]> git.ipfire.org Git - people/arne_f/kernel.git/blame - mm/huge_memory.c
mm: enforce min addr even if capable() in expand_downwards()
[people/arne_f/kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
f7ccbae4 12#include <linux/sched/coredump.h>
6a3827d7 13#include <linux/sched/numa_balancing.h>
71e3aac0
AA
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
97ae1749 19#include <linux/shrinker.h>
ba76149f 20#include <linux/mm_inline.h>
e9b61f19 21#include <linux/swapops.h>
4897c765 22#include <linux/dax.h>
ba76149f 23#include <linux/khugepaged.h>
878aee7d 24#include <linux/freezer.h>
f25748e3 25#include <linux/pfn_t.h>
a664b2d8 26#include <linux/mman.h>
3565fce3 27#include <linux/memremap.h>
325adeb5 28#include <linux/pagemap.h>
49071d43 29#include <linux/debugfs.h>
4daae3b4 30#include <linux/migrate.h>
43b5fbbd 31#include <linux/hashtable.h>
6b251fc9 32#include <linux/userfaultfd_k.h>
33c3fc71 33#include <linux/page_idle.h>
baa355fd 34#include <linux/shmem_fs.h>
6b31d595 35#include <linux/oom.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
6fcb52a5 65static struct page *get_huge_zero_page(void)
97ae1749
KS
66{
67 struct page *zero_page;
68retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 70 return READ_ONCE(huge_zero_page);
97ae1749
KS
71
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 73 HPAGE_PMD_ORDER);
d8a8e1f0
KS
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 76 return NULL;
d8a8e1f0
KS
77 }
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 79 preempt_disable();
5918d10a 80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 81 preempt_enable();
5ddacbe9 82 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
83 goto retry;
84 }
85
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
4db0c3c2 89 return READ_ONCE(huge_zero_page);
4a6c1297
KS
90}
91
6fcb52a5 92static void put_huge_zero_page(void)
4a6c1297 93{
97ae1749
KS
94 /*
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
97 */
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
99}
100
6fcb52a5
AL
101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102{
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
105
106 if (!get_huge_zero_page())
107 return NULL;
108
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
111
112 return READ_ONCE(huge_zero_page);
113}
114
115void mm_put_huge_zero_page(struct mm_struct *mm)
116{
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
119}
120
48896466
GC
121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
4a6c1297 123{
48896466
GC
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126}
97ae1749 127
48896466
GC
128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
130{
97ae1749 131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
5ddacbe9 134 __free_pages(zero_page, compound_order(zero_page));
48896466 135 return HPAGE_PMD_NR;
97ae1749
KS
136 }
137
138 return 0;
4a6c1297
KS
139}
140
97ae1749 141static struct shrinker huge_zero_page_shrinker = {
48896466
GC
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
144 .seeks = DEFAULT_SEEKS,
145};
146
71e3aac0 147#ifdef CONFIG_SYSFS
71e3aac0
AA
148static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
150{
444eb2a4
MG
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
71e3aac0 157}
444eb2a4 158
71e3aac0
AA
159static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
162{
21440d7e 163 ssize_t ret = count;
ba76149f 164
21440d7e
DR
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
ba76149f
AA
179
180 if (ret > 0) {
b46e756f 181 int err = start_stop_khugepaged();
ba76149f
AA
182 if (err)
183 ret = err;
184 }
ba76149f 185 return ret;
71e3aac0
AA
186}
187static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
189
b46e756f 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
193{
e27e6151
BH
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 196}
e27e6151 197
b46e756f 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
202{
e27e6151
BH
203 unsigned long value;
204 int ret;
205
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
211
212 if (value)
71e3aac0 213 set_bit(flag, &transparent_hugepage_flags);
e27e6151 214 else
71e3aac0 215 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
216
217 return count;
218}
219
71e3aac0
AA
220static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
222{
444eb2a4 223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 232}
21440d7e 233
71e3aac0
AA
234static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
237{
21440d7e
DR
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
71e3aac0
AA
272}
273static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
275
79da5407
KS
276static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
278{
b46e756f 279 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281}
282static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
284{
b46e756f 285 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287}
288static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
290
291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
293{
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295}
296static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
298
71e3aac0
AA
299#ifdef CONFIG_DEBUG_VM
300static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302{
b46e756f 303 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305}
306static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
309{
b46e756f 310 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312}
313static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315#endif /* CONFIG_DEBUG_VM */
316
317static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
79da5407 320 &use_zero_page_attr.attr,
49920d28 321 &hpage_pmd_size_attr.attr,
e496cf3d 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
323 &shmem_enabled_attr.attr,
324#endif
71e3aac0
AA
325#ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327#endif
328 NULL,
329};
330
8aa95a21 331static const struct attribute_group hugepage_attr_group = {
71e3aac0 332 .attrs = hugepage_attr,
ba76149f
AA
333};
334
569e5590 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 336{
71e3aac0
AA
337 int err;
338
569e5590
SL
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 341 pr_err("failed to create transparent hugepage kobject\n");
569e5590 342 return -ENOMEM;
ba76149f
AA
343 }
344
569e5590 345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 346 if (err) {
ae3a8c1c 347 pr_err("failed to register transparent hugepage group\n");
569e5590 348 goto delete_obj;
ba76149f
AA
349 }
350
569e5590 351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 352 if (err) {
ae3a8c1c 353 pr_err("failed to register transparent hugepage group\n");
569e5590 354 goto remove_hp_group;
ba76149f 355 }
569e5590
SL
356
357 return 0;
358
359remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364}
365
366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367{
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371}
372#else
373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374{
375 return 0;
376}
377
378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379{
380}
381#endif /* CONFIG_SYSFS */
382
383static int __init hugepage_init(void)
384{
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
391 }
392
ff20c2e0
KS
393 /*
394 * hugepages can't be allocated by the buddy allocator
395 */
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 /*
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
569e5590
SL
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
65ebb64f 405 goto err_sysfs;
ba76149f 406
b46e756f 407 err = khugepaged_init();
ba76149f 408 if (err)
65ebb64f 409 goto err_slab;
ba76149f 410
65ebb64f
KS
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
9a982250
KS
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
97ae1749 417
97562cd2
RR
418 /*
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
422 */
79553da2 423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 424 transparent_hugepage_flags = 0;
79553da2
KS
425 return 0;
426 }
97562cd2 427
79553da2 428 err = start_stop_khugepaged();
65ebb64f
KS
429 if (err)
430 goto err_khugepaged;
ba76149f 431
569e5590 432 return 0;
65ebb64f 433err_khugepaged:
9a982250
KS
434 unregister_shrinker(&deferred_split_shrinker);
435err_split_shrinker:
65ebb64f
KS
436 unregister_shrinker(&huge_zero_page_shrinker);
437err_hzp_shrinker:
b46e756f 438 khugepaged_destroy();
65ebb64f 439err_slab:
569e5590 440 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 441err_sysfs:
ba76149f 442 return err;
71e3aac0 443}
a64fb3cd 444subsys_initcall(hugepage_init);
71e3aac0
AA
445
446static int __init setup_transparent_hugepage(char *str)
447{
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
469 }
470out:
471 if (!ret)
ae3a8c1c 472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
473 return ret;
474}
475__setup("transparent_hugepage=", setup_transparent_hugepage);
476
f55e1014 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 478{
f55e1014 479 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
482}
483
9a982250
KS
484static inline struct list_head *page_deferred_list(struct page *page)
485{
fa3015b7
MW
486 /* ->lru in the tail pages is occupied by compound_head. */
487 return &page[2].deferred_list;
9a982250
KS
488}
489
490void prep_transhuge_page(struct page *page)
491{
492 /*
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
495 */
9a982250
KS
496
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499}
500
74d2fad1
TK
501unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
502 loff_t off, unsigned long flags, unsigned long size)
503{
504 unsigned long addr;
505 loff_t off_end = off + len;
506 loff_t off_align = round_up(off, size);
507 unsigned long len_pad;
508
509 if (off_end <= off_align || (off_end - off_align) < size)
510 return 0;
511
512 len_pad = len + size;
513 if (len_pad < len || (off + len_pad) < off)
514 return 0;
515
516 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
517 off >> PAGE_SHIFT, flags);
518 if (IS_ERR_VALUE(addr))
519 return 0;
520
521 addr += (off - addr) & (size - 1);
522 return addr;
523}
524
525unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
526 unsigned long len, unsigned long pgoff, unsigned long flags)
527{
528 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
529
530 if (addr)
531 goto out;
532 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
533 goto out;
534
535 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
536 if (addr)
537 return addr;
538
539 out:
540 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
541}
542EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
543
2b740303
SJ
544static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
545 struct page *page, gfp_t gfp)
71e3aac0 546{
82b0f8c3 547 struct vm_area_struct *vma = vmf->vma;
00501b53 548 struct mem_cgroup *memcg;
71e3aac0 549 pgtable_t pgtable;
82b0f8c3 550 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 551 vm_fault_t ret = 0;
71e3aac0 552
309381fe 553 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 554
2cf85583 555 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
556 put_page(page);
557 count_vm_event(THP_FAULT_FALLBACK);
558 return VM_FAULT_FALLBACK;
559 }
00501b53 560
bae473a4 561 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 562 if (unlikely(!pgtable)) {
6b31d595
MH
563 ret = VM_FAULT_OOM;
564 goto release;
00501b53 565 }
71e3aac0 566
c79b57e4 567 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
568 /*
569 * The memory barrier inside __SetPageUptodate makes sure that
570 * clear_huge_page writes become visible before the set_pmd_at()
571 * write.
