]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
dax: revert userfaultfd change
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f
AA
18#include <linux/mm_inline.h>
19#include <linux/kthread.h>
20#include <linux/khugepaged.h>
878aee7d 21#include <linux/freezer.h>
a664b2d8 22#include <linux/mman.h>
325adeb5 23#include <linux/pagemap.h>
4daae3b4 24#include <linux/migrate.h>
43b5fbbd 25#include <linux/hashtable.h>
6b251fc9 26#include <linux/userfaultfd_k.h>
97ae1749 27
71e3aac0
AA
28#include <asm/tlb.h>
29#include <asm/pgalloc.h>
30#include "internal.h"
31
ba76149f 32/*
8bfa3f9a
JW
33 * By default transparent hugepage support is disabled in order that avoid
34 * to risk increase the memory footprint of applications without a guaranteed
35 * benefit. When transparent hugepage support is enabled, is for all mappings,
36 * and khugepaged scans all mappings.
37 * Defrag is invoked by khugepaged hugepage allocations and by page faults
38 * for all hugepage allocations.
ba76149f 39 */
71e3aac0 40unsigned long transparent_hugepage_flags __read_mostly =
13ece886 41#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 42 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
43#endif
44#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
45 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
46#endif
d39d33c3 47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
48 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
49 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
50
51/* default scan 8*512 pte (or vmas) every 30 second */
52static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
53static unsigned int khugepaged_pages_collapsed;
54static unsigned int khugepaged_full_scans;
55static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
56/* during fragmentation poll the hugepage allocator once every minute */
57static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
58static struct task_struct *khugepaged_thread __read_mostly;
59static DEFINE_MUTEX(khugepaged_mutex);
60static DEFINE_SPINLOCK(khugepaged_mm_lock);
61static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
62/*
63 * default collapse hugepages if there is at least one pte mapped like
64 * it would have happened if the vma was large enough during page
65 * fault.
66 */
67static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
68
69static int khugepaged(void *none);
ba76149f 70static int khugepaged_slab_init(void);
65ebb64f 71static void khugepaged_slab_exit(void);
ba76149f 72
43b5fbbd
SL
73#define MM_SLOTS_HASH_BITS 10
74static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
75
ba76149f
AA
76static struct kmem_cache *mm_slot_cache __read_mostly;
77
78/**
79 * struct mm_slot - hash lookup from mm to mm_slot
80 * @hash: hash collision list
81 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
82 * @mm: the mm that this information is valid for
83 */
84struct mm_slot {
85 struct hlist_node hash;
86 struct list_head mm_node;
87 struct mm_struct *mm;
88};
89
90/**
91 * struct khugepaged_scan - cursor for scanning
92 * @mm_head: the head of the mm list to scan
93 * @mm_slot: the current mm_slot we are scanning
94 * @address: the next address inside that to be scanned
95 *
96 * There is only the one khugepaged_scan instance of this cursor structure.
97 */
98struct khugepaged_scan {
99 struct list_head mm_head;
100 struct mm_slot *mm_slot;
101 unsigned long address;
2f1da642
HS
102};
103static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
104 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
105};
106
f000565a
AA
107
108static int set_recommended_min_free_kbytes(void)
109{
110 struct zone *zone;
111 int nr_zones = 0;
112 unsigned long recommended_min;
f000565a 113
f000565a
AA
114 for_each_populated_zone(zone)
115 nr_zones++;
116
117 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
118 recommended_min = pageblock_nr_pages * nr_zones * 2;
119
120 /*
121 * Make sure that on average at least two pageblocks are almost free
122 * of another type, one for a migratetype to fall back to and a
123 * second to avoid subsequent fallbacks of other types There are 3
124 * MIGRATE_TYPES we care about.
125 */
126 recommended_min += pageblock_nr_pages * nr_zones *
127 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
128
129 /* don't ever allow to reserve more than 5% of the lowmem */
130 recommended_min = min(recommended_min,
131 (unsigned long) nr_free_buffer_pages() / 20);
132 recommended_min <<= (PAGE_SHIFT-10);
133
42aa83cb
HP
134 if (recommended_min > min_free_kbytes) {
135 if (user_min_free_kbytes >= 0)
136 pr_info("raising min_free_kbytes from %d to %lu "
137 "to help transparent hugepage allocations\n",
138 min_free_kbytes, recommended_min);
139
f000565a 140 min_free_kbytes = recommended_min;
42aa83cb 141 }
f000565a
AA
142 setup_per_zone_wmarks();
143 return 0;
144}
f000565a 145
79553da2 146static int start_stop_khugepaged(void)
ba76149f
AA
147{
148 int err = 0;
149 if (khugepaged_enabled()) {
ba76149f
AA
150 if (!khugepaged_thread)
151 khugepaged_thread = kthread_run(khugepaged, NULL,
152 "khugepaged");
153 if (unlikely(IS_ERR(khugepaged_thread))) {
ae3a8c1c 154 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
155 err = PTR_ERR(khugepaged_thread);
156 khugepaged_thread = NULL;
79553da2 157 goto fail;
ba76149f 158 }
911891af
XG
159
160 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 161 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
162
163 set_recommended_min_free_kbytes();
911891af 164 } else if (khugepaged_thread) {
911891af
XG
165 kthread_stop(khugepaged_thread);
166 khugepaged_thread = NULL;
167 }
79553da2 168fail:
ba76149f
AA
169 return err;
170}
71e3aac0 171
97ae1749 172static atomic_t huge_zero_refcount;
56873f43 173struct page *huge_zero_page __read_mostly;
4a6c1297 174
97ae1749
KS
175static inline bool is_huge_zero_pmd(pmd_t pmd)
176{
5918d10a 177 return is_huge_zero_page(pmd_page(pmd));
97ae1749
KS
178}
179
5918d10a 180static struct page *get_huge_zero_page(void)
97ae1749
KS
181{
182 struct page *zero_page;
183retry:
184 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 185 return READ_ONCE(huge_zero_page);
97ae1749
KS
186
187 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 188 HPAGE_PMD_ORDER);
d8a8e1f0
KS
189 if (!zero_page) {
190 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 191 return NULL;
d8a8e1f0
KS
192 }
193 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 194 preempt_disable();
5918d10a 195 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 196 preempt_enable();
5ddacbe9 197 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
198 goto retry;
199 }
200
201 /* We take additional reference here. It will be put back by shrinker */
202 atomic_set(&huge_zero_refcount, 2);
203 preempt_enable();
4db0c3c2 204 return READ_ONCE(huge_zero_page);
4a6c1297
KS
205}
206
97ae1749 207static void put_huge_zero_page(void)
4a6c1297 208{
97ae1749
KS
209 /*
210 * Counter should never go to zero here. Only shrinker can put
211 * last reference.
212 */
213 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
214}
215
48896466
GC
216static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
217 struct shrink_control *sc)
4a6c1297 218{
48896466
GC
219 /* we can free zero page only if last reference remains */
220 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
221}
97ae1749 222
48896466
GC
223static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
224 struct shrink_control *sc)
225{
97ae1749 226 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
227 struct page *zero_page = xchg(&huge_zero_page, NULL);
228 BUG_ON(zero_page == NULL);
5ddacbe9 229 __free_pages(zero_page, compound_order(zero_page));
48896466 230 return HPAGE_PMD_NR;
97ae1749
KS
231 }
232
233 return 0;
4a6c1297
KS
234}
235
97ae1749 236static struct shrinker huge_zero_page_shrinker = {
48896466
GC
237 .count_objects = shrink_huge_zero_page_count,
238 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
239 .seeks = DEFAULT_SEEKS,
240};
241
71e3aac0 242#ifdef CONFIG_SYSFS
ba76149f 243
71e3aac0
AA
244static ssize_t double_flag_show(struct kobject *kobj,
245 struct kobj_attribute *attr, char *buf,
246 enum transparent_hugepage_flag enabled,
247 enum transparent_hugepage_flag req_madv)
248{
249 if (test_bit(enabled, &transparent_hugepage_flags)) {
250 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
251 return sprintf(buf, "[always] madvise never\n");
252 } else if (test_bit(req_madv, &transparent_hugepage_flags))
253 return sprintf(buf, "always [madvise] never\n");
254 else
255 return sprintf(buf, "always madvise [never]\n");
256}
257static ssize_t double_flag_store(struct kobject *kobj,
258 struct kobj_attribute *attr,
259 const char *buf, size_t count,
260 enum transparent_hugepage_flag enabled,
261 enum transparent_hugepage_flag req_madv)
262{
263 if (!memcmp("always", buf,
264 min(sizeof("always")-1, count))) {
265 set_bit(enabled, &transparent_hugepage_flags);
266 clear_bit(req_madv, &transparent_hugepage_flags);
267 } else if (!memcmp("madvise", buf,
268 min(sizeof("madvise")-1, count))) {
269 clear_bit(enabled, &transparent_hugepage_flags);
270 set_bit(req_madv, &transparent_hugepage_flags);
271 } else if (!memcmp("never", buf,
272 min(sizeof("never")-1, count))) {
273 clear_bit(enabled, &transparent_hugepage_flags);
274 clear_bit(req_madv, &transparent_hugepage_flags);
275 } else
276 return -EINVAL;
277
278 return count;
279}
280
281static ssize_t enabled_show(struct kobject *kobj,
282 struct kobj_attribute *attr, char *buf)
283{
284 return double_flag_show(kobj, attr, buf,
285 TRANSPARENT_HUGEPAGE_FLAG,
286 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
287}
288static ssize_t enabled_store(struct kobject *kobj,
289 struct kobj_attribute *attr,
290 const char *buf, size_t count)
291{
ba76149f
AA
292 ssize_t ret;
293
294 ret = double_flag_store(kobj, attr, buf, count,
295 TRANSPARENT_HUGEPAGE_FLAG,
296 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
297
298 if (ret > 0) {
911891af
XG
299 int err;
300
301 mutex_lock(&khugepaged_mutex);
79553da2 302 err = start_stop_khugepaged();
911891af
XG
303 mutex_unlock(&khugepaged_mutex);
304
ba76149f
AA
305 if (err)
306 ret = err;
307 }
308
309 return ret;
71e3aac0
AA
310}
311static struct kobj_attribute enabled_attr =
312 __ATTR(enabled, 0644, enabled_show, enabled_store);
313
314static ssize_t single_flag_show(struct kobject *kobj,
315 struct kobj_attribute *attr, char *buf,
316 enum transparent_hugepage_flag flag)
317{
e27e6151
BH
318 return sprintf(buf, "%d\n",
319 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 320}
e27e6151 321
71e3aac0
AA
322static ssize_t single_flag_store(struct kobject *kobj,
323 struct kobj_attribute *attr,
324 const char *buf, size_t count,
325 enum transparent_hugepage_flag flag)
326{
e27e6151
BH
327 unsigned long value;
328 int ret;
329
330 ret = kstrtoul(buf, 10, &value);
331 if (ret < 0)
332 return ret;
333 if (value > 1)
334 return -EINVAL;
335
336 if (value)
71e3aac0 337 set_bit(flag, &transparent_hugepage_flags);
e27e6151 338 else
71e3aac0 339 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
340
341 return count;
342}
343
344/*
345 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
346 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
347 * memory just to allocate one more hugepage.
