]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/gup.c
mm/gup: cleanup next_page handling
[thirdparty/linux.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
a6e79df9 21#include <linux/shmem_fs.h>
1027e443 22
33a709b2 23#include <asm/mmu_context.h>
1027e443 24#include <asm/tlbflush.h>
2667f50e 25
4bbd4c77
KS
26#include "internal.h"
27
df06b37f
KB
28struct follow_page_context {
29 struct dev_pagemap *pgmap;
30 unsigned int page_mask;
31};
32
b6a2619c
DH
33static inline void sanity_check_pinned_pages(struct page **pages,
34 unsigned long npages)
35{
36 if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 return;
38
39 /*
40 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 * can no longer turn them possibly shared and PageAnonExclusive() will
42 * stick around until the page is freed.
43 *
44 * We'd like to verify that our pinned anonymous pages are still mapped
45 * exclusively. The issue with anon THP is that we don't know how
46 * they are/were mapped when pinning them. However, for anon
47 * THP we can assume that either the given page (PTE-mapped THP) or
48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 * neither is the case, there is certainly something wrong.
50 */
51 for (; npages; npages--, pages++) {
52 struct page *page = *pages;
53 struct folio *folio = page_folio(page);
54
c8070b78
DH
55 if (is_zero_page(page) ||
56 !folio_test_anon(folio))
b6a2619c
DH
57 continue;
58 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 else
61 /* Either a PTE-mapped or a PMD-mapped THP. */
62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 !PageAnonExclusive(page), page);
64 }
65}
66
cd1adf1b 67/*
ece1ed7b 68 * Return the folio with ref appropriately incremented,
cd1adf1b 69 * or NULL if that failed.
a707cdd5 70 */
ece1ed7b 71static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 72{
ece1ed7b 73 struct folio *folio;
a707cdd5 74
59409373 75retry:
ece1ed7b
MWO
76 folio = page_folio(page);
77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 78 return NULL;
ece1ed7b 79 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
a707cdd5 80 return NULL;
c24d3732
JH
81
82 /*
ece1ed7b
MWO
83 * At this point we have a stable reference to the folio; but it
84 * could be that between calling page_folio() and the refcount
85 * increment, the folio was split, in which case we'd end up
86 * holding a reference on a folio that has nothing to do with the page
c24d3732 87 * we were given anymore.
ece1ed7b
MWO
88 * So now that the folio is stable, recheck that the page still
89 * belongs to this folio.
c24d3732 90 */
ece1ed7b 91 if (unlikely(page_folio(page) != folio)) {
f4f451a1
MS
92 if (!put_devmap_managed_page_refs(&folio->page, refs))
93 folio_put_refs(folio, refs);
59409373 94 goto retry;
c24d3732
JH
95 }
96
ece1ed7b 97 return folio;
a707cdd5
JH
98}
99
3967db22 100/**
ece1ed7b 101 * try_grab_folio() - Attempt to get or pin a folio.
3967db22 102 * @page: pointer to page to be grabbed
ece1ed7b 103 * @refs: the value to (effectively) add to the folio's refcount
3967db22
JH
104 * @flags: gup flags: these are the FOLL_* flag values.
105 *
3faa52c0 106 * "grab" names in this file mean, "look at flags to decide whether to use
ece1ed7b 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0
JH
108 *
109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110 * same time. (That's true throughout the get_user_pages*() and
111 * pin_user_pages*() APIs.) Cases:
112 *
ece1ed7b 113 * FOLL_GET: folio's refcount will be incremented by @refs.
3967db22 114 *
ece1ed7b 115 * FOLL_PIN on large folios: folio's refcount will be incremented by
94688e8e 116 * @refs, and its pincount will be incremented by @refs.
3967db22 117 *
ece1ed7b 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
5232c63f 119 * @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0 120 *
ece1ed7b
MWO
121 * Return: The folio containing @page (with refcount appropriately
122 * incremented) for success, or NULL upon failure. If neither FOLL_GET
123 * nor FOLL_PIN was set, that's considered failure, and furthermore,
124 * a likely bug in the caller, so a warning is also emitted.
3faa52c0 125 */
ece1ed7b 126struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
3faa52c0 127{
503670ee
VMO
128 struct folio *folio;
129
130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 return NULL;
132
4003f107
LG
133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 return NULL;
135
3faa52c0 136 if (flags & FOLL_GET)
ece1ed7b 137 return try_get_folio(page, refs);
ece1ed7b 138
503670ee 139 /* FOLL_PIN is set */
c8070b78 140
6e17c6de
LT
141 /*
142 * Don't take a pin on the zero page - it's not going anywhere
143 * and it is used in a *lot* of places.
144 */
145 if (is_zero_page(page))
146 return page_folio(page);
df3a0a21 147
6e17c6de 148 folio = try_get_folio(page, refs);
503670ee
VMO
149 if (!folio)
150 return NULL;
c24d3732 151
503670ee
VMO
152 /*
153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 * right zone, so fail and let the caller fall back to the slow
155 * path.
156 */
157 if (unlikely((flags & FOLL_LONGTERM) &&
158 !folio_is_longterm_pinnable(folio))) {
159 if (!put_devmap_managed_page_refs(&folio->page, refs))
160 folio_put_refs(folio, refs);
161 return NULL;
3faa52c0 162 }
088b8aa5 163
503670ee
VMO
164 /*
165 * When pinning a large folio, use an exact count to track it.
166 *
167 * However, be sure to *also* increment the normal folio
168 * refcount field at least once, so that the folio really
169 * is pinned. That's why the refcount from the earlier
170 * try_get_folio() is left intact.
171 */
172 if (folio_test_large(folio))
173 atomic_add(refs, &folio->_pincount);
174 else
175 folio_ref_add(folio,
176 refs * (GUP_PIN_COUNTING_BIAS - 1));
177 /*
178 * Adjust the pincount before re-checking the PTE for changes.
179 * This is essentially a smp_mb() and is paired with a memory
180 * barrier in page_try_share_anon_rmap().
181 */
182 smp_mb__after_atomic();
47e29d32 183
503670ee 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
3faa52c0 185
503670ee 186 return folio;
3faa52c0
JH
187}
188
d8ddc099 189static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
190{
191 if (flags & FOLL_PIN) {
c8070b78
DH
192 if (is_zero_folio(folio))
193 return;
d8ddc099
MWO
194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 if (folio_test_large(folio))
94688e8e 196 atomic_sub(refs, &folio->_pincount);
4509b42c
JG
197 else
198 refs *= GUP_PIN_COUNTING_BIAS;
199 }
200
f4f451a1
MS
201 if (!put_devmap_managed_page_refs(&folio->page, refs))
202 folio_put_refs(folio, refs);
4509b42c
JG
203}
204
3faa52c0
JH
205/**
206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
5fec0719
MWO
207 * @page: pointer to page to be grabbed
208 * @flags: gup flags: these are the FOLL_* flag values.
3faa52c0
JH
209 *
210 * This might not do anything at all, depending on the flags argument.
211 *
212 * "grab" names in this file mean, "look at flags to decide whether to use
213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214 *
3faa52c0 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
ece1ed7b 216 * time. Cases: please see the try_grab_folio() documentation, with
3967db22 217 * "refs=1".
3faa52c0 218 *
0f089235
LG
219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221 *
222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
223 * be grabbed.
3faa52c0 224 */
0f089235 225int __must_check try_grab_page(struct page *page, unsigned int flags)
3faa52c0 226{
5fec0719
MWO
227 struct folio *folio = page_folio(page);
228
5fec0719 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
0f089235 230 return -ENOMEM;
3faa52c0 231
4003f107
LG
232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 return -EREMOTEIO;
3faa52c0 234
c36c04c2 235 if (flags & FOLL_GET)
5fec0719 236 folio_ref_inc(folio);
c36c04c2 237 else if (flags & FOLL_PIN) {
c8070b78
DH
238 /*
239 * Don't take a pin on the zero page - it's not going anywhere
240 * and it is used in a *lot* of places.
241 */
242 if (is_zero_page(page))
243 return 0;
244
c36c04c2 245 /*
5fec0719 246 * Similar to try_grab_folio(): be sure to *also*
78d9d6ce
MWO
247 * increment the normal page refcount field at least once,
248 * so that the page really is pinned.
c36c04c2 249 */
5fec0719
MWO
250 if (folio_test_large(folio)) {
251 folio_ref_add(folio, 1);
94688e8e 252 atomic_add(1, &folio->_pincount);
8ea2979c 253 } else {
5fec0719 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
8ea2979c 255 }
c36c04c2 256
5fec0719 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
c36c04c2
JH
258 }
259
0f089235 260 return 0;
3faa52c0
JH
261}
262
3faa52c0
JH
263/**
264 * unpin_user_page() - release a dma-pinned page
265 * @page: pointer to page to be released
266 *
267 * Pages that were pinned via pin_user_pages*() must be released via either
268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269 * that such pages can be separately tracked and uniquely handled. In
270 * particular, interactions with RDMA and filesystems need special handling.
271 */
272void unpin_user_page(struct page *page)
273{
b6a2619c 274 sanity_check_pinned_pages(&page, 1);
d8ddc099 275 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
276}
277EXPORT_SYMBOL(unpin_user_page);
278
1101fb8f
DH
279/**
280 * folio_add_pin - Try to get an additional pin on a pinned folio
281 * @folio: The folio to be pinned
282 *
283 * Get an additional pin on a folio we already have a pin on. Makes no change
284 * if the folio is a zero_page.
285 */
286void folio_add_pin(struct folio *folio)
287{
288 if (is_zero_folio(folio))
289 return;
290
291 /*
292 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 * page refcount field at least once, so that the page really is
294 * pinned.
295 */
296 if (folio_test_large(folio)) {
297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 folio_ref_inc(folio);
299 atomic_inc(&folio->_pincount);
300 } else {
301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 }
304}
305
659508f9 306static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 307 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 308{
659508f9
MWO
309 struct page *next = nth_page(start, i);
310 struct folio *folio = page_folio(next);
458a4f78
JM
311 unsigned int nr = 1;
312
659508f9 313 if (folio_test_large(folio))
4c654229 314 nr = min_t(unsigned int, npages - i,
659508f9 315 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 316
458a4f78 317 *ntails = nr;
659508f9 318 return folio;
458a4f78
JM
319}
320
12521c76 321static inline struct folio *gup_folio_next(struct page **list,
28297dbc 322 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 323{
12521c76 324 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
325 unsigned int nr;
326
8745d7f6 327 for (nr = i + 1; nr < npages; nr++) {
12521c76 328 if (page_folio(list[nr]) != folio)
8745d7f6
JM
329 break;
330 }
331
8745d7f6 332 *ntails = nr - i;
12521c76 333 return folio;
8745d7f6
JM
334}
335
fc1d8e7c 336/**
f1f6a7dd 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 338 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 339 * @npages: number of pages in the @pages array.
2d15eb31 340 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
341 *
342 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343 * variants called on that page.
344 *
345 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 346 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
347 * listed as clean. In any case, releases all pages using unpin_user_page(),
348 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 349 *
f1f6a7dd 350 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 351 *
2d15eb31
AM
352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353 * required, then the caller should a) verify that this is really correct,
354 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 355 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
356 *
357 */
f1f6a7dd
JH
358void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 bool make_dirty)
fc1d8e7c 360{
12521c76
MWO
361 unsigned long i;
362 struct folio *folio;
363 unsigned int nr;
2d15eb31
AM
364
365 if (!make_dirty) {
f1f6a7dd 366 unpin_user_pages(pages, npages);
2d15eb31
AM
367 return;
368 }
369
b6a2619c 370 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
371 for (i = 0; i < npages; i += nr) {
372 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31
AM
373 /*
374 * Checking PageDirty at this point may race with
375 * clear_page_dirty_for_io(), but that's OK. Two key
376 * cases:
377 *
378 * 1) This code sees the page as already dirty, so it
379 * skips the call to set_page_dirty(). That could happen
380 * because clear_page_dirty_for_io() called
381 * page_mkclean(), followed by set_page_dirty().
382 * However, now the page is going to get written back,
383 * which meets the original intention of setting it
384 * dirty, so all is well: clear_page_dirty_for_io() goes
385 * on to call TestClearPageDirty(), and write the page
386 * back.
387 *
388 * 2) This code sees the page as clean, so it calls
389 * set_page_dirty(). The page stays dirty, despite being
390 * written back, so it gets written back again in the
391 * next writeback cycle. This is harmless.
392 */
12521c76
MWO
393 if (!folio_test_dirty(folio)) {
394 folio_lock(folio);
395 folio_mark_dirty(folio);
396 folio_unlock(folio);
397 }
398 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 399 }
fc1d8e7c 400}
f1f6a7dd 401EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 402
458a4f78
JM
403/**
404 * unpin_user_page_range_dirty_lock() - release and optionally dirty
405 * gup-pinned page range
406 *
407 * @page: the starting page of a range maybe marked dirty, and definitely released.
408 * @npages: number of consecutive pages to release.
409 * @make_dirty: whether to mark the pages dirty
410 *
411 * "gup-pinned page range" refers to a range of pages that has had one of the
412 * pin_user_pages() variants called on that page.
413 *
414 * For the page ranges defined by [page .. page+npages], make that range (or
415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416 * page range was previously listed as clean.
417 *
418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419 * required, then the caller should a) verify that this is really correct,
420 * because _lock() is usually required, and b) hand code it:
421 * set_page_dirty_lock(), unpin_user_page().
422 *
423 */
424void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 bool make_dirty)
426{
659508f9
MWO
427 unsigned long i;
428 struct folio *folio;
429 unsigned int nr;
430
431 for (i = 0; i < npages; i += nr) {
432 folio = gup_folio_range_next(page, npages, i, &nr);
433 if (make_dirty && !folio_test_dirty(folio)) {
434 folio_lock(folio);
435 folio_mark_dirty(folio);
436 folio_unlock(folio);
437 }
438 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
439 }
440}
441EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442
b6a2619c
DH
443static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444{
445 unsigned long i;
446 struct folio *folio;
447 unsigned int nr;
448
449 /*
450 * Don't perform any sanity checks because we might have raced with
451 * fork() and some anonymous pages might now actually be shared --
452 * which is why we're unpinning after all.
