]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
x86, thp: remove infrastructure for handling splitting PMDs
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
4897c765 19#include <linux/dax.h>
ba76149f
AA
20#include <linux/kthread.h>
21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
a664b2d8 23#include <linux/mman.h>
325adeb5 24#include <linux/pagemap.h>
4daae3b4 25#include <linux/migrate.h>
43b5fbbd 26#include <linux/hashtable.h>
6b251fc9 27#include <linux/userfaultfd_k.h>
33c3fc71 28#include <linux/page_idle.h>
97ae1749 29
71e3aac0
AA
30#include <asm/tlb.h>
31#include <asm/pgalloc.h>
32#include "internal.h"
33
7d2eba05
EA
34enum scan_result {
35 SCAN_FAIL,
36 SCAN_SUCCEED,
37 SCAN_PMD_NULL,
38 SCAN_EXCEED_NONE_PTE,
39 SCAN_PTE_NON_PRESENT,
40 SCAN_PAGE_RO,
41 SCAN_NO_REFERENCED_PAGE,
42 SCAN_PAGE_NULL,
43 SCAN_SCAN_ABORT,
44 SCAN_PAGE_COUNT,
45 SCAN_PAGE_LRU,
46 SCAN_PAGE_LOCK,
47 SCAN_PAGE_ANON,
b1caa957 48 SCAN_PAGE_COMPOUND,
7d2eba05
EA
49 SCAN_ANY_PROCESS,
50 SCAN_VMA_NULL,
51 SCAN_VMA_CHECK,
52 SCAN_ADDRESS_RANGE,
53 SCAN_SWAP_CACHE_PAGE,
54 SCAN_DEL_PAGE_LRU,
55 SCAN_ALLOC_HUGE_PAGE_FAIL,
56 SCAN_CGROUP_CHARGE_FAIL
57};
58
59#define CREATE_TRACE_POINTS
60#include <trace/events/huge_memory.h>
61
ba76149f 62/*
8bfa3f9a
JW
63 * By default transparent hugepage support is disabled in order that avoid
64 * to risk increase the memory footprint of applications without a guaranteed
65 * benefit. When transparent hugepage support is enabled, is for all mappings,
66 * and khugepaged scans all mappings.
67 * Defrag is invoked by khugepaged hugepage allocations and by page faults
68 * for all hugepage allocations.
ba76149f 69 */
71e3aac0 70unsigned long transparent_hugepage_flags __read_mostly =
13ece886 71#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 72 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
73#endif
74#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
75 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
76#endif
d39d33c3 77 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
78 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
79 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
80
81/* default scan 8*512 pte (or vmas) every 30 second */
82static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
83static unsigned int khugepaged_pages_collapsed;
84static unsigned int khugepaged_full_scans;
85static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
86/* during fragmentation poll the hugepage allocator once every minute */
87static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
88static struct task_struct *khugepaged_thread __read_mostly;
89static DEFINE_MUTEX(khugepaged_mutex);
90static DEFINE_SPINLOCK(khugepaged_mm_lock);
91static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
92/*
93 * default collapse hugepages if there is at least one pte mapped like
94 * it would have happened if the vma was large enough during page
95 * fault.
96 */
97static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
98
99static int khugepaged(void *none);
ba76149f 100static int khugepaged_slab_init(void);
65ebb64f 101static void khugepaged_slab_exit(void);
ba76149f 102
43b5fbbd
SL
103#define MM_SLOTS_HASH_BITS 10
104static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
105
ba76149f
AA
106static struct kmem_cache *mm_slot_cache __read_mostly;
107
108/**
109 * struct mm_slot - hash lookup from mm to mm_slot
110 * @hash: hash collision list
111 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
112 * @mm: the mm that this information is valid for
113 */
114struct mm_slot {
115 struct hlist_node hash;
116 struct list_head mm_node;
117 struct mm_struct *mm;
118};
119
120/**
121 * struct khugepaged_scan - cursor for scanning
122 * @mm_head: the head of the mm list to scan
123 * @mm_slot: the current mm_slot we are scanning
124 * @address: the next address inside that to be scanned
125 *
126 * There is only the one khugepaged_scan instance of this cursor structure.
127 */
128struct khugepaged_scan {
129 struct list_head mm_head;
130 struct mm_slot *mm_slot;
131 unsigned long address;
2f1da642
HS
132};
133static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
134 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
135};
136
f000565a 137
2c0b80d4 138static void set_recommended_min_free_kbytes(void)
f000565a
AA
139{
140 struct zone *zone;
141 int nr_zones = 0;
142 unsigned long recommended_min;
f000565a 143
f000565a
AA
144 for_each_populated_zone(zone)
145 nr_zones++;
146
974a786e 147 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
f000565a
AA
148 recommended_min = pageblock_nr_pages * nr_zones * 2;
149
150 /*
151 * Make sure that on average at least two pageblocks are almost free
152 * of another type, one for a migratetype to fall back to and a
153 * second to avoid subsequent fallbacks of other types There are 3
154 * MIGRATE_TYPES we care about.
155 */
156 recommended_min += pageblock_nr_pages * nr_zones *
157 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
158
159 /* don't ever allow to reserve more than 5% of the lowmem */
160 recommended_min = min(recommended_min,
161 (unsigned long) nr_free_buffer_pages() / 20);
162 recommended_min <<= (PAGE_SHIFT-10);
163
42aa83cb
HP
164 if (recommended_min > min_free_kbytes) {
165 if (user_min_free_kbytes >= 0)
166 pr_info("raising min_free_kbytes from %d to %lu "
167 "to help transparent hugepage allocations\n",
168 min_free_kbytes, recommended_min);
169
f000565a 170 min_free_kbytes = recommended_min;
42aa83cb 171 }
f000565a 172 setup_per_zone_wmarks();
f000565a 173}
f000565a 174
79553da2 175static int start_stop_khugepaged(void)
ba76149f
AA
176{
177 int err = 0;
178 if (khugepaged_enabled()) {
ba76149f
AA
179 if (!khugepaged_thread)
180 khugepaged_thread = kthread_run(khugepaged, NULL,
181 "khugepaged");
18e8e5c7 182 if (IS_ERR(khugepaged_thread)) {
ae3a8c1c 183 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
184 err = PTR_ERR(khugepaged_thread);
185 khugepaged_thread = NULL;
79553da2 186 goto fail;
ba76149f 187 }
911891af
XG
188
189 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 190 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
191
192 set_recommended_min_free_kbytes();
911891af 193 } else if (khugepaged_thread) {
911891af
XG
194 kthread_stop(khugepaged_thread);
195 khugepaged_thread = NULL;
196 }
79553da2 197fail:
ba76149f
AA
198 return err;
199}
71e3aac0 200
97ae1749 201static atomic_t huge_zero_refcount;
56873f43 202struct page *huge_zero_page __read_mostly;
4a6c1297 203
fc437044 204struct page *get_huge_zero_page(void)
97ae1749
KS
205{
206 struct page *zero_page;
207retry:
208 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 209 return READ_ONCE(huge_zero_page);
97ae1749
KS
210
211 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 212 HPAGE_PMD_ORDER);
d8a8e1f0
KS
213 if (!zero_page) {
214 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 215 return NULL;
d8a8e1f0
KS
216 }
217 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 218 preempt_disable();
5918d10a 219 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 220 preempt_enable();
5ddacbe9 221 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
222 goto retry;
223 }
224
225 /* We take additional reference here. It will be put back by shrinker */
226 atomic_set(&huge_zero_refcount, 2);
227 preempt_enable();
4db0c3c2 228 return READ_ONCE(huge_zero_page);
4a6c1297
KS
229}
230
97ae1749 231static void put_huge_zero_page(void)
4a6c1297 232{
97ae1749
KS
233 /*
234 * Counter should never go to zero here. Only shrinker can put
235 * last reference.
236 */
237 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
238}
239
48896466
GC
240static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
241 struct shrink_control *sc)
4a6c1297 242{
48896466
GC
243 /* we can free zero page only if last reference remains */
244 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
245}
97ae1749 246
48896466
GC
247static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
248 struct shrink_control *sc)
249{
97ae1749 250 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
251 struct page *zero_page = xchg(&huge_zero_page, NULL);
252 BUG_ON(zero_page == NULL);
5ddacbe9 253 __free_pages(zero_page, compound_order(zero_page));
48896466 254 return HPAGE_PMD_NR;
97ae1749
KS
255 }
256
257 return 0;
4a6c1297
KS
258}
259
97ae1749 260static struct shrinker huge_zero_page_shrinker = {
48896466
GC
261 .count_objects = shrink_huge_zero_page_count,
262 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
263 .seeks = DEFAULT_SEEKS,
264};
265
71e3aac0 266#ifdef CONFIG_SYSFS
ba76149f 267
71e3aac0
AA
268static ssize_t double_flag_show(struct kobject *kobj,
269 struct kobj_attribute *attr, char *buf,
270 enum transparent_hugepage_flag enabled,
271 enum transparent_hugepage_flag req_madv)
272{
273 if (test_bit(enabled, &transparent_hugepage_flags)) {
274 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
275 return sprintf(buf, "[always] madvise never\n");
276 } else if (test_bit(req_madv, &transparent_hugepage_flags))
277 return sprintf(buf, "always [madvise] never\n");
278 else
279 return sprintf(buf, "always madvise [never]\n");
280}
281static ssize_t double_flag_store(struct kobject *kobj,
282 struct kobj_attribute *attr,
283 const char *buf, size_t count,
284 enum transparent_hugepage_flag enabled,
285 enum transparent_hugepage_flag req_madv)
286{
287 if (!memcmp("always", buf,
288 min(sizeof("always")-1, count))) {
289 set_bit(enabled, &transparent_hugepage_flags);
290 clear_bit(req_madv, &transparent_hugepage_flags);
291 } else if (!memcmp("madvise", buf,
292 min(sizeof("madvise")-1, count))) {
293 clear_bit(enabled, &transparent_hugepage_flags);
294 set_bit(req_madv, &transparent_hugepage_flags);
295 } else if (!memcmp("never", buf,
296 min(sizeof("never")-1, count))) {
297 clear_bit(enabled, &transparent_hugepage_flags);
298 clear_bit(req_madv, &transparent_hugepage_flags);
299 } else
300 return -EINVAL;
301
302 return count;
303}
304
305static ssize_t enabled_show(struct kobject *kobj,
306 struct kobj_attribute *attr, char *buf)
307{
308 return double_flag_show(kobj, attr, buf,
309 TRANSPARENT_HUGEPAGE_FLAG,
310 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
311}
312static ssize_t enabled_store(struct kobject *kobj,
313 struct kobj_attribute *attr,
314 const char *buf, size_t count)
315{
ba76149f
AA
316 ssize_t ret;
317
318 ret = double_flag_store(kobj, attr, buf, count,
319 TRANSPARENT_HUGEPAGE_FLAG,
320 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
321
322 if (ret > 0) {
911891af
XG
323 int err;
324
325 mutex_lock(&khugepaged_mutex);
79553da2 326 err = start_stop_khugepaged();
911891af
XG
327 mutex_unlock(&khugepaged_mutex);
328
ba76149f
AA
329 if (err)
330 ret = err;
331 }
332
333 return ret;
71e3aac0
AA
334}
335static struct kobj_attribute enabled_attr =
336 __ATTR(enabled, 0644, enabled_show, enabled_store);
337
338static ssize_t single_flag_show(struct kobject *kobj,
339 struct kobj_attribute *attr, char *buf,
340 enum transparent_hugepage_flag flag)
341{
e27e6151
BH
342 return sprintf(buf, "%d\n",
343 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 344}
e27e6151 345
71e3aac0
AA
346static ssize_t single_flag_store(struct kobject *kobj,
347 struct kobj_attribute *attr,
348 const char *buf, size_t count,
349 enum transparent_hugepage_flag flag)
350{
e27e6151
BH
351 unsigned long value;
352 int ret;
353
354 ret = kstrtoul(buf, 10, &value);
355 if (ret < 0)
356 return ret;
357 if (value > 1)
358 return -EINVAL;
359
360 if (value)
71e3aac0 361 set_bit(flag, &transparent_hugepage_flags);
e27e6151 362 else
71e3aac0 363 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
364
365 return count;
366}
367
368/*
369 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
370 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
371 * memory just to allocate one more hugepage.