572 */
71e3aac0
AA
573 __SetPageUptodate(page);
574
82b0f8c3
JK
575 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
576 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 577 goto unlock_release;
71e3aac0
AA
578 } else {
579 pmd_t entry;
6b251fc9 580
6b31d595
MH
581 ret = check_stable_address_space(vma->vm_mm);
582 if (ret)
583 goto unlock_release;
584
6b251fc9
AA
585 /* Deliver the page fault to userland */
586 if (userfaultfd_missing(vma)) {
2b740303 587 vm_fault_t ret2;
6b251fc9 588
82b0f8c3 589 spin_unlock(vmf->ptl);
f627c2f5 590 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 591 put_page(page);
bae473a4 592 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
593 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
594 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
595 return ret2;
6b251fc9
AA
596 }
597
3122359a 598 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 600 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 601 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 602 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
603 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 606 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 607 spin_unlock(vmf->ptl);
6b251fc9 608 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
609 }
610
aa2e878e 611 return 0;
6b31d595
MH
612unlock_release:
613 spin_unlock(vmf->ptl);
614release:
615 if (pgtable)
616 pte_free(vma->vm_mm, pgtable);
617 mem_cgroup_cancel_charge(page, memcg, true);
618 put_page(page);
619 return ret;
620
71e3aac0
AA
621}
622
444eb2a4 623/*
21440d7e
DR
624 * always: directly stall for all thp allocations
625 * defer: wake kswapd and fail if not immediately available
626 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
627 * fail if not immediately available
628 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
629 * available
630 * never: never stall for any thp allocation
444eb2a4
MG
631 */
632static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
633{
21440d7e 634 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 635
21440d7e 636 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
25160354 637 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
21440d7e
DR
638 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
639 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
640 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
641 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
642 __GFP_KSWAPD_RECLAIM);
643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
644 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645 0);
25160354 646 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
647}
648
c4088ebd 649/* Caller must hold page table lock. */
d295e341 650static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 651 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 652 struct page *zero_page)
fc9fe822
KS
653{
654 pmd_t entry;
7c414164
AM
655 if (!pmd_none(*pmd))
656 return false;
5918d10a 657 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 658 entry = pmd_mkhuge(entry);
12c9d70b
MW
659 if (pgtable)
660 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 661 set_pmd_at(mm, haddr, pmd, entry);
c4812909 662 mm_inc_nr_ptes(mm);
7c414164 663 return true;
fc9fe822
KS
664}
665
2b740303 666vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 667{
82b0f8c3 668 struct vm_area_struct *vma = vmf->vma;
077fcf11 669 gfp_t gfp;
71e3aac0 670 struct page *page;
82b0f8c3 671 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 672
128ec037 673 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 674 return VM_FAULT_FALLBACK;
128ec037
KS
675 if (unlikely(anon_vma_prepare(vma)))
676 return VM_FAULT_OOM;
6d50e60c 677 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 678 return VM_FAULT_OOM;
82b0f8c3 679 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 680 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
681 transparent_hugepage_use_zero_page()) {
682 pgtable_t pgtable;
683 struct page *zero_page;
684 bool set;
2b740303 685 vm_fault_t ret;
bae473a4 686 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 687 if (unlikely(!pgtable))
ba76149f 688 return VM_FAULT_OOM;
6fcb52a5 689 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 690 if (unlikely(!zero_page)) {
bae473a4 691 pte_free(vma->vm_mm, pgtable);
81ab4201 692 count_vm_event(THP_FAULT_FALLBACK);
c0292554 693 return VM_FAULT_FALLBACK;
b9bbfbe3 694 }
82b0f8c3 695 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
696 ret = 0;
697 set = false;
82b0f8c3 698 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
699 ret = check_stable_address_space(vma->vm_mm);
700 if (ret) {
701 spin_unlock(vmf->ptl);
702 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
703 spin_unlock(vmf->ptl);
704 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
705 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
706 } else {
bae473a4 707 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
708 haddr, vmf->pmd, zero_page);
709 spin_unlock(vmf->ptl);
6b251fc9
AA
710 set = true;
711 }
712 } else
82b0f8c3 713 spin_unlock(vmf->ptl);
6fcb52a5 714 if (!set)
bae473a4 715 pte_free(vma->vm_mm, pgtable);
6b251fc9 716 return ret;
71e3aac0 717 }
444eb2a4 718 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 719 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
720 if (unlikely(!page)) {
721 count_vm_event(THP_FAULT_FALLBACK);
c0292554 722 return VM_FAULT_FALLBACK;
128ec037 723 }
9a982250 724 prep_transhuge_page(page);
82b0f8c3 725 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
726}
727
ae18d6dc 728static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
729 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
730 pgtable_t pgtable)
5cad465d
MW
731{
732 struct mm_struct *mm = vma->vm_mm;
733 pmd_t entry;
734 spinlock_t *ptl;
735
736 ptl = pmd_lock(mm, pmd);
f25748e3
DW
737 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
738 if (pfn_t_devmap(pfn))
739 entry = pmd_mkdevmap(entry);
01871e59 740 if (write) {
f55e1014
LT
741 entry = pmd_mkyoung(pmd_mkdirty(entry));
742 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 743 }
3b6521f5
OH
744
745 if (pgtable) {
746 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 747 mm_inc_nr_ptes(mm);
3b6521f5
OH
748 }
749
01871e59
RZ
750 set_pmd_at(mm, addr, pmd, entry);
751 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 752 spin_unlock(ptl);
5cad465d
MW
753}
754
226ab561 755vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 756 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
757{
758 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 759 pgtable_t pgtable = NULL;
5cad465d
MW
760 /*
761 * If we had pmd_special, we could avoid all these restrictions,
762 * but we need to be consistent with PTEs and architectures that
763 * can't support a 'special' bit.
764 */
e1fb4a08
DJ
765 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
766 !pfn_t_devmap(pfn));
5cad465d
MW
767 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
768 (VM_PFNMAP|VM_MIXEDMAP));
769 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
770
771 if (addr < vma->vm_start || addr >= vma->vm_end)
772 return VM_FAULT_SIGBUS;
308a047c 773
3b6521f5
OH
774 if (arch_needs_pgtable_deposit()) {
775 pgtable = pte_alloc_one(vma->vm_mm, addr);
776 if (!pgtable)
777 return VM_FAULT_OOM;
778 }
779
308a047c
BP
780 track_pfn_insert(vma, &pgprot, pfn);
781
3b6521f5 782 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
ae18d6dc 783 return VM_FAULT_NOPAGE;
5cad465d 784}
dee41079 785EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 786
a00cc7d9 787#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 788static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 789{
f55e1014 790 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
791 pud = pud_mkwrite(pud);
792 return pud;
793}
794
795static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
796 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
797{
798 struct mm_struct *mm = vma->vm_mm;
799 pud_t entry;
800 spinlock_t *ptl;
801
802 ptl = pud_lock(mm, pud);
803 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
804 if (pfn_t_devmap(pfn))
805 entry = pud_mkdevmap(entry);
806 if (write) {
f55e1014
LT
807 entry = pud_mkyoung(pud_mkdirty(entry));
808 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
809 }
810 set_pud_at(mm, addr, pud, entry);
811 update_mmu_cache_pud(vma, addr, pud);
812 spin_unlock(ptl);
813}
814
226ab561 815vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
a00cc7d9
MW
816 pud_t *pud, pfn_t pfn, bool write)
817{
818 pgprot_t pgprot = vma->vm_page_prot;
819 /*
820 * If we had pud_special, we could avoid all these restrictions,
821 * but we need to be consistent with PTEs and architectures that
822 * can't support a 'special' bit.
823 */
62ec0d8c
DJ
824 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
825 !pfn_t_devmap(pfn));
a00cc7d9
MW
826 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
827 (VM_PFNMAP|VM_MIXEDMAP));
828 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
829
830 if (addr < vma->vm_start || addr >= vma->vm_end)
831 return VM_FAULT_SIGBUS;
832
833 track_pfn_insert(vma, &pgprot, pfn);
834
835 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
836 return VM_FAULT_NOPAGE;
837}
838EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
839#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
840
3565fce3 841static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 842 pmd_t *pmd, int flags)
3565fce3
DW
843{
844 pmd_t _pmd;
845
a8f97366
KS
846 _pmd = pmd_mkyoung(*pmd);
847 if (flags & FOLL_WRITE)
848 _pmd = pmd_mkdirty(_pmd);
3565fce3 849 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 850 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
851 update_mmu_cache_pmd(vma, addr, pmd);
852}
853
854struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
855 pmd_t *pmd, int flags)
856{
857 unsigned long pfn = pmd_pfn(*pmd);
858 struct mm_struct *mm = vma->vm_mm;
859 struct dev_pagemap *pgmap;
860 struct page *page;
861
862 assert_spin_locked(pmd_lockptr(mm, pmd));
863
8310d48b
KF
864 /*
865 * When we COW a devmap PMD entry, we split it into PTEs, so we should
866 * not be in this function with `flags & FOLL_COW` set.
867 */
868 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
869
f6f37321 870 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
871 return NULL;
872
873 if (pmd_present(*pmd) && pmd_devmap(*pmd))
874 /* pass */;
875 else
876 return NULL;
877
878 if (flags & FOLL_TOUCH)
a8f97366 879 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
880
881 /*
882 * device mapped pages can only be returned if the
883 * caller will manage the page reference count.
884 */
885 if (!(flags & FOLL_GET))
886 return ERR_PTR(-EEXIST);
887
888 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
889 pgmap = get_dev_pagemap(pfn, NULL);
890 if (!pgmap)
891 return ERR_PTR(-EFAULT);
892 page = pfn_to_page(pfn);
893 get_page(page);
894 put_dev_pagemap(pgmap);
895
896 return page;
897}
898
71e3aac0
AA
899int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
900 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
901 struct vm_area_struct *vma)
902{
c4088ebd 903 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
904 struct page *src_page;
905 pmd_t pmd;
12c9d70b 906 pgtable_t pgtable = NULL;
628d47ce 907 int ret = -ENOMEM;
71e3aac0 908
628d47ce
KS
909 /* Skip if can be re-fill on fault */
910 if (!vma_is_anonymous(vma))
911 return 0;
912
913 pgtable = pte_alloc_one(dst_mm, addr);
914 if (unlikely(!pgtable))
915 goto out;
71e3aac0 916
c4088ebd
KS
917 dst_ptl = pmd_lock(dst_mm, dst_pmd);
918 src_ptl = pmd_lockptr(src_mm, src_pmd);
919 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
920
921 ret = -EAGAIN;
922 pmd = *src_pmd;
84c3fc4e
ZY
923
924#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
925 if (unlikely(is_swap_pmd(pmd))) {
926 swp_entry_t entry = pmd_to_swp_entry(pmd);
927
928 VM_BUG_ON(!is_pmd_migration_entry(pmd));
929 if (is_write_migration_entry(entry)) {
930 make_migration_entry_read(&entry);
931 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
932 if (pmd_swp_soft_dirty(*src_pmd))
933 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
934 set_pmd_at(src_mm, addr, src_pmd, pmd);
935 }
dd8a67f9 936 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 937 mm_inc_nr_ptes(dst_mm);
dd8a67f9 938 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
939 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
940 ret = 0;
941 goto out_unlock;
942 }
943#endif
944
628d47ce 945 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
946 pte_free(dst_mm, pgtable);
947 goto out_unlock;
948 }
fc9fe822 949 /*
c4088ebd 950 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
951 * under splitting since we don't split the page itself, only pmd to
952 * a page table.
953 */
954 if (is_huge_zero_pmd(pmd)) {
5918d10a 955 struct page *zero_page;
97ae1749
KS
956 /*
957 * get_huge_zero_page() will never allocate a new page here,
958 * since we already have a zero page to copy. It just takes a
959 * reference.