453 */
454 for (i = 0; i < npages; i += nr) {
455 folio = gup_folio_next(pages, npages, i, &nr);
456 gup_put_folio(folio, nr, FOLL_PIN);
457 }
458}
459
fc1d8e7c 460/**
f1f6a7dd 461 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
462 * @pages: array of pages to be marked dirty and released.
463 * @npages: number of pages in the @pages array.
464 *
f1f6a7dd 465 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 466 *
f1f6a7dd 467 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 468 */
f1f6a7dd 469void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 470{
12521c76
MWO
471 unsigned long i;
472 struct folio *folio;
473 unsigned int nr;
fc1d8e7c 474
146608bb
JH
475 /*
476 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 * leaving them pinned), but probably not. More likely, gup/pup returned
478 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 */
480 if (WARN_ON(IS_ERR_VALUE(npages)))
481 return;
31b912de 482
b6a2619c 483 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
484 for (i = 0; i < npages; i += nr) {
485 folio = gup_folio_next(pages, npages, i, &nr);
486 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 487 }
fc1d8e7c 488}
f1f6a7dd 489EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 490
a458b76a
AA
491/*
492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
494 * cache bouncing on large SMP machines for concurrent pinned gups.
495 */
496static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497{
498 if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 set_bit(MMF_HAS_PINNED, mm_flags);
500}
501
050a9adc 502#ifdef CONFIG_MMU
69e68b4f
KS
503static struct page *no_page_table(struct vm_area_struct *vma,
504 unsigned int flags)
4bbd4c77 505{
69e68b4f
KS
506 /*
507 * When core dumping an enormous anonymous area that nobody
508 * has touched so far, we don't want to allocate unnecessary pages or
509 * page tables. Return error instead of NULL to skip handle_mm_fault,
510 * then get_dump_page() will return NULL to leave a hole in the dump.
511 * But we can only make this optimization where a hole would surely
512 * be zero-filled if handle_mm_fault() actually did handle it.
513 */
a0137f16
AK
514 if ((flags & FOLL_DUMP) &&
515 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
516 return ERR_PTR(-EFAULT);
517 return NULL;
518}
4bbd4c77 519
1027e443
KS
520static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
521 pte_t *pte, unsigned int flags)
522{
1027e443 523 if (flags & FOLL_TOUCH) {
c33c7948
RR
524 pte_t orig_entry = ptep_get(pte);
525 pte_t entry = orig_entry;
1027e443
KS
526
527 if (flags & FOLL_WRITE)
528 entry = pte_mkdirty(entry);
529 entry = pte_mkyoung(entry);
530
c33c7948 531 if (!pte_same(orig_entry, entry)) {
1027e443
KS
532 set_pte_at(vma->vm_mm, address, pte, entry);
533 update_mmu_cache(vma, address, pte);
534 }
535 }
536
537 /* Proper page table entry exists, but no corresponding struct page */
538 return -EEXIST;
539}
540
5535be30
DH
541/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
542static inline bool can_follow_write_pte(pte_t pte, struct page *page,
543 struct vm_area_struct *vma,
544 unsigned int flags)
19be0eaf 545{
5535be30
DH
546 /* If the pte is writable, we can write to the page. */
547 if (pte_write(pte))
548 return true;
549
550 /* Maybe FOLL_FORCE is set to override it? */
551 if (!(flags & FOLL_FORCE))
552 return false;
553
554 /* But FOLL_FORCE has no effect on shared mappings */
555 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
556 return false;
557
558 /* ... or read-only private ones */
559 if (!(vma->vm_flags & VM_MAYWRITE))
560 return false;
561
562 /* ... or already writable ones that just need to take a write fault */
563 if (vma->vm_flags & VM_WRITE)
564 return false;
565
566 /*
567 * See can_change_pte_writable(): we broke COW and could map the page
568 * writable if we have an exclusive anonymous page ...
569 */
570 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
571 return false;
572
573 /* ... and a write-fault isn't required for other reasons. */
574 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
575 return false;
576 return !userfaultfd_pte_wp(vma, pte);
19be0eaf
LT
577}
578
69e68b4f 579static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
580 unsigned long address, pmd_t *pmd, unsigned int flags,
581 struct dev_pagemap **pgmap)
69e68b4f
KS
582{
583 struct mm_struct *mm = vma->vm_mm;
584 struct page *page;
585 spinlock_t *ptl;
586 pte_t *ptep, pte;
f28d4363 587 int ret;
4bbd4c77 588
eddb1c22
JH
589 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
590 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
591 (FOLL_PIN | FOLL_GET)))
592 return ERR_PTR(-EINVAL);
4bbd4c77
KS
593
594 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
04dee9e8
HD
595 if (!ptep)
596 return no_page_table(vma, flags);
c33c7948 597 pte = ptep_get(ptep);
f7355e99
DH
598 if (!pte_present(pte))
599 goto no_page;
474098ed 600 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
4bbd4c77 601 goto no_page;
4bbd4c77
KS
602
603 page = vm_normal_page(vma, address, pte);
5535be30
DH
604
605 /*
606 * We only care about anon pages in can_follow_write_pte() and don't
607 * have to worry about pte_devmap() because they are never anon.
608 */
609 if ((flags & FOLL_WRITE) &&
610 !can_follow_write_pte(pte, page, vma, flags)) {
611 page = NULL;
612 goto out;
613 }
614
3faa52c0 615 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 616 /*
3faa52c0
JH
617 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
618 * case since they are only valid while holding the pgmap
619 * reference.
3565fce3 620 */
df06b37f
KB
621 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
622 if (*pgmap)
3565fce3
DW
623 page = pte_page(pte);
624 else
625 goto no_page;
626 } else if (unlikely(!page)) {
1027e443
KS
627 if (flags & FOLL_DUMP) {
628 /* Avoid special (like zero) pages in core dumps */
629 page = ERR_PTR(-EFAULT);
630 goto out;
631 }
632
633 if (is_zero_pfn(pte_pfn(pte))) {
634 page = pte_page(pte);
635 } else {
1027e443
KS
636 ret = follow_pfn_pte(vma, address, ptep, flags);
637 page = ERR_PTR(ret);
638 goto out;
639 }
4bbd4c77
KS
640 }
641
84209e87 642 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
a7f22660
DH
643 page = ERR_PTR(-EMLINK);
644 goto out;
645 }
b6a2619c
DH
646
647 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
648 !PageAnonExclusive(page), page);
649
3faa52c0 650 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
0f089235
LG
651 ret = try_grab_page(page, flags);
652 if (unlikely(ret)) {
653 page = ERR_PTR(ret);
3faa52c0 654 goto out;
8fde12ca 655 }
4003f107 656
f28d4363
CI
657 /*
658 * We need to make the page accessible if and only if we are going
659 * to access its content (the FOLL_PIN case). Please see
660 * Documentation/core-api/pin_user_pages.rst for details.
661 */
662 if (flags & FOLL_PIN) {
663 ret = arch_make_page_accessible(page);
664 if (ret) {
665 unpin_user_page(page);
666 page = ERR_PTR(ret);
667 goto out;
668 }
669 }
4bbd4c77
KS
670 if (flags & FOLL_TOUCH) {
671 if ((flags & FOLL_WRITE) &&
672 !pte_dirty(pte) && !PageDirty(page))
673 set_page_dirty(page);
674 /*
675 * pte_mkyoung() would be more correct here, but atomic care
676 * is needed to avoid losing the dirty bit: it is easier to use
677 * mark_page_accessed().
678 */
679 mark_page_accessed(page);
680 }
1027e443 681out:
4bbd4c77 682 pte_unmap_unlock(ptep, ptl);
4bbd4c77 683 return page;
4bbd4c77
KS
684no_page:
685 pte_unmap_unlock(ptep, ptl);
686 if (!pte_none(pte))
69e68b4f
KS
687 return NULL;
688 return no_page_table(vma, flags);
689}
690
080dbb61
AK
691static struct page *follow_pmd_mask(struct vm_area_struct *vma,
692 unsigned long address, pud_t *pudp,
df06b37f
KB
693 unsigned int flags,
694 struct follow_page_context *ctx)
69e68b4f 695{
68827280 696 pmd_t *pmd, pmdval;
69e68b4f
KS
697 spinlock_t *ptl;
698 struct page *page;
699 struct mm_struct *mm = vma->vm_mm;
700
080dbb61 701 pmd = pmd_offset(pudp, address);
26e1a0c3 702 pmdval = pmdp_get_lockless(pmd);
68827280 703 if (pmd_none(pmdval))
69e68b4f 704 return no_page_table(vma, flags);
f7355e99 705 if (!pmd_present(pmdval))
e66f17ff 706 return no_page_table(vma, flags);
68827280 707 if (pmd_devmap(pmdval)) {
3565fce3 708 ptl = pmd_lock(mm, pmd);
df06b37f 709 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
710 spin_unlock(ptl);
711 if (page)
712 return page;
713 }
68827280 714 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 715 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 716
474098ed 717 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
db08f203
AK
718 return no_page_table(vma, flags);
719
6742d293 720 ptl = pmd_lock(mm, pmd);
84c3fc4e
ZY
721 if (unlikely(!pmd_present(*pmd))) {
722 spin_unlock(ptl);
f7355e99 723 return no_page_table(vma, flags);
84c3fc4e 724 }
6742d293
KS
725 if (unlikely(!pmd_trans_huge(*pmd))) {
726 spin_unlock(ptl);
df06b37f 727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 728 }
4066c119 729 if (flags & FOLL_SPLIT_PMD) {
2378118b
HD
730 spin_unlock(ptl);
731 split_huge_pmd(vma, pmd, address);
732 /* If pmd was left empty, stuff a page table in there quickly */
733 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
df06b37f 734 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 735 }
6742d293
KS
736 page = follow_trans_huge_pmd(vma, address, pmd, flags);
737 spin_unlock(ptl);
df06b37f 738 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 739 return page;
4bbd4c77
KS
740}
741
080dbb61
AK
742static struct page *follow_pud_mask(struct vm_area_struct *vma,
743 unsigned long address, p4d_t *p4dp,
df06b37f
KB
744 unsigned int flags,
745 struct follow_page_context *ctx)
080dbb61
AK
746{
747 pud_t *pud;
748 spinlock_t *ptl;
749 struct page *page;
750 struct mm_struct *mm = vma->vm_mm;
751
752 pud = pud_offset(p4dp, address);
753 if (pud_none(*pud))
754 return no_page_table(vma, flags);
080dbb61
AK
755 if (pud_devmap(*pud)) {
756 ptl = pud_lock(mm, pud);
df06b37f 757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
758 spin_unlock(ptl);
759 if (page)
760 return page;
761 }
762 if (unlikely(pud_bad(*pud)))
763 return no_page_table(vma, flags);
764
df06b37f 765 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
766}
767
080dbb61
AK
768static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 unsigned long address, pgd_t *pgdp,
df06b37f
KB
770 unsigned int flags,
771 struct follow_page_context *ctx)
080dbb61
AK
772{
773 p4d_t *p4d;
774
775 p4d = p4d_offset(pgdp, address);
776 if (p4d_none(*p4d))
777 return no_page_table(vma, flags);
778 BUILD_BUG_ON(p4d_huge(*p4d));
779 if (unlikely(p4d_bad(*p4d)))
780 return no_page_table(vma, flags);
781
df06b37f 782 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
783}
784
785/**
786 * follow_page_mask - look up a page descriptor from a user-virtual address
787 * @vma: vm_area_struct mapping @address
788 * @address: virtual address to look up
789 * @flags: flags modifying lookup behaviour
78179556
MR
790 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791 * pointer to output page_mask
080dbb61
AK
792 *
793 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
794 *
78179556
MR
795 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
797 *
a7f22660
DH
798 * When getting an anonymous page and the caller has to trigger unsharing
799 * of a shared anonymous page first, -EMLINK is returned. The caller should
800 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
801 * relevant with FOLL_PIN and !FOLL_WRITE.
802 *
78179556
MR
803 * On output, the @ctx->page_mask is set according to the size of the page.
804 *
805 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
806 * an error pointer if there is a mapping to something not represented
807 * by a page descriptor (see also vm_normal_page()).
808 */
a7030aea 809static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 810 unsigned long address, unsigned int flags,
df06b37f 811 struct follow_page_context *ctx)
080dbb61
AK
812{
813 pgd_t *pgd;
080dbb61
AK
814 struct mm_struct *mm = vma->vm_mm;
815
df06b37f 816 ctx->page_mask = 0;
080dbb61 817
57a196a5
MK
818 /*
819 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
820 * special hugetlb page table walking code. This eliminates the
821 * need to check for hugetlb entries in the general walking code.
822 *
823 * hugetlb_follow_page_mask is only for follow_page() handling here.