372 */
373static ssize_t defrag_show(struct kobject *kobj,
374 struct kobj_attribute *attr, char *buf)
375{
376 return double_flag_show(kobj, attr, buf,
377 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
378 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
379}
380static ssize_t defrag_store(struct kobject *kobj,
381 struct kobj_attribute *attr,
382 const char *buf, size_t count)
383{
384 return double_flag_store(kobj, attr, buf, count,
385 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
386 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
387}
388static struct kobj_attribute defrag_attr =
389 __ATTR(defrag, 0644, defrag_show, defrag_store);
390
79da5407
KS
391static ssize_t use_zero_page_show(struct kobject *kobj,
392 struct kobj_attribute *attr, char *buf)
393{
394 return single_flag_show(kobj, attr, buf,
395 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
396}
397static ssize_t use_zero_page_store(struct kobject *kobj,
398 struct kobj_attribute *attr, const char *buf, size_t count)
399{
400 return single_flag_store(kobj, attr, buf, count,
401 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
402}
403static struct kobj_attribute use_zero_page_attr =
404 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
405#ifdef CONFIG_DEBUG_VM
406static ssize_t debug_cow_show(struct kobject *kobj,
407 struct kobj_attribute *attr, char *buf)
408{
409 return single_flag_show(kobj, attr, buf,
410 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
411}
412static ssize_t debug_cow_store(struct kobject *kobj,
413 struct kobj_attribute *attr,
414 const char *buf, size_t count)
415{
416 return single_flag_store(kobj, attr, buf, count,
417 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
418}
419static struct kobj_attribute debug_cow_attr =
420 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
421#endif /* CONFIG_DEBUG_VM */
422
423static struct attribute *hugepage_attr[] = {
424 &enabled_attr.attr,
425 &defrag_attr.attr,
79da5407 426 &use_zero_page_attr.attr,
71e3aac0
AA
427#ifdef CONFIG_DEBUG_VM
428 &debug_cow_attr.attr,
429#endif
430 NULL,
431};
432
433static struct attribute_group hugepage_attr_group = {
434 .attrs = hugepage_attr,
ba76149f
AA
435};
436
437static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
438 struct kobj_attribute *attr,
439 char *buf)
440{
441 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
442}
443
444static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
445 struct kobj_attribute *attr,
446 const char *buf, size_t count)
447{
448 unsigned long msecs;
449 int err;
450
3dbb95f7 451 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
452 if (err || msecs > UINT_MAX)
453 return -EINVAL;
454
455 khugepaged_scan_sleep_millisecs = msecs;
456 wake_up_interruptible(&khugepaged_wait);
457
458 return count;
459}
460static struct kobj_attribute scan_sleep_millisecs_attr =
461 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
462 scan_sleep_millisecs_store);
463
464static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
465 struct kobj_attribute *attr,
466 char *buf)
467{
468 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
469}
470
471static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
472 struct kobj_attribute *attr,
473 const char *buf, size_t count)
474{
475 unsigned long msecs;
476 int err;
477
3dbb95f7 478 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
479 if (err || msecs > UINT_MAX)
480 return -EINVAL;
481
482 khugepaged_alloc_sleep_millisecs = msecs;
483 wake_up_interruptible(&khugepaged_wait);
484
485 return count;
486}
487static struct kobj_attribute alloc_sleep_millisecs_attr =
488 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
489 alloc_sleep_millisecs_store);
490
491static ssize_t pages_to_scan_show(struct kobject *kobj,
492 struct kobj_attribute *attr,
493 char *buf)
494{
495 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
496}
497static ssize_t pages_to_scan_store(struct kobject *kobj,
498 struct kobj_attribute *attr,
499 const char *buf, size_t count)
500{
501 int err;
502 unsigned long pages;
503
3dbb95f7 504 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
505 if (err || !pages || pages > UINT_MAX)
506 return -EINVAL;
507
508 khugepaged_pages_to_scan = pages;
509
510 return count;
511}
512static struct kobj_attribute pages_to_scan_attr =
513 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
514 pages_to_scan_store);
515
516static ssize_t pages_collapsed_show(struct kobject *kobj,
517 struct kobj_attribute *attr,
518 char *buf)
519{
520 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
521}
522static struct kobj_attribute pages_collapsed_attr =
523 __ATTR_RO(pages_collapsed);
524
525static ssize_t full_scans_show(struct kobject *kobj,
526 struct kobj_attribute *attr,
527 char *buf)
528{
529 return sprintf(buf, "%u\n", khugepaged_full_scans);
530}
531static struct kobj_attribute full_scans_attr =
532 __ATTR_RO(full_scans);
533
534static ssize_t khugepaged_defrag_show(struct kobject *kobj,
535 struct kobj_attribute *attr, char *buf)
536{
537 return single_flag_show(kobj, attr, buf,
538 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
539}
540static ssize_t khugepaged_defrag_store(struct kobject *kobj,
541 struct kobj_attribute *attr,
542 const char *buf, size_t count)
543{
544 return single_flag_store(kobj, attr, buf, count,
545 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
546}
547static struct kobj_attribute khugepaged_defrag_attr =
548 __ATTR(defrag, 0644, khugepaged_defrag_show,
549 khugepaged_defrag_store);
550
551/*
552 * max_ptes_none controls if khugepaged should collapse hugepages over
553 * any unmapped ptes in turn potentially increasing the memory
554 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
555 * reduce the available free memory in the system as it
556 * runs. Increasing max_ptes_none will instead potentially reduce the
557 * free memory in the system during the khugepaged scan.
558 */
559static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
560 struct kobj_attribute *attr,
561 char *buf)
562{
563 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
564}
565static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
566 struct kobj_attribute *attr,
567 const char *buf, size_t count)
568{
569 int err;
570 unsigned long max_ptes_none;
571
3dbb95f7 572 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
573 if (err || max_ptes_none > HPAGE_PMD_NR-1)
574 return -EINVAL;
575
576 khugepaged_max_ptes_none = max_ptes_none;
577
578 return count;
579}
580static struct kobj_attribute khugepaged_max_ptes_none_attr =
581 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
582 khugepaged_max_ptes_none_store);
583
584static struct attribute *khugepaged_attr[] = {
585 &khugepaged_defrag_attr.attr,
586 &khugepaged_max_ptes_none_attr.attr,
587 &pages_to_scan_attr.attr,
588 &pages_collapsed_attr.attr,
589 &full_scans_attr.attr,
590 &scan_sleep_millisecs_attr.attr,
591 &alloc_sleep_millisecs_attr.attr,
592 NULL,
593};
594
595static struct attribute_group khugepaged_attr_group = {
596 .attrs = khugepaged_attr,
597 .name = "khugepaged",
71e3aac0 598};
71e3aac0 599
569e5590 600static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 601{
71e3aac0
AA
602 int err;
603
569e5590
SL
604 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
605 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 606 pr_err("failed to create transparent hugepage kobject\n");
569e5590 607 return -ENOMEM;
ba76149f
AA
608 }
609
569e5590 610 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 611 if (err) {
ae3a8c1c 612 pr_err("failed to register transparent hugepage group\n");
569e5590 613 goto delete_obj;
ba76149f
AA
614 }
615
569e5590 616 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 617 if (err) {
ae3a8c1c 618 pr_err("failed to register transparent hugepage group\n");
569e5590 619 goto remove_hp_group;
ba76149f 620 }
569e5590
SL
621
622 return 0;
623
624remove_hp_group:
625 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
626delete_obj:
627 kobject_put(*hugepage_kobj);
628 return err;
629}
630
631static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
632{
633 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
634 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
635 kobject_put(hugepage_kobj);
636}
637#else
638static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
639{
640 return 0;
641}
642
643static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
644{
645}
646#endif /* CONFIG_SYSFS */
647
648static int __init hugepage_init(void)
649{
650 int err;
651 struct kobject *hugepage_kobj;
652
653 if (!has_transparent_hugepage()) {
654 transparent_hugepage_flags = 0;
655 return -EINVAL;
656 }
657
658 err = hugepage_init_sysfs(&hugepage_kobj);
659 if (err)
65ebb64f 660 goto err_sysfs;
ba76149f
AA
661
662 err = khugepaged_slab_init();
663 if (err)
65ebb64f 664 goto err_slab;
ba76149f 665
65ebb64f
KS
666 err = register_shrinker(&huge_zero_page_shrinker);
667 if (err)
668 goto err_hzp_shrinker;
97ae1749 669
97562cd2
RR
670 /*
671 * By default disable transparent hugepages on smaller systems,
672 * where the extra memory used could hurt more than TLB overhead
673 * is likely to save. The admin can still enable it through /sys.
674 */
79553da2 675 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 676 transparent_hugepage_flags = 0;
79553da2
KS
677 return 0;
678 }
97562cd2 679
79553da2 680 err = start_stop_khugepaged();
65ebb64f
KS
681 if (err)
682 goto err_khugepaged;
ba76149f 683
569e5590 684 return 0;
65ebb64f
KS
685err_khugepaged:
686 unregister_shrinker(&huge_zero_page_shrinker);
687err_hzp_shrinker:
688 khugepaged_slab_exit();
689err_slab:
569e5590 690 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 691err_sysfs:
ba76149f 692 return err;
71e3aac0 693}
a64fb3cd 694subsys_initcall(hugepage_init);
71e3aac0
AA
695
696static int __init setup_transparent_hugepage(char *str)
697{
698 int ret = 0;
699 if (!str)
700 goto out;
701 if (!strcmp(str, "always")) {
702 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
703 &transparent_hugepage_flags);
704 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
705 &transparent_hugepage_flags);
706 ret = 1;
707 } else if (!strcmp(str, "madvise")) {
708 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
709 &transparent_hugepage_flags);
710 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
711 &transparent_hugepage_flags);
712 ret = 1;
713 } else if (!strcmp(str, "never")) {
714 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
715 &transparent_hugepage_flags);
716 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
717 &transparent_hugepage_flags);
718 ret = 1;
719 }
720out:
721 if (!ret)
ae3a8c1c 722 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
723 return ret;
724}
725__setup("transparent_hugepage=", setup_transparent_hugepage);
726
b32967ff 727pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
728{
729 if (likely(vma->vm_flags & VM_WRITE))
730 pmd = pmd_mkwrite(pmd);
731 return pmd;
732}
733
3122359a 734static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
735{
736 pmd_t entry;
3122359a 737 entry = mk_pmd(page, prot);
b3092b3b
BL
738 entry = pmd_mkhuge(entry);
739 return entry;
740}
741
71e3aac0
AA
742static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
743 struct vm_area_struct *vma,
230c92a8 744 unsigned long address, pmd_t *pmd,
6b251fc9
AA
745 struct page *page, gfp_t gfp,
746 unsigned int flags)
71e3aac0 747{
00501b53 748 struct mem_cgroup *memcg;
71e3aac0 749 pgtable_t pgtable;
c4088ebd 750 spinlock_t *ptl;
230c92a8 751 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 752
309381fe 753 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 754
f627c2f5 755 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
6b251fc9
AA
756 put_page(page);
757 count_vm_event(THP_FAULT_FALLBACK);
758 return VM_FAULT_FALLBACK;
759 }
00501b53 760
71e3aac0 761 pgtable = pte_alloc_one(mm, haddr);
00501b53 762 if (unlikely(!pgtable)) {
f627c2f5 763 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 764 put_page(page);
71e3aac0 765 return VM_FAULT_OOM;
00501b53 766 }
71e3aac0
AA
767
768 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
769 /*
770 * The memory barrier inside __SetPageUptodate makes sure that
771 * clear_huge_page writes become visible before the set_pmd_at()
772 * write.
