]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
mm/hugetlb.c: fix typos in comments
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
f7da677b 35#include <linux/page_owner.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
7635d9cb
MH
65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66{
c0630669
YS
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
7635d9cb
MH
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
c0630669
YS
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
7635d9cb
MH
76
77 return false;
78}
79
6fcb52a5 80static struct page *get_huge_zero_page(void)
97ae1749
KS
81{
82 struct page *zero_page;
83retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 85 return READ_ONCE(huge_zero_page);
97ae1749
KS
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 88 HPAGE_PMD_ORDER);
d8a8e1f0
KS
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 91 return NULL;
d8a8e1f0
KS
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 94 preempt_disable();
5918d10a 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 96 preempt_enable();
5ddacbe9 97 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
4db0c3c2 104 return READ_ONCE(huge_zero_page);
4a6c1297
KS
105}
106
6fcb52a5 107static void put_huge_zero_page(void)
4a6c1297 108{
97ae1749
KS
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
114}
115
6fcb52a5
AL
116struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117{
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128}
129
130void mm_put_huge_zero_page(struct mm_struct *mm)
131{
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134}
135
48896466
GC
136static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
4a6c1297 138{
48896466
GC
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141}
97ae1749 142
48896466
GC
143static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145{
97ae1749 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
5ddacbe9 149 __free_pages(zero_page, compound_order(zero_page));
48896466 150 return HPAGE_PMD_NR;
97ae1749
KS
151 }
152
153 return 0;
4a6c1297
KS
154}
155
97ae1749 156static struct shrinker huge_zero_page_shrinker = {
48896466
GC
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
159 .seeks = DEFAULT_SEEKS,
160};
161
71e3aac0 162#ifdef CONFIG_SYSFS
71e3aac0
AA
163static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165{
bfb0ffeb
JP
166 const char *output;
167
444eb2a4 168 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
bfb0ffeb
JP
169 output = "[always] madvise never";
170 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
171 &transparent_hugepage_flags))
172 output = "always [madvise] never";
444eb2a4 173 else
bfb0ffeb
JP
174 output = "always madvise [never]";
175
176 return sysfs_emit(buf, "%s\n", output);
71e3aac0 177}
444eb2a4 178
71e3aac0
AA
179static ssize_t enabled_store(struct kobject *kobj,
180 struct kobj_attribute *attr,
181 const char *buf, size_t count)
182{
21440d7e 183 ssize_t ret = count;
ba76149f 184
f42f2552 185 if (sysfs_streq(buf, "always")) {
21440d7e
DR
186 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 188 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
189 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 191 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
192 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
193 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
194 } else
195 ret = -EINVAL;
ba76149f
AA
196
197 if (ret > 0) {
b46e756f 198 int err = start_stop_khugepaged();
ba76149f
AA
199 if (err)
200 ret = err;
201 }
ba76149f 202 return ret;
71e3aac0
AA
203}
204static struct kobj_attribute enabled_attr =
205 __ATTR(enabled, 0644, enabled_show, enabled_store);
206
b46e756f 207ssize_t single_hugepage_flag_show(struct kobject *kobj,
bfb0ffeb
JP
208 struct kobj_attribute *attr, char *buf,
209 enum transparent_hugepage_flag flag)
71e3aac0 210{
bfb0ffeb
JP
211 return sysfs_emit(buf, "%d\n",
212 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 213}
e27e6151 214
b46e756f 215ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
216 struct kobj_attribute *attr,
217 const char *buf, size_t count,
218 enum transparent_hugepage_flag flag)
219{
e27e6151
BH
220 unsigned long value;
221 int ret;
222
223 ret = kstrtoul(buf, 10, &value);
224 if (ret < 0)
225 return ret;
226 if (value > 1)
227 return -EINVAL;
228
229 if (value)
71e3aac0 230 set_bit(flag, &transparent_hugepage_flags);
e27e6151 231 else
71e3aac0 232 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
233
234 return count;
235}
236
71e3aac0
AA
237static ssize_t defrag_show(struct kobject *kobj,
238 struct kobj_attribute *attr, char *buf)
239{
bfb0ffeb
JP
240 const char *output;
241
242 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
243 &transparent_hugepage_flags))
244 output = "[always] defer defer+madvise madvise never";
245 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
246 &transparent_hugepage_flags))
247 output = "always [defer] defer+madvise madvise never";
248 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
249 &transparent_hugepage_flags))
250 output = "always defer [defer+madvise] madvise never";
251 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
252 &transparent_hugepage_flags))
253 output = "always defer defer+madvise [madvise] never";
254 else
255 output = "always defer defer+madvise madvise [never]";
256
257 return sysfs_emit(buf, "%s\n", output);
71e3aac0 258}
21440d7e 259
71e3aac0
AA
260static ssize_t defrag_store(struct kobject *kobj,
261 struct kobj_attribute *attr,
262 const char *buf, size_t count)
263{
f42f2552 264 if (sysfs_streq(buf, "always")) {
21440d7e
DR
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 269 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 274 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 279 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
283 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 284 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
287 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
289 } else
290 return -EINVAL;
291
292 return count;
71e3aac0
AA
293}
294static struct kobj_attribute defrag_attr =
295 __ATTR(defrag, 0644, defrag_show, defrag_store);
296
79da5407 297static ssize_t use_zero_page_show(struct kobject *kobj,
ae7a927d 298 struct kobj_attribute *attr, char *buf)
79da5407 299{
b46e756f 300 return single_hugepage_flag_show(kobj, attr, buf,
ae7a927d 301 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
79da5407
KS
302}
303static ssize_t use_zero_page_store(struct kobject *kobj,
304 struct kobj_attribute *attr, const char *buf, size_t count)
305{
b46e756f 306 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
307 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
308}
309static struct kobj_attribute use_zero_page_attr =
310 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
311
312static ssize_t hpage_pmd_size_show(struct kobject *kobj,
ae7a927d 313 struct kobj_attribute *attr, char *buf)
49920d28 314{
ae7a927d 315 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
49920d28
HD
316}
317static struct kobj_attribute hpage_pmd_size_attr =
318 __ATTR_RO(hpage_pmd_size);
319
71e3aac0
AA
320static struct attribute *hugepage_attr[] = {
321 &enabled_attr.attr,
322 &defrag_attr.attr,
79da5407 323 &use_zero_page_attr.attr,
49920d28 324 &hpage_pmd_size_attr.attr,
396bcc52 325#ifdef CONFIG_SHMEM
5a6e75f8 326 &shmem_enabled_attr.attr,
71e3aac0
AA
327#endif
328 NULL,
329};
330
8aa95a21 331static const struct attribute_group hugepage_attr_group = {
71e3aac0 332 .attrs = hugepage_attr,
ba76149f
AA
333};
334
569e5590 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 336{
71e3aac0
AA
337 int err;
338
569e5590
SL
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 341 pr_err("failed to create transparent hugepage kobject\n");
569e5590 342 return -ENOMEM;
ba76149f
AA
343 }
344
569e5590 345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 346 if (err) {
ae3a8c1c 347 pr_err("failed to register transparent hugepage group\n");
569e5590 348 goto delete_obj;
ba76149f
AA
349 }
350
569e5590 351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 352 if (err) {
ae3a8c1c 353 pr_err("failed to register transparent hugepage group\n");
569e5590 354 goto remove_hp_group;
ba76149f 355 }
569e5590
SL
356
357 return 0;
358
359remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364}
365
366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367{
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371}
372#else
373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374{
375 return 0;
376}
377
378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379{
380}
381#endif /* CONFIG_SYSFS */
382
383static int __init hugepage_init(void)
384{
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
391 }
392
ff20c2e0
KS
393 /*
394 * hugepages can't be allocated by the buddy allocator
395 */
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 /*
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
569e5590
SL
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
65ebb64f 405 goto err_sysfs;
ba76149f 406
b46e756f 407 err = khugepaged_init();
ba76149f 408 if (err)
65ebb64f 409 goto err_slab;
ba76149f 410
65ebb64f
KS
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
9a982250
KS
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
97ae1749 417
97562cd2
RR
418 /*
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
422 */
ca79b0c2 423 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 424 transparent_hugepage_flags = 0;
79553da2
KS
425 return 0;
426 }
97562cd2 427
79553da2 428 err = start_stop_khugepaged();
65ebb64f
KS
429 if (err)
430 goto err_khugepaged;
ba76149f 431
569e5590 432 return 0;
65ebb64f 433err_khugepaged:
9a982250
KS
434 unregister_shrinker(&deferred_split_shrinker);
435err_split_shrinker:
65ebb64f
KS
436 unregister_shrinker(&huge_zero_page_shrinker);
437err_hzp_shrinker:
b46e756f 438 khugepaged_destroy();
65ebb64f 439err_slab:
569e5590 440 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 441err_sysfs:
ba76149f 442 return err;
71e3aac0 443}
a64fb3cd 444subsys_initcall(hugepage_init);
71e3aac0
AA
445
446static int __init setup_transparent_hugepage(char *str)
447{
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
469 }
470out:
471 if (!ret)
ae3a8c1c 472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
473 return ret;
474}
475__setup("transparent_hugepage=", setup_transparent_hugepage);
476
f55e1014 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 478{
f55e1014 479 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
482}
483
87eaceb3
YS
484#ifdef CONFIG_MEMCG
485static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 486{
bcfe06bf 487 struct mem_cgroup *memcg = page_memcg(compound_head(page));
87eaceb3
YS
488 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
489
490 if (memcg)
491 return &memcg->deferred_split_queue;
492 else
493 return &pgdat->deferred_split_queue;
9a982250 494}
87eaceb3
YS
495#else
496static inline struct deferred_split *get_deferred_split_queue(struct page *page)
497{
498 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
499
500 return &pgdat->deferred_split_queue;
501}
502#endif
9a982250
KS
503
504void prep_transhuge_page(struct page *page)
505{
506 /*
507 * we use page->mapping and page->indexlru in second tail page
508 * as list_head: assuming THP order >= 2
509 */
9a982250
KS
510
511 INIT_LIST_HEAD(page_deferred_list(page));
512 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
513}
514
005ba37c
SC
515bool is_transparent_hugepage(struct page *page)
516{
517 if (!PageCompound(page))
fa1f68cc 518 return false;
005ba37c
SC
519
520 page = compound_head(page);
521 return is_huge_zero_page(page) ||
522 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
523}
524EXPORT_SYMBOL_GPL(is_transparent_hugepage);
525
97d3d0f9
KS
526static unsigned long __thp_get_unmapped_area(struct file *filp,
527 unsigned long addr, unsigned long len,
74d2fad1
TK
528 loff_t off, unsigned long flags, unsigned long size)
529{
74d2fad1
TK
530 loff_t off_end = off + len;
531 loff_t off_align = round_up(off, size);
97d3d0f9 532 unsigned long len_pad, ret;
74d2fad1
TK
533
534 if (off_end <= off_align || (off_end - off_align) < size)
535 return 0;
536
537 len_pad = len + size;
538 if (len_pad < len || (off + len_pad) < off)
539 return 0;
540
97d3d0f9 541 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 542 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
543
544 /*
545 * The failure might be due to length padding. The caller will retry
546 * without the padding.
547 */
548 if (IS_ERR_VALUE(ret))
74d2fad1
TK
549 return 0;
550
97d3d0f9
KS
551 /*
552 * Do not try to align to THP boundary if allocation at the address
553 * hint succeeds.