960 */
6fcb52a5 961 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 962 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 963 zero_page);
fc9fe822
KS
964 ret = 0;
965 goto out_unlock;
966 }
de466bd6 967
628d47ce
KS
968 src_page = pmd_page(pmd);
969 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
970 get_page(src_page);
971 page_dup_rmap(src_page, true);
972 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 973 mm_inc_nr_ptes(dst_mm);
628d47ce 974 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
975
976 pmdp_set_wrprotect(src_mm, addr, src_pmd);
977 pmd = pmd_mkold(pmd_wrprotect(pmd));
978 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
979
980 ret = 0;
981out_unlock:
c4088ebd
KS
982 spin_unlock(src_ptl);
983 spin_unlock(dst_ptl);
71e3aac0
AA
984out:
985 return ret;
986}
987
a00cc7d9
MW
988#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
989static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 990 pud_t *pud, int flags)
a00cc7d9
MW
991{
992 pud_t _pud;
993
a8f97366
KS
994 _pud = pud_mkyoung(*pud);
995 if (flags & FOLL_WRITE)
996 _pud = pud_mkdirty(_pud);
a00cc7d9 997 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 998 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
999 update_mmu_cache_pud(vma, addr, pud);
1000}
1001
1002struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1003 pud_t *pud, int flags)
1004{
1005 unsigned long pfn = pud_pfn(*pud);
1006 struct mm_struct *mm = vma->vm_mm;
1007 struct dev_pagemap *pgmap;
1008 struct page *page;
1009
1010 assert_spin_locked(pud_lockptr(mm, pud));
1011
f6f37321 1012 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1013 return NULL;
1014
1015 if (pud_present(*pud) && pud_devmap(*pud))
1016 /* pass */;
1017 else
1018 return NULL;
1019
1020 if (flags & FOLL_TOUCH)
a8f97366 1021 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1022
1023 /*
1024 * device mapped pages can only be returned if the
1025 * caller will manage the page reference count.
1026 */
1027 if (!(flags & FOLL_GET))
1028 return ERR_PTR(-EEXIST);
1029
1030 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1031 pgmap = get_dev_pagemap(pfn, NULL);
1032 if (!pgmap)
1033 return ERR_PTR(-EFAULT);
1034 page = pfn_to_page(pfn);
1035 get_page(page);
1036 put_dev_pagemap(pgmap);
1037
1038 return page;
1039}
1040
1041int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1042 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1043 struct vm_area_struct *vma)
1044{
1045 spinlock_t *dst_ptl, *src_ptl;
1046 pud_t pud;
1047 int ret;
1048
1049 dst_ptl = pud_lock(dst_mm, dst_pud);
1050 src_ptl = pud_lockptr(src_mm, src_pud);
1051 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1052
1053 ret = -EAGAIN;
1054 pud = *src_pud;
1055 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1056 goto out_unlock;
1057
1058 /*
1059 * When page table lock is held, the huge zero pud should not be
1060 * under splitting since we don't split the page itself, only pud to
1061 * a page table.
1062 */
1063 if (is_huge_zero_pud(pud)) {
1064 /* No huge zero pud yet */
1065 }
1066
1067 pudp_set_wrprotect(src_mm, addr, src_pud);
1068 pud = pud_mkold(pud_wrprotect(pud));
1069 set_pud_at(dst_mm, addr, dst_pud, pud);
1070
1071 ret = 0;
1072out_unlock:
1073 spin_unlock(src_ptl);
1074 spin_unlock(dst_ptl);
1075 return ret;
1076}
1077
1078void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1079{
1080 pud_t entry;
1081 unsigned long haddr;
1082 bool write = vmf->flags & FAULT_FLAG_WRITE;
1083
1084 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1085 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1086 goto unlock;
1087
1088 entry = pud_mkyoung(orig_pud);
1089 if (write)
1090 entry = pud_mkdirty(entry);
1091 haddr = vmf->address & HPAGE_PUD_MASK;
1092 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1093 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1094
1095unlock:
1096 spin_unlock(vmf->ptl);
1097}
1098#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1099
82b0f8c3 1100void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1101{
1102 pmd_t entry;
1103 unsigned long haddr;
20f664aa 1104 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1105
82b0f8c3
JK
1106 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1107 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1108 goto unlock;
1109
1110 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1111 if (write)
1112 entry = pmd_mkdirty(entry);
82b0f8c3 1113 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1114 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1115 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1116
1117unlock:
82b0f8c3 1118 spin_unlock(vmf->ptl);
a1dd450b
WD
1119}
1120
2b740303
SJ
1121static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1122 pmd_t orig_pmd, struct page *page)
71e3aac0 1123{
82b0f8c3
JK
1124 struct vm_area_struct *vma = vmf->vma;
1125 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1126 struct mem_cgroup *memcg;
71e3aac0
AA
1127 pgtable_t pgtable;
1128 pmd_t _pmd;
2b740303
SJ
1129 int i;
1130 vm_fault_t ret = 0;
71e3aac0 1131 struct page **pages;
2ec74c3e
SG
1132 unsigned long mmun_start; /* For mmu_notifiers */
1133 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0 1134
6da2ec56
KC
1135 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1136 GFP_KERNEL);
71e3aac0
AA
1137 if (unlikely(!pages)) {
1138 ret |= VM_FAULT_OOM;
1139 goto out;
1140 }
1141
1142 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1143 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1144 vmf->address, page_to_nid(page));
b9bbfbe3 1145 if (unlikely(!pages[i] ||
2cf85583 1146 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1147 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1148 if (pages[i])
71e3aac0 1149 put_page(pages[i]);
b9bbfbe3 1150 while (--i >= 0) {
00501b53
JW
1151 memcg = (void *)page_private(pages[i]);
1152 set_page_private(pages[i], 0);
f627c2f5
KS
1153 mem_cgroup_cancel_charge(pages[i], memcg,
1154 false);
b9bbfbe3
AA
1155 put_page(pages[i]);
1156 }
71e3aac0
AA
1157 kfree(pages);
1158 ret |= VM_FAULT_OOM;
1159 goto out;
1160 }
00501b53 1161 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1162 }
1163
1164 for (i = 0; i < HPAGE_PMD_NR; i++) {
1165 copy_user_highpage(pages[i], page + i,
0089e485 1166 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1167 __SetPageUptodate(pages[i]);
1168 cond_resched();
1169 }
1170
2ec74c3e
SG
1171 mmun_start = haddr;
1172 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1173 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1174
82b0f8c3
JK
1175 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1176 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1177 goto out_free_pages;
309381fe 1178 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1179
0f10851e
JG
1180 /*
1181 * Leave pmd empty until pte is filled note we must notify here as
1182 * concurrent CPU thread might write to new page before the call to
1183 * mmu_notifier_invalidate_range_end() happens which can lead to a
1184 * device seeing memory write in different order than CPU.
1185 *
ad56b738 1186 * See Documentation/vm/mmu_notifier.rst
0f10851e 1187 */
82b0f8c3 1188 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1189
82b0f8c3 1190 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1191 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1192
1193 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1194 pte_t entry;
71e3aac0
AA
1195 entry = mk_pte(pages[i], vma->vm_page_prot);
1196 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1197 memcg = (void *)page_private(pages[i]);
1198 set_page_private(pages[i], 0);
82b0f8c3 1199 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1200 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1201 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1202 vmf->pte = pte_offset_map(&_pmd, haddr);
1203 VM_BUG_ON(!pte_none(*vmf->pte));
1204 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1205 pte_unmap(vmf->pte);
71e3aac0
AA
1206 }
1207 kfree(pages);
1208
71e3aac0 1209 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1210 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1211 page_remove_rmap(page, true);
82b0f8c3 1212 spin_unlock(vmf->ptl);
71e3aac0 1213
4645b9fe
JG
1214 /*
1215 * No need to double call mmu_notifier->invalidate_range() callback as
1216 * the above pmdp_huge_clear_flush_notify() did already call it.
1217 */
1218 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1219 mmun_end);
2ec74c3e 1220
71e3aac0
AA
1221 ret |= VM_FAULT_WRITE;
1222 put_page(page);
1223
1224out:
1225 return ret;
1226
1227out_free_pages:
82b0f8c3 1228 spin_unlock(vmf->ptl);
bae473a4 1229 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 1230 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1231 memcg = (void *)page_private(pages[i]);
1232 set_page_private(pages[i], 0);
f627c2f5 1233 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1234 put_page(pages[i]);
b9bbfbe3 1235 }
71e3aac0
AA
1236 kfree(pages);
1237 goto out;
1238}
1239
2b740303 1240vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1241{
82b0f8c3 1242 struct vm_area_struct *vma = vmf->vma;
93b4796d 1243 struct page *page = NULL, *new_page;
00501b53 1244 struct mem_cgroup *memcg;
82b0f8c3 1245 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1246 unsigned long mmun_start; /* For mmu_notifiers */
1247 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1248 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1249 vm_fault_t ret = 0;
71e3aac0 1250
82b0f8c3 1251 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1252 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1253 if (is_huge_zero_pmd(orig_pmd))
1254 goto alloc;
82b0f8c3
JK
1255 spin_lock(vmf->ptl);
1256 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1257 goto out_unlock;
1258
1259 page = pmd_page(orig_pmd);
309381fe 1260 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1261 /*
1262 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1263 * part.