348 */
349static ssize_t defrag_show(struct kobject *kobj,
350 struct kobj_attribute *attr, char *buf)
351{
352 return double_flag_show(kobj, attr, buf,
353 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
354 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
355}
356static ssize_t defrag_store(struct kobject *kobj,
357 struct kobj_attribute *attr,
358 const char *buf, size_t count)
359{
360 return double_flag_store(kobj, attr, buf, count,
361 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
362 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
363}
364static struct kobj_attribute defrag_attr =
365 __ATTR(defrag, 0644, defrag_show, defrag_store);
366
79da5407
KS
367static ssize_t use_zero_page_show(struct kobject *kobj,
368 struct kobj_attribute *attr, char *buf)
369{
370 return single_flag_show(kobj, attr, buf,
371 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
372}
373static ssize_t use_zero_page_store(struct kobject *kobj,
374 struct kobj_attribute *attr, const char *buf, size_t count)
375{
376 return single_flag_store(kobj, attr, buf, count,
377 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378}
379static struct kobj_attribute use_zero_page_attr =
380 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
381#ifdef CONFIG_DEBUG_VM
382static ssize_t debug_cow_show(struct kobject *kobj,
383 struct kobj_attribute *attr, char *buf)
384{
385 return single_flag_show(kobj, attr, buf,
386 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
387}
388static ssize_t debug_cow_store(struct kobject *kobj,
389 struct kobj_attribute *attr,
390 const char *buf, size_t count)
391{
392 return single_flag_store(kobj, attr, buf, count,
393 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
394}
395static struct kobj_attribute debug_cow_attr =
396 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
397#endif /* CONFIG_DEBUG_VM */
398
399static struct attribute *hugepage_attr[] = {
400 &enabled_attr.attr,
401 &defrag_attr.attr,
79da5407 402 &use_zero_page_attr.attr,
71e3aac0
AA
403#ifdef CONFIG_DEBUG_VM
404 &debug_cow_attr.attr,
405#endif
406 NULL,
407};
408
409static struct attribute_group hugepage_attr_group = {
410 .attrs = hugepage_attr,
ba76149f
AA
411};
412
413static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
414 struct kobj_attribute *attr,
415 char *buf)
416{
417 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
418}
419
420static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
421 struct kobj_attribute *attr,
422 const char *buf, size_t count)
423{
424 unsigned long msecs;
425 int err;
426
3dbb95f7 427 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
428 if (err || msecs > UINT_MAX)
429 return -EINVAL;
430
431 khugepaged_scan_sleep_millisecs = msecs;
432 wake_up_interruptible(&khugepaged_wait);
433
434 return count;
435}
436static struct kobj_attribute scan_sleep_millisecs_attr =
437 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
438 scan_sleep_millisecs_store);
439
440static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
441 struct kobj_attribute *attr,
442 char *buf)
443{
444 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
445}
446
447static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
448 struct kobj_attribute *attr,
449 const char *buf, size_t count)
450{
451 unsigned long msecs;
452 int err;
453
3dbb95f7 454 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
455 if (err || msecs > UINT_MAX)
456 return -EINVAL;
457
458 khugepaged_alloc_sleep_millisecs = msecs;
459 wake_up_interruptible(&khugepaged_wait);
460
461 return count;
462}
463static struct kobj_attribute alloc_sleep_millisecs_attr =
464 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
465 alloc_sleep_millisecs_store);
466
467static ssize_t pages_to_scan_show(struct kobject *kobj,
468 struct kobj_attribute *attr,
469 char *buf)
470{
471 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
472}
473static ssize_t pages_to_scan_store(struct kobject *kobj,
474 struct kobj_attribute *attr,
475 const char *buf, size_t count)
476{
477 int err;
478 unsigned long pages;
479
3dbb95f7 480 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
481 if (err || !pages || pages > UINT_MAX)
482 return -EINVAL;
483
484 khugepaged_pages_to_scan = pages;
485
486 return count;
487}
488static struct kobj_attribute pages_to_scan_attr =
489 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
490 pages_to_scan_store);
491
492static ssize_t pages_collapsed_show(struct kobject *kobj,
493 struct kobj_attribute *attr,
494 char *buf)
495{
496 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
497}
498static struct kobj_attribute pages_collapsed_attr =
499 __ATTR_RO(pages_collapsed);
500
501static ssize_t full_scans_show(struct kobject *kobj,
502 struct kobj_attribute *attr,
503 char *buf)
504{
505 return sprintf(buf, "%u\n", khugepaged_full_scans);
506}
507static struct kobj_attribute full_scans_attr =
508 __ATTR_RO(full_scans);
509
510static ssize_t khugepaged_defrag_show(struct kobject *kobj,
511 struct kobj_attribute *attr, char *buf)
512{
513 return single_flag_show(kobj, attr, buf,
514 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
515}
516static ssize_t khugepaged_defrag_store(struct kobject *kobj,
517 struct kobj_attribute *attr,
518 const char *buf, size_t count)
519{
520 return single_flag_store(kobj, attr, buf, count,
521 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
522}
523static struct kobj_attribute khugepaged_defrag_attr =
524 __ATTR(defrag, 0644, khugepaged_defrag_show,
525 khugepaged_defrag_store);
526
527/*
528 * max_ptes_none controls if khugepaged should collapse hugepages over
529 * any unmapped ptes in turn potentially increasing the memory
530 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
531 * reduce the available free memory in the system as it
532 * runs. Increasing max_ptes_none will instead potentially reduce the
533 * free memory in the system during the khugepaged scan.
534 */
535static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
536 struct kobj_attribute *attr,
537 char *buf)
538{
539 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
540}
541static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
542 struct kobj_attribute *attr,
543 const char *buf, size_t count)
544{
545 int err;
546 unsigned long max_ptes_none;
547
3dbb95f7 548 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
549 if (err || max_ptes_none > HPAGE_PMD_NR-1)
550 return -EINVAL;
551
552 khugepaged_max_ptes_none = max_ptes_none;
553
554 return count;
555}
556static struct kobj_attribute khugepaged_max_ptes_none_attr =
557 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
558 khugepaged_max_ptes_none_store);
559
560static struct attribute *khugepaged_attr[] = {
561 &khugepaged_defrag_attr.attr,
562 &khugepaged_max_ptes_none_attr.attr,
563 &pages_to_scan_attr.attr,
564 &pages_collapsed_attr.attr,
565 &full_scans_attr.attr,
566 &scan_sleep_millisecs_attr.attr,
567 &alloc_sleep_millisecs_attr.attr,
568 NULL,
569};
570
571static struct attribute_group khugepaged_attr_group = {
572 .attrs = khugepaged_attr,
573 .name = "khugepaged",
71e3aac0 574};
71e3aac0 575
569e5590 576static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 577{
71e3aac0
AA
578 int err;
579
569e5590
SL
580 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
581 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 582 pr_err("failed to create transparent hugepage kobject\n");
569e5590 583 return -ENOMEM;
ba76149f
AA
584 }
585
569e5590 586 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 587 if (err) {
ae3a8c1c 588 pr_err("failed to register transparent hugepage group\n");
569e5590 589 goto delete_obj;
ba76149f
AA
590 }
591
569e5590 592 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 593 if (err) {
ae3a8c1c 594 pr_err("failed to register transparent hugepage group\n");
569e5590 595 goto remove_hp_group;
ba76149f 596 }
569e5590
SL
597
598 return 0;
599
600remove_hp_group:
601 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
602delete_obj:
603 kobject_put(*hugepage_kobj);
604 return err;
605}
606
607static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
608{
609 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
610 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
611 kobject_put(hugepage_kobj);
612}
613#else
614static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
615{
616 return 0;
617}
618
619static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
620{
621}
622#endif /* CONFIG_SYSFS */
623
624static int __init hugepage_init(void)
625{
626 int err;
627 struct kobject *hugepage_kobj;
628
629 if (!has_transparent_hugepage()) {
630 transparent_hugepage_flags = 0;
631 return -EINVAL;
632 }
633
634 err = hugepage_init_sysfs(&hugepage_kobj);
635 if (err)
65ebb64f 636 goto err_sysfs;
ba76149f
AA
637
638 err = khugepaged_slab_init();
639 if (err)
65ebb64f 640 goto err_slab;
ba76149f 641
65ebb64f
KS
642 err = register_shrinker(&huge_zero_page_shrinker);
643 if (err)
644 goto err_hzp_shrinker;
97ae1749 645
97562cd2
RR
646 /*
647 * By default disable transparent hugepages on smaller systems,
648 * where the extra memory used could hurt more than TLB overhead
649 * is likely to save. The admin can still enable it through /sys.
