]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/huge_memory.c
migrate_pages: try to split pages on queuing
[thirdparty/kernel/linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f
AA
21#include <linux/kthread.h>
22#include <linux/khugepaged.h>
878aee7d 23#include <linux/freezer.h>
a664b2d8 24#include <linux/mman.h>
325adeb5 25#include <linux/pagemap.h>
4daae3b4 26#include <linux/migrate.h>
43b5fbbd 27#include <linux/hashtable.h>
6b251fc9 28#include <linux/userfaultfd_k.h>
33c3fc71 29#include <linux/page_idle.h>
97ae1749 30
71e3aac0
AA
31#include <asm/tlb.h>
32#include <asm/pgalloc.h>
33#include "internal.h"
34
7d2eba05
EA
35enum scan_result {
36 SCAN_FAIL,
37 SCAN_SUCCEED,
38 SCAN_PMD_NULL,
39 SCAN_EXCEED_NONE_PTE,
40 SCAN_PTE_NON_PRESENT,
41 SCAN_PAGE_RO,
42 SCAN_NO_REFERENCED_PAGE,
43 SCAN_PAGE_NULL,
44 SCAN_SCAN_ABORT,
45 SCAN_PAGE_COUNT,
46 SCAN_PAGE_LRU,
47 SCAN_PAGE_LOCK,
48 SCAN_PAGE_ANON,
b1caa957 49 SCAN_PAGE_COMPOUND,
7d2eba05
EA
50 SCAN_ANY_PROCESS,
51 SCAN_VMA_NULL,
52 SCAN_VMA_CHECK,
53 SCAN_ADDRESS_RANGE,
54 SCAN_SWAP_CACHE_PAGE,
55 SCAN_DEL_PAGE_LRU,
56 SCAN_ALLOC_HUGE_PAGE_FAIL,
57 SCAN_CGROUP_CHARGE_FAIL
58};
59
60#define CREATE_TRACE_POINTS
61#include <trace/events/huge_memory.h>
62
ba76149f 63/*
8bfa3f9a
JW
64 * By default transparent hugepage support is disabled in order that avoid
65 * to risk increase the memory footprint of applications without a guaranteed
66 * benefit. When transparent hugepage support is enabled, is for all mappings,
67 * and khugepaged scans all mappings.
68 * Defrag is invoked by khugepaged hugepage allocations and by page faults
69 * for all hugepage allocations.
ba76149f 70 */
71e3aac0 71unsigned long transparent_hugepage_flags __read_mostly =
13ece886 72#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 73 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
74#endif
75#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
76 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
77#endif
d39d33c3 78 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
79 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
80 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
81
82/* default scan 8*512 pte (or vmas) every 30 second */
83static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
84static unsigned int khugepaged_pages_collapsed;
85static unsigned int khugepaged_full_scans;
86static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
87/* during fragmentation poll the hugepage allocator once every minute */
88static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
89static struct task_struct *khugepaged_thread __read_mostly;
90static DEFINE_MUTEX(khugepaged_mutex);
91static DEFINE_SPINLOCK(khugepaged_mm_lock);
92static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
93/*
94 * default collapse hugepages if there is at least one pte mapped like
95 * it would have happened if the vma was large enough during page
96 * fault.
97 */
98static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
99
100static int khugepaged(void *none);
ba76149f 101static int khugepaged_slab_init(void);
65ebb64f 102static void khugepaged_slab_exit(void);
ba76149f 103
43b5fbbd
SL
104#define MM_SLOTS_HASH_BITS 10
105static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
106
ba76149f
AA
107static struct kmem_cache *mm_slot_cache __read_mostly;
108
109/**
110 * struct mm_slot - hash lookup from mm to mm_slot
111 * @hash: hash collision list
112 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
113 * @mm: the mm that this information is valid for
114 */
115struct mm_slot {
116 struct hlist_node hash;
117 struct list_head mm_node;
118 struct mm_struct *mm;
119};
120
121/**
122 * struct khugepaged_scan - cursor for scanning
123 * @mm_head: the head of the mm list to scan
124 * @mm_slot: the current mm_slot we are scanning
125 * @address: the next address inside that to be scanned
126 *
127 * There is only the one khugepaged_scan instance of this cursor structure.
128 */
129struct khugepaged_scan {
130 struct list_head mm_head;
131 struct mm_slot *mm_slot;
132 unsigned long address;
2f1da642
HS
133};
134static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
135 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
136};
137
f000565a 138
2c0b80d4 139static void set_recommended_min_free_kbytes(void)
f000565a
AA
140{
141 struct zone *zone;
142 int nr_zones = 0;
143 unsigned long recommended_min;
f000565a 144
f000565a
AA
145 for_each_populated_zone(zone)
146 nr_zones++;
147
974a786e 148 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
f000565a
AA
149 recommended_min = pageblock_nr_pages * nr_zones * 2;
150
151 /*
152 * Make sure that on average at least two pageblocks are almost free
153 * of another type, one for a migratetype to fall back to and a
154 * second to avoid subsequent fallbacks of other types There are 3
155 * MIGRATE_TYPES we care about.
156 */
157 recommended_min += pageblock_nr_pages * nr_zones *
158 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
159
160 /* don't ever allow to reserve more than 5% of the lowmem */
161 recommended_min = min(recommended_min,
162 (unsigned long) nr_free_buffer_pages() / 20);
163 recommended_min <<= (PAGE_SHIFT-10);
164
42aa83cb
HP
165 if (recommended_min > min_free_kbytes) {
166 if (user_min_free_kbytes >= 0)
167 pr_info("raising min_free_kbytes from %d to %lu "
168 "to help transparent hugepage allocations\n",
169 min_free_kbytes, recommended_min);
170
f000565a 171 min_free_kbytes = recommended_min;
42aa83cb 172 }
f000565a 173 setup_per_zone_wmarks();
f000565a 174}
f000565a 175
79553da2 176static int start_stop_khugepaged(void)
ba76149f
AA
177{
178 int err = 0;
179 if (khugepaged_enabled()) {
ba76149f
AA
180 if (!khugepaged_thread)
181 khugepaged_thread = kthread_run(khugepaged, NULL,
182 "khugepaged");
18e8e5c7 183 if (IS_ERR(khugepaged_thread)) {
ae3a8c1c 184 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
185 err = PTR_ERR(khugepaged_thread);
186 khugepaged_thread = NULL;
79553da2 187 goto fail;
ba76149f 188 }
911891af
XG
189
190 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 191 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
192
193 set_recommended_min_free_kbytes();
911891af 194 } else if (khugepaged_thread) {
911891af
XG
195 kthread_stop(khugepaged_thread);
196 khugepaged_thread = NULL;
197 }
79553da2 198fail:
ba76149f
AA
199 return err;
200}
71e3aac0 201
97ae1749 202static atomic_t huge_zero_refcount;
56873f43 203struct page *huge_zero_page __read_mostly;
4a6c1297 204
fc437044 205struct page *get_huge_zero_page(void)
97ae1749
KS
206{
207 struct page *zero_page;
208retry:
209 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 210 return READ_ONCE(huge_zero_page);
97ae1749
KS
211
212 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 213 HPAGE_PMD_ORDER);
d8a8e1f0
KS
214 if (!zero_page) {
215 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 216 return NULL;
d8a8e1f0
KS
217 }
218 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 219 preempt_disable();
5918d10a 220 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 221 preempt_enable();
5ddacbe9 222 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
223 goto retry;
224 }
225
226 /* We take additional reference here. It will be put back by shrinker */
227 atomic_set(&huge_zero_refcount, 2);
228 preempt_enable();
4db0c3c2 229 return READ_ONCE(huge_zero_page);
4a6c1297
KS
230}
231
97ae1749 232static void put_huge_zero_page(void)
4a6c1297 233{
97ae1749
KS
234 /*
235 * Counter should never go to zero here. Only shrinker can put
236 * last reference.
237 */
238 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
239}
240
48896466
GC
241static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
242 struct shrink_control *sc)
4a6c1297 243{
48896466
GC
244 /* we can free zero page only if last reference remains */
245 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
246}
97ae1749 247
48896466
GC
248static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
249 struct shrink_control *sc)
250{
97ae1749 251 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
252 struct page *zero_page = xchg(&huge_zero_page, NULL);
253 BUG_ON(zero_page == NULL);
5ddacbe9 254 __free_pages(zero_page, compound_order(zero_page));
48896466 255 return HPAGE_PMD_NR;
97ae1749
KS
256 }
257
258 return 0;
4a6c1297
KS
259}
260
97ae1749 261static struct shrinker huge_zero_page_shrinker = {
48896466
GC
262 .count_objects = shrink_huge_zero_page_count,
263 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
264 .seeks = DEFAULT_SEEKS,
265};
266
71e3aac0 267#ifdef CONFIG_SYSFS
ba76149f 268
71e3aac0
AA
269static ssize_t double_flag_show(struct kobject *kobj,
270 struct kobj_attribute *attr, char *buf,
271 enum transparent_hugepage_flag enabled,
272 enum transparent_hugepage_flag req_madv)
273{
274 if (test_bit(enabled, &transparent_hugepage_flags)) {
275 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
276 return sprintf(buf, "[always] madvise never\n");
277 } else if (test_bit(req_madv, &transparent_hugepage_flags))
278 return sprintf(buf, "always [madvise] never\n");
279 else
280 return sprintf(buf, "always madvise [never]\n");
281}
282static ssize_t double_flag_store(struct kobject *kobj,
283 struct kobj_attribute *attr,
284 const char *buf, size_t count,
285 enum transparent_hugepage_flag enabled,
286 enum transparent_hugepage_flag req_madv)
287{
288 if (!memcmp("always", buf,
289 min(sizeof("always")-1, count))) {
290 set_bit(enabled, &transparent_hugepage_flags);
291 clear_bit(req_madv, &transparent_hugepage_flags);
292 } else if (!memcmp("madvise", buf,
293 min(sizeof("madvise")-1, count))) {
294 clear_bit(enabled, &transparent_hugepage_flags);
295 set_bit(req_madv, &transparent_hugepage_flags);
296 } else if (!memcmp("never", buf,
297 min(sizeof("never")-1, count))) {
298 clear_bit(enabled, &transparent_hugepage_flags);
299 clear_bit(req_madv, &transparent_hugepage_flags);
300 } else
301 return -EINVAL;
302
303 return count;
304}
305
306static ssize_t enabled_show(struct kobject *kobj,
307 struct kobj_attribute *attr, char *buf)
308{
309 return double_flag_show(kobj, attr, buf,
310 TRANSPARENT_HUGEPAGE_FLAG,
311 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
312}
313static ssize_t enabled_store(struct kobject *kobj,
314 struct kobj_attribute *attr,
315 const char *buf, size_t count)
316{
ba76149f
AA
317 ssize_t ret;
318
319 ret = double_flag_store(kobj, attr, buf, count,
320 TRANSPARENT_HUGEPAGE_FLAG,
321 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
322
323 if (ret > 0) {
911891af
XG
324 int err;
325
326 mutex_lock(&khugepaged_mutex);
79553da2 327 err = start_stop_khugepaged();
911891af
XG
328 mutex_unlock(&khugepaged_mutex);
329
ba76149f
AA
330 if (err)
331 ret = err;
332 }
333
334 return ret;
71e3aac0
AA
335}
336static struct kobj_attribute enabled_attr =
337 __ATTR(enabled, 0644, enabled_show, enabled_store);
338
339static ssize_t single_flag_show(struct kobject *kobj,
340 struct kobj_attribute *attr, char *buf,
341 enum transparent_hugepage_flag flag)
342{
e27e6151
BH
343 return sprintf(buf, "%d\n",
344 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 345}
e27e6151 346
71e3aac0
AA
347static ssize_t single_flag_store(struct kobject *kobj,
348 struct kobj_attribute *attr,
349 const char *buf, size_t count,
350 enum transparent_hugepage_flag flag)
351{
e27e6151
BH
352 unsigned long value;
353 int ret;
354
355 ret = kstrtoul(buf, 10, &value);
356 if (ret < 0)
357 return ret;
358 if (value > 1)
359 return -EINVAL;
360
361 if (value)
71e3aac0 362 set_bit(flag, &transparent_hugepage_flags);
e27e6151 363 else
71e3aac0 364 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
365
366 return count;
367}
368
369/*
370 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
371 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
372 * memory just to allocate one more hugepage.