1f25fe20 1264 */
ba3c4ce6
HY
1265 if (!trylock_page(page)) {
1266 get_page(page);
1267 spin_unlock(vmf->ptl);
1268 lock_page(page);
1269 spin_lock(vmf->ptl);
1270 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1271 unlock_page(page);
1272 put_page(page);
1273 goto out_unlock;
1274 }
1275 put_page(page);
1276 }
1277 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1278 pmd_t entry;
1279 entry = pmd_mkyoung(orig_pmd);
f55e1014 1280 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1281 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1282 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1283 ret |= VM_FAULT_WRITE;
ba3c4ce6 1284 unlock_page(page);
71e3aac0
AA
1285 goto out_unlock;
1286 }
ba3c4ce6 1287 unlock_page(page);
ddc58f27 1288 get_page(page);
82b0f8c3 1289 spin_unlock(vmf->ptl);
93b4796d 1290alloc:
71e3aac0 1291 if (transparent_hugepage_enabled(vma) &&
077fcf11 1292 !transparent_hugepage_debug_cow()) {
444eb2a4 1293 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1294 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1295 } else
71e3aac0
AA
1296 new_page = NULL;
1297
9a982250
KS
1298 if (likely(new_page)) {
1299 prep_transhuge_page(new_page);
1300 } else {
eecc1e42 1301 if (!page) {
82b0f8c3 1302 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1303 ret |= VM_FAULT_FALLBACK;
93b4796d 1304 } else {
82b0f8c3 1305 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1306 if (ret & VM_FAULT_OOM) {
82b0f8c3 1307 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1308 ret |= VM_FAULT_FALLBACK;
1309 }
ddc58f27 1310 put_page(page);
93b4796d 1311 }
17766dde 1312 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1313 goto out;
1314 }
1315
2cf85583 1316 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1317 huge_gfp, &memcg, true))) {
b9bbfbe3 1318 put_page(new_page);
82b0f8c3 1319 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1320 if (page)
ddc58f27 1321 put_page(page);
9845cbbd 1322 ret |= VM_FAULT_FALLBACK;
17766dde 1323 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1324 goto out;
1325 }
1326
17766dde
DR
1327 count_vm_event(THP_FAULT_ALLOC);
1328
eecc1e42 1329 if (!page)
c79b57e4 1330 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1331 else
c9f4cd71
HY
1332 copy_user_huge_page(new_page, page, vmf->address,
1333 vma, HPAGE_PMD_NR);
71e3aac0
AA
1334 __SetPageUptodate(new_page);
1335
2ec74c3e
SG
1336 mmun_start = haddr;
1337 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1338 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1339
82b0f8c3 1340 spin_lock(vmf->ptl);
93b4796d 1341 if (page)
ddc58f27 1342 put_page(page);
82b0f8c3
JK
1343 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1344 spin_unlock(vmf->ptl);
f627c2f5 1345 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1346 put_page(new_page);
2ec74c3e 1347 goto out_mn;
b9bbfbe3 1348 } else {
71e3aac0 1349 pmd_t entry;
3122359a 1350 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1351 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1352 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1353 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1354 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1355 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1356 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1357 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1358 if (!page) {
bae473a4 1359 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1360 } else {
309381fe 1361 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1362 page_remove_rmap(page, true);
93b4796d
KS
1363 put_page(page);
1364 }
71e3aac0
AA
1365 ret |= VM_FAULT_WRITE;
1366 }
82b0f8c3 1367 spin_unlock(vmf->ptl);
2ec74c3e 1368out_mn:
4645b9fe
JG
1369 /*
1370 * No need to double call mmu_notifier->invalidate_range() callback as
1371 * the above pmdp_huge_clear_flush_notify() did already call it.
1372 */
1373 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1374 mmun_end);
71e3aac0
AA
1375out:
1376 return ret;
2ec74c3e 1377out_unlock:
82b0f8c3 1378 spin_unlock(vmf->ptl);
2ec74c3e 1379 return ret;
71e3aac0
AA
1380}
1381
8310d48b
KF
1382/*
1383 * FOLL_FORCE can write to even unwritable pmd's, but only
1384 * after we've gone through a COW cycle and they are dirty.
1385 */
1386static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1387{
f6f37321 1388 return pmd_write(pmd) ||
8310d48b
KF
1389 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1390}
1391
b676b293 1392struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1393 unsigned long addr,
1394 pmd_t *pmd,
1395 unsigned int flags)
1396{
b676b293 1397 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1398 struct page *page = NULL;
1399
c4088ebd 1400 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1401
8310d48b 1402 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1403 goto out;
1404
85facf25
KS
1405 /* Avoid dumping huge zero page */
1406 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1407 return ERR_PTR(-EFAULT);
1408
2b4847e7 1409 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1410 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1411 goto out;
1412
71e3aac0 1413 page = pmd_page(*pmd);
ca120cf6 1414 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1415 if (flags & FOLL_TOUCH)
a8f97366 1416 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1417 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1418 /*
1419 * We don't mlock() pte-mapped THPs. This way we can avoid
1420 * leaking mlocked pages into non-VM_LOCKED VMAs.
1421 *
9a73f61b
KS
1422 * For anon THP:
1423 *
e90309c9
KS
1424 * In most cases the pmd is the only mapping of the page as we
1425 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1426 * writable private mappings in populate_vma_page_range().
1427 *
1428 * The only scenario when we have the page shared here is if we
1429 * mlocking read-only mapping shared over fork(). We skip
1430 * mlocking such pages.
9a73f61b
KS
1431 *
1432 * For file THP:
1433 *
1434 * We can expect PageDoubleMap() to be stable under page lock:
1435 * for file pages we set it in page_add_file_rmap(), which
1436 * requires page to be locked.
e90309c9 1437 */
9a73f61b
KS
1438
1439 if (PageAnon(page) && compound_mapcount(page) != 1)
1440 goto skip_mlock;
1441 if (PageDoubleMap(page) || !page->mapping)
1442 goto skip_mlock;
1443 if (!trylock_page(page))
1444 goto skip_mlock;
1445 lru_add_drain();
1446 if (page->mapping && !PageDoubleMap(page))
1447 mlock_vma_page(page);
1448 unlock_page(page);
b676b293 1449 }
9a73f61b 1450skip_mlock:
71e3aac0 1451 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1452 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1453 if (flags & FOLL_GET)
ddc58f27 1454 get_page(page);
71e3aac0
AA
1455
1456out:
1457 return page;
1458}
1459
d10e63f2 1460/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1461vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1462{
82b0f8c3 1463 struct vm_area_struct *vma = vmf->vma;
b8916634 1464 struct anon_vma *anon_vma = NULL;
b32967ff 1465 struct page *page;
82b0f8c3 1466 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
8191acbd 1467 int page_nid = -1, this_nid = numa_node_id();
90572890 1468 int target_nid, last_cpupid = -1;
8191acbd
MG
1469 bool page_locked;
1470 bool migrated = false;
b191f9b1 1471 bool was_writable;
6688cc05 1472 int flags = 0;
d10e63f2 1473
82b0f8c3
JK
1474 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1475 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1476 goto out_unlock;
1477
de466bd6
MG
1478 /*
1479 * If there are potential migrations, wait for completion and retry
1480 * without disrupting NUMA hinting information. Do not relock and
1481 * check_same as the page may no longer be mapped.
1482 */
82b0f8c3
JK
1483 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1484 page = pmd_page(*vmf->pmd);
3c226c63
MR
1485 if (!get_page_unless_zero(page))
1486 goto out_unlock;
82b0f8c3 1487 spin_unlock(vmf->ptl);
5d833062 1488 wait_on_page_locked(page);
3c226c63 1489 put_page(page);
de466bd6
MG
1490 goto out;
1491 }
1492
d10e63f2 1493 page = pmd_page(pmd);
a1a46184 1494 BUG_ON(is_huge_zero_page(page));
8191acbd 1495 page_nid = page_to_nid(page);
90572890 1496 last_cpupid = page_cpupid_last(page);
03c5a6e1 1497 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1498 if (page_nid == this_nid) {
03c5a6e1 1499 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1500 flags |= TNF_FAULT_LOCAL;
1501 }
4daae3b4 1502
bea66fbd 1503 /* See similar comment in do_numa_page for explanation */
288bc549 1504 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1505 flags |= TNF_NO_GROUP;
1506
ff9042b1
MG
1507 /*
1508 * Acquire the page lock to serialise THP migrations but avoid dropping
1509 * page_table_lock if at all possible
1510 */
b8916634
MG
1511 page_locked = trylock_page(page);
1512 target_nid = mpol_misplaced(page, vma, haddr);
1513 if (target_nid == -1) {
1514 /* If the page was locked, there are no parallel migrations */
a54a407f 1515 if (page_locked)
b8916634 1516 goto clear_pmdnuma;
2b4847e7 1517 }
4daae3b4 1518
de466bd6 1519 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1520 if (!page_locked) {
3c226c63
MR
1521 page_nid = -1;
1522 if (!get_page_unless_zero(page))
1523 goto out_unlock;
82b0f8c3 1524 spin_unlock(vmf->ptl);
b8916634 1525 wait_on_page_locked(page);
3c226c63 1526 put_page(page);
b8916634
MG
1527 goto out;
1528 }
1529
2b4847e7
MG
1530 /*
1531 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1532 * to serialises splits
1533 */
b8916634 1534 get_page(page);
82b0f8c3 1535 spin_unlock(vmf->ptl);
b8916634 1536 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1537
c69307d5 1538 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1539 spin_lock(vmf->ptl);
1540 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1541 unlock_page(page);
1542 put_page(page);
a54a407f 1543 page_nid = -1;
4daae3b4 1544 goto out_unlock;
b32967ff 1545 }
ff9042b1 1546
c3a489ca
MG
1547 /* Bail if we fail to protect against THP splits for any reason */
1548 if (unlikely(!anon_vma)) {
1549 put_page(page);
1550 page_nid = -1;
1551 goto clear_pmdnuma;
1552 }
1553
8b1b436d
PZ
1554 /*
1555 * Since we took the NUMA fault, we must have observed the !accessible
1556 * bit. Make sure all other CPUs agree with that, to avoid them
1557 * modifying the page we're about to migrate.
1558 *
1559 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1560 * inc_tlb_flush_pending().
1561 *
1562 * We are not sure a pending tlb flush here is for a huge page
1563 * mapping or not. Hence use the tlb range variant
8b1b436d
PZ
1564 */
1565 if (mm_tlb_flush_pending(vma->vm_mm))
ccde85ba 1566 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
8b1b436d 1567
a54a407f
MG
1568 /*
1569 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1570 * and access rights restored.
a54a407f 1571 */
82b0f8c3 1572 spin_unlock(vmf->ptl);
8b1b436d 1573
bae473a4 1574 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1575 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1576 if (migrated) {
1577 flags |= TNF_MIGRATED;
8191acbd 1578 page_nid = target_nid;
074c2381
MG
1579 } else
1580 flags |= TNF_MIGRATE_FAIL;
b32967ff 1581
8191acbd 1582 goto out;
b32967ff 1583clear_pmdnuma:
a54a407f 1584 BUG_ON(!PageLocked(page));
288bc549 1585 was_writable = pmd_savedwrite(pmd);
4d942466 1586 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1587 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1588 if (was_writable)
1589 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1590 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1591 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1592 unlock_page(page);
d10e63f2 1593out_unlock:
82b0f8c3 1594 spin_unlock(vmf->ptl);
b8916634
MG
1595
1596out:
1597 if (anon_vma)
1598 page_unlock_anon_vma_read(anon_vma);
1599
8191acbd 1600 if (page_nid != -1)
82b0f8c3 1601 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1602 flags);
8191acbd 1603
d10e63f2
MG
1604 return 0;
1605}
1606
319904ad
HY
1607/*
1608 * Return true if we do MADV_FREE successfully on entire pmd page.
1609 * Otherwise, return false.
1610 */
1611bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1612 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1613{
1614 spinlock_t *ptl;
1615 pmd_t orig_pmd;
1616 struct page *page;
1617 struct mm_struct *mm = tlb->mm;
319904ad 1618 bool ret = false;
b8d3c4c3 1619
07e32661
AK
1620 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1621
b6ec57f4
KS
1622 ptl = pmd_trans_huge_lock(pmd, vma);
1623 if (!ptl)
25eedabe 1624 goto out_unlocked;
b8d3c4c3
MK
1625
1626 orig_pmd = *pmd;
319904ad 1627 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1628 goto out;
b8d3c4c3 1629
84c3fc4e
ZY
1630 if (unlikely(!pmd_present(orig_pmd))) {
1631 VM_BUG_ON(thp_migration_supported() &&
1632 !is_pmd_migration_entry(orig_pmd));
1633 goto out;
1634 }
1635
b8d3c4c3
MK
1636 page = pmd_page(orig_pmd);
1637 /*
1638 * If other processes are mapping this page, we couldn't discard
1639 * the page unless they all do MADV_FREE so let's skip the page.