650 */
79553da2 651 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 652 transparent_hugepage_flags = 0;
79553da2
KS
653 return 0;
654 }
97562cd2 655
79553da2 656 err = start_stop_khugepaged();
65ebb64f
KS
657 if (err)
658 goto err_khugepaged;
ba76149f 659
569e5590 660 return 0;
65ebb64f
KS
661err_khugepaged:
662 unregister_shrinker(&huge_zero_page_shrinker);
663err_hzp_shrinker:
664 khugepaged_slab_exit();
665err_slab:
569e5590 666 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 667err_sysfs:
ba76149f 668 return err;
71e3aac0 669}
a64fb3cd 670subsys_initcall(hugepage_init);
71e3aac0
AA
671
672static int __init setup_transparent_hugepage(char *str)
673{
674 int ret = 0;
675 if (!str)
676 goto out;
677 if (!strcmp(str, "always")) {
678 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 &transparent_hugepage_flags);
680 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 &transparent_hugepage_flags);
682 ret = 1;
683 } else if (!strcmp(str, "madvise")) {
684 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
685 &transparent_hugepage_flags);
686 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
687 &transparent_hugepage_flags);
688 ret = 1;
689 } else if (!strcmp(str, "never")) {
690 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
691 &transparent_hugepage_flags);
692 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
693 &transparent_hugepage_flags);
694 ret = 1;
695 }
696out:
697 if (!ret)
ae3a8c1c 698 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
699 return ret;
700}
701__setup("transparent_hugepage=", setup_transparent_hugepage);
702
b32967ff 703pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
704{
705 if (likely(vma->vm_flags & VM_WRITE))
706 pmd = pmd_mkwrite(pmd);
707 return pmd;
708}
709
3122359a 710static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
711{
712 pmd_t entry;
3122359a 713 entry = mk_pmd(page, prot);
b3092b3b
BL
714 entry = pmd_mkhuge(entry);
715 return entry;
716}
717
71e3aac0
AA
718static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
719 struct vm_area_struct *vma,
230c92a8 720 unsigned long address, pmd_t *pmd,
6b251fc9
AA
721 struct page *page, gfp_t gfp,
722 unsigned int flags)
71e3aac0 723{
00501b53 724 struct mem_cgroup *memcg;
71e3aac0 725 pgtable_t pgtable;
c4088ebd 726 spinlock_t *ptl;
230c92a8 727 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 728
309381fe 729 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 730
6b251fc9
AA
731 if (mem_cgroup_try_charge(page, mm, gfp, &memcg)) {
732 put_page(page);
733 count_vm_event(THP_FAULT_FALLBACK);
734 return VM_FAULT_FALLBACK;
735 }
00501b53 736
71e3aac0 737 pgtable = pte_alloc_one(mm, haddr);
00501b53
JW
738 if (unlikely(!pgtable)) {
739 mem_cgroup_cancel_charge(page, memcg);
6b251fc9 740 put_page(page);
71e3aac0 741 return VM_FAULT_OOM;
00501b53 742 }
71e3aac0
AA
743
744 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
745 /*
746 * The memory barrier inside __SetPageUptodate makes sure that
747 * clear_huge_page writes become visible before the set_pmd_at()
748 * write.
749 */
71e3aac0
AA
750 __SetPageUptodate(page);
751
c4088ebd 752 ptl = pmd_lock(mm, pmd);
71e3aac0 753 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 754 spin_unlock(ptl);
00501b53 755 mem_cgroup_cancel_charge(page, memcg);
71e3aac0
AA
756 put_page(page);
757 pte_free(mm, pgtable);
758 } else {
759 pmd_t entry;
6b251fc9
AA
760
761 /* Deliver the page fault to userland */
762 if (userfaultfd_missing(vma)) {
763 int ret;
764
765 spin_unlock(ptl);
766 mem_cgroup_cancel_charge(page, memcg);
767 put_page(page);
768 pte_free(mm, pgtable);
230c92a8 769 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
770 VM_UFFD_MISSING);
771 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
772 return ret;
773 }
774
3122359a
KS
775 entry = mk_huge_pmd(page, vma->vm_page_prot);
776 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
71e3aac0 777 page_add_new_anon_rmap(page, vma, haddr);
00501b53
JW
778 mem_cgroup_commit_charge(page, memcg, false);
779 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 780 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 781 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 782 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 783 atomic_long_inc(&mm->nr_ptes);
c4088ebd 784 spin_unlock(ptl);
6b251fc9 785 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
786 }
787
aa2e878e 788 return 0;
71e3aac0
AA
789}
790
cc5d462f 791static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 792{
cc5d462f 793 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
794}
795
c4088ebd 796/* Caller must hold page table lock. */
7c414164 797static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 798 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 799 struct page *zero_page)
fc9fe822
KS
800{
801 pmd_t entry;
7c414164
AM
802 if (!pmd_none(*pmd))
803 return false;
5918d10a 804 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 805 entry = pmd_mkhuge(entry);
6b0b50b0 806 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 807 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 808 atomic_long_inc(&mm->nr_ptes);
7c414164 809 return true;
fc9fe822
KS
810}
811
71e3aac0
AA
812int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
813 unsigned long address, pmd_t *pmd,
814 unsigned int flags)
815{
077fcf11 816 gfp_t gfp;
71e3aac0
AA
817 struct page *page;
818 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 819
128ec037 820 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 821 return VM_FAULT_FALLBACK;
128ec037
KS
822 if (unlikely(anon_vma_prepare(vma)))
823 return VM_FAULT_OOM;
6d50e60c 824 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 825 return VM_FAULT_OOM;
593befa6 826 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 827 transparent_hugepage_use_zero_page()) {
c4088ebd 828 spinlock_t *ptl;
128ec037
KS
829 pgtable_t pgtable;
830 struct page *zero_page;
831 bool set;
6b251fc9 832 int ret;
128ec037
KS
833 pgtable = pte_alloc_one(mm, haddr);
834 if (unlikely(!pgtable))
ba76149f 835 return VM_FAULT_OOM;
128ec037
KS
836 zero_page = get_huge_zero_page();
837 if (unlikely(!zero_page)) {
838 pte_free(mm, pgtable);
81ab4201 839 count_vm_event(THP_FAULT_FALLBACK);
c0292554 840 return VM_FAULT_FALLBACK;
b9bbfbe3 841 }
c4088ebd 842 ptl = pmd_lock(mm, pmd);
6b251fc9
AA
843 ret = 0;
844 set = false;
845 if (pmd_none(*pmd)) {
846 if (userfaultfd_missing(vma)) {
847 spin_unlock(ptl);
230c92a8 848 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
849 VM_UFFD_MISSING);
850 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
851 } else {
852 set_huge_zero_page(pgtable, mm, vma,
853 haddr, pmd,
854 zero_page);
855 spin_unlock(ptl);
856 set = true;
857 }
858 } else
859 spin_unlock(ptl);
128ec037
KS
860 if (!set) {
861 pte_free(mm, pgtable);
862 put_huge_zero_page();
edad9d2c 863 }
6b251fc9 864 return ret;
71e3aac0 865 }
077fcf11
AK
866 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
867 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
868 if (unlikely(!page)) {
869 count_vm_event(THP_FAULT_FALLBACK);
c0292554 870 return VM_FAULT_FALLBACK;
128ec037 871 }
230c92a8
AA
872 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
873 flags);
71e3aac0
AA
874}
875
876int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
877 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
878 struct vm_area_struct *vma)
879{
c4088ebd 880 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
881 struct page *src_page;
882 pmd_t pmd;
883 pgtable_t pgtable;
884 int ret;
885
886 ret = -ENOMEM;
887 pgtable = pte_alloc_one(dst_mm, addr);
888 if (unlikely(!pgtable))
889 goto out;
890
c4088ebd
KS
891 dst_ptl = pmd_lock(dst_mm, dst_pmd);
892 src_ptl = pmd_lockptr(src_mm, src_pmd);
893 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
894
895 ret = -EAGAIN;
896 pmd = *src_pmd;
897 if (unlikely(!pmd_trans_huge(pmd))) {
898 pte_free(dst_mm, pgtable);
899 goto out_unlock;
900 }
fc9fe822 901 /*
c4088ebd 902 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
903 * under splitting since we don't split the page itself, only pmd to
904 * a page table.