554 */
555 if (ret == addr)
556 return addr;
557
558 ret += (off - ret) & (size - 1);
559 return ret;
74d2fad1
TK
560}
561
562unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
563 unsigned long len, unsigned long pgoff, unsigned long flags)
564{
97d3d0f9 565 unsigned long ret;
74d2fad1
TK
566 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
567
74d2fad1
TK
568 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
569 goto out;
570
97d3d0f9
KS
571 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
572 if (ret)
573 return ret;
574out:
74d2fad1
TK
575 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
576}
577EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
578
2b740303
SJ
579static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
580 struct page *page, gfp_t gfp)
71e3aac0 581{
82b0f8c3 582 struct vm_area_struct *vma = vmf->vma;
71e3aac0 583 pgtable_t pgtable;
82b0f8c3 584 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 585 vm_fault_t ret = 0;
71e3aac0 586
309381fe 587 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 588
d9eb1ea2 589 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
6b251fc9
AA
590 put_page(page);
591 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 592 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
6b251fc9
AA
593 return VM_FAULT_FALLBACK;
594 }
9d82c694 595 cgroup_throttle_swaprate(page, gfp);
00501b53 596
4cf58924 597 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 598 if (unlikely(!pgtable)) {
6b31d595
MH
599 ret = VM_FAULT_OOM;
600 goto release;
00501b53 601 }
71e3aac0 602
c79b57e4 603 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
604 /*
605 * The memory barrier inside __SetPageUptodate makes sure that
606 * clear_huge_page writes become visible before the set_pmd_at()
607 * write.
608 */
71e3aac0
AA
609 __SetPageUptodate(page);
610
82b0f8c3
JK
611 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
612 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 613 goto unlock_release;
71e3aac0
AA
614 } else {
615 pmd_t entry;
6b251fc9 616
6b31d595
MH
617 ret = check_stable_address_space(vma->vm_mm);
618 if (ret)
619 goto unlock_release;
620
6b251fc9
AA
621 /* Deliver the page fault to userland */
622 if (userfaultfd_missing(vma)) {
2b740303 623 vm_fault_t ret2;
6b251fc9 624
82b0f8c3 625 spin_unlock(vmf->ptl);
6b251fc9 626 put_page(page);
bae473a4 627 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
628 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
629 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
630 return ret2;
6b251fc9
AA
631 }
632
3122359a 633 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 634 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 635 page_add_new_anon_rmap(page, vma, haddr, true);
b518154e 636 lru_cache_add_inactive_or_unevictable(page, vma);
82b0f8c3
JK
637 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
638 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
fca40573 639 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
bae473a4 640 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 641 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 642 spin_unlock(vmf->ptl);
6b251fc9 643 count_vm_event(THP_FAULT_ALLOC);
9d82c694 644 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
71e3aac0
AA
645 }
646
aa2e878e 647 return 0;
6b31d595
MH
648unlock_release:
649 spin_unlock(vmf->ptl);
650release:
651 if (pgtable)
652 pte_free(vma->vm_mm, pgtable);
6b31d595
MH
653 put_page(page);
654 return ret;
655
71e3aac0
AA
656}
657
444eb2a4 658/*
21440d7e
DR
659 * always: directly stall for all thp allocations
660 * defer: wake kswapd and fail if not immediately available
661 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
662 * fail if not immediately available
663 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
664 * available
665 * never: never stall for any thp allocation
444eb2a4 666 */
19deb769 667static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 668{
21440d7e 669 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
2f0799a0 670
ac79f78d 671 /* Always do synchronous compaction */
a8282608
AA
672 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
673 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
674
675 /* Kick kcompactd and fail quickly */
21440d7e 676 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 677 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
678
679 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 680 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
681 return GFP_TRANSHUGE_LIGHT |
682 (vma_madvised ? __GFP_DIRECT_RECLAIM :
683 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
684
685 /* Only do synchronous compaction if madvised */
21440d7e 686 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
687 return GFP_TRANSHUGE_LIGHT |
688 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 689
19deb769 690 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
691}
692
c4088ebd 693/* Caller must hold page table lock. */
d295e341 694static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 695 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 696 struct page *zero_page)
fc9fe822
KS
697{
698 pmd_t entry;
7c414164
AM
699 if (!pmd_none(*pmd))
700 return false;
5918d10a 701 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 702 entry = pmd_mkhuge(entry);
12c9d70b
MW
703 if (pgtable)
704 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 705 set_pmd_at(mm, haddr, pmd, entry);
c4812909 706 mm_inc_nr_ptes(mm);
7c414164 707 return true;
fc9fe822
KS
708}
709
2b740303 710vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 711{
82b0f8c3 712 struct vm_area_struct *vma = vmf->vma;
077fcf11 713 gfp_t gfp;
71e3aac0 714 struct page *page;
82b0f8c3 715 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 716
43675e6f 717 if (!transhuge_vma_suitable(vma, haddr))
c0292554 718 return VM_FAULT_FALLBACK;
128ec037
KS
719 if (unlikely(anon_vma_prepare(vma)))
720 return VM_FAULT_OOM;
6d50e60c 721 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 722 return VM_FAULT_OOM;
82b0f8c3 723 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 724 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
725 transparent_hugepage_use_zero_page()) {
726 pgtable_t pgtable;
727 struct page *zero_page;
2b740303 728 vm_fault_t ret;
4cf58924 729 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 730 if (unlikely(!pgtable))
ba76149f 731 return VM_FAULT_OOM;
6fcb52a5 732 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 733 if (unlikely(!zero_page)) {
bae473a4 734 pte_free(vma->vm_mm, pgtable);
81ab4201 735 count_vm_event(THP_FAULT_FALLBACK);
c0292554 736 return VM_FAULT_FALLBACK;
b9bbfbe3 737 }
82b0f8c3 738 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9 739 ret = 0;
82b0f8c3 740 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
741 ret = check_stable_address_space(vma->vm_mm);
742 if (ret) {
743 spin_unlock(vmf->ptl);
bfe8cc1d 744 pte_free(vma->vm_mm, pgtable);
6b31d595 745 } else if (userfaultfd_missing(vma)) {
82b0f8c3 746 spin_unlock(vmf->ptl);
bfe8cc1d 747 pte_free(vma->vm_mm, pgtable);
82b0f8c3 748 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
749 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
750 } else {
bae473a4 751 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3 752 haddr, vmf->pmd, zero_page);
fca40573 753 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
82b0f8c3 754 spin_unlock(vmf->ptl);
6b251fc9 755 }
bfe8cc1d 756 } else {
82b0f8c3 757 spin_unlock(vmf->ptl);
bae473a4 758 pte_free(vma->vm_mm, pgtable);
bfe8cc1d 759 }
6b251fc9 760 return ret;
71e3aac0 761 }
19deb769
DR
762 gfp = alloc_hugepage_direct_gfpmask(vma);
763 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
764 if (unlikely(!page)) {
765 count_vm_event(THP_FAULT_FALLBACK);
c0292554 766 return VM_FAULT_FALLBACK;
128ec037 767 }
9a982250 768 prep_transhuge_page(page);
82b0f8c3 769 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
770}
771
ae18d6dc 772static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
773 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
774 pgtable_t pgtable)
5cad465d
MW
775{
776 struct mm_struct *mm = vma->vm_mm;
777 pmd_t entry;
778 spinlock_t *ptl;
779
780 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
781 if (!pmd_none(*pmd)) {
782 if (write) {
783 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
784 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
785 goto out_unlock;
786 }
787 entry = pmd_mkyoung(*pmd);
788 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
789 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
790 update_mmu_cache_pmd(vma, addr, pmd);
791 }
792
793 goto out_unlock;
794 }
795
f25748e3
DW
796 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
797 if (pfn_t_devmap(pfn))
798 entry = pmd_mkdevmap(entry);
01871e59 799 if (write) {
f55e1014
LT
800 entry = pmd_mkyoung(pmd_mkdirty(entry));
801 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 802 }
3b6521f5
OH
803
804 if (pgtable) {
805 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 806 mm_inc_nr_ptes(mm);
c6f3c5ee 807 pgtable = NULL;
3b6521f5
OH
808 }
809
01871e59
RZ
810 set_pmd_at(mm, addr, pmd, entry);
811 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
812
813out_unlock:
5cad465d 814 spin_unlock(ptl);
c6f3c5ee
AK
815 if (pgtable)
816 pte_free(mm, pgtable);
5cad465d
MW
817}
818
9a9731b1
THV
819/**
820 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
821 * @vmf: Structure describing the fault
822 * @pfn: pfn to insert
823 * @pgprot: page protection to use
824 * @write: whether it's a write fault
825 *
826 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
827 * also consult the vmf_insert_mixed_prot() documentation when
828 * @pgprot != @vmf->vma->vm_page_prot.
829 *
830 * Return: vm_fault_t value.
831 */
832vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
833 pgprot_t pgprot, bool write)
5cad465d 834{
fce86ff5
DW
835 unsigned long addr = vmf->address & PMD_MASK;
836 struct vm_area_struct *vma = vmf->vma;
3b6521f5 837 pgtable_t pgtable = NULL;
fce86ff5 838
5cad465d
MW
839 /*
840 * If we had pmd_special, we could avoid all these restrictions,
841 * but we need to be consistent with PTEs and architectures that
842 * can't support a 'special' bit.
843 */
e1fb4a08
DJ
844 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
845 !pfn_t_devmap(pfn));
5cad465d
MW
846 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
847 (VM_PFNMAP|VM_MIXEDMAP));
848 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
849
850 if (addr < vma->vm_start || addr >= vma->vm_end)
851 return VM_FAULT_SIGBUS;
308a047c 852
3b6521f5 853 if (arch_needs_pgtable_deposit()) {
4cf58924 854 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
855 if (!pgtable)
856 return VM_FAULT_OOM;
857 }
858
308a047c
BP
859 track_pfn_insert(vma, &pgprot, pfn);
860
fce86ff5 861 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 862 return VM_FAULT_NOPAGE;
5cad465d 863}
9a9731b1 864EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
5cad465d 865
a00cc7d9 866#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 867static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 868{
f55e1014 869 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
870 pud = pud_mkwrite(pud);
871 return pud;
872}
873
874static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
875 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
876{
877 struct mm_struct *mm = vma->vm_mm;
878 pud_t entry;
879 spinlock_t *ptl;
880
881 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
882 if (!pud_none(*pud)) {
883 if (write) {
884 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
885 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
886 goto out_unlock;
887 }
888 entry = pud_mkyoung(*pud);
889 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
890 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
891 update_mmu_cache_pud(vma, addr, pud);
892 }
893 goto out_unlock;
894 }
895
a00cc7d9
MW
896 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
897 if (pfn_t_devmap(pfn))
898 entry = pud_mkdevmap(entry);
899 if (write) {
f55e1014
LT
900 entry = pud_mkyoung(pud_mkdirty(entry));
901 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
902 }
903 set_pud_at(mm, addr, pud, entry);
904 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
905
906out_unlock:
a00cc7d9
MW
907 spin_unlock(ptl);
908}
909
9a9731b1
THV
910/**
911 * vmf_insert_pfn_pud_prot - insert a pud size pfn
912 * @vmf: Structure describing the fault
913 * @pfn: pfn to insert
914 * @pgprot: page protection to use
915 * @write: whether it's a write fault
916 *
917 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
918 * also consult the vmf_insert_mixed_prot() documentation when
919 * @pgprot != @vmf->vma->vm_page_prot.
920 *
921 * Return: vm_fault_t value.
922 */
923vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
924 pgprot_t pgprot, bool write)
a00cc7d9 925{
fce86ff5
DW
926 unsigned long addr = vmf->address & PUD_MASK;
927 struct vm_area_struct *vma = vmf->vma;
fce86ff5 928
a00cc7d9
MW
929 /*
930 * If we had pud_special, we could avoid all these restrictions,
931 * but we need to be consistent with PTEs and architectures that
932 * can't support a 'special' bit.