1640 */
1641 if (page_mapcount(page) != 1)
1642 goto out;
1643
1644 if (!trylock_page(page))
1645 goto out;
1646
1647 /*
1648 * If user want to discard part-pages of THP, split it so MADV_FREE
1649 * will deactivate only them.
1650 */
1651 if (next - addr != HPAGE_PMD_SIZE) {
1652 get_page(page);
1653 spin_unlock(ptl);
9818b8cd 1654 split_huge_page(page);
b8d3c4c3 1655 unlock_page(page);
bbf29ffc 1656 put_page(page);
b8d3c4c3
MK
1657 goto out_unlocked;
1658 }
1659
1660 if (PageDirty(page))
1661 ClearPageDirty(page);
1662 unlock_page(page);
1663
b8d3c4c3 1664 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1665 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1666 orig_pmd = pmd_mkold(orig_pmd);
1667 orig_pmd = pmd_mkclean(orig_pmd);
1668
1669 set_pmd_at(mm, addr, pmd, orig_pmd);
1670 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1671 }
802a3a92
SL
1672
1673 mark_page_lazyfree(page);
319904ad 1674 ret = true;
b8d3c4c3
MK
1675out:
1676 spin_unlock(ptl);
1677out_unlocked:
1678 return ret;
1679}
1680
953c66c2
AK
1681static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1682{
1683 pgtable_t pgtable;
1684
1685 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1686 pte_free(mm, pgtable);
c4812909 1687 mm_dec_nr_ptes(mm);
953c66c2
AK
1688}
1689
71e3aac0 1690int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1691 pmd_t *pmd, unsigned long addr)
71e3aac0 1692{
da146769 1693 pmd_t orig_pmd;
bf929152 1694 spinlock_t *ptl;
71e3aac0 1695
07e32661
AK
1696 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1697
b6ec57f4
KS
1698 ptl = __pmd_trans_huge_lock(pmd, vma);
1699 if (!ptl)
da146769
KS
1700 return 0;
1701 /*
1702 * For architectures like ppc64 we look at deposited pgtable
1703 * when calling pmdp_huge_get_and_clear. So do the
1704 * pgtable_trans_huge_withdraw after finishing pmdp related
1705 * operations.
1706 */
1707 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1708 tlb->fullmm);
1709 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1710 if (vma_is_dax(vma)) {
3b6521f5
OH
1711 if (arch_needs_pgtable_deposit())
1712 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1713 spin_unlock(ptl);
1714 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1715 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1716 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1717 zap_deposited_table(tlb->mm, pmd);
da146769 1718 spin_unlock(ptl);
c0f2e176 1719 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1720 } else {
616b8371
ZY
1721 struct page *page = NULL;
1722 int flush_needed = 1;
1723
1724 if (pmd_present(orig_pmd)) {
1725 page = pmd_page(orig_pmd);
1726 page_remove_rmap(page, true);
1727 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1728 VM_BUG_ON_PAGE(!PageHead(page), page);
1729 } else if (thp_migration_supported()) {
1730 swp_entry_t entry;
1731
1732 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1733 entry = pmd_to_swp_entry(orig_pmd);
1734 page = pfn_to_page(swp_offset(entry));
1735 flush_needed = 0;
1736 } else
1737 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1738
b5072380 1739 if (PageAnon(page)) {
c14a6eb4 1740 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1741 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1742 } else {
953c66c2
AK
1743 if (arch_needs_pgtable_deposit())
1744 zap_deposited_table(tlb->mm, pmd);
fadae295 1745 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1746 }
616b8371 1747
da146769 1748 spin_unlock(ptl);
616b8371
ZY
1749 if (flush_needed)
1750 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1751 }
da146769 1752 return 1;
71e3aac0
AA
1753}
1754
1dd38b6c
AK
1755#ifndef pmd_move_must_withdraw
1756static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1757 spinlock_t *old_pmd_ptl,
1758 struct vm_area_struct *vma)
1759{
1760 /*
1761 * With split pmd lock we also need to move preallocated
1762 * PTE page table if new_pmd is on different PMD page table.
1763 *
1764 * We also don't deposit and withdraw tables for file pages.
1765 */
1766 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1767}
1768#endif
1769
ab6e3d09
NH
1770static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1771{
1772#ifdef CONFIG_MEM_SOFT_DIRTY
1773 if (unlikely(is_pmd_migration_entry(pmd)))
1774 pmd = pmd_swp_mksoft_dirty(pmd);
1775 else if (pmd_present(pmd))
1776 pmd = pmd_mksoft_dirty(pmd);
1777#endif
1778 return pmd;
1779}
1780
bf8616d5 1781bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1782 unsigned long new_addr, unsigned long old_end,
eb66ae03 1783 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1784{
bf929152 1785 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1786 pmd_t pmd;
37a1c49a 1787 struct mm_struct *mm = vma->vm_mm;
5d190420 1788 bool force_flush = false;
37a1c49a
AA
1789
1790 if ((old_addr & ~HPAGE_PMD_MASK) ||
1791 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1792 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1793 return false;
37a1c49a
AA
1794
1795 /*
1796 * The destination pmd shouldn't be established, free_pgtables()
1797 * should have release it.
1798 */
1799 if (WARN_ON(!pmd_none(*new_pmd))) {
1800 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1801 return false;
37a1c49a
AA
1802 }
1803
bf929152
KS
1804 /*
1805 * We don't have to worry about the ordering of src and dst
1806 * ptlocks because exclusive mmap_sem prevents deadlock.
1807 */
b6ec57f4
KS
1808 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1809 if (old_ptl) {
bf929152
KS
1810 new_ptl = pmd_lockptr(mm, new_pmd);
1811 if (new_ptl != old_ptl)
1812 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1813 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1814 if (pmd_present(pmd))
a2ce2666 1815 force_flush = true;
025c5b24 1816 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1817
1dd38b6c 1818 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1819 pgtable_t pgtable;
3592806c
KS
1820 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1821 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1822 }
ab6e3d09
NH
1823 pmd = move_soft_dirty_pmd(pmd);
1824 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1825 if (force_flush)
1826 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1827 if (new_ptl != old_ptl)
1828 spin_unlock(new_ptl);
bf929152 1829 spin_unlock(old_ptl);
4b471e88 1830 return true;
37a1c49a 1831 }
4b471e88 1832 return false;
37a1c49a
AA
1833}
1834
f123d74a
MG
1835/*
1836 * Returns
1837 * - 0 if PMD could not be locked
1838 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1839 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1840 */
cd7548ab 1841int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1842 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1843{
1844 struct mm_struct *mm = vma->vm_mm;
bf929152 1845 spinlock_t *ptl;
0a85e51d
KS
1846 pmd_t entry;
1847 bool preserve_write;
1848 int ret;
cd7548ab 1849
b6ec57f4 1850 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1851 if (!ptl)
1852 return 0;
e944fd67 1853
0a85e51d
KS
1854 preserve_write = prot_numa && pmd_write(*pmd);
1855 ret = 1;
e944fd67 1856
84c3fc4e
ZY
1857#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1858 if (is_swap_pmd(*pmd)) {
1859 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1860
1861 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1862 if (is_write_migration_entry(entry)) {
1863 pmd_t newpmd;
1864 /*
1865 * A protection check is difficult so
1866 * just be safe and disable write
1867 */
1868 make_migration_entry_read(&entry);
1869 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1870 if (pmd_swp_soft_dirty(*pmd))
1871 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1872 set_pmd_at(mm, addr, pmd, newpmd);
1873 }
1874 goto unlock;
1875 }
1876#endif
1877
0a85e51d
KS
1878 /*
1879 * Avoid trapping faults against the zero page. The read-only
1880 * data is likely to be read-cached on the local CPU and
1881 * local/remote hits to the zero page are not interesting.
1882 */
1883 if (prot_numa && is_huge_zero_pmd(*pmd))
1884 goto unlock;
025c5b24 1885
0a85e51d
KS
1886 if (prot_numa && pmd_protnone(*pmd))
1887 goto unlock;
1888
ced10803
KS
1889 /*
1890 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1891 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1892 * which is also under down_read(mmap_sem):
1893 *
1894 * CPU0: CPU1:
1895 * change_huge_pmd(prot_numa=1)
1896 * pmdp_huge_get_and_clear_notify()
1897 * madvise_dontneed()
1898 * zap_pmd_range()
1899 * pmd_trans_huge(*pmd) == 0 (without ptl)
1900 * // skip the pmd
1901 * set_pmd_at();
1902 * // pmd is re-established
1903 *
1904 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1905 * which may break userspace.
1906 *
1907 * pmdp_invalidate() is required to make sure we don't miss
1908 * dirty/young flags set by hardware.
1909 */
a3cf988f 1910 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1911
0a85e51d
KS
1912 entry = pmd_modify(entry, newprot);
1913 if (preserve_write)
1914 entry = pmd_mk_savedwrite(entry);
1915 ret = HPAGE_PMD_NR;
1916 set_pmd_at(mm, addr, pmd, entry);
1917 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1918unlock:
1919 spin_unlock(ptl);
025c5b24
NH
1920 return ret;
1921}
1922
1923/*
8f19b0c0 1924 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1925 *
8f19b0c0
HY
1926 * Note that if it returns page table lock pointer, this routine returns without
1927 * unlocking page table lock. So callers must unlock it.
025c5b24 1928 */
b6ec57f4 1929spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1930{
b6ec57f4
KS
1931 spinlock_t *ptl;
1932 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1933 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1934 pmd_devmap(*pmd)))
b6ec57f4
KS
1935 return ptl;
1936 spin_unlock(ptl);
1937 return NULL;
cd7548ab
JW
1938}
1939
a00cc7d9
MW
1940/*
1941 * Returns true if a given pud maps a thp, false otherwise.
1942 *
1943 * Note that if it returns true, this routine returns without unlocking page
1944 * table lock. So callers must unlock it.
1945 */
1946spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1947{
1948 spinlock_t *ptl;
1949
1950 ptl = pud_lock(vma->vm_mm, pud);
1951 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1952 return ptl;
1953 spin_unlock(ptl);
1954 return NULL;
1955}
1956
1957#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1958int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1959 pud_t *pud, unsigned long addr)
1960{
1961 pud_t orig_pud;
1962 spinlock_t *ptl;
1963
1964 ptl = __pud_trans_huge_lock(pud, vma);
1965 if (!ptl)
1966 return 0;
1967 /*
1968 * For architectures like ppc64 we look at deposited pgtable
1969 * when calling pudp_huge_get_and_clear. So do the
1970 * pgtable_trans_huge_withdraw after finishing pudp related
1971 * operations.