373 */
374static ssize_t defrag_show(struct kobject *kobj,
375 struct kobj_attribute *attr, char *buf)
376{
377 return double_flag_show(kobj, attr, buf,
378 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
379 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
380}
381static ssize_t defrag_store(struct kobject *kobj,
382 struct kobj_attribute *attr,
383 const char *buf, size_t count)
384{
385 return double_flag_store(kobj, attr, buf, count,
386 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
387 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
388}
389static struct kobj_attribute defrag_attr =
390 __ATTR(defrag, 0644, defrag_show, defrag_store);
391
79da5407
KS
392static ssize_t use_zero_page_show(struct kobject *kobj,
393 struct kobj_attribute *attr, char *buf)
394{
395 return single_flag_show(kobj, attr, buf,
396 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
397}
398static ssize_t use_zero_page_store(struct kobject *kobj,
399 struct kobj_attribute *attr, const char *buf, size_t count)
400{
401 return single_flag_store(kobj, attr, buf, count,
402 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
403}
404static struct kobj_attribute use_zero_page_attr =
405 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
406#ifdef CONFIG_DEBUG_VM
407static ssize_t debug_cow_show(struct kobject *kobj,
408 struct kobj_attribute *attr, char *buf)
409{
410 return single_flag_show(kobj, attr, buf,
411 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
412}
413static ssize_t debug_cow_store(struct kobject *kobj,
414 struct kobj_attribute *attr,
415 const char *buf, size_t count)
416{
417 return single_flag_store(kobj, attr, buf, count,
418 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
419}
420static struct kobj_attribute debug_cow_attr =
421 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
422#endif /* CONFIG_DEBUG_VM */
423
424static struct attribute *hugepage_attr[] = {
425 &enabled_attr.attr,
426 &defrag_attr.attr,
79da5407 427 &use_zero_page_attr.attr,
71e3aac0
AA
428#ifdef CONFIG_DEBUG_VM
429 &debug_cow_attr.attr,
430#endif
431 NULL,
432};
433
434static struct attribute_group hugepage_attr_group = {
435 .attrs = hugepage_attr,
ba76149f
AA
436};
437
438static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
439 struct kobj_attribute *attr,
440 char *buf)
441{
442 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
443}
444
445static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
446 struct kobj_attribute *attr,
447 const char *buf, size_t count)
448{
449 unsigned long msecs;
450 int err;
451
3dbb95f7 452 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
453 if (err || msecs > UINT_MAX)
454 return -EINVAL;
455
456 khugepaged_scan_sleep_millisecs = msecs;
457 wake_up_interruptible(&khugepaged_wait);
458
459 return count;
460}
461static struct kobj_attribute scan_sleep_millisecs_attr =
462 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
463 scan_sleep_millisecs_store);
464
465static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
466 struct kobj_attribute *attr,
467 char *buf)
468{
469 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
470}
471
472static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
473 struct kobj_attribute *attr,
474 const char *buf, size_t count)
475{
476 unsigned long msecs;
477 int err;
478
3dbb95f7 479 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
480 if (err || msecs > UINT_MAX)
481 return -EINVAL;
482
483 khugepaged_alloc_sleep_millisecs = msecs;
484 wake_up_interruptible(&khugepaged_wait);
485
486 return count;
487}
488static struct kobj_attribute alloc_sleep_millisecs_attr =
489 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
490 alloc_sleep_millisecs_store);
491
492static ssize_t pages_to_scan_show(struct kobject *kobj,
493 struct kobj_attribute *attr,
494 char *buf)
495{
496 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
497}
498static ssize_t pages_to_scan_store(struct kobject *kobj,
499 struct kobj_attribute *attr,
500 const char *buf, size_t count)
501{
502 int err;
503 unsigned long pages;
504
3dbb95f7 505 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
506 if (err || !pages || pages > UINT_MAX)
507 return -EINVAL;
508
509 khugepaged_pages_to_scan = pages;
510
511 return count;
512}
513static struct kobj_attribute pages_to_scan_attr =
514 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
515 pages_to_scan_store);
516
517static ssize_t pages_collapsed_show(struct kobject *kobj,
518 struct kobj_attribute *attr,
519 char *buf)
520{
521 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
522}
523static struct kobj_attribute pages_collapsed_attr =
524 __ATTR_RO(pages_collapsed);
525
526static ssize_t full_scans_show(struct kobject *kobj,
527 struct kobj_attribute *attr,
528 char *buf)
529{
530 return sprintf(buf, "%u\n", khugepaged_full_scans);
531}
532static struct kobj_attribute full_scans_attr =
533 __ATTR_RO(full_scans);
534
535static ssize_t khugepaged_defrag_show(struct kobject *kobj,
536 struct kobj_attribute *attr, char *buf)
537{
538 return single_flag_show(kobj, attr, buf,
539 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
540}
541static ssize_t khugepaged_defrag_store(struct kobject *kobj,
542 struct kobj_attribute *attr,
543 const char *buf, size_t count)
544{
545 return single_flag_store(kobj, attr, buf, count,
546 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
547}
548static struct kobj_attribute khugepaged_defrag_attr =
549 __ATTR(defrag, 0644, khugepaged_defrag_show,
550 khugepaged_defrag_store);
551
552/*
553 * max_ptes_none controls if khugepaged should collapse hugepages over
554 * any unmapped ptes in turn potentially increasing the memory
555 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
556 * reduce the available free memory in the system as it
557 * runs. Increasing max_ptes_none will instead potentially reduce the
558 * free memory in the system during the khugepaged scan.
559 */
560static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
561 struct kobj_attribute *attr,
562 char *buf)
563{
564 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
565}
566static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
567 struct kobj_attribute *attr,
568 const char *buf, size_t count)
569{
570 int err;
571 unsigned long max_ptes_none;
572
3dbb95f7 573 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
574 if (err || max_ptes_none > HPAGE_PMD_NR-1)
575 return -EINVAL;
576
577 khugepaged_max_ptes_none = max_ptes_none;
578
579 return count;
580}
581static struct kobj_attribute khugepaged_max_ptes_none_attr =
582 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
583 khugepaged_max_ptes_none_store);
584
585static struct attribute *khugepaged_attr[] = {
586 &khugepaged_defrag_attr.attr,
587 &khugepaged_max_ptes_none_attr.attr,
588 &pages_to_scan_attr.attr,
589 &pages_collapsed_attr.attr,
590 &full_scans_attr.attr,
591 &scan_sleep_millisecs_attr.attr,
592 &alloc_sleep_millisecs_attr.attr,
593 NULL,
594};
595
596static struct attribute_group khugepaged_attr_group = {
597 .attrs = khugepaged_attr,
598 .name = "khugepaged",
71e3aac0 599};
71e3aac0 600
569e5590 601static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 602{
71e3aac0
AA
603 int err;
604
569e5590
SL
605 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
606 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 607 pr_err("failed to create transparent hugepage kobject\n");
569e5590 608 return -ENOMEM;
ba76149f
AA
609 }
610
569e5590 611 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 612 if (err) {
ae3a8c1c 613 pr_err("failed to register transparent hugepage group\n");
569e5590 614 goto delete_obj;
ba76149f
AA
615 }
616
569e5590 617 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 618 if (err) {
ae3a8c1c 619 pr_err("failed to register transparent hugepage group\n");
569e5590 620 goto remove_hp_group;
ba76149f 621 }
569e5590
SL
622
623 return 0;
624
625remove_hp_group:
626 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
627delete_obj:
628 kobject_put(*hugepage_kobj);
629 return err;
630}
631
632static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
633{
634 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
635 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
636 kobject_put(hugepage_kobj);
637}
638#else
639static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
640{
641 return 0;
642}
643
644static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
645{
646}
647#endif /* CONFIG_SYSFS */
648
649static int __init hugepage_init(void)
650{
651 int err;
652 struct kobject *hugepage_kobj;
653
654 if (!has_transparent_hugepage()) {
655 transparent_hugepage_flags = 0;
656 return -EINVAL;
657 }
658
659 err = hugepage_init_sysfs(&hugepage_kobj);
660 if (err)
65ebb64f 661 goto err_sysfs;
ba76149f
AA
662
663 err = khugepaged_slab_init();
664 if (err)
65ebb64f 665 goto err_slab;
ba76149f 666
65ebb64f
KS
667 err = register_shrinker(&huge_zero_page_shrinker);
668 if (err)
669 goto err_hzp_shrinker;
97ae1749 670
97562cd2
RR
671 /*
672 * By default disable transparent hugepages on smaller systems,
673 * where the extra memory used could hurt more than TLB overhead
674 * is likely to save. The admin can still enable it through /sys.
675 */
79553da2 676 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 677 transparent_hugepage_flags = 0;
79553da2
KS
678 return 0;
679 }
97562cd2 680
79553da2 681 err = start_stop_khugepaged();
65ebb64f
KS
682 if (err)
683 goto err_khugepaged;
ba76149f 684
569e5590 685 return 0;
65ebb64f
KS
686err_khugepaged:
687 unregister_shrinker(&huge_zero_page_shrinker);
688err_hzp_shrinker:
689 khugepaged_slab_exit();
690err_slab:
569e5590 691 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 692err_sysfs:
ba76149f 693 return err;
71e3aac0 694}
a64fb3cd 695subsys_initcall(hugepage_init);
71e3aac0
AA
696
697static int __init setup_transparent_hugepage(char *str)
698{
699 int ret = 0;
700 if (!str)
701 goto out;
702 if (!strcmp(str, "always")) {
703 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
704 &transparent_hugepage_flags);
705 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
706 &transparent_hugepage_flags);
707 ret = 1;
708 } else if (!strcmp(str, "madvise")) {
709 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
710 &transparent_hugepage_flags);
711 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
712 &transparent_hugepage_flags);
713 ret = 1;
714 } else if (!strcmp(str, "never")) {
715 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
716 &transparent_hugepage_flags);
717 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
718 &transparent_hugepage_flags);
719 ret = 1;
720 }
721out:
722 if (!ret)
ae3a8c1c 723 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
724 return ret;
725}
726__setup("transparent_hugepage=", setup_transparent_hugepage);
727
b32967ff 728pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
729{
730 if (likely(vma->vm_flags & VM_WRITE))
731 pmd = pmd_mkwrite(pmd);
732 return pmd;
733}
734
3122359a 735static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
736{
737 pmd_t entry;
3122359a 738 entry = mk_pmd(page, prot);
b3092b3b
BL
739 entry = pmd_mkhuge(entry);
740 return entry;
741}
742
71e3aac0
AA
743static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
744 struct vm_area_struct *vma,
230c92a8 745 unsigned long address, pmd_t *pmd,
6b251fc9
AA
746 struct page *page, gfp_t gfp,
747 unsigned int flags)
71e3aac0 748{
00501b53 749 struct mem_cgroup *memcg;
71e3aac0 750 pgtable_t pgtable;
c4088ebd 751 spinlock_t *ptl;
230c92a8 752 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 753
309381fe 754 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 755
f627c2f5 756 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
6b251fc9
AA
757 put_page(page);
758 count_vm_event(THP_FAULT_FALLBACK);
759 return VM_FAULT_FALLBACK;
760 }
00501b53 761
71e3aac0 762 pgtable = pte_alloc_one(mm, haddr);
00501b53 763 if (unlikely(!pgtable)) {
f627c2f5 764 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 765 put_page(page);
71e3aac0 766 return VM_FAULT_OOM;
00501b53 767 }
71e3aac0
AA
768
769 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
770 /*
771 * The memory barrier inside __SetPageUptodate makes sure that
772 * clear_huge_page writes become visible before the set_pmd_at()
773 * write.
774 */
71e3aac0
AA
775 __SetPageUptodate(page);
776
c4088ebd 777 ptl = pmd_lock(mm, pmd);
71e3aac0 778 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 779 spin_unlock(ptl);
f627c2f5 780 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0
AA
781 put_page(page);
782 pte_free(mm, pgtable);
783 } else {
784 pmd_t entry;
6b251fc9
AA
785
786 /* Deliver the page fault to userland */
787 if (userfaultfd_missing(vma)) {
788 int ret;
789
790 spin_unlock(ptl);
f627c2f5 791 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9
AA
792 put_page(page);
793 pte_free(mm, pgtable);
230c92a8 794 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
795 VM_UFFD_MISSING);
796 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
797 return ret;
798 }
799
3122359a
KS
800 entry = mk_huge_pmd(page, vma->vm_page_prot);
801 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 802 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 803 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 804 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 805 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 806 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 807 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 808 atomic_long_inc(&mm->nr_ptes);
c4088ebd 809 spin_unlock(ptl);
6b251fc9 810 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
811 }
812
aa2e878e 813 return 0;
71e3aac0
AA
814}
815
cc5d462f 816static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 817{
71baba4b 818 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
0bbbc0b3
AA
819}
820
c4088ebd 821/* Caller must hold page table lock. */
d295e341 822static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 823 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 824 struct page *zero_page)
fc9fe822
KS
825{
826 pmd_t entry;
7c414164
AM
827 if (!pmd_none(*pmd))
828 return false;
5918d10a 829 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 830 entry = pmd_mkhuge(entry);
6b0b50b0 831 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 832 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 833 atomic_long_inc(&mm->nr_ptes);
7c414164 834 return true;
fc9fe822
KS
835}
836
71e3aac0
AA
837int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
838 unsigned long address, pmd_t *pmd,
839 unsigned int flags)
840{
077fcf11 841 gfp_t gfp;
71e3aac0
AA
842 struct page *page;
843 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 844
128ec037 845 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 846 return VM_FAULT_FALLBACK;
7479df6d
KS
847 if (vma->vm_flags & VM_LOCKED)
848 return VM_FAULT_FALLBACK;
128ec037
KS
849 if (unlikely(anon_vma_prepare(vma)))
850 return VM_FAULT_OOM;
6d50e60c 851 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 852 return VM_FAULT_OOM;
593befa6 853 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 854 transparent_hugepage_use_zero_page()) {
c4088ebd 855 spinlock_t *ptl;
128ec037
KS
856 pgtable_t pgtable;
857 struct page *zero_page;
858 bool set;
6b251fc9 859 int ret;
128ec037
KS
860 pgtable = pte_alloc_one(mm, haddr);
861 if (unlikely(!pgtable))
ba76149f 862 return VM_FAULT_OOM;
128ec037
KS
863 zero_page = get_huge_zero_page();
864 if (unlikely(!zero_page)) {
865 pte_free(mm, pgtable);
81ab4201 866 count_vm_event(THP_FAULT_FALLBACK);
c0292554 867 return VM_FAULT_FALLBACK;
b9bbfbe3 868 }
c4088ebd 869 ptl = pmd_lock(mm, pmd);
6b251fc9
AA
870 ret = 0;
871 set = false;
872 if (pmd_none(*pmd)) {
873 if (userfaultfd_missing(vma)) {
874 spin_unlock(ptl);
230c92a8 875 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
876 VM_UFFD_MISSING);
877 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
878 } else {
879 set_huge_zero_page(pgtable, mm, vma,
880 haddr, pmd,
881 zero_page);
882 spin_unlock(ptl);
883 set = true;
884 }
885 } else
886 spin_unlock(ptl);
128ec037
KS
887 if (!set) {
888 pte_free(mm, pgtable);
889 put_huge_zero_page();
edad9d2c 890 }
6b251fc9 891 return ret;
71e3aac0 892 }
077fcf11
AK
893 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
894 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
895 if (unlikely(!page)) {
896 count_vm_event(THP_FAULT_FALLBACK);
c0292554 897 return VM_FAULT_FALLBACK;
128ec037 898 }
230c92a8
AA
899 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
900 flags);
71e3aac0
AA
901}
902
ae18d6dc 903static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
5cad465d
MW
904 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
905{
906 struct mm_struct *mm = vma->vm_mm;
907 pmd_t entry;
908 spinlock_t *ptl;
909
910 ptl = pmd_lock(mm, pmd);
911 if (pmd_none(*pmd)) {
912 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
913 if (write) {
914 entry = pmd_mkyoung(pmd_mkdirty(entry));
915 entry = maybe_pmd_mkwrite(entry, vma);
916 }
917 set_pmd_at(mm, addr, pmd, entry);
918 update_mmu_cache_pmd(vma, addr, pmd);
919 }
920 spin_unlock(ptl);
5cad465d
MW
921}
922
923int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
924 pmd_t *pmd, unsigned long pfn, bool write)
925{
926 pgprot_t pgprot = vma->vm_page_prot;
927 /*
928 * If we had pmd_special, we could avoid all these restrictions,
929 * but we need to be consistent with PTEs and architectures that
930 * can't support a 'special' bit.
