]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
mm: Do early cow for pinned pages during fork() for ptes
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
f7da677b 35#include <linux/page_owner.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
7635d9cb
MH
65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66{
c0630669
YS
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
7635d9cb
MH
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
c0630669
YS
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
7635d9cb
MH
76
77 return false;
78}
79
6fcb52a5 80static struct page *get_huge_zero_page(void)
97ae1749
KS
81{
82 struct page *zero_page;
83retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 85 return READ_ONCE(huge_zero_page);
97ae1749
KS
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 88 HPAGE_PMD_ORDER);
d8a8e1f0
KS
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 91 return NULL;
d8a8e1f0
KS
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 94 preempt_disable();
5918d10a 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 96 preempt_enable();
5ddacbe9 97 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
4db0c3c2 104 return READ_ONCE(huge_zero_page);
4a6c1297
KS
105}
106
6fcb52a5 107static void put_huge_zero_page(void)
4a6c1297 108{
97ae1749
KS
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
114}
115
6fcb52a5
AL
116struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117{
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128}
129
130void mm_put_huge_zero_page(struct mm_struct *mm)
131{
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134}
135
48896466
GC
136static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
4a6c1297 138{
48896466
GC
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141}
97ae1749 142
48896466
GC
143static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145{
97ae1749 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
5ddacbe9 149 __free_pages(zero_page, compound_order(zero_page));
48896466 150 return HPAGE_PMD_NR;
97ae1749
KS
151 }
152
153 return 0;
4a6c1297
KS
154}
155
97ae1749 156static struct shrinker huge_zero_page_shrinker = {
48896466
GC
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
159 .seeks = DEFAULT_SEEKS,
160};
161
71e3aac0 162#ifdef CONFIG_SYSFS
71e3aac0
AA
163static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165{
444eb2a4
MG
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
170 else
171 return sprintf(buf, "always madvise [never]\n");
71e3aac0 172}
444eb2a4 173
71e3aac0
AA
174static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
177{
21440d7e 178 ssize_t ret = count;
ba76149f 179
f42f2552 180 if (sysfs_streq(buf, "always")) {
21440d7e
DR
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 183 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 186 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else
190 ret = -EINVAL;
ba76149f
AA
191
192 if (ret > 0) {
b46e756f 193 int err = start_stop_khugepaged();
ba76149f
AA
194 if (err)
195 ret = err;
196 }
ba76149f 197 return ret;
71e3aac0
AA
198}
199static struct kobj_attribute enabled_attr =
200 __ATTR(enabled, 0644, enabled_show, enabled_store);
201
b46e756f 202ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
203 struct kobj_attribute *attr, char *buf,
204 enum transparent_hugepage_flag flag)
205{
e27e6151
BH
206 return sprintf(buf, "%d\n",
207 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 208}
e27e6151 209
b46e756f 210ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
211 struct kobj_attribute *attr,
212 const char *buf, size_t count,
213 enum transparent_hugepage_flag flag)
214{
e27e6151
BH
215 unsigned long value;
216 int ret;
217
218 ret = kstrtoul(buf, 10, &value);
219 if (ret < 0)
220 return ret;
221 if (value > 1)
222 return -EINVAL;
223
224 if (value)
71e3aac0 225 set_bit(flag, &transparent_hugepage_flags);
e27e6151 226 else
71e3aac0 227 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
228
229 return count;
230}
231
71e3aac0
AA
232static ssize_t defrag_show(struct kobject *kobj,
233 struct kobj_attribute *attr, char *buf)
234{
444eb2a4 235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 236 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
238 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 244}
21440d7e 245
71e3aac0
AA
246static ssize_t defrag_store(struct kobject *kobj,
247 struct kobj_attribute *attr,
248 const char *buf, size_t count)
249{
f42f2552 250 if (sysfs_streq(buf, "always")) {
21440d7e
DR
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 255 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 260 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 265 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 270 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 } else
276 return -EINVAL;
277
278 return count;
71e3aac0
AA
279}
280static struct kobj_attribute defrag_attr =
281 __ATTR(defrag, 0644, defrag_show, defrag_store);
282
79da5407
KS
283static ssize_t use_zero_page_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf)
285{
b46e756f 286 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288}
289static ssize_t use_zero_page_store(struct kobject *kobj,
290 struct kobj_attribute *attr, const char *buf, size_t count)
291{
b46e756f 292 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294}
295static struct kobj_attribute use_zero_page_attr =
296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
297
298static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300{
301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302}
303static struct kobj_attribute hpage_pmd_size_attr =
304 __ATTR_RO(hpage_pmd_size);
305
71e3aac0
AA
306static struct attribute *hugepage_attr[] = {
307 &enabled_attr.attr,
308 &defrag_attr.attr,
79da5407 309 &use_zero_page_attr.attr,
49920d28 310 &hpage_pmd_size_attr.attr,
396bcc52 311#ifdef CONFIG_SHMEM
5a6e75f8 312 &shmem_enabled_attr.attr,
71e3aac0
AA
313#endif
314 NULL,
315};
316
8aa95a21 317static const struct attribute_group hugepage_attr_group = {
71e3aac0 318 .attrs = hugepage_attr,
ba76149f
AA
319};
320
569e5590 321static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 322{
71e3aac0
AA
323 int err;
324
569e5590
SL
325 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
326 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 327 pr_err("failed to create transparent hugepage kobject\n");
569e5590 328 return -ENOMEM;
ba76149f
AA
329 }
330
569e5590 331 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 332 if (err) {
ae3a8c1c 333 pr_err("failed to register transparent hugepage group\n");
569e5590 334 goto delete_obj;
ba76149f
AA
335 }
336
569e5590 337 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 338 if (err) {
ae3a8c1c 339 pr_err("failed to register transparent hugepage group\n");
569e5590 340 goto remove_hp_group;
ba76149f 341 }
569e5590
SL
342
343 return 0;
344
345remove_hp_group:
346 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
347delete_obj:
348 kobject_put(*hugepage_kobj);
349 return err;
350}
351
352static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
353{
354 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
355 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
356 kobject_put(hugepage_kobj);
357}
358#else
359static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
360{
361 return 0;
362}
363
364static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365{
366}
367#endif /* CONFIG_SYSFS */
368
369static int __init hugepage_init(void)
370{
371 int err;
372 struct kobject *hugepage_kobj;
373
374 if (!has_transparent_hugepage()) {
375 transparent_hugepage_flags = 0;
376 return -EINVAL;
377 }
378
ff20c2e0
KS
379 /*
380 * hugepages can't be allocated by the buddy allocator
381 */
382 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
383 /*
384 * we use page->mapping and page->index in second tail page
385 * as list_head: assuming THP order >= 2
386 */
387 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
388
569e5590
SL
389 err = hugepage_init_sysfs(&hugepage_kobj);
390 if (err)
65ebb64f 391 goto err_sysfs;
ba76149f 392
b46e756f 393 err = khugepaged_init();
ba76149f 394 if (err)
65ebb64f 395 goto err_slab;
ba76149f 396
65ebb64f
KS
397 err = register_shrinker(&huge_zero_page_shrinker);
398 if (err)
399 goto err_hzp_shrinker;
9a982250
KS
400 err = register_shrinker(&deferred_split_shrinker);
401 if (err)
402 goto err_split_shrinker;
97ae1749 403
97562cd2
RR
404 /*
405 * By default disable transparent hugepages on smaller systems,
406 * where the extra memory used could hurt more than TLB overhead
407 * is likely to save. The admin can still enable it through /sys.
408 */
ca79b0c2 409 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 410 transparent_hugepage_flags = 0;
79553da2
KS
411 return 0;
412 }
97562cd2 413
79553da2 414 err = start_stop_khugepaged();
65ebb64f
KS
415 if (err)
416 goto err_khugepaged;
ba76149f 417
569e5590 418 return 0;
65ebb64f 419err_khugepaged:
9a982250
KS
420 unregister_shrinker(&deferred_split_shrinker);
421err_split_shrinker:
65ebb64f
KS
422 unregister_shrinker(&huge_zero_page_shrinker);
423err_hzp_shrinker:
b46e756f 424 khugepaged_destroy();
65ebb64f 425err_slab:
569e5590 426 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 427err_sysfs:
ba76149f 428 return err;
71e3aac0 429}
a64fb3cd 430subsys_initcall(hugepage_init);
71e3aac0
AA
431
432static int __init setup_transparent_hugepage(char *str)
433{
434 int ret = 0;
435 if (!str)
436 goto out;
437 if (!strcmp(str, "always")) {
438 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
439 &transparent_hugepage_flags);
440 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
441 &transparent_hugepage_flags);
442 ret = 1;
443 } else if (!strcmp(str, "madvise")) {
444 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
445 &transparent_hugepage_flags);
446 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
447 &transparent_hugepage_flags);
448 ret = 1;
449 } else if (!strcmp(str, "never")) {
450 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
451 &transparent_hugepage_flags);
452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453 &transparent_hugepage_flags);
454 ret = 1;
455 }
456out:
457 if (!ret)
ae3a8c1c 458 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
459 return ret;
460}
461__setup("transparent_hugepage=", setup_transparent_hugepage);
462
f55e1014 463pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 464{
f55e1014 465 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
466 pmd = pmd_mkwrite(pmd);
467 return pmd;
468}
469
87eaceb3
YS
470#ifdef CONFIG_MEMCG
471static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 472{
87eaceb3
YS
473 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
474 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
475
476 if (memcg)
477 return &memcg->deferred_split_queue;
478 else
479 return &pgdat->deferred_split_queue;
9a982250 480}
87eaceb3
YS
481#else
482static inline struct deferred_split *get_deferred_split_queue(struct page *page)
483{
484 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
485
486 return &pgdat->deferred_split_queue;
487}
488#endif
9a982250
KS
489
490void prep_transhuge_page(struct page *page)
491{
492 /*
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
495 */
9a982250
KS
496
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499}
500
005ba37c
SC
501bool is_transparent_hugepage(struct page *page)
502{
503 if (!PageCompound(page))
fa1f68cc 504 return false;
005ba37c
SC
505
506 page = compound_head(page);
507 return is_huge_zero_page(page) ||
508 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
509}
510EXPORT_SYMBOL_GPL(is_transparent_hugepage);
511
97d3d0f9
KS
512static unsigned long __thp_get_unmapped_area(struct file *filp,
513 unsigned long addr, unsigned long len,
74d2fad1
TK
514 loff_t off, unsigned long flags, unsigned long size)
515{
74d2fad1
TK
516 loff_t off_end = off + len;
517 loff_t off_align = round_up(off, size);
97d3d0f9 518 unsigned long len_pad, ret;
74d2fad1
TK
519
520 if (off_end <= off_align || (off_end - off_align) < size)
521 return 0;
522
523 len_pad = len + size;
524 if (len_pad < len || (off + len_pad) < off)
525 return 0;
526
97d3d0f9 527 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 528 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
529
530 /*
531 * The failure might be due to length padding. The caller will retry
532 * without the padding.
533 */
534 if (IS_ERR_VALUE(ret))
74d2fad1
TK
535 return 0;
536
97d3d0f9
KS
537 /*
538 * Do not try to align to THP boundary if allocation at the address
539 * hint succeeds.