905 */
906 if (is_huge_zero_pmd(pmd)) {
5918d10a 907 struct page *zero_page;
97ae1749
KS
908 /*
909 * get_huge_zero_page() will never allocate a new page here,
910 * since we already have a zero page to copy. It just takes a
911 * reference.
912 */
5918d10a 913 zero_page = get_huge_zero_page();
6b251fc9 914 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 915 zero_page);
fc9fe822
KS
916 ret = 0;
917 goto out_unlock;
918 }
de466bd6 919
71e3aac0
AA
920 if (unlikely(pmd_trans_splitting(pmd))) {
921 /* split huge page running from under us */
c4088ebd
KS
922 spin_unlock(src_ptl);
923 spin_unlock(dst_ptl);
71e3aac0
AA
924 pte_free(dst_mm, pgtable);
925
926 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
927 goto out;
928 }
929 src_page = pmd_page(pmd);
309381fe 930 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
71e3aac0
AA
931 get_page(src_page);
932 page_dup_rmap(src_page);
933 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
934
935 pmdp_set_wrprotect(src_mm, addr, src_pmd);
936 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 937 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 938 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e1f56c89 939 atomic_long_inc(&dst_mm->nr_ptes);
71e3aac0
AA
940
941 ret = 0;
942out_unlock:
c4088ebd
KS
943 spin_unlock(src_ptl);
944 spin_unlock(dst_ptl);
71e3aac0
AA
945out:
946 return ret;
947}
948
a1dd450b
WD
949void huge_pmd_set_accessed(struct mm_struct *mm,
950 struct vm_area_struct *vma,
951 unsigned long address,
952 pmd_t *pmd, pmd_t orig_pmd,
953 int dirty)
954{
c4088ebd 955 spinlock_t *ptl;
a1dd450b
WD
956 pmd_t entry;
957 unsigned long haddr;
958
c4088ebd 959 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
960 if (unlikely(!pmd_same(*pmd, orig_pmd)))
961 goto unlock;
962
963 entry = pmd_mkyoung(orig_pmd);
964 haddr = address & HPAGE_PMD_MASK;
965 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
966 update_mmu_cache_pmd(vma, address, pmd);
967
968unlock:
c4088ebd 969 spin_unlock(ptl);
a1dd450b
WD
970}
971
5338a937
HD
972/*
973 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
974 * during copy_user_huge_page()'s copy_page_rep(): in the case when
975 * the source page gets split and a tail freed before copy completes.
976 * Called under pmd_lock of checked pmd, so safe from splitting itself.
977 */
978static void get_user_huge_page(struct page *page)
979{
980 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
981 struct page *endpage = page + HPAGE_PMD_NR;
982
983 atomic_add(HPAGE_PMD_NR, &page->_count);
984 while (++page < endpage)
985 get_huge_page_tail(page);
986 } else {
987 get_page(page);
988 }
989}
990
991static void put_user_huge_page(struct page *page)
992{
993 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
994 struct page *endpage = page + HPAGE_PMD_NR;
995
996 while (page < endpage)
997 put_page(page++);
998 } else {
999 put_page(page);
1000 }
1001}
1002
71e3aac0
AA
1003static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1004 struct vm_area_struct *vma,
1005 unsigned long address,
1006 pmd_t *pmd, pmd_t orig_pmd,
1007 struct page *page,
1008 unsigned long haddr)
1009{
00501b53 1010 struct mem_cgroup *memcg;
c4088ebd 1011 spinlock_t *ptl;
71e3aac0
AA
1012 pgtable_t pgtable;
1013 pmd_t _pmd;
1014 int ret = 0, i;
1015 struct page **pages;
2ec74c3e
SG
1016 unsigned long mmun_start; /* For mmu_notifiers */
1017 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1018
1019 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1020 GFP_KERNEL);
1021 if (unlikely(!pages)) {
1022 ret |= VM_FAULT_OOM;
1023 goto out;
1024 }
1025
1026 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1027 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1028 __GFP_OTHER_NODE,
19ee151e 1029 vma, address, page_to_nid(page));
b9bbfbe3 1030 if (unlikely(!pages[i] ||
00501b53
JW
1031 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1032 &memcg))) {
b9bbfbe3 1033 if (pages[i])
71e3aac0 1034 put_page(pages[i]);
b9bbfbe3 1035 while (--i >= 0) {
00501b53
JW
1036 memcg = (void *)page_private(pages[i]);
1037 set_page_private(pages[i], 0);
1038 mem_cgroup_cancel_charge(pages[i], memcg);
b9bbfbe3
AA
1039 put_page(pages[i]);
1040 }
71e3aac0
AA
1041 kfree(pages);
1042 ret |= VM_FAULT_OOM;
1043 goto out;
1044 }
00501b53 1045 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1046 }
1047
1048 for (i = 0; i < HPAGE_PMD_NR; i++) {
1049 copy_user_highpage(pages[i], page + i,
0089e485 1050 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1051 __SetPageUptodate(pages[i]);
1052 cond_resched();
1053 }
1054
2ec74c3e
SG
1055 mmun_start = haddr;
1056 mmun_end = haddr + HPAGE_PMD_SIZE;
1057 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1058
c4088ebd 1059 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1060 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1061 goto out_free_pages;
309381fe 1062 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1063
8809aa2d 1064 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1065 /* leave pmd empty until pte is filled */
1066
6b0b50b0 1067 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1068 pmd_populate(mm, &_pmd, pgtable);
1069
1070 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1071 pte_t *pte, entry;
1072 entry = mk_pte(pages[i], vma->vm_page_prot);
1073 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1074 memcg = (void *)page_private(pages[i]);
1075 set_page_private(pages[i], 0);
71e3aac0 1076 page_add_new_anon_rmap(pages[i], vma, haddr);
00501b53
JW
1077 mem_cgroup_commit_charge(pages[i], memcg, false);
1078 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1079 pte = pte_offset_map(&_pmd, haddr);
1080 VM_BUG_ON(!pte_none(*pte));
1081 set_pte_at(mm, haddr, pte, entry);
1082 pte_unmap(pte);
1083 }
1084 kfree(pages);
1085
71e3aac0
AA
1086 smp_wmb(); /* make pte visible before pmd */
1087 pmd_populate(mm, pmd, pgtable);
1088 page_remove_rmap(page);
c4088ebd 1089 spin_unlock(ptl);
71e3aac0 1090
2ec74c3e
SG
1091 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1092
71e3aac0
AA
1093 ret |= VM_FAULT_WRITE;
1094 put_page(page);
1095
1096out:
1097 return ret;
1098
1099out_free_pages:
c4088ebd 1100 spin_unlock(ptl);
2ec74c3e 1101 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1102 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1103 memcg = (void *)page_private(pages[i]);
1104 set_page_private(pages[i], 0);
1105 mem_cgroup_cancel_charge(pages[i], memcg);
71e3aac0 1106 put_page(pages[i]);
b9bbfbe3 1107 }
71e3aac0
AA
1108 kfree(pages);
1109 goto out;
1110}
1111
1112int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1113 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1114{
c4088ebd 1115 spinlock_t *ptl;
71e3aac0 1116 int ret = 0;
93b4796d 1117 struct page *page = NULL, *new_page;
00501b53 1118 struct mem_cgroup *memcg;
71e3aac0 1119 unsigned long haddr;
2ec74c3e
SG
1120 unsigned long mmun_start; /* For mmu_notifiers */
1121 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1122 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1123
c4088ebd 1124 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1125 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1126 haddr = address & HPAGE_PMD_MASK;
1127 if (is_huge_zero_pmd(orig_pmd))
1128 goto alloc;
c4088ebd 1129 spin_lock(ptl);
71e3aac0
AA
1130 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1131 goto out_unlock;
1132
1133 page = pmd_page(orig_pmd);
309381fe 1134 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
71e3aac0
AA
1135 if (page_mapcount(page) == 1) {
1136 pmd_t entry;
1137 entry = pmd_mkyoung(orig_pmd);
1138 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1139 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1140 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1141 ret |= VM_FAULT_WRITE;
1142 goto out_unlock;
1143 }
5338a937 1144 get_user_huge_page(page);
c4088ebd 1145 spin_unlock(ptl);
93b4796d 1146alloc:
71e3aac0 1147 if (transparent_hugepage_enabled(vma) &&
077fcf11 1148 !transparent_hugepage_debug_cow()) {
3b363692
MH
1149 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1150 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1151 } else
71e3aac0
AA
1152 new_page = NULL;
1153
1154 if (unlikely(!new_page)) {
eecc1e42 1155 if (!page) {
e9b71ca9
KS
1156 split_huge_page_pmd(vma, address, pmd);
1157 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1158 } else {
1159 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1160 pmd, orig_pmd, page, haddr);
9845cbbd 1161 if (ret & VM_FAULT_OOM) {
93b4796d 1162 split_huge_page(page);
9845cbbd
KS
1163 ret |= VM_FAULT_FALLBACK;
1164 }
5338a937 1165 put_user_huge_page(page);
93b4796d 1166 }
17766dde 1167 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1168 goto out;
1169 }
1170
3b363692 1171 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
b9bbfbe3 1172 put_page(new_page);
93b4796d
KS
1173 if (page) {
1174 split_huge_page(page);
