page **pages,
e716712f 1420 int *locked,
0fd71a56 1421 unsigned int flags)
f0818f47 1422{
f0818f47 1423 long ret, pages_done;
b2a72dff 1424 bool must_unlock = false;
f0818f47 1425
b2a72dff
JG
1426 /*
1427 * The internal caller expects GUP to manage the lock internally and the
1428 * lock must be released when this returns.
1429 */
9a863a6a 1430 if (!*locked) {
b2a72dff
JG
1431 if (mmap_read_lock_killable(mm))
1432 return -EAGAIN;
1433 must_unlock = true;
1434 *locked = 1;
f0818f47 1435 }
961ba472
JG
1436 else
1437 mmap_assert_locked(mm);
f0818f47 1438
a458b76a
AA
1439 if (flags & FOLL_PIN)
1440 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1441
eddb1c22
JH
1442 /*
1443 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1444 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1445 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1446 * for FOLL_GET, not for the newer FOLL_PIN.
1447 *
1448 * FOLL_PIN always expects pages to be non-null, but no need to assert
1449 * that here, as any failures will be obvious enough.
1450 */
1451 if (pages && !(flags & FOLL_PIN))
f0818f47 1452 flags |= FOLL_GET;
f0818f47
AA
1453
1454 pages_done = 0;
f0818f47 1455 for (;;) {
64019a2e 1456 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
b2cac248 1457 locked);
f04740f5 1458 if (!(flags & FOLL_UNLOCKABLE)) {
f0818f47 1459 /* VM_FAULT_RETRY couldn't trigger, bypass */
f04740f5
JG
1460 pages_done = ret;
1461 break;
1462 }
f0818f47 1463
d9272525 1464 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
f0818f47
AA
1465 if (!*locked) {
1466 BUG_ON(ret < 0);
1467 BUG_ON(ret >= nr_pages);
1468 }
1469
f0818f47
AA
1470 if (ret > 0) {
1471 nr_pages -= ret;
1472 pages_done += ret;
1473 if (!nr_pages)
1474 break;
1475 }
1476 if (*locked) {
96312e61
AA
1477 /*
1478 * VM_FAULT_RETRY didn't trigger or it was a
1479 * FOLL_NOWAIT.
1480 */
f0818f47
AA
1481 if (!pages_done)
1482 pages_done = ret;
1483 break;
1484 }
df17277b
MR
1485 /*
1486 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1487 * For the prefault case (!pages) we only update counts.
1488 */
1489 if (likely(pages))
1490 pages += ret;
f0818f47 1491 start += ret << PAGE_SHIFT;
b2a72dff
JG
1492
1493 /* The lock was temporarily dropped, so we must unlock later */
1494 must_unlock = true;
f0818f47 1495
4426e945 1496retry:
f0818f47
AA
1497 /*
1498 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1499 * with both FAULT_FLAG_ALLOW_RETRY and
1500 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
93c5c61d
PX
1501 * by fatal signals of even common signals, depending on
1502 * the caller's request. So we need to check it before we
4426e945 1503 * start trying again otherwise it can loop forever.
f0818f47 1504 */
93c5c61d 1505 if (gup_signal_pending(flags)) {
ae46d2aa
HD
1506 if (!pages_done)
1507 pages_done = -EINTR;
4426e945 1508 break;
ae46d2aa 1509 }
4426e945 1510
d8ed45c5 1511 ret = mmap_read_lock_killable(mm);
71335f37
PX
1512 if (ret) {
1513 BUG_ON(ret > 0);
1514 if (!pages_done)
1515 pages_done = ret;
1516 break;
1517 }
4426e945 1518
c7b6a566 1519 *locked = 1;
64019a2e 1520 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
b2cac248 1521 pages, locked);
4426e945
PX
1522 if (!*locked) {
1523 /* Continue to retry until we succeeded */
1524 BUG_ON(ret != 0);
1525 goto retry;
1526 }
f0818f47
AA
1527 if (ret != 1) {
1528 BUG_ON(ret > 1);
1529 if (!pages_done)
1530 pages_done = ret;
1531 break;
1532 }
1533 nr_pages--;
1534 pages_done++;
1535 if (!nr_pages)
1536 break;
df17277b
MR
1537 if (likely(pages))
1538 pages++;
f0818f47
AA
1539 start += PAGE_SIZE;
1540 }
b2a72dff 1541 if (must_unlock && *locked) {
f0818f47 1542 /*
b2a72dff
JG
1543 * We either temporarily dropped the lock, or the caller
1544 * requested that we both acquire and drop the lock. Either way,
1545 * we must now unlock, and notify the caller of that state.
f0818f47 1546 */
d8ed45c5 1547 mmap_read_unlock(mm);
f0818f47
AA
1548 *locked = 0;
1549 }
1550 return pages_done;
1551}
1552
d3649f68
CH
1553/**
1554 * populate_vma_page_range() - populate a range of pages in the vma.
1555 * @vma: target vma
1556 * @start: start address
1557 * @end: end address
c1e8d7c6 1558 * @locked: whether the mmap_lock is still held
d3649f68
CH
1559 *
1560 * This takes care of mlocking the pages too if VM_LOCKED is set.
1561 *
0a36f7f8
TY
1562 * Return either number of pages pinned in the vma, or a negative error
1563 * code on error.
d3649f68 1564 *
c1e8d7c6 1565 * vma->vm_mm->mmap_lock must be held.
d3649f68 1566 *
4f6da934 1567 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1568 * be unperturbed.
1569 *
4f6da934
PX
1570 * If @locked is non-NULL, it must held for read only and may be
1571 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1572 */
1573long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1574 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1575{
1576 struct mm_struct *mm = vma->vm_mm;
1577 unsigned long nr_pages = (end - start) / PAGE_SIZE;
9a863a6a 1578 int local_locked = 1;
d3649f68 1579 int gup_flags;
ece369c7 1580 long ret;
d3649f68 1581
be51eb18
ML
1582 VM_BUG_ON(!PAGE_ALIGNED(start));
1583 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1584 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1585 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1586 mmap_assert_locked(mm);
d3649f68 1587
b67bf49c
HD
1588 /*
1589 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1590 * faultin_page() to break COW, so it has no work to do here.
1591 */
d3649f68 1592 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1593 return nr_pages;
1594
1595 gup_flags = FOLL_TOUCH;
d3649f68
CH
1596 /*
1597 * We want to touch writable mappings with a write fault in order
1598 * to break COW, except for shared mappings because these don't COW
1599 * and we would not want to dirty them for nothing.
1600 */
1601 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1602 gup_flags |= FOLL_WRITE;
1603
1604 /*
1605 * We want mlock to succeed for regions that have any permissions
1606 * other than PROT_NONE.
1607 */
3122e80e 1608 if (vma_is_accessible(vma))
d3649f68
CH
1609 gup_flags |= FOLL_FORCE;
1610
f04740f5
JG
1611 if (locked)
1612 gup_flags |= FOLL_UNLOCKABLE;
1613
d3649f68
CH
1614 /*
1615 * We made sure addr is within a VMA, so the following will
1616 * not result in a stack expansion that recurses back here.
1617 */
ece369c7 1618 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
b2cac248 1619 NULL, locked ? locked : &local_locked);
ece369c7
HD
1620 lru_add_drain();
1621 return ret;
d3649f68
CH
1622}
1623
4ca9b385
DH
1624/*
1625 * faultin_vma_page_range() - populate (prefault) page tables inside the
1626 * given VMA range readable/writable
1627 *
1628 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1629 *
1630 * @vma: target vma
1631 * @start: start address
1632 * @end: end address
1633 * @write: whether to prefault readable or writable
1634 * @locked: whether the mmap_lock is still held
1635 *
1636 * Returns either number of processed pages in the vma, or a negative error
1637 * code on error (see __get_user_pages()).
1638 *
1639 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
6e4382c7 1640 * covered by the VMA. If it's released, *@locked will be set to 0.