540 */
541 if (ret == addr)
542 return addr;
543
544 ret += (off - ret) & (size - 1);
545 return ret;
74d2fad1
TK
546}
547
548unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
549 unsigned long len, unsigned long pgoff, unsigned long flags)
550{
97d3d0f9 551 unsigned long ret;
74d2fad1
TK
552 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
553
74d2fad1
TK
554 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
555 goto out;
556
97d3d0f9
KS
557 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
558 if (ret)
559 return ret;
560out:
74d2fad1
TK
561 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
562}
563EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
564
2b740303
SJ
565static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
566 struct page *page, gfp_t gfp)
71e3aac0 567{
82b0f8c3 568 struct vm_area_struct *vma = vmf->vma;
71e3aac0 569 pgtable_t pgtable;
82b0f8c3 570 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 571 vm_fault_t ret = 0;
71e3aac0 572
309381fe 573 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 574
d9eb1ea2 575 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
6b251fc9
AA
576 put_page(page);
577 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 578 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
6b251fc9
AA
579 return VM_FAULT_FALLBACK;
580 }
9d82c694 581 cgroup_throttle_swaprate(page, gfp);
00501b53 582
4cf58924 583 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 584 if (unlikely(!pgtable)) {
6b31d595
MH
585 ret = VM_FAULT_OOM;
586 goto release;
00501b53 587 }
71e3aac0 588
c79b57e4 589 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
590 /*
591 * The memory barrier inside __SetPageUptodate makes sure that
592 * clear_huge_page writes become visible before the set_pmd_at()
593 * write.
594 */
71e3aac0
AA
595 __SetPageUptodate(page);
596
82b0f8c3
JK
597 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
598 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 599 goto unlock_release;
71e3aac0
AA
600 } else {
601 pmd_t entry;
6b251fc9 602
6b31d595
MH
603 ret = check_stable_address_space(vma->vm_mm);
604 if (ret)
605 goto unlock_release;
606
6b251fc9
AA
607 /* Deliver the page fault to userland */
608 if (userfaultfd_missing(vma)) {
2b740303 609 vm_fault_t ret2;
6b251fc9 610
82b0f8c3 611 spin_unlock(vmf->ptl);
6b251fc9 612 put_page(page);
bae473a4 613 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
614 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
615 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
616 return ret2;
6b251fc9
AA
617 }
618
3122359a 619 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 620 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 621 page_add_new_anon_rmap(page, vma, haddr, true);
b518154e 622 lru_cache_add_inactive_or_unevictable(page, vma);
82b0f8c3
JK
623 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
624 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 625 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 626 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 627 spin_unlock(vmf->ptl);
6b251fc9 628 count_vm_event(THP_FAULT_ALLOC);
9d82c694 629 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
71e3aac0
AA
630 }
631
aa2e878e 632 return 0;
6b31d595
MH
633unlock_release:
634 spin_unlock(vmf->ptl);
635release:
636 if (pgtable)
637 pte_free(vma->vm_mm, pgtable);
6b31d595
MH
638 put_page(page);
639 return ret;
640
71e3aac0
AA
641}
642
444eb2a4 643/*
21440d7e
DR
644 * always: directly stall for all thp allocations
645 * defer: wake kswapd and fail if not immediately available
646 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
647 * fail if not immediately available
648 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
649 * available
650 * never: never stall for any thp allocation
444eb2a4 651 */
19deb769 652static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 653{
21440d7e 654 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
2f0799a0 655
ac79f78d 656 /* Always do synchronous compaction */
a8282608
AA
657 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
658 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
659
660 /* Kick kcompactd and fail quickly */
21440d7e 661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 662 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
663
664 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 665 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
666 return GFP_TRANSHUGE_LIGHT |
667 (vma_madvised ? __GFP_DIRECT_RECLAIM :
668 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
669
670 /* Only do synchronous compaction if madvised */
21440d7e 671 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
672 return GFP_TRANSHUGE_LIGHT |
673 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 674
19deb769 675 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
676}
677
c4088ebd 678/* Caller must hold page table lock. */
d295e341 679static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 680 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 681 struct page *zero_page)
fc9fe822
KS
682{
683 pmd_t entry;
7c414164
AM
684 if (!pmd_none(*pmd))
685 return false;
5918d10a 686 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 687 entry = pmd_mkhuge(entry);
12c9d70b
MW
688 if (pgtable)
689 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 690 set_pmd_at(mm, haddr, pmd, entry);
c4812909 691 mm_inc_nr_ptes(mm);
7c414164 692 return true;
fc9fe822
KS
693}
694
2b740303 695vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 696{
82b0f8c3 697 struct vm_area_struct *vma = vmf->vma;
077fcf11 698 gfp_t gfp;
71e3aac0 699 struct page *page;
82b0f8c3 700 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 701
43675e6f 702 if (!transhuge_vma_suitable(vma, haddr))
c0292554 703 return VM_FAULT_FALLBACK;
128ec037
KS
704 if (unlikely(anon_vma_prepare(vma)))
705 return VM_FAULT_OOM;
6d50e60c 706 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 707 return VM_FAULT_OOM;
82b0f8c3 708 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 709 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
710 transparent_hugepage_use_zero_page()) {
711 pgtable_t pgtable;
712 struct page *zero_page;
713 bool set;
2b740303 714 vm_fault_t ret;
4cf58924 715 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 716 if (unlikely(!pgtable))
ba76149f 717 return VM_FAULT_OOM;
6fcb52a5 718 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 719 if (unlikely(!zero_page)) {
bae473a4 720 pte_free(vma->vm_mm, pgtable);
81ab4201 721 count_vm_event(THP_FAULT_FALLBACK);
c0292554 722 return VM_FAULT_FALLBACK;
b9bbfbe3 723 }
82b0f8c3 724 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
725 ret = 0;
726 set = false;
82b0f8c3 727 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
728 ret = check_stable_address_space(vma->vm_mm);
729 if (ret) {
730 spin_unlock(vmf->ptl);
731 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
732 spin_unlock(vmf->ptl);
733 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
734 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
735 } else {
bae473a4 736 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
737 haddr, vmf->pmd, zero_page);
738 spin_unlock(vmf->ptl);
6b251fc9
AA
739 set = true;
740 }
741 } else
82b0f8c3 742 spin_unlock(vmf->ptl);
6fcb52a5 743 if (!set)
bae473a4 744 pte_free(vma->vm_mm, pgtable);
6b251fc9 745 return ret;
71e3aac0 746 }
19deb769
DR
747 gfp = alloc_hugepage_direct_gfpmask(vma);
748 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
749 if (unlikely(!page)) {
750 count_vm_event(THP_FAULT_FALLBACK);
c0292554 751 return VM_FAULT_FALLBACK;
128ec037 752 }
9a982250 753 prep_transhuge_page(page);
82b0f8c3 754 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
755}
756
ae18d6dc 757static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
758 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
759 pgtable_t pgtable)
5cad465d
MW
760{
761 struct mm_struct *mm = vma->vm_mm;
762 pmd_t entry;
763 spinlock_t *ptl;
764
765 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
766 if (!pmd_none(*pmd)) {
767 if (write) {
768 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
769 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
770 goto out_unlock;
771 }
772 entry = pmd_mkyoung(*pmd);
773 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
774 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
775 update_mmu_cache_pmd(vma, addr, pmd);
776 }
777
778 goto out_unlock;
779 }
780
f25748e3
DW
781 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
782 if (pfn_t_devmap(pfn))
783 entry = pmd_mkdevmap(entry);
01871e59 784 if (write) {
f55e1014
LT
785 entry = pmd_mkyoung(pmd_mkdirty(entry));
786 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 787 }
3b6521f5
OH
788
789 if (pgtable) {
790 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 791 mm_inc_nr_ptes(mm);
c6f3c5ee 792 pgtable = NULL;
3b6521f5
OH
793 }
794
01871e59
RZ
795 set_pmd_at(mm, addr, pmd, entry);
796 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
797
798out_unlock:
5cad465d 799 spin_unlock(ptl);
c6f3c5ee
AK
800 if (pgtable)
801 pte_free(mm, pgtable);
5cad465d
MW
802}
803
9a9731b1
THV
804/**
805 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
806 * @vmf: Structure describing the fault
807 * @pfn: pfn to insert
808 * @pgprot: page protection to use
809 * @write: whether it's a write fault
810 *
811 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
812 * also consult the vmf_insert_mixed_prot() documentation when
813 * @pgprot != @vmf->vma->vm_page_prot.
814 *
815 * Return: vm_fault_t value.
816 */
817vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
818 pgprot_t pgprot, bool write)
5cad465d 819{
fce86ff5
DW
820 unsigned long addr = vmf->address & PMD_MASK;
821 struct vm_area_struct *vma = vmf->vma;
3b6521f5 822 pgtable_t pgtable = NULL;
fce86ff5 823
5cad465d
MW
824 /*
825 * If we had pmd_special, we could avoid all these restrictions,
826 * but we need to be consistent with PTEs and architectures that
827 * can't support a 'special' bit.
828 */
e1fb4a08
DJ
829 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
830 !pfn_t_devmap(pfn));
5cad465d
MW
831 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
832 (VM_PFNMAP|VM_MIXEDMAP));
833 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
834
835 if (addr < vma->vm_start || addr >= vma->vm_end)
836 return VM_FAULT_SIGBUS;
308a047c 837
3b6521f5 838 if (arch_needs_pgtable_deposit()) {
4cf58924 839 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
840 if (!pgtable)
841 return VM_FAULT_OOM;
842 }
843
308a047c
BP
844 track_pfn_insert(vma, &pgprot, pfn);
845
fce86ff5 846 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 847 return VM_FAULT_NOPAGE;
5cad465d 848}
9a9731b1 849EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
5cad465d 850
a00cc7d9 851#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 852static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 853{
f55e1014 854 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
855 pud = pud_mkwrite(pud);
856 return pud;
857}
858
859static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
860 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
861{
862 struct mm_struct *mm = vma->vm_mm;
863 pud_t entry;
864 spinlock_t *ptl;
865
866 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
867 if (!pud_none(*pud)) {
868 if (write) {
869 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
870 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
871 goto out_unlock;
872 }
873 entry = pud_mkyoung(*pud);
874 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
875 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
876 update_mmu_cache_pud(vma, addr, pud);
877 }
878 goto out_unlock;
879 }
880
a00cc7d9
MW
881 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
882 if (pfn_t_devmap(pfn))
883 entry = pud_mkdevmap(entry);
884 if (write) {
f55e1014
LT
885 entry = pud_mkyoung(pud_mkdirty(entry));
886 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
887 }
888 set_pud_at(mm, addr, pud, entry);
889 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
890
891out_unlock:
a00cc7d9
MW
892 spin_unlock(ptl);
893}
894
9a9731b1
THV
895/**
896 * vmf_insert_pfn_pud_prot - insert a pud size pfn
897 * @vmf: Structure describing the fault
898 * @pfn: pfn to insert
899 * @pgprot: page protection to use
900 * @write: whether it's a write fault
901 *
902 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
903 * also consult the vmf_insert_mixed_prot() documentation when
904 * @pgprot != @vmf->vma->vm_page_prot.
905 *
906 * Return: vm_fault_t value.
907 */
908vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
909 pgprot_t pgprot, bool write)
a00cc7d9 910{
fce86ff5
DW
911 unsigned long addr = vmf->address & PUD_MASK;
912 struct vm_area_struct *vma = vmf->vma;
fce86ff5 913
a00cc7d9
MW
914 /*
915 * If we had pud_special, we could avoid all these restrictions,
916 * but we need to be consistent with PTEs and architectures that
917 * can't support a 'special' bit.