773 */
71e3aac0
AA
774 __SetPageUptodate(page);
775
c4088ebd 776 ptl = pmd_lock(mm, pmd);
71e3aac0 777 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 778 spin_unlock(ptl);
f627c2f5 779 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0
AA
780 put_page(page);
781 pte_free(mm, pgtable);
782 } else {
783 pmd_t entry;
6b251fc9
AA
784
785 /* Deliver the page fault to userland */
786 if (userfaultfd_missing(vma)) {
787 int ret;
788
789 spin_unlock(ptl);
f627c2f5 790 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9
AA
791 put_page(page);
792 pte_free(mm, pgtable);
230c92a8 793 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
794 VM_UFFD_MISSING);
795 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
796 return ret;
797 }
798
3122359a
KS
799 entry = mk_huge_pmd(page, vma->vm_page_prot);
800 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 801 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 802 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 803 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 804 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 805 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 806 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 807 atomic_long_inc(&mm->nr_ptes);
c4088ebd 808 spin_unlock(ptl);
6b251fc9 809 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
810 }
811
aa2e878e 812 return 0;
71e3aac0
AA
813}
814
cc5d462f 815static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 816{
71baba4b 817 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
0bbbc0b3
AA
818}
819
c4088ebd 820/* Caller must hold page table lock. */
d295e341 821static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 822 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 823 struct page *zero_page)
fc9fe822
KS
824{
825 pmd_t entry;
7c414164
AM
826 if (!pmd_none(*pmd))
827 return false;
5918d10a 828 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 829 entry = pmd_mkhuge(entry);
6b0b50b0 830 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 831 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 832 atomic_long_inc(&mm->nr_ptes);
7c414164 833 return true;
fc9fe822
KS
834}
835
71e3aac0
AA
836int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
837 unsigned long address, pmd_t *pmd,
838 unsigned int flags)
839{
077fcf11 840 gfp_t gfp;
71e3aac0
AA
841 struct page *page;
842 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 843
128ec037 844 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 845 return VM_FAULT_FALLBACK;
7479df6d
KS
846 if (vma->vm_flags & VM_LOCKED)
847 return VM_FAULT_FALLBACK;
128ec037
KS
848 if (unlikely(anon_vma_prepare(vma)))
849 return VM_FAULT_OOM;
6d50e60c 850 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 851 return VM_FAULT_OOM;
593befa6 852 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 853 transparent_hugepage_use_zero_page()) {
c4088ebd 854 spinlock_t *ptl;
128ec037
KS
855 pgtable_t pgtable;
856 struct page *zero_page;
857 bool set;
6b251fc9 858 int ret;
128ec037
KS
859 pgtable = pte_alloc_one(mm, haddr);
860 if (unlikely(!pgtable))
ba76149f 861 return VM_FAULT_OOM;
128ec037
KS
862 zero_page = get_huge_zero_page();
863 if (unlikely(!zero_page)) {
864 pte_free(mm, pgtable);
81ab4201 865 count_vm_event(THP_FAULT_FALLBACK);
c0292554 866 return VM_FAULT_FALLBACK;
b9bbfbe3 867 }
c4088ebd 868 ptl = pmd_lock(mm, pmd);
6b251fc9
AA
869 ret = 0;
870 set = false;
871 if (pmd_none(*pmd)) {
872 if (userfaultfd_missing(vma)) {
873 spin_unlock(ptl);
230c92a8 874 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
875 VM_UFFD_MISSING);
876 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
877 } else {
878 set_huge_zero_page(pgtable, mm, vma,
879 haddr, pmd,
880 zero_page);
881 spin_unlock(ptl);
882 set = true;
883 }
884 } else
885 spin_unlock(ptl);
128ec037
KS
886 if (!set) {
887 pte_free(mm, pgtable);
888 put_huge_zero_page();
edad9d2c 889 }
6b251fc9 890 return ret;
71e3aac0 891 }
077fcf11
AK
892 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
893 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
894 if (unlikely(!page)) {
895 count_vm_event(THP_FAULT_FALLBACK);
c0292554 896 return VM_FAULT_FALLBACK;
128ec037 897 }
230c92a8
AA
898 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
899 flags);
71e3aac0
AA
900}
901
ae18d6dc 902static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
5cad465d
MW
903 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
904{
905 struct mm_struct *mm = vma->vm_mm;
906 pmd_t entry;
907 spinlock_t *ptl;
908
909 ptl = pmd_lock(mm, pmd);
910 if (pmd_none(*pmd)) {
911 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
912 if (write) {
913 entry = pmd_mkyoung(pmd_mkdirty(entry));
914 entry = maybe_pmd_mkwrite(entry, vma);
915 }
916 set_pmd_at(mm, addr, pmd, entry);
917 update_mmu_cache_pmd(vma, addr, pmd);
918 }
919 spin_unlock(ptl);
5cad465d
MW
920}
921
922int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
923 pmd_t *pmd, unsigned long pfn, bool write)
924{
925 pgprot_t pgprot = vma->vm_page_prot;
926 /*
927 * If we had pmd_special, we could avoid all these restrictions,
928 * but we need to be consistent with PTEs and architectures that
929 * can't support a 'special' bit.
930 */
931 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
932 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
933 (VM_PFNMAP|VM_MIXEDMAP));
934 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
935 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
936
937 if (addr < vma->vm_start || addr >= vma->vm_end)
938 return VM_FAULT_SIGBUS;
939 if (track_pfn_insert(vma, &pgprot, pfn))
940 return VM_FAULT_SIGBUS;
ae18d6dc
MW
941 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
942 return VM_FAULT_NOPAGE;
5cad465d
MW
943}
944
71e3aac0
AA
945int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
947 struct vm_area_struct *vma)
948{
c4088ebd 949 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
950 struct page *src_page;
951 pmd_t pmd;
952 pgtable_t pgtable;
953 int ret;
954
955 ret = -ENOMEM;
956 pgtable = pte_alloc_one(dst_mm, addr);
957 if (unlikely(!pgtable))
958 goto out;
959
c4088ebd
KS
960 dst_ptl = pmd_lock(dst_mm, dst_pmd);
961 src_ptl = pmd_lockptr(src_mm, src_pmd);
962 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
963
964 ret = -EAGAIN;
965 pmd = *src_pmd;
966 if (unlikely(!pmd_trans_huge(pmd))) {
967 pte_free(dst_mm, pgtable);
968 goto out_unlock;
969 }
fc9fe822 970 /*
c4088ebd 971 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
972 * under splitting since we don't split the page itself, only pmd to
973 * a page table.
974 */
975 if (is_huge_zero_pmd(pmd)) {
5918d10a 976 struct page *zero_page;
97ae1749
KS
977 /*
978 * get_huge_zero_page() will never allocate a new page here,
979 * since we already have a zero page to copy. It just takes a
980 * reference.
981 */
5918d10a 982 zero_page = get_huge_zero_page();
6b251fc9 983 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 984 zero_page);
fc9fe822
KS
985 ret = 0;
986 goto out_unlock;
987 }
de466bd6 988
71e3aac0
AA
989 if (unlikely(pmd_trans_splitting(pmd))) {
990 /* split huge page running from under us */
c4088ebd
KS
991 spin_unlock(src_ptl);
992 spin_unlock(dst_ptl);
71e3aac0
AA
993 pte_free(dst_mm, pgtable);
994
995 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
996 goto out;
997 }
998 src_page = pmd_page(pmd);
309381fe 999 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
71e3aac0
AA
1000 get_page(src_page);
1001 page_dup_rmap(src_page);
1002 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1003
1004 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1005 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 1006 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 1007 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e1f56c89 1008 atomic_long_inc(&dst_mm->nr_ptes);
71e3aac0
AA
1009
1010 ret = 0;
1011out_unlock:
c4088ebd
KS
1012 spin_unlock(src_ptl);
1013 spin_unlock(dst_ptl);
71e3aac0
AA
1014out:
1015 return ret;
1016}
1017
a1dd450b
WD
1018void huge_pmd_set_accessed(struct mm_struct *mm,
1019 struct vm_area_struct *vma,
1020 unsigned long address,
1021 pmd_t *pmd, pmd_t orig_pmd,
1022 int dirty)
1023{
c4088ebd 1024 spinlock_t *ptl;
a1dd450b
WD
1025 pmd_t entry;
1026 unsigned long haddr;
1027
c4088ebd 1028 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
1029 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1030 goto unlock;
1031
1032 entry = pmd_mkyoung(orig_pmd);
1033 haddr = address & HPAGE_PMD_MASK;
1034 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1035 update_mmu_cache_pmd(vma, address, pmd);
1036
1037unlock:
c4088ebd 1038 spin_unlock(ptl);
a1dd450b
WD
1039}
1040
71e3aac0
AA
1041static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1042 struct vm_area_struct *vma,
1043 unsigned long address,
1044 pmd_t *pmd, pmd_t orig_pmd,
1045 struct page *page,
1046 unsigned long haddr)
1047{
00501b53 1048 struct mem_cgroup *memcg;
c4088ebd 1049 spinlock_t *ptl;
71e3aac0
AA
1050 pgtable_t pgtable;
1051 pmd_t _pmd;
1052 int ret = 0, i;
1053 struct page **pages;
2ec74c3e
SG
1054 unsigned long mmun_start; /* For mmu_notifiers */
1055 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1056
1057 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1058 GFP_KERNEL);
1059 if (unlikely(!pages)) {
1060 ret |= VM_FAULT_OOM;
1061 goto out;
1062 }
1063
1064 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1065 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1066 __GFP_OTHER_NODE,
19ee151e 1067 vma, address, page_to_nid(page));
b9bbfbe3 1068 if (unlikely(!pages[i] ||
00501b53 1069 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
f627c2f5 1070 &memcg, false))) {
b9bbfbe3 1071 if (pages[i])
71e3aac0 1072 put_page(pages[i]);
b9bbfbe3 1073 while (--i >= 0) {
00501b53
JW
1074 memcg = (void *)page_private(pages[i]);
1075 set_page_private(pages[i], 0);
f627c2f5
KS
1076 mem_cgroup_cancel_charge(pages[i], memcg,
1077 false);
b9bbfbe3
AA
1078 put_page(pages[i]);
1079 }
71e3aac0
AA
1080 kfree(pages);
1081 ret |= VM_FAULT_OOM;
1082 goto out;
1083 }
00501b53 1084 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1085 }
1086
1087 for (i = 0; i < HPAGE_PMD_NR; i++) {
1088 copy_user_highpage(pages[i], page + i,
0089e485 1089 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1090 __SetPageUptodate(pages[i]);
1091 cond_resched();
1092 }
1093
2ec74c3e
SG
1094 mmun_start = haddr;
1095 mmun_end = haddr + HPAGE_PMD_SIZE;
1096 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1097
c4088ebd 1098 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1099 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1100 goto out_free_pages;
309381fe 1101 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1102
8809aa2d 1103 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1104 /* leave pmd empty until pte is filled */
1105
6b0b50b0 1106 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1107 pmd_populate(mm, &_pmd, pgtable);
1108
1109 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1110 pte_t *pte, entry;
1111 entry = mk_pte(pages[i], vma->vm_page_prot);
1112 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1113 memcg = (void *)page_private(pages[i]);
1114 set_page_private(pages[i], 0);
d281ee61 1115 page_add_new_anon_rmap(pages[i], vma, haddr, false);
f627c2f5 1116 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1117 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1118 pte = pte_offset_map(&_pmd, haddr);
1119 VM_BUG_ON(!pte_none(*pte));
1120 set_pte_at(mm, haddr, pte, entry);
1121 pte_unmap(pte);
1122 }
1123 kfree(pages);
1124
71e3aac0
AA
1125 smp_wmb(); /* make pte visible before pmd */
1126 pmd_populate(mm, pmd, pgtable);
d281ee61 1127 page_remove_rmap(page, true);
c4088ebd 1128 spin_unlock(ptl);
71e3aac0 1129
2ec74c3e
SG
1130 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1131
71e3aac0
AA
1132 ret |= VM_FAULT_WRITE;
1133 put_page(page);
1134
1135out:
1136 return ret;
1137
1138out_free_pages:
c4088ebd 1139 spin_unlock(ptl);
2ec74c3e 1140 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1141 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1142 memcg = (void *)page_private(pages[i]);
1143 set_page_private(pages[i], 0);
f627c2f5 1144 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1145 put_page(pages[i]);
b9bbfbe3 1146 }
71e3aac0
AA
1147 kfree(pages);
1148 goto out;
1149}
1150
1151int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1152 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1153{
c4088ebd 1154 spinlock_t *ptl;
71e3aac0 1155 int ret = 0;
93b4796d 1156 struct page *page = NULL, *new_page;
00501b53 1157 struct mem_cgroup *memcg;
71e3aac0 1158 unsigned long haddr;
2ec74c3e
SG
1159 unsigned long mmun_start; /* For mmu_notifiers */
1160 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1161 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1162
c4088ebd 1163 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1164 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1165 haddr = address & HPAGE_PMD_MASK;
1166 if (is_huge_zero_pmd(orig_pmd))
1167 goto alloc;
c4088ebd 1168 spin_lock(ptl);
71e3aac0
AA
1169 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1170 goto out_unlock;
1171
1172 page = pmd_page(orig_pmd);
309381fe 1173 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1174 /*
1175 * We can only reuse the page if nobody else maps the huge page or it's
1176 * part. We can do it by checking page_mapcount() on each sub-page, but
1177 * it's expensive.