824 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
825 */
dd767aaa 826 if (is_vm_hugetlb_page(vma))
5502ea44
PX
827 return hugetlb_follow_page_mask(vma, address, flags,
828 &ctx->page_mask);
080dbb61
AK
829
830 pgd = pgd_offset(mm, address);
831
832 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
833 return no_page_table(vma, flags);
834
df06b37f
KB
835 return follow_p4d_mask(vma, address, pgd, flags, ctx);
836}
837
838struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
839 unsigned int foll_flags)
840{
841 struct follow_page_context ctx = { NULL };
842 struct page *page;
843
1507f512
MR
844 if (vma_is_secretmem(vma))
845 return NULL;
846
d64e2dbc 847 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
8909691b
DH
848 return NULL;
849
df06b37f
KB
850 page = follow_page_mask(vma, address, foll_flags, &ctx);
851 if (ctx.pgmap)
852 put_dev_pagemap(ctx.pgmap);
853 return page;
080dbb61
AK
854}
855
f2b495ca
KS
856static int get_gate_page(struct mm_struct *mm, unsigned long address,
857 unsigned int gup_flags, struct vm_area_struct **vma,
858 struct page **page)
859{
860 pgd_t *pgd;
c2febafc 861 p4d_t *p4d;
f2b495ca
KS
862 pud_t *pud;
863 pmd_t *pmd;
864 pte_t *pte;
c33c7948 865 pte_t entry;
f2b495ca
KS
866 int ret = -EFAULT;
867
868 /* user gate pages are read-only */
869 if (gup_flags & FOLL_WRITE)
870 return -EFAULT;
871 if (address > TASK_SIZE)
872 pgd = pgd_offset_k(address);
873 else
874 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
875 if (pgd_none(*pgd))
876 return -EFAULT;
c2febafc 877 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
878 if (p4d_none(*p4d))
879 return -EFAULT;
c2febafc 880 pud = pud_offset(p4d, address);
b5d1c39f
AL
881 if (pud_none(*pud))
882 return -EFAULT;
f2b495ca 883 pmd = pmd_offset(pud, address);
84c3fc4e 884 if (!pmd_present(*pmd))
f2b495ca 885 return -EFAULT;
f2b495ca 886 pte = pte_offset_map(pmd, address);
04dee9e8
HD
887 if (!pte)
888 return -EFAULT;
c33c7948
RR
889 entry = ptep_get(pte);
890 if (pte_none(entry))
f2b495ca
KS
891 goto unmap;
892 *vma = get_gate_vma(mm);
893 if (!page)
894 goto out;
c33c7948 895 *page = vm_normal_page(*vma, address, entry);
f2b495ca 896 if (!*page) {
c33c7948 897 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
f2b495ca 898 goto unmap;
c33c7948 899 *page = pte_page(entry);
f2b495ca 900 }
0f089235
LG
901 ret = try_grab_page(*page, gup_flags);
902 if (unlikely(ret))
8fde12ca 903 goto unmap;
f2b495ca
KS
904out:
905 ret = 0;
906unmap:
907 pte_unmap(pte);
908 return ret;
909}
910
9a95f3cf 911/*
9a863a6a
JG
912 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
913 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
914 * to 0 and -EBUSY returned.
9a95f3cf 915 */
64019a2e 916static int faultin_page(struct vm_area_struct *vma,
a7f22660
DH
917 unsigned long address, unsigned int *flags, bool unshare,
918 int *locked)
16744483 919{
16744483 920 unsigned int fault_flags = 0;
2b740303 921 vm_fault_t ret;
16744483 922
55b8fe70
AG
923 if (*flags & FOLL_NOFAULT)
924 return -EFAULT;
16744483
KS
925 if (*flags & FOLL_WRITE)
926 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
927 if (*flags & FOLL_REMOTE)
928 fault_flags |= FAULT_FLAG_REMOTE;
f04740f5 929 if (*flags & FOLL_UNLOCKABLE) {
71335f37 930 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
93c5c61d
PX
931 /*
932 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
933 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
934 * That's because some callers may not be prepared to
935 * handle early exits caused by non-fatal signals.
936 */
937 if (*flags & FOLL_INTERRUPTIBLE)
938 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
939 }
16744483
KS
940 if (*flags & FOLL_NOWAIT)
941 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 942 if (*flags & FOLL_TRIED) {
4426e945
PX
943 /*
944 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
945 * can co-exist
946 */
234b239b
ALC
947 fault_flags |= FAULT_FLAG_TRIED;
948 }
a7f22660
DH
949 if (unshare) {
950 fault_flags |= FAULT_FLAG_UNSHARE;
951 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
952 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
953 }
16744483 954
bce617ed 955 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
956
957 if (ret & VM_FAULT_COMPLETED) {
958 /*
959 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
960 * mmap lock in the page fault handler. Sanity check this.
961 */
962 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
9a863a6a
JG
963 *locked = 0;
964
d9272525
PX
965 /*
966 * We should do the same as VM_FAULT_RETRY, but let's not
967 * return -EBUSY since that's not reflecting the reality of
968 * what has happened - we've just fully completed a page
969 * fault, with the mmap lock released. Use -EAGAIN to show
970 * that we want to take the mmap lock _again_.
971 */
972 return -EAGAIN;
973 }
974
16744483 975 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
976 int err = vm_fault_to_errno(ret, *flags);
977
978 if (err)
979 return err;
16744483
KS
980 BUG();
981 }
982
16744483 983 if (ret & VM_FAULT_RETRY) {
9a863a6a 984 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 985 *locked = 0;
16744483
KS
986 return -EBUSY;
987 }
988
16744483
KS
989 return 0;
990}
991
8ac26843
LS
992/*
993 * Writing to file-backed mappings which require folio dirty tracking using GUP
994 * is a fundamentally broken operation, as kernel write access to GUP mappings
995 * do not adhere to the semantics expected by a file system.
996 *
997 * Consider the following scenario:-
998 *
999 * 1. A folio is written to via GUP which write-faults the memory, notifying
1000 * the file system and dirtying the folio.
1001 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1002 * the PTE being marked read-only.
1003 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1004 * direct mapping.
1005 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1006 * (though it does not have to).
1007 *
1008 * This results in both data being written to a folio without writenotify, and
1009 * the folio being dirtied unexpectedly (if the caller decides to do so).
1010 */
1011static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1012 unsigned long gup_flags)
1013{
1014 /*
1015 * If we aren't pinning then no problematic write can occur. A long term
1016 * pin is the most egregious case so this is the case we disallow.
1017 */
1018 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1019 (FOLL_PIN | FOLL_LONGTERM))
1020 return true;
1021
1022 /*
1023 * If the VMA does not require dirty tracking then no problematic write
1024 * can occur either.
1025 */
1026 return !vma_needs_dirty_tracking(vma);
1027}
1028
fa5bb209
KS
1029static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1030{
1031 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
1032 int write = (gup_flags & FOLL_WRITE);
1033 int foreign = (gup_flags & FOLL_REMOTE);
8ac26843 1034 bool vma_anon = vma_is_anonymous(vma);
fa5bb209
KS
1035
1036 if (vm_flags & (VM_IO | VM_PFNMAP))
1037 return -EFAULT;
1038
8ac26843 1039 if ((gup_flags & FOLL_ANON) && !vma_anon)
7f7ccc2c
WT
1040 return -EFAULT;
1041
52650c8b
JG
1042 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1043 return -EOPNOTSUPP;
1044
1507f512
MR
1045 if (vma_is_secretmem(vma))
1046 return -EFAULT;
1047
1b2ee126 1048 if (write) {
8ac26843
LS
1049 if (!vma_anon &&
1050 !writable_file_mapping_allowed(vma, gup_flags))
1051 return -EFAULT;
1052
fa5bb209
KS
1053 if (!(vm_flags & VM_WRITE)) {
1054 if (!(gup_flags & FOLL_FORCE))
1055 return -EFAULT;
f347454d
DH
1056 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1057 if (is_vm_hugetlb_page(vma))
1058 return -EFAULT;
fa5bb209
KS
1059 /*
1060 * We used to let the write,force case do COW in a
1061 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1062 * set a breakpoint in a read-only mapping of an
1063 * executable, without corrupting the file (yet only
1064 * when that file had been opened for writing!).
1065 * Anon pages in shared mappings are surprising: now
1066 * just reject it.
1067 */
46435364 1068 if (!is_cow_mapping(vm_flags))
fa5bb209 1069 return -EFAULT;
fa5bb209
KS
1070 }
1071 } else if (!(vm_flags & VM_READ)) {
1072 if (!(gup_flags & FOLL_FORCE))
1073 return -EFAULT;
1074 /*
1075 * Is there actually any vma we can reach here which does not
1076 * have VM_MAYREAD set?
1077 */
1078 if (!(vm_flags & VM_MAYREAD))
1079 return -EFAULT;
1080 }
d61172b4
DH
1081 /*
1082 * gups are always data accesses, not instruction
1083 * fetches, so execute=false here
1084 */
1085 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1086 return -EFAULT;
fa5bb209
KS
1087 return 0;
1088}
1089
6cd06ab1
LT
1090/*
1091 * This is "vma_lookup()", but with a warning if we would have
1092 * historically expanded the stack in the GUP code.
1093 */
1094static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1095 unsigned long addr)
1096{
1097#ifdef CONFIG_STACK_GROWSUP
1098 return vma_lookup(mm, addr);
1099#else
1100 static volatile unsigned long next_warn;
1101 struct vm_area_struct *vma;
1102 unsigned long now, next;
1103
1104 vma = find_vma(mm, addr);
1105 if (!vma || (addr >= vma->vm_start))
1106 return vma;
1107
1108 /* Only warn for half-way relevant accesses */
1109 if (!(vma->vm_flags & VM_GROWSDOWN))
1110 return NULL;
1111 if (vma->vm_start - addr > 65536)
1112 return NULL;
1113
1114 /* Let's not warn more than once an hour.. */
1115 now = jiffies; next = next_warn;
1116 if (next && time_before(now, next))
1117 return NULL;
1118 next_warn = now + 60*60*HZ;
1119
1120 /* Let people know things may have changed. */
1121 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1122 current->comm, task_pid_nr(current),
1123 vma->vm_start, vma->vm_end, addr);
1124 dump_stack();
1125 return NULL;
1126#endif
1127}
1128
4bbd4c77
KS
1129/**
1130 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1131 * @mm: mm_struct of target mm
1132 * @start: starting user address
1133 * @nr_pages: number of pages from start to pin
1134 * @gup_flags: flags modifying pin behaviour
1135 * @pages: array that receives pointers to the pages pinned.
1136 * Should be at least nr_pages long. Or NULL, if caller
1137 * only intends to ensure the pages are faulted in.
c1e8d7c6 1138 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1139 *
d2dfbe47
LX
1140 * Returns either number of pages pinned (which may be less than the
1141 * number requested), or an error. Details about the return value:
1142 *
1143 * -- If nr_pages is 0, returns 0.
1144 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1145 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1146 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1147 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1148 *
1149 * The caller is responsible for releasing returned @pages, via put_page().
1150 *
c1e8d7c6 1151 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1152 *
1153 * __get_user_pages walks a process's page tables and takes a reference to
1154 * each struct page that each user address corresponds to at a given
1155 * instant. That is, it takes the page that would be accessed if a user
1156 * thread accesses the given user virtual address at that instant.
1157 *
1158 * This does not guarantee that the page exists in the user mappings when
1159 * __get_user_pages returns, and there may even be a completely different
1160 * page there in some cases (eg. if mmapped pagecache has been invalidated
c5acf1f6 1161 * and subsequently re-faulted). However it does guarantee that the page
4bbd4c77
KS
1162 * won't be freed completely. And mostly callers simply care that the page
1163 * contains data that was valid *at some point in time*. Typically, an IO
1164 * or similar operation cannot guarantee anything stronger anyway because
1165 * locks can't be held over the syscall boundary.
1166 *
1167 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1168 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1169 * appropriate) must be called after the page is finished with, and
1170 * before put_page is called.
1171 *
9a863a6a
JG
1172 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1173 * be released. If this happens *@locked will be set to 0 on return.
9a95f3cf 1174 *
9a863a6a
JG
1175 * A caller using such a combination of @gup_flags must therefore hold the
1176 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1177 * it must be held for either reading or writing and will not be released.
4bbd4c77
KS
1178 *
1179 * In most cases, get_user_pages or get_user_pages_fast should be used
1180 * instead of __get_user_pages. __get_user_pages should be used only if
1181 * you need some special @gup_flags.
1182 */
64019a2e 1183static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1184 unsigned long start, unsigned long nr_pages,
1185 unsigned int gup_flags, struct page **pages,
b2cac248 1186 int *locked)
4bbd4c77 1187{
df06b37f 1188 long ret = 0, i = 0;
fa5bb209 1189 struct vm_area_struct *vma = NULL;
df06b37f 1190 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1191
1192 if (!nr_pages)
1193 return 0;
1194
428e106a 1195 start = untagged_addr_remote(mm, start);
f9652594 1196
eddb1c22 1197 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77 1198
4bbd4c77 1199 do {
fa5bb209
KS
1200 struct page *page;
1201 unsigned int foll_flags = gup_flags;
1202 unsigned int page_increm;
1203
1204 /* first iteration or cross vma bound */
1205 if (!vma || start >= vma->vm_end) {
6cd06ab1 1206 vma = gup_vma_lookup(mm, start);
fa5bb209 1207 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1208 ret = get_gate_page(mm, start & PAGE_MASK,
1209 gup_flags, &vma,
ffe1e786 1210 pages ? &page : NULL);
fa5bb209 1211 if (ret)
08be37b7 1212 goto out;
df06b37f 1213 ctx.page_mask = 0;
fa5bb209
KS
1214 goto next_page;
1215 }
4bbd4c77 1216
52650c8b 1217 if (!vma) {
df06b37f
KB
1218 ret = -EFAULT;
1219 goto out;
1220 }
52650c8b
JG
1221 ret = check_vma_flags(vma, gup_flags);
1222 if (ret)
1223 goto out;
1224
fa5bb209 1225 if (is_vm_hugetlb_page(vma)) {
b2cac248
LS
1226 i = follow_hugetlb_page(mm, vma, pages,
1227 &start, &nr_pages, i,
1228 gup_flags, locked);
9a863a6a 1229 if (!*locked) {
ad415db8
PX
1230 /*
1231 * We've got a VM_FAULT_RETRY
c1e8d7c6 1232 * and we've lost mmap_lock.
ad415db8
PX
1233 * We must stop here.
1234 */
1235 BUG_ON(gup_flags & FOLL_NOWAIT);
ad415db8
PX
1236 goto out;
1237 }
fa5bb209 1238 continue;
4bbd4c77 1239 }
fa5bb209
KS
1240 }
1241retry:
1242 /*
1243 * If we have a pending SIGKILL, don't keep faulting pages and
1244 * potentially allocating memory.
1245 */
fa45f116 1246 if (fatal_signal_pending(current)) {
d180870d 1247 ret = -EINTR;
df06b37f
KB
1248 goto out;
1249 }
fa5bb209 1250 cond_resched();
df06b37f
KB
1251
1252 page = follow_page_mask(vma, start, foll_flags, &ctx);
a7f22660
DH
1253 if (!page || PTR_ERR(page) == -EMLINK) {
1254 ret = faultin_page(vma, start, &foll_flags,
1255 PTR_ERR(page) == -EMLINK, locked);
fa5bb209
KS
1256 switch (ret) {
1257 case 0:
1258 goto retry;
df06b37f 1259 case -EBUSY:
d9272525 1260 case -EAGAIN:
df06b37f 1261 ret = 0;
e4a9bc58 1262 fallthrough;
fa5bb209
KS
1263 case -EFAULT:
1264 case -ENOMEM:
1265 case -EHWPOISON:
df06b37f 1266 goto out;
4bbd4c77 1267 }
fa5bb209 1268 BUG();
1027e443
KS
1269 } else if (PTR_ERR(page) == -EEXIST) {
1270 /*
1271 * Proper page table entry exists, but no corresponding
65462462
JH
1272 * struct page. If the caller expects **pages to be
1273 * filled in, bail out now, because that can't be done
1274 * for this page.