5338a937 1175 put_user_huge_page(page);
9845cbbd
KS
1176 } else
1177 split_huge_page_pmd(vma, address, pmd);
1178 ret |= VM_FAULT_FALLBACK;
17766dde 1179 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1180 goto out;
1181 }
1182
17766dde
DR
1183 count_vm_event(THP_FAULT_ALLOC);
1184
eecc1e42 1185 if (!page)
93b4796d
KS
1186 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1187 else
1188 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1189 __SetPageUptodate(new_page);
1190
2ec74c3e
SG
1191 mmun_start = haddr;
1192 mmun_end = haddr + HPAGE_PMD_SIZE;
1193 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1194
c4088ebd 1195 spin_lock(ptl);
93b4796d 1196 if (page)
5338a937 1197 put_user_huge_page(page);
b9bbfbe3 1198 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1199 spin_unlock(ptl);
00501b53 1200 mem_cgroup_cancel_charge(new_page, memcg);
71e3aac0 1201 put_page(new_page);
2ec74c3e 1202 goto out_mn;
b9bbfbe3 1203 } else {
71e3aac0 1204 pmd_t entry;
3122359a
KS
1205 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1206 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
8809aa2d 1207 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0 1208 page_add_new_anon_rmap(new_page, vma, haddr);
00501b53
JW
1209 mem_cgroup_commit_charge(new_page, memcg, false);
1210 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1211 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1212 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1213 if (!page) {
93b4796d 1214 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1215 put_huge_zero_page();
1216 } else {
309381fe 1217 VM_BUG_ON_PAGE(!PageHead(page), page);
93b4796d
KS
1218 page_remove_rmap(page);
1219 put_page(page);
1220 }
71e3aac0
AA
1221 ret |= VM_FAULT_WRITE;
1222 }
c4088ebd 1223 spin_unlock(ptl);
2ec74c3e
SG
1224out_mn:
1225 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1226out:
1227 return ret;
2ec74c3e 1228out_unlock:
c4088ebd 1229 spin_unlock(ptl);
2ec74c3e 1230 return ret;
71e3aac0
AA
1231}
1232
b676b293 1233struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1234 unsigned long addr,
1235 pmd_t *pmd,
1236 unsigned int flags)
1237{
b676b293 1238 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1239 struct page *page = NULL;
1240
c4088ebd 1241 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1242
1243 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1244 goto out;
1245
85facf25
KS
1246 /* Avoid dumping huge zero page */
1247 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1248 return ERR_PTR(-EFAULT);
1249
2b4847e7 1250 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1251 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1252 goto out;
1253
71e3aac0 1254 page = pmd_page(*pmd);
309381fe 1255 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0
AA
1256 if (flags & FOLL_TOUCH) {
1257 pmd_t _pmd;
1258 /*
1259 * We should set the dirty bit only for FOLL_WRITE but
1260 * for now the dirty bit in the pmd is meaningless.
1261 * And if the dirty bit will become meaningful and
1262 * we'll only set it with FOLL_WRITE, an atomic
1263 * set_bit will be required on the pmd to set the
1264 * young bit, instead of the current set_pmd_at.
1265 */
1266 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1267 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1268 pmd, _pmd, 1))
1269 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1270 }
84d33df2 1271 if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
b676b293
DR
1272 if (page->mapping && trylock_page(page)) {
1273 lru_add_drain();
1274 if (page->mapping)
1275 mlock_vma_page(page);
1276 unlock_page(page);
1277 }
1278 }
71e3aac0 1279 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1280 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1281 if (flags & FOLL_GET)
70b50f94 1282 get_page_foll(page);
71e3aac0
AA
1283
1284out:
1285 return page;
1286}
1287
d10e63f2 1288/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1289int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1290 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1291{
c4088ebd 1292 spinlock_t *ptl;
b8916634 1293 struct anon_vma *anon_vma = NULL;
b32967ff 1294 struct page *page;
d10e63f2 1295 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1296 int page_nid = -1, this_nid = numa_node_id();
90572890 1297 int target_nid, last_cpupid = -1;
8191acbd
MG
1298 bool page_locked;
1299 bool migrated = false;
b191f9b1 1300 bool was_writable;
6688cc05 1301 int flags = 0;
d10e63f2 1302
c0e7cad9
MG
1303 /* A PROT_NONE fault should not end up here */
1304 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1305
c4088ebd 1306 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1307 if (unlikely(!pmd_same(pmd, *pmdp)))
1308 goto out_unlock;
1309
de466bd6
MG
1310 /*
1311 * If there are potential migrations, wait for completion and retry
1312 * without disrupting NUMA hinting information. Do not relock and
1313 * check_same as the page may no longer be mapped.
1314 */
1315 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1316 page = pmd_page(*pmdp);
de466bd6 1317 spin_unlock(ptl);
5d833062 1318 wait_on_page_locked(page);
de466bd6
MG
1319 goto out;
1320 }
1321
d10e63f2 1322 page = pmd_page(pmd);
a1a46184 1323 BUG_ON(is_huge_zero_page(page));
8191acbd 1324 page_nid = page_to_nid(page);
90572890 1325 last_cpupid = page_cpupid_last(page);
03c5a6e1 1326 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1327 if (page_nid == this_nid) {
03c5a6e1 1328 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1329 flags |= TNF_FAULT_LOCAL;
1330 }
4daae3b4 1331
bea66fbd
MG
1332 /* See similar comment in do_numa_page for explanation */
1333 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1334 flags |= TNF_NO_GROUP;
1335
ff9042b1
MG
1336 /*
1337 * Acquire the page lock to serialise THP migrations but avoid dropping
1338 * page_table_lock if at all possible
1339 */
b8916634
MG
1340 page_locked = trylock_page(page);
1341 target_nid = mpol_misplaced(page, vma, haddr);
1342 if (target_nid == -1) {
1343 /* If the page was locked, there are no parallel migrations */
a54a407f 1344 if (page_locked)
b8916634 1345 goto clear_pmdnuma;
2b4847e7 1346 }
4daae3b4 1347
de466bd6 1348 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1349 if (!page_locked) {
c4088ebd 1350 spin_unlock(ptl);
b8916634 1351 wait_on_page_locked(page);
a54a407f 1352 page_nid = -1;
b8916634
MG
1353 goto out;
1354 }
1355
2b4847e7
MG
1356 /*
1357 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1358 * to serialises splits
1359 */
b8916634 1360 get_page(page);
c4088ebd 1361 spin_unlock(ptl);
b8916634 1362 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1363
c69307d5 1364 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1365 spin_lock(ptl);
b32967ff
MG
1366 if (unlikely(!pmd_same(pmd, *pmdp))) {
1367 unlock_page(page);
1368 put_page(page);
a54a407f 1369 page_nid = -1;
4daae3b4 1370 goto out_unlock;
b32967ff 1371 }
ff9042b1 1372
c3a489ca
MG
1373 /* Bail if we fail to protect against THP splits for any reason */
1374 if (unlikely(!anon_vma)) {
1375 put_page(page);
1376 page_nid = -1;
1377 goto clear_pmdnuma;
1378 }
1379
a54a407f
MG
1380 /*
1381 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1382 * and access rights restored.
a54a407f 1383 */
c4088ebd 1384 spin_unlock(ptl);
b32967ff 1385 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1386 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1387 if (migrated) {
1388 flags |= TNF_MIGRATED;
8191acbd 1389 page_nid = target_nid;
074c2381
MG
1390 } else
1391 flags |= TNF_MIGRATE_FAIL;
b32967ff 1392
8191acbd 1393 goto out;
b32967ff 1394clear_pmdnuma:
a54a407f 1395 BUG_ON(!PageLocked(page));
b191f9b1 1396 was_writable = pmd_write(pmd);
4d942466 1397 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1398 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1399 if (was_writable)
1400 pmd = pmd_mkwrite(pmd);
d10e63f2 1401 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1402 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1403 unlock_page(page);
d10e63f2 1404out_unlock:
c4088ebd 1405 spin_unlock(ptl);
b8916634
MG
1406
1407out:
1408 if (anon_vma)
1409 page_unlock_anon_vma_read(anon_vma);
1410
8191acbd 1411 if (page_nid != -1)
6688cc05 1412 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1413
d10e63f2
MG
1414 return 0;
1415}
1416
71e3aac0 1417int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1418 pmd_t *pmd, unsigned long addr)
71e3aac0 1419{
bf929152 1420 spinlock_t *ptl;
71e3aac0
AA
1421 int ret = 0;
1422
bf929152 1423 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24
NH
1424 struct page *page;
1425 pgtable_t pgtable;
f5c8ad47 1426 pmd_t orig_pmd;
a6bf2bb0
AK
1427 /*
1428 * For architectures like ppc64 we look at deposited pgtable
8809aa2d 1429 * when calling pmdp_huge_get_and_clear. So do the
a6bf2bb0
AK
1430 * pgtable_trans_huge_withdraw after finishing pmdp related
1431 * operations.