4ca9b385
DH
1641 */
1642long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1643 unsigned long end, bool write, int *locked)
1644{
1645 struct mm_struct *mm = vma->vm_mm;
1646 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1647 int gup_flags;
ece369c7 1648 long ret;
4ca9b385
DH
1649
1650 VM_BUG_ON(!PAGE_ALIGNED(start));
1651 VM_BUG_ON(!PAGE_ALIGNED(end));
1652 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1653 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1654 mmap_assert_locked(mm);
1655
1656 /*
1657 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1658 * the page dirty with FOLL_WRITE -- which doesn't make a
1659 * difference with !FOLL_FORCE, because the page is writable
1660 * in the page table.
1661 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1662 * a poisoned page.
4ca9b385
DH
1663 * !FOLL_FORCE: Require proper access permissions.
1664 */
f04740f5 1665 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
4ca9b385
DH
1666 if (write)
1667 gup_flags |= FOLL_WRITE;
1668
1669 /*
eb2faa51
DH
1670 * We want to report -EINVAL instead of -EFAULT for any permission
1671 * problems or incompatible mappings.
4ca9b385 1672 */
eb2faa51
DH
1673 if (check_vma_flags(vma, gup_flags))
1674 return -EINVAL;
1675
ece369c7 1676 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
b2cac248 1677 NULL, locked);
ece369c7
HD
1678 lru_add_drain();
1679 return ret;
4ca9b385
DH
1680}
1681
d3649f68
CH
1682/*
1683 * __mm_populate - populate and/or mlock pages within a range of address space.
1684 *
1685 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1686 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1687 * mmap_lock must not be held.
d3649f68
CH
1688 */
1689int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1690{
1691 struct mm_struct *mm = current->mm;
1692 unsigned long end, nstart, nend;
1693 struct vm_area_struct *vma = NULL;
1694 int locked = 0;
1695 long ret = 0;
1696
1697 end = start + len;
1698
1699 for (nstart = start; nstart < end; nstart = nend) {
1700 /*
1701 * We want to fault in pages for [nstart; end) address range.
1702 * Find first corresponding VMA.
1703 */
1704 if (!locked) {
1705 locked = 1;
d8ed45c5 1706 mmap_read_lock(mm);
c4d1a92d 1707 vma = find_vma_intersection(mm, nstart, end);
d3649f68 1708 } else if (nstart >= vma->vm_end)
c4d1a92d
LH
1709 vma = find_vma_intersection(mm, vma->vm_end, end);
1710
1711 if (!vma)
d3649f68
CH
1712 break;
1713 /*
1714 * Set [nstart; nend) to intersection of desired address
1715 * range with the first VMA. Also, skip undesirable VMA types.
1716 */
1717 nend = min(end, vma->vm_end);
1718 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1719 continue;
1720 if (nstart < vma->vm_start)
1721 nstart = vma->vm_start;
1722 /*
1723 * Now fault in a range of pages. populate_vma_page_range()
1724 * double checks the vma flags, so that it won't mlock pages
1725 * if the vma was already munlocked.
1726 */
1727 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1728 if (ret < 0) {
1729 if (ignore_errors) {
1730 ret = 0;
1731 continue; /* continue at next VMA */
1732 }
1733 break;
1734 }
1735 nend = nstart + ret * PAGE_SIZE;
1736 ret = 0;
1737 }
1738 if (locked)
d8ed45c5 1739 mmap_read_unlock(mm);
d3649f68
CH
1740 return ret; /* 0 or negative error code */
1741}
050a9adc 1742#else /* CONFIG_MMU */
64019a2e 1743static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc 1744 unsigned long nr_pages, struct page **pages,
b2cac248 1745 int *locked, unsigned int foll_flags)
050a9adc
CH
1746{
1747 struct vm_area_struct *vma;
b2a72dff 1748 bool must_unlock = false;
050a9adc 1749 unsigned long vm_flags;
24dc20c7 1750 long i;
050a9adc 1751
b2a72dff
JG
1752 if (!nr_pages)
1753 return 0;
1754
1755 /*
1756 * The internal caller expects GUP to manage the lock internally and the
1757 * lock must be released when this returns.
1758 */
9a863a6a 1759 if (!*locked) {
b2a72dff
JG
1760 if (mmap_read_lock_killable(mm))
1761 return -EAGAIN;
1762 must_unlock = true;
1763 *locked = 1;
1764 }
1765
050a9adc
CH
1766 /* calculate required read or write permissions.
1767 * If FOLL_FORCE is set, we only require the "MAY" flags.
1768 */
1769 vm_flags = (foll_flags & FOLL_WRITE) ?
1770 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1771 vm_flags &= (foll_flags & FOLL_FORCE) ?
1772 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1773
1774 for (i = 0; i < nr_pages; i++) {
1775 vma = find_vma(mm, start);
1776 if (!vma)
b2a72dff 1777 break;
050a9adc
CH
1778
1779 /* protect what we can, including chardevs */
1780 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1781 !(vm_flags & vma->vm_flags))
b2a72dff 1782 break;
050a9adc
CH
1783
1784 if (pages) {
396a400b 1785 pages[i] = virt_to_page((void *)start);
050a9adc
CH
1786 if (pages[i])
1787 get_page(pages[i]);
1788 }
b2cac248 1789
050a9adc
CH
1790 start = (start + PAGE_SIZE) & PAGE_MASK;
1791 }
1792
b2a72dff
JG
1793 if (must_unlock && *locked) {
1794 mmap_read_unlock(mm);
1795 *locked = 0;
1796 }
050a9adc 1797
050a9adc
CH
1798 return i ? : -EFAULT;
1799}
1800#endif /* !CONFIG_MMU */
d3649f68 1801
bb523b40
AG
1802/**
1803 * fault_in_writeable - fault in userspace address range for writing
1804 * @uaddr: start of address range
1805 * @size: size of address range
1806 *
1807 * Returns the number of bytes not faulted in (like copy_to_user() and
1808 * copy_from_user()).
1809 */
1810size_t fault_in_writeable(char __user *uaddr, size_t size)
1811{
1812 char __user *start = uaddr, *end;
1813
1814 if (unlikely(size == 0))
1815 return 0;
677b2a8c
CL
1816 if (!user_write_access_begin(uaddr, size))
1817 return size;
bb523b40 1818 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1819 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1820 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1821 }
1822 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1823 if (unlikely(end < start))
1824 end = NULL;
1825 while (uaddr != end) {
677b2a8c 1826 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1827 uaddr += PAGE_SIZE;
1828 }
1829
1830out:
677b2a8c 1831 user_write_access_end();
bb523b40
AG
1832 if (size > uaddr - start)
1833 return size - (uaddr - start);
1834 return 0;
1835}
1836EXPORT_SYMBOL(fault_in_writeable);
1837
da32b581
CM
1838/**
1839 * fault_in_subpage_writeable - fault in an address range for writing
1840 * @uaddr: start of address range
1841 * @size: size of address range
1842 *
1843 * Fault in a user address range for writing while checking for permissions at
1844 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1845 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1846 *
1847 * Returns the number of bytes not faulted in (like copy_to_user() and
1848 * copy_from_user()).
1849 */
1850size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1851{
1852 size_t faulted_in;
1853
1854 /*
1855 * Attempt faulting in at page granularity first for page table
1856 * permission checking. The arch-specific probe_subpage_writeable()
1857 * functions may not check for this.
1858 */
1859 faulted_in = size - fault_in_writeable(uaddr, size);
1860 if (faulted_in)
1861 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1862
1863 return size - faulted_in;
1864}
1865EXPORT_SYMBOL(fault_in_subpage_writeable);
1866
cdd591fc
AG
1867/*
1868 * fault_in_safe_writeable - fault in an address range for writing
1869 * @uaddr: start of address range
1870 * @size: length of address range
1871 *
fe673d3f
LT
1872 * Faults in an address range for writing. This is primarily useful when we
1873 * already know that some or all of the pages in the address range aren't in
1874 * memory.
cdd591fc 1875 *
fe673d3f 1876 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
1877 *
1878 * Note that we don't pin or otherwise hold the pages referenced that we fault
1879 * in. There's no guarantee that they'll stay in memory for any duration of
1880 * time.
1881 *
1882 * Returns the number of bytes not faulted in, like copy_to_user() and
1883 * copy_from_user().