1027e443 1275 */
65462462
JH
1276 if (pages) {
1277 ret = PTR_ERR(page);
1278 goto out;
1279 }
1027e443 1280 } else if (IS_ERR(page)) {
df06b37f
KB
1281 ret = PTR_ERR(page);
1282 goto out;
1027e443 1283 }
ffe1e786 1284next_page:
fa5bb209
KS
1285 if (pages) {
1286 pages[i] = page;
1287 flush_anon_page(vma, page, start);
1288 flush_dcache_page(page);
df06b37f 1289 ctx.page_mask = 0;
4bbd4c77 1290 }
ffe1e786 1291
df06b37f 1292 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1293 if (page_increm > nr_pages)
1294 page_increm = nr_pages;
1295 i += page_increm;
1296 start += page_increm * PAGE_SIZE;
1297 nr_pages -= page_increm;
4bbd4c77 1298 } while (nr_pages);
df06b37f
KB
1299out:
1300 if (ctx.pgmap)
1301 put_dev_pagemap(ctx.pgmap);
1302 return i ? i : ret;
4bbd4c77 1303}
4bbd4c77 1304
771ab430
TK
1305static bool vma_permits_fault(struct vm_area_struct *vma,
1306 unsigned int fault_flags)
d4925e00 1307{
1b2ee126
DH
1308 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1309 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1310 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1311
1312 if (!(vm_flags & vma->vm_flags))
1313 return false;
1314
33a709b2
DH
1315 /*
1316 * The architecture might have a hardware protection
1b2ee126 1317 * mechanism other than read/write that can deny access.
d61172b4
DH
1318 *
1319 * gup always represents data access, not instruction
1320 * fetches, so execute=false here:
33a709b2 1321 */
d61172b4 1322 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1323 return false;
1324
d4925e00
DH
1325 return true;
1326}
1327
adc8cb40 1328/**
4bbd4c77 1329 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1330 * @mm: mm_struct of target mm
1331 * @address: user address
1332 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1333 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1334 * does not allow retry. If NULL, the caller must guarantee
1335 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1336 *
1337 * This is meant to be called in the specific scenario where for locking reasons
1338 * we try to access user memory in atomic context (within a pagefault_disable()
1339 * section), this returns -EFAULT, and we want to resolve the user fault before
1340 * trying again.
1341 *
1342 * Typically this is meant to be used by the futex code.
1343 *
1344 * The main difference with get_user_pages() is that this function will
1345 * unconditionally call handle_mm_fault() which will in turn perform all the
1346 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1347 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1348 *
1349 * This is important for some architectures where those bits also gate the
1350 * access permission to the page because they are maintained in software. On
1351 * such architectures, gup() will not be enough to make a subsequent access
1352 * succeed.
1353 *
c1e8d7c6
ML
1354 * This function will not return with an unlocked mmap_lock. So it has not the
1355 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1356 */
64019a2e 1357int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1358 unsigned long address, unsigned int fault_flags,
1359 bool *unlocked)
4bbd4c77
KS
1360{
1361 struct vm_area_struct *vma;
8fed2f3c 1362 vm_fault_t ret;
4a9e1cda 1363
428e106a 1364 address = untagged_addr_remote(mm, address);
f9652594 1365
4a9e1cda 1366 if (unlocked)
71335f37 1367 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1368
4a9e1cda 1369retry:
6cd06ab1 1370 vma = gup_vma_lookup(mm, address);
8d7071af 1371 if (!vma)
4bbd4c77
KS
1372 return -EFAULT;
1373
d4925e00 1374 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1375 return -EFAULT;
1376
475f4dfc
PX
1377 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1378 fatal_signal_pending(current))
1379 return -EINTR;
1380
bce617ed 1381 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1382
1383 if (ret & VM_FAULT_COMPLETED) {
1384 /*
1385 * NOTE: it's a pity that we need to retake the lock here
1386 * to pair with the unlock() in the callers. Ideally we
1387 * could tell the callers so they do not need to unlock.
1388 */
1389 mmap_read_lock(mm);
1390 *unlocked = true;
1391 return 0;
1392 }
1393
4bbd4c77 1394 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1395 int err = vm_fault_to_errno(ret, 0);
1396
1397 if (err)
1398 return err;
4bbd4c77
KS
1399 BUG();
1400 }
4a9e1cda
DD
1401
1402 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1403 mmap_read_lock(mm);
475f4dfc
PX
1404 *unlocked = true;
1405 fault_flags |= FAULT_FLAG_TRIED;
1406 goto retry;
4a9e1cda
DD
1407 }
1408
4bbd4c77
KS
1409 return 0;
1410}
add6a0cd 1411EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1412
93c5c61d
PX
1413/*
1414 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1415 * specified, it'll also respond to generic signals. The caller of GUP
1416 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1417 */
1418static bool gup_signal_pending(unsigned int flags)
1419{
1420 if (fatal_signal_pending(current))
1421 return true;
1422
1423 if (!(flags & FOLL_INTERRUPTIBLE))
1424 return false;
1425
1426 return signal_pending(current);
1427}
1428
2d3a36a4 1429/*
b2a72dff
JG
1430 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1431 * the caller. This function may drop the mmap_lock. If it does so, then it will
1432 * set (*locked = 0).
1433 *
1434 * (*locked == 0) means that the caller expects this function to acquire and
1435 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1436 * the function returns, even though it may have changed temporarily during
1437 * function execution.
1438 *
1439 * Please note that this function, unlike __get_user_pages(), will not return 0
1440 * for nr_pages > 0, unless FOLL_NOWAIT is used.
2d3a36a4 1441 */
64019a2e 1442static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1443 unsigned long start,
1444 unsigned long nr_pages,
f0818f47 1445 struct page **pages,
e716712f 1446 int *locked,
0fd71a56 1447 unsigned int flags)
f0818f47 1448{
f0818f47 1449 long ret, pages_done;
b2a72dff 1450 bool must_unlock = false;
f0818f47 1451
b2a72dff
JG
1452 /*
1453 * The internal caller expects GUP to manage the lock internally and the
1454 * lock must be released when this returns.
1455 */
9a863a6a 1456 if (!*locked) {
b2a72dff
JG
1457 if (mmap_read_lock_killable(mm))
1458 return -EAGAIN;
1459 must_unlock = true;
1460 *locked = 1;
f0818f47 1461 }
961ba472
JG
1462 else
1463 mmap_assert_locked(mm);
f0818f47 1464
a458b76a
AA
1465 if (flags & FOLL_PIN)
1466 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1467
eddb1c22
JH
1468 /*
1469 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1470 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1471 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1472 * for FOLL_GET, not for the newer FOLL_PIN.
1473 *
1474 * FOLL_PIN always expects pages to be non-null, but no need to assert
1475 * that here, as any failures will be obvious enough.
1476 */
1477 if (pages && !(flags & FOLL_PIN))
f0818f47 1478 flags |= FOLL_GET;
f0818f47
AA
1479
1480 pages_done = 0;
f0818f47 1481 for (;;) {
64019a2e 1482 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
b2cac248 1483 locked);
f04740f5 1484 if (!(flags & FOLL_UNLOCKABLE)) {
f0818f47 1485 /* VM_FAULT_RETRY couldn't trigger, bypass */
f04740f5
JG
1486 pages_done = ret;
1487 break;
1488 }
f0818f47 1489
d9272525 1490 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
f0818f47
AA
1491 if (!*locked) {
1492 BUG_ON(ret < 0);
1493 BUG_ON(ret >= nr_pages);
1494 }
1495
f0818f47
AA
1496 if (ret > 0) {
1497 nr_pages -= ret;
1498 pages_done += ret;
1499 if (!nr_pages)
1500 break;
1501 }
1502 if (*locked) {
96312e61
AA
1503 /*
1504 * VM_FAULT_RETRY didn't trigger or it was a
1505 * FOLL_NOWAIT.
1506 */
f0818f47
AA
1507 if (!pages_done)
1508 pages_done = ret;
1509 break;
1510 }
df17277b
MR
1511 /*
1512 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1513 * For the prefault case (!pages) we only update counts.
1514 */
1515 if (likely(pages))
1516 pages += ret;
f0818f47 1517 start += ret << PAGE_SHIFT;
b2a72dff
JG
1518
1519 /* The lock was temporarily dropped, so we must unlock later */
1520 must_unlock = true;
f0818f47 1521
4426e945 1522retry:
f0818f47
AA
1523 /*
1524 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1525 * with both FAULT_FLAG_ALLOW_RETRY and
1526 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
93c5c61d
PX
1527 * by fatal signals of even common signals, depending on
1528 * the caller's request. So we need to check it before we
4426e945 1529 * start trying again otherwise it can loop forever.
f0818f47 1530 */
93c5c61d 1531 if (gup_signal_pending(flags)) {
ae46d2aa
HD
1532 if (!pages_done)
1533 pages_done = -EINTR;
4426e945 1534 break;
ae46d2aa 1535 }
4426e945 1536
d8ed45c5 1537 ret = mmap_read_lock_killable(mm);
71335f37
PX
1538 if (ret) {
1539 BUG_ON(ret > 0);
1540 if (!pages_done)
1541 pages_done = ret;
1542 break;
1543 }
4426e945 1544
c7b6a566 1545 *locked = 1;
64019a2e 1546 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
b2cac248 1547 pages, locked);
4426e945
PX
1548 if (!*locked) {
1549 /* Continue to retry until we succeeded */
1550 BUG_ON(ret != 0);
1551 goto retry;
1552 }
f0818f47
AA
1553 if (ret != 1) {
1554 BUG_ON(ret > 1);
1555 if (!pages_done)
1556 pages_done = ret;
1557 break;
1558 }
1559 nr_pages--;
1560 pages_done++;
1561 if (!nr_pages)
1562 break;
df17277b
MR
1563 if (likely(pages))
1564 pages++;
f0818f47
AA
1565 start += PAGE_SIZE;
1566 }
b2a72dff 1567 if (must_unlock && *locked) {
f0818f47 1568 /*
b2a72dff
JG
1569 * We either temporarily dropped the lock, or the caller
1570 * requested that we both acquire and drop the lock. Either way,
1571 * we must now unlock, and notify the caller of that state.
f0818f47 1572 */
d8ed45c5 1573 mmap_read_unlock(mm);
f0818f47
AA
1574 *locked = 0;
1575 }
1576 return pages_done;
1577}
1578
d3649f68
CH
1579/**
1580 * populate_vma_page_range() - populate a range of pages in the vma.
1581 * @vma: target vma
1582 * @start: start address
1583 * @end: end address
c1e8d7c6 1584 * @locked: whether the mmap_lock is still held
d3649f68
CH
1585 *
1586 * This takes care of mlocking the pages too if VM_LOCKED is set.
1587 *
0a36f7f8
TY
1588 * Return either number of pages pinned in the vma, or a negative error
1589 * code on error.
d3649f68 1590 *
c1e8d7c6 1591 * vma->vm_mm->mmap_lock must be held.
d3649f68 1592 *
4f6da934 1593 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1594 * be unperturbed.
1595 *
4f6da934
PX
1596 * If @locked is non-NULL, it must held for read only and may be
1597 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1598 */
1599long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1600 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1601{
1602 struct mm_struct *mm = vma->vm_mm;
1603 unsigned long nr_pages = (end - start) / PAGE_SIZE;
9a863a6a 1604 int local_locked = 1;
d3649f68 1605 int gup_flags;
ece369c7 1606 long ret;
d3649f68 1607
be51eb18
ML
1608 VM_BUG_ON(!PAGE_ALIGNED(start));
1609 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1610 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1611 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1612 mmap_assert_locked(mm);
d3649f68 1613
b67bf49c
HD
1614 /*
1615 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1616 * faultin_page() to break COW, so it has no work to do here.
1617 */
d3649f68 1618 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1619 return nr_pages;
1620
1621 gup_flags = FOLL_TOUCH;
d3649f68
CH
1622 /*
1623 * We want to touch writable mappings with a write fault in order
1624 * to break COW, except for shared mappings because these don't COW
1625 * and we would not want to dirty them for nothing.
1626 */
1627 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1628 gup_flags |= FOLL_WRITE;
1629
1630 /*
1631 * We want mlock to succeed for regions that have any permissions
1632 * other than PROT_NONE.
1633 */
3122e80e 1634 if (vma_is_accessible(vma))
d3649f68
CH
1635 gup_flags |= FOLL_FORCE;
1636
f04740f5
JG
1637 if (locked)
1638 gup_flags |= FOLL_UNLOCKABLE;
1639
d3649f68
CH
1640 /*
1641 * We made sure addr is within a VMA, so the following will
1642 * not result in a stack expansion that recurses back here.
1643 */
ece369c7 1644 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
b2cac248 1645 NULL, locked ? locked : &local_locked);
ece369c7
HD
1646 lru_add_drain();
1647 return ret;
d3649f68
CH
1648}
1649
4ca9b385
DH
1650/*
1651 * faultin_vma_page_range() - populate (prefault) page tables inside the
1652 * given VMA range readable/writable
1653 *
1654 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1655 *
1656 * @vma: target vma
1657 * @start: start address
1658 * @end: end address
1659 * @write: whether to prefault readable or writable
1660 * @locked: whether the mmap_lock is still held
1661 *
1662 * Returns either number of processed pages in the vma, or a negative error
1663 * code on error (see __get_user_pages()).
1664 *
1665 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
6e4382c7 1666 * covered by the VMA. If it's released, *@locked will be set to 0.
4ca9b385
DH
1667 */
1668long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1669 unsigned long end, bool write, int *locked)
1670{
1671 struct mm_struct *mm = vma->vm_mm;
1672 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1673 int gup_flags;
ece369c7 1674 long ret;
4ca9b385
DH
1675
1676 VM_BUG_ON(!PAGE_ALIGNED(start));
1677 VM_BUG_ON(!PAGE_ALIGNED(end));
1678 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1679 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1680 mmap_assert_locked(mm);
1681
1682 /*
1683 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1684 * the page dirty with FOLL_WRITE -- which doesn't make a
1685 * difference with !FOLL_FORCE, because the page is writable
1686 * in the page table.