1432 */
8809aa2d
AK
1433 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1434 tlb->fullmm);
025c5b24 1435 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
a6bf2bb0 1436 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
479f0abb 1437 if (is_huge_zero_pmd(orig_pmd)) {
e1f56c89 1438 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1439 spin_unlock(ptl);
97ae1749 1440 put_huge_zero_page();
479f0abb
KS
1441 } else {
1442 page = pmd_page(orig_pmd);
1443 page_remove_rmap(page);
309381fe 1444 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
479f0abb 1445 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
309381fe 1446 VM_BUG_ON_PAGE(!PageHead(page), page);
e1f56c89 1447 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1448 spin_unlock(ptl);
479f0abb
KS
1449 tlb_remove_page(tlb, page);
1450 }
025c5b24
NH
1451 pte_free(tlb->mm, pgtable);
1452 ret = 1;
1453 }
71e3aac0
AA
1454 return ret;
1455}
1456
37a1c49a
AA
1457int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1458 unsigned long old_addr,
1459 unsigned long new_addr, unsigned long old_end,
1460 pmd_t *old_pmd, pmd_t *new_pmd)
1461{
bf929152 1462 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1463 int ret = 0;
1464 pmd_t pmd;
1465
1466 struct mm_struct *mm = vma->vm_mm;
1467
1468 if ((old_addr & ~HPAGE_PMD_MASK) ||
1469 (new_addr & ~HPAGE_PMD_MASK) ||
1470 old_end - old_addr < HPAGE_PMD_SIZE ||
1471 (new_vma->vm_flags & VM_NOHUGEPAGE))
1472 goto out;
1473
1474 /*
1475 * The destination pmd shouldn't be established, free_pgtables()
1476 * should have release it.
1477 */
1478 if (WARN_ON(!pmd_none(*new_pmd))) {
1479 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1480 goto out;
1481 }
1482
bf929152
KS
1483 /*
1484 * We don't have to worry about the ordering of src and dst
1485 * ptlocks because exclusive mmap_sem prevents deadlock.
1486 */
1487 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
025c5b24 1488 if (ret == 1) {
bf929152
KS
1489 new_ptl = pmd_lockptr(mm, new_pmd);
1490 if (new_ptl != old_ptl)
1491 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1492 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1493 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1494
b3084f4d
AK
1495 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1496 pgtable_t pgtable;
3592806c
KS
1497 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1498 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1499 }
b3084f4d
AK
1500 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1501 if (new_ptl != old_ptl)
1502 spin_unlock(new_ptl);
bf929152 1503 spin_unlock(old_ptl);
37a1c49a
AA
1504 }
1505out:
1506 return ret;
1507}
1508
f123d74a
MG
1509/*
1510 * Returns
1511 * - 0 if PMD could not be locked
1512 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1513 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1514 */
cd7548ab 1515int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1516 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1517{
1518 struct mm_struct *mm = vma->vm_mm;
bf929152 1519 spinlock_t *ptl;
cd7548ab
JW
1520 int ret = 0;
1521
bf929152 1522 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24 1523 pmd_t entry;
b191f9b1 1524 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1525 ret = 1;
e944fd67
MG
1526
1527 /*
1528 * Avoid trapping faults against the zero page. The read-only
1529 * data is likely to be read-cached on the local CPU and
1530 * local/remote hits to the zero page are not interesting.
1531 */
1532 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1533 spin_unlock(ptl);
ba68bc01 1534 return ret;
e944fd67
MG
1535 }
1536
10c1045f 1537 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1538 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1539 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1540 if (preserve_write)
1541 entry = pmd_mkwrite(entry);
10c1045f
MG
1542 ret = HPAGE_PMD_NR;
1543 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1544 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1545 }
bf929152 1546 spin_unlock(ptl);
025c5b24
NH
1547 }
1548
1549 return ret;
1550}
1551
1552/*
1553 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1554 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1555 *
1556 * Note that if it returns 1, this routine returns without unlocking page
1557 * table locks. So callers must unlock them.
1558 */
bf929152
KS
1559int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1560 spinlock_t **ptl)
025c5b24 1561{
bf929152 1562 *ptl = pmd_lock(vma->vm_mm, pmd);
cd7548ab
JW
1563 if (likely(pmd_trans_huge(*pmd))) {
1564 if (unlikely(pmd_trans_splitting(*pmd))) {
bf929152 1565 spin_unlock(*ptl);
cd7548ab 1566 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1567 return -1;
cd7548ab 1568 } else {
025c5b24
NH
1569 /* Thp mapped by 'pmd' is stable, so we can
1570 * handle it as it is. */
1571 return 1;
cd7548ab 1572 }
025c5b24 1573 }
bf929152 1574 spin_unlock(*ptl);
025c5b24 1575 return 0;
cd7548ab
JW
1576}
1577
117b0791
KS
1578/*
1579 * This function returns whether a given @page is mapped onto the @address
1580 * in the virtual space of @mm.
1581 *
1582 * When it's true, this function returns *pmd with holding the page table lock
1583 * and passing it back to the caller via @ptl.
1584 * If it's false, returns NULL without holding the page table lock.
1585 */
71e3aac0
AA
1586pmd_t *page_check_address_pmd(struct page *page,
1587 struct mm_struct *mm,
1588 unsigned long address,
117b0791
KS
1589 enum page_check_address_pmd_flag flag,
1590 spinlock_t **ptl)
71e3aac0 1591{
b5a8cad3
KS
1592 pgd_t *pgd;
1593 pud_t *pud;
117b0791 1594 pmd_t *pmd;
71e3aac0
AA
1595
1596 if (address & ~HPAGE_PMD_MASK)
117b0791 1597 return NULL;
71e3aac0 1598
b5a8cad3
KS
1599 pgd = pgd_offset(mm, address);
1600 if (!pgd_present(*pgd))
117b0791 1601 return NULL;
b5a8cad3
KS
1602 pud = pud_offset(pgd, address);
1603 if (!pud_present(*pud))
1604 return NULL;
1605 pmd = pmd_offset(pud, address);
1606
117b0791 1607 *ptl = pmd_lock(mm, pmd);
b5a8cad3 1608 if (!pmd_present(*pmd))
117b0791 1609 goto unlock;
71e3aac0 1610 if (pmd_page(*pmd) != page)
117b0791 1611 goto unlock;
94fcc585
AA
1612 /*
1613 * split_vma() may create temporary aliased mappings. There is
1614 * no risk as long as all huge pmd are found and have their
1615 * splitting bit set before __split_huge_page_refcount
1616 * runs. Finding the same huge pmd more than once during the
1617 * same rmap walk is not a problem.
1618 */
1619 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1620 pmd_trans_splitting(*pmd))
117b0791 1621 goto unlock;
71e3aac0
AA
1622 if (pmd_trans_huge(*pmd)) {
1623 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1624 !pmd_trans_splitting(*pmd));
117b0791 1625 return pmd;
71e3aac0 1626 }
117b0791
KS
1627unlock:
1628 spin_unlock(*ptl);
1629 return NULL;
71e3aac0
AA
1630}
1631
1632static int __split_huge_page_splitting(struct page *page,
1633 struct vm_area_struct *vma,
1634 unsigned long address)
1635{
1636 struct mm_struct *mm = vma->vm_mm;
117b0791 1637 spinlock_t *ptl;
71e3aac0
AA
1638 pmd_t *pmd;
1639 int ret = 0;
2ec74c3e
SG
1640 /* For mmu_notifiers */
1641 const unsigned long mmun_start = address;
1642 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1643
2ec74c3e 1644 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0 1645 pmd = page_check_address_pmd(page, mm, address,
117b0791 1646 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
71e3aac0
AA
1647 if (pmd) {
1648 /*
1649 * We can't temporarily set the pmd to null in order
1650 * to split it, the pmd must remain marked huge at all
1651 * times or the VM won't take the pmd_trans_huge paths
5a505085 1652 * and it won't wait on the anon_vma->root->rwsem to
71e3aac0
AA
1653 * serialize against split_huge_page*.
1654 */
2ec74c3e 1655 pmdp_splitting_flush(vma, address, pmd);
34ee645e 1656
71e3aac0 1657 ret = 1;
117b0791 1658 spin_unlock(ptl);
71e3aac0 1659 }
2ec74c3e 1660 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1661
1662 return ret;
1663}
1664
5bc7b8ac
SL
1665static void __split_huge_page_refcount(struct page *page,
1666 struct list_head *list)
71e3aac0
AA
1667{
1668 int i;
71e3aac0 1669 struct zone *zone = page_zone(page);
fa9add64 1670 struct lruvec *lruvec;
70b50f94 1671 int tail_count = 0;
71e3aac0
AA
1672
1673 /* prevent PageLRU to go away from under us, and freeze lru stats */
1674 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1675 lruvec = mem_cgroup_page_lruvec(page, zone);
1676
71e3aac0 1677 compound_lock(page);
e94c8a9c
KH
1678 /* complete memcg works before add pages to LRU */
1679 mem_cgroup_split_huge_fixup(page);
71e3aac0 1680
45676885 1681 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1682 struct page *page_tail = page + i;
1683
70b50f94
AA
1684 /* tail_page->_mapcount cannot change */
1685 BUG_ON(page_mapcount(page_tail) < 0);
1686 tail_count += page_mapcount(page_tail);
1687 /* check for overflow */
1688 BUG_ON(tail_count < 0);
1689 BUG_ON(atomic_read(&page_tail->_count) != 0);
1690 /*
1691 * tail_page->_count is zero and not changing from
1692 * under us. But get_page_unless_zero() may be running
1693 * from under us on the tail_page. If we used
1694 * atomic_set() below instead of atomic_add(), we
1695 * would then run atomic_set() concurrently with
1696 * get_page_unless_zero(), and atomic_set() is
1697 * implemented in C not using locked ops. spin_unlock
1698 * on x86 sometime uses locked ops because of PPro
1699 * errata 66, 92, so unless somebody can guarantee
1700 * atomic_set() here would be safe on all archs (and
1701 * not only on x86), it's safer to use atomic_add().