1178 * The cheaper way is to check page_count() to be equal 1: every
1179 * mapcount takes page reference reference, so this way we can
1180 * guarantee, that the PMD is the only mapping.
1181 * This can give false negative if somebody pinned the page, but that's
1182 * fine.
1183 */
1184 if (page_mapcount(page) == 1 && page_count(page) == 1) {
71e3aac0
AA
1185 pmd_t entry;
1186 entry = pmd_mkyoung(orig_pmd);
1187 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1188 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1189 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1190 ret |= VM_FAULT_WRITE;
1191 goto out_unlock;
1192 }
ddc58f27 1193 get_page(page);
c4088ebd 1194 spin_unlock(ptl);
93b4796d 1195alloc:
71e3aac0 1196 if (transparent_hugepage_enabled(vma) &&
077fcf11 1197 !transparent_hugepage_debug_cow()) {
3b363692
MH
1198 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1199 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1200 } else
71e3aac0
AA
1201 new_page = NULL;
1202
1203 if (unlikely(!new_page)) {
eecc1e42 1204 if (!page) {
78ddc534 1205 split_huge_pmd(vma, pmd, address);
e9b71ca9 1206 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1207 } else {
1208 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1209 pmd, orig_pmd, page, haddr);
9845cbbd 1210 if (ret & VM_FAULT_OOM) {
78ddc534 1211 split_huge_pmd(vma, pmd, address);
9845cbbd
KS
1212 ret |= VM_FAULT_FALLBACK;
1213 }
ddc58f27 1214 put_page(page);
93b4796d 1215 }
17766dde 1216 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1217 goto out;
1218 }
1219
f627c2f5
KS
1220 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1221 true))) {
b9bbfbe3 1222 put_page(new_page);
93b4796d 1223 if (page) {
78ddc534 1224 split_huge_pmd(vma, pmd, address);
ddc58f27 1225 put_page(page);
9845cbbd 1226 } else
78ddc534 1227 split_huge_pmd(vma, pmd, address);
9845cbbd 1228 ret |= VM_FAULT_FALLBACK;
17766dde 1229 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1230 goto out;
1231 }
1232
17766dde
DR
1233 count_vm_event(THP_FAULT_ALLOC);
1234
eecc1e42 1235 if (!page)
93b4796d
KS
1236 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1237 else
1238 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1239 __SetPageUptodate(new_page);
1240
2ec74c3e
SG
1241 mmun_start = haddr;
1242 mmun_end = haddr + HPAGE_PMD_SIZE;
1243 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1244
c4088ebd 1245 spin_lock(ptl);
93b4796d 1246 if (page)
ddc58f27 1247 put_page(page);
b9bbfbe3 1248 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1249 spin_unlock(ptl);
f627c2f5 1250 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1251 put_page(new_page);
2ec74c3e 1252 goto out_mn;
b9bbfbe3 1253 } else {
71e3aac0 1254 pmd_t entry;
3122359a
KS
1255 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1256 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
8809aa2d 1257 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
d281ee61 1258 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1259 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1260 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1261 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1262 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1263 if (!page) {
93b4796d 1264 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1265 put_huge_zero_page();
1266 } else {
309381fe 1267 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1268 page_remove_rmap(page, true);
93b4796d
KS
1269 put_page(page);
1270 }
71e3aac0
AA
1271 ret |= VM_FAULT_WRITE;
1272 }
c4088ebd 1273 spin_unlock(ptl);
2ec74c3e
SG
1274out_mn:
1275 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1276out:
1277 return ret;
2ec74c3e 1278out_unlock:
c4088ebd 1279 spin_unlock(ptl);
2ec74c3e 1280 return ret;
71e3aac0
AA
1281}
1282
b676b293 1283struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1284 unsigned long addr,
1285 pmd_t *pmd,
1286 unsigned int flags)
1287{
b676b293 1288 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1289 struct page *page = NULL;
1290
c4088ebd 1291 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1292
1293 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1294 goto out;
1295
85facf25
KS
1296 /* Avoid dumping huge zero page */
1297 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1298 return ERR_PTR(-EFAULT);
1299
2b4847e7 1300 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1301 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1302 goto out;
1303
71e3aac0 1304 page = pmd_page(*pmd);
309381fe 1305 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0
AA
1306 if (flags & FOLL_TOUCH) {
1307 pmd_t _pmd;
1308 /*
1309 * We should set the dirty bit only for FOLL_WRITE but
1310 * for now the dirty bit in the pmd is meaningless.
1311 * And if the dirty bit will become meaningful and
1312 * we'll only set it with FOLL_WRITE, an atomic
1313 * set_bit will be required on the pmd to set the
1314 * young bit, instead of the current set_pmd_at.
1315 */
1316 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1317 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1318 pmd, _pmd, 1))
1319 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1320 }
de60f5f1 1321 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
b676b293
DR
1322 if (page->mapping && trylock_page(page)) {
1323 lru_add_drain();
1324 if (page->mapping)
1325 mlock_vma_page(page);
1326 unlock_page(page);
1327 }
1328 }
71e3aac0 1329 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1330 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1331 if (flags & FOLL_GET)
ddc58f27 1332 get_page(page);
71e3aac0
AA
1333
1334out:
1335 return page;
1336}
1337
d10e63f2 1338/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1339int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1340 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1341{
c4088ebd 1342 spinlock_t *ptl;
b8916634 1343 struct anon_vma *anon_vma = NULL;
b32967ff 1344 struct page *page;
d10e63f2 1345 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1346 int page_nid = -1, this_nid = numa_node_id();
90572890 1347 int target_nid, last_cpupid = -1;
8191acbd
MG
1348 bool page_locked;
1349 bool migrated = false;
b191f9b1 1350 bool was_writable;
6688cc05 1351 int flags = 0;
d10e63f2 1352
c0e7cad9
MG
1353 /* A PROT_NONE fault should not end up here */
1354 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1355
c4088ebd 1356 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1357 if (unlikely(!pmd_same(pmd, *pmdp)))
1358 goto out_unlock;
1359
de466bd6
MG
1360 /*
1361 * If there are potential migrations, wait for completion and retry
1362 * without disrupting NUMA hinting information. Do not relock and
1363 * check_same as the page may no longer be mapped.
1364 */
1365 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1366 page = pmd_page(*pmdp);
de466bd6 1367 spin_unlock(ptl);
5d833062 1368 wait_on_page_locked(page);
de466bd6
MG
1369 goto out;
1370 }
1371
d10e63f2 1372 page = pmd_page(pmd);
a1a46184 1373 BUG_ON(is_huge_zero_page(page));
8191acbd 1374 page_nid = page_to_nid(page);
90572890 1375 last_cpupid = page_cpupid_last(page);
03c5a6e1 1376 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1377 if (page_nid == this_nid) {
03c5a6e1 1378 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1379 flags |= TNF_FAULT_LOCAL;
1380 }
4daae3b4 1381
bea66fbd
MG
1382 /* See similar comment in do_numa_page for explanation */
1383 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1384 flags |= TNF_NO_GROUP;
1385
ff9042b1
MG
1386 /*
1387 * Acquire the page lock to serialise THP migrations but avoid dropping
1388 * page_table_lock if at all possible
1389 */
b8916634
MG
1390 page_locked = trylock_page(page);
1391 target_nid = mpol_misplaced(page, vma, haddr);
1392 if (target_nid == -1) {
1393 /* If the page was locked, there are no parallel migrations */
a54a407f 1394 if (page_locked)
b8916634 1395 goto clear_pmdnuma;
2b4847e7 1396 }
4daae3b4 1397
de466bd6 1398 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1399 if (!page_locked) {
c4088ebd 1400 spin_unlock(ptl);
b8916634 1401 wait_on_page_locked(page);
a54a407f 1402 page_nid = -1;
b8916634
MG
1403 goto out;
1404 }
1405
2b4847e7
MG
1406 /*
1407 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1408 * to serialises splits
1409 */
b8916634 1410 get_page(page);
c4088ebd 1411 spin_unlock(ptl);
b8916634 1412 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1413
c69307d5 1414 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1415 spin_lock(ptl);
b32967ff
MG
1416 if (unlikely(!pmd_same(pmd, *pmdp))) {
1417 unlock_page(page);
1418 put_page(page);
a54a407f 1419 page_nid = -1;
4daae3b4 1420 goto out_unlock;
b32967ff 1421 }
ff9042b1 1422
c3a489ca
MG
1423 /* Bail if we fail to protect against THP splits for any reason */
1424 if (unlikely(!anon_vma)) {
1425 put_page(page);
1426 page_nid = -1;
1427 goto clear_pmdnuma;
1428 }
1429
a54a407f
MG
1430 /*
1431 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1432 * and access rights restored.