918 */
62ec0d8c
DJ
919 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
920 !pfn_t_devmap(pfn));
a00cc7d9
MW
921 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
922 (VM_PFNMAP|VM_MIXEDMAP));
923 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
924
925 if (addr < vma->vm_start || addr >= vma->vm_end)
926 return VM_FAULT_SIGBUS;
927
928 track_pfn_insert(vma, &pgprot, pfn);
929
fce86ff5 930 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
931 return VM_FAULT_NOPAGE;
932}
9a9731b1 933EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
a00cc7d9
MW
934#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
935
3565fce3 936static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 937 pmd_t *pmd, int flags)
3565fce3
DW
938{
939 pmd_t _pmd;
940
a8f97366
KS
941 _pmd = pmd_mkyoung(*pmd);
942 if (flags & FOLL_WRITE)
943 _pmd = pmd_mkdirty(_pmd);
3565fce3 944 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 945 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
946 update_mmu_cache_pmd(vma, addr, pmd);
947}
948
949struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 950 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
951{
952 unsigned long pfn = pmd_pfn(*pmd);
953 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
954 struct page *page;
955
956 assert_spin_locked(pmd_lockptr(mm, pmd));
957
8310d48b
KF
958 /*
959 * When we COW a devmap PMD entry, we split it into PTEs, so we should
960 * not be in this function with `flags & FOLL_COW` set.
961 */
962 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
963
3faa52c0
JH
964 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
965 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
966 (FOLL_PIN | FOLL_GET)))
967 return NULL;
968
f6f37321 969 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
970 return NULL;
971
972 if (pmd_present(*pmd) && pmd_devmap(*pmd))
973 /* pass */;
974 else
975 return NULL;
976
977 if (flags & FOLL_TOUCH)
a8f97366 978 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
979
980 /*
981 * device mapped pages can only be returned if the
982 * caller will manage the page reference count.
983 */
3faa52c0 984 if (!(flags & (FOLL_GET | FOLL_PIN)))
3565fce3
DW
985 return ERR_PTR(-EEXIST);
986
987 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
988 *pgmap = get_dev_pagemap(pfn, *pgmap);
989 if (!*pgmap)
3565fce3
DW
990 return ERR_PTR(-EFAULT);
991 page = pfn_to_page(pfn);
3faa52c0
JH
992 if (!try_grab_page(page, flags))
993 page = ERR_PTR(-ENOMEM);
3565fce3
DW
994
995 return page;
996}
997
71e3aac0
AA
998int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
999 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1000 struct vm_area_struct *vma)
1001{
c4088ebd 1002 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1003 struct page *src_page;
1004 pmd_t pmd;
12c9d70b 1005 pgtable_t pgtable = NULL;
628d47ce 1006 int ret = -ENOMEM;
71e3aac0 1007
628d47ce
KS
1008 /* Skip if can be re-fill on fault */
1009 if (!vma_is_anonymous(vma))
1010 return 0;
1011
4cf58924 1012 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1013 if (unlikely(!pgtable))
1014 goto out;
71e3aac0 1015
c4088ebd
KS
1016 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1017 src_ptl = pmd_lockptr(src_mm, src_pmd);
1018 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1019
1020 ret = -EAGAIN;
1021 pmd = *src_pmd;
84c3fc4e 1022
b569a176
PX
1023 /*
1024 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1025 * does not have the VM_UFFD_WP, which means that the uffd
1026 * fork event is not enabled.
1027 */
1028 if (!(vma->vm_flags & VM_UFFD_WP))
1029 pmd = pmd_clear_uffd_wp(pmd);
1030
84c3fc4e
ZY
1031#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1032 if (unlikely(is_swap_pmd(pmd))) {
1033 swp_entry_t entry = pmd_to_swp_entry(pmd);
1034
1035 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1036 if (is_write_migration_entry(entry)) {
1037 make_migration_entry_read(&entry);
1038 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1039 if (pmd_swp_soft_dirty(*src_pmd))
1040 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1041 set_pmd_at(src_mm, addr, src_pmd, pmd);
1042 }
dd8a67f9 1043 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1044 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1045 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1046 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1047 ret = 0;
1048 goto out_unlock;
1049 }
1050#endif
1051
628d47ce 1052 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1053 pte_free(dst_mm, pgtable);
1054 goto out_unlock;
1055 }
fc9fe822 1056 /*
c4088ebd 1057 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1058 * under splitting since we don't split the page itself, only pmd to
1059 * a page table.
1060 */
1061 if (is_huge_zero_pmd(pmd)) {
5918d10a 1062 struct page *zero_page;
97ae1749
KS
1063 /*
1064 * get_huge_zero_page() will never allocate a new page here,
1065 * since we already have a zero page to copy. It just takes a
1066 * reference.
1067 */
6fcb52a5 1068 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1069 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1070 zero_page);
fc9fe822
KS
1071 ret = 0;
1072 goto out_unlock;
1073 }
de466bd6 1074
628d47ce
KS
1075 src_page = pmd_page(pmd);
1076 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1077 get_page(src_page);
1078 page_dup_rmap(src_page, true);
1079 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1080 mm_inc_nr_ptes(dst_mm);
628d47ce 1081 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1082
1083 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1084 pmd = pmd_mkold(pmd_wrprotect(pmd));
1085 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1086
1087 ret = 0;
1088out_unlock:
c4088ebd
KS
1089 spin_unlock(src_ptl);
1090 spin_unlock(dst_ptl);
71e3aac0
AA
1091out:
1092 return ret;
1093}
1094
a00cc7d9
MW
1095#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1096static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1097 pud_t *pud, int flags)
a00cc7d9
MW
1098{
1099 pud_t _pud;
1100
a8f97366
KS
1101 _pud = pud_mkyoung(*pud);
1102 if (flags & FOLL_WRITE)
1103 _pud = pud_mkdirty(_pud);
a00cc7d9 1104 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1105 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1106 update_mmu_cache_pud(vma, addr, pud);
1107}
1108
1109struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1110 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1111{
1112 unsigned long pfn = pud_pfn(*pud);
1113 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1114 struct page *page;
1115
1116 assert_spin_locked(pud_lockptr(mm, pud));
1117
f6f37321 1118 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1119 return NULL;
1120
3faa52c0
JH
1121 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1122 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1123 (FOLL_PIN | FOLL_GET)))
1124 return NULL;
1125
a00cc7d9
MW
1126 if (pud_present(*pud) && pud_devmap(*pud))
1127 /* pass */;
1128 else
1129 return NULL;
1130
1131 if (flags & FOLL_TOUCH)
a8f97366 1132 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1133
1134 /*
1135 * device mapped pages can only be returned if the
1136 * caller will manage the page reference count.
3faa52c0
JH
1137 *
1138 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
a00cc7d9 1139 */
3faa52c0 1140 if (!(flags & (FOLL_GET | FOLL_PIN)))
a00cc7d9
MW
1141 return ERR_PTR(-EEXIST);
1142
1143 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1144 *pgmap = get_dev_pagemap(pfn, *pgmap);
1145 if (!*pgmap)
a00cc7d9
MW
1146 return ERR_PTR(-EFAULT);
1147 page = pfn_to_page(pfn);
3faa52c0
JH
1148 if (!try_grab_page(page, flags))
1149 page = ERR_PTR(-ENOMEM);
a00cc7d9
MW
1150
1151 return page;
1152}
1153
1154int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1155 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1156 struct vm_area_struct *vma)
1157{
1158 spinlock_t *dst_ptl, *src_ptl;
1159 pud_t pud;
1160 int ret;
1161
1162 dst_ptl = pud_lock(dst_mm, dst_pud);
1163 src_ptl = pud_lockptr(src_mm, src_pud);
1164 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1165
1166 ret = -EAGAIN;
1167 pud = *src_pud;
1168 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1169 goto out_unlock;
1170
1171 /*
1172 * When page table lock is held, the huge zero pud should not be
1173 * under splitting since we don't split the page itself, only pud to
1174 * a page table.
1175 */
1176 if (is_huge_zero_pud(pud)) {
1177 /* No huge zero pud yet */
1178 }
1179
1180 pudp_set_wrprotect(src_mm, addr, src_pud);
1181 pud = pud_mkold(pud_wrprotect(pud));
1182 set_pud_at(dst_mm, addr, dst_pud, pud);
1183
1184 ret = 0;
1185out_unlock:
1186 spin_unlock(src_ptl);
1187 spin_unlock(dst_ptl);
1188 return ret;
1189}
1190
1191void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1192{
1193 pud_t entry;
1194 unsigned long haddr;
1195 bool write = vmf->flags & FAULT_FLAG_WRITE;
1196
1197 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1198 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1199 goto unlock;
1200
1201 entry = pud_mkyoung(orig_pud);
1202 if (write)
1203 entry = pud_mkdirty(entry);
1204 haddr = vmf->address & HPAGE_PUD_MASK;
1205 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1206 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1207
1208unlock:
1209 spin_unlock(vmf->ptl);
1210}
1211#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1212
82b0f8c3 1213void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1214{
1215 pmd_t entry;
1216 unsigned long haddr;
20f664aa 1217 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1218
82b0f8c3
JK
1219 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1220 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1221 goto unlock;
1222
1223 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1224 if (write)
1225 entry = pmd_mkdirty(entry);
82b0f8c3 1226 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1227 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1228 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1229
1230unlock:
82b0f8c3 1231 spin_unlock(vmf->ptl);
a1dd450b
WD
1232}
1233
2b740303 1234vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1235{
82b0f8c3 1236 struct vm_area_struct *vma = vmf->vma;
3917c802 1237 struct page *page;
82b0f8c3 1238 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 1239
82b0f8c3 1240 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1241 VM_BUG_ON_VMA(!vma->anon_vma, vma);
3917c802 1242
93b4796d 1243 if (is_huge_zero_pmd(orig_pmd))
3917c802
KS
1244 goto fallback;
1245
82b0f8c3 1246 spin_lock(vmf->ptl);
3917c802
KS
1247
1248 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1249 spin_unlock(vmf->ptl);
1250 return 0;
1251 }
71e3aac0
AA
1252
1253 page = pmd_page(orig_pmd);
309381fe 1254 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
3917c802
KS
1255
1256 /* Lock page for reuse_swap_page() */
ba3c4ce6
HY
1257 if (!trylock_page(page)) {
1258 get_page(page);
1259 spin_unlock(vmf->ptl);
1260 lock_page(page);
1261 spin_lock(vmf->ptl);
1262 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
3917c802 1263 spin_unlock(vmf->ptl);
ba3c4ce6
HY
1264 unlock_page(page);
1265 put_page(page);
3917c802 1266 return 0;
ba3c4ce6
HY
1267 }
1268 put_page(page);
1269 }
3917c802
KS
1270
1271 /*
1272 * We can only reuse the page if nobody else maps the huge page or it's
1273 * part.
1274 */
ba3c4ce6 1275 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1276 pmd_t entry;
1277 entry = pmd_mkyoung(orig_pmd);
f55e1014 1278 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3917c802 1279 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
82b0f8c3 1280 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
ba3c4ce6 1281 unlock_page(page);
82b0f8c3 1282 spin_unlock(vmf->ptl);
3917c802 1283 return VM_FAULT_WRITE;
71e3aac0 1284 }
3917c802
KS
1285
1286 unlock_page(page);
82b0f8c3 1287 spin_unlock(vmf->ptl);
3917c802
KS
1288fallback:
1289 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1290 return VM_FAULT_FALLBACK;
71e3aac0
AA
1291}
1292
8310d48b 1293/*
a308c71b
PX
1294 * FOLL_FORCE can write to even unwritable pmd's, but only
1295 * after we've gone through a COW cycle and they are dirty.