931 */
932 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
933 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
934 (VM_PFNMAP|VM_MIXEDMAP));
935 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
936 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
937
938 if (addr < vma->vm_start || addr >= vma->vm_end)
939 return VM_FAULT_SIGBUS;
940 if (track_pfn_insert(vma, &pgprot, pfn))
941 return VM_FAULT_SIGBUS;
ae18d6dc
MW
942 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
943 return VM_FAULT_NOPAGE;
5cad465d
MW
944}
945
71e3aac0
AA
946int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
947 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
948 struct vm_area_struct *vma)
949{
c4088ebd 950 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
951 struct page *src_page;
952 pmd_t pmd;
953 pgtable_t pgtable;
954 int ret;
955
956 ret = -ENOMEM;
957 pgtable = pte_alloc_one(dst_mm, addr);
958 if (unlikely(!pgtable))
959 goto out;
960
c4088ebd
KS
961 dst_ptl = pmd_lock(dst_mm, dst_pmd);
962 src_ptl = pmd_lockptr(src_mm, src_pmd);
963 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
964
965 ret = -EAGAIN;
966 pmd = *src_pmd;
967 if (unlikely(!pmd_trans_huge(pmd))) {
968 pte_free(dst_mm, pgtable);
969 goto out_unlock;
970 }
fc9fe822 971 /*
c4088ebd 972 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
973 * under splitting since we don't split the page itself, only pmd to
974 * a page table.
975 */
976 if (is_huge_zero_pmd(pmd)) {
5918d10a 977 struct page *zero_page;
97ae1749
KS
978 /*
979 * get_huge_zero_page() will never allocate a new page here,
980 * since we already have a zero page to copy. It just takes a
981 * reference.
982 */
5918d10a 983 zero_page = get_huge_zero_page();
6b251fc9 984 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 985 zero_page);
fc9fe822
KS
986 ret = 0;
987 goto out_unlock;
988 }
de466bd6 989
71e3aac0 990 src_page = pmd_page(pmd);
309381fe 991 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
71e3aac0 992 get_page(src_page);
53f9263b 993 page_dup_rmap(src_page, true);
71e3aac0
AA
994 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
995
996 pmdp_set_wrprotect(src_mm, addr, src_pmd);
997 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 998 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 999 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e1f56c89 1000 atomic_long_inc(&dst_mm->nr_ptes);
71e3aac0
AA
1001
1002 ret = 0;
1003out_unlock:
c4088ebd
KS
1004 spin_unlock(src_ptl);
1005 spin_unlock(dst_ptl);
71e3aac0
AA
1006out:
1007 return ret;
1008}
1009
a1dd450b
WD
1010void huge_pmd_set_accessed(struct mm_struct *mm,
1011 struct vm_area_struct *vma,
1012 unsigned long address,
1013 pmd_t *pmd, pmd_t orig_pmd,
1014 int dirty)
1015{
c4088ebd 1016 spinlock_t *ptl;
a1dd450b
WD
1017 pmd_t entry;
1018 unsigned long haddr;
1019
c4088ebd 1020 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
1021 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1022 goto unlock;
1023
1024 entry = pmd_mkyoung(orig_pmd);
1025 haddr = address & HPAGE_PMD_MASK;
1026 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1027 update_mmu_cache_pmd(vma, address, pmd);
1028
1029unlock:
c4088ebd 1030 spin_unlock(ptl);
a1dd450b
WD
1031}
1032
71e3aac0
AA
1033static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1034 struct vm_area_struct *vma,
1035 unsigned long address,
1036 pmd_t *pmd, pmd_t orig_pmd,
1037 struct page *page,
1038 unsigned long haddr)
1039{
00501b53 1040 struct mem_cgroup *memcg;
c4088ebd 1041 spinlock_t *ptl;
71e3aac0
AA
1042 pgtable_t pgtable;
1043 pmd_t _pmd;
1044 int ret = 0, i;
1045 struct page **pages;
2ec74c3e
SG
1046 unsigned long mmun_start; /* For mmu_notifiers */
1047 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1048
1049 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1050 GFP_KERNEL);
1051 if (unlikely(!pages)) {
1052 ret |= VM_FAULT_OOM;
1053 goto out;
1054 }
1055
1056 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1057 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1058 __GFP_OTHER_NODE,
19ee151e 1059 vma, address, page_to_nid(page));
b9bbfbe3 1060 if (unlikely(!pages[i] ||
00501b53 1061 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
f627c2f5 1062 &memcg, false))) {
b9bbfbe3 1063 if (pages[i])
71e3aac0 1064 put_page(pages[i]);
b9bbfbe3 1065 while (--i >= 0) {
00501b53
JW
1066 memcg = (void *)page_private(pages[i]);
1067 set_page_private(pages[i], 0);
f627c2f5
KS
1068 mem_cgroup_cancel_charge(pages[i], memcg,
1069 false);
b9bbfbe3
AA
1070 put_page(pages[i]);
1071 }
71e3aac0
AA
1072 kfree(pages);
1073 ret |= VM_FAULT_OOM;
1074 goto out;
1075 }
00501b53 1076 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1077 }
1078
1079 for (i = 0; i < HPAGE_PMD_NR; i++) {
1080 copy_user_highpage(pages[i], page + i,
0089e485 1081 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1082 __SetPageUptodate(pages[i]);
1083 cond_resched();
1084 }
1085
2ec74c3e
SG
1086 mmun_start = haddr;
1087 mmun_end = haddr + HPAGE_PMD_SIZE;
1088 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1089
c4088ebd 1090 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1091 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1092 goto out_free_pages;
309381fe 1093 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1094
8809aa2d 1095 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1096 /* leave pmd empty until pte is filled */
1097
6b0b50b0 1098 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1099 pmd_populate(mm, &_pmd, pgtable);
1100
1101 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1102 pte_t *pte, entry;
1103 entry = mk_pte(pages[i], vma->vm_page_prot);
1104 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1105 memcg = (void *)page_private(pages[i]);
1106 set_page_private(pages[i], 0);
d281ee61 1107 page_add_new_anon_rmap(pages[i], vma, haddr, false);
f627c2f5 1108 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1109 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1110 pte = pte_offset_map(&_pmd, haddr);
1111 VM_BUG_ON(!pte_none(*pte));
1112 set_pte_at(mm, haddr, pte, entry);
1113 pte_unmap(pte);
1114 }
1115 kfree(pages);
1116
71e3aac0
AA
1117 smp_wmb(); /* make pte visible before pmd */
1118 pmd_populate(mm, pmd, pgtable);
d281ee61 1119 page_remove_rmap(page, true);
c4088ebd 1120 spin_unlock(ptl);
71e3aac0 1121
2ec74c3e
SG
1122 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1123
71e3aac0
AA
1124 ret |= VM_FAULT_WRITE;
1125 put_page(page);
1126
1127out:
1128 return ret;
1129
1130out_free_pages:
c4088ebd 1131 spin_unlock(ptl);
2ec74c3e 1132 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1133 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1134 memcg = (void *)page_private(pages[i]);
1135 set_page_private(pages[i], 0);
f627c2f5 1136 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1137 put_page(pages[i]);
b9bbfbe3 1138 }
71e3aac0
AA
1139 kfree(pages);
1140 goto out;
1141}
1142
1143int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1144 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1145{
c4088ebd 1146 spinlock_t *ptl;
71e3aac0 1147 int ret = 0;
93b4796d 1148 struct page *page = NULL, *new_page;
00501b53 1149 struct mem_cgroup *memcg;
71e3aac0 1150 unsigned long haddr;
2ec74c3e
SG
1151 unsigned long mmun_start; /* For mmu_notifiers */
1152 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1153 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1154
c4088ebd 1155 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1156 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1157 haddr = address & HPAGE_PMD_MASK;
1158 if (is_huge_zero_pmd(orig_pmd))
1159 goto alloc;
c4088ebd 1160 spin_lock(ptl);
71e3aac0
AA
1161 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1162 goto out_unlock;
1163
1164 page = pmd_page(orig_pmd);
309381fe 1165 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1166 /*
1167 * We can only reuse the page if nobody else maps the huge page or it's
1168 * part. We can do it by checking page_mapcount() on each sub-page, but
1169 * it's expensive.
1170 * The cheaper way is to check page_count() to be equal 1: every
1171 * mapcount takes page reference reference, so this way we can
1172 * guarantee, that the PMD is the only mapping.
1173 * This can give false negative if somebody pinned the page, but that's
1174 * fine.
1175 */
1176 if (page_mapcount(page) == 1 && page_count(page) == 1) {
71e3aac0
AA
1177 pmd_t entry;
1178 entry = pmd_mkyoung(orig_pmd);
1179 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1180 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1181 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1182 ret |= VM_FAULT_WRITE;
1183 goto out_unlock;
1184 }
ddc58f27 1185 get_page(page);
c4088ebd 1186 spin_unlock(ptl);
93b4796d 1187alloc:
71e3aac0 1188 if (transparent_hugepage_enabled(vma) &&
077fcf11 1189 !transparent_hugepage_debug_cow()) {
3b363692
MH
1190 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1191 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1192 } else
71e3aac0
AA
1193 new_page = NULL;
1194
1195 if (unlikely(!new_page)) {
eecc1e42 1196 if (!page) {
78ddc534 1197 split_huge_pmd(vma, pmd, address);
e9b71ca9 1198 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1199 } else {
1200 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1201 pmd, orig_pmd, page, haddr);
9845cbbd 1202 if (ret & VM_FAULT_OOM) {
78ddc534 1203 split_huge_pmd(vma, pmd, address);
9845cbbd
KS
1204 ret |= VM_FAULT_FALLBACK;
1205 }
ddc58f27 1206 put_page(page);
93b4796d 1207 }
17766dde 1208 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1209 goto out;
1210 }
1211
f627c2f5
KS
1212 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1213 true))) {
b9bbfbe3 1214 put_page(new_page);
93b4796d 1215 if (page) {
78ddc534 1216 split_huge_pmd(vma, pmd, address);
ddc58f27 1217 put_page(page);
9845cbbd 1218 } else
78ddc534 1219 split_huge_pmd(vma, pmd, address);
9845cbbd 1220 ret |= VM_FAULT_FALLBACK;
17766dde 1221 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1222 goto out;
1223 }
1224
17766dde
DR
1225 count_vm_event(THP_FAULT_ALLOC);
1226
eecc1e42 1227 if (!page)
93b4796d
KS
1228 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1229 else
1230 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1231 __SetPageUptodate(new_page);
1232
2ec74c3e
SG
1233 mmun_start = haddr;
1234 mmun_end = haddr + HPAGE_PMD_SIZE;
1235 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1236
c4088ebd 1237 spin_lock(ptl);
93b4796d 1238 if (page)
ddc58f27 1239 put_page(page);
b9bbfbe3 1240 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1241 spin_unlock(ptl);
f627c2f5 1242 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1243 put_page(new_page);
2ec74c3e 1244 goto out_mn;
b9bbfbe3 1245 } else {
71e3aac0 1246 pmd_t entry;
3122359a
KS
1247 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1248 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
8809aa2d 1249 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
d281ee61 1250 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1251 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1252 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1253 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1254 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1255 if (!page) {
93b4796d 1256 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1257 put_huge_zero_page();
1258 } else {
309381fe 1259 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1260 page_remove_rmap(page, true);
93b4796d
KS
1261 put_page(page);
1262 }
71e3aac0
AA
1263 ret |= VM_FAULT_WRITE;
1264 }
c4088ebd 1265 spin_unlock(ptl);
2ec74c3e
SG
1266out_mn:
1267 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1268out:
1269 return ret;
2ec74c3e 1270out_unlock:
c4088ebd 1271 spin_unlock(ptl);
2ec74c3e 1272 return ret;
71e3aac0
AA
1273}
1274
b676b293 1275struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1276 unsigned long addr,
1277 pmd_t *pmd,
1278 unsigned int flags)
1279{
b676b293 1280 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1281 struct page *page = NULL;
1282
c4088ebd 1283 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1284
1285 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1286 goto out;
1287
85facf25
KS
1288 /* Avoid dumping huge zero page */
1289 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1290 return ERR_PTR(-EFAULT);
1291
2b4847e7 1292 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1293 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1294 goto out;
1295
71e3aac0 1296 page = pmd_page(*pmd);
309381fe 1297 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0
AA
1298 if (flags & FOLL_TOUCH) {
1299 pmd_t _pmd;
1300 /*
1301 * We should set the dirty bit only for FOLL_WRITE but
1302 * for now the dirty bit in the pmd is meaningless.