1972 */
1973 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1974 tlb->fullmm);
1975 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1976 if (vma_is_dax(vma)) {
1977 spin_unlock(ptl);
1978 /* No zero page support yet */
1979 } else {
1980 /* No support for anonymous PUD pages yet */
1981 BUG();
1982 }
1983 return 1;
1984}
1985
1986static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1987 unsigned long haddr)
1988{
1989 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1990 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1991 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1992 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1993
ce9311cf 1994 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1995
1996 pudp_huge_clear_flush_notify(vma, haddr, pud);
1997}
1998
1999void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2000 unsigned long address)
2001{
2002 spinlock_t *ptl;
2003 struct mm_struct *mm = vma->vm_mm;
2004 unsigned long haddr = address & HPAGE_PUD_MASK;
2005
2006 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2007 ptl = pud_lock(mm, pud);
2008 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2009 goto out;
2010 __split_huge_pud_locked(vma, pud, haddr);
2011
2012out:
2013 spin_unlock(ptl);
4645b9fe
JG
2014 /*
2015 * No need to double call mmu_notifier->invalidate_range() callback as
2016 * the above pudp_huge_clear_flush_notify() did already call it.
2017 */
2018 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2019 HPAGE_PUD_SIZE);
a00cc7d9
MW
2020}
2021#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2022
eef1b3ba
KS
2023static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2024 unsigned long haddr, pmd_t *pmd)
2025{
2026 struct mm_struct *mm = vma->vm_mm;
2027 pgtable_t pgtable;
2028 pmd_t _pmd;
2029 int i;
2030
0f10851e
JG
2031 /*
2032 * Leave pmd empty until pte is filled note that it is fine to delay
2033 * notification until mmu_notifier_invalidate_range_end() as we are
2034 * replacing a zero pmd write protected page with a zero pte write
2035 * protected page.
2036 *
ad56b738 2037 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2038 */
2039 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2040
2041 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2042 pmd_populate(mm, &_pmd, pgtable);
2043
2044 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2045 pte_t *pte, entry;
2046 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2047 entry = pte_mkspecial(entry);
2048 pte = pte_offset_map(&_pmd, haddr);
2049 VM_BUG_ON(!pte_none(*pte));
2050 set_pte_at(mm, haddr, pte, entry);
2051 pte_unmap(pte);
2052 }
2053 smp_wmb(); /* make pte visible before pmd */
2054 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2055}
2056
2057static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2058 unsigned long haddr, bool freeze)
eef1b3ba
KS
2059{
2060 struct mm_struct *mm = vma->vm_mm;
2061 struct page *page;
2062 pgtable_t pgtable;
423ac9af 2063 pmd_t old_pmd, _pmd;
a3cf988f 2064 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2065 unsigned long addr;
eef1b3ba
KS
2066 int i;
2067
2068 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2069 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2070 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2071 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2072 && !pmd_devmap(*pmd));
eef1b3ba
KS
2073
2074 count_vm_event(THP_SPLIT_PMD);
2075
d21b9e57
KS
2076 if (!vma_is_anonymous(vma)) {
2077 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2078 /*
2079 * We are going to unmap this huge page. So
2080 * just go ahead and zap it
2081 */
2082 if (arch_needs_pgtable_deposit())
2083 zap_deposited_table(mm, pmd);
d21b9e57
KS
2084 if (vma_is_dax(vma))
2085 return;
2086 page = pmd_page(_pmd);
e1f1b157
HD
2087 if (!PageDirty(page) && pmd_dirty(_pmd))
2088 set_page_dirty(page);
d21b9e57
KS
2089 if (!PageReferenced(page) && pmd_young(_pmd))
2090 SetPageReferenced(page);
2091 page_remove_rmap(page, true);
2092 put_page(page);
fadae295 2093 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2094 return;
2095 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2096 /*
2097 * FIXME: Do we want to invalidate secondary mmu by calling
2098 * mmu_notifier_invalidate_range() see comments below inside
2099 * __split_huge_pmd() ?
2100 *
2101 * We are going from a zero huge page write protected to zero
2102 * small page also write protected so it does not seems useful
2103 * to invalidate secondary mmu at this time.
2104 */
eef1b3ba
KS
2105 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2106 }
2107
423ac9af
AK
2108 /*
2109 * Up to this point the pmd is present and huge and userland has the
2110 * whole access to the hugepage during the split (which happens in
2111 * place). If we overwrite the pmd with the not-huge version pointing
2112 * to the pte here (which of course we could if all CPUs were bug
2113 * free), userland could trigger a small page size TLB miss on the
2114 * small sized TLB while the hugepage TLB entry is still established in
2115 * the huge TLB. Some CPU doesn't like that.
2116 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2117 * 383 on page 93. Intel should be safe but is also warns that it's
2118 * only safe if the permission and cache attributes of the two entries
2119 * loaded in the two TLB is identical (which should be the case here).
2120 * But it is generally safer to never allow small and huge TLB entries
2121 * for the same virtual address to be loaded simultaneously. So instead
2122 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2123 * current pmd notpresent (atomically because here the pmd_trans_huge
2124 * must remain set at all times on the pmd until the split is complete
2125 * for this pmd), then we flush the SMP TLB and finally we write the
2126 * non-huge version of the pmd entry with pmd_populate.
2127 */
2128 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2129
423ac9af 2130 pmd_migration = is_pmd_migration_entry(old_pmd);
161a5654 2131 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2132 swp_entry_t entry;
2133
423ac9af 2134 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2135 page = pfn_to_page(swp_offset(entry));
161a5654
PX
2136 write = is_write_migration_entry(entry);
2137 young = false;
2138 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2139 } else {
423ac9af 2140 page = pmd_page(old_pmd);
161a5654
PX
2141 if (pmd_dirty(old_pmd))
2142 SetPageDirty(page);
2143 write = pmd_write(old_pmd);
2144 young = pmd_young(old_pmd);
2145 soft_dirty = pmd_soft_dirty(old_pmd);
2146 }
eef1b3ba 2147 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2148 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2149
423ac9af
AK
2150 /*
2151 * Withdraw the table only after we mark the pmd entry invalid.
2152 * This's critical for some architectures (Power).
2153 */
eef1b3ba
KS
2154 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2155 pmd_populate(mm, &_pmd, pgtable);
2156
2ac015e2 2157 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2158 pte_t entry, *pte;
2159 /*
2160 * Note that NUMA hinting access restrictions are not
2161 * transferred to avoid any possibility of altering
2162 * permissions across VMAs.
2163 */
84c3fc4e 2164 if (freeze || pmd_migration) {
ba988280
KS
2165 swp_entry_t swp_entry;
2166 swp_entry = make_migration_entry(page + i, write);
2167 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2168 if (soft_dirty)
2169 entry = pte_swp_mksoft_dirty(entry);
ba988280 2170 } else {
6d2329f8 2171 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2172 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2173 if (!write)
2174 entry = pte_wrprotect(entry);
2175 if (!young)
2176 entry = pte_mkold(entry);
804dd150
AA
2177 if (soft_dirty)
2178 entry = pte_mksoft_dirty(entry);
ba988280 2179 }
2ac015e2 2180 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2181 BUG_ON(!pte_none(*pte));
2ac015e2 2182 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2183 atomic_inc(&page[i]._mapcount);
2184 pte_unmap(pte);
2185 }
2186
2187 /*
2188 * Set PG_double_map before dropping compound_mapcount to avoid
2189 * false-negative page_mapped().
2190 */
2191 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2192 for (i = 0; i < HPAGE_PMD_NR; i++)
2193 atomic_inc(&page[i]._mapcount);
2194 }
2195
2196 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2197 /* Last compound_mapcount is gone. */
11fb9989 2198 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2199 if (TestClearPageDoubleMap(page)) {
2200 /* No need in mapcount reference anymore */
2201 for (i = 0; i < HPAGE_PMD_NR; i++)
2202 atomic_dec(&page[i]._mapcount);
2203 }
2204 }
2205
2206 smp_wmb(); /* make pte visible before pmd */
2207 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2208
2209 if (freeze) {
2ac015e2 2210 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2211 page_remove_rmap(page + i, false);
2212 put_page(page + i);
2213 }
2214 }
eef1b3ba
KS
2215}
2216
2217void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2218 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2219{
2220 spinlock_t *ptl;
2221 struct mm_struct *mm = vma->vm_mm;
2222 unsigned long haddr = address & HPAGE_PMD_MASK;
2223
2224 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2225 ptl = pmd_lock(mm, pmd);
33f4751e
NH
2226
2227 /*
2228 * If caller asks to setup a migration entries, we need a page to check
2229 * pmd against. Otherwise we can end up replacing wrong page.
2230 */
2231 VM_BUG_ON(freeze && !page);
2232 if (page && page != pmd_page(*pmd))
2233 goto out;
2234
5c7fb56e 2235 if (pmd_trans_huge(*pmd)) {
33f4751e 2236 page = pmd_page(*pmd);
5c7fb56e 2237 if (PageMlocked(page))
5f737714 2238 clear_page_mlock(page);
84c3fc4e 2239 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2240 goto out;
fec89c10 2241 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 2242out:
eef1b3ba 2243 spin_unlock(ptl);
4645b9fe
JG
2244 /*
2245 * No need to double call mmu_notifier->invalidate_range() callback.
2246 * They are 3 cases to consider inside __split_huge_pmd_locked():
2247 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2248 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2249 * fault will trigger a flush_notify before pointing to a new page
2250 * (it is fine if the secondary mmu keeps pointing to the old zero
2251 * page in the meantime)
2252 * 3) Split a huge pmd into pte pointing to the same page. No need
2253 * to invalidate secondary tlb entry they are all still valid.
2254 * any further changes to individual pte will notify. So no need
2255 * to call mmu_notifier->invalidate_range()
2256 */
2257 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2258 HPAGE_PMD_SIZE);
eef1b3ba
KS
2259}
2260
fec89c10
KS
2261void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2262 bool freeze, struct page *page)
94fcc585 2263{
f72e7dcd 2264 pgd_t *pgd;
c2febafc 2265 p4d_t *p4d;
f72e7dcd 2266 pud_t *pud;
94fcc585
AA
2267 pmd_t *pmd;
2268
78ddc534 2269 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2270 if (!pgd_present(*pgd))
2271 return;
2272
c2febafc
KS
2273 p4d = p4d_offset(pgd, address);
2274 if (!p4d_present(*p4d))
2275 return;
2276
2277 pud = pud_offset(p4d, address);
f72e7dcd
HD
2278 if (!pud_present(*pud))
2279 return;
2280
2281 pmd = pmd_offset(pud, address);
fec89c10 2282
33f4751e 2283 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2284}
2285
e1b9996b 2286void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2287 unsigned long start,
2288 unsigned long end,
2289 long adjust_next)
2290{
2291 /*
2292 * If the new start address isn't hpage aligned and it could
2293 * previously contain an hugepage: check if we need to split
2294 * an huge pmd.