933 */
62ec0d8c
DJ
934 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
935 !pfn_t_devmap(pfn));
a00cc7d9
MW
936 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
937 (VM_PFNMAP|VM_MIXEDMAP));
938 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
939
940 if (addr < vma->vm_start || addr >= vma->vm_end)
941 return VM_FAULT_SIGBUS;
942
943 track_pfn_insert(vma, &pgprot, pfn);
944
fce86ff5 945 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
946 return VM_FAULT_NOPAGE;
947}
9a9731b1 948EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
a00cc7d9
MW
949#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
950
3565fce3 951static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 952 pmd_t *pmd, int flags)
3565fce3
DW
953{
954 pmd_t _pmd;
955
a8f97366
KS
956 _pmd = pmd_mkyoung(*pmd);
957 if (flags & FOLL_WRITE)
958 _pmd = pmd_mkdirty(_pmd);
3565fce3 959 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 960 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
961 update_mmu_cache_pmd(vma, addr, pmd);
962}
963
964struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 965 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
966{
967 unsigned long pfn = pmd_pfn(*pmd);
968 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
969 struct page *page;
970
971 assert_spin_locked(pmd_lockptr(mm, pmd));
972
8310d48b
KF
973 /*
974 * When we COW a devmap PMD entry, we split it into PTEs, so we should
975 * not be in this function with `flags & FOLL_COW` set.
976 */
977 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
978
3faa52c0
JH
979 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
980 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
981 (FOLL_PIN | FOLL_GET)))
982 return NULL;
983
f6f37321 984 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
985 return NULL;
986
987 if (pmd_present(*pmd) && pmd_devmap(*pmd))
988 /* pass */;
989 else
990 return NULL;
991
992 if (flags & FOLL_TOUCH)
a8f97366 993 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
994
995 /*
996 * device mapped pages can only be returned if the
997 * caller will manage the page reference count.
998 */
3faa52c0 999 if (!(flags & (FOLL_GET | FOLL_PIN)))
3565fce3
DW
1000 return ERR_PTR(-EEXIST);
1001
1002 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1003 *pgmap = get_dev_pagemap(pfn, *pgmap);
1004 if (!*pgmap)
3565fce3
DW
1005 return ERR_PTR(-EFAULT);
1006 page = pfn_to_page(pfn);
3faa52c0
JH
1007 if (!try_grab_page(page, flags))
1008 page = ERR_PTR(-ENOMEM);
3565fce3
DW
1009
1010 return page;
1011}
1012
71e3aac0
AA
1013int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1014 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1015 struct vm_area_struct *vma)
1016{
c4088ebd 1017 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1018 struct page *src_page;
1019 pmd_t pmd;
12c9d70b 1020 pgtable_t pgtable = NULL;
628d47ce 1021 int ret = -ENOMEM;
71e3aac0 1022
628d47ce
KS
1023 /* Skip if can be re-fill on fault */
1024 if (!vma_is_anonymous(vma))
1025 return 0;
1026
4cf58924 1027 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1028 if (unlikely(!pgtable))
1029 goto out;
71e3aac0 1030
c4088ebd
KS
1031 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1032 src_ptl = pmd_lockptr(src_mm, src_pmd);
1033 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1034
1035 ret = -EAGAIN;
1036 pmd = *src_pmd;
84c3fc4e 1037
b569a176
PX
1038 /*
1039 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1040 * does not have the VM_UFFD_WP, which means that the uffd
1041 * fork event is not enabled.
1042 */
1043 if (!(vma->vm_flags & VM_UFFD_WP))
1044 pmd = pmd_clear_uffd_wp(pmd);
1045
84c3fc4e
ZY
1046#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1047 if (unlikely(is_swap_pmd(pmd))) {
1048 swp_entry_t entry = pmd_to_swp_entry(pmd);
1049
1050 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1051 if (is_write_migration_entry(entry)) {
1052 make_migration_entry_read(&entry);
1053 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1054 if (pmd_swp_soft_dirty(*src_pmd))
1055 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1056 set_pmd_at(src_mm, addr, src_pmd, pmd);
1057 }
dd8a67f9 1058 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1059 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1060 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1061 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1062 ret = 0;
1063 goto out_unlock;
1064 }
1065#endif
1066
628d47ce 1067 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1068 pte_free(dst_mm, pgtable);
1069 goto out_unlock;
1070 }
fc9fe822 1071 /*
c4088ebd 1072 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1073 * under splitting since we don't split the page itself, only pmd to
1074 * a page table.
1075 */
1076 if (is_huge_zero_pmd(pmd)) {
5918d10a 1077 struct page *zero_page;
97ae1749
KS
1078 /*
1079 * get_huge_zero_page() will never allocate a new page here,
1080 * since we already have a zero page to copy. It just takes a
1081 * reference.
1082 */
6fcb52a5 1083 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1084 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1085 zero_page);
fc9fe822
KS
1086 ret = 0;
1087 goto out_unlock;
1088 }
de466bd6 1089
628d47ce
KS
1090 src_page = pmd_page(pmd);
1091 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
d042035e
PX
1092
1093 /*
1094 * If this page is a potentially pinned page, split and retry the fault
1095 * with smaller page size. Normally this should not happen because the
1096 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1097 * best effort that the pinned pages won't be replaced by another
1098 * random page during the coming copy-on-write.
1099 */
1100 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1101 atomic_read(&src_mm->has_pinned) &&
1102 page_maybe_dma_pinned(src_page))) {
1103 pte_free(dst_mm, pgtable);
1104 spin_unlock(src_ptl);
1105 spin_unlock(dst_ptl);
1106 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1107 return -EAGAIN;
1108 }
1109
628d47ce
KS
1110 get_page(src_page);
1111 page_dup_rmap(src_page, true);
1112 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1113 mm_inc_nr_ptes(dst_mm);
628d47ce 1114 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1115
1116 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1117 pmd = pmd_mkold(pmd_wrprotect(pmd));
1118 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1119
1120 ret = 0;
1121out_unlock:
c4088ebd
KS
1122 spin_unlock(src_ptl);
1123 spin_unlock(dst_ptl);
71e3aac0
AA
1124out:
1125 return ret;
1126}
1127
a00cc7d9
MW
1128#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1129static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1130 pud_t *pud, int flags)
a00cc7d9
MW
1131{
1132 pud_t _pud;
1133
a8f97366
KS
1134 _pud = pud_mkyoung(*pud);
1135 if (flags & FOLL_WRITE)
1136 _pud = pud_mkdirty(_pud);
a00cc7d9 1137 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1138 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1139 update_mmu_cache_pud(vma, addr, pud);
1140}
1141
1142struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1143 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1144{
1145 unsigned long pfn = pud_pfn(*pud);
1146 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1147 struct page *page;
1148
1149 assert_spin_locked(pud_lockptr(mm, pud));
1150
f6f37321 1151 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1152 return NULL;
1153
3faa52c0
JH
1154 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1155 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1156 (FOLL_PIN | FOLL_GET)))
1157 return NULL;
1158
a00cc7d9
MW
1159 if (pud_present(*pud) && pud_devmap(*pud))
1160 /* pass */;
1161 else
1162 return NULL;
1163
1164 if (flags & FOLL_TOUCH)
a8f97366 1165 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1166
1167 /*
1168 * device mapped pages can only be returned if the
1169 * caller will manage the page reference count.
3faa52c0
JH
1170 *
1171 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
a00cc7d9 1172 */
3faa52c0 1173 if (!(flags & (FOLL_GET | FOLL_PIN)))
a00cc7d9
MW
1174 return ERR_PTR(-EEXIST);
1175
1176 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1177 *pgmap = get_dev_pagemap(pfn, *pgmap);
1178 if (!*pgmap)
a00cc7d9
MW
1179 return ERR_PTR(-EFAULT);
1180 page = pfn_to_page(pfn);
3faa52c0
JH
1181 if (!try_grab_page(page, flags))
1182 page = ERR_PTR(-ENOMEM);
a00cc7d9
MW
1183
1184 return page;
1185}
1186
1187int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1188 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1189 struct vm_area_struct *vma)
1190{
1191 spinlock_t *dst_ptl, *src_ptl;
1192 pud_t pud;
1193 int ret;
1194
1195 dst_ptl = pud_lock(dst_mm, dst_pud);
1196 src_ptl = pud_lockptr(src_mm, src_pud);
1197 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1198
1199 ret = -EAGAIN;
1200 pud = *src_pud;
1201 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1202 goto out_unlock;
1203
1204 /*
1205 * When page table lock is held, the huge zero pud should not be
1206 * under splitting since we don't split the page itself, only pud to
1207 * a page table.
1208 */
1209 if (is_huge_zero_pud(pud)) {
1210 /* No huge zero pud yet */
1211 }
1212
d042035e
PX
1213 /* Please refer to comments in copy_huge_pmd() */
1214 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1215 atomic_read(&src_mm->has_pinned) &&
1216 page_maybe_dma_pinned(pud_page(pud)))) {
1217 spin_unlock(src_ptl);
1218 spin_unlock(dst_ptl);
1219 __split_huge_pud(vma, src_pud, addr);
1220 return -EAGAIN;
1221 }
1222
a00cc7d9
MW
1223 pudp_set_wrprotect(src_mm, addr, src_pud);
1224 pud = pud_mkold(pud_wrprotect(pud));
1225 set_pud_at(dst_mm, addr, dst_pud, pud);
1226
1227 ret = 0;
1228out_unlock:
1229 spin_unlock(src_ptl);
1230 spin_unlock(dst_ptl);
1231 return ret;
1232}
1233
1234void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1235{
1236 pud_t entry;
1237 unsigned long haddr;
1238 bool write = vmf->flags & FAULT_FLAG_WRITE;
1239
1240 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1241 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1242 goto unlock;
1243
1244 entry = pud_mkyoung(orig_pud);
1245 if (write)
1246 entry = pud_mkdirty(entry);
1247 haddr = vmf->address & HPAGE_PUD_MASK;
1248 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1249 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1250
1251unlock:
1252 spin_unlock(vmf->ptl);
1253}
1254#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1255
82b0f8c3 1256void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1257{
1258 pmd_t entry;
1259 unsigned long haddr;
20f664aa 1260 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1261
82b0f8c3
JK
1262 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1263 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1264 goto unlock;
1265
1266 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1267 if (write)
1268 entry = pmd_mkdirty(entry);
82b0f8c3 1269 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1270 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1271 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1272
1273unlock:
82b0f8c3 1274 spin_unlock(vmf->ptl);
a1dd450b
WD
1275}
1276
2b740303 1277vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1278{
82b0f8c3 1279 struct vm_area_struct *vma = vmf->vma;
3917c802 1280 struct page *page;
82b0f8c3 1281 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 1282
82b0f8c3 1283 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1284 VM_BUG_ON_VMA(!vma->anon_vma, vma);
3917c802 1285
93b4796d 1286 if (is_huge_zero_pmd(orig_pmd))
3917c802
KS
1287 goto fallback;
1288
82b0f8c3 1289 spin_lock(vmf->ptl);
3917c802
KS
1290
1291 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1292 spin_unlock(vmf->ptl);
1293 return 0;
1294 }
71e3aac0
AA
1295
1296 page = pmd_page(orig_pmd);
309381fe 1297 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
3917c802
KS
1298
1299 /* Lock page for reuse_swap_page() */
ba3c4ce6
HY
1300 if (!trylock_page(page)) {
1301 get_page(page);
1302 spin_unlock(vmf->ptl);
1303 lock_page(page);
1304 spin_lock(vmf->ptl);
1305 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
3917c802 1306 spin_unlock(vmf->ptl);
ba3c4ce6
HY
1307 unlock_page(page);
1308 put_page(page);
3917c802 1309 return 0;
ba3c4ce6
HY
1310 }
1311 put_page(page);
1312 }
3917c802
KS
1313
1314 /*
1315 * We can only reuse the page if nobody else maps the huge page or it's
1316 * part.
1317 */
ba3c4ce6 1318 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1319 pmd_t entry;
1320 entry = pmd_mkyoung(orig_pmd);
f55e1014 1321 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3917c802 1322 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
82b0f8c3 1323 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
ba3c4ce6 1324 unlock_page(page);
82b0f8c3 1325 spin_unlock(vmf->ptl);
3917c802 1326 return VM_FAULT_WRITE;
71e3aac0 1327 }
3917c802
KS
1328
1329 unlock_page(page);
82b0f8c3 1330 spin_unlock(vmf->ptl);
3917c802
KS
1331fallback:
1332 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1333 return VM_FAULT_FALLBACK;
71e3aac0
AA
1334}
1335
8310d48b 1336/*
a308c71b
PX
1337 * FOLL_FORCE can write to even unwritable pmd's, but only
1338 * after we've gone through a COW cycle and they are dirty.