1303 * And if the dirty bit will become meaningful and
1304 * we'll only set it with FOLL_WRITE, an atomic
1305 * set_bit will be required on the pmd to set the
1306 * young bit, instead of the current set_pmd_at.
1307 */
1308 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1309 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1310 pmd, _pmd, 1))
1311 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1312 }
de60f5f1 1313 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
b676b293
DR
1314 if (page->mapping && trylock_page(page)) {
1315 lru_add_drain();
1316 if (page->mapping)
1317 mlock_vma_page(page);
1318 unlock_page(page);
1319 }
1320 }
71e3aac0 1321 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1322 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1323 if (flags & FOLL_GET)
ddc58f27 1324 get_page(page);
71e3aac0
AA
1325
1326out:
1327 return page;
1328}
1329
d10e63f2 1330/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1331int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1332 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1333{
c4088ebd 1334 spinlock_t *ptl;
b8916634 1335 struct anon_vma *anon_vma = NULL;
b32967ff 1336 struct page *page;
d10e63f2 1337 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1338 int page_nid = -1, this_nid = numa_node_id();
90572890 1339 int target_nid, last_cpupid = -1;
8191acbd
MG
1340 bool page_locked;
1341 bool migrated = false;
b191f9b1 1342 bool was_writable;
6688cc05 1343 int flags = 0;
d10e63f2 1344
c0e7cad9
MG
1345 /* A PROT_NONE fault should not end up here */
1346 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1347
c4088ebd 1348 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1349 if (unlikely(!pmd_same(pmd, *pmdp)))
1350 goto out_unlock;
1351
de466bd6
MG
1352 /*
1353 * If there are potential migrations, wait for completion and retry
1354 * without disrupting NUMA hinting information. Do not relock and
1355 * check_same as the page may no longer be mapped.
1356 */
1357 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1358 page = pmd_page(*pmdp);
de466bd6 1359 spin_unlock(ptl);
5d833062 1360 wait_on_page_locked(page);
de466bd6
MG
1361 goto out;
1362 }
1363
d10e63f2 1364 page = pmd_page(pmd);
a1a46184 1365 BUG_ON(is_huge_zero_page(page));
8191acbd 1366 page_nid = page_to_nid(page);
90572890 1367 last_cpupid = page_cpupid_last(page);
03c5a6e1 1368 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1369 if (page_nid == this_nid) {
03c5a6e1 1370 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1371 flags |= TNF_FAULT_LOCAL;
1372 }
4daae3b4 1373
bea66fbd
MG
1374 /* See similar comment in do_numa_page for explanation */
1375 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1376 flags |= TNF_NO_GROUP;
1377
ff9042b1
MG
1378 /*
1379 * Acquire the page lock to serialise THP migrations but avoid dropping
1380 * page_table_lock if at all possible
1381 */
b8916634
MG
1382 page_locked = trylock_page(page);
1383 target_nid = mpol_misplaced(page, vma, haddr);
1384 if (target_nid == -1) {
1385 /* If the page was locked, there are no parallel migrations */
a54a407f 1386 if (page_locked)
b8916634 1387 goto clear_pmdnuma;
2b4847e7 1388 }
4daae3b4 1389
de466bd6 1390 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1391 if (!page_locked) {
c4088ebd 1392 spin_unlock(ptl);
b8916634 1393 wait_on_page_locked(page);
a54a407f 1394 page_nid = -1;
b8916634
MG
1395 goto out;
1396 }
1397
2b4847e7
MG
1398 /*
1399 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1400 * to serialises splits
1401 */
b8916634 1402 get_page(page);
c4088ebd 1403 spin_unlock(ptl);
b8916634 1404 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1405
c69307d5 1406 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1407 spin_lock(ptl);
b32967ff
MG
1408 if (unlikely(!pmd_same(pmd, *pmdp))) {
1409 unlock_page(page);
1410 put_page(page);
a54a407f 1411 page_nid = -1;
4daae3b4 1412 goto out_unlock;
b32967ff 1413 }
ff9042b1 1414
c3a489ca
MG
1415 /* Bail if we fail to protect against THP splits for any reason */
1416 if (unlikely(!anon_vma)) {
1417 put_page(page);
1418 page_nid = -1;
1419 goto clear_pmdnuma;
1420 }
1421
a54a407f
MG
1422 /*
1423 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1424 * and access rights restored.
a54a407f 1425 */
c4088ebd 1426 spin_unlock(ptl);
b32967ff 1427 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1428 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1429 if (migrated) {
1430 flags |= TNF_MIGRATED;
8191acbd 1431 page_nid = target_nid;
074c2381
MG
1432 } else
1433 flags |= TNF_MIGRATE_FAIL;
b32967ff 1434
8191acbd 1435 goto out;
b32967ff 1436clear_pmdnuma:
a54a407f 1437 BUG_ON(!PageLocked(page));
b191f9b1 1438 was_writable = pmd_write(pmd);
4d942466 1439 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1440 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1441 if (was_writable)
1442 pmd = pmd_mkwrite(pmd);
d10e63f2 1443 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1444 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1445 unlock_page(page);
d10e63f2 1446out_unlock:
c4088ebd 1447 spin_unlock(ptl);
b8916634
MG
1448
1449out:
1450 if (anon_vma)
1451 page_unlock_anon_vma_read(anon_vma);
1452
8191acbd 1453 if (page_nid != -1)
6688cc05 1454 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1455
d10e63f2
MG
1456 return 0;
1457}
1458
71e3aac0 1459int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1460 pmd_t *pmd, unsigned long addr)
71e3aac0 1461{
da146769 1462 pmd_t orig_pmd;
bf929152 1463 spinlock_t *ptl;
71e3aac0 1464
4b471e88 1465 if (!__pmd_trans_huge_lock(pmd, vma, &ptl))
da146769
KS
1466 return 0;
1467 /*
1468 * For architectures like ppc64 we look at deposited pgtable
1469 * when calling pmdp_huge_get_and_clear. So do the
1470 * pgtable_trans_huge_withdraw after finishing pmdp related
1471 * operations.
1472 */
1473 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1474 tlb->fullmm);
1475 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1476 if (vma_is_dax(vma)) {
1477 spin_unlock(ptl);
1478 if (is_huge_zero_pmd(orig_pmd))
97ae1749 1479 put_huge_zero_page();
da146769
KS
1480 } else if (is_huge_zero_pmd(orig_pmd)) {
1481 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1482 atomic_long_dec(&tlb->mm->nr_ptes);
1483 spin_unlock(ptl);
1484 put_huge_zero_page();
1485 } else {
1486 struct page *page = pmd_page(orig_pmd);
d281ee61 1487 page_remove_rmap(page, true);
da146769
KS
1488 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1489 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1490 VM_BUG_ON_PAGE(!PageHead(page), page);
1491 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1492 atomic_long_dec(&tlb->mm->nr_ptes);
1493 spin_unlock(ptl);
1494 tlb_remove_page(tlb, page);
025c5b24 1495 }
da146769 1496 return 1;
71e3aac0
AA
1497}
1498
4b471e88 1499bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
37a1c49a
AA
1500 unsigned long old_addr,
1501 unsigned long new_addr, unsigned long old_end,
1502 pmd_t *old_pmd, pmd_t *new_pmd)
1503{
bf929152 1504 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1505 pmd_t pmd;
1506
1507 struct mm_struct *mm = vma->vm_mm;
1508
1509 if ((old_addr & ~HPAGE_PMD_MASK) ||
1510 (new_addr & ~HPAGE_PMD_MASK) ||
1511 old_end - old_addr < HPAGE_PMD_SIZE ||
1512 (new_vma->vm_flags & VM_NOHUGEPAGE))
4b471e88 1513 return false;
37a1c49a
AA
1514
1515 /*
1516 * The destination pmd shouldn't be established, free_pgtables()
1517 * should have release it.
1518 */
1519 if (WARN_ON(!pmd_none(*new_pmd))) {
1520 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1521 return false;
37a1c49a
AA
1522 }
1523
bf929152
KS
1524 /*
1525 * We don't have to worry about the ordering of src and dst
1526 * ptlocks because exclusive mmap_sem prevents deadlock.
1527 */
4b471e88 1528 if (__pmd_trans_huge_lock(old_pmd, vma, &old_ptl)) {
bf929152
KS
1529 new_ptl = pmd_lockptr(mm, new_pmd);
1530 if (new_ptl != old_ptl)
1531 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1532 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1533 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1534
b3084f4d
AK
1535 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1536 pgtable_t pgtable;
3592806c
KS
1537 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1538 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1539 }
b3084f4d
AK
1540 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1541 if (new_ptl != old_ptl)
1542 spin_unlock(new_ptl);
bf929152 1543 spin_unlock(old_ptl);
4b471e88 1544 return true;
37a1c49a 1545 }
4b471e88 1546 return false;
37a1c49a
AA
1547}
1548
f123d74a
MG
1549/*
1550 * Returns
1551 * - 0 if PMD could not be locked
1552 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1553 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1554 */
cd7548ab 1555int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1556 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1557{
1558 struct mm_struct *mm = vma->vm_mm;
bf929152 1559 spinlock_t *ptl;
cd7548ab
JW
1560 int ret = 0;
1561
4b471e88 1562 if (__pmd_trans_huge_lock(pmd, vma, &ptl)) {
025c5b24 1563 pmd_t entry;
b191f9b1 1564 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1565 ret = 1;
e944fd67
MG
1566
1567 /*
1568 * Avoid trapping faults against the zero page. The read-only
1569 * data is likely to be read-cached on the local CPU and
1570 * local/remote hits to the zero page are not interesting.
1571 */
1572 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1573 spin_unlock(ptl);
ba68bc01 1574 return ret;
e944fd67
MG
1575 }
1576
10c1045f 1577 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1578 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1579 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1580 if (preserve_write)
1581 entry = pmd_mkwrite(entry);
10c1045f
MG
1582 ret = HPAGE_PMD_NR;
1583 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1584 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1585 }
bf929152 1586 spin_unlock(ptl);
025c5b24
NH
1587 }
1588
1589 return ret;
1590}
1591
1592/*
4b471e88 1593 * Returns true if a given pmd maps a thp, false otherwise.
025c5b24 1594 *
4b471e88
KS
1595 * Note that if it returns true, this routine returns without unlocking page
1596 * table lock. So callers must unlock it.
025c5b24 1597 */
4b471e88 1598bool __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
bf929152 1599 spinlock_t **ptl)
025c5b24 1600{
bf929152 1601 *ptl = pmd_lock(vma->vm_mm, pmd);
4b471e88
KS
1602 if (likely(pmd_trans_huge(*pmd)))
1603 return true;
bf929152 1604 spin_unlock(*ptl);
4b471e88 1605 return false;
cd7548ab
JW
1606}
1607
117b0791
KS
1608/*
1609 * This function returns whether a given @page is mapped onto the @address
1610 * in the virtual space of @mm.
1611 *
1612 * When it's true, this function returns *pmd with holding the page table lock
1613 * and passing it back to the caller via @ptl.
1614 * If it's false, returns NULL without holding the page table lock.
1615 */
71e3aac0
AA
1616pmd_t *page_check_address_pmd(struct page *page,
1617 struct mm_struct *mm,
1618 unsigned long address,
117b0791 1619 spinlock_t **ptl)
71e3aac0 1620{
b5a8cad3
KS
1621 pgd_t *pgd;
1622 pud_t *pud;
117b0791 1623 pmd_t *pmd;
71e3aac0
AA
1624
1625 if (address & ~HPAGE_PMD_MASK)
117b0791 1626 return NULL;
71e3aac0 1627
b5a8cad3
KS
1628 pgd = pgd_offset(mm, address);
1629 if (!pgd_present(*pgd))
117b0791 1630 return NULL;
b5a8cad3
KS
1631 pud = pud_offset(pgd, address);
1632 if (!pud_present(*pud))
1633 return NULL;
1634 pmd = pmd_offset(pud, address);
1635
117b0791 1636 *ptl = pmd_lock(mm, pmd);
b5a8cad3 1637 if (!pmd_present(*pmd))
117b0791 1638 goto unlock;
71e3aac0 1639 if (pmd_page(*pmd) != page)
117b0791 1640 goto unlock;
4b471e88 1641 if (pmd_trans_huge(*pmd))
117b0791 1642 return pmd;
117b0791
KS
1643unlock:
1644 spin_unlock(*ptl);
1645 return NULL;
71e3aac0
AA
1646}
1647
9050d7eb 1648#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1649
60ab3244
AA
1650int hugepage_madvise(struct vm_area_struct *vma,
1651 unsigned long *vm_flags, int advice)
0af4e98b 1652{
a664b2d8
AA
1653 switch (advice) {
1654 case MADV_HUGEPAGE:
1e1836e8
AT
1655#ifdef CONFIG_S390
1656 /*
1657 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1658 * can't handle this properly after s390_enable_sie, so we simply
1659 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1660 */
1661 if (mm_has_pgste(vma->vm_mm))
1662 return 0;
1663#endif
a664b2d8
AA
1664 /*
1665 * Be somewhat over-protective like KSM for now!