1884 */
1885size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1886{
fe673d3f 1887 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 1888 struct mm_struct *mm = current->mm;
fe673d3f 1889 bool unlocked = false;
cdd591fc 1890
fe673d3f
LT
1891 if (unlikely(size == 0))
1892 return 0;
cdd591fc 1893 end = PAGE_ALIGN(start + size);
fe673d3f 1894 if (end < start)
cdd591fc 1895 end = 0;
cdd591fc 1896
fe673d3f
LT
1897 mmap_read_lock(mm);
1898 do {
1899 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 1900 break;
fe673d3f
LT
1901 start = (start + PAGE_SIZE) & PAGE_MASK;
1902 } while (start != end);
1903 mmap_read_unlock(mm);
1904
1905 if (size > (unsigned long)uaddr - start)
1906 return size - ((unsigned long)uaddr - start);
1907 return 0;
cdd591fc
AG
1908}
1909EXPORT_SYMBOL(fault_in_safe_writeable);
1910
bb523b40
AG
1911/**
1912 * fault_in_readable - fault in userspace address range for reading
1913 * @uaddr: start of user address range
1914 * @size: size of user address range
1915 *
1916 * Returns the number of bytes not faulted in (like copy_to_user() and
1917 * copy_from_user()).
1918 */
1919size_t fault_in_readable(const char __user *uaddr, size_t size)
1920{
1921 const char __user *start = uaddr, *end;
1922 volatile char c;
1923
1924 if (unlikely(size == 0))
1925 return 0;
677b2a8c
CL
1926 if (!user_read_access_begin(uaddr, size))
1927 return size;
bb523b40 1928 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1929 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1930 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1931 }
1932 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1933 if (unlikely(end < start))
1934 end = NULL;
1935 while (uaddr != end) {
677b2a8c 1936 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1937 uaddr += PAGE_SIZE;
1938 }
1939
1940out:
677b2a8c 1941 user_read_access_end();
bb523b40
AG
1942 (void)c;
1943 if (size > uaddr - start)
1944 return size - (uaddr - start);
1945 return 0;
1946}
1947EXPORT_SYMBOL(fault_in_readable);
1948
8f942eea
JH
1949/**
1950 * get_dump_page() - pin user page in memory while writing it to core dump
1951 * @addr: user address
1952 *
1953 * Returns struct page pointer of user page pinned for dump,
1954 * to be freed afterwards by put_page().
1955 *
1956 * Returns NULL on any kind of failure - a hole must then be inserted into
1957 * the corefile, to preserve alignment with its headers; and also returns
1958 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1959 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1960 *
7f3bfab5 1961 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1962 */
1963#ifdef CONFIG_ELF_CORE
1964struct page *get_dump_page(unsigned long addr)
1965{
8f942eea 1966 struct page *page;
b2a72dff 1967 int locked = 0;
7f3bfab5 1968 int ret;
8f942eea 1969
b2cac248 1970 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
7f3bfab5 1971 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
7f3bfab5 1972 return (ret == 1) ? page : NULL;
8f942eea
JH
1973}
1974#endif /* CONFIG_ELF_CORE */
1975
d1e153fe 1976#ifdef CONFIG_MIGRATION
f68749ec 1977/*
67e139b0 1978 * Returns the number of collected pages. Return value is always >= 0.
f68749ec 1979 */
67e139b0
AP
1980static unsigned long collect_longterm_unpinnable_pages(
1981 struct list_head *movable_page_list,
1982 unsigned long nr_pages,
1983 struct page **pages)
9a4e9f3b 1984{
67e139b0 1985 unsigned long i, collected = 0;
1b7f7e58 1986 struct folio *prev_folio = NULL;
67e139b0 1987 bool drain_allow = true;
9a4e9f3b 1988
83c02c23 1989 for (i = 0; i < nr_pages; i++) {
1b7f7e58 1990 struct folio *folio = page_folio(pages[i]);
f9f38f78 1991
1b7f7e58 1992 if (folio == prev_folio)
83c02c23 1993 continue;
1b7f7e58 1994 prev_folio = folio;
f9f38f78 1995
67e139b0
AP
1996 if (folio_is_longterm_pinnable(folio))
1997 continue;
b05a79d4 1998
67e139b0 1999 collected++;
b05a79d4 2000
67e139b0 2001 if (folio_is_device_coherent(folio))
f9f38f78
CH
2002 continue;
2003
1b7f7e58 2004 if (folio_test_hugetlb(folio)) {
6aa3a920 2005 isolate_hugetlb(folio, movable_page_list);
f9f38f78
CH
2006 continue;
2007 }
9a4e9f3b 2008
1b7f7e58 2009 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
2010 lru_add_drain_all();
2011 drain_allow = false;
2012 }
2013
be2d5756 2014 if (!folio_isolate_lru(folio))
f9f38f78 2015 continue;
67e139b0
AP
2016
2017 list_add_tail(&folio->lru, movable_page_list);
1b7f7e58
MWO
2018 node_stat_mod_folio(folio,
2019 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2020 folio_nr_pages(folio));
9a4e9f3b
AK
2021 }
2022
67e139b0
AP
2023 return collected;
2024}
2025
2026/*
2027 * Unpins all pages and migrates device coherent pages and movable_page_list.
2028 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2029 * (or partial success).
2030 */
2031static int migrate_longterm_unpinnable_pages(
2032 struct list_head *movable_page_list,
2033 unsigned long nr_pages,
2034 struct page **pages)
2035{
2036 int ret;
2037 unsigned long i;
6e7f34eb 2038
b05a79d4 2039 for (i = 0; i < nr_pages; i++) {
67e139b0
AP
2040 struct folio *folio = page_folio(pages[i]);
2041
2042 if (folio_is_device_coherent(folio)) {
2043 /*
2044 * Migration will fail if the page is pinned, so convert
2045 * the pin on the source page to a normal reference.
2046 */
2047 pages[i] = NULL;
2048 folio_get(folio);
2049 gup_put_folio(folio, 1, FOLL_PIN);
2050
2051 if (migrate_device_coherent_page(&folio->page)) {
2052 ret = -EBUSY;
2053 goto err;
2054 }
2055
b05a79d4 2056 continue;
67e139b0 2057 }
b05a79d4 2058
67e139b0
AP
2059 /*
2060 * We can't migrate pages with unexpected references, so drop
2061 * the reference obtained by __get_user_pages_locked().
2062 * Migrating pages have been added to movable_page_list after
2063 * calling folio_isolate_lru() which takes a reference so the
2064 * page won't be freed if it's migrating.
2065 */
f6d299ec 2066 unpin_user_page(pages[i]);
67e139b0 2067 pages[i] = NULL;
f68749ec 2068 }
f9f38f78 2069
67e139b0 2070 if (!list_empty(movable_page_list)) {
f9f38f78
CH
2071 struct migration_target_control mtc = {
2072 .nid = NUMA_NO_NODE,
2073 .gfp_mask = GFP_USER | __GFP_NOWARN,
2074 };
2075
67e139b0
AP
2076 if (migrate_pages(movable_page_list, alloc_migration_target,
2077 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2078 MR_LONGTERM_PIN, NULL)) {
f9f38f78 2079 ret = -ENOMEM;
67e139b0
AP
2080 goto err;
2081 }
9a4e9f3b
AK
2082 }
2083
67e139b0
AP
2084 putback_movable_pages(movable_page_list);
2085
2086 return -EAGAIN;
2087
2088err:
2089 for (i = 0; i < nr_pages; i++)
2090 if (pages[i])
2091 unpin_user_page(pages[i]);
2092 putback_movable_pages(movable_page_list);
24a95998 2093
67e139b0
AP
2094 return ret;
2095}
2096
2097/*
2098 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2099 * pages in the range are required to be pinned via FOLL_PIN, before calling
2100 * this routine.
2101 *
2102 * If any pages in the range are not allowed to be pinned, then this routine
2103 * will migrate those pages away, unpin all the pages in the range and return
2104 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2105 * call this routine again.
2106 *
2107 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2108 * The caller should give up, and propagate the error back up the call stack.
2109 *
2110 * If everything is OK and all pages in the range are allowed to be pinned, then
2111 * this routine leaves all pages pinned and returns zero for success.