a54a407f 1433 */
c4088ebd 1434 spin_unlock(ptl);
b32967ff 1435 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1436 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1437 if (migrated) {
1438 flags |= TNF_MIGRATED;
8191acbd 1439 page_nid = target_nid;
074c2381
MG
1440 } else
1441 flags |= TNF_MIGRATE_FAIL;
b32967ff 1442
8191acbd 1443 goto out;
b32967ff 1444clear_pmdnuma:
a54a407f 1445 BUG_ON(!PageLocked(page));
b191f9b1 1446 was_writable = pmd_write(pmd);
4d942466 1447 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1448 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1449 if (was_writable)
1450 pmd = pmd_mkwrite(pmd);
d10e63f2 1451 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1452 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1453 unlock_page(page);
d10e63f2 1454out_unlock:
c4088ebd 1455 spin_unlock(ptl);
b8916634
MG
1456
1457out:
1458 if (anon_vma)
1459 page_unlock_anon_vma_read(anon_vma);
1460
8191acbd 1461 if (page_nid != -1)
6688cc05 1462 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1463
d10e63f2
MG
1464 return 0;
1465}
1466
71e3aac0 1467int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1468 pmd_t *pmd, unsigned long addr)
71e3aac0 1469{
da146769 1470 pmd_t orig_pmd;
bf929152 1471 spinlock_t *ptl;
71e3aac0 1472
da146769
KS
1473 if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
1474 return 0;
1475 /*
1476 * For architectures like ppc64 we look at deposited pgtable
1477 * when calling pmdp_huge_get_and_clear. So do the
1478 * pgtable_trans_huge_withdraw after finishing pmdp related
1479 * operations.
1480 */
1481 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1482 tlb->fullmm);
1483 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1484 if (vma_is_dax(vma)) {
1485 spin_unlock(ptl);
1486 if (is_huge_zero_pmd(orig_pmd))
97ae1749 1487 put_huge_zero_page();
da146769
KS
1488 } else if (is_huge_zero_pmd(orig_pmd)) {
1489 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1490 atomic_long_dec(&tlb->mm->nr_ptes);
1491 spin_unlock(ptl);
1492 put_huge_zero_page();
1493 } else {
1494 struct page *page = pmd_page(orig_pmd);
d281ee61 1495 page_remove_rmap(page, true);
da146769
KS
1496 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1497 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1498 VM_BUG_ON_PAGE(!PageHead(page), page);
1499 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1500 atomic_long_dec(&tlb->mm->nr_ptes);
1501 spin_unlock(ptl);
1502 tlb_remove_page(tlb, page);
025c5b24 1503 }
da146769 1504 return 1;
71e3aac0
AA
1505}
1506
37a1c49a
AA
1507int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1508 unsigned long old_addr,
1509 unsigned long new_addr, unsigned long old_end,
1510 pmd_t *old_pmd, pmd_t *new_pmd)
1511{
bf929152 1512 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1513 int ret = 0;
1514 pmd_t pmd;
1515
1516 struct mm_struct *mm = vma->vm_mm;
1517
1518 if ((old_addr & ~HPAGE_PMD_MASK) ||
1519 (new_addr & ~HPAGE_PMD_MASK) ||
1520 old_end - old_addr < HPAGE_PMD_SIZE ||
1521 (new_vma->vm_flags & VM_NOHUGEPAGE))
1522 goto out;
1523
1524 /*
1525 * The destination pmd shouldn't be established, free_pgtables()
1526 * should have release it.
1527 */
1528 if (WARN_ON(!pmd_none(*new_pmd))) {
1529 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1530 goto out;
1531 }
1532
bf929152
KS
1533 /*
1534 * We don't have to worry about the ordering of src and dst
1535 * ptlocks because exclusive mmap_sem prevents deadlock.
1536 */
1537 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
025c5b24 1538 if (ret == 1) {
bf929152
KS
1539 new_ptl = pmd_lockptr(mm, new_pmd);
1540 if (new_ptl != old_ptl)
1541 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1542 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1543 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1544
b3084f4d
AK
1545 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1546 pgtable_t pgtable;
3592806c
KS
1547 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1548 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1549 }
b3084f4d
AK
1550 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1551 if (new_ptl != old_ptl)
1552 spin_unlock(new_ptl);
bf929152 1553 spin_unlock(old_ptl);
37a1c49a
AA
1554 }
1555out:
1556 return ret;
1557}
1558
f123d74a
MG
1559/*
1560 * Returns
1561 * - 0 if PMD could not be locked
1562 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1563 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1564 */
cd7548ab 1565int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1566 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1567{
1568 struct mm_struct *mm = vma->vm_mm;
bf929152 1569 spinlock_t *ptl;
cd7548ab
JW
1570 int ret = 0;
1571
bf929152 1572 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24 1573 pmd_t entry;
b191f9b1 1574 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1575 ret = 1;
e944fd67
MG
1576
1577 /*
1578 * Avoid trapping faults against the zero page. The read-only
1579 * data is likely to be read-cached on the local CPU and
1580 * local/remote hits to the zero page are not interesting.
1581 */
1582 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1583 spin_unlock(ptl);
ba68bc01 1584 return ret;
e944fd67
MG
1585 }
1586
10c1045f 1587 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1588 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1589 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1590 if (preserve_write)
1591 entry = pmd_mkwrite(entry);
10c1045f
MG
1592 ret = HPAGE_PMD_NR;
1593 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1594 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1595 }
bf929152 1596 spin_unlock(ptl);
025c5b24
NH
1597 }
1598
1599 return ret;
1600}
1601
1602/*
1603 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1604 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1605 *
1606 * Note that if it returns 1, this routine returns without unlocking page
1607 * table locks. So callers must unlock them.
1608 */
bf929152
KS
1609int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1610 spinlock_t **ptl)
025c5b24 1611{
bf929152 1612 *ptl = pmd_lock(vma->vm_mm, pmd);
cd7548ab
JW
1613 if (likely(pmd_trans_huge(*pmd))) {
1614 if (unlikely(pmd_trans_splitting(*pmd))) {
bf929152 1615 spin_unlock(*ptl);
cd7548ab 1616 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1617 return -1;
cd7548ab 1618 } else {
025c5b24
NH
1619 /* Thp mapped by 'pmd' is stable, so we can
1620 * handle it as it is. */
1621 return 1;
cd7548ab 1622 }
025c5b24 1623 }
bf929152 1624 spin_unlock(*ptl);
025c5b24 1625 return 0;
cd7548ab
JW
1626}
1627
117b0791
KS
1628/*
1629 * This function returns whether a given @page is mapped onto the @address
1630 * in the virtual space of @mm.
1631 *
1632 * When it's true, this function returns *pmd with holding the page table lock
1633 * and passing it back to the caller via @ptl.
1634 * If it's false, returns NULL without holding the page table lock.
1635 */
71e3aac0
AA
1636pmd_t *page_check_address_pmd(struct page *page,
1637 struct mm_struct *mm,
1638 unsigned long address,
117b0791
KS
1639 enum page_check_address_pmd_flag flag,
1640 spinlock_t **ptl)
71e3aac0 1641{
b5a8cad3
KS
1642 pgd_t *pgd;
1643 pud_t *pud;
117b0791 1644 pmd_t *pmd;
71e3aac0
AA
1645
1646 if (address & ~HPAGE_PMD_MASK)
117b0791 1647 return NULL;
71e3aac0 1648
b5a8cad3
KS
1649 pgd = pgd_offset(mm, address);
1650 if (!pgd_present(*pgd))
117b0791 1651 return NULL;
b5a8cad3
KS
1652 pud = pud_offset(pgd, address);
1653 if (!pud_present(*pud))
1654 return NULL;
1655 pmd = pmd_offset(pud, address);
1656
117b0791 1657 *ptl = pmd_lock(mm, pmd);
b5a8cad3 1658 if (!pmd_present(*pmd))
117b0791 1659 goto unlock;
71e3aac0 1660 if (pmd_page(*pmd) != page)
117b0791 1661 goto unlock;
94fcc585
AA
1662 /*
1663 * split_vma() may create temporary aliased mappings. There is
1664 * no risk as long as all huge pmd are found and have their
1665 * splitting bit set before __split_huge_page_refcount
1666 * runs. Finding the same huge pmd more than once during the
1667 * same rmap walk is not a problem.
1668 */
1669 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1670 pmd_trans_splitting(*pmd))
117b0791 1671 goto unlock;
71e3aac0
AA
1672 if (pmd_trans_huge(*pmd)) {
1673 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1674 !pmd_trans_splitting(*pmd));
117b0791 1675 return pmd;
71e3aac0 1676 }
117b0791
KS
1677unlock:
1678 spin_unlock(*ptl);
1679 return NULL;
71e3aac0
AA
1680}
1681
9050d7eb 1682#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1683
60ab3244
AA
1684int hugepage_madvise(struct vm_area_struct *vma,
1685 unsigned long *vm_flags, int advice)
0af4e98b 1686{
a664b2d8
AA
1687 switch (advice) {
1688 case MADV_HUGEPAGE:
1e1836e8
AT
1689#ifdef CONFIG_S390
1690 /*
1691 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1692 * can't handle this properly after s390_enable_sie, so we simply
1693 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1694 */
1695 if (mm_has_pgste(vma->vm_mm))
1696 return 0;
1697#endif
a664b2d8
AA
1698 /*
1699 * Be somewhat over-protective like KSM for now!
1700 */
1a763615 1701 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1702 return -EINVAL;
1703 *vm_flags &= ~VM_NOHUGEPAGE;
1704 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1705 /*
1706 * If the vma become good for khugepaged to scan,
1707 * register it here without waiting a page fault that
1708 * may not happen any time soon.
1709 */
6d50e60c 1710 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1711 return -ENOMEM;
a664b2d8
AA
1712 break;
1713 case MADV_NOHUGEPAGE:
1714 /*
1715 * Be somewhat over-protective like KSM for now!
1716 */
1a763615 1717 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1718 return -EINVAL;
1719 *vm_flags &= ~VM_HUGEPAGE;
1720 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1721 /*
1722 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1723 * this vma even if we leave the mm registered in khugepaged if
1724 * it got registered before VM_NOHUGEPAGE was set.