1666 */
1a763615 1667 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1668 return -EINVAL;
1669 *vm_flags &= ~VM_NOHUGEPAGE;
1670 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1671 /*
1672 * If the vma become good for khugepaged to scan,
1673 * register it here without waiting a page fault that
1674 * may not happen any time soon.
1675 */
6d50e60c 1676 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1677 return -ENOMEM;
a664b2d8
AA
1678 break;
1679 case MADV_NOHUGEPAGE:
1680 /*
1681 * Be somewhat over-protective like KSM for now!
1682 */
1a763615 1683 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1684 return -EINVAL;
1685 *vm_flags &= ~VM_HUGEPAGE;
1686 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1687 /*
1688 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1689 * this vma even if we leave the mm registered in khugepaged if
1690 * it got registered before VM_NOHUGEPAGE was set.
1691 */
a664b2d8
AA
1692 break;
1693 }
0af4e98b
AA
1694
1695 return 0;
1696}
1697
ba76149f
AA
1698static int __init khugepaged_slab_init(void)
1699{
1700 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1701 sizeof(struct mm_slot),
1702 __alignof__(struct mm_slot), 0, NULL);
1703 if (!mm_slot_cache)
1704 return -ENOMEM;
1705
1706 return 0;
1707}
1708
65ebb64f
KS
1709static void __init khugepaged_slab_exit(void)
1710{
1711 kmem_cache_destroy(mm_slot_cache);
1712}
1713
ba76149f
AA
1714static inline struct mm_slot *alloc_mm_slot(void)
1715{
1716 if (!mm_slot_cache) /* initialization failed */
1717 return NULL;
1718 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1719}
1720
1721static inline void free_mm_slot(struct mm_slot *mm_slot)
1722{
1723 kmem_cache_free(mm_slot_cache, mm_slot);
1724}
1725
ba76149f
AA
1726static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1727{
1728 struct mm_slot *mm_slot;
ba76149f 1729
b67bfe0d 1730 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1731 if (mm == mm_slot->mm)
1732 return mm_slot;
43b5fbbd 1733
ba76149f
AA
1734 return NULL;
1735}
1736
1737static void insert_to_mm_slots_hash(struct mm_struct *mm,
1738 struct mm_slot *mm_slot)
1739{
ba76149f 1740 mm_slot->mm = mm;
43b5fbbd 1741 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
1742}
1743
1744static inline int khugepaged_test_exit(struct mm_struct *mm)
1745{
1746 return atomic_read(&mm->mm_users) == 0;
1747}
1748
1749int __khugepaged_enter(struct mm_struct *mm)
1750{
1751 struct mm_slot *mm_slot;
1752 int wakeup;
1753
1754 mm_slot = alloc_mm_slot();
1755 if (!mm_slot)
1756 return -ENOMEM;
1757
1758 /* __khugepaged_exit() must not run from under us */
96dad67f 1759 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
1760 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1761 free_mm_slot(mm_slot);
1762 return 0;
1763 }
1764
1765 spin_lock(&khugepaged_mm_lock);
1766 insert_to_mm_slots_hash(mm, mm_slot);
1767 /*
1768 * Insert just behind the scanning cursor, to let the area settle
1769 * down a little.
1770 */
1771 wakeup = list_empty(&khugepaged_scan.mm_head);
1772 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1773 spin_unlock(&khugepaged_mm_lock);
1774
1775 atomic_inc(&mm->mm_count);
1776 if (wakeup)
1777 wake_up_interruptible(&khugepaged_wait);
1778
1779 return 0;
1780}
1781
6d50e60c
DR
1782int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1783 unsigned long vm_flags)
ba76149f
AA
1784{
1785 unsigned long hstart, hend;
1786 if (!vma->anon_vma)
1787 /*
1788 * Not yet faulted in so we will register later in the
1789 * page fault if needed.
1790 */
1791 return 0;
78f11a25 1792 if (vma->vm_ops)
ba76149f
AA
1793 /* khugepaged not yet working on file or special mappings */
1794 return 0;
6d50e60c 1795 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
1796 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1797 hend = vma->vm_end & HPAGE_PMD_MASK;
1798 if (hstart < hend)
6d50e60c 1799 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
1800 return 0;
1801}
1802
1803void __khugepaged_exit(struct mm_struct *mm)
1804{
1805 struct mm_slot *mm_slot;
1806 int free = 0;
1807
1808 spin_lock(&khugepaged_mm_lock);
1809 mm_slot = get_mm_slot(mm);
1810 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 1811 hash_del(&mm_slot->hash);
ba76149f
AA
1812 list_del(&mm_slot->mm_node);
1813 free = 1;
1814 }
d788e80a 1815 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1816
1817 if (free) {
ba76149f
AA
1818 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1819 free_mm_slot(mm_slot);
1820 mmdrop(mm);
1821 } else if (mm_slot) {
ba76149f
AA
1822 /*
1823 * This is required to serialize against
1824 * khugepaged_test_exit() (which is guaranteed to run
1825 * under mmap sem read mode). Stop here (after we
1826 * return all pagetables will be destroyed) until
1827 * khugepaged has finished working on the pagetables
1828 * under the mmap_sem.
1829 */
1830 down_write(&mm->mmap_sem);
1831 up_write(&mm->mmap_sem);
d788e80a 1832 }
ba76149f
AA
1833}
1834
1835static void release_pte_page(struct page *page)
1836{
1837 /* 0 stands for page_is_file_cache(page) == false */
1838 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1839 unlock_page(page);
1840 putback_lru_page(page);
1841}
1842
1843static void release_pte_pages(pte_t *pte, pte_t *_pte)
1844{
1845 while (--_pte >= pte) {
1846 pte_t pteval = *_pte;
ca0984ca 1847 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
1848 release_pte_page(pte_page(pteval));
1849 }
1850}
1851
ba76149f
AA
1852static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1853 unsigned long address,
1854 pte_t *pte)
1855{
7d2eba05 1856 struct page *page = NULL;
ba76149f 1857 pte_t *_pte;
7d2eba05 1858 int none_or_zero = 0, result = 0;
10359213 1859 bool referenced = false, writable = false;
7d2eba05 1860
ba76149f
AA
1861 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1862 _pte++, address += PAGE_SIZE) {
1863 pte_t pteval = *_pte;
47aee4d8
MK
1864 if (pte_none(pteval) || (pte_present(pteval) &&
1865 is_zero_pfn(pte_pfn(pteval)))) {
c1294d05 1866 if (!userfaultfd_armed(vma) &&
7d2eba05 1867 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 1868 continue;
7d2eba05
EA
1869 } else {
1870 result = SCAN_EXCEED_NONE_PTE;
ba76149f 1871 goto out;
7d2eba05 1872 }
ba76149f 1873 }
7d2eba05
EA
1874 if (!pte_present(pteval)) {
1875 result = SCAN_PTE_NON_PRESENT;
ba76149f 1876 goto out;
7d2eba05 1877 }
ba76149f 1878 page = vm_normal_page(vma, address, pteval);
7d2eba05
EA
1879 if (unlikely(!page)) {
1880 result = SCAN_PAGE_NULL;
ba76149f 1881 goto out;
7d2eba05 1882 }
344aa35c 1883
309381fe
SL
1884 VM_BUG_ON_PAGE(PageCompound(page), page);
1885 VM_BUG_ON_PAGE(!PageAnon(page), page);
1886 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 1887
ba76149f
AA
1888 /*
1889 * We can do it before isolate_lru_page because the
1890 * page can't be freed from under us. NOTE: PG_lock
1891 * is needed to serialize against split_huge_page
1892 * when invoked from the VM.
1893 */
7d2eba05
EA
1894 if (!trylock_page(page)) {
1895 result = SCAN_PAGE_LOCK;
ba76149f 1896 goto out;
7d2eba05 1897 }
10359213
EA
1898
1899 /*
1900 * cannot use mapcount: can't collapse if there's a gup pin.
1901 * The page must only be referenced by the scanned process
1902 * and page swap cache.
1903 */
1904 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1905 unlock_page(page);
7d2eba05 1906 result = SCAN_PAGE_COUNT;
10359213
EA
1907 goto out;
1908 }
1909 if (pte_write(pteval)) {
1910 writable = true;
1911 } else {
1912 if (PageSwapCache(page) && !reuse_swap_page(page)) {
1913 unlock_page(page);
7d2eba05 1914 result = SCAN_SWAP_CACHE_PAGE;
10359213
EA
1915 goto out;
1916 }
1917 /*
1918 * Page is not in the swap cache. It can be collapsed
1919 * into a THP.
1920 */
1921 }
1922
ba76149f
AA
1923 /*
1924 * Isolate the page to avoid collapsing an hugepage
1925 * currently in use by the VM.
1926 */
1927 if (isolate_lru_page(page)) {
1928 unlock_page(page);
7d2eba05 1929 result = SCAN_DEL_PAGE_LRU;
ba76149f
AA
1930 goto out;
1931 }
1932 /* 0 stands for page_is_file_cache(page) == false */
1933 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
1934 VM_BUG_ON_PAGE(!PageLocked(page), page);
1935 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
1936
1937 /* If there is no mapped pte young don't collapse the page */
33c3fc71
VD
1938 if (pte_young(pteval) ||
1939 page_is_young(page) || PageReferenced(page) ||
8ee53820 1940 mmu_notifier_test_young(vma->vm_mm, address))
10359213 1941 referenced = true;
ba76149f 1942 }
7d2eba05
EA
1943 if (likely(writable)) {
1944 if (likely(referenced)) {
1945 result = SCAN_SUCCEED;
1946 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
1947 referenced, writable, result);
1948 return 1;
1949 }
1950 } else {
1951 result = SCAN_PAGE_RO;
1952 }
1953
ba76149f 1954out:
344aa35c 1955 release_pte_pages(pte, _pte);
7d2eba05
EA
1956 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
1957 referenced, writable, result);
344aa35c 1958 return 0;
ba76149f
AA
1959}
1960
1961static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1962 struct vm_area_struct *vma,
1963 unsigned long address,
1964 spinlock_t *ptl)
1965{
1966 pte_t *_pte;
1967 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1968 pte_t pteval = *_pte;
1969 struct page *src_page;
1970
ca0984ca 1971 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
1972 clear_user_highpage(page, address);
1973 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
1974 if (is_zero_pfn(pte_pfn(pteval))) {
1975 /*
1976 * ptl mostly unnecessary.
1977 */
1978 spin_lock(ptl);
1979 /*
1980 * paravirt calls inside pte_clear here are
1981 * superfluous.
1982 */
1983 pte_clear(vma->vm_mm, address, _pte);
1984 spin_unlock(ptl);
1985 }
ba76149f
AA
1986 } else {
1987 src_page = pte_page(pteval);
1988 copy_user_highpage(page, src_page, address, vma);
309381fe 1989 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
1990 release_pte_page(src_page);
1991 /*
1992 * ptl mostly unnecessary, but preempt has to
1993 * be disabled to update the per-cpu stats
1994 * inside page_remove_rmap().
1995 */
1996 spin_lock(ptl);
1997 /*
1998 * paravirt calls inside pte_clear here are
1999 * superfluous.
2000 */
2001 pte_clear(vma->vm_mm, address, _pte);
d281ee61 2002 page_remove_rmap(src_page, false);
ba76149f
AA
2003 spin_unlock(ptl);
2004 free_page_and_swap_cache(src_page);
2005 }
2006
2007 address += PAGE_SIZE;
2008 page++;
2009 }
2010}
2011
26234f36 2012static void khugepaged_alloc_sleep(void)
ba76149f 2013{
bde43c6c
PM
2014 DEFINE_WAIT(wait);
2015
2016 add_wait_queue(&khugepaged_wait, &wait);
2017 freezable_schedule_timeout_interruptible(
2018 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2019 remove_wait_queue(&khugepaged_wait, &wait);
26234f36 2020}
ba76149f 2021
9f1b868a
BL
2022static int khugepaged_node_load[MAX_NUMNODES];
2023
14a4e214
DR
2024static bool khugepaged_scan_abort(int nid)
2025{
2026 int i;
2027
2028 /*
2029 * If zone_reclaim_mode is disabled, then no extra effort is made to
2030 * allocate memory locally.