1687 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1688 * a poisoned page.
4ca9b385
DH
1689 * !FOLL_FORCE: Require proper access permissions.
1690 */
f04740f5 1691 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
4ca9b385
DH
1692 if (write)
1693 gup_flags |= FOLL_WRITE;
1694
1695 /*
eb2faa51
DH
1696 * We want to report -EINVAL instead of -EFAULT for any permission
1697 * problems or incompatible mappings.
4ca9b385 1698 */
eb2faa51
DH
1699 if (check_vma_flags(vma, gup_flags))
1700 return -EINVAL;
1701
ece369c7 1702 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
b2cac248 1703 NULL, locked);
ece369c7
HD
1704 lru_add_drain();
1705 return ret;
4ca9b385
DH
1706}
1707
d3649f68
CH
1708/*
1709 * __mm_populate - populate and/or mlock pages within a range of address space.
1710 *
1711 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1712 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1713 * mmap_lock must not be held.
d3649f68
CH
1714 */
1715int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1716{
1717 struct mm_struct *mm = current->mm;
1718 unsigned long end, nstart, nend;
1719 struct vm_area_struct *vma = NULL;
1720 int locked = 0;
1721 long ret = 0;
1722
1723 end = start + len;
1724
1725 for (nstart = start; nstart < end; nstart = nend) {
1726 /*
1727 * We want to fault in pages for [nstart; end) address range.
1728 * Find first corresponding VMA.
1729 */
1730 if (!locked) {
1731 locked = 1;
d8ed45c5 1732 mmap_read_lock(mm);
c4d1a92d 1733 vma = find_vma_intersection(mm, nstart, end);
d3649f68 1734 } else if (nstart >= vma->vm_end)
c4d1a92d
LH
1735 vma = find_vma_intersection(mm, vma->vm_end, end);
1736
1737 if (!vma)
d3649f68
CH
1738 break;
1739 /*
1740 * Set [nstart; nend) to intersection of desired address
1741 * range with the first VMA. Also, skip undesirable VMA types.
1742 */
1743 nend = min(end, vma->vm_end);
1744 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1745 continue;
1746 if (nstart < vma->vm_start)
1747 nstart = vma->vm_start;
1748 /*
1749 * Now fault in a range of pages. populate_vma_page_range()
1750 * double checks the vma flags, so that it won't mlock pages
1751 * if the vma was already munlocked.
1752 */
1753 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1754 if (ret < 0) {
1755 if (ignore_errors) {
1756 ret = 0;
1757 continue; /* continue at next VMA */
1758 }
1759 break;
1760 }
1761 nend = nstart + ret * PAGE_SIZE;
1762 ret = 0;
1763 }
1764 if (locked)
d8ed45c5 1765 mmap_read_unlock(mm);
d3649f68
CH
1766 return ret; /* 0 or negative error code */
1767}
050a9adc 1768#else /* CONFIG_MMU */
64019a2e 1769static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc 1770 unsigned long nr_pages, struct page **pages,
b2cac248 1771 int *locked, unsigned int foll_flags)
050a9adc
CH
1772{
1773 struct vm_area_struct *vma;
b2a72dff 1774 bool must_unlock = false;
050a9adc 1775 unsigned long vm_flags;
24dc20c7 1776 long i;
050a9adc 1777
b2a72dff
JG
1778 if (!nr_pages)
1779 return 0;
1780
1781 /*
1782 * The internal caller expects GUP to manage the lock internally and the
1783 * lock must be released when this returns.
1784 */
9a863a6a 1785 if (!*locked) {
b2a72dff
JG
1786 if (mmap_read_lock_killable(mm))
1787 return -EAGAIN;
1788 must_unlock = true;
1789 *locked = 1;
1790 }
1791
050a9adc
CH
1792 /* calculate required read or write permissions.
1793 * If FOLL_FORCE is set, we only require the "MAY" flags.
1794 */
1795 vm_flags = (foll_flags & FOLL_WRITE) ?
1796 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1797 vm_flags &= (foll_flags & FOLL_FORCE) ?
1798 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1799
1800 for (i = 0; i < nr_pages; i++) {
1801 vma = find_vma(mm, start);
1802 if (!vma)
b2a72dff 1803 break;
050a9adc
CH
1804
1805 /* protect what we can, including chardevs */
1806 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1807 !(vm_flags & vma->vm_flags))
b2a72dff 1808 break;
050a9adc
CH
1809
1810 if (pages) {
396a400b 1811 pages[i] = virt_to_page((void *)start);
050a9adc
CH
1812 if (pages[i])
1813 get_page(pages[i]);
1814 }
b2cac248 1815
050a9adc
CH
1816 start = (start + PAGE_SIZE) & PAGE_MASK;
1817 }
1818
b2a72dff
JG
1819 if (must_unlock && *locked) {
1820 mmap_read_unlock(mm);
1821 *locked = 0;
1822 }
050a9adc 1823
050a9adc
CH
1824 return i ? : -EFAULT;
1825}
1826#endif /* !CONFIG_MMU */
d3649f68 1827
bb523b40
AG
1828/**
1829 * fault_in_writeable - fault in userspace address range for writing
1830 * @uaddr: start of address range
1831 * @size: size of address range
1832 *
1833 * Returns the number of bytes not faulted in (like copy_to_user() and
1834 * copy_from_user()).
1835 */
1836size_t fault_in_writeable(char __user *uaddr, size_t size)
1837{
1838 char __user *start = uaddr, *end;
1839
1840 if (unlikely(size == 0))
1841 return 0;
677b2a8c
CL
1842 if (!user_write_access_begin(uaddr, size))
1843 return size;
bb523b40 1844 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1845 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1846 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1847 }
1848 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1849 if (unlikely(end < start))
1850 end = NULL;
1851 while (uaddr != end) {
677b2a8c 1852 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1853 uaddr += PAGE_SIZE;
1854 }
1855
1856out:
677b2a8c 1857 user_write_access_end();
bb523b40
AG
1858 if (size > uaddr - start)
1859 return size - (uaddr - start);
1860 return 0;
1861}
1862EXPORT_SYMBOL(fault_in_writeable);
1863
da32b581
CM
1864/**
1865 * fault_in_subpage_writeable - fault in an address range for writing
1866 * @uaddr: start of address range
1867 * @size: size of address range
1868 *
1869 * Fault in a user address range for writing while checking for permissions at
1870 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1871 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1872 *
1873 * Returns the number of bytes not faulted in (like copy_to_user() and
1874 * copy_from_user()).
1875 */
1876size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1877{
1878 size_t faulted_in;
1879
1880 /*
1881 * Attempt faulting in at page granularity first for page table
1882 * permission checking. The arch-specific probe_subpage_writeable()
1883 * functions may not check for this.
1884 */
1885 faulted_in = size - fault_in_writeable(uaddr, size);
1886 if (faulted_in)
1887 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1888
1889 return size - faulted_in;
1890}
1891EXPORT_SYMBOL(fault_in_subpage_writeable);
1892
cdd591fc
AG
1893/*
1894 * fault_in_safe_writeable - fault in an address range for writing
1895 * @uaddr: start of address range
1896 * @size: length of address range
1897 *
fe673d3f
LT
1898 * Faults in an address range for writing. This is primarily useful when we
1899 * already know that some or all of the pages in the address range aren't in
1900 * memory.
cdd591fc 1901 *
fe673d3f 1902 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
1903 *
1904 * Note that we don't pin or otherwise hold the pages referenced that we fault
1905 * in. There's no guarantee that they'll stay in memory for any duration of
1906 * time.
1907 *
1908 * Returns the number of bytes not faulted in, like copy_to_user() and
1909 * copy_from_user().
1910 */
1911size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1912{
fe673d3f 1913 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 1914 struct mm_struct *mm = current->mm;
fe673d3f 1915 bool unlocked = false;
cdd591fc 1916
fe673d3f
LT
1917 if (unlikely(size == 0))
1918 return 0;
cdd591fc 1919 end = PAGE_ALIGN(start + size);
fe673d3f 1920 if (end < start)
cdd591fc 1921 end = 0;
cdd591fc 1922
fe673d3f
LT
1923 mmap_read_lock(mm);
1924 do {
1925 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 1926 break;
fe673d3f
LT
1927 start = (start + PAGE_SIZE) & PAGE_MASK;
1928 } while (start != end);
1929 mmap_read_unlock(mm);
1930
1931 if (size > (unsigned long)uaddr - start)
1932 return size - ((unsigned long)uaddr - start);
1933 return 0;
cdd591fc
AG
1934}
1935EXPORT_SYMBOL(fault_in_safe_writeable);
1936
bb523b40
AG
1937/**
1938 * fault_in_readable - fault in userspace address range for reading
1939 * @uaddr: start of user address range
1940 * @size: size of user address range
1941 *
1942 * Returns the number of bytes not faulted in (like copy_to_user() and
1943 * copy_from_user()).
1944 */
1945size_t fault_in_readable(const char __user *uaddr, size_t size)
1946{
1947 const char __user *start = uaddr, *end;
1948 volatile char c;
1949
1950 if (unlikely(size == 0))
1951 return 0;
677b2a8c
CL
1952 if (!user_read_access_begin(uaddr, size))
1953 return size;
bb523b40 1954 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1955 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1956 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1957 }
1958 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1959 if (unlikely(end < start))
1960 end = NULL;
1961 while (uaddr != end) {
677b2a8c 1962 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1963 uaddr += PAGE_SIZE;
1964 }
1965
1966out:
677b2a8c 1967 user_read_access_end();
bb523b40
AG
1968 (void)c;
1969 if (size > uaddr - start)
1970 return size - (uaddr - start);
1971 return 0;
1972}
1973EXPORT_SYMBOL(fault_in_readable);
1974
8f942eea
JH
1975/**
1976 * get_dump_page() - pin user page in memory while writing it to core dump
1977 * @addr: user address
1978 *
1979 * Returns struct page pointer of user page pinned for dump,
1980 * to be freed afterwards by put_page().
1981 *
1982 * Returns NULL on any kind of failure - a hole must then be inserted into
1983 * the corefile, to preserve alignment with its headers; and also returns
1984 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1985 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1986 *
7f3bfab5 1987 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1988 */
1989#ifdef CONFIG_ELF_CORE
1990struct page *get_dump_page(unsigned long addr)
1991{
8f942eea 1992 struct page *page;
b2a72dff 1993 int locked = 0;
7f3bfab5 1994 int ret;
8f942eea 1995
b2cac248 1996 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
7f3bfab5 1997 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
7f3bfab5 1998 return (ret == 1) ? page : NULL;
8f942eea
JH
1999}
2000#endif /* CONFIG_ELF_CORE */
2001
d1e153fe 2002#ifdef CONFIG_MIGRATION
f68749ec 2003/*
67e139b0 2004 * Returns the number of collected pages. Return value is always >= 0.
f68749ec 2005 */
67e139b0
AP
2006static unsigned long collect_longterm_unpinnable_pages(
2007 struct list_head *movable_page_list,
2008 unsigned long nr_pages,
2009 struct page **pages)
9a4e9f3b 2010{
67e139b0 2011 unsigned long i, collected = 0;
1b7f7e58 2012 struct folio *prev_folio = NULL;
67e139b0 2013 bool drain_allow = true;
9a4e9f3b 2014
83c02c23 2015 for (i = 0; i < nr_pages; i++) {
1b7f7e58 2016 struct folio *folio = page_folio(pages[i]);
f9f38f78 2017
1b7f7e58 2018 if (folio == prev_folio)
83c02c23 2019 continue;
1b7f7e58 2020 prev_folio = folio;
f9f38f78 2021
67e139b0
AP
2022 if (folio_is_longterm_pinnable(folio))
2023 continue;
b05a79d4 2024
67e139b0 2025 collected++;
b05a79d4 2026
67e139b0 2027 if (folio_is_device_coherent(folio))
f9f38f78
CH
2028 continue;
2029
1b7f7e58 2030 if (folio_test_hugetlb(folio)) {
6aa3a920 2031 isolate_hugetlb(folio, movable_page_list);
f9f38f78
CH
2032 continue;
2033 }
9a4e9f3b 2034
1b7f7e58 2035 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
2036 lru_add_drain_all();
2037 drain_allow = false;
2038 }
2039
be2d5756 2040 if (!folio_isolate_lru(folio))
f9f38f78 2041 continue;
67e139b0
AP
2042
2043 list_add_tail(&folio->lru, movable_page_list);
1b7f7e58
MWO
2044 node_stat_mod_folio(folio,
2045 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2046 folio_nr_pages(folio));
9a4e9f3b
AK
2047 }
2048
67e139b0
AP
2049 return collected;
2050}
2051
2052/*
2053 * Unpins all pages and migrates device coherent pages and movable_page_list.
2054 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2055 * (or partial success).
2056 */
2057static int migrate_longterm_unpinnable_pages(
2058 struct list_head *movable_page_list,
2059 unsigned long nr_pages,
2060 struct page **pages)
2061{
2062 int ret;
2063 unsigned long i;
6e7f34eb 2064
b05a79d4 2065 for (i = 0; i < nr_pages; i++) {
67e139b0
AP
2066 struct folio *folio = page_folio(pages[i]);
2067
2068 if (folio_is_device_coherent(folio)) {
2069 /*
2070 * Migration will fail if the page is pinned, so convert
2071 * the pin on the source page to a normal reference.
2072 */
2073 pages[i] = NULL;
2074 folio_get(folio);
2075 gup_put_folio(folio, 1, FOLL_PIN);
2076
2077 if (migrate_device_coherent_page(&folio->page)) {
2078 ret = -EBUSY;
2079 goto err;
2080 }
2081
b05a79d4 2082 continue;
67e139b0 2083 }
b05a79d4 2084
67e139b0
AP
2085 /*
2086 * We can't migrate pages with unexpected references, so drop
2087 * the reference obtained by __get_user_pages_locked().