2112 */
2113static long check_and_migrate_movable_pages(unsigned long nr_pages,
2114 struct page **pages)
2115{
2116 unsigned long collected;
2117 LIST_HEAD(movable_page_list);
2118
2119 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2120 nr_pages, pages);
2121 if (!collected)
2122 return 0;
2123
2124 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2125 pages);
9a4e9f3b
AK
2126}
2127#else
f68749ec 2128static long check_and_migrate_movable_pages(unsigned long nr_pages,
f6d299ec 2129 struct page **pages)
9a4e9f3b 2130{
24a95998 2131 return 0;
9a4e9f3b 2132}
d1e153fe 2133#endif /* CONFIG_MIGRATION */
9a4e9f3b 2134
2bb6d283 2135/*
932f4a63
IW
2136 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2137 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 2138 */
64019a2e 2139static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
2140 unsigned long start,
2141 unsigned long nr_pages,
2142 struct page **pages,
53b2d09b 2143 int *locked,
932f4a63 2144 unsigned int gup_flags)
2bb6d283 2145{
f68749ec 2146 unsigned int flags;
24a95998 2147 long rc, nr_pinned_pages;
2bb6d283 2148
f68749ec 2149 if (!(gup_flags & FOLL_LONGTERM))
b2cac248 2150 return __get_user_pages_locked(mm, start, nr_pages, pages,
53b2d09b 2151 locked, gup_flags);
67e139b0 2152
f68749ec
PT
2153 flags = memalloc_pin_save();
2154 do {
24a95998 2155 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
b2cac248 2156 pages, locked,
24a95998
AP
2157 gup_flags);
2158 if (nr_pinned_pages <= 0) {
2159 rc = nr_pinned_pages;
f68749ec 2160 break;
24a95998 2161 }
d64e2dbc
JG
2162
2163 /* FOLL_LONGTERM implies FOLL_PIN */
f6d299ec 2164 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
24a95998 2165 } while (rc == -EAGAIN);
f68749ec 2166 memalloc_pin_restore(flags);
24a95998 2167 return rc ? rc : nr_pinned_pages;
2bb6d283 2168}
932f4a63 2169
d64e2dbc
JG
2170/*
2171 * Check that the given flags are valid for the exported gup/pup interface, and
2172 * update them with the required flags that the caller must have set.
2173 */
b2cac248
LS
2174static bool is_valid_gup_args(struct page **pages, int *locked,
2175 unsigned int *gup_flags_p, unsigned int to_set)
447f3e45 2176{
d64e2dbc
JG
2177 unsigned int gup_flags = *gup_flags_p;
2178
447f3e45 2179 /*
d64e2dbc
JG
2180 * These flags not allowed to be specified externally to the gup
2181 * interfaces:
2182 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2183 * - FOLL_REMOTE is internal only and used on follow_page()
f04740f5 2184 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
447f3e45 2185 */
f04740f5 2186 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
d64e2dbc
JG
2187 FOLL_REMOTE | FOLL_FAST_ONLY)))
2188 return false;
2189
2190 gup_flags |= to_set;
f04740f5
JG
2191 if (locked) {
2192 /* At the external interface locked must be set */
2193 if (WARN_ON_ONCE(*locked != 1))
2194 return false;
2195
2196 gup_flags |= FOLL_UNLOCKABLE;
2197 }
d64e2dbc
JG
2198
2199 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2200 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2201 (FOLL_PIN | FOLL_GET)))
2202 return false;
2203
2204 /* LONGTERM can only be specified when pinning */
2205 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2206 return false;
2207
2208 /* Pages input must be given if using GET/PIN */
2209 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
447f3e45 2210 return false;
d64e2dbc 2211
d64e2dbc
JG
2212 /* We want to allow the pgmap to be hot-unplugged at all times */
2213 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2214 (gup_flags & FOLL_PCI_P2PDMA)))
2215 return false;
2216
d64e2dbc 2217 *gup_flags_p = gup_flags;
447f3e45
BS
2218 return true;
2219}
2220
22bf29b6 2221#ifdef CONFIG_MMU
adc8cb40 2222/**
c4237f8b 2223 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2224 * @mm: mm_struct of target mm
2225 * @start: starting user address
2226 * @nr_pages: number of pages from start to pin
2227 * @gup_flags: flags modifying lookup behaviour
2228 * @pages: array that receives pointers to the pages pinned.
2229 * Should be at least nr_pages long. Or NULL, if caller
2230 * only intends to ensure the pages are faulted in.
c4237f8b
JH
2231 * @locked: pointer to lock flag indicating whether lock is held and
2232 * subsequently whether VM_FAULT_RETRY functionality can be
2233 * utilised. Lock must initially be held.
2234 *
2235 * Returns either number of pages pinned (which may be less than the
2236 * number requested), or an error. Details about the return value:
2237 *
2238 * -- If nr_pages is 0, returns 0.
2239 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2240 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2241 * pages pinned. Again, this may be less than nr_pages.
2242 *
2243 * The caller is responsible for releasing returned @pages, via put_page().
2244 *
c1e8d7c6 2245 * Must be called with mmap_lock held for read or write.
c4237f8b 2246 *
adc8cb40
SJ
2247 * get_user_pages_remote walks a process's page tables and takes a reference
2248 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2249 * instant. That is, it takes the page that would be accessed if a user
2250 * thread accesses the given user virtual address at that instant.
2251 *
2252 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2253 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b 2254 * page there in some cases (eg. if mmapped pagecache has been invalidated
5da1a868 2255 * and subsequently re-faulted). However it does guarantee that the page
c4237f8b
JH
2256 * won't be freed completely. And mostly callers simply care that the page
2257 * contains data that was valid *at some point in time*. Typically, an IO
2258 * or similar operation cannot guarantee anything stronger anyway because
2259 * locks can't be held over the syscall boundary.
2260 *
2261 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2262 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2263 * be called after the page is finished with, and before put_page is called.
2264 *
adc8cb40
SJ
2265 * get_user_pages_remote is typically used for fewer-copy IO operations,
2266 * to get a handle on the memory by some means other than accesses
2267 * via the user virtual addresses. The pages may be submitted for
2268 * DMA to devices or accessed via their kernel linear mapping (via the
2269 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2270 *
2271 * See also get_user_pages_fast, for performance critical applications.
2272 *
adc8cb40 2273 * get_user_pages_remote should be phased out in favor of
c4237f8b 2274 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2275 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2276 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2277 */
64019a2e 2278long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2279 unsigned long start, unsigned long nr_pages,
2280 unsigned int gup_flags, struct page **pages,
ca5e8632 2281 int *locked)
c4237f8b 2282{
9a863a6a
JG
2283 int local_locked = 1;
2284
b2cac248 2285 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc 2286 FOLL_TOUCH | FOLL_REMOTE))
eddb1c22
JH
2287 return -EINVAL;
2288
b2cac248 2289 return __get_user_pages_locked(mm, start, nr_pages, pages,
9a863a6a 2290 locked ? locked : &local_locked,
d64e2dbc 2291 gup_flags);
c4237f8b
JH
2292}
2293EXPORT_SYMBOL(get_user_pages_remote);
2294
eddb1c22 2295#else /* CONFIG_MMU */
64019a2e 2296long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2297 unsigned long start, unsigned long nr_pages,
2298 unsigned int gup_flags, struct page **pages,
ca5e8632 2299 int *locked)
eddb1c22
JH
2300{
2301 return 0;
2302}
2303#endif /* !CONFIG_MMU */
2304
adc8cb40
SJ
2305/**
2306 * get_user_pages() - pin user pages in memory
2307 * @start: starting user address
2308 * @nr_pages: number of pages from start to pin
2309 * @gup_flags: flags modifying lookup behaviour
2310 * @pages: array that receives pointers to the pages pinned.