2031 */
2032 if (!zone_reclaim_mode)
2033 return false;
2034
2035 /* If there is a count for this node already, it must be acceptable */
2036 if (khugepaged_node_load[nid])
2037 return false;
2038
2039 for (i = 0; i < MAX_NUMNODES; i++) {
2040 if (!khugepaged_node_load[i])
2041 continue;
2042 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2043 return true;
2044 }
2045 return false;
2046}
2047
26234f36 2048#ifdef CONFIG_NUMA
9f1b868a
BL
2049static int khugepaged_find_target_node(void)
2050{
2051 static int last_khugepaged_target_node = NUMA_NO_NODE;
2052 int nid, target_node = 0, max_value = 0;
2053
2054 /* find first node with max normal pages hit */
2055 for (nid = 0; nid < MAX_NUMNODES; nid++)
2056 if (khugepaged_node_load[nid] > max_value) {
2057 max_value = khugepaged_node_load[nid];
2058 target_node = nid;
2059 }
2060
2061 /* do some balance if several nodes have the same hit record */
2062 if (target_node <= last_khugepaged_target_node)
2063 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2064 nid++)
2065 if (max_value == khugepaged_node_load[nid]) {
2066 target_node = nid;
2067 break;
2068 }
2069
2070 last_khugepaged_target_node = target_node;
2071 return target_node;
2072}
2073
26234f36
XG
2074static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2075{
2076 if (IS_ERR(*hpage)) {
2077 if (!*wait)
2078 return false;
2079
2080 *wait = false;
e3b4126c 2081 *hpage = NULL;
26234f36
XG
2082 khugepaged_alloc_sleep();
2083 } else if (*hpage) {
2084 put_page(*hpage);
2085 *hpage = NULL;
2086 }
2087
2088 return true;
2089}
2090
3b363692
MH
2091static struct page *
2092khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2093 unsigned long address, int node)
26234f36 2094{
309381fe 2095 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2096
ce83d217 2097 /*
8b164568
VB
2098 * Before allocating the hugepage, release the mmap_sem read lock.
2099 * The allocation can take potentially a long time if it involves
2100 * sync compaction, and we do not need to hold the mmap_sem during
2101 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2102 */
8b164568
VB
2103 up_read(&mm->mmap_sem);
2104
96db800f 2105 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2106 if (unlikely(!*hpage)) {
81ab4201 2107 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2108 *hpage = ERR_PTR(-ENOMEM);
26234f36 2109 return NULL;
ce83d217 2110 }
26234f36 2111
65b3c07b 2112 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2113 return *hpage;
2114}
2115#else
9f1b868a
BL
2116static int khugepaged_find_target_node(void)
2117{
2118 return 0;
2119}
2120
10dc4155
BL
2121static inline struct page *alloc_hugepage(int defrag)
2122{
2123 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2124 HPAGE_PMD_ORDER);
2125}
2126
26234f36
XG
2127static struct page *khugepaged_alloc_hugepage(bool *wait)
2128{
2129 struct page *hpage;
2130
2131 do {
2132 hpage = alloc_hugepage(khugepaged_defrag());
2133 if (!hpage) {
2134 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2135 if (!*wait)
2136 return NULL;
2137
2138 *wait = false;
2139 khugepaged_alloc_sleep();
2140 } else
2141 count_vm_event(THP_COLLAPSE_ALLOC);
2142 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2143
2144 return hpage;
2145}
2146
2147static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2148{
2149 if (!*hpage)
2150 *hpage = khugepaged_alloc_hugepage(wait);
2151
2152 if (unlikely(!*hpage))
2153 return false;
2154
2155 return true;
2156}
2157
3b363692
MH
2158static struct page *
2159khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2160 unsigned long address, int node)
26234f36
XG
2161{
2162 up_read(&mm->mmap_sem);
2163 VM_BUG_ON(!*hpage);
3b363692 2164
26234f36
XG
2165 return *hpage;
2166}
692e0b35
AA
2167#endif
2168
fa475e51
BL
2169static bool hugepage_vma_check(struct vm_area_struct *vma)
2170{
2171 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2172 (vma->vm_flags & VM_NOHUGEPAGE))
2173 return false;
7479df6d
KS
2174 if (vma->vm_flags & VM_LOCKED)
2175 return false;
fa475e51
BL
2176 if (!vma->anon_vma || vma->vm_ops)
2177 return false;
2178 if (is_vma_temporary_stack(vma))
2179 return false;
81d1b09c 2180 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2181 return true;
2182}
2183
26234f36
XG
2184static void collapse_huge_page(struct mm_struct *mm,
2185 unsigned long address,
2186 struct page **hpage,
2187 struct vm_area_struct *vma,
2188 int node)
2189{
26234f36
XG
2190 pmd_t *pmd, _pmd;
2191 pte_t *pte;
2192 pgtable_t pgtable;
2193 struct page *new_page;
c4088ebd 2194 spinlock_t *pmd_ptl, *pte_ptl;
7d2eba05 2195 int isolated, result = 0;
26234f36 2196 unsigned long hstart, hend;
00501b53 2197 struct mem_cgroup *memcg;
2ec74c3e
SG
2198 unsigned long mmun_start; /* For mmu_notifiers */
2199 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2200 gfp_t gfp;
26234f36
XG
2201
2202 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2203
3b363692
MH
2204 /* Only allocate from the target node */
2205 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2206 __GFP_THISNODE;
2207
26234f36 2208 /* release the mmap_sem read lock. */
d6669d68 2209 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
7d2eba05
EA
2210 if (!new_page) {
2211 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2212 goto out_nolock;
2213 }
26234f36 2214
f627c2f5 2215 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
7d2eba05
EA
2216 result = SCAN_CGROUP_CHARGE_FAIL;
2217 goto out_nolock;
2218 }
ba76149f
AA
2219
2220 /*
2221 * Prevent all access to pagetables with the exception of
2222 * gup_fast later hanlded by the ptep_clear_flush and the VM
2223 * handled by the anon_vma lock + PG_lock.
2224 */
2225 down_write(&mm->mmap_sem);
7d2eba05
EA
2226 if (unlikely(khugepaged_test_exit(mm))) {
2227 result = SCAN_ANY_PROCESS;
ba76149f 2228 goto out;
7d2eba05 2229 }
ba76149f
AA
2230
2231 vma = find_vma(mm, address);
7d2eba05
EA
2232 if (!vma) {
2233 result = SCAN_VMA_NULL;
a8f531eb 2234 goto out;
7d2eba05 2235 }
ba76149f
AA
2236 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2237 hend = vma->vm_end & HPAGE_PMD_MASK;
7d2eba05
EA
2238 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2239 result = SCAN_ADDRESS_RANGE;
ba76149f 2240 goto out;
7d2eba05
EA
2241 }
2242 if (!hugepage_vma_check(vma)) {
2243 result = SCAN_VMA_CHECK;
a7d6e4ec 2244 goto out;
7d2eba05 2245 }
6219049a 2246 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2247 if (!pmd) {
2248 result = SCAN_PMD_NULL;
ba76149f 2249 goto out;
7d2eba05 2250 }
ba76149f 2251
4fc3f1d6 2252 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2253
2254 pte = pte_offset_map(pmd, address);
c4088ebd 2255 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2256
2ec74c3e
SG
2257 mmun_start = address;
2258 mmun_end = address + HPAGE_PMD_SIZE;
2259 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2260 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2261 /*
2262 * After this gup_fast can't run anymore. This also removes
2263 * any huge TLB entry from the CPU so we won't allow
2264 * huge and small TLB entries for the same virtual address
2265 * to avoid the risk of CPU bugs in that area.
2266 */
15a25b2e 2267 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2268 spin_unlock(pmd_ptl);
2ec74c3e 2269 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2270
c4088ebd 2271 spin_lock(pte_ptl);
ba76149f 2272 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2273 spin_unlock(pte_ptl);
ba76149f
AA
2274
2275 if (unlikely(!isolated)) {
453c7192 2276 pte_unmap(pte);
c4088ebd 2277 spin_lock(pmd_ptl);
ba76149f 2278 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2279 /*
2280 * We can only use set_pmd_at when establishing
2281 * hugepmds and never for establishing regular pmds that
2282 * points to regular pagetables. Use pmd_populate for that
2283 */
2284 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2285 spin_unlock(pmd_ptl);
08b52706 2286 anon_vma_unlock_write(vma->anon_vma);
7d2eba05 2287 result = SCAN_FAIL;
ce83d217 2288 goto out;
ba76149f
AA
2289 }
2290
2291 /*
2292 * All pages are isolated and locked so anon_vma rmap
2293 * can't run anymore.
2294 */
08b52706 2295 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2296
c4088ebd 2297 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2298 pte_unmap(pte);
ba76149f
AA
2299 __SetPageUptodate(new_page);
2300 pgtable = pmd_pgtable(_pmd);
ba76149f 2301
3122359a
KS
2302 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2303 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2304
2305 /*
2306 * spin_lock() below is not the equivalent of smp_wmb(), so
2307 * this is needed to avoid the copy_huge_page writes to become
2308 * visible after the set_pmd_at() write.
2309 */
2310 smp_wmb();
2311
c4088ebd 2312 spin_lock(pmd_ptl);
ba76149f 2313 BUG_ON(!pmd_none(*pmd));
d281ee61 2314 page_add_new_anon_rmap(new_page, vma, address, true);
f627c2f5 2315 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 2316 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2317 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2318 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2319 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2320 spin_unlock(pmd_ptl);
ba76149f
AA
2321
2322 *hpage = NULL;
420256ef 2323
ba76149f 2324 khugepaged_pages_collapsed++;
7d2eba05 2325 result = SCAN_SUCCEED;
ce83d217 2326out_up_write:
ba76149f 2327 up_write(&mm->mmap_sem);
7d2eba05 2328 trace_mm_collapse_huge_page(mm, isolated, result);
0bbbc0b3
AA
2329 return;
2330
7d2eba05
EA
2331out_nolock:
2332 trace_mm_collapse_huge_page(mm, isolated, result);
2333 return;
ce83d217 2334out:
f627c2f5 2335 mem_cgroup_cancel_charge(new_page, memcg, true);
ce83d217 2336 goto out_up_write;
ba76149f
AA
2337}
2338
2339static int khugepaged_scan_pmd(struct mm_struct *mm,
2340 struct vm_area_struct *vma,
2341 unsigned long address,
2342 struct page **hpage)
2343{
ba76149f
AA
2344 pmd_t *pmd;
2345 pte_t *pte, *_pte;
7d2eba05
EA
2346 int ret = 0, none_or_zero = 0, result = 0;
2347 struct page *page = NULL;
ba76149f
AA
2348 unsigned long _address;
2349 spinlock_t *ptl;
00ef2d2f 2350 int node = NUMA_NO_NODE;
10359213 2351 bool writable = false, referenced = false;
ba76149f
AA
2352
2353 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2354
6219049a 2355 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2356 if (!pmd) {
2357 result = SCAN_PMD_NULL;
ba76149f 2358 goto out;
7d2eba05 2359 }
ba76149f 2360
9f1b868a 2361 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2362 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2363 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2364 _pte++, _address += PAGE_SIZE) {
2365 pte_t pteval = *_pte;
ca0984ca 2366 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05 2367 if (!userfaultfd_armed(vma) &&
7d2eba05 2368 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2369 continue;
7d2eba05
EA
2370 } else {
2371 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2372 goto out_unmap;
7d2eba05 2373 }
ba76149f 2374 }
7d2eba05
EA
2375 if (!pte_present(pteval)) {
2376 result = SCAN_PTE_NON_PRESENT;
ba76149f 2377 goto out_unmap;
7d2eba05 2378 }
10359213
EA
2379 if (pte_write(pteval))
2380 writable = true;
2381
ba76149f 2382 page = vm_normal_page(vma, _address, pteval);
7d2eba05
EA
2383 if (unlikely(!page)) {
2384 result = SCAN_PAGE_NULL;
ba76149f 2385 goto out_unmap;
7d2eba05 2386 }
b1caa957
KS
2387
2388 /* TODO: teach khugepaged to collapse THP mapped with pte */
2389 if (PageCompound(page)) {
2390 result = SCAN_PAGE_COMPOUND;
2391 goto out_unmap;
2392 }
2393
5c4b4be3 2394 /*
9f1b868a
BL
2395 * Record which node the original page is from and save this
2396 * information to khugepaged_node_load[].
2397 * Khupaged will allocate hugepage from the node has the max
2398 * hit record.
5c4b4be3 2399 */
9f1b868a 2400 node = page_to_nid(page);
7d2eba05
EA
2401 if (khugepaged_scan_abort(node)) {
2402 result = SCAN_SCAN_ABORT;
14a4e214 2403 goto out_unmap;
7d2eba05 2404 }
9f1b868a 2405 khugepaged_node_load[node]++;
7d2eba05
EA
2406 if (!PageLRU(page)) {
2407 result = SCAN_SCAN_ABORT;
2408 goto out_unmap;
2409 }
2410 if (PageLocked(page)) {
2411 result = SCAN_PAGE_LOCK;
ba76149f 2412 goto out_unmap;
7d2eba05
EA
2413 }
2414 if (!PageAnon(page)) {
2415 result = SCAN_PAGE_ANON;
2416 goto out_unmap;
2417 }
2418
10359213
EA
2419 /*
2420 * cannot use mapcount: can't collapse if there's a gup pin.
2421 * The page must only be referenced by the scanned process
2422 * and page swap cache.