2088 * Migrating pages have been added to movable_page_list after
2089 * calling folio_isolate_lru() which takes a reference so the
2090 * page won't be freed if it's migrating.
2091 */
f6d299ec 2092 unpin_user_page(pages[i]);
67e139b0 2093 pages[i] = NULL;
f68749ec 2094 }
f9f38f78 2095
67e139b0 2096 if (!list_empty(movable_page_list)) {
f9f38f78
CH
2097 struct migration_target_control mtc = {
2098 .nid = NUMA_NO_NODE,
2099 .gfp_mask = GFP_USER | __GFP_NOWARN,
2100 };
2101
67e139b0
AP
2102 if (migrate_pages(movable_page_list, alloc_migration_target,
2103 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2104 MR_LONGTERM_PIN, NULL)) {
f9f38f78 2105 ret = -ENOMEM;
67e139b0
AP
2106 goto err;
2107 }
9a4e9f3b
AK
2108 }
2109
67e139b0
AP
2110 putback_movable_pages(movable_page_list);
2111
2112 return -EAGAIN;
2113
2114err:
2115 for (i = 0; i < nr_pages; i++)
2116 if (pages[i])
2117 unpin_user_page(pages[i]);
2118 putback_movable_pages(movable_page_list);
24a95998 2119
67e139b0
AP
2120 return ret;
2121}
2122
2123/*
2124 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2125 * pages in the range are required to be pinned via FOLL_PIN, before calling
2126 * this routine.
2127 *
2128 * If any pages in the range are not allowed to be pinned, then this routine
2129 * will migrate those pages away, unpin all the pages in the range and return
2130 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2131 * call this routine again.
2132 *
2133 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2134 * The caller should give up, and propagate the error back up the call stack.
2135 *
2136 * If everything is OK and all pages in the range are allowed to be pinned, then
2137 * this routine leaves all pages pinned and returns zero for success.
2138 */
2139static long check_and_migrate_movable_pages(unsigned long nr_pages,
2140 struct page **pages)
2141{
2142 unsigned long collected;
2143 LIST_HEAD(movable_page_list);
2144
2145 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2146 nr_pages, pages);
2147 if (!collected)
2148 return 0;
2149
2150 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2151 pages);
9a4e9f3b
AK
2152}
2153#else
f68749ec 2154static long check_and_migrate_movable_pages(unsigned long nr_pages,
f6d299ec 2155 struct page **pages)
9a4e9f3b 2156{
24a95998 2157 return 0;
9a4e9f3b 2158}
d1e153fe 2159#endif /* CONFIG_MIGRATION */
9a4e9f3b 2160
2bb6d283 2161/*
932f4a63
IW
2162 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2163 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 2164 */
64019a2e 2165static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
2166 unsigned long start,
2167 unsigned long nr_pages,
2168 struct page **pages,
53b2d09b 2169 int *locked,
932f4a63 2170 unsigned int gup_flags)
2bb6d283 2171{
f68749ec 2172 unsigned int flags;
24a95998 2173 long rc, nr_pinned_pages;
2bb6d283 2174
f68749ec 2175 if (!(gup_flags & FOLL_LONGTERM))
b2cac248 2176 return __get_user_pages_locked(mm, start, nr_pages, pages,
53b2d09b 2177 locked, gup_flags);
67e139b0 2178
f68749ec
PT
2179 flags = memalloc_pin_save();
2180 do {
24a95998 2181 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
b2cac248 2182 pages, locked,
24a95998
AP
2183 gup_flags);
2184 if (nr_pinned_pages <= 0) {
2185 rc = nr_pinned_pages;
f68749ec 2186 break;
24a95998 2187 }
d64e2dbc
JG
2188
2189 /* FOLL_LONGTERM implies FOLL_PIN */
f6d299ec 2190 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
24a95998 2191 } while (rc == -EAGAIN);
f68749ec 2192 memalloc_pin_restore(flags);
24a95998 2193 return rc ? rc : nr_pinned_pages;
2bb6d283 2194}
932f4a63 2195
d64e2dbc
JG
2196/*
2197 * Check that the given flags are valid for the exported gup/pup interface, and
2198 * update them with the required flags that the caller must have set.
2199 */
b2cac248
LS
2200static bool is_valid_gup_args(struct page **pages, int *locked,
2201 unsigned int *gup_flags_p, unsigned int to_set)
447f3e45 2202{
d64e2dbc
JG
2203 unsigned int gup_flags = *gup_flags_p;
2204
447f3e45 2205 /*
d64e2dbc
JG
2206 * These flags not allowed to be specified externally to the gup
2207 * interfaces:
2208 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2209 * - FOLL_REMOTE is internal only and used on follow_page()
f04740f5 2210 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
447f3e45 2211 */
f04740f5 2212 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
d64e2dbc
JG
2213 FOLL_REMOTE | FOLL_FAST_ONLY)))
2214 return false;
2215
2216 gup_flags |= to_set;
f04740f5
JG
2217 if (locked) {
2218 /* At the external interface locked must be set */
2219 if (WARN_ON_ONCE(*locked != 1))
2220 return false;
2221
2222 gup_flags |= FOLL_UNLOCKABLE;
2223 }
d64e2dbc
JG
2224
2225 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2226 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2227 (FOLL_PIN | FOLL_GET)))
2228 return false;
2229
2230 /* LONGTERM can only be specified when pinning */
2231 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2232 return false;
2233
2234 /* Pages input must be given if using GET/PIN */
2235 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
447f3e45 2236 return false;
d64e2dbc 2237
d64e2dbc
JG
2238 /* We want to allow the pgmap to be hot-unplugged at all times */
2239 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2240 (gup_flags & FOLL_PCI_P2PDMA)))
2241 return false;
2242
d64e2dbc 2243 *gup_flags_p = gup_flags;
447f3e45
BS
2244 return true;
2245}
2246
22bf29b6 2247#ifdef CONFIG_MMU
adc8cb40 2248/**
c4237f8b 2249 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2250 * @mm: mm_struct of target mm
2251 * @start: starting user address
2252 * @nr_pages: number of pages from start to pin
2253 * @gup_flags: flags modifying lookup behaviour
2254 * @pages: array that receives pointers to the pages pinned.
2255 * Should be at least nr_pages long. Or NULL, if caller
2256 * only intends to ensure the pages are faulted in.
c4237f8b
JH
2257 * @locked: pointer to lock flag indicating whether lock is held and
2258 * subsequently whether VM_FAULT_RETRY functionality can be
2259 * utilised. Lock must initially be held.
2260 *
2261 * Returns either number of pages pinned (which may be less than the
2262 * number requested), or an error. Details about the return value:
2263 *
2264 * -- If nr_pages is 0, returns 0.
2265 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2266 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2267 * pages pinned. Again, this may be less than nr_pages.
2268 *
2269 * The caller is responsible for releasing returned @pages, via put_page().
2270 *
c1e8d7c6 2271 * Must be called with mmap_lock held for read or write.
c4237f8b 2272 *
adc8cb40
SJ
2273 * get_user_pages_remote walks a process's page tables and takes a reference
2274 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2275 * instant. That is, it takes the page that would be accessed if a user
2276 * thread accesses the given user virtual address at that instant.
2277 *
2278 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2279 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b 2280 * page there in some cases (eg. if mmapped pagecache has been invalidated
5da1a868 2281 * and subsequently re-faulted). However it does guarantee that the page
c4237f8b
JH
2282 * won't be freed completely. And mostly callers simply care that the page
2283 * contains data that was valid *at some point in time*. Typically, an IO
2284 * or similar operation cannot guarantee anything stronger anyway because
2285 * locks can't be held over the syscall boundary.
2286 *
2287 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2288 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2289 * be called after the page is finished with, and before put_page is called.
2290 *
adc8cb40
SJ
2291 * get_user_pages_remote is typically used for fewer-copy IO operations,
2292 * to get a handle on the memory by some means other than accesses
2293 * via the user virtual addresses. The pages may be submitted for
2294 * DMA to devices or accessed via their kernel linear mapping (via the
2295 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2296 *
2297 * See also get_user_pages_fast, for performance critical applications.
2298 *
adc8cb40 2299 * get_user_pages_remote should be phased out in favor of
c4237f8b 2300 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2301 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2302 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2303 */
64019a2e 2304long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2305 unsigned long start, unsigned long nr_pages,
2306 unsigned int gup_flags, struct page **pages,
ca5e8632 2307 int *locked)
c4237f8b 2308{
9a863a6a
JG
2309 int local_locked = 1;
2310
b2cac248 2311 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc 2312 FOLL_TOUCH | FOLL_REMOTE))
eddb1c22
JH
2313 return -EINVAL;
2314
b2cac248 2315 return __get_user_pages_locked(mm, start, nr_pages, pages,
9a863a6a 2316 locked ? locked : &local_locked,
d64e2dbc 2317 gup_flags);
c4237f8b
JH
2318}
2319EXPORT_SYMBOL(get_user_pages_remote);
2320
eddb1c22 2321#else /* CONFIG_MMU */
64019a2e 2322long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2323 unsigned long start, unsigned long nr_pages,
2324 unsigned int gup_flags, struct page **pages,
ca5e8632 2325 int *locked)
eddb1c22
JH
2326{
2327 return 0;
2328}
2329#endif /* !CONFIG_MMU */
2330
adc8cb40
SJ
2331/**
2332 * get_user_pages() - pin user pages in memory
2333 * @start: starting user address
2334 * @nr_pages: number of pages from start to pin
2335 * @gup_flags: flags modifying lookup behaviour
2336 * @pages: array that receives pointers to the pages pinned.
2337 * Should be at least nr_pages long. Or NULL, if caller
2338 * only intends to ensure the pages are faulted in.
adc8cb40 2339 *
64019a2e
PX
2340 * This is the same as get_user_pages_remote(), just with a less-flexible
2341 * calling convention where we assume that the mm being operated on belongs to
2342 * the current task, and doesn't allow passing of a locked parameter. We also
2343 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2344 */
2345long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2346 unsigned int gup_flags, struct page **pages)
932f4a63 2347{
9a863a6a
JG
2348 int locked = 1;
2349
b2cac248 2350 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
eddb1c22
JH
2351 return -EINVAL;
2352
afa3c33e 2353 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2354 &locked, gup_flags);
932f4a63
IW
2355}
2356EXPORT_SYMBOL(get_user_pages);
2bb6d283 2357
acc3c8d1 2358/*
d3649f68 2359 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2360 *
3e4e28c5 2361 * mmap_read_lock(mm);
64019a2e 2362 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2363 * mmap_read_unlock(mm);
d3649f68
CH
2364 *
2365 * with:
2366 *
64019a2e 2367 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2368 *
2369 * It is functionally equivalent to get_user_pages_fast so
2370 * get_user_pages_fast should be used instead if specific gup_flags
2371 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2372 */
d3649f68
CH
2373long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2374 struct page **pages, unsigned int gup_flags)
acc3c8d1 2375{
b2a72dff 2376 int locked = 0;
acc3c8d1 2377
b2cac248 2378 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 2379 FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc
JG
2380 return -EINVAL;
2381
afa3c33e 2382 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2383 &locked, gup_flags);
4bbd4c77 2384}
d3649f68 2385EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2386
2387/*
67a929e0 2388 * Fast GUP
2667f50e
SC
2389 *
2390 * get_user_pages_fast attempts to pin user pages by walking the page
2391 * tables directly and avoids taking locks. Thus the walker needs to be
2392 * protected from page table pages being freed from under it, and should
2393 * block any THP splits.
2394 *
2395 * One way to achieve this is to have the walker disable interrupts, and
2396 * rely on IPIs from the TLB flushing code blocking before the page table
2397 * pages are freed. This is unsuitable for architectures that do not need
2398 * to broadcast an IPI when invalidating TLBs.
2399 *
2400 * Another way to achieve this is to batch up page table containing pages
2401 * belonging to more than one mm_user, then rcu_sched a callback to free those
2402 * pages. Disabling interrupts will allow the fast_gup walker to both block
2403 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2404 * (which is a relatively rare event). The code below adopts this strategy.
2405 *
2406 * Before activating this code, please be aware that the following assumptions
2407 * are currently made:
2408 *
ff2e6d72 2409 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2410 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2411 *
2667f50e
SC
2412 * *) ptes can be read atomically by the architecture.
2413 *
2414 * *) access_ok is sufficient to validate userspace address ranges.
2415 *
2416 * The last two assumptions can be relaxed by the addition of helper functions.
2417 *
2418 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2419 */
67a929e0 2420#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2421
a6e79df9
LS
2422/*
2423 * Used in the GUP-fast path to determine whether a pin is permitted for a
2424 * specific folio.
2425 *
2426 * This call assumes the caller has pinned the folio, that the lowest page table
2427 * level still points to this folio, and that interrupts have been disabled.
2428 *
2429 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2430 * (see comment describing the writable_file_mapping_allowed() function). We
2431 * therefore try to avoid the most egregious case of a long-term mapping doing
2432 * so.
2433 *
2434 * This function cannot be as thorough as that one as the VMA is not available
2435 * in the fast path, so instead we whitelist known good cases and if in doubt,
2436 * fall back to the slow path.
2437 */
2438static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2439{
2440 struct address_space *mapping;
2441 unsigned long mapping_flags;
2442
2443 /*
2444 * If we aren't pinning then no problematic write can occur. A long term
2445 * pin is the most egregious case so this is the one we disallow.
2446 */
2447 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2448 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2449 return true;
2450
2451 /* The folio is pinned, so we can safely access folio fields. */
2452
2453 if (WARN_ON_ONCE(folio_test_slab(folio)))
2454 return false;
2455
2456 /* hugetlb mappings do not require dirty-tracking. */
2457 if (folio_test_hugetlb(folio))
2458 return true;
2459
2460 /*
2461 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2462 * cannot proceed, which means no actions performed under RCU can
2463 * proceed either.
2464 *
2465 * inodes and thus their mappings are freed under RCU, which means the
2466 * mapping cannot be freed beneath us and thus we can safely dereference
2467 * it.
2468 */
2469 lockdep_assert_irqs_disabled();
2470
2471 /*
2472 * However, there may be operations which _alter_ the mapping, so ensure
2473 * we read it once and only once.