2311 * Should be at least nr_pages long. Or NULL, if caller
2312 * only intends to ensure the pages are faulted in.
adc8cb40 2313 *
64019a2e
PX
2314 * This is the same as get_user_pages_remote(), just with a less-flexible
2315 * calling convention where we assume that the mm being operated on belongs to
2316 * the current task, and doesn't allow passing of a locked parameter. We also
2317 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2318 */
2319long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2320 unsigned int gup_flags, struct page **pages)
932f4a63 2321{
9a863a6a
JG
2322 int locked = 1;
2323
b2cac248 2324 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
eddb1c22
JH
2325 return -EINVAL;
2326
afa3c33e 2327 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2328 &locked, gup_flags);
932f4a63
IW
2329}
2330EXPORT_SYMBOL(get_user_pages);
2bb6d283 2331
acc3c8d1 2332/*
d3649f68 2333 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2334 *
3e4e28c5 2335 * mmap_read_lock(mm);
64019a2e 2336 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2337 * mmap_read_unlock(mm);
d3649f68
CH
2338 *
2339 * with:
2340 *
64019a2e 2341 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2342 *
2343 * It is functionally equivalent to get_user_pages_fast so
2344 * get_user_pages_fast should be used instead if specific gup_flags
2345 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2346 */
d3649f68
CH
2347long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2348 struct page **pages, unsigned int gup_flags)
acc3c8d1 2349{
b2a72dff 2350 int locked = 0;
acc3c8d1 2351
b2cac248 2352 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 2353 FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc
JG
2354 return -EINVAL;
2355
afa3c33e 2356 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2357 &locked, gup_flags);
4bbd4c77 2358}
d3649f68 2359EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2360
2361/*
67a929e0 2362 * Fast GUP
2667f50e
SC
2363 *
2364 * get_user_pages_fast attempts to pin user pages by walking the page
2365 * tables directly and avoids taking locks. Thus the walker needs to be
2366 * protected from page table pages being freed from under it, and should
2367 * block any THP splits.
2368 *
2369 * One way to achieve this is to have the walker disable interrupts, and
2370 * rely on IPIs from the TLB flushing code blocking before the page table
2371 * pages are freed. This is unsuitable for architectures that do not need
2372 * to broadcast an IPI when invalidating TLBs.
2373 *
2374 * Another way to achieve this is to batch up page table containing pages
2375 * belonging to more than one mm_user, then rcu_sched a callback to free those
2376 * pages. Disabling interrupts will allow the fast_gup walker to both block
2377 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2378 * (which is a relatively rare event). The code below adopts this strategy.
2379 *
2380 * Before activating this code, please be aware that the following assumptions
2381 * are currently made:
2382 *
ff2e6d72 2383 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2384 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2385 *
2667f50e
SC
2386 * *) ptes can be read atomically by the architecture.
2387 *
2388 * *) access_ok is sufficient to validate userspace address ranges.
2389 *
2390 * The last two assumptions can be relaxed by the addition of helper functions.
2391 *
2392 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2393 */
67a929e0 2394#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2395
a6e79df9
LS
2396/*
2397 * Used in the GUP-fast path to determine whether a pin is permitted for a
2398 * specific folio.
2399 *
2400 * This call assumes the caller has pinned the folio, that the lowest page table
2401 * level still points to this folio, and that interrupts have been disabled.
2402 *
2403 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2404 * (see comment describing the writable_file_mapping_allowed() function). We
2405 * therefore try to avoid the most egregious case of a long-term mapping doing
2406 * so.
2407 *
2408 * This function cannot be as thorough as that one as the VMA is not available
2409 * in the fast path, so instead we whitelist known good cases and if in doubt,
2410 * fall back to the slow path.
2411 */
2412static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2413{
2414 struct address_space *mapping;
2415 unsigned long mapping_flags;
2416
2417 /*
2418 * If we aren't pinning then no problematic write can occur. A long term
2419 * pin is the most egregious case so this is the one we disallow.
2420 */
2421 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2422 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2423 return true;
2424
2425 /* The folio is pinned, so we can safely access folio fields. */
2426
2427 if (WARN_ON_ONCE(folio_test_slab(folio)))
2428 return false;
2429
2430 /* hugetlb mappings do not require dirty-tracking. */
2431 if (folio_test_hugetlb(folio))
2432 return true;
2433
2434 /*
2435 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2436 * cannot proceed, which means no actions performed under RCU can
2437 * proceed either.
2438 *
2439 * inodes and thus their mappings are freed under RCU, which means the
2440 * mapping cannot be freed beneath us and thus we can safely dereference
2441 * it.
2442 */
2443 lockdep_assert_irqs_disabled();
2444
2445 /*
2446 * However, there may be operations which _alter_ the mapping, so ensure
2447 * we read it once and only once.
2448 */
2449 mapping = READ_ONCE(folio->mapping);
2450
2451 /*
2452 * The mapping may have been truncated, in any case we cannot determine
2453 * if this mapping is safe - fall back to slow path to determine how to
2454 * proceed.
2455 */
2456 if (!mapping)
2457 return false;
2458
2459 /* Anonymous folios pose no problem. */
2460 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2461 if (mapping_flags)
2462 return mapping_flags & PAGE_MAPPING_ANON;
2463
2464 /*
2465 * At this point, we know the mapping is non-null and points to an
2466 * address_space object. The only remaining whitelisted file system is
2467 * shmem.
2468 */
2469 return shmem_mapping(mapping);
2470}
2471
790c7369 2472static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2473 unsigned int flags,
790c7369 2474 struct page **pages)
b59f65fa
KS
2475{
2476 while ((*nr) - nr_start) {
2477 struct page *page = pages[--(*nr)];
2478
2479 ClearPageReferenced(page);
3faa52c0
JH
2480 if (flags & FOLL_PIN)
2481 unpin_user_page(page);
2482 else
2483 put_page(page);
b59f65fa
KS
2484 }
2485}
2486
3010a5ea 2487#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
70cbc3cc
YS
2488/*
2489 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2490 * operations.
2491 *
2492 * To pin the page, fast-gup needs to do below in order:
2493 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2494 *
2495 * For the rest of pgtable operations where pgtable updates can be racy
2496 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2497 * is pinned.
2498 *
2499 * Above will work for all pte-level operations, including THP split.
2500 *
2501 * For THP collapse, it's a bit more complicated because fast-gup may be
2502 * walking a pgtable page that is being freed (pte is still valid but pmd
2503 * can be cleared already). To avoid race in such condition, we need to
2504 * also check pmd here to make sure pmd doesn't change (corresponds to
2505 * pmdp_collapse_flush() in the THP collapse code path).
2506 */
2507static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2508 unsigned long end, unsigned int flags,
2509 struct page **pages, int *nr)
2667f50e 2510{
b59f65fa
KS
2511 struct dev_pagemap *pgmap = NULL;
2512 int nr_start = *nr, ret = 0;
2667f50e 2513 pte_t *ptep, *ptem;
2667f50e
SC
2514
2515 ptem = ptep = pte_offset_map(&pmd, addr);
04dee9e8
HD
2516 if (!ptep)
2517 return 0;
2667f50e 2518 do {
2a4a06da 2519 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2520 struct page *page;
2521 struct folio *folio;
2667f50e 2522
0cf45986 2523 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
e7884f8e
KS
2524 goto pte_unmap;
2525
b798bec4 2526 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2527 goto pte_unmap;
2528
b59f65fa 2529 if (pte_devmap(pte)) {
7af75561
IW
2530 if (unlikely(flags & FOLL_LONGTERM))
2531 goto pte_unmap;
2532
b59f65fa
KS
2533 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2534 if (unlikely(!pgmap)) {
3b78d834 2535 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2536 goto pte_unmap;
2537 }
2538 } else if (pte_special(pte))
2667f50e
SC
2539 goto pte_unmap;
2540
2541 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2542 page = pte_page(pte);
2543
b0496fe4
MWO
2544 folio = try_grab_folio(page, 1, flags);
2545 if (!folio)
2667f50e
SC
2546 goto pte_unmap;
2547
1507f512 2548 if (unlikely(page_is_secretmem(page))) {
b0496fe4 2549 gup_put_folio(folio, 1, flags);
1507f512
MR
2550 goto pte_unmap;
2551 }
2552
70cbc3cc 2553 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
c33c7948 2554 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
b0496fe4 2555 gup_put_folio(folio, 1, flags);
2667f50e
SC
2556 goto pte_unmap;
2557 }
2558
a6e79df9 2559 if (!folio_fast_pin_allowed(folio, flags)) {
b0496fe4 2560 gup_put_folio(folio, 1, flags);
2667f50e
SC
2561 goto pte_unmap;
2562 }
2563
84209e87 2564 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
a7f22660
DH
2565 gup_put_folio(folio, 1, flags);
2566 goto pte_unmap;
2567 }
2568
f28d4363
CI
2569 /*
2570 * We need to make the page accessible if and only if we are
2571 * going to access its content (the FOLL_PIN case). Please
2572 * see Documentation/core-api/pin_user_pages.rst for
2573 * details.