8310d48b
KF
1296 */
1297static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1298{
a308c71b
PX
1299 return pmd_write(pmd) ||
1300 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
8310d48b
KF
1301}
1302
b676b293 1303struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1304 unsigned long addr,
1305 pmd_t *pmd,
1306 unsigned int flags)
1307{
b676b293 1308 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1309 struct page *page = NULL;
1310
c4088ebd 1311 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1312
8310d48b 1313 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1314 goto out;
1315
85facf25
KS
1316 /* Avoid dumping huge zero page */
1317 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1318 return ERR_PTR(-EFAULT);
1319
2b4847e7 1320 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1321 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1322 goto out;
1323
71e3aac0 1324 page = pmd_page(*pmd);
ca120cf6 1325 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3faa52c0
JH
1326
1327 if (!try_grab_page(page, flags))
1328 return ERR_PTR(-ENOMEM);
1329
3565fce3 1330 if (flags & FOLL_TOUCH)
a8f97366 1331 touch_pmd(vma, addr, pmd, flags);
3faa52c0 1332
de60f5f1 1333 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1334 /*
1335 * We don't mlock() pte-mapped THPs. This way we can avoid
1336 * leaking mlocked pages into non-VM_LOCKED VMAs.
1337 *
9a73f61b
KS
1338 * For anon THP:
1339 *
e90309c9
KS
1340 * In most cases the pmd is the only mapping of the page as we
1341 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1342 * writable private mappings in populate_vma_page_range().
1343 *
1344 * The only scenario when we have the page shared here is if we
1345 * mlocking read-only mapping shared over fork(). We skip
1346 * mlocking such pages.
9a73f61b
KS
1347 *
1348 * For file THP:
1349 *
1350 * We can expect PageDoubleMap() to be stable under page lock:
1351 * for file pages we set it in page_add_file_rmap(), which
1352 * requires page to be locked.
e90309c9 1353 */
9a73f61b
KS
1354
1355 if (PageAnon(page) && compound_mapcount(page) != 1)
1356 goto skip_mlock;
1357 if (PageDoubleMap(page) || !page->mapping)
1358 goto skip_mlock;
1359 if (!trylock_page(page))
1360 goto skip_mlock;
9a73f61b
KS
1361 if (page->mapping && !PageDoubleMap(page))
1362 mlock_vma_page(page);
1363 unlock_page(page);
b676b293 1364 }
9a73f61b 1365skip_mlock:
71e3aac0 1366 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1367 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0
AA
1368
1369out:
1370 return page;
1371}
1372
d10e63f2 1373/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1374vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1375{
82b0f8c3 1376 struct vm_area_struct *vma = vmf->vma;
b8916634 1377 struct anon_vma *anon_vma = NULL;
b32967ff 1378 struct page *page;
82b0f8c3 1379 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1380 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1381 int target_nid, last_cpupid = -1;
8191acbd
MG
1382 bool page_locked;
1383 bool migrated = false;
b191f9b1 1384 bool was_writable;
6688cc05 1385 int flags = 0;
d10e63f2 1386
82b0f8c3
JK
1387 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1388 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1389 goto out_unlock;
1390
de466bd6
MG
1391 /*
1392 * If there are potential migrations, wait for completion and retry
1393 * without disrupting NUMA hinting information. Do not relock and
1394 * check_same as the page may no longer be mapped.
1395 */
82b0f8c3
JK
1396 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1397 page = pmd_page(*vmf->pmd);
3c226c63
MR
1398 if (!get_page_unless_zero(page))
1399 goto out_unlock;
82b0f8c3 1400 spin_unlock(vmf->ptl);
9a1ea439 1401 put_and_wait_on_page_locked(page);
de466bd6
MG
1402 goto out;
1403 }
1404
d10e63f2 1405 page = pmd_page(pmd);
a1a46184 1406 BUG_ON(is_huge_zero_page(page));
8191acbd 1407 page_nid = page_to_nid(page);
90572890 1408 last_cpupid = page_cpupid_last(page);
03c5a6e1 1409 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1410 if (page_nid == this_nid) {
03c5a6e1 1411 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1412 flags |= TNF_FAULT_LOCAL;
1413 }
4daae3b4 1414
bea66fbd 1415 /* See similar comment in do_numa_page for explanation */
288bc549 1416 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1417 flags |= TNF_NO_GROUP;
1418
ff9042b1
MG
1419 /*
1420 * Acquire the page lock to serialise THP migrations but avoid dropping
1421 * page_table_lock if at all possible
1422 */
b8916634
MG
1423 page_locked = trylock_page(page);
1424 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1425 if (target_nid == NUMA_NO_NODE) {
b8916634 1426 /* If the page was locked, there are no parallel migrations */
a54a407f 1427 if (page_locked)
b8916634 1428 goto clear_pmdnuma;
2b4847e7 1429 }
4daae3b4 1430
de466bd6 1431 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1432 if (!page_locked) {
98fa15f3 1433 page_nid = NUMA_NO_NODE;
3c226c63
MR
1434 if (!get_page_unless_zero(page))
1435 goto out_unlock;
82b0f8c3 1436 spin_unlock(vmf->ptl);
9a1ea439 1437 put_and_wait_on_page_locked(page);
b8916634
MG
1438 goto out;
1439 }
1440
2b4847e7
MG
1441 /*
1442 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1443 * to serialises splits
1444 */
b8916634 1445 get_page(page);
82b0f8c3 1446 spin_unlock(vmf->ptl);
b8916634 1447 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1448
c69307d5 1449 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1450 spin_lock(vmf->ptl);
1451 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1452 unlock_page(page);
1453 put_page(page);
98fa15f3 1454 page_nid = NUMA_NO_NODE;
4daae3b4 1455 goto out_unlock;
b32967ff 1456 }
ff9042b1 1457
c3a489ca
MG
1458 /* Bail if we fail to protect against THP splits for any reason */
1459 if (unlikely(!anon_vma)) {
1460 put_page(page);
98fa15f3 1461 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1462 goto clear_pmdnuma;
1463 }
1464
8b1b436d
PZ
1465 /*
1466 * Since we took the NUMA fault, we must have observed the !accessible
1467 * bit. Make sure all other CPUs agree with that, to avoid them
1468 * modifying the page we're about to migrate.
1469 *
1470 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1471 * inc_tlb_flush_pending().
1472 *
1473 * We are not sure a pending tlb flush here is for a huge page
1474 * mapping or not. Hence use the tlb range variant
8b1b436d 1475 */
7066f0f9 1476 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1477 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1478 /*
1479 * change_huge_pmd() released the pmd lock before
1480 * invalidating the secondary MMUs sharing the primary
1481 * MMU pagetables (with ->invalidate_range()). The
1482 * mmu_notifier_invalidate_range_end() (which
1483 * internally calls ->invalidate_range()) in
1484 * change_pmd_range() will run after us, so we can't
1485 * rely on it here and we need an explicit invalidate.
1486 */
1487 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1488 haddr + HPAGE_PMD_SIZE);
1489 }
8b1b436d 1490
a54a407f
MG
1491 /*
1492 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1493 * and access rights restored.
a54a407f 1494 */
82b0f8c3 1495 spin_unlock(vmf->ptl);
8b1b436d 1496
bae473a4 1497 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1498 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1499 if (migrated) {
1500 flags |= TNF_MIGRATED;
8191acbd 1501 page_nid = target_nid;
074c2381
MG
1502 } else
1503 flags |= TNF_MIGRATE_FAIL;
b32967ff 1504
8191acbd 1505 goto out;
b32967ff 1506clear_pmdnuma:
a54a407f 1507 BUG_ON(!PageLocked(page));
288bc549 1508 was_writable = pmd_savedwrite(pmd);
4d942466 1509 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1510 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1511 if (was_writable)
1512 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1513 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1514 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1515 unlock_page(page);
d10e63f2 1516out_unlock:
82b0f8c3 1517 spin_unlock(vmf->ptl);
b8916634
MG
1518
1519out:
1520 if (anon_vma)
1521 page_unlock_anon_vma_read(anon_vma);
1522
98fa15f3 1523 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1524 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1525 flags);
8191acbd 1526
d10e63f2
MG
1527 return 0;
1528}
1529
319904ad
HY
1530/*
1531 * Return true if we do MADV_FREE successfully on entire pmd page.
1532 * Otherwise, return false.
1533 */
1534bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1535 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1536{
1537 spinlock_t *ptl;
1538 pmd_t orig_pmd;
1539 struct page *page;
1540 struct mm_struct *mm = tlb->mm;
319904ad 1541 bool ret = false;
b8d3c4c3 1542
ed6a7935 1543 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1544
b6ec57f4
KS
1545 ptl = pmd_trans_huge_lock(pmd, vma);
1546 if (!ptl)
25eedabe 1547 goto out_unlocked;
b8d3c4c3
MK
1548
1549 orig_pmd = *pmd;
319904ad 1550 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1551 goto out;
b8d3c4c3 1552
84c3fc4e
ZY
1553 if (unlikely(!pmd_present(orig_pmd))) {
1554 VM_BUG_ON(thp_migration_supported() &&
1555 !is_pmd_migration_entry(orig_pmd));
1556 goto out;
1557 }
1558
b8d3c4c3
MK
1559 page = pmd_page(orig_pmd);
1560 /*
1561 * If other processes are mapping this page, we couldn't discard
1562 * the page unless they all do MADV_FREE so let's skip the page.
1563 */
1564 if (page_mapcount(page) != 1)
1565 goto out;
1566
1567 if (!trylock_page(page))
1568 goto out;
1569
1570 /*
1571 * If user want to discard part-pages of THP, split it so MADV_FREE
1572 * will deactivate only them.
1573 */
1574 if (next - addr != HPAGE_PMD_SIZE) {
1575 get_page(page);
1576 spin_unlock(ptl);
9818b8cd 1577 split_huge_page(page);
b8d3c4c3 1578 unlock_page(page);
bbf29ffc 1579 put_page(page);
b8d3c4c3
MK
1580 goto out_unlocked;
1581 }
1582
1583 if (PageDirty(page))
1584 ClearPageDirty(page);
1585 unlock_page(page);
1586
b8d3c4c3 1587 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1588 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1589 orig_pmd = pmd_mkold(orig_pmd);
1590 orig_pmd = pmd_mkclean(orig_pmd);
1591
1592 set_pmd_at(mm, addr, pmd, orig_pmd);
1593 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1594 }
802a3a92
SL
1595
1596 mark_page_lazyfree(page);
319904ad 1597 ret = true;
b8d3c4c3
MK
1598out:
1599 spin_unlock(ptl);
1600out_unlocked:
1601 return ret;
1602}
1603
953c66c2
AK
1604static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1605{
1606 pgtable_t pgtable;
1607
1608 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1609 pte_free(mm, pgtable);
c4812909 1610 mm_dec_nr_ptes(mm);
953c66c2
AK
1611}
1612
71e3aac0 1613int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1614 pmd_t *pmd, unsigned long addr)
71e3aac0 1615{
da146769 1616 pmd_t orig_pmd;
bf929152 1617 spinlock_t *ptl;
71e3aac0 1618
ed6a7935 1619 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1620
b6ec57f4
KS
1621 ptl = __pmd_trans_huge_lock(pmd, vma);
1622 if (!ptl)
da146769
KS
1623 return 0;
1624 /*
1625 * For architectures like ppc64 we look at deposited pgtable
1626 * when calling pmdp_huge_get_and_clear. So do the
1627 * pgtable_trans_huge_withdraw after finishing pmdp related
1628 * operations.