8310d48b
KF
1339 */
1340static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1341{
a308c71b
PX
1342 return pmd_write(pmd) ||
1343 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
8310d48b
KF
1344}
1345
b676b293 1346struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1347 unsigned long addr,
1348 pmd_t *pmd,
1349 unsigned int flags)
1350{
b676b293 1351 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1352 struct page *page = NULL;
1353
c4088ebd 1354 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1355
8310d48b 1356 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1357 goto out;
1358
85facf25
KS
1359 /* Avoid dumping huge zero page */
1360 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1361 return ERR_PTR(-EFAULT);
1362
2b4847e7 1363 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1364 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1365 goto out;
1366
71e3aac0 1367 page = pmd_page(*pmd);
ca120cf6 1368 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3faa52c0
JH
1369
1370 if (!try_grab_page(page, flags))
1371 return ERR_PTR(-ENOMEM);
1372
3565fce3 1373 if (flags & FOLL_TOUCH)
a8f97366 1374 touch_pmd(vma, addr, pmd, flags);
3faa52c0 1375
de60f5f1 1376 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1377 /*
1378 * We don't mlock() pte-mapped THPs. This way we can avoid
1379 * leaking mlocked pages into non-VM_LOCKED VMAs.
1380 *
9a73f61b
KS
1381 * For anon THP:
1382 *
e90309c9
KS
1383 * In most cases the pmd is the only mapping of the page as we
1384 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1385 * writable private mappings in populate_vma_page_range().
1386 *
1387 * The only scenario when we have the page shared here is if we
1388 * mlocking read-only mapping shared over fork(). We skip
1389 * mlocking such pages.
9a73f61b
KS
1390 *
1391 * For file THP:
1392 *
1393 * We can expect PageDoubleMap() to be stable under page lock:
1394 * for file pages we set it in page_add_file_rmap(), which
1395 * requires page to be locked.
e90309c9 1396 */
9a73f61b
KS
1397
1398 if (PageAnon(page) && compound_mapcount(page) != 1)
1399 goto skip_mlock;
1400 if (PageDoubleMap(page) || !page->mapping)
1401 goto skip_mlock;
1402 if (!trylock_page(page))
1403 goto skip_mlock;
9a73f61b
KS
1404 if (page->mapping && !PageDoubleMap(page))
1405 mlock_vma_page(page);
1406 unlock_page(page);
b676b293 1407 }
9a73f61b 1408skip_mlock:
71e3aac0 1409 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1410 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0
AA
1411
1412out:
1413 return page;
1414}
1415
d10e63f2 1416/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1417vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1418{
82b0f8c3 1419 struct vm_area_struct *vma = vmf->vma;
b8916634 1420 struct anon_vma *anon_vma = NULL;
b32967ff 1421 struct page *page;
82b0f8c3 1422 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1423 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1424 int target_nid, last_cpupid = -1;
8191acbd
MG
1425 bool page_locked;
1426 bool migrated = false;
b191f9b1 1427 bool was_writable;
6688cc05 1428 int flags = 0;
d10e63f2 1429
82b0f8c3
JK
1430 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1431 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1432 goto out_unlock;
1433
de466bd6
MG
1434 /*
1435 * If there are potential migrations, wait for completion and retry
1436 * without disrupting NUMA hinting information. Do not relock and
1437 * check_same as the page may no longer be mapped.
1438 */
82b0f8c3
JK
1439 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1440 page = pmd_page(*vmf->pmd);
3c226c63
MR
1441 if (!get_page_unless_zero(page))
1442 goto out_unlock;
82b0f8c3 1443 spin_unlock(vmf->ptl);
48054625 1444 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
de466bd6
MG
1445 goto out;
1446 }
1447
d10e63f2 1448 page = pmd_page(pmd);
a1a46184 1449 BUG_ON(is_huge_zero_page(page));
8191acbd 1450 page_nid = page_to_nid(page);
90572890 1451 last_cpupid = page_cpupid_last(page);
03c5a6e1 1452 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1453 if (page_nid == this_nid) {
03c5a6e1 1454 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1455 flags |= TNF_FAULT_LOCAL;
1456 }
4daae3b4 1457
bea66fbd 1458 /* See similar comment in do_numa_page for explanation */
288bc549 1459 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1460 flags |= TNF_NO_GROUP;
1461
ff9042b1
MG
1462 /*
1463 * Acquire the page lock to serialise THP migrations but avoid dropping
1464 * page_table_lock if at all possible
1465 */
b8916634
MG
1466 page_locked = trylock_page(page);
1467 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1468 if (target_nid == NUMA_NO_NODE) {
b8916634 1469 /* If the page was locked, there are no parallel migrations */
a54a407f 1470 if (page_locked)
b8916634 1471 goto clear_pmdnuma;
2b4847e7 1472 }
4daae3b4 1473
de466bd6 1474 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1475 if (!page_locked) {
98fa15f3 1476 page_nid = NUMA_NO_NODE;
3c226c63
MR
1477 if (!get_page_unless_zero(page))
1478 goto out_unlock;
82b0f8c3 1479 spin_unlock(vmf->ptl);
48054625 1480 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
b8916634
MG
1481 goto out;
1482 }
1483
2b4847e7
MG
1484 /*
1485 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1486 * to serialises splits
1487 */
b8916634 1488 get_page(page);
82b0f8c3 1489 spin_unlock(vmf->ptl);
b8916634 1490 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1491
c69307d5 1492 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1493 spin_lock(vmf->ptl);
1494 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1495 unlock_page(page);
1496 put_page(page);
98fa15f3 1497 page_nid = NUMA_NO_NODE;
4daae3b4 1498 goto out_unlock;
b32967ff 1499 }
ff9042b1 1500
c3a489ca
MG
1501 /* Bail if we fail to protect against THP splits for any reason */
1502 if (unlikely(!anon_vma)) {
1503 put_page(page);
98fa15f3 1504 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1505 goto clear_pmdnuma;
1506 }
1507
8b1b436d
PZ
1508 /*
1509 * Since we took the NUMA fault, we must have observed the !accessible
1510 * bit. Make sure all other CPUs agree with that, to avoid them
1511 * modifying the page we're about to migrate.
1512 *
1513 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1514 * inc_tlb_flush_pending().
1515 *
1516 * We are not sure a pending tlb flush here is for a huge page
1517 * mapping or not. Hence use the tlb range variant
8b1b436d 1518 */
7066f0f9 1519 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1520 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1521 /*
1522 * change_huge_pmd() released the pmd lock before
1523 * invalidating the secondary MMUs sharing the primary
1524 * MMU pagetables (with ->invalidate_range()). The
1525 * mmu_notifier_invalidate_range_end() (which
1526 * internally calls ->invalidate_range()) in
1527 * change_pmd_range() will run after us, so we can't
1528 * rely on it here and we need an explicit invalidate.
1529 */
1530 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1531 haddr + HPAGE_PMD_SIZE);
1532 }
8b1b436d 1533
a54a407f
MG
1534 /*
1535 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1536 * and access rights restored.
a54a407f 1537 */
82b0f8c3 1538 spin_unlock(vmf->ptl);
8b1b436d 1539
bae473a4 1540 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1541 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1542 if (migrated) {
1543 flags |= TNF_MIGRATED;
8191acbd 1544 page_nid = target_nid;
074c2381
MG
1545 } else
1546 flags |= TNF_MIGRATE_FAIL;
b32967ff 1547
8191acbd 1548 goto out;
b32967ff 1549clear_pmdnuma:
a54a407f 1550 BUG_ON(!PageLocked(page));
288bc549 1551 was_writable = pmd_savedwrite(pmd);
4d942466 1552 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1553 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1554 if (was_writable)
1555 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1556 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1557 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1558 unlock_page(page);
d10e63f2 1559out_unlock:
82b0f8c3 1560 spin_unlock(vmf->ptl);
b8916634
MG
1561
1562out:
1563 if (anon_vma)
1564 page_unlock_anon_vma_read(anon_vma);
1565
98fa15f3 1566 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1567 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1568 flags);
8191acbd 1569
d10e63f2
MG
1570 return 0;
1571}
1572
319904ad
HY
1573/*
1574 * Return true if we do MADV_FREE successfully on entire pmd page.
1575 * Otherwise, return false.
1576 */
1577bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1578 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1579{
1580 spinlock_t *ptl;
1581 pmd_t orig_pmd;
1582 struct page *page;
1583 struct mm_struct *mm = tlb->mm;
319904ad 1584 bool ret = false;
b8d3c4c3 1585
ed6a7935 1586 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1587
b6ec57f4
KS
1588 ptl = pmd_trans_huge_lock(pmd, vma);
1589 if (!ptl)
25eedabe 1590 goto out_unlocked;
b8d3c4c3
MK
1591
1592 orig_pmd = *pmd;
319904ad 1593 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1594 goto out;
b8d3c4c3 1595
84c3fc4e
ZY
1596 if (unlikely(!pmd_present(orig_pmd))) {
1597 VM_BUG_ON(thp_migration_supported() &&
1598 !is_pmd_migration_entry(orig_pmd));
1599 goto out;
1600 }
1601
b8d3c4c3
MK
1602 page = pmd_page(orig_pmd);
1603 /*
1604 * If other processes are mapping this page, we couldn't discard
1605 * the page unless they all do MADV_FREE so let's skip the page.
1606 */
1607 if (page_mapcount(page) != 1)
1608 goto out;
1609
1610 if (!trylock_page(page))
1611 goto out;
1612
1613 /*
1614 * If user want to discard part-pages of THP, split it so MADV_FREE
1615 * will deactivate only them.
1616 */
1617 if (next - addr != HPAGE_PMD_SIZE) {
1618 get_page(page);
1619 spin_unlock(ptl);
9818b8cd 1620 split_huge_page(page);
b8d3c4c3 1621 unlock_page(page);
bbf29ffc 1622 put_page(page);
b8d3c4c3
MK
1623 goto out_unlocked;
1624 }
1625
1626 if (PageDirty(page))
1627 ClearPageDirty(page);
1628 unlock_page(page);
1629
b8d3c4c3 1630 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1631 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1632 orig_pmd = pmd_mkold(orig_pmd);
1633 orig_pmd = pmd_mkclean(orig_pmd);
1634
1635 set_pmd_at(mm, addr, pmd, orig_pmd);
1636 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1637 }
802a3a92
SL
1638
1639 mark_page_lazyfree(page);
319904ad 1640 ret = true;
b8d3c4c3
MK
1641out:
1642 spin_unlock(ptl);
1643out_unlocked:
1644 return ret;
1645}
1646
953c66c2
AK
1647static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1648{
1649 pgtable_t pgtable;
1650
1651 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1652 pte_free(mm, pgtable);
c4812909 1653 mm_dec_nr_ptes(mm);
953c66c2
AK
1654}
1655
71e3aac0 1656int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1657 pmd_t *pmd, unsigned long addr)
71e3aac0 1658{
da146769 1659 pmd_t orig_pmd;
bf929152 1660 spinlock_t *ptl;
71e3aac0 1661
ed6a7935 1662 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1663
b6ec57f4
KS
1664 ptl = __pmd_trans_huge_lock(pmd, vma);
1665 if (!ptl)
da146769
KS
1666 return 0;
1667 /*
1668 * For architectures like ppc64 we look at deposited pgtable
1669 * when calling pmdp_huge_get_and_clear. So do the
1670 * pgtable_trans_huge_withdraw after finishing pmdp related
1671 * operations.