2574 */
2575 if (flags & FOLL_PIN) {
2576 ret = arch_make_page_accessible(page);
2577 if (ret) {
b0496fe4 2578 gup_put_folio(folio, 1, flags);
f28d4363
CI
2579 goto pte_unmap;
2580 }
2581 }
b0496fe4 2582 folio_set_referenced(folio);
2667f50e
SC
2583 pages[*nr] = page;
2584 (*nr)++;
2667f50e
SC
2585 } while (ptep++, addr += PAGE_SIZE, addr != end);
2586
2587 ret = 1;
2588
2589pte_unmap:
832d7aa0
CH
2590 if (pgmap)
2591 put_dev_pagemap(pgmap);
2667f50e
SC
2592 pte_unmap(ptem);
2593 return ret;
2594}
2595#else
2596
2597/*
2598 * If we can't determine whether or not a pte is special, then fail immediately
2599 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2600 * to be special.
2601 *
2602 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2603 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2604 * useful to have gup_huge_pmd even if we can't operate on ptes.
2605 */
70cbc3cc
YS
2606static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2607 unsigned long end, unsigned int flags,
2608 struct page **pages, int *nr)
2667f50e
SC
2609{
2610 return 0;
2611}
3010a5ea 2612#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2613
17596731 2614#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2615static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2616 unsigned long end, unsigned int flags,
2617 struct page **pages, int *nr)
b59f65fa
KS
2618{
2619 int nr_start = *nr;
2620 struct dev_pagemap *pgmap = NULL;
2621
2622 do {
2623 struct page *page = pfn_to_page(pfn);
2624
2625 pgmap = get_dev_pagemap(pfn, pgmap);
2626 if (unlikely(!pgmap)) {
3b78d834 2627 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2628 break;
b59f65fa 2629 }
4003f107
LG
2630
2631 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2632 undo_dev_pagemap(nr, nr_start, flags, pages);
2633 break;
2634 }
2635
b59f65fa
KS
2636 SetPageReferenced(page);
2637 pages[*nr] = page;
0f089235 2638 if (unlikely(try_grab_page(page, flags))) {
3faa52c0 2639 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2640 break;
3faa52c0 2641 }
b59f65fa
KS
2642 (*nr)++;
2643 pfn++;
2644 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2645
6401c4eb 2646 put_dev_pagemap(pgmap);
20b7fee7 2647 return addr == end;
b59f65fa
KS
2648}
2649
a9b6de77 2650static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2651 unsigned long end, unsigned int flags,
2652 struct page **pages, int *nr)
b59f65fa
KS
2653{
2654 unsigned long fault_pfn;
a9b6de77
DW
2655 int nr_start = *nr;
2656
2657 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2658 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2659 return 0;
b59f65fa 2660
a9b6de77 2661 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2662 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2663 return 0;
2664 }
2665 return 1;
b59f65fa
KS
2666}
2667
a9b6de77 2668static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2669 unsigned long end, unsigned int flags,
2670 struct page **pages, int *nr)
b59f65fa
KS
2671{
2672 unsigned long fault_pfn;
a9b6de77
DW
2673 int nr_start = *nr;
2674
2675 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2676 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2677 return 0;
b59f65fa 2678
a9b6de77 2679 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2680 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2681 return 0;
2682 }
2683 return 1;
b59f65fa
KS
2684}
2685#else
a9b6de77 2686static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2687 unsigned long end, unsigned int flags,
2688 struct page **pages, int *nr)
b59f65fa
KS
2689{
2690 BUILD_BUG();
2691 return 0;
2692}
2693
a9b6de77 2694static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2695 unsigned long end, unsigned int flags,
2696 struct page **pages, int *nr)
b59f65fa
KS
2697{
2698 BUILD_BUG();
2699 return 0;
2700}
2701#endif
2702
a43e9820
JH
2703static int record_subpages(struct page *page, unsigned long addr,
2704 unsigned long end, struct page **pages)
2705{
2706 int nr;
2707
c228afb1
MWO
2708 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2709 pages[nr] = nth_page(page, nr);
a43e9820
JH
2710
2711 return nr;
2712}
2713
cbd34da7
CH
2714#ifdef CONFIG_ARCH_HAS_HUGEPD
2715static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2716 unsigned long sz)
2717{
2718 unsigned long __boundary = (addr + sz) & ~(sz-1);
2719 return (__boundary - 1 < end - 1) ? __boundary : end;
2720}
2721
2722static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2723 unsigned long end, unsigned int flags,
2724 struct page **pages, int *nr)
cbd34da7
CH
2725{
2726 unsigned long pte_end;
09a1626e
MWO
2727 struct page *page;
2728 struct folio *folio;
cbd34da7
CH
2729 pte_t pte;
2730 int refs;
2731
2732 pte_end = (addr + sz) & ~(sz-1);
2733 if (pte_end < end)
2734 end = pte_end;
2735
55ca2263 2736 pte = huge_ptep_get(ptep);
cbd34da7 2737
0cd22afd 2738 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2739 return 0;
2740
2741 /* hugepages are never "special" */
2742 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2743
09a1626e 2744 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
a43e9820 2745 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2746
09a1626e
MWO
2747 folio = try_grab_folio(page, refs, flags);
2748 if (!folio)
cbd34da7 2749 return 0;
cbd34da7 2750
c33c7948 2751 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
09a1626e 2752 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2753 return 0;
2754 }
2755
a6e79df9 2756 if (!folio_fast_pin_allowed(folio, flags)) {
09a1626e 2757 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2758 return 0;
2759 }
2760
84209e87 2761 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2762 gup_put_folio(folio, refs, flags);
2763 return 0;
2764 }
2765
a43e9820 2766 *nr += refs;
09a1626e 2767 folio_set_referenced(folio);
cbd34da7
CH
2768 return 1;
2769}
2770
2771static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2772 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2773 struct page **pages, int *nr)
2774{
2775 pte_t *ptep;
2776 unsigned long sz = 1UL << hugepd_shift(hugepd);
2777 unsigned long next;
2778
2779 ptep = hugepte_offset(hugepd, addr, pdshift);
2780 do {
2781 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2782 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2783 return 0;
2784 } while (ptep++, addr = next, addr != end);
2785
2786 return 1;
2787}
2788#else
2789static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2790 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2791 struct page **pages, int *nr)
2792{
2793 return 0;
2794}
2795#endif /* CONFIG_ARCH_HAS_HUGEPD */
2796
2667f50e 2797static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2798 unsigned long end, unsigned int flags,
2799 struct page **pages, int *nr)
2667f50e 2800{
667ed1f7
MWO
2801 struct page *page;
2802 struct folio *folio;
2667f50e
SC
2803 int refs;
2804
b798bec4 2805 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2806 return 0;
2807
7af75561
IW
2808 if (pmd_devmap(orig)) {
2809 if (unlikely(flags & FOLL_LONGTERM))
2810 return 0;
86dfbed4
JH
2811 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2812 pages, nr);
7af75561 2813 }
b59f65fa 2814
c228afb1 2815 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2816 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2817
667ed1f7
MWO
2818 folio = try_grab_folio(page, refs, flags);
2819 if (!folio)
2667f50e 2820 return 0;
2667f50e
SC
2821
2822 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 2823 gup_put_folio(folio, refs, flags);
2667f50e
SC
2824 return 0;
2825 }
2826
a6e79df9
LS
2827 if (!folio_fast_pin_allowed(folio, flags)) {
2828 gup_put_folio(folio, refs, flags);
2829 return 0;
2830 }
84209e87 2831 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2832 gup_put_folio(folio, refs, flags);
2833 return 0;
2834 }
2835
a43e9820 2836 *nr += refs;
667ed1f7 2837 folio_set_referenced(folio);
2667f50e
SC
2838 return 1;
2839}
2840
2841static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2842 unsigned long end, unsigned int flags,