2295 */
2296 if (start & ~HPAGE_PMD_MASK &&
2297 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2298 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2299 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2300
2301 /*
2302 * If the new end address isn't hpage aligned and it could
2303 * previously contain an hugepage: check if we need to split
2304 * an huge pmd.
2305 */
2306 if (end & ~HPAGE_PMD_MASK &&
2307 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2308 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2309 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2310
2311 /*
2312 * If we're also updating the vma->vm_next->vm_start, if the new
2313 * vm_next->vm_start isn't page aligned and it could previously
2314 * contain an hugepage: check if we need to split an huge pmd.
2315 */
2316 if (adjust_next > 0) {
2317 struct vm_area_struct *next = vma->vm_next;
2318 unsigned long nstart = next->vm_start;
2319 nstart += adjust_next << PAGE_SHIFT;
2320 if (nstart & ~HPAGE_PMD_MASK &&
2321 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2322 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2323 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2324 }
2325}
e9b61f19 2326
69697e6a 2327static void unmap_page(struct page *page)
e9b61f19 2328{
baa355fd 2329 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2330 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2331 bool unmap_success;
e9b61f19
KS
2332
2333 VM_BUG_ON_PAGE(!PageHead(page), page);
2334
baa355fd 2335 if (PageAnon(page))
b5ff8161 2336 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2337
666e5a40
MK
2338 unmap_success = try_to_unmap(page, ttu_flags);
2339 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2340}
2341
69697e6a 2342static void remap_page(struct page *page)
e9b61f19 2343{
fec89c10 2344 int i;
ace71a19
KS
2345 if (PageTransHuge(page)) {
2346 remove_migration_ptes(page, page, true);
2347 } else {
2348 for (i = 0; i < HPAGE_PMD_NR; i++)
2349 remove_migration_ptes(page + i, page + i, true);
2350 }
e9b61f19
KS
2351}
2352
8df651c7 2353static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2354 struct lruvec *lruvec, struct list_head *list)
2355{
e9b61f19
KS
2356 struct page *page_tail = head + tail;
2357
8df651c7 2358 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2359
2360 /*
605ca5ed
KK
2361 * Clone page flags before unfreezing refcount.
2362 *
2363 * After successful get_page_unless_zero() might follow flags change,
2364 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2365 */
e9b61f19
KS
2366 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2367 page_tail->flags |= (head->flags &
2368 ((1L << PG_referenced) |
2369 (1L << PG_swapbacked) |
38d8b4e6 2370 (1L << PG_swapcache) |
e9b61f19
KS
2371 (1L << PG_mlocked) |
2372 (1L << PG_uptodate) |
2373 (1L << PG_active) |
2374 (1L << PG_locked) |
b8d3c4c3
MK
2375 (1L << PG_unevictable) |
2376 (1L << PG_dirty)));
e9b61f19 2377
7e18656c
HD
2378 /* ->mapping in first tail page is compound_mapcount */
2379 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2380 page_tail);
2381 page_tail->mapping = head->mapping;
2382 page_tail->index = head->index + tail;
2383
605ca5ed 2384 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2385 smp_wmb();
2386
605ca5ed
KK
2387 /*
2388 * Clear PageTail before unfreezing page refcount.
2389 *
2390 * After successful get_page_unless_zero() might follow put_page()
2391 * which needs correct compound_head().
2392 */
e9b61f19
KS
2393 clear_compound_head(page_tail);
2394
605ca5ed
KK
2395 /* Finally unfreeze refcount. Additional reference from page cache. */
2396 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2397 PageSwapCache(head)));
2398
e9b61f19
KS
2399 if (page_is_young(head))
2400 set_page_young(page_tail);
2401 if (page_is_idle(head))
2402 set_page_idle(page_tail);
2403
e9b61f19 2404 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2405
2406 /*
2407 * always add to the tail because some iterators expect new
2408 * pages to show after the currently processed elements - e.g.
2409 * migrate_pages
2410 */
e9b61f19 2411 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2412}
2413
baa355fd 2414static void __split_huge_page(struct page *page, struct list_head *list,
d31ff472 2415 pgoff_t end, unsigned long flags)
e9b61f19
KS
2416{
2417 struct page *head = compound_head(page);
2418 struct zone *zone = page_zone(head);
2419 struct lruvec *lruvec;
8df651c7 2420 int i;
e9b61f19 2421
599d0c95 2422 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
2423
2424 /* complete memcg works before add pages to LRU */
2425 mem_cgroup_split_huge_fixup(head);
2426
baa355fd 2427 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2428 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2429 /* Some pages can be beyond i_size: drop them from page cache */
2430 if (head[i].index >= end) {
2d077d4b 2431 ClearPageDirty(head + i);
baa355fd 2432 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2433 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2434 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2435 put_page(head + i);
2436 }
2437 }
e9b61f19
KS
2438
2439 ClearPageCompound(head);
baa355fd
KS
2440 /* See comment in __split_huge_page_tail() */
2441 if (PageAnon(head)) {
38d8b4e6
HY
2442 /* Additional pin to radix tree of swap cache */
2443 if (PageSwapCache(head))
2444 page_ref_add(head, 2);
2445 else
2446 page_ref_inc(head);
baa355fd
KS
2447 } else {
2448 /* Additional pin to radix tree */
2449 page_ref_add(head, 2);
b93b0163 2450 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2451 }
2452
a52633d8 2453 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 2454
69697e6a 2455 remap_page(head);
e9b61f19
KS
2456
2457 for (i = 0; i < HPAGE_PMD_NR; i++) {
2458 struct page *subpage = head + i;
2459 if (subpage == page)
2460 continue;
2461 unlock_page(subpage);
2462
2463 /*
2464 * Subpages may be freed if there wasn't any mapping
2465 * like if add_to_swap() is running on a lru page that
2466 * had its mapping zapped. And freeing these pages
2467 * requires taking the lru_lock so we do the put_page
2468 * of the tail pages after the split is complete.
2469 */
2470 put_page(subpage);
2471 }
2472}
2473
b20ce5e0
KS
2474int total_mapcount(struct page *page)
2475{
dd78fedd 2476 int i, compound, ret;
b20ce5e0
KS
2477
2478 VM_BUG_ON_PAGE(PageTail(page), page);
2479
2480 if (likely(!PageCompound(page)))
2481 return atomic_read(&page->_mapcount) + 1;
2482
dd78fedd 2483 compound = compound_mapcount(page);
b20ce5e0 2484 if (PageHuge(page))
dd78fedd
KS
2485 return compound;
2486 ret = compound;
b20ce5e0
KS
2487 for (i = 0; i < HPAGE_PMD_NR; i++)
2488 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2489 /* File pages has compound_mapcount included in _mapcount */
2490 if (!PageAnon(page))
2491 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2492 if (PageDoubleMap(page))
2493 ret -= HPAGE_PMD_NR;
2494 return ret;
2495}
2496
6d0a07ed
AA
2497/*
2498 * This calculates accurately how many mappings a transparent hugepage
2499 * has (unlike page_mapcount() which isn't fully accurate). This full
2500 * accuracy is primarily needed to know if copy-on-write faults can
2501 * reuse the page and change the mapping to read-write instead of
2502 * copying them. At the same time this returns the total_mapcount too.
2503 *
2504 * The function returns the highest mapcount any one of the subpages
2505 * has. If the return value is one, even if different processes are
2506 * mapping different subpages of the transparent hugepage, they can
2507 * all reuse it, because each process is reusing a different subpage.
2508 *
2509 * The total_mapcount is instead counting all virtual mappings of the
2510 * subpages. If the total_mapcount is equal to "one", it tells the
2511 * caller all mappings belong to the same "mm" and in turn the
2512 * anon_vma of the transparent hugepage can become the vma->anon_vma
2513 * local one as no other process may be mapping any of the subpages.
2514 *
2515 * It would be more accurate to replace page_mapcount() with
2516 * page_trans_huge_mapcount(), however we only use
2517 * page_trans_huge_mapcount() in the copy-on-write faults where we
2518 * need full accuracy to avoid breaking page pinning, because
2519 * page_trans_huge_mapcount() is slower than page_mapcount().
2520 */
2521int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2522{
2523 int i, ret, _total_mapcount, mapcount;
2524
2525 /* hugetlbfs shouldn't call it */
2526 VM_BUG_ON_PAGE(PageHuge(page), page);
2527
2528 if (likely(!PageTransCompound(page))) {
2529 mapcount = atomic_read(&page->_mapcount) + 1;
2530 if (total_mapcount)
2531 *total_mapcount = mapcount;
2532 return mapcount;
2533 }
2534
2535 page = compound_head(page);
2536
2537 _total_mapcount = ret = 0;
2538 for (i = 0; i < HPAGE_PMD_NR; i++) {
2539 mapcount = atomic_read(&page[i]._mapcount) + 1;
2540 ret = max(ret, mapcount);
2541 _total_mapcount += mapcount;
2542 }
2543 if (PageDoubleMap(page)) {
2544 ret -= 1;
2545 _total_mapcount -= HPAGE_PMD_NR;
2546 }
2547 mapcount = compound_mapcount(page);
2548 ret += mapcount;
2549 _total_mapcount += mapcount;
2550 if (total_mapcount)
2551 *total_mapcount = _total_mapcount;
2552 return ret;
2553}
2554
b8f593cd
HY
2555/* Racy check whether the huge page can be split */
2556bool can_split_huge_page(struct page *page, int *pextra_pins)
2557{
2558 int extra_pins;
2559
2560 /* Additional pins from radix tree */
2561 if (PageAnon(page))
2562 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2563 else
2564 extra_pins = HPAGE_PMD_NR;
2565 if (pextra_pins)
2566 *pextra_pins = extra_pins;
2567 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2568}
2569
e9b61f19
KS
2570/*
2571 * This function splits huge page into normal pages. @page can point to any
2572 * subpage of huge page to split. Split doesn't change the position of @page.
2573 *
2574 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2575 * The huge page must be locked.
2576 *
2577 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2578 *
2579 * Both head page and tail pages will inherit mapping, flags, and so on from
2580 * the hugepage.
2581 *
2582 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2583 * they are not mapped.
2584 *
2585 * Returns 0 if the hugepage is split successfully.
2586 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2587 * us.