1672 */
93a98695
AK
1673 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1674 tlb->fullmm);
da146769 1675 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2484ca9b 1676 if (vma_is_special_huge(vma)) {
3b6521f5
OH
1677 if (arch_needs_pgtable_deposit())
1678 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1679 spin_unlock(ptl);
1680 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1681 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1682 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1683 zap_deposited_table(tlb->mm, pmd);
da146769 1684 spin_unlock(ptl);
c0f2e176 1685 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1686 } else {
616b8371
ZY
1687 struct page *page = NULL;
1688 int flush_needed = 1;
1689
1690 if (pmd_present(orig_pmd)) {
1691 page = pmd_page(orig_pmd);
1692 page_remove_rmap(page, true);
1693 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1694 VM_BUG_ON_PAGE(!PageHead(page), page);
1695 } else if (thp_migration_supported()) {
1696 swp_entry_t entry;
1697
1698 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1699 entry = pmd_to_swp_entry(orig_pmd);
1700 page = pfn_to_page(swp_offset(entry));
1701 flush_needed = 0;
1702 } else
1703 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1704
b5072380 1705 if (PageAnon(page)) {
c14a6eb4 1706 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1707 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1708 } else {
953c66c2
AK
1709 if (arch_needs_pgtable_deposit())
1710 zap_deposited_table(tlb->mm, pmd);
fadae295 1711 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1712 }
616b8371 1713
da146769 1714 spin_unlock(ptl);
616b8371
ZY
1715 if (flush_needed)
1716 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1717 }
da146769 1718 return 1;
71e3aac0
AA
1719}
1720
1dd38b6c
AK
1721#ifndef pmd_move_must_withdraw
1722static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1723 spinlock_t *old_pmd_ptl,
1724 struct vm_area_struct *vma)
1725{
1726 /*
1727 * With split pmd lock we also need to move preallocated
1728 * PTE page table if new_pmd is on different PMD page table.
1729 *
1730 * We also don't deposit and withdraw tables for file pages.
1731 */
1732 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1733}
1734#endif
1735
ab6e3d09
NH
1736static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1737{
1738#ifdef CONFIG_MEM_SOFT_DIRTY
1739 if (unlikely(is_pmd_migration_entry(pmd)))
1740 pmd = pmd_swp_mksoft_dirty(pmd);
1741 else if (pmd_present(pmd))
1742 pmd = pmd_mksoft_dirty(pmd);
1743#endif
1744 return pmd;
1745}
1746
bf8616d5 1747bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
b8aa9d9d 1748 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1749{
bf929152 1750 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1751 pmd_t pmd;
37a1c49a 1752 struct mm_struct *mm = vma->vm_mm;
5d190420 1753 bool force_flush = false;
37a1c49a 1754
37a1c49a
AA
1755 /*
1756 * The destination pmd shouldn't be established, free_pgtables()
1757 * should have release it.
1758 */
1759 if (WARN_ON(!pmd_none(*new_pmd))) {
1760 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1761 return false;
37a1c49a
AA
1762 }
1763
bf929152
KS
1764 /*
1765 * We don't have to worry about the ordering of src and dst
c1e8d7c6 1766 * ptlocks because exclusive mmap_lock prevents deadlock.
bf929152 1767 */
b6ec57f4
KS
1768 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1769 if (old_ptl) {
bf929152
KS
1770 new_ptl = pmd_lockptr(mm, new_pmd);
1771 if (new_ptl != old_ptl)
1772 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1773 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1774 if (pmd_present(pmd))
a2ce2666 1775 force_flush = true;
025c5b24 1776 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1777
1dd38b6c 1778 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1779 pgtable_t pgtable;
3592806c
KS
1780 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1781 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1782 }
ab6e3d09
NH
1783 pmd = move_soft_dirty_pmd(pmd);
1784 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1785 if (force_flush)
1786 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1787 if (new_ptl != old_ptl)
1788 spin_unlock(new_ptl);
bf929152 1789 spin_unlock(old_ptl);
4b471e88 1790 return true;
37a1c49a 1791 }
4b471e88 1792 return false;
37a1c49a
AA
1793}
1794
f123d74a
MG
1795/*
1796 * Returns
1797 * - 0 if PMD could not be locked
1798 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1799 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1800 */
cd7548ab 1801int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
58705444 1802 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
cd7548ab
JW
1803{
1804 struct mm_struct *mm = vma->vm_mm;
bf929152 1805 spinlock_t *ptl;
0a85e51d
KS
1806 pmd_t entry;
1807 bool preserve_write;
1808 int ret;
58705444 1809 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
292924b2
PX
1810 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1811 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
cd7548ab 1812
b6ec57f4 1813 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1814 if (!ptl)
1815 return 0;
e944fd67 1816
0a85e51d
KS
1817 preserve_write = prot_numa && pmd_write(*pmd);
1818 ret = 1;
e944fd67 1819
84c3fc4e
ZY
1820#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1821 if (is_swap_pmd(*pmd)) {
1822 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1823
1824 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1825 if (is_write_migration_entry(entry)) {
1826 pmd_t newpmd;
1827 /*
1828 * A protection check is difficult so
1829 * just be safe and disable write
1830 */
1831 make_migration_entry_read(&entry);
1832 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1833 if (pmd_swp_soft_dirty(*pmd))
1834 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1835 set_pmd_at(mm, addr, pmd, newpmd);
1836 }
1837 goto unlock;
1838 }
1839#endif
1840
0a85e51d
KS
1841 /*
1842 * Avoid trapping faults against the zero page. The read-only
1843 * data is likely to be read-cached on the local CPU and
1844 * local/remote hits to the zero page are not interesting.
1845 */
1846 if (prot_numa && is_huge_zero_pmd(*pmd))
1847 goto unlock;
025c5b24 1848
0a85e51d
KS
1849 if (prot_numa && pmd_protnone(*pmd))
1850 goto unlock;
1851
ced10803 1852 /*
3e4e28c5 1853 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
ced10803 1854 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
3e4e28c5 1855 * which is also under mmap_read_lock(mm):
ced10803
KS
1856 *
1857 * CPU0: CPU1:
1858 * change_huge_pmd(prot_numa=1)
1859 * pmdp_huge_get_and_clear_notify()
1860 * madvise_dontneed()
1861 * zap_pmd_range()
1862 * pmd_trans_huge(*pmd) == 0 (without ptl)
1863 * // skip the pmd
1864 * set_pmd_at();
1865 * // pmd is re-established
1866 *
1867 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1868 * which may break userspace.
1869 *
1870 * pmdp_invalidate() is required to make sure we don't miss
1871 * dirty/young flags set by hardware.
1872 */
a3cf988f 1873 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1874
0a85e51d
KS
1875 entry = pmd_modify(entry, newprot);
1876 if (preserve_write)
1877 entry = pmd_mk_savedwrite(entry);
292924b2
PX
1878 if (uffd_wp) {
1879 entry = pmd_wrprotect(entry);
1880 entry = pmd_mkuffd_wp(entry);
1881 } else if (uffd_wp_resolve) {
1882 /*
1883 * Leave the write bit to be handled by PF interrupt
1884 * handler, then things like COW could be properly
1885 * handled.
1886 */
1887 entry = pmd_clear_uffd_wp(entry);
1888 }
0a85e51d
KS
1889 ret = HPAGE_PMD_NR;
1890 set_pmd_at(mm, addr, pmd, entry);
1891 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1892unlock:
1893 spin_unlock(ptl);
025c5b24
NH
1894 return ret;
1895}
1896
1897/*
8f19b0c0 1898 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1899 *
8f19b0c0
HY
1900 * Note that if it returns page table lock pointer, this routine returns without
1901 * unlocking page table lock. So callers must unlock it.
025c5b24 1902 */
b6ec57f4 1903spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1904{
b6ec57f4
KS
1905 spinlock_t *ptl;
1906 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1907 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1908 pmd_devmap(*pmd)))
b6ec57f4
KS
1909 return ptl;
1910 spin_unlock(ptl);
1911 return NULL;
cd7548ab
JW
1912}
1913
a00cc7d9
MW
1914/*
1915 * Returns true if a given pud maps a thp, false otherwise.
1916 *
1917 * Note that if it returns true, this routine returns without unlocking page
1918 * table lock. So callers must unlock it.
1919 */
1920spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1921{
1922 spinlock_t *ptl;
1923
1924 ptl = pud_lock(vma->vm_mm, pud);
1925 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1926 return ptl;
1927 spin_unlock(ptl);
1928 return NULL;
1929}
1930
1931#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1932int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1933 pud_t *pud, unsigned long addr)
1934{
a00cc7d9
MW
1935 spinlock_t *ptl;
1936
1937 ptl = __pud_trans_huge_lock(pud, vma);
1938 if (!ptl)
1939 return 0;
1940 /*
1941 * For architectures like ppc64 we look at deposited pgtable
1942 * when calling pudp_huge_get_and_clear. So do the
1943 * pgtable_trans_huge_withdraw after finishing pudp related
1944 * operations.
1945 */
70516b93 1946 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9 1947 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2484ca9b 1948 if (vma_is_special_huge(vma)) {
a00cc7d9
MW
1949 spin_unlock(ptl);
1950 /* No zero page support yet */
1951 } else {
1952 /* No support for anonymous PUD pages yet */
1953 BUG();
1954 }
1955 return 1;
1956}
1957
1958static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1959 unsigned long haddr)
1960{
1961 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1962 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1963 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1964 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1965
ce9311cf 1966 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1967
1968 pudp_huge_clear_flush_notify(vma, haddr, pud);
1969}
1970
1971void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1972 unsigned long address)
1973{
1974 spinlock_t *ptl;
ac46d4f3 1975 struct mmu_notifier_range range;
a00cc7d9 1976
7269f999 1977 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1978 address & HPAGE_PUD_MASK,
ac46d4f3
JG
1979 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1980 mmu_notifier_invalidate_range_start(&range);
1981 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
1982 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1983 goto out;
ac46d4f3 1984 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
1985
1986out:
1987 spin_unlock(ptl);
4645b9fe
JG
1988 /*
1989 * No need to double call mmu_notifier->invalidate_range() callback as
1990 * the above pudp_huge_clear_flush_notify() did already call it.
1991 */
ac46d4f3 1992 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
1993}
1994#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1995
eef1b3ba
KS
1996static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1997 unsigned long haddr, pmd_t *pmd)
1998{
1999 struct mm_struct *mm = vma->vm_mm;
2000 pgtable_t pgtable;
2001 pmd_t _pmd;
2002 int i;
2003
0f10851e
JG
2004 /*
2005 * Leave pmd empty until pte is filled note that it is fine to delay
2006 * notification until mmu_notifier_invalidate_range_end() as we are
2007 * replacing a zero pmd write protected page with a zero pte write
2008 * protected page.
2009 *
ad56b738 2010 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2011 */
2012 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2013
2014 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2015 pmd_populate(mm, &_pmd, pgtable);
2016
2017 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2018 pte_t *pte, entry;
2019 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2020 entry = pte_mkspecial(entry);
2021 pte = pte_offset_map(&_pmd, haddr);
2022 VM_BUG_ON(!pte_none(*pte));
2023 set_pte_at(mm, haddr, pte, entry);
2024 pte_unmap(pte);
2025 }
2026 smp_wmb(); /* make pte visible before pmd */
2027 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2028}
2029
2030static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2031 unsigned long haddr, bool freeze)
eef1b3ba
KS
2032{
2033 struct mm_struct *mm = vma->vm_mm;
2034 struct page *page;
2035 pgtable_t pgtable;
423ac9af 2036 pmd_t old_pmd, _pmd;
292924b2 2037 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2ac015e2 2038 unsigned long addr;
eef1b3ba
KS
2039 int i;
2040
2041 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2042 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2043 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2044 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2045 && !pmd_devmap(*pmd));
eef1b3ba
KS
2046
2047 count_vm_event(THP_SPLIT_PMD);
2048
d21b9e57
KS
2049 if (!vma_is_anonymous(vma)) {
2050 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2051 /*
2052 * We are going to unmap this huge page. So
2053 * just go ahead and zap it
2054 */
2055 if (arch_needs_pgtable_deposit())
2056 zap_deposited_table(mm, pmd);
2484ca9b 2057 if (vma_is_special_huge(vma))
d21b9e57
KS
2058 return;
2059 page = pmd_page(_pmd);
e1f1b157
HD
2060 if (!PageDirty(page) && pmd_dirty(_pmd))
2061 set_page_dirty(page);
d21b9e57
KS
2062 if (!PageReferenced(page) && pmd_young(_pmd))
2063 SetPageReferenced(page);
2064 page_remove_rmap(page, true);
2065 put_page(page);
fadae295 2066 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba 2067 return;
ec0abae6 2068 } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2069 /*
2070 * FIXME: Do we want to invalidate secondary mmu by calling
2071 * mmu_notifier_invalidate_range() see comments below inside
2072 * __split_huge_pmd() ?