2474 */
2475 mapping = READ_ONCE(folio->mapping);
2476
2477 /*
2478 * The mapping may have been truncated, in any case we cannot determine
2479 * if this mapping is safe - fall back to slow path to determine how to
2480 * proceed.
2481 */
2482 if (!mapping)
2483 return false;
2484
2485 /* Anonymous folios pose no problem. */
2486 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2487 if (mapping_flags)
2488 return mapping_flags & PAGE_MAPPING_ANON;
2489
2490 /*
2491 * At this point, we know the mapping is non-null and points to an
2492 * address_space object. The only remaining whitelisted file system is
2493 * shmem.
2494 */
2495 return shmem_mapping(mapping);
2496}
2497
790c7369 2498static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2499 unsigned int flags,
790c7369 2500 struct page **pages)
b59f65fa
KS
2501{
2502 while ((*nr) - nr_start) {
2503 struct page *page = pages[--(*nr)];
2504
2505 ClearPageReferenced(page);
3faa52c0
JH
2506 if (flags & FOLL_PIN)
2507 unpin_user_page(page);
2508 else
2509 put_page(page);
b59f65fa
KS
2510 }
2511}
2512
3010a5ea 2513#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
70cbc3cc
YS
2514/*
2515 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2516 * operations.
2517 *
2518 * To pin the page, fast-gup needs to do below in order:
2519 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2520 *
2521 * For the rest of pgtable operations where pgtable updates can be racy
2522 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2523 * is pinned.
2524 *
2525 * Above will work for all pte-level operations, including THP split.
2526 *
2527 * For THP collapse, it's a bit more complicated because fast-gup may be
2528 * walking a pgtable page that is being freed (pte is still valid but pmd
2529 * can be cleared already). To avoid race in such condition, we need to
2530 * also check pmd here to make sure pmd doesn't change (corresponds to
2531 * pmdp_collapse_flush() in the THP collapse code path).
2532 */
2533static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2534 unsigned long end, unsigned int flags,
2535 struct page **pages, int *nr)
2667f50e 2536{
b59f65fa
KS
2537 struct dev_pagemap *pgmap = NULL;
2538 int nr_start = *nr, ret = 0;
2667f50e 2539 pte_t *ptep, *ptem;
2667f50e
SC
2540
2541 ptem = ptep = pte_offset_map(&pmd, addr);
04dee9e8
HD
2542 if (!ptep)
2543 return 0;
2667f50e 2544 do {
2a4a06da 2545 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2546 struct page *page;
2547 struct folio *folio;
2667f50e 2548
0cf45986 2549 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
e7884f8e
KS
2550 goto pte_unmap;
2551
b798bec4 2552 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2553 goto pte_unmap;
2554
b59f65fa 2555 if (pte_devmap(pte)) {
7af75561
IW
2556 if (unlikely(flags & FOLL_LONGTERM))
2557 goto pte_unmap;
2558
b59f65fa
KS
2559 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2560 if (unlikely(!pgmap)) {
3b78d834 2561 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2562 goto pte_unmap;
2563 }
2564 } else if (pte_special(pte))
2667f50e
SC
2565 goto pte_unmap;
2566
2567 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2568 page = pte_page(pte);
2569
b0496fe4
MWO
2570 folio = try_grab_folio(page, 1, flags);
2571 if (!folio)
2667f50e
SC
2572 goto pte_unmap;
2573
1507f512 2574 if (unlikely(page_is_secretmem(page))) {
b0496fe4 2575 gup_put_folio(folio, 1, flags);
1507f512
MR
2576 goto pte_unmap;
2577 }
2578
70cbc3cc 2579 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
c33c7948 2580 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
b0496fe4 2581 gup_put_folio(folio, 1, flags);
2667f50e
SC
2582 goto pte_unmap;
2583 }
2584
a6e79df9 2585 if (!folio_fast_pin_allowed(folio, flags)) {
b0496fe4 2586 gup_put_folio(folio, 1, flags);
2667f50e
SC
2587 goto pte_unmap;
2588 }
2589
84209e87 2590 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
a7f22660
DH
2591 gup_put_folio(folio, 1, flags);
2592 goto pte_unmap;
2593 }
2594
f28d4363
CI
2595 /*
2596 * We need to make the page accessible if and only if we are
2597 * going to access its content (the FOLL_PIN case). Please
2598 * see Documentation/core-api/pin_user_pages.rst for
2599 * details.
2600 */
2601 if (flags & FOLL_PIN) {
2602 ret = arch_make_page_accessible(page);
2603 if (ret) {
b0496fe4 2604 gup_put_folio(folio, 1, flags);
f28d4363
CI
2605 goto pte_unmap;
2606 }
2607 }
b0496fe4 2608 folio_set_referenced(folio);
2667f50e
SC
2609 pages[*nr] = page;
2610 (*nr)++;
2667f50e
SC
2611 } while (ptep++, addr += PAGE_SIZE, addr != end);
2612
2613 ret = 1;
2614
2615pte_unmap:
832d7aa0
CH
2616 if (pgmap)
2617 put_dev_pagemap(pgmap);
2667f50e
SC
2618 pte_unmap(ptem);
2619 return ret;
2620}
2621#else
2622
2623/*
2624 * If we can't determine whether or not a pte is special, then fail immediately
2625 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2626 * to be special.
2627 *
2628 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2629 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2630 * useful to have gup_huge_pmd even if we can't operate on ptes.
2631 */
70cbc3cc
YS
2632static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2633 unsigned long end, unsigned int flags,
2634 struct page **pages, int *nr)
2667f50e
SC
2635{
2636 return 0;
2637}
3010a5ea 2638#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2639
17596731 2640#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2641static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2642 unsigned long end, unsigned int flags,
2643 struct page **pages, int *nr)
b59f65fa
KS
2644{
2645 int nr_start = *nr;
2646 struct dev_pagemap *pgmap = NULL;
2647
2648 do {
2649 struct page *page = pfn_to_page(pfn);
2650
2651 pgmap = get_dev_pagemap(pfn, pgmap);
2652 if (unlikely(!pgmap)) {
3b78d834 2653 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2654 break;
b59f65fa 2655 }
4003f107
LG
2656
2657 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2658 undo_dev_pagemap(nr, nr_start, flags, pages);
2659 break;
2660 }
2661
b59f65fa
KS
2662 SetPageReferenced(page);
2663 pages[*nr] = page;
0f089235 2664 if (unlikely(try_grab_page(page, flags))) {
3faa52c0 2665 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2666 break;
3faa52c0 2667 }
b59f65fa
KS
2668 (*nr)++;
2669 pfn++;
2670 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2671
6401c4eb 2672 put_dev_pagemap(pgmap);
20b7fee7 2673 return addr == end;
b59f65fa
KS
2674}
2675
a9b6de77 2676static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2677 unsigned long end, unsigned int flags,
2678 struct page **pages, int *nr)
b59f65fa
KS
2679{
2680 unsigned long fault_pfn;
a9b6de77
DW
2681 int nr_start = *nr;
2682
2683 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2684 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2685 return 0;
b59f65fa 2686
a9b6de77 2687 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2688 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2689 return 0;
2690 }
2691 return 1;
b59f65fa
KS
2692}
2693
a9b6de77 2694static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2695 unsigned long end, unsigned int flags,
2696 struct page **pages, int *nr)
b59f65fa
KS
2697{
2698 unsigned long fault_pfn;
a9b6de77
DW
2699 int nr_start = *nr;
2700
2701 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2702 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2703 return 0;
b59f65fa 2704
a9b6de77 2705 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2706 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2707 return 0;
2708 }
2709 return 1;
b59f65fa
KS
2710}
2711#else
a9b6de77 2712static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2713 unsigned long end, unsigned int flags,
2714 struct page **pages, int *nr)
b59f65fa
KS
2715{
2716 BUILD_BUG();
2717 return 0;
2718}
2719
a9b6de77 2720static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2721 unsigned long end, unsigned int flags,
2722 struct page **pages, int *nr)
b59f65fa
KS
2723{
2724 BUILD_BUG();
2725 return 0;
2726}
2727#endif
2728
a43e9820
JH
2729static int record_subpages(struct page *page, unsigned long addr,
2730 unsigned long end, struct page **pages)
2731{
2732 int nr;
2733
c228afb1
MWO
2734 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2735 pages[nr] = nth_page(page, nr);
a43e9820
JH
2736
2737 return nr;
2738}
2739
cbd34da7
CH
2740#ifdef CONFIG_ARCH_HAS_HUGEPD
2741static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2742 unsigned long sz)
2743{
2744 unsigned long __boundary = (addr + sz) & ~(sz-1);
2745 return (__boundary - 1 < end - 1) ? __boundary : end;
2746}
2747
2748static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2749 unsigned long end, unsigned int flags,
2750 struct page **pages, int *nr)
cbd34da7
CH
2751{
2752 unsigned long pte_end;
09a1626e
MWO
2753 struct page *page;
2754 struct folio *folio;
cbd34da7
CH
2755 pte_t pte;
2756 int refs;
2757
2758 pte_end = (addr + sz) & ~(sz-1);
2759 if (pte_end < end)
2760 end = pte_end;
2761
55ca2263 2762 pte = huge_ptep_get(ptep);
cbd34da7 2763
0cd22afd 2764 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2765 return 0;
2766
2767 /* hugepages are never "special" */
2768 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2769
09a1626e 2770 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
a43e9820 2771 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2772
09a1626e
MWO
2773 folio = try_grab_folio(page, refs, flags);
2774 if (!folio)
cbd34da7 2775 return 0;
cbd34da7 2776
c33c7948 2777 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
09a1626e 2778 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2779 return 0;
2780 }
2781
a6e79df9 2782 if (!folio_fast_pin_allowed(folio, flags)) {
09a1626e 2783 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2784 return 0;
2785 }
2786
84209e87 2787 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2788 gup_put_folio(folio, refs, flags);
2789 return 0;
2790 }
2791
a43e9820 2792 *nr += refs;
09a1626e 2793 folio_set_referenced(folio);
cbd34da7
CH
2794 return 1;
2795}
2796
2797static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2798 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2799 struct page **pages, int *nr)
2800{
2801 pte_t *ptep;
2802 unsigned long sz = 1UL << hugepd_shift(hugepd);
2803 unsigned long next;
2804
2805 ptep = hugepte_offset(hugepd, addr, pdshift);
2806 do {
2807 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2808 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2809 return 0;
2810 } while (ptep++, addr = next, addr != end);
2811
2812 return 1;
2813}
2814#else
2815static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2816 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2817 struct page **pages, int *nr)
2818{
2819 return 0;
2820}
2821#endif /* CONFIG_ARCH_HAS_HUGEPD */
2822
2667f50e 2823static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2824 unsigned long end, unsigned int flags,
2825 struct page **pages, int *nr)
2667f50e 2826{
667ed1f7
MWO
2827 struct page *page;
2828 struct folio *folio;
2667f50e
SC
2829 int refs;
2830
b798bec4 2831 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2832 return 0;
2833
7af75561
IW
2834 if (pmd_devmap(orig)) {
2835 if (unlikely(flags & FOLL_LONGTERM))
2836 return 0;
86dfbed4
JH
2837 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2838 pages, nr);
7af75561 2839 }
b59f65fa 2840
c228afb1 2841 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2842 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2843
667ed1f7
MWO
2844 folio = try_grab_folio(page, refs, flags);
2845 if (!folio)
2667f50e 2846 return 0;
2667f50e
SC
2847
2848 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 2849 gup_put_folio(folio, refs, flags);
2667f50e
SC
2850 return 0;
2851 }
2852
a6e79df9
LS
2853 if (!folio_fast_pin_allowed(folio, flags)) {
2854 gup_put_folio(folio, refs, flags);
2855 return 0;
2856 }
84209e87 2857 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2858 gup_put_folio(folio, refs, flags);
2859 return 0;
2860 }
2861
a43e9820 2862 *nr += refs;
667ed1f7 2863 folio_set_referenced(folio);
2667f50e
SC
2864 return 1;
2865}
2866
2867static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2868 unsigned long end, unsigned int flags,
2869 struct page **pages, int *nr)
2667f50e 2870{
83afb52e
MWO
2871 struct page *page;
2872 struct folio *folio;
2667f50e
SC
2873 int refs;
2874
b798bec4 2875 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2876 return 0;
2877
7af75561
IW
2878 if (pud_devmap(orig)) {
2879 if (unlikely(flags & FOLL_LONGTERM))
2880 return 0;
86dfbed4
JH
2881 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2882 pages, nr);
7af75561 2883 }
b59f65fa 2884
c228afb1 2885 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2886 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2887
83afb52e
MWO
2888 folio = try_grab_folio(page, refs, flags);
2889 if (!folio)
2667f50e 2890 return 0;
2667f50e
SC
2891
2892 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 2893 gup_put_folio(folio, refs, flags);
2667f50e
SC
2894 return 0;
2895 }
2896
a6e79df9
LS
2897 if (!folio_fast_pin_allowed(folio, flags)) {
2898 gup_put_folio(folio, refs, flags);
2899 return 0;
2900 }
2901
84209e87 2902 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
2903 gup_put_folio(folio, refs, flags);
2904 return 0;
2905 }
2906
a43e9820 2907 *nr += refs;
83afb52e 2908 folio_set_referenced(folio);
2667f50e
SC
2909 return 1;
2910}
2911
f30c59e9 2912static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2913 unsigned long end, unsigned int flags,
f30c59e9
AK
2914 struct page **pages, int *nr)
2915{
2916 int refs;
2d7919a2
MWO
2917 struct page *page;
2918 struct folio *folio;
f30c59e9 2919
b798bec4 2920 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2921 return 0;
2922
b59f65fa 2923 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2924
c228afb1 2925 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2926 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2927
2d7919a2
MWO
2928 folio = try_grab_folio(page, refs, flags);
2929 if (!folio)
f30c59e9 2930 return 0;
f30c59e9
AK
2931
2932 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 2933 gup_put_folio(folio, refs, flags);
f30c59e9
AK
2934 return 0;
2935 }
2936
31115034
LS
2937 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2938 gup_put_folio(folio, refs, flags);
2939 return 0;
2940 }
2941
a6e79df9
LS
2942 if (!folio_fast_pin_allowed(folio, flags)) {
2943 gup_put_folio(folio, refs, flags);
2944 return 0;
2945 }
2946
a43e9820 2947 *nr += refs;
2d7919a2 2948 folio_set_referenced(folio);
f30c59e9
AK
2949 return 1;
2950}
2951
d3f7b1bb 2952static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2953 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2954{
2955 unsigned long next;
2956 pmd_t *pmdp;
2957
d3f7b1bb 2958 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2959 do {
1180e732 2960 pmd_t pmd = pmdp_get_lockless(pmdp);
2667f50e
SC
2961
2962 next = pmd_addr_end(addr, end);
84c3fc4e 2963 if (!pmd_present(pmd))
2667f50e
SC
2964 return 0;
2965