1725 */
a664b2d8
AA
1726 break;
1727 }
0af4e98b
AA
1728
1729 return 0;
1730}
1731
ba76149f
AA
1732static int __init khugepaged_slab_init(void)
1733{
1734 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1735 sizeof(struct mm_slot),
1736 __alignof__(struct mm_slot), 0, NULL);
1737 if (!mm_slot_cache)
1738 return -ENOMEM;
1739
1740 return 0;
1741}
1742
65ebb64f
KS
1743static void __init khugepaged_slab_exit(void)
1744{
1745 kmem_cache_destroy(mm_slot_cache);
1746}
1747
ba76149f
AA
1748static inline struct mm_slot *alloc_mm_slot(void)
1749{
1750 if (!mm_slot_cache) /* initialization failed */
1751 return NULL;
1752 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1753}
1754
1755static inline void free_mm_slot(struct mm_slot *mm_slot)
1756{
1757 kmem_cache_free(mm_slot_cache, mm_slot);
1758}
1759
ba76149f
AA
1760static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1761{
1762 struct mm_slot *mm_slot;
ba76149f 1763
b67bfe0d 1764 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1765 if (mm == mm_slot->mm)
1766 return mm_slot;
43b5fbbd 1767
ba76149f
AA
1768 return NULL;
1769}
1770
1771static void insert_to_mm_slots_hash(struct mm_struct *mm,
1772 struct mm_slot *mm_slot)
1773{
ba76149f 1774 mm_slot->mm = mm;
43b5fbbd 1775 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
1776}
1777
1778static inline int khugepaged_test_exit(struct mm_struct *mm)
1779{
1780 return atomic_read(&mm->mm_users) == 0;
1781}
1782
1783int __khugepaged_enter(struct mm_struct *mm)
1784{
1785 struct mm_slot *mm_slot;
1786 int wakeup;
1787
1788 mm_slot = alloc_mm_slot();
1789 if (!mm_slot)
1790 return -ENOMEM;
1791
1792 /* __khugepaged_exit() must not run from under us */
96dad67f 1793 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
1794 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1795 free_mm_slot(mm_slot);
1796 return 0;
1797 }
1798
1799 spin_lock(&khugepaged_mm_lock);
1800 insert_to_mm_slots_hash(mm, mm_slot);
1801 /*
1802 * Insert just behind the scanning cursor, to let the area settle
1803 * down a little.
1804 */
1805 wakeup = list_empty(&khugepaged_scan.mm_head);
1806 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1807 spin_unlock(&khugepaged_mm_lock);
1808
1809 atomic_inc(&mm->mm_count);
1810 if (wakeup)
1811 wake_up_interruptible(&khugepaged_wait);
1812
1813 return 0;
1814}
1815
6d50e60c
DR
1816int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1817 unsigned long vm_flags)
ba76149f
AA
1818{
1819 unsigned long hstart, hend;
1820 if (!vma->anon_vma)
1821 /*
1822 * Not yet faulted in so we will register later in the
1823 * page fault if needed.
1824 */
1825 return 0;
78f11a25 1826 if (vma->vm_ops)
ba76149f
AA
1827 /* khugepaged not yet working on file or special mappings */
1828 return 0;
6d50e60c 1829 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
1830 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1831 hend = vma->vm_end & HPAGE_PMD_MASK;
1832 if (hstart < hend)
6d50e60c 1833 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
1834 return 0;
1835}
1836
1837void __khugepaged_exit(struct mm_struct *mm)
1838{
1839 struct mm_slot *mm_slot;
1840 int free = 0;
1841
1842 spin_lock(&khugepaged_mm_lock);
1843 mm_slot = get_mm_slot(mm);
1844 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 1845 hash_del(&mm_slot->hash);
ba76149f
AA
1846 list_del(&mm_slot->mm_node);
1847 free = 1;
1848 }
d788e80a 1849 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1850
1851 if (free) {
ba76149f
AA
1852 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1853 free_mm_slot(mm_slot);
1854 mmdrop(mm);
1855 } else if (mm_slot) {
ba76149f
AA
1856 /*
1857 * This is required to serialize against
1858 * khugepaged_test_exit() (which is guaranteed to run
1859 * under mmap sem read mode). Stop here (after we
1860 * return all pagetables will be destroyed) until
1861 * khugepaged has finished working on the pagetables
1862 * under the mmap_sem.
1863 */
1864 down_write(&mm->mmap_sem);
1865 up_write(&mm->mmap_sem);
d788e80a 1866 }
ba76149f
AA
1867}
1868
1869static void release_pte_page(struct page *page)
1870{
1871 /* 0 stands for page_is_file_cache(page) == false */
1872 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1873 unlock_page(page);
1874 putback_lru_page(page);
1875}
1876
1877static void release_pte_pages(pte_t *pte, pte_t *_pte)
1878{
1879 while (--_pte >= pte) {
1880 pte_t pteval = *_pte;
ca0984ca 1881 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
1882 release_pte_page(pte_page(pteval));
1883 }
1884}
1885
ba76149f
AA
1886static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1887 unsigned long address,
1888 pte_t *pte)
1889{
7d2eba05 1890 struct page *page = NULL;
ba76149f 1891 pte_t *_pte;
7d2eba05 1892 int none_or_zero = 0, result = 0;
10359213 1893 bool referenced = false, writable = false;
7d2eba05 1894
ba76149f
AA
1895 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1896 _pte++, address += PAGE_SIZE) {
1897 pte_t pteval = *_pte;
47aee4d8
MK
1898 if (pte_none(pteval) || (pte_present(pteval) &&
1899 is_zero_pfn(pte_pfn(pteval)))) {
c1294d05 1900 if (!userfaultfd_armed(vma) &&
7d2eba05 1901 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 1902 continue;
7d2eba05
EA
1903 } else {
1904 result = SCAN_EXCEED_NONE_PTE;
ba76149f 1905 goto out;
7d2eba05 1906 }
ba76149f 1907 }
7d2eba05
EA
1908 if (!pte_present(pteval)) {
1909 result = SCAN_PTE_NON_PRESENT;
ba76149f 1910 goto out;
7d2eba05 1911 }
ba76149f 1912 page = vm_normal_page(vma, address, pteval);
7d2eba05
EA
1913 if (unlikely(!page)) {
1914 result = SCAN_PAGE_NULL;
ba76149f 1915 goto out;
7d2eba05 1916 }
344aa35c 1917
309381fe
SL
1918 VM_BUG_ON_PAGE(PageCompound(page), page);
1919 VM_BUG_ON_PAGE(!PageAnon(page), page);
1920 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 1921
ba76149f
AA
1922 /*
1923 * We can do it before isolate_lru_page because the
1924 * page can't be freed from under us. NOTE: PG_lock
1925 * is needed to serialize against split_huge_page
1926 * when invoked from the VM.
1927 */
7d2eba05
EA
1928 if (!trylock_page(page)) {
1929 result = SCAN_PAGE_LOCK;
ba76149f 1930 goto out;
7d2eba05 1931 }
10359213
EA
1932
1933 /*
1934 * cannot use mapcount: can't collapse if there's a gup pin.
1935 * The page must only be referenced by the scanned process
1936 * and page swap cache.
1937 */
1938 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1939 unlock_page(page);
7d2eba05 1940 result = SCAN_PAGE_COUNT;
10359213
EA
1941 goto out;
1942 }
1943 if (pte_write(pteval)) {
1944 writable = true;
1945 } else {
1946 if (PageSwapCache(page) && !reuse_swap_page(page)) {
1947 unlock_page(page);
7d2eba05 1948 result = SCAN_SWAP_CACHE_PAGE;
10359213
EA
1949 goto out;
1950 }
1951 /*
1952 * Page is not in the swap cache. It can be collapsed
1953 * into a THP.
1954 */
1955 }
1956
ba76149f
AA
1957 /*
1958 * Isolate the page to avoid collapsing an hugepage
1959 * currently in use by the VM.
1960 */
1961 if (isolate_lru_page(page)) {
1962 unlock_page(page);
7d2eba05 1963 result = SCAN_DEL_PAGE_LRU;
ba76149f
AA
1964 goto out;
1965 }
1966 /* 0 stands for page_is_file_cache(page) == false */
1967 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
1968 VM_BUG_ON_PAGE(!PageLocked(page), page);
1969 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
1970
1971 /* If there is no mapped pte young don't collapse the page */
33c3fc71
VD
1972 if (pte_young(pteval) ||
1973 page_is_young(page) || PageReferenced(page) ||
8ee53820 1974 mmu_notifier_test_young(vma->vm_mm, address))
10359213 1975 referenced = true;
ba76149f 1976 }
7d2eba05
EA
1977 if (likely(writable)) {
1978 if (likely(referenced)) {
1979 result = SCAN_SUCCEED;
1980 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
1981 referenced, writable, result);
1982 return 1;
1983 }
1984 } else {
1985 result = SCAN_PAGE_RO;
1986 }
1987
ba76149f 1988out:
344aa35c 1989 release_pte_pages(pte, _pte);
7d2eba05
EA
1990 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
1991 referenced, writable, result);
344aa35c 1992 return 0;
ba76149f
AA
1993}
1994
1995static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1996 struct vm_area_struct *vma,
1997 unsigned long address,
1998 spinlock_t *ptl)
1999{
2000 pte_t *_pte;
2001 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2002 pte_t pteval = *_pte;
2003 struct page *src_page;
2004
ca0984ca 2005 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2006 clear_user_highpage(page, address);
2007 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2008 if (is_zero_pfn(pte_pfn(pteval))) {
2009 /*
2010 * ptl mostly unnecessary.
2011 */
2012 spin_lock(ptl);
2013 /*
2014 * paravirt calls inside pte_clear here are
2015 * superfluous.
2016 */
2017 pte_clear(vma->vm_mm, address, _pte);
2018 spin_unlock(ptl);
2019 }
ba76149f
AA
2020 } else {
2021 src_page = pte_page(pteval);
2022 copy_user_highpage(page, src_page, address, vma);
309381fe 2023 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2024 release_pte_page(src_page);
2025 /*
2026 * ptl mostly unnecessary, but preempt has to
2027 * be disabled to update the per-cpu stats
2028 * inside page_remove_rmap().
2029 */
2030 spin_lock(ptl);
2031 /*
2032 * paravirt calls inside pte_clear here are
2033 * superfluous.
2034 */
2035 pte_clear(vma->vm_mm, address, _pte);
d281ee61 2036 page_remove_rmap(src_page, false);
ba76149f
AA
2037 spin_unlock(ptl);
2038 free_page_and_swap_cache(src_page);
2039 }
2040
2041 address += PAGE_SIZE;
2042 page++;
2043 }
2044}
2045
26234f36 2046static void khugepaged_alloc_sleep(void)
ba76149f 2047{
bde43c6c
PM
2048 DEFINE_WAIT(wait);
2049
2050 add_wait_queue(&khugepaged_wait, &wait);
2051 freezable_schedule_timeout_interruptible(
2052 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2053 remove_wait_queue(&khugepaged_wait, &wait);
26234f36 2054}
ba76149f 2055
9f1b868a
BL
2056static int khugepaged_node_load[MAX_NUMNODES];
2057
14a4e214
DR
2058static bool khugepaged_scan_abort(int nid)
2059{
2060 int i;
2061
2062 /*
2063 * If zone_reclaim_mode is disabled, then no extra effort is made to
2064 * allocate memory locally.