2073 *
2074 * We are going from a zero huge page write protected to zero
2075 * small page also write protected so it does not seems useful
2076 * to invalidate secondary mmu at this time.
2077 */
eef1b3ba
KS
2078 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2079 }
2080
423ac9af
AK
2081 /*
2082 * Up to this point the pmd is present and huge and userland has the
2083 * whole access to the hugepage during the split (which happens in
2084 * place). If we overwrite the pmd with the not-huge version pointing
2085 * to the pte here (which of course we could if all CPUs were bug
2086 * free), userland could trigger a small page size TLB miss on the
2087 * small sized TLB while the hugepage TLB entry is still established in
2088 * the huge TLB. Some CPU doesn't like that.
42742d9b
AK
2089 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2090 * 383 on page 105. Intel should be safe but is also warns that it's
423ac9af
AK
2091 * only safe if the permission and cache attributes of the two entries
2092 * loaded in the two TLB is identical (which should be the case here).
2093 * But it is generally safer to never allow small and huge TLB entries
2094 * for the same virtual address to be loaded simultaneously. So instead
2095 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2096 * current pmd notpresent (atomically because here the pmd_trans_huge
2097 * must remain set at all times on the pmd until the split is complete
2098 * for this pmd), then we flush the SMP TLB and finally we write the
2099 * non-huge version of the pmd entry with pmd_populate.
2100 */
2101 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2102
423ac9af 2103 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2104 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2105 swp_entry_t entry;
2106
423ac9af 2107 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2108 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2109 write = is_write_migration_entry(entry);
2110 young = false;
2111 soft_dirty = pmd_swp_soft_dirty(old_pmd);
f45ec5ff 2112 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2e83ee1d 2113 } else {
423ac9af 2114 page = pmd_page(old_pmd);
2e83ee1d
PX
2115 if (pmd_dirty(old_pmd))
2116 SetPageDirty(page);
2117 write = pmd_write(old_pmd);
2118 young = pmd_young(old_pmd);
2119 soft_dirty = pmd_soft_dirty(old_pmd);
292924b2 2120 uffd_wp = pmd_uffd_wp(old_pmd);
2e83ee1d 2121 }
eef1b3ba 2122 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2123 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2124
423ac9af
AK
2125 /*
2126 * Withdraw the table only after we mark the pmd entry invalid.
2127 * This's critical for some architectures (Power).
2128 */
eef1b3ba
KS
2129 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2130 pmd_populate(mm, &_pmd, pgtable);
2131
2ac015e2 2132 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2133 pte_t entry, *pte;
2134 /*
2135 * Note that NUMA hinting access restrictions are not
2136 * transferred to avoid any possibility of altering
2137 * permissions across VMAs.
2138 */
84c3fc4e 2139 if (freeze || pmd_migration) {
ba988280
KS
2140 swp_entry_t swp_entry;
2141 swp_entry = make_migration_entry(page + i, write);
2142 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2143 if (soft_dirty)
2144 entry = pte_swp_mksoft_dirty(entry);
f45ec5ff
PX
2145 if (uffd_wp)
2146 entry = pte_swp_mkuffd_wp(entry);
ba988280 2147 } else {
6d2329f8 2148 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2149 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2150 if (!write)
2151 entry = pte_wrprotect(entry);
2152 if (!young)
2153 entry = pte_mkold(entry);
804dd150
AA
2154 if (soft_dirty)
2155 entry = pte_mksoft_dirty(entry);
292924b2
PX
2156 if (uffd_wp)
2157 entry = pte_mkuffd_wp(entry);
ba988280 2158 }
2ac015e2 2159 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2160 BUG_ON(!pte_none(*pte));
2ac015e2 2161 set_pte_at(mm, addr, pte, entry);
ec0abae6 2162 if (!pmd_migration)
eef1b3ba 2163 atomic_inc(&page[i]._mapcount);
ec0abae6 2164 pte_unmap(pte);
eef1b3ba
KS
2165 }
2166
ec0abae6
RC
2167 if (!pmd_migration) {
2168 /*
2169 * Set PG_double_map before dropping compound_mapcount to avoid
2170 * false-negative page_mapped().
2171 */
2172 if (compound_mapcount(page) > 1 &&
2173 !TestSetPageDoubleMap(page)) {
eef1b3ba 2174 for (i = 0; i < HPAGE_PMD_NR; i++)
ec0abae6
RC
2175 atomic_inc(&page[i]._mapcount);
2176 }
2177
2178 lock_page_memcg(page);
2179 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2180 /* Last compound_mapcount is gone. */
69473e5d
MS
2181 __mod_lruvec_page_state(page, NR_ANON_THPS,
2182 -HPAGE_PMD_NR);
ec0abae6
RC
2183 if (TestClearPageDoubleMap(page)) {
2184 /* No need in mapcount reference anymore */
2185 for (i = 0; i < HPAGE_PMD_NR; i++)
2186 atomic_dec(&page[i]._mapcount);
2187 }
eef1b3ba 2188 }
ec0abae6 2189 unlock_page_memcg(page);
eef1b3ba
KS
2190 }
2191
2192 smp_wmb(); /* make pte visible before pmd */
2193 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2194
2195 if (freeze) {
2ac015e2 2196 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2197 page_remove_rmap(page + i, false);
2198 put_page(page + i);
2199 }
2200 }
eef1b3ba
KS
2201}
2202
2203void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2204 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2205{
2206 spinlock_t *ptl;
ac46d4f3 2207 struct mmu_notifier_range range;
1c2f6730 2208 bool do_unlock_page = false;
c444eb56 2209 pmd_t _pmd;
eef1b3ba 2210
7269f999 2211 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2212 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2213 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2214 mmu_notifier_invalidate_range_start(&range);
2215 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2216
2217 /*
2218 * If caller asks to setup a migration entries, we need a page to check
2219 * pmd against. Otherwise we can end up replacing wrong page.
2220 */
2221 VM_BUG_ON(freeze && !page);
c444eb56
AA
2222 if (page) {
2223 VM_WARN_ON_ONCE(!PageLocked(page));
c444eb56
AA
2224 if (page != pmd_page(*pmd))
2225 goto out;
2226 }
33f4751e 2227
c444eb56 2228repeat:
5c7fb56e 2229 if (pmd_trans_huge(*pmd)) {
c444eb56
AA
2230 if (!page) {
2231 page = pmd_page(*pmd);
1c2f6730
HD
2232 /*
2233 * An anonymous page must be locked, to ensure that a
2234 * concurrent reuse_swap_page() sees stable mapcount;
2235 * but reuse_swap_page() is not used on shmem or file,
2236 * and page lock must not be taken when zap_pmd_range()
2237 * calls __split_huge_pmd() while i_mmap_lock is held.
2238 */
2239 if (PageAnon(page)) {
2240 if (unlikely(!trylock_page(page))) {
2241 get_page(page);
2242 _pmd = *pmd;
2243 spin_unlock(ptl);
2244 lock_page(page);
2245 spin_lock(ptl);
2246 if (unlikely(!pmd_same(*pmd, _pmd))) {
2247 unlock_page(page);
2248 put_page(page);
2249 page = NULL;
2250 goto repeat;
2251 }
c444eb56 2252 put_page(page);
c444eb56 2253 }
1c2f6730 2254 do_unlock_page = true;
c444eb56
AA
2255 }
2256 }
5c7fb56e 2257 if (PageMlocked(page))
5f737714 2258 clear_page_mlock(page);
84c3fc4e 2259 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2260 goto out;
ac46d4f3 2261 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2262out:
eef1b3ba 2263 spin_unlock(ptl);
1c2f6730 2264 if (do_unlock_page)
c444eb56 2265 unlock_page(page);
4645b9fe
JG
2266 /*
2267 * No need to double call mmu_notifier->invalidate_range() callback.
2268 * They are 3 cases to consider inside __split_huge_pmd_locked():
2269 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2270 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2271 * fault will trigger a flush_notify before pointing to a new page
2272 * (it is fine if the secondary mmu keeps pointing to the old zero
2273 * page in the meantime)
2274 * 3) Split a huge pmd into pte pointing to the same page. No need
2275 * to invalidate secondary tlb entry they are all still valid.
2276 * any further changes to individual pte will notify. So no need
2277 * to call mmu_notifier->invalidate_range()
2278 */
ac46d4f3 2279 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2280}
2281
fec89c10
KS
2282void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2283 bool freeze, struct page *page)
94fcc585 2284{
f72e7dcd 2285 pgd_t *pgd;
c2febafc 2286 p4d_t *p4d;
f72e7dcd 2287 pud_t *pud;
94fcc585
AA
2288 pmd_t *pmd;
2289
78ddc534 2290 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2291 if (!pgd_present(*pgd))
2292 return;
2293
c2febafc
KS
2294 p4d = p4d_offset(pgd, address);
2295 if (!p4d_present(*p4d))
2296 return;
2297
2298 pud = pud_offset(p4d, address);
f72e7dcd
HD
2299 if (!pud_present(*pud))
2300 return;
2301
2302 pmd = pmd_offset(pud, address);
fec89c10 2303
33f4751e 2304 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2305}
2306
e1b9996b 2307void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2308 unsigned long start,
2309 unsigned long end,
2310 long adjust_next)
2311{
2312 /*
2313 * If the new start address isn't hpage aligned and it could
2314 * previously contain an hugepage: check if we need to split
2315 * an huge pmd.
2316 */
2317 if (start & ~HPAGE_PMD_MASK &&
2318 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2319 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2320 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2321
2322 /*
2323 * If the new end address isn't hpage aligned and it could
2324 * previously contain an hugepage: check if we need to split
2325 * an huge pmd.
2326 */
2327 if (end & ~HPAGE_PMD_MASK &&
2328 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2329 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2330 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2331
2332 /*
2333 * If we're also updating the vma->vm_next->vm_start, if the new
f9d86a60 2334 * vm_next->vm_start isn't hpage aligned and it could previously
94fcc585
AA
2335 * contain an hugepage: check if we need to split an huge pmd.
2336 */
2337 if (adjust_next > 0) {
2338 struct vm_area_struct *next = vma->vm_next;
2339 unsigned long nstart = next->vm_start;
f9d86a60 2340 nstart += adjust_next;
94fcc585
AA
2341 if (nstart & ~HPAGE_PMD_MASK &&
2342 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2343 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2344 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2345 }
2346}
e9b61f19 2347
906f9cdf 2348static void unmap_page(struct page *page)
e9b61f19 2349{
013339df 2350 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
c7ab0d2f 2351 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2352 bool unmap_success;
e9b61f19
KS
2353
2354 VM_BUG_ON_PAGE(!PageHead(page), page);
2355
baa355fd 2356 if (PageAnon(page))
b5ff8161 2357 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2358
666e5a40
MK
2359 unmap_success = try_to_unmap(page, ttu_flags);
2360 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2361}
2362
8cce5475 2363static void remap_page(struct page *page, unsigned int nr)
e9b61f19 2364{
fec89c10 2365 int i;
ace71a19
KS
2366 if (PageTransHuge(page)) {
2367 remove_migration_ptes(page, page, true);
2368 } else {
8cce5475 2369 for (i = 0; i < nr; i++)
ace71a19
KS
2370 remove_migration_ptes(page + i, page + i, true);
2371 }
e9b61f19
KS
2372}
2373
94866635 2374static void lru_add_page_tail(struct page *head, struct page *tail,
88dcb9a3
AS
2375 struct lruvec *lruvec, struct list_head *list)
2376{
94866635
AS
2377 VM_BUG_ON_PAGE(!PageHead(head), head);
2378 VM_BUG_ON_PAGE(PageCompound(tail), head);
2379 VM_BUG_ON_PAGE(PageLRU(tail), head);
6168d0da 2380 lockdep_assert_held(&lruvec->lru_lock);
88dcb9a3 2381
6dbb5741 2382 if (list) {
88dcb9a3 2383 /* page reclaim is reclaiming a huge page */
6dbb5741 2384 VM_WARN_ON(PageLRU(head));
94866635
AS
2385 get_page(tail);
2386 list_add_tail(&tail->lru, list);
88dcb9a3 2387 } else {
6dbb5741
AS
2388 /* head is still on lru (and we have it frozen) */
2389 VM_WARN_ON(!PageLRU(head));
2390 SetPageLRU(tail);
2391 list_add_tail(&tail->lru, &head->lru);
88dcb9a3
AS
2392 }
2393}
2394
8df651c7 2395static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2396 struct lruvec *lruvec, struct list_head *list)
2397{
e9b61f19
KS
2398 struct page *page_tail = head + tail;
2399
8df651c7 2400 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2401
2402 /*
605ca5ed
KK
2403 * Clone page flags before unfreezing refcount.