2423 */
7d2eba05
EA
2424 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2425 result = SCAN_PAGE_COUNT;
ba76149f 2426 goto out_unmap;
7d2eba05 2427 }
33c3fc71
VD
2428 if (pte_young(pteval) ||
2429 page_is_young(page) || PageReferenced(page) ||
8ee53820 2430 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2431 referenced = true;
ba76149f 2432 }
7d2eba05
EA
2433 if (writable) {
2434 if (referenced) {
2435 result = SCAN_SUCCEED;
2436 ret = 1;
2437 } else {
2438 result = SCAN_NO_REFERENCED_PAGE;
2439 }
2440 } else {
2441 result = SCAN_PAGE_RO;
2442 }
ba76149f
AA
2443out_unmap:
2444 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2445 if (ret) {
2446 node = khugepaged_find_target_node();
ce83d217 2447 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2448 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2449 }
ba76149f 2450out:
7d2eba05
EA
2451 trace_mm_khugepaged_scan_pmd(mm, page_to_pfn(page), writable, referenced,
2452 none_or_zero, result);
ba76149f
AA
2453 return ret;
2454}
2455
2456static void collect_mm_slot(struct mm_slot *mm_slot)
2457{
2458 struct mm_struct *mm = mm_slot->mm;
2459
b9980cdc 2460 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2461
2462 if (khugepaged_test_exit(mm)) {
2463 /* free mm_slot */
43b5fbbd 2464 hash_del(&mm_slot->hash);
ba76149f
AA
2465 list_del(&mm_slot->mm_node);
2466
2467 /*
2468 * Not strictly needed because the mm exited already.
2469 *
2470 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2471 */
2472
2473 /* khugepaged_mm_lock actually not necessary for the below */
2474 free_mm_slot(mm_slot);
2475 mmdrop(mm);
2476 }
2477}
2478
2479static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2480 struct page **hpage)
2f1da642
HS
2481 __releases(&khugepaged_mm_lock)
2482 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2483{
2484 struct mm_slot *mm_slot;
2485 struct mm_struct *mm;
2486 struct vm_area_struct *vma;
2487 int progress = 0;
2488
2489 VM_BUG_ON(!pages);
b9980cdc 2490 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2491
2492 if (khugepaged_scan.mm_slot)
2493 mm_slot = khugepaged_scan.mm_slot;
2494 else {
2495 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2496 struct mm_slot, mm_node);
2497 khugepaged_scan.address = 0;
2498 khugepaged_scan.mm_slot = mm_slot;
2499 }
2500 spin_unlock(&khugepaged_mm_lock);
2501
2502 mm = mm_slot->mm;
2503 down_read(&mm->mmap_sem);
2504 if (unlikely(khugepaged_test_exit(mm)))
2505 vma = NULL;
2506 else
2507 vma = find_vma(mm, khugepaged_scan.address);
2508
2509 progress++;
2510 for (; vma; vma = vma->vm_next) {
2511 unsigned long hstart, hend;
2512
2513 cond_resched();
2514 if (unlikely(khugepaged_test_exit(mm))) {
2515 progress++;
2516 break;
2517 }
fa475e51
BL
2518 if (!hugepage_vma_check(vma)) {
2519skip:
ba76149f
AA
2520 progress++;
2521 continue;
2522 }
ba76149f
AA
2523 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2524 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2525 if (hstart >= hend)
2526 goto skip;
2527 if (khugepaged_scan.address > hend)
2528 goto skip;
ba76149f
AA
2529 if (khugepaged_scan.address < hstart)
2530 khugepaged_scan.address = hstart;
a7d6e4ec 2531 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2532
2533 while (khugepaged_scan.address < hend) {
2534 int ret;
2535 cond_resched();
2536 if (unlikely(khugepaged_test_exit(mm)))
2537 goto breakouterloop;
2538
2539 VM_BUG_ON(khugepaged_scan.address < hstart ||
2540 khugepaged_scan.address + HPAGE_PMD_SIZE >
2541 hend);
2542 ret = khugepaged_scan_pmd(mm, vma,
2543 khugepaged_scan.address,
2544 hpage);
2545 /* move to next address */
2546 khugepaged_scan.address += HPAGE_PMD_SIZE;
2547 progress += HPAGE_PMD_NR;
2548 if (ret)
2549 /* we released mmap_sem so break loop */
2550 goto breakouterloop_mmap_sem;
2551 if (progress >= pages)
2552 goto breakouterloop;
2553 }
2554 }
2555breakouterloop:
2556 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2557breakouterloop_mmap_sem:
2558
2559 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2560 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2561 /*
2562 * Release the current mm_slot if this mm is about to die, or
2563 * if we scanned all vmas of this mm.
2564 */
2565 if (khugepaged_test_exit(mm) || !vma) {
2566 /*
2567 * Make sure that if mm_users is reaching zero while
2568 * khugepaged runs here, khugepaged_exit will find
2569 * mm_slot not pointing to the exiting mm.
2570 */
2571 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2572 khugepaged_scan.mm_slot = list_entry(
2573 mm_slot->mm_node.next,
2574 struct mm_slot, mm_node);
2575 khugepaged_scan.address = 0;
2576 } else {
2577 khugepaged_scan.mm_slot = NULL;
2578 khugepaged_full_scans++;
2579 }
2580
2581 collect_mm_slot(mm_slot);
2582 }
2583
2584 return progress;
2585}
2586
2587static int khugepaged_has_work(void)
2588{
2589 return !list_empty(&khugepaged_scan.mm_head) &&
2590 khugepaged_enabled();
2591}
2592
2593static int khugepaged_wait_event(void)
2594{
2595 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2596 kthread_should_stop();
ba76149f
AA
2597}
2598
d516904b 2599static void khugepaged_do_scan(void)
ba76149f 2600{
d516904b 2601 struct page *hpage = NULL;
ba76149f
AA
2602 unsigned int progress = 0, pass_through_head = 0;
2603 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2604 bool wait = true;
ba76149f
AA
2605
2606 barrier(); /* write khugepaged_pages_to_scan to local stack */
2607
2608 while (progress < pages) {
26234f36 2609 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2610 break;
26234f36 2611
420256ef 2612 cond_resched();
ba76149f 2613
cd092411 2614 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2615 break;
2616
ba76149f
AA
2617 spin_lock(&khugepaged_mm_lock);
2618 if (!khugepaged_scan.mm_slot)
2619 pass_through_head++;
2620 if (khugepaged_has_work() &&
2621 pass_through_head < 2)
2622 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2623 &hpage);
ba76149f
AA
2624 else
2625 progress = pages;
2626 spin_unlock(&khugepaged_mm_lock);
2627 }
ba76149f 2628
d516904b
XG
2629 if (!IS_ERR_OR_NULL(hpage))
2630 put_page(hpage);
0bbbc0b3
AA
2631}
2632
2017c0bf
XG
2633static void khugepaged_wait_work(void)
2634{
2017c0bf
XG
2635 if (khugepaged_has_work()) {
2636 if (!khugepaged_scan_sleep_millisecs)
2637 return;
2638
2639 wait_event_freezable_timeout(khugepaged_wait,
2640 kthread_should_stop(),
2641 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2642 return;
2643 }
2644
2645 if (khugepaged_enabled())
2646 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2647}
2648
ba76149f
AA
2649static int khugepaged(void *none)
2650{
2651 struct mm_slot *mm_slot;
2652
878aee7d 2653 set_freezable();
8698a745 2654 set_user_nice(current, MAX_NICE);
ba76149f 2655
b7231789
XG
2656 while (!kthread_should_stop()) {
2657 khugepaged_do_scan();
2658 khugepaged_wait_work();
2659 }
ba76149f
AA
2660
2661 spin_lock(&khugepaged_mm_lock);
2662 mm_slot = khugepaged_scan.mm_slot;
2663 khugepaged_scan.mm_slot = NULL;
2664 if (mm_slot)
2665 collect_mm_slot(mm_slot);
2666 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2667 return 0;
2668}
2669
eef1b3ba
KS
2670static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2671 unsigned long haddr, pmd_t *pmd)
2672{
2673 struct mm_struct *mm = vma->vm_mm;
2674 pgtable_t pgtable;
2675 pmd_t _pmd;
2676 int i;
2677
2678 /* leave pmd empty until pte is filled */
2679 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2680
2681 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2682 pmd_populate(mm, &_pmd, pgtable);
2683
2684 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2685 pte_t *pte, entry;
2686 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2687 entry = pte_mkspecial(entry);
2688 pte = pte_offset_map(&_pmd, haddr);
2689 VM_BUG_ON(!pte_none(*pte));
2690 set_pte_at(mm, haddr, pte, entry);
2691 pte_unmap(pte);
2692 }
2693 smp_wmb(); /* make pte visible before pmd */
2694 pmd_populate(mm, pmd, pgtable);
2695 put_huge_zero_page();
2696}
2697
2698static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2699 unsigned long haddr, bool freeze)
eef1b3ba
KS
2700{
2701 struct mm_struct *mm = vma->vm_mm;
2702 struct page *page;
2703 pgtable_t pgtable;
2704 pmd_t _pmd;
2705 bool young, write;
2706 int i;
2707
2708 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2709 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2710 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2711 VM_BUG_ON(!pmd_trans_huge(*pmd));
2712
2713 count_vm_event(THP_SPLIT_PMD);
2714
2715 if (vma_is_dax(vma)) {
2716 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2717 if (is_huge_zero_pmd(_pmd))
2718 put_huge_zero_page();
2719 return;
2720 } else if (is_huge_zero_pmd(*pmd)) {
2721 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2722 }
2723
2724 page = pmd_page(*pmd);
2725 VM_BUG_ON_PAGE(!page_count(page), page);
2726 atomic_add(HPAGE_PMD_NR - 1, &page->_count);
2727 write = pmd_write(*pmd);
2728 young = pmd_young(*pmd);
2729
eef1b3ba
KS
2730 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2731 pmd_populate(mm, &_pmd, pgtable);
2732
2733 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2734 pte_t entry, *pte;
2735 /*
2736 * Note that NUMA hinting access restrictions are not
2737 * transferred to avoid any possibility of altering
2738 * permissions across VMAs.
2739 */
ba988280
KS
2740 if (freeze) {
2741 swp_entry_t swp_entry;
2742 swp_entry = make_migration_entry(page + i, write);
2743 entry = swp_entry_to_pte(swp_entry);
2744 } else {
2745 entry = mk_pte(page + i, vma->vm_page_prot);
2746 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2747 if (!write)
2748 entry = pte_wrprotect(entry);
2749 if (!young)
2750 entry = pte_mkold(entry);
2751 }
eef1b3ba
KS
2752 pte = pte_offset_map(&_pmd, haddr);
2753 BUG_ON(!pte_none(*pte));
2754 set_pte_at(mm, haddr, pte, entry);
2755 atomic_inc(&page[i]._mapcount);
2756 pte_unmap(pte);
2757 }
2758
2759 /*
2760 * Set PG_double_map before dropping compound_mapcount to avoid
2761 * false-negative page_mapped().
2762 */
2763 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2764 for (i = 0; i < HPAGE_PMD_NR; i++)
2765 atomic_inc(&page[i]._mapcount);
2766 }
2767
2768 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2769 /* Last compound_mapcount is gone. */
2770 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2771 if (TestClearPageDoubleMap(page)) {
2772 /* No need in mapcount reference anymore */
2773 for (i = 0; i < HPAGE_PMD_NR; i++)
2774 atomic_dec(&page[i]._mapcount);
2775 }
2776 }
2777
2778 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
2779 /*
2780 * Up to this point the pmd is present and huge and userland has the
2781 * whole access to the hugepage during the split (which happens in
2782 * place). If we overwrite the pmd with the not-huge version pointing
2783 * to the pte here (which of course we could if all CPUs were bug
2784 * free), userland could trigger a small page size TLB miss on the
2785 * small sized TLB while the hugepage TLB entry is still established in
2786 * the huge TLB. Some CPU doesn't like that.
2787 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2788 * 383 on page 93. Intel should be safe but is also warns that it's
2789 * only safe if the permission and cache attributes of the two entries
2790 * loaded in the two TLB is identical (which should be the case here).
2791 * But it is generally safer to never allow small and huge TLB entries
2792 * for the same virtual address to be loaded simultaneously. So instead
2793 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2794 * current pmd notpresent (atomically because here the pmd_trans_huge
2795 * and pmd_trans_splitting must remain set at all times on the pmd
2796 * until the split is complete for this pmd), then we flush the SMP TLB
2797 * and finally we write the non-huge version of the pmd entry with
2798 * pmd_populate.
2799 */
2800 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 2801 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2802
2803 if (freeze) {
2804 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2805 page_remove_rmap(page + i, false);
2806 put_page(page + i);
2807 }
2808 }
eef1b3ba
KS
2809}
2810
2811void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2812 unsigned long address)
2813{
2814 spinlock_t *ptl;
2815 struct mm_struct *mm = vma->vm_mm;
2816 unsigned long haddr = address & HPAGE_PMD_MASK;
2817
2818 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2819 ptl = pmd_lock(mm, pmd);
2820 if (likely(pmd_trans_huge(*pmd)))
ba988280 2821 __split_huge_pmd_locked(vma, pmd, haddr, false);
eef1b3ba
KS
2822 spin_unlock(ptl);
2823 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2824}
2825
78ddc534 2826static void split_huge_pmd_address(struct vm_area_struct *vma,
94fcc585
AA
2827 unsigned long address)
2828{
f72e7dcd
HD
2829 pgd_t *pgd;
2830 pud_t *pud;
94fcc585
AA
2831 pmd_t *pmd;
2832
2833 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2834
78ddc534 2835 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2836 if (!pgd_present(*pgd))
2837 return;
2838
2839 pud = pud_offset(pgd, address);
2840 if (!pud_present(*pud))
2841 return;
2842
2843 pmd = pmd_offset(pud, address);
78ddc534 2844 if (!pmd_present(*pmd) || !pmd_trans_huge(*pmd))
94fcc585
AA
2845 return;
2846 /*
2847 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2848 * materialize from under us.