2065 */
2066 if (!zone_reclaim_mode)
2067 return false;
2068
2069 /* If there is a count for this node already, it must be acceptable */
2070 if (khugepaged_node_load[nid])
2071 return false;
2072
2073 for (i = 0; i < MAX_NUMNODES; i++) {
2074 if (!khugepaged_node_load[i])
2075 continue;
2076 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2077 return true;
2078 }
2079 return false;
2080}
2081
26234f36 2082#ifdef CONFIG_NUMA
9f1b868a
BL
2083static int khugepaged_find_target_node(void)
2084{
2085 static int last_khugepaged_target_node = NUMA_NO_NODE;
2086 int nid, target_node = 0, max_value = 0;
2087
2088 /* find first node with max normal pages hit */
2089 for (nid = 0; nid < MAX_NUMNODES; nid++)
2090 if (khugepaged_node_load[nid] > max_value) {
2091 max_value = khugepaged_node_load[nid];
2092 target_node = nid;
2093 }
2094
2095 /* do some balance if several nodes have the same hit record */
2096 if (target_node <= last_khugepaged_target_node)
2097 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2098 nid++)
2099 if (max_value == khugepaged_node_load[nid]) {
2100 target_node = nid;
2101 break;
2102 }
2103
2104 last_khugepaged_target_node = target_node;
2105 return target_node;
2106}
2107
26234f36
XG
2108static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2109{
2110 if (IS_ERR(*hpage)) {
2111 if (!*wait)
2112 return false;
2113
2114 *wait = false;
e3b4126c 2115 *hpage = NULL;
26234f36
XG
2116 khugepaged_alloc_sleep();
2117 } else if (*hpage) {
2118 put_page(*hpage);
2119 *hpage = NULL;
2120 }
2121
2122 return true;
2123}
2124
3b363692
MH
2125static struct page *
2126khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2127 unsigned long address, int node)
26234f36 2128{
309381fe 2129 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2130
ce83d217 2131 /*
8b164568
VB
2132 * Before allocating the hugepage, release the mmap_sem read lock.
2133 * The allocation can take potentially a long time if it involves
2134 * sync compaction, and we do not need to hold the mmap_sem during
2135 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2136 */
8b164568
VB
2137 up_read(&mm->mmap_sem);
2138
96db800f 2139 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2140 if (unlikely(!*hpage)) {
81ab4201 2141 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2142 *hpage = ERR_PTR(-ENOMEM);
26234f36 2143 return NULL;
ce83d217 2144 }
26234f36 2145
65b3c07b 2146 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2147 return *hpage;
2148}
2149#else
9f1b868a
BL
2150static int khugepaged_find_target_node(void)
2151{
2152 return 0;
2153}
2154
10dc4155
BL
2155static inline struct page *alloc_hugepage(int defrag)
2156{
2157 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2158 HPAGE_PMD_ORDER);
2159}
2160
26234f36
XG
2161static struct page *khugepaged_alloc_hugepage(bool *wait)
2162{
2163 struct page *hpage;
2164
2165 do {
2166 hpage = alloc_hugepage(khugepaged_defrag());
2167 if (!hpage) {
2168 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2169 if (!*wait)
2170 return NULL;
2171
2172 *wait = false;
2173 khugepaged_alloc_sleep();
2174 } else
2175 count_vm_event(THP_COLLAPSE_ALLOC);
2176 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2177
2178 return hpage;
2179}
2180
2181static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2182{
2183 if (!*hpage)
2184 *hpage = khugepaged_alloc_hugepage(wait);
2185
2186 if (unlikely(!*hpage))
2187 return false;
2188
2189 return true;
2190}
2191
3b363692
MH
2192static struct page *
2193khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2194 unsigned long address, int node)
26234f36
XG
2195{
2196 up_read(&mm->mmap_sem);
2197 VM_BUG_ON(!*hpage);
3b363692 2198
26234f36
XG
2199 return *hpage;
2200}
692e0b35
AA
2201#endif
2202
fa475e51
BL
2203static bool hugepage_vma_check(struct vm_area_struct *vma)
2204{
2205 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2206 (vma->vm_flags & VM_NOHUGEPAGE))
2207 return false;
7479df6d
KS
2208 if (vma->vm_flags & VM_LOCKED)
2209 return false;
fa475e51
BL
2210 if (!vma->anon_vma || vma->vm_ops)
2211 return false;
2212 if (is_vma_temporary_stack(vma))
2213 return false;
81d1b09c 2214 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2215 return true;
2216}
2217
26234f36
XG
2218static void collapse_huge_page(struct mm_struct *mm,
2219 unsigned long address,
2220 struct page **hpage,
2221 struct vm_area_struct *vma,
2222 int node)
2223{
26234f36
XG
2224 pmd_t *pmd, _pmd;
2225 pte_t *pte;
2226 pgtable_t pgtable;
2227 struct page *new_page;
c4088ebd 2228 spinlock_t *pmd_ptl, *pte_ptl;
7d2eba05 2229 int isolated, result = 0;
26234f36 2230 unsigned long hstart, hend;
00501b53 2231 struct mem_cgroup *memcg;
2ec74c3e
SG
2232 unsigned long mmun_start; /* For mmu_notifiers */
2233 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2234 gfp_t gfp;
26234f36
XG
2235
2236 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2237
3b363692
MH
2238 /* Only allocate from the target node */
2239 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2240 __GFP_THISNODE;
2241
26234f36 2242 /* release the mmap_sem read lock. */
d6669d68 2243 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
7d2eba05
EA
2244 if (!new_page) {
2245 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2246 goto out_nolock;
2247 }
26234f36 2248
f627c2f5 2249 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
7d2eba05
EA
2250 result = SCAN_CGROUP_CHARGE_FAIL;
2251 goto out_nolock;
2252 }
ba76149f
AA
2253
2254 /*
2255 * Prevent all access to pagetables with the exception of
2256 * gup_fast later hanlded by the ptep_clear_flush and the VM
2257 * handled by the anon_vma lock + PG_lock.
2258 */
2259 down_write(&mm->mmap_sem);
7d2eba05
EA
2260 if (unlikely(khugepaged_test_exit(mm))) {
2261 result = SCAN_ANY_PROCESS;
ba76149f 2262 goto out;
7d2eba05 2263 }
ba76149f
AA
2264
2265 vma = find_vma(mm, address);
7d2eba05
EA
2266 if (!vma) {
2267 result = SCAN_VMA_NULL;
a8f531eb 2268 goto out;
7d2eba05 2269 }
ba76149f
AA
2270 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2271 hend = vma->vm_end & HPAGE_PMD_MASK;
7d2eba05
EA
2272 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2273 result = SCAN_ADDRESS_RANGE;
ba76149f 2274 goto out;
7d2eba05
EA
2275 }
2276 if (!hugepage_vma_check(vma)) {
2277 result = SCAN_VMA_CHECK;
a7d6e4ec 2278 goto out;
7d2eba05 2279 }
6219049a 2280 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2281 if (!pmd) {
2282 result = SCAN_PMD_NULL;
ba76149f 2283 goto out;
7d2eba05 2284 }
ba76149f 2285
4fc3f1d6 2286 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2287
2288 pte = pte_offset_map(pmd, address);
c4088ebd 2289 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2290
2ec74c3e
SG
2291 mmun_start = address;
2292 mmun_end = address + HPAGE_PMD_SIZE;
2293 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2294 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2295 /*
2296 * After this gup_fast can't run anymore. This also removes
2297 * any huge TLB entry from the CPU so we won't allow
2298 * huge and small TLB entries for the same virtual address
2299 * to avoid the risk of CPU bugs in that area.
2300 */
15a25b2e 2301 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2302 spin_unlock(pmd_ptl);
2ec74c3e 2303 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2304
c4088ebd 2305 spin_lock(pte_ptl);
ba76149f 2306 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2307 spin_unlock(pte_ptl);
ba76149f
AA
2308
2309 if (unlikely(!isolated)) {
453c7192 2310 pte_unmap(pte);
c4088ebd 2311 spin_lock(pmd_ptl);
ba76149f 2312 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2313 /*
2314 * We can only use set_pmd_at when establishing
2315 * hugepmds and never for establishing regular pmds that
2316 * points to regular pagetables. Use pmd_populate for that
2317 */
2318 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2319 spin_unlock(pmd_ptl);
08b52706 2320 anon_vma_unlock_write(vma->anon_vma);
7d2eba05 2321 result = SCAN_FAIL;
ce83d217 2322 goto out;
ba76149f
AA
2323 }
2324
2325 /*
2326 * All pages are isolated and locked so anon_vma rmap
2327 * can't run anymore.
2328 */
08b52706 2329 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2330
c4088ebd 2331 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2332 pte_unmap(pte);
ba76149f
AA
2333 __SetPageUptodate(new_page);
2334 pgtable = pmd_pgtable(_pmd);
ba76149f 2335
3122359a
KS
2336 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2337 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2338
2339 /*
2340 * spin_lock() below is not the equivalent of smp_wmb(), so
2341 * this is needed to avoid the copy_huge_page writes to become
2342 * visible after the set_pmd_at() write.
2343 */
2344 smp_wmb();
2345
c4088ebd 2346 spin_lock(pmd_ptl);
ba76149f 2347 BUG_ON(!pmd_none(*pmd));
d281ee61 2348 page_add_new_anon_rmap(new_page, vma, address, true);
f627c2f5 2349 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 2350 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2351 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2352 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2353 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2354 spin_unlock(pmd_ptl);
ba76149f
AA
2355
2356 *hpage = NULL;
420256ef 2357
ba76149f 2358 khugepaged_pages_collapsed++;
7d2eba05 2359 result = SCAN_SUCCEED;
ce83d217 2360out_up_write:
ba76149f 2361 up_write(&mm->mmap_sem);
7d2eba05 2362 trace_mm_collapse_huge_page(mm, isolated, result);
0bbbc0b3
AA
2363 return;
2364
7d2eba05
EA
2365out_nolock:
2366 trace_mm_collapse_huge_page(mm, isolated, result);
2367 return;
ce83d217 2368out:
f627c2f5 2369 mem_cgroup_cancel_charge(new_page, memcg, true);
ce83d217 2370 goto out_up_write;
ba76149f
AA
2371}
2372
2373static int khugepaged_scan_pmd(struct mm_struct *mm,
2374 struct vm_area_struct *vma,
2375 unsigned long address,
2376 struct page **hpage)
2377{
ba76149f
AA
2378 pmd_t *pmd;
2379 pte_t *pte, *_pte;
7d2eba05
EA
2380 int ret = 0, none_or_zero = 0, result = 0;
2381 struct page *page = NULL;
ba76149f
AA
2382 unsigned long _address;
2383 spinlock_t *ptl;
00ef2d2f 2384 int node = NUMA_NO_NODE;
10359213 2385 bool writable = false, referenced = false;
ba76149f
AA
2386
2387 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2388
6219049a 2389 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2390 if (!pmd) {
2391 result = SCAN_PMD_NULL;
ba76149f 2392 goto out;
7d2eba05 2393 }
ba76149f 2394
9f1b868a 2395 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2396 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2397 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2398 _pte++, _address += PAGE_SIZE) {
2399 pte_t pteval = *_pte;
ca0984ca 2400 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05 2401 if (!userfaultfd_armed(vma) &&
7d2eba05 2402 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2403 continue;
7d2eba05
EA
2404 } else {
2405 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2406 goto out_unmap;
7d2eba05 2407 }
ba76149f 2408 }
7d2eba05
EA
2409 if (!pte_present(pteval)) {
2410 result = SCAN_PTE_NON_PRESENT;
ba76149f 2411 goto out_unmap;
7d2eba05 2412 }
10359213
EA
2413 if (pte_write(pteval))
2414 writable = true;
2415
ba76149f 2416 page = vm_normal_page(vma, _address, pteval);
7d2eba05
EA
2417 if (unlikely(!page)) {
2418 result = SCAN_PAGE_NULL;
ba76149f 2419 goto out_unmap;
7d2eba05 2420 }
b1caa957
KS
2421
2422 /* TODO: teach khugepaged to collapse THP mapped with pte */
2423 if (PageCompound(page)) {
2424 result = SCAN_PAGE_COMPOUND;
2425 goto out_unmap;
2426 }
2427
5c4b4be3 2428 /*
9f1b868a
BL
2429 * Record which node the original page is from and save this
2430 * information to khugepaged_node_load[].