2404 *
2405 * After successful get_page_unless_zero() might follow flags change,
8958b249 2406 * for example lock_page() which set PG_waiters.
e9b61f19 2407 */
e9b61f19
KS
2408 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2409 page_tail->flags |= (head->flags &
2410 ((1L << PG_referenced) |
2411 (1L << PG_swapbacked) |
38d8b4e6 2412 (1L << PG_swapcache) |
e9b61f19
KS
2413 (1L << PG_mlocked) |
2414 (1L << PG_uptodate) |
2415 (1L << PG_active) |
1899ad18 2416 (1L << PG_workingset) |
e9b61f19 2417 (1L << PG_locked) |
b8d3c4c3 2418 (1L << PG_unevictable) |
72e6afa0
CM
2419#ifdef CONFIG_64BIT
2420 (1L << PG_arch_2) |
2421#endif
b8d3c4c3 2422 (1L << PG_dirty)));
e9b61f19 2423
173d9d9f
HD
2424 /* ->mapping in first tail page is compound_mapcount */
2425 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2426 page_tail);
2427 page_tail->mapping = head->mapping;
2428 page_tail->index = head->index + tail;
2429
605ca5ed 2430 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2431 smp_wmb();
2432
605ca5ed
KK
2433 /*
2434 * Clear PageTail before unfreezing page refcount.
2435 *
2436 * After successful get_page_unless_zero() might follow put_page()
2437 * which needs correct compound_head().
2438 */
e9b61f19
KS
2439 clear_compound_head(page_tail);
2440
605ca5ed
KK
2441 /* Finally unfreeze refcount. Additional reference from page cache. */
2442 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2443 PageSwapCache(head)));
2444
e9b61f19
KS
2445 if (page_is_young(head))
2446 set_page_young(page_tail);
2447 if (page_is_idle(head))
2448 set_page_idle(page_tail);
2449
e9b61f19 2450 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2451
2452 /*
2453 * always add to the tail because some iterators expect new
2454 * pages to show after the currently processed elements - e.g.
2455 * migrate_pages
2456 */
e9b61f19 2457 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2458}
2459
baa355fd 2460static void __split_huge_page(struct page *page, struct list_head *list,
b6769834 2461 pgoff_t end)
e9b61f19
KS
2462{
2463 struct page *head = compound_head(page);
e9b61f19 2464 struct lruvec *lruvec;
4101196b
MWO
2465 struct address_space *swap_cache = NULL;
2466 unsigned long offset = 0;
8cce5475 2467 unsigned int nr = thp_nr_pages(head);
8df651c7 2468 int i;
e9b61f19 2469
e9b61f19
KS
2470 /* complete memcg works before add pages to LRU */
2471 mem_cgroup_split_huge_fixup(head);
2472
4101196b
MWO
2473 if (PageAnon(head) && PageSwapCache(head)) {
2474 swp_entry_t entry = { .val = page_private(head) };
2475
2476 offset = swp_offset(entry);
2477 swap_cache = swap_address_space(entry);
2478 xa_lock(&swap_cache->i_pages);
2479 }
2480
6168d0da
AS
2481 /* lock lru list/PageCompound, ref freezed by page_ref_freeze */
2482 lruvec = lock_page_lruvec(head);
b6769834 2483
8cce5475 2484 for (i = nr - 1; i >= 1; i--) {
8df651c7 2485 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2486 /* Some pages can be beyond i_size: drop them from page cache */
2487 if (head[i].index >= end) {
2d077d4b 2488 ClearPageDirty(head + i);
baa355fd 2489 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2490 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2491 shmem_uncharge(head->mapping->host, 1);
baa355fd 2492 put_page(head + i);
4101196b
MWO
2493 } else if (!PageAnon(page)) {
2494 __xa_store(&head->mapping->i_pages, head[i].index,
2495 head + i, 0);
2496 } else if (swap_cache) {
2497 __xa_store(&swap_cache->i_pages, offset + i,
2498 head + i, 0);
baa355fd
KS
2499 }
2500 }
e9b61f19
KS
2501
2502 ClearPageCompound(head);
6168d0da 2503 unlock_page_lruvec(lruvec);
b6769834 2504 /* Caller disabled irqs, so they are still disabled here */
f7da677b 2505
8cce5475 2506 split_page_owner(head, nr);
f7da677b 2507
baa355fd
KS
2508 /* See comment in __split_huge_page_tail() */
2509 if (PageAnon(head)) {
aa5dc07f 2510 /* Additional pin to swap cache */
4101196b 2511 if (PageSwapCache(head)) {
38d8b4e6 2512 page_ref_add(head, 2);
4101196b
MWO
2513 xa_unlock(&swap_cache->i_pages);
2514 } else {
38d8b4e6 2515 page_ref_inc(head);
4101196b 2516 }
baa355fd 2517 } else {
aa5dc07f 2518 /* Additional pin to page cache */
baa355fd 2519 page_ref_add(head, 2);
b93b0163 2520 xa_unlock(&head->mapping->i_pages);
baa355fd 2521 }
b6769834 2522 local_irq_enable();
e9b61f19 2523
8cce5475 2524 remap_page(head, nr);
e9b61f19 2525
c4f9c701
HY
2526 if (PageSwapCache(head)) {
2527 swp_entry_t entry = { .val = page_private(head) };
2528
2529 split_swap_cluster(entry);
2530 }
2531
8cce5475 2532 for (i = 0; i < nr; i++) {
e9b61f19
KS
2533 struct page *subpage = head + i;
2534 if (subpage == page)
2535 continue;
2536 unlock_page(subpage);
2537
2538 /*
2539 * Subpages may be freed if there wasn't any mapping
2540 * like if add_to_swap() is running on a lru page that
2541 * had its mapping zapped. And freeing these pages
2542 * requires taking the lru_lock so we do the put_page
2543 * of the tail pages after the split is complete.
2544 */
2545 put_page(subpage);
2546 }
2547}
2548
b20ce5e0
KS
2549int total_mapcount(struct page *page)
2550{
86b562b6 2551 int i, compound, nr, ret;
b20ce5e0
KS
2552
2553 VM_BUG_ON_PAGE(PageTail(page), page);
2554
2555 if (likely(!PageCompound(page)))
2556 return atomic_read(&page->_mapcount) + 1;
2557
dd78fedd 2558 compound = compound_mapcount(page);
86b562b6 2559 nr = compound_nr(page);
b20ce5e0 2560 if (PageHuge(page))
dd78fedd
KS
2561 return compound;
2562 ret = compound;
86b562b6 2563 for (i = 0; i < nr; i++)
b20ce5e0 2564 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2565 /* File pages has compound_mapcount included in _mapcount */
2566 if (!PageAnon(page))
86b562b6 2567 return ret - compound * nr;
b20ce5e0 2568 if (PageDoubleMap(page))
86b562b6 2569 ret -= nr;
b20ce5e0
KS
2570 return ret;
2571}
2572
6d0a07ed
AA
2573/*
2574 * This calculates accurately how many mappings a transparent hugepage
2575 * has (unlike page_mapcount() which isn't fully accurate). This full
2576 * accuracy is primarily needed to know if copy-on-write faults can
2577 * reuse the page and change the mapping to read-write instead of
2578 * copying them. At the same time this returns the total_mapcount too.
2579 *
2580 * The function returns the highest mapcount any one of the subpages
2581 * has. If the return value is one, even if different processes are
2582 * mapping different subpages of the transparent hugepage, they can
2583 * all reuse it, because each process is reusing a different subpage.
2584 *
2585 * The total_mapcount is instead counting all virtual mappings of the
2586 * subpages. If the total_mapcount is equal to "one", it tells the
2587 * caller all mappings belong to the same "mm" and in turn the
2588 * anon_vma of the transparent hugepage can become the vma->anon_vma
2589 * local one as no other process may be mapping any of the subpages.
2590 *
2591 * It would be more accurate to replace page_mapcount() with
2592 * page_trans_huge_mapcount(), however we only use
2593 * page_trans_huge_mapcount() in the copy-on-write faults where we
2594 * need full accuracy to avoid breaking page pinning, because
2595 * page_trans_huge_mapcount() is slower than page_mapcount().
2596 */
2597int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2598{
2599 int i, ret, _total_mapcount, mapcount;
2600
2601 /* hugetlbfs shouldn't call it */
2602 VM_BUG_ON_PAGE(PageHuge(page), page);
2603
2604 if (likely(!PageTransCompound(page))) {
2605 mapcount = atomic_read(&page->_mapcount) + 1;
2606 if (total_mapcount)
2607 *total_mapcount = mapcount;
2608 return mapcount;
2609 }
2610
2611 page = compound_head(page);
2612
2613 _total_mapcount = ret = 0;
65dfe3c3 2614 for (i = 0; i < thp_nr_pages(page); i++) {
6d0a07ed
AA
2615 mapcount = atomic_read(&page[i]._mapcount) + 1;
2616 ret = max(ret, mapcount);
2617 _total_mapcount += mapcount;
2618 }
2619 if (PageDoubleMap(page)) {
2620 ret -= 1;
65dfe3c3 2621 _total_mapcount -= thp_nr_pages(page);
6d0a07ed
AA
2622 }
2623 mapcount = compound_mapcount(page);
2624 ret += mapcount;
2625 _total_mapcount += mapcount;
2626 if (total_mapcount)
2627 *total_mapcount = _total_mapcount;
2628 return ret;
2629}
2630
b8f593cd
HY
2631/* Racy check whether the huge page can be split */
2632bool can_split_huge_page(struct page *page, int *pextra_pins)
2633{
2634 int extra_pins;
2635
aa5dc07f 2636 /* Additional pins from page cache */
b8f593cd 2637 if (PageAnon(page))
e2333dad 2638 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
b8f593cd 2639 else
e2333dad 2640 extra_pins = thp_nr_pages(page);
b8f593cd
HY
2641 if (pextra_pins)
2642 *pextra_pins = extra_pins;
2643 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2644}
2645
e9b61f19
KS
2646/*
2647 * This function splits huge page into normal pages. @page can point to any
2648 * subpage of huge page to split. Split doesn't change the position of @page.
2649 *
2650 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2651 * The huge page must be locked.
2652 *
2653 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2654 *
2655 * Both head page and tail pages will inherit mapping, flags, and so on from
2656 * the hugepage.
2657 *
2658 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2659 * they are not mapped.
2660 *
2661 * Returns 0 if the hugepage is split successfully.
2662 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2663 * us.