1702 */
1703 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1704 &page_tail->_count);
71e3aac0
AA
1705
1706 /* after clearing PageTail the gup refcount can be released */
3a79d52a 1707 smp_mb__after_atomic();
71e3aac0 1708
f4c18e6f 1709 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
71e3aac0
AA
1710 page_tail->flags |= (page->flags &
1711 ((1L << PG_referenced) |
1712 (1L << PG_swapbacked) |
1713 (1L << PG_mlocked) |
e180cf80
KS
1714 (1L << PG_uptodate) |
1715 (1L << PG_active) |
1716 (1L << PG_unevictable)));
71e3aac0
AA
1717 page_tail->flags |= (1L << PG_dirty);
1718
70b50f94 1719 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1720 smp_wmb();
1721
1722 /*
1723 * __split_huge_page_splitting() already set the
1724 * splitting bit in all pmd that could map this
1725 * hugepage, that will ensure no CPU can alter the
1726 * mapcount on the head page. The mapcount is only
1727 * accounted in the head page and it has to be
1728 * transferred to all tail pages in the below code. So
1729 * for this code to be safe, the split the mapcount
1730 * can't change. But that doesn't mean userland can't
1731 * keep changing and reading the page contents while
1732 * we transfer the mapcount, so the pmd splitting
1733 * status is achieved setting a reserved bit in the
1734 * pmd, not by clearing the present bit.
1735 */
71e3aac0
AA
1736 page_tail->_mapcount = page->_mapcount;
1737
1738 BUG_ON(page_tail->mapping);
1739 page_tail->mapping = page->mapping;
1740
45676885 1741 page_tail->index = page->index + i;
90572890 1742 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
71e3aac0
AA
1743
1744 BUG_ON(!PageAnon(page_tail));
1745 BUG_ON(!PageUptodate(page_tail));
1746 BUG_ON(!PageDirty(page_tail));
1747 BUG_ON(!PageSwapBacked(page_tail));
1748
5bc7b8ac 1749 lru_add_page_tail(page, page_tail, lruvec, list);
71e3aac0 1750 }
70b50f94
AA
1751 atomic_sub(tail_count, &page->_count);
1752 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1753
fa9add64 1754 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171 1755
71e3aac0
AA
1756 ClearPageCompound(page);
1757 compound_unlock(page);
1758 spin_unlock_irq(&zone->lru_lock);
1759
1760 for (i = 1; i < HPAGE_PMD_NR; i++) {
1761 struct page *page_tail = page + i;
1762 BUG_ON(page_count(page_tail) <= 0);
1763 /*
1764 * Tail pages may be freed if there wasn't any mapping
1765 * like if add_to_swap() is running on a lru page that
1766 * had its mapping zapped. And freeing these pages
1767 * requires taking the lru_lock so we do the put_page
1768 * of the tail pages after the split is complete.
1769 */
1770 put_page(page_tail);
1771 }
1772
1773 /*
1774 * Only the head page (now become a regular page) is required
1775 * to be pinned by the caller.
1776 */
1777 BUG_ON(page_count(page) <= 0);
1778}
1779
1780static int __split_huge_page_map(struct page *page,
1781 struct vm_area_struct *vma,
1782 unsigned long address)
1783{
1784 struct mm_struct *mm = vma->vm_mm;
117b0791 1785 spinlock_t *ptl;
71e3aac0
AA
1786 pmd_t *pmd, _pmd;
1787 int ret = 0, i;
1788 pgtable_t pgtable;
1789 unsigned long haddr;
1790
71e3aac0 1791 pmd = page_check_address_pmd(page, mm, address,
117b0791 1792 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
71e3aac0 1793 if (pmd) {
6b0b50b0 1794 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0 1795 pmd_populate(mm, &_pmd, pgtable);
f8303c25
WL
1796 if (pmd_write(*pmd))
1797 BUG_ON(page_mapcount(page) != 1);
71e3aac0 1798
e3ebcf64
GS
1799 haddr = address;
1800 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1801 pte_t *pte, entry;
1802 BUG_ON(PageCompound(page+i));
abc40bd2 1803 /*
8a0516ed
MG
1804 * Note that NUMA hinting access restrictions are not
1805 * transferred to avoid any possibility of altering
1806 * permissions across VMAs.
abc40bd2 1807 */
71e3aac0
AA
1808 entry = mk_pte(page + i, vma->vm_page_prot);
1809 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1810 if (!pmd_write(*pmd))
1811 entry = pte_wrprotect(entry);
71e3aac0
AA
1812 if (!pmd_young(*pmd))
1813 entry = pte_mkold(entry);
1814 pte = pte_offset_map(&_pmd, haddr);
1815 BUG_ON(!pte_none(*pte));
1816 set_pte_at(mm, haddr, pte, entry);
1817 pte_unmap(pte);
1818 }
1819
71e3aac0
AA
1820 smp_wmb(); /* make pte visible before pmd */
1821 /*
1822 * Up to this point the pmd is present and huge and
1823 * userland has the whole access to the hugepage
1824 * during the split (which happens in place). If we
1825 * overwrite the pmd with the not-huge version
1826 * pointing to the pte here (which of course we could
1827 * if all CPUs were bug free), userland could trigger
1828 * a small page size TLB miss on the small sized TLB
1829 * while the hugepage TLB entry is still established
1830 * in the huge TLB. Some CPU doesn't like that. See
1831 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1832 * Erratum 383 on page 93. Intel should be safe but is
1833 * also warns that it's only safe if the permission
1834 * and cache attributes of the two entries loaded in
1835 * the two TLB is identical (which should be the case
1836 * here). But it is generally safer to never allow
1837 * small and huge TLB entries for the same virtual
1838 * address to be loaded simultaneously. So instead of
1839 * doing "pmd_populate(); flush_tlb_range();" we first
1840 * mark the current pmd notpresent (atomically because
1841 * here the pmd_trans_huge and pmd_trans_splitting
1842 * must remain set at all times on the pmd until the
1843 * split is complete for this pmd), then we flush the
1844 * SMP TLB and finally we write the non-huge version
1845 * of the pmd entry with pmd_populate.
1846 */
46dcde73 1847 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1848 pmd_populate(mm, pmd, pgtable);
1849 ret = 1;
117b0791 1850 spin_unlock(ptl);
71e3aac0 1851 }
71e3aac0
AA
1852
1853 return ret;
1854}
1855
5a505085 1856/* must be called with anon_vma->root->rwsem held */
71e3aac0 1857static void __split_huge_page(struct page *page,
5bc7b8ac
SL
1858 struct anon_vma *anon_vma,
1859 struct list_head *list)
71e3aac0
AA
1860{
1861 int mapcount, mapcount2;
bf181b9f 1862 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1863 struct anon_vma_chain *avc;
1864
1865 BUG_ON(!PageHead(page));
1866 BUG_ON(PageTail(page));
1867
1868 mapcount = 0;
bf181b9f 1869 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1870 struct vm_area_struct *vma = avc->vma;
1871 unsigned long addr = vma_address(page, vma);
1872 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1873 mapcount += __split_huge_page_splitting(page, vma, addr);
1874 }
05759d38
AA
1875 /*
1876 * It is critical that new vmas are added to the tail of the
1877 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1878 * and establishes a child pmd before
1879 * __split_huge_page_splitting() freezes the parent pmd (so if
1880 * we fail to prevent copy_huge_pmd() from running until the
1881 * whole __split_huge_page() is complete), we will still see
1882 * the newly established pmd of the child later during the
1883 * walk, to be able to set it as pmd_trans_splitting too.
1884 */
ff9e43eb 1885 if (mapcount != page_mapcount(page)) {
ae3a8c1c
AM
1886 pr_err("mapcount %d page_mapcount %d\n",
1887 mapcount, page_mapcount(page));
ff9e43eb
KS
1888 BUG();
1889 }
71e3aac0 1890
5bc7b8ac 1891 __split_huge_page_refcount(page, list);
71e3aac0
AA
1892
1893 mapcount2 = 0;
bf181b9f 1894 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1895 struct vm_area_struct *vma = avc->vma;
1896 unsigned long addr = vma_address(page, vma);
1897 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1898 mapcount2 += __split_huge_page_map(page, vma, addr);
1899 }
ff9e43eb 1900 if (mapcount != mapcount2) {
ae3a8c1c
AM
1901 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1902 mapcount, mapcount2, page_mapcount(page));
ff9e43eb
KS
1903 BUG();
1904 }
71e3aac0
AA
1905}
1906
5bc7b8ac
SL
1907/*
1908 * Split a hugepage into normal pages. This doesn't change the position of head
1909 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1910 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1911 * from the hugepage.
1912 * Return 0 if the hugepage is split successfully otherwise return 1.