2843 struct page **pages, int *nr)
2667f50e 2844{
83afb52e
MWO
2845 struct page *page;
2846 struct folio *folio;
2667f50e
SC
2847 int refs;
2848
b798bec4 2849 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2850 return 0;
2851
7af75561
IW
2852 if (pud_devmap(orig)) {
2853 if (unlikely(flags & FOLL_LONGTERM))
2854 return 0;
86dfbed4
JH
2855 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2856 pages, nr);
7af75561 2857 }
b59f65fa 2858
c228afb1 2859 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2860 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2861
83afb52e
MWO
2862 folio = try_grab_folio(page, refs, flags);
2863 if (!folio)
2667f50e 2864 return 0;
2667f50e
SC
2865
2866 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 2867 gup_put_folio(folio, refs, flags);
2667f50e
SC
2868 return 0;
2869 }
2870
a6e79df9
LS
2871 if (!folio_fast_pin_allowed(folio, flags)) {
2872 gup_put_folio(folio, refs, flags);
2873 return 0;
2874 }
2875
84209e87 2876 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2877 gup_put_folio(folio, refs, flags);
2878 return 0;
2879 }
2880
a43e9820 2881 *nr += refs;
83afb52e 2882 folio_set_referenced(folio);
2667f50e
SC
2883 return 1;
2884}
2885
f30c59e9 2886static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2887 unsigned long end, unsigned int flags,
f30c59e9
AK
2888 struct page **pages, int *nr)
2889{
2890 int refs;
2d7919a2
MWO
2891 struct page *page;
2892 struct folio *folio;
f30c59e9 2893
b798bec4 2894 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2895 return 0;
2896
b59f65fa 2897 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2898
c228afb1 2899 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2900 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2901
2d7919a2
MWO
2902 folio = try_grab_folio(page, refs, flags);
2903 if (!folio)
f30c59e9 2904 return 0;
f30c59e9
AK
2905
2906 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 2907 gup_put_folio(folio, refs, flags);
f30c59e9
AK
2908 return 0;
2909 }
2910
31115034
LS
2911 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2912 gup_put_folio(folio, refs, flags);
2913 return 0;
2914 }
2915
a6e79df9
LS
2916 if (!folio_fast_pin_allowed(folio, flags)) {
2917 gup_put_folio(folio, refs, flags);
2918 return 0;
2919 }
2920
a43e9820 2921 *nr += refs;
2d7919a2 2922 folio_set_referenced(folio);
f30c59e9
AK
2923 return 1;
2924}
2925
d3f7b1bb 2926static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2927 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2928{
2929 unsigned long next;
2930 pmd_t *pmdp;
2931
d3f7b1bb 2932 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2933 do {
1180e732 2934 pmd_t pmd = pmdp_get_lockless(pmdp);
2667f50e
SC
2935
2936 next = pmd_addr_end(addr, end);
84c3fc4e 2937 if (!pmd_present(pmd))
2667f50e
SC
2938 return 0;
2939
414fd080
YZ
2940 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2941 pmd_devmap(pmd))) {
0cf45986
DH
2942 if (pmd_protnone(pmd) &&
2943 !gup_can_follow_protnone(flags))
2667f50e
SC
2944 return 0;
2945
b798bec4 2946 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2947 pages, nr))
2948 return 0;
2949
f30c59e9
AK
2950 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2951 /*
2952 * architecture have different format for hugetlbfs
2953 * pmd format and THP pmd format
2954 */
2955 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2956 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2957 return 0;
70cbc3cc 2958 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2923117b 2959 return 0;
2667f50e
SC
2960 } while (pmdp++, addr = next, addr != end);
2961
2962 return 1;
2963}
2964
d3f7b1bb 2965static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2966 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2967{
2968 unsigned long next;
2969 pud_t *pudp;
2970
d3f7b1bb 2971 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2972 do {
e37c6982 2973 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2974
2975 next = pud_addr_end(addr, end);
15494520 2976 if (unlikely(!pud_present(pud)))
2667f50e 2977 return 0;
fcd0ccd8 2978 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
b798bec4 2979 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2980 pages, nr))
2981 return 0;
2982 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2983 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2984 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2985 return 0;
d3f7b1bb 2986 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2987 return 0;
2988 } while (pudp++, addr = next, addr != end);
2989
2990 return 1;
2991}
2992
d3f7b1bb 2993static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2994 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2995{
2996 unsigned long next;
2997 p4d_t *p4dp;
2998
d3f7b1bb 2999 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
3000 do {
3001 p4d_t p4d = READ_ONCE(*p4dp);
3002
3003 next = p4d_addr_end(addr, end);
3004 if (p4d_none(p4d))
3005 return 0;
3006 BUILD_BUG_ON(p4d_huge(p4d));
3007 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3008 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 3009 P4D_SHIFT, next, flags, pages, nr))
c2febafc 3010 return 0;
d3f7b1bb 3011 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
3012 return 0;
3013 } while (p4dp++, addr = next, addr != end);
3014
3015 return 1;
3016}
3017
5b65c467 3018static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 3019 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
3020{
3021 unsigned long next;
3022 pgd_t *pgdp;
3023
3024 pgdp = pgd_offset(current->mm, addr);
3025 do {
3026 pgd_t pgd = READ_ONCE(*pgdp);
3027
3028 next = pgd_addr_end(addr, end);
3029 if (pgd_none(pgd))
3030 return;
3031 if (unlikely(pgd_huge(pgd))) {
b798bec4 3032 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
3033 pages, nr))
3034 return;
3035 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3036 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 3037 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 3038 return;
d3f7b1bb 3039 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
3040 return;
3041 } while (pgdp++, addr = next, addr != end);
3042}
050a9adc
CH
3043#else
3044static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3045 unsigned int flags, struct page **pages, int *nr)
3046{
3047}
3048#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
3049
3050#ifndef gup_fast_permitted
3051/*
dadbb612 3052 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
3053 * we need to fall back to the slow version:
3054 */
26f4c328 3055static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 3056{
26f4c328 3057 return true;
5b65c467
KS
3058}
3059#endif
3060
c28b1fc7
JG
3061static unsigned long lockless_pages_from_mm(unsigned long start,
3062 unsigned long end,
3063 unsigned int gup_flags,
3064 struct page **pages)
3065{
3066 unsigned long flags;
3067 int nr_pinned = 0;
57efa1fe 3068 unsigned seq;
c28b1fc7
JG
3069
3070 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3071 !gup_fast_permitted(start, end))
3072 return 0;
3073
57efa1fe
JG
3074 if (gup_flags & FOLL_PIN) {
3075 seq = raw_read_seqcount(&current->mm->write_protect_seq);
3076 if (seq & 1)
3077 return 0;
3078 }
3079
c28b1fc7
JG
3080 /*
3081 * Disable interrupts. The nested form is used, in order to allow full,
3082 * general purpose use of this routine.
3083 *
3084 * With interrupts disabled, we block page table pages from being freed
3085 * from under us. See struct mmu_table_batch comments in
3086 * include/asm-generic/tlb.h for more details.
3087 *
3088 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3089 * that come from THPs splitting.
3090 */
3091 local_irq_save(flags);
3092 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3093 local_irq_restore(flags);
57efa1fe
JG
3094
3095 /*
3096 * When pinning pages for DMA there could be a concurrent write protect
3097 * from fork() via copy_page_range(), in this case always fail fast GUP.