1629 */
93a98695
AK
1630 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1631 tlb->fullmm);
da146769 1632 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2484ca9b 1633 if (vma_is_special_huge(vma)) {
3b6521f5
OH
1634 if (arch_needs_pgtable_deposit())
1635 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1636 spin_unlock(ptl);
1637 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1638 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1639 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1640 zap_deposited_table(tlb->mm, pmd);
da146769 1641 spin_unlock(ptl);
c0f2e176 1642 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1643 } else {
616b8371
ZY
1644 struct page *page = NULL;
1645 int flush_needed = 1;
1646
1647 if (pmd_present(orig_pmd)) {
1648 page = pmd_page(orig_pmd);
1649 page_remove_rmap(page, true);
1650 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1651 VM_BUG_ON_PAGE(!PageHead(page), page);
1652 } else if (thp_migration_supported()) {
1653 swp_entry_t entry;
1654
1655 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1656 entry = pmd_to_swp_entry(orig_pmd);
1657 page = pfn_to_page(swp_offset(entry));
1658 flush_needed = 0;
1659 } else
1660 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1661
b5072380 1662 if (PageAnon(page)) {
c14a6eb4 1663 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1664 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1665 } else {
953c66c2
AK
1666 if (arch_needs_pgtable_deposit())
1667 zap_deposited_table(tlb->mm, pmd);
fadae295 1668 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1669 }
616b8371 1670
da146769 1671 spin_unlock(ptl);
616b8371
ZY
1672 if (flush_needed)
1673 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1674 }
da146769 1675 return 1;
71e3aac0
AA
1676}
1677
1dd38b6c
AK
1678#ifndef pmd_move_must_withdraw
1679static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1680 spinlock_t *old_pmd_ptl,
1681 struct vm_area_struct *vma)
1682{
1683 /*
1684 * With split pmd lock we also need to move preallocated
1685 * PTE page table if new_pmd is on different PMD page table.
1686 *
1687 * We also don't deposit and withdraw tables for file pages.
1688 */
1689 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1690}
1691#endif
1692
ab6e3d09
NH
1693static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1694{
1695#ifdef CONFIG_MEM_SOFT_DIRTY
1696 if (unlikely(is_pmd_migration_entry(pmd)))
1697 pmd = pmd_swp_mksoft_dirty(pmd);
1698 else if (pmd_present(pmd))
1699 pmd = pmd_mksoft_dirty(pmd);
1700#endif
1701 return pmd;
1702}
1703
bf8616d5 1704bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
b8aa9d9d 1705 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1706{
bf929152 1707 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1708 pmd_t pmd;
37a1c49a 1709 struct mm_struct *mm = vma->vm_mm;
5d190420 1710 bool force_flush = false;
37a1c49a 1711
37a1c49a
AA
1712 /*
1713 * The destination pmd shouldn't be established, free_pgtables()
1714 * should have release it.
1715 */
1716 if (WARN_ON(!pmd_none(*new_pmd))) {
1717 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1718 return false;
37a1c49a
AA
1719 }
1720
bf929152
KS
1721 /*
1722 * We don't have to worry about the ordering of src and dst
c1e8d7c6 1723 * ptlocks because exclusive mmap_lock prevents deadlock.
bf929152 1724 */
b6ec57f4
KS
1725 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1726 if (old_ptl) {
bf929152
KS
1727 new_ptl = pmd_lockptr(mm, new_pmd);
1728 if (new_ptl != old_ptl)
1729 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1730 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1731 if (pmd_present(pmd))
a2ce2666 1732 force_flush = true;
025c5b24 1733 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1734
1dd38b6c 1735 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1736 pgtable_t pgtable;
3592806c
KS
1737 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1738 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1739 }
ab6e3d09
NH
1740 pmd = move_soft_dirty_pmd(pmd);
1741 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1742 if (force_flush)
1743 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1744 if (new_ptl != old_ptl)
1745 spin_unlock(new_ptl);
bf929152 1746 spin_unlock(old_ptl);
4b471e88 1747 return true;
37a1c49a 1748 }
4b471e88 1749 return false;
37a1c49a
AA
1750}
1751
f123d74a
MG
1752/*
1753 * Returns
1754 * - 0 if PMD could not be locked
1755 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1756 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1757 */
cd7548ab 1758int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
58705444 1759 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
cd7548ab
JW
1760{
1761 struct mm_struct *mm = vma->vm_mm;
bf929152 1762 spinlock_t *ptl;
0a85e51d
KS
1763 pmd_t entry;
1764 bool preserve_write;
1765 int ret;
58705444 1766 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
292924b2
PX
1767 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1768 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
cd7548ab 1769
b6ec57f4 1770 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1771 if (!ptl)
1772 return 0;
e944fd67 1773
0a85e51d
KS
1774 preserve_write = prot_numa && pmd_write(*pmd);
1775 ret = 1;
e944fd67 1776
84c3fc4e
ZY
1777#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1778 if (is_swap_pmd(*pmd)) {
1779 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1780
1781 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1782 if (is_write_migration_entry(entry)) {
1783 pmd_t newpmd;
1784 /*
1785 * A protection check is difficult so
1786 * just be safe and disable write
1787 */
1788 make_migration_entry_read(&entry);
1789 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1790 if (pmd_swp_soft_dirty(*pmd))
1791 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1792 set_pmd_at(mm, addr, pmd, newpmd);
1793 }
1794 goto unlock;
1795 }
1796#endif
1797
0a85e51d
KS
1798 /*
1799 * Avoid trapping faults against the zero page. The read-only
1800 * data is likely to be read-cached on the local CPU and
1801 * local/remote hits to the zero page are not interesting.
1802 */
1803 if (prot_numa && is_huge_zero_pmd(*pmd))
1804 goto unlock;
025c5b24 1805
0a85e51d
KS
1806 if (prot_numa && pmd_protnone(*pmd))
1807 goto unlock;
1808
ced10803 1809 /*
3e4e28c5 1810 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
ced10803 1811 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
3e4e28c5 1812 * which is also under mmap_read_lock(mm):
ced10803
KS
1813 *
1814 * CPU0: CPU1:
1815 * change_huge_pmd(prot_numa=1)
1816 * pmdp_huge_get_and_clear_notify()
1817 * madvise_dontneed()
1818 * zap_pmd_range()
1819 * pmd_trans_huge(*pmd) == 0 (without ptl)
1820 * // skip the pmd
1821 * set_pmd_at();
1822 * // pmd is re-established
1823 *
1824 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1825 * which may break userspace.
1826 *
1827 * pmdp_invalidate() is required to make sure we don't miss
1828 * dirty/young flags set by hardware.
1829 */
a3cf988f 1830 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1831
0a85e51d
KS
1832 entry = pmd_modify(entry, newprot);
1833 if (preserve_write)
1834 entry = pmd_mk_savedwrite(entry);
292924b2
PX
1835 if (uffd_wp) {
1836 entry = pmd_wrprotect(entry);
1837 entry = pmd_mkuffd_wp(entry);
1838 } else if (uffd_wp_resolve) {
1839 /*
1840 * Leave the write bit to be handled by PF interrupt
1841 * handler, then things like COW could be properly
1842 * handled.
1843 */
1844 entry = pmd_clear_uffd_wp(entry);
1845 }
0a85e51d
KS
1846 ret = HPAGE_PMD_NR;
1847 set_pmd_at(mm, addr, pmd, entry);
1848 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1849unlock:
1850 spin_unlock(ptl);
025c5b24
NH
1851 return ret;
1852}
1853
1854/*
8f19b0c0 1855 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1856 *
8f19b0c0
HY
1857 * Note that if it returns page table lock pointer, this routine returns without
1858 * unlocking page table lock. So callers must unlock it.
025c5b24 1859 */
b6ec57f4 1860spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1861{
b6ec57f4
KS
1862 spinlock_t *ptl;
1863 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1864 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1865 pmd_devmap(*pmd)))
b6ec57f4
KS
1866 return ptl;
1867 spin_unlock(ptl);
1868 return NULL;
cd7548ab
JW
1869}
1870
a00cc7d9
MW
1871/*
1872 * Returns true if a given pud maps a thp, false otherwise.
1873 *
1874 * Note that if it returns true, this routine returns without unlocking page
1875 * table lock. So callers must unlock it.
1876 */
1877spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1878{
1879 spinlock_t *ptl;
1880
1881 ptl = pud_lock(vma->vm_mm, pud);
1882 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1883 return ptl;
1884 spin_unlock(ptl);
1885 return NULL;
1886}
1887
1888#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1889int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1890 pud_t *pud, unsigned long addr)
1891{
a00cc7d9
MW
1892 spinlock_t *ptl;
1893
1894 ptl = __pud_trans_huge_lock(pud, vma);
1895 if (!ptl)
1896 return 0;
1897 /*
1898 * For architectures like ppc64 we look at deposited pgtable
1899 * when calling pudp_huge_get_and_clear. So do the
1900 * pgtable_trans_huge_withdraw after finishing pudp related
1901 * operations.
1902 */
70516b93 1903 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9 1904 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2484ca9b 1905 if (vma_is_special_huge(vma)) {
a00cc7d9
MW
1906 spin_unlock(ptl);
1907 /* No zero page support yet */
1908 } else {
1909 /* No support for anonymous PUD pages yet */
1910 BUG();
1911 }
1912 return 1;
1913}
1914
1915static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1916 unsigned long haddr)
1917{
1918 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1919 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1920 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1921 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1922
ce9311cf 1923 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1924
1925 pudp_huge_clear_flush_notify(vma, haddr, pud);
1926}
1927
1928void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1929 unsigned long address)
1930{
1931 spinlock_t *ptl;
ac46d4f3 1932 struct mmu_notifier_range range;
a00cc7d9 1933
7269f999 1934 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1935 address & HPAGE_PUD_MASK,
ac46d4f3
JG
1936 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1937 mmu_notifier_invalidate_range_start(&range);
1938 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
1939 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1940 goto out;
ac46d4f3 1941 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
1942
1943out:
1944 spin_unlock(ptl);
4645b9fe
JG
1945 /*
1946 * No need to double call mmu_notifier->invalidate_range() callback as
1947 * the above pudp_huge_clear_flush_notify() did already call it.
1948 */
ac46d4f3 1949 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
1950}
1951#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1952
eef1b3ba
KS
1953static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1954 unsigned long haddr, pmd_t *pmd)
1955{
1956 struct mm_struct *mm = vma->vm_mm;
1957 pgtable_t pgtable;
1958 pmd_t _pmd;
1959 int i;
1960
0f10851e
JG
1961 /*
1962 * Leave pmd empty until pte is filled note that it is fine to delay
1963 * notification until mmu_notifier_invalidate_range_end() as we are
1964 * replacing a zero pmd write protected page with a zero pte write
1965 * protected page.