414fd080
YZ
2966 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2967 pmd_devmap(pmd))) {
0cf45986
DH
2968 if (pmd_protnone(pmd) &&
2969 !gup_can_follow_protnone(flags))
2667f50e
SC
2970 return 0;
2971
b798bec4 2972 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2973 pages, nr))
2974 return 0;
2975
f30c59e9
AK
2976 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2977 /*
2978 * architecture have different format for hugetlbfs
2979 * pmd format and THP pmd format
2980 */
2981 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2982 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2983 return 0;
70cbc3cc 2984 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2923117b 2985 return 0;
2667f50e
SC
2986 } while (pmdp++, addr = next, addr != end);
2987
2988 return 1;
2989}
2990
d3f7b1bb 2991static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2992 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2993{
2994 unsigned long next;
2995 pud_t *pudp;
2996
d3f7b1bb 2997 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2998 do {
e37c6982 2999 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
3000
3001 next = pud_addr_end(addr, end);
15494520 3002 if (unlikely(!pud_present(pud)))
2667f50e 3003 return 0;
fcd0ccd8 3004 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
b798bec4 3005 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
3006 pages, nr))
3007 return 0;
3008 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3009 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 3010 PUD_SHIFT, next, flags, pages, nr))
2667f50e 3011 return 0;
d3f7b1bb 3012 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
3013 return 0;
3014 } while (pudp++, addr = next, addr != end);
3015
3016 return 1;
3017}
3018
d3f7b1bb 3019static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 3020 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
3021{
3022 unsigned long next;
3023 p4d_t *p4dp;
3024
d3f7b1bb 3025 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
3026 do {
3027 p4d_t p4d = READ_ONCE(*p4dp);
3028
3029 next = p4d_addr_end(addr, end);
3030 if (p4d_none(p4d))
3031 return 0;
3032 BUILD_BUG_ON(p4d_huge(p4d));
3033 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3034 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 3035 P4D_SHIFT, next, flags, pages, nr))
c2febafc 3036 return 0;
d3f7b1bb 3037 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
3038 return 0;
3039 } while (p4dp++, addr = next, addr != end);
3040
3041 return 1;
3042}
3043
5b65c467 3044static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 3045 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
3046{
3047 unsigned long next;
3048 pgd_t *pgdp;
3049
3050 pgdp = pgd_offset(current->mm, addr);
3051 do {
3052 pgd_t pgd = READ_ONCE(*pgdp);
3053
3054 next = pgd_addr_end(addr, end);
3055 if (pgd_none(pgd))
3056 return;
3057 if (unlikely(pgd_huge(pgd))) {
b798bec4 3058 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
3059 pages, nr))
3060 return;
3061 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3062 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 3063 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 3064 return;
d3f7b1bb 3065 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
3066 return;
3067 } while (pgdp++, addr = next, addr != end);
3068}
050a9adc
CH
3069#else
3070static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3071 unsigned int flags, struct page **pages, int *nr)
3072{
3073}
3074#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
3075
3076#ifndef gup_fast_permitted
3077/*
dadbb612 3078 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
3079 * we need to fall back to the slow version:
3080 */
26f4c328 3081static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 3082{
26f4c328 3083 return true;
5b65c467
KS
3084}
3085#endif
3086
c28b1fc7
JG
3087static unsigned long lockless_pages_from_mm(unsigned long start,
3088 unsigned long end,
3089 unsigned int gup_flags,
3090 struct page **pages)
3091{
3092 unsigned long flags;
3093 int nr_pinned = 0;
57efa1fe 3094 unsigned seq;
c28b1fc7
JG
3095
3096 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3097 !gup_fast_permitted(start, end))
3098 return 0;
3099
57efa1fe
JG
3100 if (gup_flags & FOLL_PIN) {
3101 seq = raw_read_seqcount(&current->mm->write_protect_seq);
3102 if (seq & 1)
3103 return 0;
3104 }
3105
c28b1fc7
JG
3106 /*
3107 * Disable interrupts. The nested form is used, in order to allow full,
3108 * general purpose use of this routine.
3109 *
3110 * With interrupts disabled, we block page table pages from being freed
3111 * from under us. See struct mmu_table_batch comments in
3112 * include/asm-generic/tlb.h for more details.
3113 *
3114 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3115 * that come from THPs splitting.
3116 */
3117 local_irq_save(flags);
3118 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3119 local_irq_restore(flags);
57efa1fe
JG
3120
3121 /*
3122 * When pinning pages for DMA there could be a concurrent write protect
3123 * from fork() via copy_page_range(), in this case always fail fast GUP.
3124 */
3125 if (gup_flags & FOLL_PIN) {
3126 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
b6a2619c 3127 unpin_user_pages_lockless(pages, nr_pinned);
57efa1fe 3128 return 0;
b6a2619c
DH
3129 } else {
3130 sanity_check_pinned_pages(pages, nr_pinned);
57efa1fe
JG
3131 }
3132 }
c28b1fc7
JG
3133 return nr_pinned;
3134}
3135
3136static int internal_get_user_pages_fast(unsigned long start,
3137 unsigned long nr_pages,
eddb1c22
JH
3138 unsigned int gup_flags,
3139 struct page **pages)
2667f50e 3140{
c28b1fc7
JG
3141 unsigned long len, end;
3142 unsigned long nr_pinned;
b2a72dff 3143 int locked = 0;
c28b1fc7 3144 int ret;
2667f50e 3145
f4000fdf 3146 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 3147 FOLL_FORCE | FOLL_PIN | FOLL_GET |
4003f107
LG
3148 FOLL_FAST_ONLY | FOLL_NOFAULT |
3149 FOLL_PCI_P2PDMA)))
817be129
CH
3150 return -EINVAL;
3151
a458b76a
AA
3152 if (gup_flags & FOLL_PIN)
3153 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 3154
f81cd178 3155 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 3156 might_lock_read(&current->mm->mmap_lock);
f81cd178 3157
f455c854 3158 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
3159 len = nr_pages << PAGE_SHIFT;
3160 if (check_add_overflow(start, len, &end))
9883c7f8 3161 return -EOVERFLOW;
6014bc27
LT
3162 if (end > TASK_SIZE_MAX)
3163 return -EFAULT;
96d4f267 3164 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 3165 return -EFAULT;
73e10a61 3166
c28b1fc7
JG
3167 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3168 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3169 return nr_pinned;
2667f50e 3170
c28b1fc7
JG
3171 /* Slow path: try to get the remaining pages with get_user_pages */
3172 start += nr_pinned << PAGE_SHIFT;
3173 pages += nr_pinned;
b2a72dff 3174 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
b2cac248 3175 pages, &locked,
f04740f5 3176 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
c28b1fc7
JG
3177 if (ret < 0) {
3178 /*
3179 * The caller has to unpin the pages we already pinned so
3180 * returning -errno is not an option
3181 */
3182 if (nr_pinned)
3183 return nr_pinned;
3184 return ret;
2667f50e 3185 }
c28b1fc7 3186 return ret + nr_pinned;
2667f50e 3187}
c28b1fc7 3188
dadbb612
SJ
3189/**
3190 * get_user_pages_fast_only() - pin user pages in memory
3191 * @start: starting user address
3192 * @nr_pages: number of pages from start to pin
3193 * @gup_flags: flags modifying pin behaviour
3194 * @pages: array that receives pointers to the pages pinned.
3195 * Should be at least nr_pages long.
3196 *
9e1f0580
JH
3197 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3198 * the regular GUP.
9e1f0580
JH
3199 *
3200 * If the architecture does not support this function, simply return with no
3201 * pages pinned.
3202 *
3203 * Careful, careful! COW breaking can go either way, so a non-write
3204 * access can get ambiguous page results. If you call this function without
3205 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3206 */
dadbb612
SJ
3207int get_user_pages_fast_only(unsigned long start, int nr_pages,
3208 unsigned int gup_flags, struct page **pages)
9e1f0580 3209{
9e1f0580
JH
3210 /*
3211 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3212 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
3213 *
3214 * FOLL_FAST_ONLY is required in order to match the API description of
3215 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 3216 */
b2cac248 3217 if (!is_valid_gup_args(pages, NULL, &gup_flags,
d64e2dbc
JG
3218 FOLL_GET | FOLL_FAST_ONLY))
3219 return -EINVAL;
9e1f0580 3220
9198a919 3221 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
9e1f0580 3222}
dadbb612 3223EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 3224
eddb1c22
JH
3225/**
3226 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
3227 * @start: starting user address
3228 * @nr_pages: number of pages from start to pin
3229 * @gup_flags: flags modifying pin behaviour
3230 * @pages: array that receives pointers to the pages pinned.
3231 * Should be at least nr_pages long.
eddb1c22 3232 *
c1e8d7c6 3233 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
3234 * If not successful, it will fall back to taking the lock and
3235 * calling get_user_pages().
3236 *
3237 * Returns number of pages pinned. This may be fewer than the number requested.
3238 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3239 * -errno.
3240 */
3241int get_user_pages_fast(unsigned long start, int nr_pages,
3242 unsigned int gup_flags, struct page **pages)
3243{
94202f12
JH
3244 /*
3245 * The caller may or may not have explicitly set FOLL_GET; either way is
3246 * OK. However, internally (within mm/gup.c), gup fast variants must set
3247 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3248 * request.
3249 */
b2cac248 3250 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
d64e2dbc 3251 return -EINVAL;
eddb1c22
JH
3252 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3253}
050a9adc 3254EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
3255
3256/**
3257 * pin_user_pages_fast() - pin user pages in memory without taking locks
3258 *
3faa52c0
JH
3259 * @start: starting user address
3260 * @nr_pages: number of pages from start to pin
3261 * @gup_flags: flags modifying pin behaviour
3262 * @pages: array that receives pointers to the pages pinned.
3263 * Should be at least nr_pages long.
3264 *
3265 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3266 * get_user_pages_fast() for documentation on the function arguments, because
3267 * the arguments here are identical.
3268 *
3269 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3270 * see Documentation/core-api/pin_user_pages.rst for further details.
c8070b78
DH
3271 *
3272 * Note that if a zero_page is amongst the returned pages, it will not have
3273 * pins in it and unpin_user_page() will not remove pins from it.
eddb1c22
JH
3274 */
3275int pin_user_pages_fast(unsigned long start, int nr_pages,
3276 unsigned int gup_flags, struct page **pages)
3277{
b2cac248 3278 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3faa52c0 3279 return -EINVAL;
3faa52c0 3280 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
3281}
3282EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3283
3284/**
64019a2e 3285 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3286 *
3faa52c0
JH
3287 * @mm: mm_struct of target mm
3288 * @start: starting user address
3289 * @nr_pages: number of pages from start to pin
3290 * @gup_flags: flags modifying lookup behaviour
3291 * @pages: array that receives pointers to the pages pinned.
0768c8de 3292 * Should be at least nr_pages long.
3faa52c0
JH
3293 * @locked: pointer to lock flag indicating whether lock is held and
3294 * subsequently whether VM_FAULT_RETRY functionality can be
3295 * utilised. Lock must initially be held.
3296 *
3297 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3298 * get_user_pages_remote() for documentation on the function arguments, because
3299 * the arguments here are identical.
3300 *
3301 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3302 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3303 *
3304 * Note that if a zero_page is amongst the returned pages, it will not have
3305 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22 3306 */
64019a2e 3307long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3308 unsigned long start, unsigned long nr_pages,
3309 unsigned int gup_flags, struct page **pages,
0b295316 3310 int *locked)
eddb1c22 3311{
9a863a6a
JG
3312 int local_locked = 1;
3313
b2cac248 3314 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc
JG
3315 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3316 return 0;
b2cac248 3317 return __gup_longterm_locked(mm, start, nr_pages, pages,
9a863a6a 3318 locked ? locked : &local_locked,
d64e2dbc 3319 gup_flags);
eddb1c22
JH
3320}
3321EXPORT_SYMBOL(pin_user_pages_remote);
3322
3323/**
3324 * pin_user_pages() - pin user pages in memory for use by other devices
3325 *
3faa52c0
JH
3326 * @start: starting user address
3327 * @nr_pages: number of pages from start to pin
3328 * @gup_flags: flags modifying lookup behaviour
3329 * @pages: array that receives pointers to the pages pinned.
0768c8de 3330 * Should be at least nr_pages long.
3faa52c0
JH
3331 *
3332 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3333 * FOLL_PIN is set.
3334 *
3335 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3336 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3337 *
3338 * Note that if a zero_page is amongst the returned pages, it will not have
3339 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22
JH
3340 */
3341long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 3342 unsigned int gup_flags, struct page **pages)
eddb1c22 3343{
9a863a6a
JG
3344 int locked = 1;
3345
b2cac248 3346 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
d64e2dbc 3347 return 0;
64019a2e 3348 return __gup_longterm_locked(current->mm, start, nr_pages,
b2cac248 3349 pages, &locked, gup_flags);
eddb1c22
JH
3350}
3351EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3352
3353/*
3354 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3355 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3356 * FOLL_PIN and rejects FOLL_GET.
c8070b78
DH
3357 *
3358 * Note that if a zero_page is amongst the returned pages, it will not have
3359 * pins in it and unpin_user_page*() will not remove pins from it.
91429023
JH
3360 */
3361long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3362 struct page **pages, unsigned int gup_flags)
3363{
b2a72dff 3364 int locked = 0;
91429023 3365
b2cac248 3366 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 3367 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc 3368 return 0;
0768c8de 3369
b2cac248 3370 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
b2a72dff 3371 &locked, gup_flags);
91429023
JH
3372}
3373EXPORT_SYMBOL(pin_user_pages_unlocked);