3098 */
3099 if (gup_flags & FOLL_PIN) {
3100 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
b6a2619c 3101 unpin_user_pages_lockless(pages, nr_pinned);
57efa1fe 3102 return 0;
b6a2619c
DH
3103 } else {
3104 sanity_check_pinned_pages(pages, nr_pinned);
57efa1fe
JG
3105 }
3106 }
c28b1fc7
JG
3107 return nr_pinned;
3108}
3109
3110static int internal_get_user_pages_fast(unsigned long start,
3111 unsigned long nr_pages,
eddb1c22
JH
3112 unsigned int gup_flags,
3113 struct page **pages)
2667f50e 3114{
c28b1fc7
JG
3115 unsigned long len, end;
3116 unsigned long nr_pinned;
b2a72dff 3117 int locked = 0;
c28b1fc7 3118 int ret;
2667f50e 3119
f4000fdf 3120 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 3121 FOLL_FORCE | FOLL_PIN | FOLL_GET |
4003f107
LG
3122 FOLL_FAST_ONLY | FOLL_NOFAULT |
3123 FOLL_PCI_P2PDMA)))
817be129
CH
3124 return -EINVAL;
3125
a458b76a
AA
3126 if (gup_flags & FOLL_PIN)
3127 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 3128
f81cd178 3129 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 3130 might_lock_read(&current->mm->mmap_lock);
f81cd178 3131
f455c854 3132 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
3133 len = nr_pages << PAGE_SHIFT;
3134 if (check_add_overflow(start, len, &end))
9883c7f8 3135 return -EOVERFLOW;
6014bc27
LT
3136 if (end > TASK_SIZE_MAX)
3137 return -EFAULT;
96d4f267 3138 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 3139 return -EFAULT;
73e10a61 3140
c28b1fc7
JG
3141 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3142 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3143 return nr_pinned;
2667f50e 3144
c28b1fc7
JG
3145 /* Slow path: try to get the remaining pages with get_user_pages */
3146 start += nr_pinned << PAGE_SHIFT;
3147 pages += nr_pinned;
b2a72dff 3148 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
b2cac248 3149 pages, &locked,
f04740f5 3150 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
c28b1fc7
JG
3151 if (ret < 0) {
3152 /*
3153 * The caller has to unpin the pages we already pinned so
3154 * returning -errno is not an option
3155 */
3156 if (nr_pinned)
3157 return nr_pinned;
3158 return ret;
2667f50e 3159 }
c28b1fc7 3160 return ret + nr_pinned;
2667f50e 3161}
c28b1fc7 3162
dadbb612
SJ
3163/**
3164 * get_user_pages_fast_only() - pin user pages in memory
3165 * @start: starting user address
3166 * @nr_pages: number of pages from start to pin
3167 * @gup_flags: flags modifying pin behaviour
3168 * @pages: array that receives pointers to the pages pinned.
3169 * Should be at least nr_pages long.
3170 *
9e1f0580
JH
3171 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3172 * the regular GUP.
9e1f0580
JH
3173 *
3174 * If the architecture does not support this function, simply return with no
3175 * pages pinned.
3176 *
3177 * Careful, careful! COW breaking can go either way, so a non-write
3178 * access can get ambiguous page results. If you call this function without
3179 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3180 */
dadbb612
SJ
3181int get_user_pages_fast_only(unsigned long start, int nr_pages,
3182 unsigned int gup_flags, struct page **pages)
9e1f0580 3183{
9e1f0580
JH
3184 /*
3185 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3186 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
3187 *
3188 * FOLL_FAST_ONLY is required in order to match the API description of
3189 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 3190 */
b2cac248 3191 if (!is_valid_gup_args(pages, NULL, &gup_flags,
d64e2dbc
JG
3192 FOLL_GET | FOLL_FAST_ONLY))
3193 return -EINVAL;
9e1f0580 3194
9198a919 3195 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
9e1f0580 3196}
dadbb612 3197EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 3198
eddb1c22
JH
3199/**
3200 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
3201 * @start: starting user address
3202 * @nr_pages: number of pages from start to pin
3203 * @gup_flags: flags modifying pin behaviour
3204 * @pages: array that receives pointers to the pages pinned.
3205 * Should be at least nr_pages long.
eddb1c22 3206 *
c1e8d7c6 3207 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
3208 * If not successful, it will fall back to taking the lock and
3209 * calling get_user_pages().
3210 *
3211 * Returns number of pages pinned. This may be fewer than the number requested.
3212 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3213 * -errno.
3214 */
3215int get_user_pages_fast(unsigned long start, int nr_pages,
3216 unsigned int gup_flags, struct page **pages)
3217{
94202f12
JH
3218 /*
3219 * The caller may or may not have explicitly set FOLL_GET; either way is
3220 * OK. However, internally (within mm/gup.c), gup fast variants must set
3221 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3222 * request.
3223 */
b2cac248 3224 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
d64e2dbc 3225 return -EINVAL;
eddb1c22
JH
3226 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3227}
050a9adc 3228EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
3229
3230/**
3231 * pin_user_pages_fast() - pin user pages in memory without taking locks
3232 *
3faa52c0
JH
3233 * @start: starting user address
3234 * @nr_pages: number of pages from start to pin
3235 * @gup_flags: flags modifying pin behaviour
3236 * @pages: array that receives pointers to the pages pinned.
3237 * Should be at least nr_pages long.
3238 *
3239 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3240 * get_user_pages_fast() for documentation on the function arguments, because
3241 * the arguments here are identical.
3242 *
3243 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3244 * see Documentation/core-api/pin_user_pages.rst for further details.
c8070b78
DH
3245 *
3246 * Note that if a zero_page is amongst the returned pages, it will not have
3247 * pins in it and unpin_user_page() will not remove pins from it.
eddb1c22
JH
3248 */
3249int pin_user_pages_fast(unsigned long start, int nr_pages,
3250 unsigned int gup_flags, struct page **pages)
3251{
b2cac248 3252 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3faa52c0 3253 return -EINVAL;
3faa52c0 3254 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
3255}
3256EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3257
3258/**
64019a2e 3259 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3260 *
3faa52c0
JH
3261 * @mm: mm_struct of target mm
3262 * @start: starting user address
3263 * @nr_pages: number of pages from start to pin
3264 * @gup_flags: flags modifying lookup behaviour
3265 * @pages: array that receives pointers to the pages pinned.
0768c8de 3266 * Should be at least nr_pages long.
3faa52c0
JH
3267 * @locked: pointer to lock flag indicating whether lock is held and
3268 * subsequently whether VM_FAULT_RETRY functionality can be
3269 * utilised. Lock must initially be held.
3270 *
3271 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3272 * get_user_pages_remote() for documentation on the function arguments, because
3273 * the arguments here are identical.
3274 *
3275 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3276 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3277 *
3278 * Note that if a zero_page is amongst the returned pages, it will not have
3279 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22 3280 */
64019a2e 3281long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3282 unsigned long start, unsigned long nr_pages,
3283 unsigned int gup_flags, struct page **pages,
0b295316 3284 int *locked)
eddb1c22 3285{
9a863a6a
JG
3286 int local_locked = 1;
3287
b2cac248 3288 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc
JG
3289 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3290 return 0;
b2cac248 3291 return __gup_longterm_locked(mm, start, nr_pages, pages,
9a863a6a 3292 locked ? locked : &local_locked,
d64e2dbc 3293 gup_flags);
eddb1c22
JH
3294}
3295EXPORT_SYMBOL(pin_user_pages_remote);
3296
3297/**
3298 * pin_user_pages() - pin user pages in memory for use by other devices
3299 *
3faa52c0
JH
3300 * @start: starting user address
3301 * @nr_pages: number of pages from start to pin
3302 * @gup_flags: flags modifying lookup behaviour
3303 * @pages: array that receives pointers to the pages pinned.
0768c8de 3304 * Should be at least nr_pages long.
3faa52c0
JH
3305 *
3306 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3307 * FOLL_PIN is set.
3308 *
3309 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3310 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3311 *
3312 * Note that if a zero_page is amongst the returned pages, it will not have
3313 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22
JH
3314 */
3315long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 3316 unsigned int gup_flags, struct page **pages)
eddb1c22 3317{
9a863a6a
JG
3318 int locked = 1;
3319
b2cac248 3320 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
d64e2dbc 3321 return 0;
64019a2e 3322 return __gup_longterm_locked(current->mm, start, nr_pages,
b2cac248 3323 pages, &locked, gup_flags);
eddb1c22
JH
3324}
3325EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3326
3327/*
3328 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3329 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3330 * FOLL_PIN and rejects FOLL_GET.
c8070b78
DH
3331 *
3332 * Note that if a zero_page is amongst the returned pages, it will not have
3333 * pins in it and unpin_user_page*() will not remove pins from it.
91429023
JH
3334 */
3335long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3336 struct page **pages, unsigned int gup_flags)
3337{
b2a72dff 3338 int locked = 0;
91429023 3339
b2cac248 3340 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 3341 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc 3342 return 0;
0768c8de 3343
b2cac248 3344 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
b2a72dff 3345 &locked, gup_flags);
91429023
JH
3346}
3347EXPORT_SYMBOL(pin_user_pages_unlocked);