1966 *
ad56b738 1967 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
1968 */
1969 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
1970
1971 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1972 pmd_populate(mm, &_pmd, pgtable);
1973
1974 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1975 pte_t *pte, entry;
1976 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1977 entry = pte_mkspecial(entry);
1978 pte = pte_offset_map(&_pmd, haddr);
1979 VM_BUG_ON(!pte_none(*pte));
1980 set_pte_at(mm, haddr, pte, entry);
1981 pte_unmap(pte);
1982 }
1983 smp_wmb(); /* make pte visible before pmd */
1984 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
1985}
1986
1987static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 1988 unsigned long haddr, bool freeze)
eef1b3ba
KS
1989{
1990 struct mm_struct *mm = vma->vm_mm;
1991 struct page *page;
1992 pgtable_t pgtable;
423ac9af 1993 pmd_t old_pmd, _pmd;
292924b2 1994 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2ac015e2 1995 unsigned long addr;
eef1b3ba
KS
1996 int i;
1997
1998 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1999 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2000 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2001 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2002 && !pmd_devmap(*pmd));
eef1b3ba
KS
2003
2004 count_vm_event(THP_SPLIT_PMD);
2005
d21b9e57
KS
2006 if (!vma_is_anonymous(vma)) {
2007 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2008 /*
2009 * We are going to unmap this huge page. So
2010 * just go ahead and zap it
2011 */
2012 if (arch_needs_pgtable_deposit())
2013 zap_deposited_table(mm, pmd);
2484ca9b 2014 if (vma_is_special_huge(vma))
d21b9e57
KS
2015 return;
2016 page = pmd_page(_pmd);
e1f1b157
HD
2017 if (!PageDirty(page) && pmd_dirty(_pmd))
2018 set_page_dirty(page);
d21b9e57
KS
2019 if (!PageReferenced(page) && pmd_young(_pmd))
2020 SetPageReferenced(page);
2021 page_remove_rmap(page, true);
2022 put_page(page);
fadae295 2023 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba 2024 return;
ec0abae6 2025 } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2026 /*
2027 * FIXME: Do we want to invalidate secondary mmu by calling
2028 * mmu_notifier_invalidate_range() see comments below inside
2029 * __split_huge_pmd() ?
2030 *
2031 * We are going from a zero huge page write protected to zero
2032 * small page also write protected so it does not seems useful
2033 * to invalidate secondary mmu at this time.
2034 */
eef1b3ba
KS
2035 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2036 }
2037
423ac9af
AK
2038 /*
2039 * Up to this point the pmd is present and huge and userland has the
2040 * whole access to the hugepage during the split (which happens in
2041 * place). If we overwrite the pmd with the not-huge version pointing
2042 * to the pte here (which of course we could if all CPUs were bug
2043 * free), userland could trigger a small page size TLB miss on the
2044 * small sized TLB while the hugepage TLB entry is still established in
2045 * the huge TLB. Some CPU doesn't like that.
42742d9b
AK
2046 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2047 * 383 on page 105. Intel should be safe but is also warns that it's
423ac9af
AK
2048 * only safe if the permission and cache attributes of the two entries
2049 * loaded in the two TLB is identical (which should be the case here).
2050 * But it is generally safer to never allow small and huge TLB entries
2051 * for the same virtual address to be loaded simultaneously. So instead
2052 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2053 * current pmd notpresent (atomically because here the pmd_trans_huge
2054 * must remain set at all times on the pmd until the split is complete
2055 * for this pmd), then we flush the SMP TLB and finally we write the
2056 * non-huge version of the pmd entry with pmd_populate.
2057 */
2058 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2059
423ac9af 2060 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2061 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2062 swp_entry_t entry;
2063
423ac9af 2064 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2065 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2066 write = is_write_migration_entry(entry);
2067 young = false;
2068 soft_dirty = pmd_swp_soft_dirty(old_pmd);
f45ec5ff 2069 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2e83ee1d 2070 } else {
423ac9af 2071 page = pmd_page(old_pmd);
2e83ee1d
PX
2072 if (pmd_dirty(old_pmd))
2073 SetPageDirty(page);
2074 write = pmd_write(old_pmd);
2075 young = pmd_young(old_pmd);
2076 soft_dirty = pmd_soft_dirty(old_pmd);
292924b2 2077 uffd_wp = pmd_uffd_wp(old_pmd);
2e83ee1d 2078 }
eef1b3ba 2079 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2080 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2081
423ac9af
AK
2082 /*
2083 * Withdraw the table only after we mark the pmd entry invalid.
2084 * This's critical for some architectures (Power).
2085 */
eef1b3ba
KS
2086 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2087 pmd_populate(mm, &_pmd, pgtable);
2088
2ac015e2 2089 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2090 pte_t entry, *pte;
2091 /*
2092 * Note that NUMA hinting access restrictions are not
2093 * transferred to avoid any possibility of altering
2094 * permissions across VMAs.
2095 */
84c3fc4e 2096 if (freeze || pmd_migration) {
ba988280
KS
2097 swp_entry_t swp_entry;
2098 swp_entry = make_migration_entry(page + i, write);
2099 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2100 if (soft_dirty)
2101 entry = pte_swp_mksoft_dirty(entry);
f45ec5ff
PX
2102 if (uffd_wp)
2103 entry = pte_swp_mkuffd_wp(entry);
ba988280 2104 } else {
6d2329f8 2105 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2106 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2107 if (!write)
2108 entry = pte_wrprotect(entry);
2109 if (!young)
2110 entry = pte_mkold(entry);
804dd150
AA
2111 if (soft_dirty)
2112 entry = pte_mksoft_dirty(entry);
292924b2
PX
2113 if (uffd_wp)
2114 entry = pte_mkuffd_wp(entry);
ba988280 2115 }
2ac015e2 2116 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2117 BUG_ON(!pte_none(*pte));
2ac015e2 2118 set_pte_at(mm, addr, pte, entry);
ec0abae6 2119 if (!pmd_migration)
eef1b3ba 2120 atomic_inc(&page[i]._mapcount);
ec0abae6 2121 pte_unmap(pte);
eef1b3ba
KS
2122 }
2123
ec0abae6
RC
2124 if (!pmd_migration) {
2125 /*
2126 * Set PG_double_map before dropping compound_mapcount to avoid
2127 * false-negative page_mapped().
2128 */
2129 if (compound_mapcount(page) > 1 &&
2130 !TestSetPageDoubleMap(page)) {
eef1b3ba 2131 for (i = 0; i < HPAGE_PMD_NR; i++)
ec0abae6
RC
2132 atomic_inc(&page[i]._mapcount);
2133 }
2134
2135 lock_page_memcg(page);
2136 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2137 /* Last compound_mapcount is gone. */
2138 __dec_lruvec_page_state(page, NR_ANON_THPS);
2139 if (TestClearPageDoubleMap(page)) {
2140 /* No need in mapcount reference anymore */
2141 for (i = 0; i < HPAGE_PMD_NR; i++)
2142 atomic_dec(&page[i]._mapcount);
2143 }
eef1b3ba 2144 }
ec0abae6 2145 unlock_page_memcg(page);
eef1b3ba
KS
2146 }
2147
2148 smp_wmb(); /* make pte visible before pmd */
2149 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2150
2151 if (freeze) {
2ac015e2 2152 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2153 page_remove_rmap(page + i, false);
2154 put_page(page + i);
2155 }
2156 }
eef1b3ba
KS
2157}
2158
2159void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2160 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2161{
2162 spinlock_t *ptl;
ac46d4f3 2163 struct mmu_notifier_range range;
c444eb56
AA
2164 bool was_locked = false;
2165 pmd_t _pmd;
eef1b3ba 2166
7269f999 2167 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2168 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2169 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2170 mmu_notifier_invalidate_range_start(&range);
2171 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2172
2173 /*
2174 * If caller asks to setup a migration entries, we need a page to check
2175 * pmd against. Otherwise we can end up replacing wrong page.
2176 */
2177 VM_BUG_ON(freeze && !page);
c444eb56
AA
2178 if (page) {
2179 VM_WARN_ON_ONCE(!PageLocked(page));
2180 was_locked = true;
2181 if (page != pmd_page(*pmd))
2182 goto out;
2183 }
33f4751e 2184
c444eb56 2185repeat:
5c7fb56e 2186 if (pmd_trans_huge(*pmd)) {
c444eb56
AA
2187 if (!page) {
2188 page = pmd_page(*pmd);
2189 if (unlikely(!trylock_page(page))) {
2190 get_page(page);
2191 _pmd = *pmd;
2192 spin_unlock(ptl);
2193 lock_page(page);
2194 spin_lock(ptl);
2195 if (unlikely(!pmd_same(*pmd, _pmd))) {
2196 unlock_page(page);
2197 put_page(page);
2198 page = NULL;
2199 goto repeat;
2200 }
2201 put_page(page);
2202 }
2203 }
5c7fb56e 2204 if (PageMlocked(page))
5f737714 2205 clear_page_mlock(page);
84c3fc4e 2206 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2207 goto out;
ac46d4f3 2208 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2209out:
eef1b3ba 2210 spin_unlock(ptl);
c444eb56
AA
2211 if (!was_locked && page)
2212 unlock_page(page);
4645b9fe
JG
2213 /*
2214 * No need to double call mmu_notifier->invalidate_range() callback.
2215 * They are 3 cases to consider inside __split_huge_pmd_locked():
2216 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2217 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2218 * fault will trigger a flush_notify before pointing to a new page
2219 * (it is fine if the secondary mmu keeps pointing to the old zero
2220 * page in the meantime)
2221 * 3) Split a huge pmd into pte pointing to the same page. No need
2222 * to invalidate secondary tlb entry they are all still valid.
2223 * any further changes to individual pte will notify. So no need
2224 * to call mmu_notifier->invalidate_range()
2225 */
ac46d4f3 2226 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2227}
2228
fec89c10
KS
2229void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2230 bool freeze, struct page *page)
94fcc585 2231{
f72e7dcd 2232 pgd_t *pgd;
c2febafc 2233 p4d_t *p4d;
f72e7dcd 2234 pud_t *pud;
94fcc585
AA
2235 pmd_t *pmd;
2236
78ddc534 2237 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2238 if (!pgd_present(*pgd))
2239 return;
2240
c2febafc
KS
2241 p4d = p4d_offset(pgd, address);
2242 if (!p4d_present(*p4d))
2243 return;
2244
2245 pud = pud_offset(p4d, address);
f72e7dcd
HD
2246 if (!pud_present(*pud))
2247 return;
2248
2249 pmd = pmd_offset(pud, address);
fec89c10 2250
33f4751e 2251 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2252}
2253
e1b9996b 2254void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2255 unsigned long start,
2256 unsigned long end,
2257 long adjust_next)
2258{
2259 /*
2260 * If the new start address isn't hpage aligned and it could
2261 * previously contain an hugepage: check if we need to split
2262 * an huge pmd.
2263 */
2264 if (start & ~HPAGE_PMD_MASK &&
2265 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2266 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2267 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2268
2269 /*
2270 * If the new end address isn't hpage aligned and it could
2271 * previously contain an hugepage: check if we need to split
2272 * an huge pmd.
2273 */
2274 if (end & ~HPAGE_PMD_MASK &&
2275 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2276 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2277 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2278
2279 /*
2280 * If we're also updating the vma->vm_next->vm_start, if the new
2281 * vm_next->vm_start isn't page aligned and it could previously
2282 * contain an hugepage: check if we need to split an huge pmd.