2588 */
2589int split_huge_page_to_list(struct page *page, struct list_head *list)
2590{
2591 struct page *head = compound_head(page);
a3d0a918 2592 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2593 struct anon_vma *anon_vma = NULL;
2594 struct address_space *mapping = NULL;
2595 int count, mapcount, extra_pins, ret;
d9654322 2596 bool mlocked;
0b9b6fff 2597 unsigned long flags;
d31ff472 2598 pgoff_t end;
e9b61f19
KS
2599
2600 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2601 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2602 VM_BUG_ON_PAGE(!PageCompound(page), page);
2603
59807685
HY
2604 if (PageWriteback(page))
2605 return -EBUSY;
2606
baa355fd
KS
2607 if (PageAnon(head)) {
2608 /*
2609 * The caller does not necessarily hold an mmap_sem that would
2610 * prevent the anon_vma disappearing so we first we take a
2611 * reference to it and then lock the anon_vma for write. This
2612 * is similar to page_lock_anon_vma_read except the write lock
2613 * is taken to serialise against parallel split or collapse
2614 * operations.
2615 */
2616 anon_vma = page_get_anon_vma(head);
2617 if (!anon_vma) {
2618 ret = -EBUSY;
2619 goto out;
2620 }
d31ff472 2621 end = -1;
baa355fd
KS
2622 mapping = NULL;
2623 anon_vma_lock_write(anon_vma);
2624 } else {
2625 mapping = head->mapping;
2626
2627 /* Truncated ? */
2628 if (!mapping) {
2629 ret = -EBUSY;
2630 goto out;
2631 }
2632
baa355fd
KS
2633 anon_vma = NULL;
2634 i_mmap_lock_read(mapping);
d31ff472
HD
2635
2636 /*
2637 *__split_huge_page() may need to trim off pages beyond EOF:
2638 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2639 * which cannot be nested inside the page tree lock. So note
2640 * end now: i_size itself may be changed at any moment, but
2641 * head page lock is good enough to serialize the trimming.
2642 */
2643 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2644 }
e9b61f19
KS
2645
2646 /*
69697e6a 2647 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2648 * split PMDs
2649 */
b8f593cd 2650 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2651 ret = -EBUSY;
2652 goto out_unlock;
2653 }
2654
d9654322 2655 mlocked = PageMlocked(page);
69697e6a 2656 unmap_page(head);
e9b61f19
KS
2657 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2658
d9654322
KS
2659 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2660 if (mlocked)
2661 lru_add_drain();
2662
baa355fd 2663 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2664 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2665
2666 if (mapping) {
2667 void **pslot;
2668
b93b0163
MW
2669 xa_lock(&mapping->i_pages);
2670 pslot = radix_tree_lookup_slot(&mapping->i_pages,
baa355fd
KS
2671 page_index(head));
2672 /*
2673 * Check if the head page is present in radix tree.
2674 * We assume all tail are present too, if head is there.
2675 */
2676 if (radix_tree_deref_slot_protected(pslot,
b93b0163 2677 &mapping->i_pages.xa_lock) != head)
baa355fd
KS
2678 goto fail;
2679 }
2680
0139aa7b 2681 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2682 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2683 count = page_count(head);
2684 mapcount = total_mapcount(head);
baa355fd 2685 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2686 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2687 pgdata->split_queue_len--;
9a982250
KS
2688 list_del(page_deferred_list(head));
2689 }
65c45377 2690 if (mapping)
11fb9989 2691 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd 2692 spin_unlock(&pgdata->split_queue_lock);
d31ff472 2693 __split_huge_page(page, list, end, flags);
59807685
HY
2694 if (PageSwapCache(head)) {
2695 swp_entry_t entry = { .val = page_private(head) };
2696
2697 ret = split_swap_cluster(entry);
2698 } else
2699 ret = 0;
e9b61f19 2700 } else {
baa355fd
KS
2701 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2702 pr_alert("total_mapcount: %u, page_count(): %u\n",
2703 mapcount, count);
2704 if (PageTail(page))
2705 dump_page(head, NULL);
2706 dump_page(page, "total_mapcount(head) > 0");
2707 BUG();
2708 }
2709 spin_unlock(&pgdata->split_queue_lock);
2710fail: if (mapping)
b93b0163 2711 xa_unlock(&mapping->i_pages);
a52633d8 2712 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
69697e6a 2713 remap_page(head);
e9b61f19
KS
2714 ret = -EBUSY;
2715 }
2716
2717out_unlock:
baa355fd
KS
2718 if (anon_vma) {
2719 anon_vma_unlock_write(anon_vma);
2720 put_anon_vma(anon_vma);
2721 }
2722 if (mapping)
2723 i_mmap_unlock_read(mapping);
e9b61f19
KS
2724out:
2725 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2726 return ret;
2727}
9a982250
KS
2728
2729void free_transhuge_page(struct page *page)
2730{
a3d0a918 2731 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2732 unsigned long flags;
2733
a3d0a918 2734 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2735 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2736 pgdata->split_queue_len--;
9a982250
KS
2737 list_del(page_deferred_list(page));
2738 }
a3d0a918 2739 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2740 free_compound_page(page);
2741}
2742
2743void deferred_split_huge_page(struct page *page)
2744{
a3d0a918 2745 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2746 unsigned long flags;
2747
2748 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2749
a3d0a918 2750 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2751 if (list_empty(page_deferred_list(page))) {
f9719a03 2752 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2753 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2754 pgdata->split_queue_len++;
9a982250 2755 }
a3d0a918 2756 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2757}
2758
2759static unsigned long deferred_split_count(struct shrinker *shrink,
2760 struct shrink_control *sc)
2761{
a3d0a918 2762 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2763 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2764}
2765
2766static unsigned long deferred_split_scan(struct shrinker *shrink,
2767 struct shrink_control *sc)
2768{
a3d0a918 2769 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2770 unsigned long flags;
2771 LIST_HEAD(list), *pos, *next;
2772 struct page *page;
2773 int split = 0;
2774
a3d0a918 2775 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2776 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2777 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2778 page = list_entry((void *)pos, struct page, mapping);
2779 page = compound_head(page);
e3ae1953
KS
2780 if (get_page_unless_zero(page)) {
2781 list_move(page_deferred_list(page), &list);
2782 } else {
2783 /* We lost race with put_compound_page() */
9a982250 2784 list_del_init(page_deferred_list(page));
a3d0a918 2785 pgdata->split_queue_len--;
9a982250 2786 }
e3ae1953
KS
2787 if (!--sc->nr_to_scan)
2788 break;
9a982250 2789 }
a3d0a918 2790 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2791
2792 list_for_each_safe(pos, next, &list) {
2793 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2794 if (!trylock_page(page))
2795 goto next;
9a982250
KS
2796 /* split_huge_page() removes page from list on success */
2797 if (!split_huge_page(page))
2798 split++;
2799 unlock_page(page);
fa41b900 2800next:
9a982250
KS
2801 put_page(page);
2802 }
2803
a3d0a918
KS
2804 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2805 list_splice_tail(&list, &pgdata->split_queue);
2806 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2807
cb8d68ec
KS
2808 /*
2809 * Stop shrinker if we didn't split any page, but the queue is empty.
2810 * This can happen if pages were freed under us.
2811 */
2812 if (!split && list_empty(&pgdata->split_queue))
2813 return SHRINK_STOP;
2814 return split;
9a982250
KS
2815}
2816
2817static struct shrinker deferred_split_shrinker = {
2818 .count_objects = deferred_split_count,
2819 .scan_objects = deferred_split_scan,
2820 .seeks = DEFAULT_SEEKS,
a3d0a918 2821 .flags = SHRINKER_NUMA_AWARE,
9a982250 2822};
49071d43
KS
2823
2824#ifdef CONFIG_DEBUG_FS
2825static int split_huge_pages_set(void *data, u64 val)
2826{
2827 struct zone *zone;
2828 struct page *page;
2829 unsigned long pfn, max_zone_pfn;
2830 unsigned long total = 0, split = 0;
2831
2832 if (val != 1)
2833 return -EINVAL;
2834
2835 for_each_populated_zone(zone) {
2836 max_zone_pfn = zone_end_pfn(zone);
2837 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2838 if (!pfn_valid(pfn))
2839 continue;
2840
2841 page = pfn_to_page(pfn);
2842 if (!get_page_unless_zero(page))
2843 continue;
2844
2845 if (zone != page_zone(page))
2846 goto next;
2847
baa355fd 2848 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2849 goto next;
2850
2851 total++;
2852 lock_page(page);
2853 if (!split_huge_page(page))
2854 split++;
2855 unlock_page(page);
2856next:
2857 put_page(page);
2858 }
2859 }
2860
145bdaa1 2861 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2862
2863 return 0;
2864}
2865DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2866 "%llu\n");
2867
2868static int __init split_huge_pages_debugfs(void)
2869{
2870 void *ret;
2871
145bdaa1 2872 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2873 &split_huge_pages_fops);
2874 if (!ret)
2875 pr_warn("Failed to create split_huge_pages in debugfs");
2876 return 0;
2877}
2878late_initcall(split_huge_pages_debugfs);
2879#endif
616b8371
ZY
2880
2881#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2882void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2883 struct page *page)
2884{
2885 struct vm_area_struct *vma = pvmw->vma;
2886 struct mm_struct *mm = vma->vm_mm;
2887 unsigned long address = pvmw->address;
2888 pmd_t pmdval;
2889 swp_entry_t entry;
ab6e3d09 2890 pmd_t pmdswp;
616b8371
ZY
2891
2892 if (!(pvmw->pmd && !pvmw->pte))
2893 return;
2894
616b8371
ZY
2895 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2896 pmdval = *pvmw->pmd;
2897 pmdp_invalidate(vma, address, pvmw->pmd);
2898 if (pmd_dirty(pmdval))
2899 set_page_dirty(page);
2900 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2901 pmdswp = swp_entry_to_pmd(entry);
2902 if (pmd_soft_dirty(pmdval))
2903 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2904 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2905 page_remove_rmap(page, true);
2906 put_page(page);
616b8371
ZY
2907}
2908
2909void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2910{
2911 struct vm_area_struct *vma = pvmw->vma;
2912 struct mm_struct *mm = vma->vm_mm;
2913 unsigned long address = pvmw->address;
2914 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2915 pmd_t pmde;
2916 swp_entry_t entry;
2917
2918 if (!(pvmw->pmd && !pvmw->pte))
2919 return;
2920
2921 entry = pmd_to_swp_entry(*pvmw->pmd);
2922 get_page(new);
2923 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2924 if (pmd_swp_soft_dirty(*pvmw->pmd))
2925 pmde = pmd_mksoft_dirty(pmde);
616b8371 2926 if (is_write_migration_entry(entry))
f55e1014 2927 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2928
2929 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2930 if (PageAnon(new))
2931 page_add_anon_rmap(new, vma, mmun_start, true);
2932 else
2933 page_add_file_rmap(new, true);
616b8371 2934 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2935 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2936 mlock_vma_page(new);
2937 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2938}
2939#endif