2664 */
2665int split_huge_page_to_list(struct page *page, struct list_head *list)
2666{
2667 struct page *head = compound_head(page);
a8803e6c 2668 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2669 struct anon_vma *anon_vma = NULL;
2670 struct address_space *mapping = NULL;
2671 int count, mapcount, extra_pins, ret;
006d3ff2 2672 pgoff_t end;
e9b61f19 2673
cb829624 2674 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2675 VM_BUG_ON_PAGE(!PageLocked(head), head);
2676 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2677
a8803e6c 2678 if (PageWriteback(head))
59807685
HY
2679 return -EBUSY;
2680
baa355fd
KS
2681 if (PageAnon(head)) {
2682 /*
c1e8d7c6 2683 * The caller does not necessarily hold an mmap_lock that would
baa355fd
KS
2684 * prevent the anon_vma disappearing so we first we take a
2685 * reference to it and then lock the anon_vma for write. This
2686 * is similar to page_lock_anon_vma_read except the write lock
2687 * is taken to serialise against parallel split or collapse
2688 * operations.
2689 */
2690 anon_vma = page_get_anon_vma(head);
2691 if (!anon_vma) {
2692 ret = -EBUSY;
2693 goto out;
2694 }
006d3ff2 2695 end = -1;
baa355fd
KS
2696 mapping = NULL;
2697 anon_vma_lock_write(anon_vma);
2698 } else {
2699 mapping = head->mapping;
2700
2701 /* Truncated ? */
2702 if (!mapping) {
2703 ret = -EBUSY;
2704 goto out;
2705 }
2706
baa355fd
KS
2707 anon_vma = NULL;
2708 i_mmap_lock_read(mapping);
006d3ff2
HD
2709
2710 /*
2711 *__split_huge_page() may need to trim off pages beyond EOF:
2712 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2713 * which cannot be nested inside the page tree lock. So note
2714 * end now: i_size itself may be changed at any moment, but
2715 * head page lock is good enough to serialize the trimming.
2716 */
2717 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2718 }
e9b61f19
KS
2719
2720 /*
906f9cdf 2721 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2722 * split PMDs
2723 */
b8f593cd 2724 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2725 ret = -EBUSY;
2726 goto out_unlock;
2727 }
2728
906f9cdf 2729 unmap_page(head);
e9b61f19
KS
2730 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2731
b6769834
AS
2732 /* block interrupt reentry in xa_lock and spinlock */
2733 local_irq_disable();
baa355fd 2734 if (mapping) {
aa5dc07f 2735 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2736
baa355fd 2737 /*
aa5dc07f 2738 * Check if the head page is present in page cache.
baa355fd
KS
2739 * We assume all tail are present too, if head is there.
2740 */
aa5dc07f
MW
2741 xa_lock(&mapping->i_pages);
2742 if (xas_load(&xas) != head)
baa355fd
KS
2743 goto fail;
2744 }
2745
0139aa7b 2746 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2747 spin_lock(&ds_queue->split_queue_lock);
e9b61f19
KS
2748 count = page_count(head);
2749 mapcount = total_mapcount(head);
baa355fd 2750 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2751 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2752 ds_queue->split_queue_len--;
9a982250
KS
2753 list_del(page_deferred_list(head));
2754 }
afb97172 2755 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2756 if (mapping) {
bf9ecead
MS
2757 int nr = thp_nr_pages(head);
2758
a8803e6c 2759 if (PageSwapBacked(head))
57b2847d
MS
2760 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2761 -nr);
06d3eff6 2762 else
bf9ecead
MS
2763 __mod_lruvec_page_state(head, NR_FILE_THPS,
2764 -nr);
06d3eff6
KS
2765 }
2766
b6769834 2767 __split_huge_page(page, list, end);
c4f9c701 2768 ret = 0;
e9b61f19 2769 } else {
baa355fd
KS
2770 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2771 pr_alert("total_mapcount: %u, page_count(): %u\n",
2772 mapcount, count);
2773 if (PageTail(page))
2774 dump_page(head, NULL);
2775 dump_page(page, "total_mapcount(head) > 0");
2776 BUG();
2777 }
364c1eeb 2778 spin_unlock(&ds_queue->split_queue_lock);
baa355fd 2779fail: if (mapping)
b93b0163 2780 xa_unlock(&mapping->i_pages);
b6769834 2781 local_irq_enable();
8cce5475 2782 remap_page(head, thp_nr_pages(head));
e9b61f19
KS
2783 ret = -EBUSY;
2784 }
2785
2786out_unlock:
baa355fd
KS
2787 if (anon_vma) {
2788 anon_vma_unlock_write(anon_vma);
2789 put_anon_vma(anon_vma);
2790 }
2791 if (mapping)
2792 i_mmap_unlock_read(mapping);
e9b61f19
KS
2793out:
2794 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2795 return ret;
2796}
9a982250
KS
2797
2798void free_transhuge_page(struct page *page)
2799{
87eaceb3 2800 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2801 unsigned long flags;
2802
364c1eeb 2803 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2804 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2805 ds_queue->split_queue_len--;
9a982250
KS
2806 list_del(page_deferred_list(page));
2807 }
364c1eeb 2808 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2809 free_compound_page(page);
2810}
2811
2812void deferred_split_huge_page(struct page *page)
2813{
87eaceb3
YS
2814 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2815#ifdef CONFIG_MEMCG
bcfe06bf 2816 struct mem_cgroup *memcg = page_memcg(compound_head(page));
87eaceb3 2817#endif
9a982250
KS
2818 unsigned long flags;
2819
2820 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2821
87eaceb3
YS
2822 /*
2823 * The try_to_unmap() in page reclaim path might reach here too,
2824 * this may cause a race condition to corrupt deferred split queue.
2825 * And, if page reclaim is already handling the same page, it is
2826 * unnecessary to handle it again in shrinker.
2827 *
2828 * Check PageSwapCache to determine if the page is being
2829 * handled by page reclaim since THP swap would add the page into
2830 * swap cache before calling try_to_unmap().
2831 */
2832 if (PageSwapCache(page))
2833 return;
2834
364c1eeb 2835 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2836 if (list_empty(page_deferred_list(page))) {
f9719a03 2837 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2838 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2839 ds_queue->split_queue_len++;
87eaceb3
YS
2840#ifdef CONFIG_MEMCG
2841 if (memcg)
2842 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2843 deferred_split_shrinker.id);
2844#endif
9a982250 2845 }
364c1eeb 2846 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2847}
2848
2849static unsigned long deferred_split_count(struct shrinker *shrink,
2850 struct shrink_control *sc)
2851{
a3d0a918 2852 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2853 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2854
2855#ifdef CONFIG_MEMCG
2856 if (sc->memcg)
2857 ds_queue = &sc->memcg->deferred_split_queue;
2858#endif
364c1eeb 2859 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2860}
2861
2862static unsigned long deferred_split_scan(struct shrinker *shrink,
2863 struct shrink_control *sc)
2864{
a3d0a918 2865 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2866 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2867 unsigned long flags;
2868 LIST_HEAD(list), *pos, *next;
2869 struct page *page;
2870 int split = 0;
2871
87eaceb3
YS
2872#ifdef CONFIG_MEMCG
2873 if (sc->memcg)
2874 ds_queue = &sc->memcg->deferred_split_queue;
2875#endif
2876
364c1eeb 2877 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2878 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2879 list_for_each_safe(pos, next, &ds_queue->split_queue) {
9a982250
KS
2880 page = list_entry((void *)pos, struct page, mapping);
2881 page = compound_head(page);
e3ae1953
KS
2882 if (get_page_unless_zero(page)) {
2883 list_move(page_deferred_list(page), &list);
2884 } else {
2885 /* We lost race with put_compound_page() */
9a982250 2886 list_del_init(page_deferred_list(page));
364c1eeb 2887 ds_queue->split_queue_len--;
9a982250 2888 }
e3ae1953
KS
2889 if (!--sc->nr_to_scan)
2890 break;
9a982250 2891 }
364c1eeb 2892 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2893
2894 list_for_each_safe(pos, next, &list) {
2895 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2896 if (!trylock_page(page))
2897 goto next;
9a982250
KS
2898 /* split_huge_page() removes page from list on success */
2899 if (!split_huge_page(page))
2900 split++;
2901 unlock_page(page);
fa41b900 2902next:
9a982250
KS
2903 put_page(page);
2904 }
2905
364c1eeb
YS
2906 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2907 list_splice_tail(&list, &ds_queue->split_queue);
2908 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 2909
cb8d68ec
KS
2910 /*
2911 * Stop shrinker if we didn't split any page, but the queue is empty.
2912 * This can happen if pages were freed under us.
2913 */
364c1eeb 2914 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
2915 return SHRINK_STOP;
2916 return split;
9a982250
KS
2917}
2918
2919static struct shrinker deferred_split_shrinker = {
2920 .count_objects = deferred_split_count,
2921 .scan_objects = deferred_split_scan,
2922 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
2923 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2924 SHRINKER_NONSLAB,
9a982250 2925};
49071d43
KS
2926
2927#ifdef CONFIG_DEBUG_FS
2928static int split_huge_pages_set(void *data, u64 val)
2929{
2930 struct zone *zone;
2931 struct page *page;
2932 unsigned long pfn, max_zone_pfn;
2933 unsigned long total = 0, split = 0;
2934
2935 if (val != 1)
2936 return -EINVAL;
2937
2938 for_each_populated_zone(zone) {
2939 max_zone_pfn = zone_end_pfn(zone);
2940 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2941 if (!pfn_valid(pfn))
2942 continue;
2943
2944 page = pfn_to_page(pfn);
2945 if (!get_page_unless_zero(page))
2946 continue;
2947
2948 if (zone != page_zone(page))
2949 goto next;
2950
baa355fd 2951 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2952 goto next;
2953
2954 total++;
2955 lock_page(page);
2956 if (!split_huge_page(page))
2957 split++;
2958 unlock_page(page);
2959next:
2960 put_page(page);
2961 }
2962 }
2963
145bdaa1 2964 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2965
2966 return 0;
2967}
f1287869 2968DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
49071d43
KS
2969 "%llu\n");
2970
2971static int __init split_huge_pages_debugfs(void)
2972{
d9f7979c
GKH
2973 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2974 &split_huge_pages_fops);
49071d43
KS
2975 return 0;
2976}
2977late_initcall(split_huge_pages_debugfs);
2978#endif
616b8371
ZY
2979
2980#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2981void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2982 struct page *page)
2983{
2984 struct vm_area_struct *vma = pvmw->vma;
2985 struct mm_struct *mm = vma->vm_mm;
2986 unsigned long address = pvmw->address;
2987 pmd_t pmdval;
2988 swp_entry_t entry;
ab6e3d09 2989 pmd_t pmdswp;
616b8371
ZY
2990
2991 if (!(pvmw->pmd && !pvmw->pte))
2992 return;
2993
616b8371 2994 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 2995 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
2996 if (pmd_dirty(pmdval))
2997 set_page_dirty(page);
2998 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2999 pmdswp = swp_entry_to_pmd(entry);
3000 if (pmd_soft_dirty(pmdval))
3001 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3002 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
3003 page_remove_rmap(page, true);
3004 put_page(page);
616b8371
ZY
3005}
3006
3007void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3008{
3009 struct vm_area_struct *vma = pvmw->vma;
3010 struct mm_struct *mm = vma->vm_mm;
3011 unsigned long address = pvmw->address;
3012 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3013 pmd_t pmde;
3014 swp_entry_t entry;
3015
3016 if (!(pvmw->pmd && !pvmw->pte))
3017 return;
3018
3019 entry = pmd_to_swp_entry(*pvmw->pmd);
3020 get_page(new);
3021 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
3022 if (pmd_swp_soft_dirty(*pvmw->pmd))
3023 pmde = pmd_mksoft_dirty(pmde);
616b8371 3024 if (is_write_migration_entry(entry))
f55e1014 3025 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
3026
3027 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
3028 if (PageAnon(new))
3029 page_add_anon_rmap(new, vma, mmun_start, true);
3030 else
3031 page_add_file_rmap(new, true);
616b8371 3032 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 3033 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
3034 mlock_vma_page(new);
3035 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3036}
3037#endif