2283 */
2284 if (adjust_next > 0) {
2285 struct vm_area_struct *next = vma->vm_next;
2286 unsigned long nstart = next->vm_start;
2287 nstart += adjust_next << PAGE_SHIFT;
2288 if (nstart & ~HPAGE_PMD_MASK &&
2289 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2290 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2291 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2292 }
2293}
e9b61f19 2294
906f9cdf 2295static void unmap_page(struct page *page)
e9b61f19 2296{
baa355fd 2297 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2298 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2299 bool unmap_success;
e9b61f19
KS
2300
2301 VM_BUG_ON_PAGE(!PageHead(page), page);
2302
baa355fd 2303 if (PageAnon(page))
b5ff8161 2304 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2305
666e5a40
MK
2306 unmap_success = try_to_unmap(page, ttu_flags);
2307 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2308}
2309
906f9cdf 2310static void remap_page(struct page *page)
e9b61f19 2311{
fec89c10 2312 int i;
ace71a19
KS
2313 if (PageTransHuge(page)) {
2314 remove_migration_ptes(page, page, true);
2315 } else {
2316 for (i = 0; i < HPAGE_PMD_NR; i++)
2317 remove_migration_ptes(page + i, page + i, true);
2318 }
e9b61f19
KS
2319}
2320
8df651c7 2321static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2322 struct lruvec *lruvec, struct list_head *list)
2323{
e9b61f19
KS
2324 struct page *page_tail = head + tail;
2325
8df651c7 2326 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2327
2328 /*
605ca5ed
KK
2329 * Clone page flags before unfreezing refcount.
2330 *
2331 * After successful get_page_unless_zero() might follow flags change,
2332 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2333 */
e9b61f19
KS
2334 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2335 page_tail->flags |= (head->flags &
2336 ((1L << PG_referenced) |
2337 (1L << PG_swapbacked) |
38d8b4e6 2338 (1L << PG_swapcache) |
e9b61f19
KS
2339 (1L << PG_mlocked) |
2340 (1L << PG_uptodate) |
2341 (1L << PG_active) |
1899ad18 2342 (1L << PG_workingset) |
e9b61f19 2343 (1L << PG_locked) |
b8d3c4c3
MK
2344 (1L << PG_unevictable) |
2345 (1L << PG_dirty)));
e9b61f19 2346
173d9d9f
HD
2347 /* ->mapping in first tail page is compound_mapcount */
2348 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2349 page_tail);
2350 page_tail->mapping = head->mapping;
2351 page_tail->index = head->index + tail;
2352
605ca5ed 2353 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2354 smp_wmb();
2355
605ca5ed
KK
2356 /*
2357 * Clear PageTail before unfreezing page refcount.
2358 *
2359 * After successful get_page_unless_zero() might follow put_page()
2360 * which needs correct compound_head().
2361 */
e9b61f19
KS
2362 clear_compound_head(page_tail);
2363
605ca5ed
KK
2364 /* Finally unfreeze refcount. Additional reference from page cache. */
2365 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2366 PageSwapCache(head)));
2367
e9b61f19
KS
2368 if (page_is_young(head))
2369 set_page_young(page_tail);
2370 if (page_is_idle(head))
2371 set_page_idle(page_tail);
2372
e9b61f19 2373 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2374
2375 /*
2376 * always add to the tail because some iterators expect new
2377 * pages to show after the currently processed elements - e.g.
2378 * migrate_pages
2379 */
e9b61f19 2380 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2381}
2382
baa355fd 2383static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2384 pgoff_t end, unsigned long flags)
e9b61f19
KS
2385{
2386 struct page *head = compound_head(page);
f4b7e272 2387 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2388 struct lruvec *lruvec;
4101196b
MWO
2389 struct address_space *swap_cache = NULL;
2390 unsigned long offset = 0;
8df651c7 2391 int i;
e9b61f19 2392
f4b7e272 2393 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2394
2395 /* complete memcg works before add pages to LRU */
2396 mem_cgroup_split_huge_fixup(head);
2397
4101196b
MWO
2398 if (PageAnon(head) && PageSwapCache(head)) {
2399 swp_entry_t entry = { .val = page_private(head) };
2400
2401 offset = swp_offset(entry);
2402 swap_cache = swap_address_space(entry);
2403 xa_lock(&swap_cache->i_pages);
2404 }
2405
baa355fd 2406 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2407 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2408 /* Some pages can be beyond i_size: drop them from page cache */
2409 if (head[i].index >= end) {
2d077d4b 2410 ClearPageDirty(head + i);
baa355fd 2411 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2412 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2413 shmem_uncharge(head->mapping->host, 1);
baa355fd 2414 put_page(head + i);
4101196b
MWO
2415 } else if (!PageAnon(page)) {
2416 __xa_store(&head->mapping->i_pages, head[i].index,
2417 head + i, 0);
2418 } else if (swap_cache) {
2419 __xa_store(&swap_cache->i_pages, offset + i,
2420 head + i, 0);
baa355fd
KS
2421 }
2422 }
e9b61f19
KS
2423
2424 ClearPageCompound(head);
f7da677b
VB
2425
2426 split_page_owner(head, HPAGE_PMD_ORDER);
2427
baa355fd
KS
2428 /* See comment in __split_huge_page_tail() */
2429 if (PageAnon(head)) {
aa5dc07f 2430 /* Additional pin to swap cache */
4101196b 2431 if (PageSwapCache(head)) {
38d8b4e6 2432 page_ref_add(head, 2);
4101196b
MWO
2433 xa_unlock(&swap_cache->i_pages);
2434 } else {
38d8b4e6 2435 page_ref_inc(head);
4101196b 2436 }
baa355fd 2437 } else {
aa5dc07f 2438 /* Additional pin to page cache */
baa355fd 2439 page_ref_add(head, 2);
b93b0163 2440 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2441 }
2442
f4b7e272 2443 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2444
906f9cdf 2445 remap_page(head);
e9b61f19
KS
2446
2447 for (i = 0; i < HPAGE_PMD_NR; i++) {
2448 struct page *subpage = head + i;
2449 if (subpage == page)
2450 continue;
2451 unlock_page(subpage);
2452
2453 /*
2454 * Subpages may be freed if there wasn't any mapping
2455 * like if add_to_swap() is running on a lru page that
2456 * had its mapping zapped. And freeing these pages
2457 * requires taking the lru_lock so we do the put_page
2458 * of the tail pages after the split is complete.
2459 */
2460 put_page(subpage);
2461 }
2462}
2463
b20ce5e0
KS
2464int total_mapcount(struct page *page)
2465{
dd78fedd 2466 int i, compound, ret;
b20ce5e0
KS
2467
2468 VM_BUG_ON_PAGE(PageTail(page), page);
2469
2470 if (likely(!PageCompound(page)))
2471 return atomic_read(&page->_mapcount) + 1;
2472
dd78fedd 2473 compound = compound_mapcount(page);
b20ce5e0 2474 if (PageHuge(page))
dd78fedd
KS
2475 return compound;
2476 ret = compound;
b20ce5e0
KS
2477 for (i = 0; i < HPAGE_PMD_NR; i++)
2478 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2479 /* File pages has compound_mapcount included in _mapcount */
2480 if (!PageAnon(page))
2481 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2482 if (PageDoubleMap(page))
2483 ret -= HPAGE_PMD_NR;
2484 return ret;
2485}
2486
6d0a07ed
AA
2487/*
2488 * This calculates accurately how many mappings a transparent hugepage
2489 * has (unlike page_mapcount() which isn't fully accurate). This full
2490 * accuracy is primarily needed to know if copy-on-write faults can
2491 * reuse the page and change the mapping to read-write instead of
2492 * copying them. At the same time this returns the total_mapcount too.
2493 *
2494 * The function returns the highest mapcount any one of the subpages
2495 * has. If the return value is one, even if different processes are
2496 * mapping different subpages of the transparent hugepage, they can
2497 * all reuse it, because each process is reusing a different subpage.
2498 *
2499 * The total_mapcount is instead counting all virtual mappings of the
2500 * subpages. If the total_mapcount is equal to "one", it tells the
2501 * caller all mappings belong to the same "mm" and in turn the
2502 * anon_vma of the transparent hugepage can become the vma->anon_vma
2503 * local one as no other process may be mapping any of the subpages.
2504 *
2505 * It would be more accurate to replace page_mapcount() with
2506 * page_trans_huge_mapcount(), however we only use
2507 * page_trans_huge_mapcount() in the copy-on-write faults where we
2508 * need full accuracy to avoid breaking page pinning, because
2509 * page_trans_huge_mapcount() is slower than page_mapcount().
2510 */
2511int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2512{
2513 int i, ret, _total_mapcount, mapcount;
2514
2515 /* hugetlbfs shouldn't call it */
2516 VM_BUG_ON_PAGE(PageHuge(page), page);
2517
2518 if (likely(!PageTransCompound(page))) {
2519 mapcount = atomic_read(&page->_mapcount) + 1;
2520 if (total_mapcount)
2521 *total_mapcount = mapcount;
2522 return mapcount;
2523 }
2524
2525 page = compound_head(page);
2526
2527 _total_mapcount = ret = 0;
2528 for (i = 0; i < HPAGE_PMD_NR; i++) {
2529 mapcount = atomic_read(&page[i]._mapcount) + 1;
2530 ret = max(ret, mapcount);
2531 _total_mapcount += mapcount;
2532 }
2533 if (PageDoubleMap(page)) {
2534 ret -= 1;
2535 _total_mapcount -= HPAGE_PMD_NR;
2536 }
2537 mapcount = compound_mapcount(page);
2538 ret += mapcount;
2539 _total_mapcount += mapcount;
2540 if (total_mapcount)
2541 *total_mapcount = _total_mapcount;
2542 return ret;
2543}
2544
b8f593cd
HY
2545/* Racy check whether the huge page can be split */
2546bool can_split_huge_page(struct page *page, int *pextra_pins)
2547{
2548 int extra_pins;
2549
aa5dc07f 2550 /* Additional pins from page cache */
b8f593cd
HY
2551 if (PageAnon(page))
2552 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2553 else
2554 extra_pins = HPAGE_PMD_NR;
2555 if (pextra_pins)
2556 *pextra_pins = extra_pins;
2557 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2558}
2559
e9b61f19
KS
2560/*
2561 * This function splits huge page into normal pages. @page can point to any
2562 * subpage of huge page to split. Split doesn't change the position of @page.
2563 *
2564 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2565 * The huge page must be locked.
2566 *
2567 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2568 *
2569 * Both head page and tail pages will inherit mapping, flags, and so on from
2570 * the hugepage.
2571 *
2572 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2573 * they are not mapped.
2574 *
2575 * Returns 0 if the hugepage is split successfully.
2576 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2577 * us.
2578 */
2579int split_huge_page_to_list(struct page *page, struct list_head *list)
2580{
2581 struct page *head = compound_head(page);
a3d0a918 2582 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
a8803e6c 2583 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2584 struct anon_vma *anon_vma = NULL;
2585 struct address_space *mapping = NULL;
2586 int count, mapcount, extra_pins, ret;
0b9b6fff 2587 unsigned long flags;
006d3ff2 2588 pgoff_t end;
e9b61f19 2589
cb829624 2590 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2591 VM_BUG_ON_PAGE(!PageLocked(head), head);
2592 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2593
a8803e6c 2594 if (PageWriteback(head))
59807685
HY
2595 return -EBUSY;
2596
baa355fd
KS
2597 if (PageAnon(head)) {
2598 /*
c1e8d7c6 2599 * The caller does not necessarily hold an mmap_lock that would
baa355fd
KS
2600 * prevent the anon_vma disappearing so we first we take a
2601 * reference to it and then lock the anon_vma for write. This
2602 * is similar to page_lock_anon_vma_read except the write lock
2603 * is taken to serialise against parallel split or collapse
2604 * operations.