2431 * Khupaged will allocate hugepage from the node has the max
2432 * hit record.
5c4b4be3 2433 */
9f1b868a 2434 node = page_to_nid(page);
7d2eba05
EA
2435 if (khugepaged_scan_abort(node)) {
2436 result = SCAN_SCAN_ABORT;
14a4e214 2437 goto out_unmap;
7d2eba05 2438 }
9f1b868a 2439 khugepaged_node_load[node]++;
7d2eba05
EA
2440 if (!PageLRU(page)) {
2441 result = SCAN_SCAN_ABORT;
2442 goto out_unmap;
2443 }
2444 if (PageLocked(page)) {
2445 result = SCAN_PAGE_LOCK;
ba76149f 2446 goto out_unmap;
7d2eba05
EA
2447 }
2448 if (!PageAnon(page)) {
2449 result = SCAN_PAGE_ANON;
2450 goto out_unmap;
2451 }
2452
10359213
EA
2453 /*
2454 * cannot use mapcount: can't collapse if there's a gup pin.
2455 * The page must only be referenced by the scanned process
2456 * and page swap cache.
2457 */
7d2eba05
EA
2458 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2459 result = SCAN_PAGE_COUNT;
ba76149f 2460 goto out_unmap;
7d2eba05 2461 }
33c3fc71
VD
2462 if (pte_young(pteval) ||
2463 page_is_young(page) || PageReferenced(page) ||
8ee53820 2464 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2465 referenced = true;
ba76149f 2466 }
7d2eba05
EA
2467 if (writable) {
2468 if (referenced) {
2469 result = SCAN_SUCCEED;
2470 ret = 1;
2471 } else {
2472 result = SCAN_NO_REFERENCED_PAGE;
2473 }
2474 } else {
2475 result = SCAN_PAGE_RO;
2476 }
ba76149f
AA
2477out_unmap:
2478 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2479 if (ret) {
2480 node = khugepaged_find_target_node();
ce83d217 2481 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2482 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2483 }
ba76149f 2484out:
7d2eba05
EA
2485 trace_mm_khugepaged_scan_pmd(mm, page_to_pfn(page), writable, referenced,
2486 none_or_zero, result);
ba76149f
AA
2487 return ret;
2488}
2489
2490static void collect_mm_slot(struct mm_slot *mm_slot)
2491{
2492 struct mm_struct *mm = mm_slot->mm;
2493
b9980cdc 2494 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2495
2496 if (khugepaged_test_exit(mm)) {
2497 /* free mm_slot */
43b5fbbd 2498 hash_del(&mm_slot->hash);
ba76149f
AA
2499 list_del(&mm_slot->mm_node);
2500
2501 /*
2502 * Not strictly needed because the mm exited already.
2503 *
2504 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2505 */
2506
2507 /* khugepaged_mm_lock actually not necessary for the below */
2508 free_mm_slot(mm_slot);
2509 mmdrop(mm);
2510 }
2511}
2512
2513static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2514 struct page **hpage)
2f1da642
HS
2515 __releases(&khugepaged_mm_lock)
2516 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2517{
2518 struct mm_slot *mm_slot;
2519 struct mm_struct *mm;
2520 struct vm_area_struct *vma;
2521 int progress = 0;
2522
2523 VM_BUG_ON(!pages);
b9980cdc 2524 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2525
2526 if (khugepaged_scan.mm_slot)
2527 mm_slot = khugepaged_scan.mm_slot;
2528 else {
2529 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2530 struct mm_slot, mm_node);
2531 khugepaged_scan.address = 0;
2532 khugepaged_scan.mm_slot = mm_slot;
2533 }
2534 spin_unlock(&khugepaged_mm_lock);
2535
2536 mm = mm_slot->mm;
2537 down_read(&mm->mmap_sem);
2538 if (unlikely(khugepaged_test_exit(mm)))
2539 vma = NULL;
2540 else
2541 vma = find_vma(mm, khugepaged_scan.address);
2542
2543 progress++;
2544 for (; vma; vma = vma->vm_next) {
2545 unsigned long hstart, hend;
2546
2547 cond_resched();
2548 if (unlikely(khugepaged_test_exit(mm))) {
2549 progress++;
2550 break;
2551 }
fa475e51
BL
2552 if (!hugepage_vma_check(vma)) {
2553skip:
ba76149f
AA
2554 progress++;
2555 continue;
2556 }
ba76149f
AA
2557 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2558 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2559 if (hstart >= hend)
2560 goto skip;
2561 if (khugepaged_scan.address > hend)
2562 goto skip;
ba76149f
AA
2563 if (khugepaged_scan.address < hstart)
2564 khugepaged_scan.address = hstart;
a7d6e4ec 2565 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2566
2567 while (khugepaged_scan.address < hend) {
2568 int ret;
2569 cond_resched();
2570 if (unlikely(khugepaged_test_exit(mm)))
2571 goto breakouterloop;
2572
2573 VM_BUG_ON(khugepaged_scan.address < hstart ||
2574 khugepaged_scan.address + HPAGE_PMD_SIZE >
2575 hend);
2576 ret = khugepaged_scan_pmd(mm, vma,
2577 khugepaged_scan.address,
2578 hpage);
2579 /* move to next address */
2580 khugepaged_scan.address += HPAGE_PMD_SIZE;
2581 progress += HPAGE_PMD_NR;
2582 if (ret)
2583 /* we released mmap_sem so break loop */
2584 goto breakouterloop_mmap_sem;
2585 if (progress >= pages)
2586 goto breakouterloop;
2587 }
2588 }
2589breakouterloop:
2590 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2591breakouterloop_mmap_sem:
2592
2593 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2594 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2595 /*
2596 * Release the current mm_slot if this mm is about to die, or
2597 * if we scanned all vmas of this mm.
2598 */
2599 if (khugepaged_test_exit(mm) || !vma) {
2600 /*
2601 * Make sure that if mm_users is reaching zero while
2602 * khugepaged runs here, khugepaged_exit will find
2603 * mm_slot not pointing to the exiting mm.
2604 */
2605 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2606 khugepaged_scan.mm_slot = list_entry(
2607 mm_slot->mm_node.next,
2608 struct mm_slot, mm_node);
2609 khugepaged_scan.address = 0;
2610 } else {
2611 khugepaged_scan.mm_slot = NULL;
2612 khugepaged_full_scans++;
2613 }
2614
2615 collect_mm_slot(mm_slot);
2616 }
2617
2618 return progress;
2619}
2620
2621static int khugepaged_has_work(void)
2622{
2623 return !list_empty(&khugepaged_scan.mm_head) &&
2624 khugepaged_enabled();
2625}
2626
2627static int khugepaged_wait_event(void)
2628{
2629 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2630 kthread_should_stop();
ba76149f
AA
2631}
2632
d516904b 2633static void khugepaged_do_scan(void)
ba76149f 2634{
d516904b 2635 struct page *hpage = NULL;
ba76149f
AA
2636 unsigned int progress = 0, pass_through_head = 0;
2637 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2638 bool wait = true;
ba76149f
AA
2639
2640 barrier(); /* write khugepaged_pages_to_scan to local stack */
2641
2642 while (progress < pages) {
26234f36 2643 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2644 break;
26234f36 2645
420256ef 2646 cond_resched();
ba76149f 2647
cd092411 2648 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2649 break;
2650
ba76149f
AA
2651 spin_lock(&khugepaged_mm_lock);
2652 if (!khugepaged_scan.mm_slot)
2653 pass_through_head++;
2654 if (khugepaged_has_work() &&
2655 pass_through_head < 2)
2656 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2657 &hpage);
ba76149f
AA
2658 else
2659 progress = pages;
2660 spin_unlock(&khugepaged_mm_lock);
2661 }
ba76149f 2662
d516904b
XG
2663 if (!IS_ERR_OR_NULL(hpage))
2664 put_page(hpage);
0bbbc0b3
AA
2665}
2666
2017c0bf
XG
2667static void khugepaged_wait_work(void)
2668{
2017c0bf
XG
2669 if (khugepaged_has_work()) {
2670 if (!khugepaged_scan_sleep_millisecs)
2671 return;
2672
2673 wait_event_freezable_timeout(khugepaged_wait,
2674 kthread_should_stop(),
2675 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2676 return;
2677 }
2678
2679 if (khugepaged_enabled())
2680 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2681}
2682
ba76149f
AA
2683static int khugepaged(void *none)
2684{
2685 struct mm_slot *mm_slot;
2686
878aee7d 2687 set_freezable();
8698a745 2688 set_user_nice(current, MAX_NICE);
ba76149f 2689
b7231789
XG
2690 while (!kthread_should_stop()) {
2691 khugepaged_do_scan();
2692 khugepaged_wait_work();
2693 }
ba76149f
AA
2694
2695 spin_lock(&khugepaged_mm_lock);
2696 mm_slot = khugepaged_scan.mm_slot;
2697 khugepaged_scan.mm_slot = NULL;
2698 if (mm_slot)
2699 collect_mm_slot(mm_slot);
2700 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2701 return 0;
2702}
2703
78ddc534 2704static void split_huge_pmd_address(struct vm_area_struct *vma,
94fcc585
AA
2705 unsigned long address)
2706{
f72e7dcd
HD
2707 pgd_t *pgd;
2708 pud_t *pud;
94fcc585
AA
2709 pmd_t *pmd;
2710
2711 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2712
78ddc534 2713 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2714 if (!pgd_present(*pgd))
2715 return;
2716
2717 pud = pud_offset(pgd, address);
2718 if (!pud_present(*pud))
2719 return;
2720
2721 pmd = pmd_offset(pud, address);
78ddc534 2722 if (!pmd_present(*pmd) || !pmd_trans_huge(*pmd))
94fcc585
AA
2723 return;
2724 /*
2725 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2726 * materialize from under us.
2727 */
ad0bed24 2728 split_huge_pmd(vma, pmd, address);
94fcc585
AA
2729}
2730
e1b9996b 2731void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2732 unsigned long start,
2733 unsigned long end,
2734 long adjust_next)
2735{
2736 /*
2737 * If the new start address isn't hpage aligned and it could
2738 * previously contain an hugepage: check if we need to split
2739 * an huge pmd.
2740 */
2741 if (start & ~HPAGE_PMD_MASK &&
2742 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2743 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
78ddc534 2744 split_huge_pmd_address(vma, start);
94fcc585
AA
2745
2746 /*
2747 * If the new end address isn't hpage aligned and it could
2748 * previously contain an hugepage: check if we need to split
2749 * an huge pmd.
2750 */
2751 if (end & ~HPAGE_PMD_MASK &&
2752 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2753 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
78ddc534 2754 split_huge_pmd_address(vma, end);
94fcc585
AA
2755
2756 /*
2757 * If we're also updating the vma->vm_next->vm_start, if the new
2758 * vm_next->vm_start isn't page aligned and it could previously
2759 * contain an hugepage: check if we need to split an huge pmd.
2760 */
2761 if (adjust_next > 0) {
2762 struct vm_area_struct *next = vma->vm_next;
2763 unsigned long nstart = next->vm_start;
2764 nstart += adjust_next << PAGE_SHIFT;
2765 if (nstart & ~HPAGE_PMD_MASK &&
2766 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2767 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
78ddc534 2768 split_huge_pmd_address(next, nstart);
94fcc585
AA
2769 }
2770}