2849 */
ad0bed24 2850 split_huge_pmd(vma, pmd, address);
94fcc585
AA
2851}
2852
e1b9996b 2853void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2854 unsigned long start,
2855 unsigned long end,
2856 long adjust_next)
2857{
2858 /*
2859 * If the new start address isn't hpage aligned and it could
2860 * previously contain an hugepage: check if we need to split
2861 * an huge pmd.
2862 */
2863 if (start & ~HPAGE_PMD_MASK &&
2864 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2865 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
78ddc534 2866 split_huge_pmd_address(vma, start);
94fcc585
AA
2867
2868 /*
2869 * If the new end address isn't hpage aligned and it could
2870 * previously contain an hugepage: check if we need to split
2871 * an huge pmd.
2872 */
2873 if (end & ~HPAGE_PMD_MASK &&
2874 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2875 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
78ddc534 2876 split_huge_pmd_address(vma, end);
94fcc585
AA
2877
2878 /*
2879 * If we're also updating the vma->vm_next->vm_start, if the new
2880 * vm_next->vm_start isn't page aligned and it could previously
2881 * contain an hugepage: check if we need to split an huge pmd.
2882 */
2883 if (adjust_next > 0) {
2884 struct vm_area_struct *next = vma->vm_next;
2885 unsigned long nstart = next->vm_start;
2886 nstart += adjust_next << PAGE_SHIFT;
2887 if (nstart & ~HPAGE_PMD_MASK &&
2888 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2889 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
78ddc534 2890 split_huge_pmd_address(next, nstart);
94fcc585
AA
2891 }
2892}
e9b61f19
KS
2893
2894static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
2895 unsigned long address)
2896{
2897 spinlock_t *ptl;
2898 pgd_t *pgd;
2899 pud_t *pud;
2900 pmd_t *pmd;
2901 pte_t *pte;
2902 int i, nr = HPAGE_PMD_NR;
2903
2904 /* Skip pages which doesn't belong to the VMA */
2905 if (address < vma->vm_start) {
2906 int off = (vma->vm_start - address) >> PAGE_SHIFT;
2907 page += off;
2908 nr -= off;
2909 address = vma->vm_start;
2910 }
2911
2912 pgd = pgd_offset(vma->vm_mm, address);
2913 if (!pgd_present(*pgd))
2914 return;
2915 pud = pud_offset(pgd, address);
2916 if (!pud_present(*pud))
2917 return;
2918 pmd = pmd_offset(pud, address);
2919 ptl = pmd_lock(vma->vm_mm, pmd);
2920 if (!pmd_present(*pmd)) {
2921 spin_unlock(ptl);
2922 return;
2923 }
2924 if (pmd_trans_huge(*pmd)) {
2925 if (page == pmd_page(*pmd))
2926 __split_huge_pmd_locked(vma, pmd, address, true);
2927 spin_unlock(ptl);
2928 return;
2929 }
2930 spin_unlock(ptl);
2931
2932 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
2933 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++) {
2934 pte_t entry, swp_pte;
2935 swp_entry_t swp_entry;
2936
2937 if (!pte_present(pte[i]))
2938 continue;
2939 if (page_to_pfn(page) != pte_pfn(pte[i]))
2940 continue;
2941 flush_cache_page(vma, address, page_to_pfn(page));
2942 entry = ptep_clear_flush(vma, address, pte + i);
2943 swp_entry = make_migration_entry(page, pte_write(entry));
2944 swp_pte = swp_entry_to_pte(swp_entry);
2945 if (pte_soft_dirty(entry))
2946 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2947 set_pte_at(vma->vm_mm, address, pte + i, swp_pte);
2948 page_remove_rmap(page, false);
2949 put_page(page);
2950 }
2951 pte_unmap_unlock(pte, ptl);
2952}
2953
2954static void freeze_page(struct anon_vma *anon_vma, struct page *page)
2955{
2956 struct anon_vma_chain *avc;
2957 pgoff_t pgoff = page_to_pgoff(page);
2958
2959 VM_BUG_ON_PAGE(!PageHead(page), page);
2960
2961 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
2962 pgoff + HPAGE_PMD_NR - 1) {
2963 unsigned long haddr;
2964
2965 haddr = __vma_address(page, avc->vma) & HPAGE_PMD_MASK;
2966 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
2967 haddr, haddr + HPAGE_PMD_SIZE);
2968 freeze_page_vma(avc->vma, page, haddr);
2969 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
2970 haddr, haddr + HPAGE_PMD_SIZE);
2971 }
2972}
2973
2974static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
2975 unsigned long address)
2976{
2977 spinlock_t *ptl;
2978 pmd_t *pmd;
2979 pte_t *pte, entry;
2980 swp_entry_t swp_entry;
2981 int i, nr = HPAGE_PMD_NR;
2982
2983 /* Skip pages which doesn't belong to the VMA */
2984 if (address < vma->vm_start) {
2985 int off = (vma->vm_start - address) >> PAGE_SHIFT;
2986 page += off;
2987 nr -= off;
2988 address = vma->vm_start;
2989 }
2990
2991 pmd = mm_find_pmd(vma->vm_mm, address);
2992 if (!pmd)
2993 return;
2994 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
2995 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++) {
2996 if (!is_swap_pte(pte[i]))
2997 continue;
2998
2999 swp_entry = pte_to_swp_entry(pte[i]);
3000 if (!is_migration_entry(swp_entry))
3001 continue;
3002 if (migration_entry_to_page(swp_entry) != page)
3003 continue;
3004
3005 get_page(page);
3006 page_add_anon_rmap(page, vma, address, false);
3007
3008 entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
3009 entry = pte_mkdirty(entry);
3010 if (is_write_migration_entry(swp_entry))
3011 entry = maybe_mkwrite(entry, vma);
3012
3013 flush_dcache_page(page);
3014 set_pte_at(vma->vm_mm, address, pte + i, entry);
3015
3016 /* No need to invalidate - it was non-present before */
3017 update_mmu_cache(vma, address, pte + i);
3018 }
3019 pte_unmap_unlock(pte, ptl);
3020}
3021
3022static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
3023{
3024 struct anon_vma_chain *avc;
3025 pgoff_t pgoff = page_to_pgoff(page);
3026
3027 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
3028 pgoff, pgoff + HPAGE_PMD_NR - 1) {
3029 unsigned long address = __vma_address(page, avc->vma);
3030
3031 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3032 address, address + HPAGE_PMD_SIZE);
3033 unfreeze_page_vma(avc->vma, page, address);
3034 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3035 address, address + HPAGE_PMD_SIZE);
3036 }
3037}
3038
3039static int total_mapcount(struct page *page)
3040{
3041 int i, ret;
3042
3043 ret = compound_mapcount(page);
3044 for (i = 0; i < HPAGE_PMD_NR; i++)
3045 ret += atomic_read(&page[i]._mapcount) + 1;
3046
3047 if (PageDoubleMap(page))
3048 ret -= HPAGE_PMD_NR;
3049
3050 return ret;
3051}
3052
3053static int __split_huge_page_tail(struct page *head, int tail,
3054 struct lruvec *lruvec, struct list_head *list)
3055{
3056 int mapcount;
3057 struct page *page_tail = head + tail;
3058
3059 mapcount = atomic_read(&page_tail->_mapcount) + 1;
3060 VM_BUG_ON_PAGE(atomic_read(&page_tail->_count) != 0, page_tail);
3061
3062 /*
3063 * tail_page->_count is zero and not changing from under us. But
3064 * get_page_unless_zero() may be running from under us on the
3065 * tail_page. If we used atomic_set() below instead of atomic_add(), we
3066 * would then run atomic_set() concurrently with
3067 * get_page_unless_zero(), and atomic_set() is implemented in C not
3068 * using locked ops. spin_unlock on x86 sometime uses locked ops
3069 * because of PPro errata 66, 92, so unless somebody can guarantee
3070 * atomic_set() here would be safe on all archs (and not only on x86),
3071 * it's safer to use atomic_add().
3072 */
3073 atomic_add(mapcount + 1, &page_tail->_count);
3074
3075
3076 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3077 page_tail->flags |= (head->flags &
3078 ((1L << PG_referenced) |
3079 (1L << PG_swapbacked) |
3080 (1L << PG_mlocked) |
3081 (1L << PG_uptodate) |
3082 (1L << PG_active) |
3083 (1L << PG_locked) |
3084 (1L << PG_unevictable)));
3085 page_tail->flags |= (1L << PG_dirty);
3086
3087 /*
3088 * After clearing PageTail the gup refcount can be released.
3089 * Page flags also must be visible before we make the page non-compound.
3090 */
3091 smp_wmb();
3092
3093 clear_compound_head(page_tail);
3094
3095 if (page_is_young(head))
3096 set_page_young(page_tail);
3097 if (page_is_idle(head))
3098 set_page_idle(page_tail);
3099
3100 /* ->mapping in first tail page is compound_mapcount */
3101 VM_BUG_ON_PAGE(tail != 1 && page_tail->mapping != TAIL_MAPPING,
3102 page_tail);
3103 page_tail->mapping = head->mapping;
3104
3105 page_tail->index = head->index + tail;
3106 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3107 lru_add_page_tail(head, page_tail, lruvec, list);
3108
3109 return mapcount;
3110}
3111
3112static void __split_huge_page(struct page *page, struct list_head *list)
3113{
3114 struct page *head = compound_head(page);
3115 struct zone *zone = page_zone(head);
3116 struct lruvec *lruvec;
3117 int i, tail_mapcount;
3118
3119 /* prevent PageLRU to go away from under us, and freeze lru stats */
3120 spin_lock_irq(&zone->lru_lock);
3121 lruvec = mem_cgroup_page_lruvec(head, zone);
3122
3123 /* complete memcg works before add pages to LRU */
3124 mem_cgroup_split_huge_fixup(head);
3125
3126 tail_mapcount = 0;
3127 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3128 tail_mapcount += __split_huge_page_tail(head, i, lruvec, list);
3129 atomic_sub(tail_mapcount, &head->_count);
3130
3131 ClearPageCompound(head);
3132 spin_unlock_irq(&zone->lru_lock);
3133
3134 unfreeze_page(page_anon_vma(head), head);
3135
3136 for (i = 0; i < HPAGE_PMD_NR; i++) {
3137 struct page *subpage = head + i;
3138 if (subpage == page)
3139 continue;
3140 unlock_page(subpage);
3141
3142 /*
3143 * Subpages may be freed if there wasn't any mapping
3144 * like if add_to_swap() is running on a lru page that
3145 * had its mapping zapped. And freeing these pages
3146 * requires taking the lru_lock so we do the put_page
3147 * of the tail pages after the split is complete.
3148 */
3149 put_page(subpage);
3150 }
3151}
3152
3153/*
3154 * This function splits huge page into normal pages. @page can point to any
3155 * subpage of huge page to split. Split doesn't change the position of @page.
3156 *
3157 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3158 * The huge page must be locked.
3159 *
3160 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3161 *
3162 * Both head page and tail pages will inherit mapping, flags, and so on from
3163 * the hugepage.
3164 *
3165 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3166 * they are not mapped.
3167 *
3168 * Returns 0 if the hugepage is split successfully.
3169 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3170 * us.
3171 */
3172int split_huge_page_to_list(struct page *page, struct list_head *list)
3173{
3174 struct page *head = compound_head(page);
3175 struct anon_vma *anon_vma;
3176 int count, mapcount, ret;
3177
3178 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3179 VM_BUG_ON_PAGE(!PageAnon(page), page);
3180 VM_BUG_ON_PAGE(!PageLocked(page), page);
3181 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3182 VM_BUG_ON_PAGE(!PageCompound(page), page);
3183
3184 /*
3185 * The caller does not necessarily hold an mmap_sem that would prevent
3186 * the anon_vma disappearing so we first we take a reference to it
3187 * and then lock the anon_vma for write. This is similar to
3188 * page_lock_anon_vma_read except the write lock is taken to serialise
3189 * against parallel split or collapse operations.
3190 */
3191 anon_vma = page_get_anon_vma(head);
3192 if (!anon_vma) {
3193 ret = -EBUSY;
3194 goto out;
3195 }
3196 anon_vma_lock_write(anon_vma);
3197
3198 /*
3199 * Racy check if we can split the page, before freeze_page() will
3200 * split PMDs
3201 */
3202 if (total_mapcount(head) != page_count(head) - 1) {
3203 ret = -EBUSY;
3204 goto out_unlock;
3205 }
3206
3207 freeze_page(anon_vma, head);
3208 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3209
3210 count = page_count(head);
3211 mapcount = total_mapcount(head);
3212 if (mapcount == count - 1) {
3213 __split_huge_page(page, list);
3214 ret = 0;
3215 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount > count - 1) {
3216 pr_alert("total_mapcount: %u, page_count(): %u\n",
3217 mapcount, count);
3218 if (PageTail(page))
3219 dump_page(head, NULL);
3220 dump_page(page, "total_mapcount(head) > page_count(head) - 1");
3221 BUG();
3222 } else {
3223 unfreeze_page(anon_vma, head);
3224 ret = -EBUSY;
3225 }
3226
3227out_unlock:
3228 anon_vma_unlock_write(anon_vma);
3229 put_anon_vma(anon_vma);
3230out:
3231 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3232 return ret;
3233}