2605 */
2606 anon_vma = page_get_anon_vma(head);
2607 if (!anon_vma) {
2608 ret = -EBUSY;
2609 goto out;
2610 }
006d3ff2 2611 end = -1;
baa355fd
KS
2612 mapping = NULL;
2613 anon_vma_lock_write(anon_vma);
2614 } else {
2615 mapping = head->mapping;
2616
2617 /* Truncated ? */
2618 if (!mapping) {
2619 ret = -EBUSY;
2620 goto out;
2621 }
2622
baa355fd
KS
2623 anon_vma = NULL;
2624 i_mmap_lock_read(mapping);
006d3ff2
HD
2625
2626 /*
2627 *__split_huge_page() may need to trim off pages beyond EOF:
2628 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2629 * which cannot be nested inside the page tree lock. So note
2630 * end now: i_size itself may be changed at any moment, but
2631 * head page lock is good enough to serialize the trimming.
2632 */
2633 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2634 }
e9b61f19
KS
2635
2636 /*
906f9cdf 2637 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2638 * split PMDs
2639 */
b8f593cd 2640 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2641 ret = -EBUSY;
2642 goto out_unlock;
2643 }
2644
906f9cdf 2645 unmap_page(head);
e9b61f19
KS
2646 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2647
baa355fd 2648 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2649 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2650
2651 if (mapping) {
aa5dc07f 2652 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2653
baa355fd 2654 /*
aa5dc07f 2655 * Check if the head page is present in page cache.
baa355fd
KS
2656 * We assume all tail are present too, if head is there.
2657 */
aa5dc07f
MW
2658 xa_lock(&mapping->i_pages);
2659 if (xas_load(&xas) != head)
baa355fd
KS
2660 goto fail;
2661 }
2662
0139aa7b 2663 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2664 spin_lock(&ds_queue->split_queue_lock);
e9b61f19
KS
2665 count = page_count(head);
2666 mapcount = total_mapcount(head);
baa355fd 2667 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2668 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2669 ds_queue->split_queue_len--;
9a982250
KS
2670 list_del(page_deferred_list(head));
2671 }
afb97172 2672 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2673 if (mapping) {
a8803e6c
WY
2674 if (PageSwapBacked(head))
2675 __dec_node_page_state(head, NR_SHMEM_THPS);
06d3eff6 2676 else
a8803e6c 2677 __dec_node_page_state(head, NR_FILE_THPS);
06d3eff6
KS
2678 }
2679
006d3ff2 2680 __split_huge_page(page, list, end, flags);
59807685
HY
2681 if (PageSwapCache(head)) {
2682 swp_entry_t entry = { .val = page_private(head) };
2683
2684 ret = split_swap_cluster(entry);
2685 } else
2686 ret = 0;
e9b61f19 2687 } else {
baa355fd
KS
2688 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2689 pr_alert("total_mapcount: %u, page_count(): %u\n",
2690 mapcount, count);
2691 if (PageTail(page))
2692 dump_page(head, NULL);
2693 dump_page(page, "total_mapcount(head) > 0");
2694 BUG();
2695 }
364c1eeb 2696 spin_unlock(&ds_queue->split_queue_lock);
baa355fd 2697fail: if (mapping)
b93b0163 2698 xa_unlock(&mapping->i_pages);
f4b7e272 2699 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
906f9cdf 2700 remap_page(head);
e9b61f19
KS
2701 ret = -EBUSY;
2702 }
2703
2704out_unlock:
baa355fd
KS
2705 if (anon_vma) {
2706 anon_vma_unlock_write(anon_vma);
2707 put_anon_vma(anon_vma);
2708 }
2709 if (mapping)
2710 i_mmap_unlock_read(mapping);
e9b61f19
KS
2711out:
2712 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2713 return ret;
2714}
9a982250
KS
2715
2716void free_transhuge_page(struct page *page)
2717{
87eaceb3 2718 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2719 unsigned long flags;
2720
364c1eeb 2721 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2722 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2723 ds_queue->split_queue_len--;
9a982250
KS
2724 list_del(page_deferred_list(page));
2725 }
364c1eeb 2726 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2727 free_compound_page(page);
2728}
2729
2730void deferred_split_huge_page(struct page *page)
2731{
87eaceb3
YS
2732 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2733#ifdef CONFIG_MEMCG
2734 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2735#endif
9a982250
KS
2736 unsigned long flags;
2737
2738 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2739
87eaceb3
YS
2740 /*
2741 * The try_to_unmap() in page reclaim path might reach here too,
2742 * this may cause a race condition to corrupt deferred split queue.
2743 * And, if page reclaim is already handling the same page, it is
2744 * unnecessary to handle it again in shrinker.
2745 *
2746 * Check PageSwapCache to determine if the page is being
2747 * handled by page reclaim since THP swap would add the page into
2748 * swap cache before calling try_to_unmap().
2749 */
2750 if (PageSwapCache(page))
2751 return;
2752
364c1eeb 2753 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2754 if (list_empty(page_deferred_list(page))) {
f9719a03 2755 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2756 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2757 ds_queue->split_queue_len++;
87eaceb3
YS
2758#ifdef CONFIG_MEMCG
2759 if (memcg)
2760 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2761 deferred_split_shrinker.id);
2762#endif
9a982250 2763 }
364c1eeb 2764 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2765}
2766
2767static unsigned long deferred_split_count(struct shrinker *shrink,
2768 struct shrink_control *sc)
2769{
a3d0a918 2770 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2771 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2772
2773#ifdef CONFIG_MEMCG
2774 if (sc->memcg)
2775 ds_queue = &sc->memcg->deferred_split_queue;
2776#endif
364c1eeb 2777 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2778}
2779
2780static unsigned long deferred_split_scan(struct shrinker *shrink,
2781 struct shrink_control *sc)
2782{
a3d0a918 2783 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2784 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2785 unsigned long flags;
2786 LIST_HEAD(list), *pos, *next;
2787 struct page *page;
2788 int split = 0;
2789
87eaceb3
YS
2790#ifdef CONFIG_MEMCG
2791 if (sc->memcg)
2792 ds_queue = &sc->memcg->deferred_split_queue;
2793#endif
2794
364c1eeb 2795 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2796 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2797 list_for_each_safe(pos, next, &ds_queue->split_queue) {
9a982250
KS
2798 page = list_entry((void *)pos, struct page, mapping);
2799 page = compound_head(page);
e3ae1953
KS
2800 if (get_page_unless_zero(page)) {
2801 list_move(page_deferred_list(page), &list);
2802 } else {
2803 /* We lost race with put_compound_page() */
9a982250 2804 list_del_init(page_deferred_list(page));
364c1eeb 2805 ds_queue->split_queue_len--;
9a982250 2806 }
e3ae1953
KS
2807 if (!--sc->nr_to_scan)
2808 break;
9a982250 2809 }
364c1eeb 2810 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2811
2812 list_for_each_safe(pos, next, &list) {
2813 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2814 if (!trylock_page(page))
2815 goto next;
9a982250
KS
2816 /* split_huge_page() removes page from list on success */
2817 if (!split_huge_page(page))
2818 split++;
2819 unlock_page(page);
fa41b900 2820next:
9a982250
KS
2821 put_page(page);
2822 }
2823
364c1eeb
YS
2824 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2825 list_splice_tail(&list, &ds_queue->split_queue);
2826 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 2827
cb8d68ec
KS
2828 /*
2829 * Stop shrinker if we didn't split any page, but the queue is empty.
2830 * This can happen if pages were freed under us.
2831 */
364c1eeb 2832 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
2833 return SHRINK_STOP;
2834 return split;
9a982250
KS
2835}
2836
2837static struct shrinker deferred_split_shrinker = {
2838 .count_objects = deferred_split_count,
2839 .scan_objects = deferred_split_scan,
2840 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
2841 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2842 SHRINKER_NONSLAB,
9a982250 2843};
49071d43
KS
2844
2845#ifdef CONFIG_DEBUG_FS
2846static int split_huge_pages_set(void *data, u64 val)
2847{
2848 struct zone *zone;
2849 struct page *page;
2850 unsigned long pfn, max_zone_pfn;
2851 unsigned long total = 0, split = 0;
2852
2853 if (val != 1)
2854 return -EINVAL;
2855
2856 for_each_populated_zone(zone) {
2857 max_zone_pfn = zone_end_pfn(zone);
2858 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2859 if (!pfn_valid(pfn))
2860 continue;
2861
2862 page = pfn_to_page(pfn);
2863 if (!get_page_unless_zero(page))
2864 continue;
2865
2866 if (zone != page_zone(page))
2867 goto next;
2868
baa355fd 2869 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2870 goto next;
2871
2872 total++;
2873 lock_page(page);
2874 if (!split_huge_page(page))
2875 split++;
2876 unlock_page(page);
2877next:
2878 put_page(page);
2879 }
2880 }
2881
145bdaa1 2882 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2883
2884 return 0;
2885}
f1287869 2886DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
49071d43
KS
2887 "%llu\n");
2888
2889static int __init split_huge_pages_debugfs(void)
2890{
d9f7979c
GKH
2891 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2892 &split_huge_pages_fops);
49071d43
KS
2893 return 0;
2894}
2895late_initcall(split_huge_pages_debugfs);
2896#endif
616b8371
ZY
2897
2898#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2899void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2900 struct page *page)
2901{
2902 struct vm_area_struct *vma = pvmw->vma;
2903 struct mm_struct *mm = vma->vm_mm;
2904 unsigned long address = pvmw->address;
2905 pmd_t pmdval;
2906 swp_entry_t entry;
ab6e3d09 2907 pmd_t pmdswp;
616b8371
ZY
2908
2909 if (!(pvmw->pmd && !pvmw->pte))
2910 return;
2911
616b8371 2912 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 2913 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
2914 if (pmd_dirty(pmdval))
2915 set_page_dirty(page);
2916 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2917 pmdswp = swp_entry_to_pmd(entry);
2918 if (pmd_soft_dirty(pmdval))
2919 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2920 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2921 page_remove_rmap(page, true);
2922 put_page(page);
616b8371
ZY
2923}
2924
2925void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2926{
2927 struct vm_area_struct *vma = pvmw->vma;
2928 struct mm_struct *mm = vma->vm_mm;
2929 unsigned long address = pvmw->address;
2930 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2931 pmd_t pmde;
2932 swp_entry_t entry;
2933
2934 if (!(pvmw->pmd && !pvmw->pte))
2935 return;
2936
2937 entry = pmd_to_swp_entry(*pvmw->pmd);
2938 get_page(new);
2939 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2940 if (pmd_swp_soft_dirty(*pvmw->pmd))
2941 pmde = pmd_mksoft_dirty(pmde);
616b8371 2942 if (is_write_migration_entry(entry))
f55e1014 2943 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2944
2945 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2946 if (PageAnon(new))
2947 page_add_anon_rmap(new, vma, mmun_start, true);
2948 else
2949 page_add_file_rmap(new, true);
616b8371 2950 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2951 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2952 mlock_vma_page(new);
2953 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2954}
2955#endif