1913 */
1914int split_huge_page_to_list(struct page *page, struct list_head *list)
71e3aac0
AA
1915{
1916 struct anon_vma *anon_vma;
1917 int ret = 1;
1918
5918d10a 1919 BUG_ON(is_huge_zero_page(page));
71e3aac0 1920 BUG_ON(!PageAnon(page));
062f1af2
MG
1921
1922 /*
1923 * The caller does not necessarily hold an mmap_sem that would prevent
1924 * the anon_vma disappearing so we first we take a reference to it
1925 * and then lock the anon_vma for write. This is similar to
1926 * page_lock_anon_vma_read except the write lock is taken to serialise
1927 * against parallel split or collapse operations.
1928 */
1929 anon_vma = page_get_anon_vma(page);
71e3aac0
AA
1930 if (!anon_vma)
1931 goto out;
062f1af2
MG
1932 anon_vma_lock_write(anon_vma);
1933
71e3aac0
AA
1934 ret = 0;
1935 if (!PageCompound(page))
1936 goto out_unlock;
1937
1938 BUG_ON(!PageSwapBacked(page));
5bc7b8ac 1939 __split_huge_page(page, anon_vma, list);
81ab4201 1940 count_vm_event(THP_SPLIT);
71e3aac0
AA
1941
1942 BUG_ON(PageCompound(page));
1943out_unlock:
08b52706 1944 anon_vma_unlock_write(anon_vma);
062f1af2 1945 put_anon_vma(anon_vma);
71e3aac0
AA
1946out:
1947 return ret;
1948}
1949
9050d7eb 1950#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1951
60ab3244
AA
1952int hugepage_madvise(struct vm_area_struct *vma,
1953 unsigned long *vm_flags, int advice)
0af4e98b 1954{
a664b2d8
AA
1955 switch (advice) {
1956 case MADV_HUGEPAGE:
1e1836e8
AT
1957#ifdef CONFIG_S390
1958 /*
1959 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1960 * can't handle this properly after s390_enable_sie, so we simply
1961 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1962 */
1963 if (mm_has_pgste(vma->vm_mm))
1964 return 0;
1965#endif
a664b2d8
AA
1966 /*
1967 * Be somewhat over-protective like KSM for now!
1968 */
78f11a25 1969 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8
AA
1970 return -EINVAL;
1971 *vm_flags &= ~VM_NOHUGEPAGE;
1972 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1973 /*
1974 * If the vma become good for khugepaged to scan,
1975 * register it here without waiting a page fault that
1976 * may not happen any time soon.
1977 */
6d50e60c 1978 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1979 return -ENOMEM;
a664b2d8
AA
1980 break;
1981 case MADV_NOHUGEPAGE:
1982 /*
1983 * Be somewhat over-protective like KSM for now!
1984 */
78f11a25 1985 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1986 return -EINVAL;
1987 *vm_flags &= ~VM_HUGEPAGE;
1988 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1989 /*
1990 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1991 * this vma even if we leave the mm registered in khugepaged if
1992 * it got registered before VM_NOHUGEPAGE was set.
1993 */
a664b2d8
AA
1994 break;
1995 }
0af4e98b
AA
1996
1997 return 0;
1998}
1999
ba76149f
AA
2000static int __init khugepaged_slab_init(void)
2001{
2002 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2003 sizeof(struct mm_slot),
2004 __alignof__(struct mm_slot), 0, NULL);
2005 if (!mm_slot_cache)
2006 return -ENOMEM;
2007
2008 return 0;
2009}
2010
65ebb64f
KS
2011static void __init khugepaged_slab_exit(void)
2012{
2013 kmem_cache_destroy(mm_slot_cache);
2014}
2015
ba76149f
AA
2016static inline struct mm_slot *alloc_mm_slot(void)
2017{
2018 if (!mm_slot_cache) /* initialization failed */
2019 return NULL;
2020 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2021}
2022
2023static inline void free_mm_slot(struct mm_slot *mm_slot)
2024{
2025 kmem_cache_free(mm_slot_cache, mm_slot);
2026}
2027
ba76149f
AA
2028static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2029{
2030 struct mm_slot *mm_slot;
ba76149f 2031
b67bfe0d 2032 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
2033 if (mm == mm_slot->mm)
2034 return mm_slot;
43b5fbbd 2035
ba76149f
AA
2036 return NULL;
2037}
2038
2039static void insert_to_mm_slots_hash(struct mm_struct *mm,
2040 struct mm_slot *mm_slot)
2041{
ba76149f 2042 mm_slot->mm = mm;
43b5fbbd 2043 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
2044}
2045
2046static inline int khugepaged_test_exit(struct mm_struct *mm)
2047{
2048 return atomic_read(&mm->mm_users) == 0;
2049}
2050
2051int __khugepaged_enter(struct mm_struct *mm)
2052{
2053 struct mm_slot *mm_slot;
2054 int wakeup;
2055
2056 mm_slot = alloc_mm_slot();
2057 if (!mm_slot)
2058 return -ENOMEM;
2059
2060 /* __khugepaged_exit() must not run from under us */
96dad67f 2061 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
2062 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2063 free_mm_slot(mm_slot);
2064 return 0;
2065 }
2066
2067 spin_lock(&khugepaged_mm_lock);
2068 insert_to_mm_slots_hash(mm, mm_slot);
2069 /*
2070 * Insert just behind the scanning cursor, to let the area settle
2071 * down a little.
2072 */
2073 wakeup = list_empty(&khugepaged_scan.mm_head);
2074 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2075 spin_unlock(&khugepaged_mm_lock);
2076
2077 atomic_inc(&mm->mm_count);
2078 if (wakeup)
2079 wake_up_interruptible(&khugepaged_wait);
2080
2081 return 0;
2082}
2083
6d50e60c
DR
2084int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2085 unsigned long vm_flags)
ba76149f
AA
2086{
2087 unsigned long hstart, hend;
2088 if (!vma->anon_vma)
2089 /*
2090 * Not yet faulted in so we will register later in the
2091 * page fault if needed.
2092 */
2093 return 0;
78f11a25 2094 if (vma->vm_ops)
ba76149f
AA
2095 /* khugepaged not yet working on file or special mappings */
2096 return 0;
6d50e60c 2097 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
2098 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2099 hend = vma->vm_end & HPAGE_PMD_MASK;
2100 if (hstart < hend)
6d50e60c 2101 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
2102 return 0;
2103}
2104
2105void __khugepaged_exit(struct mm_struct *mm)
2106{
2107 struct mm_slot *mm_slot;
2108 int free = 0;
2109
2110 spin_lock(&khugepaged_mm_lock);
2111 mm_slot = get_mm_slot(mm);
2112 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 2113 hash_del(&mm_slot->hash);
ba76149f
AA
2114 list_del(&mm_slot->mm_node);
2115 free = 1;
2116 }
d788e80a 2117 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2118
2119 if (free) {
ba76149f
AA
2120 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2121 free_mm_slot(mm_slot);
2122 mmdrop(mm);
2123 } else if (mm_slot) {
ba76149f
AA
2124 /*
2125 * This is required to serialize against
2126 * khugepaged_test_exit() (which is guaranteed to run
2127 * under mmap sem read mode). Stop here (after we
2128 * return all pagetables will be destroyed) until
2129 * khugepaged has finished working on the pagetables
2130 * under the mmap_sem.
2131 */
2132 down_write(&mm->mmap_sem);
2133 up_write(&mm->mmap_sem);
d788e80a 2134 }
ba76149f
AA
2135}
2136
2137static void release_pte_page(struct page *page)
2138{
2139 /* 0 stands for page_is_file_cache(page) == false */
2140 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2141 unlock_page(page);
2142 putback_lru_page(page);
2143}
2144
2145static void release_pte_pages(pte_t *pte, pte_t *_pte)
2146{
2147 while (--_pte >= pte) {
2148 pte_t pteval = *_pte;
ca0984ca 2149 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
2150 release_pte_page(pte_page(pteval));
2151 }
2152}
2153
ba76149f
AA
2154static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2155 unsigned long address,
2156 pte_t *pte)
2157{
2158 struct page *page;
2159 pte_t *_pte;
ca0984ca 2160 int none_or_zero = 0;
10359213 2161 bool referenced = false, writable = false;
ba76149f
AA
2162 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2163 _pte++, address += PAGE_SIZE) {
2164 pte_t pteval = *_pte;
ca0984ca 2165 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05
AA
2166 if (!userfaultfd_armed(vma) &&
2167 ++none_or_zero <= khugepaged_max_ptes_none)
ba76149f 2168 continue;
344aa35c 2169 else
ba76149f 2170 goto out;
ba76149f 2171 }
10359213 2172 if (!pte_present(pteval))
ba76149f 2173 goto out;
ba76149f 2174 page = vm_normal_page(vma, address, pteval);
344aa35c 2175 if (unlikely(!page))
ba76149f 2176 goto out;
344aa35c 2177
309381fe
SL
2178 VM_BUG_ON_PAGE(PageCompound(page), page);
2179 VM_BUG_ON_PAGE(!PageAnon(page), page);
2180 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 2181
ba76149f
AA
2182 /*
2183 * We can do it before isolate_lru_page because the
2184 * page can't be freed from under us. NOTE: PG_lock
2185 * is needed to serialize against split_huge_page
2186 * when invoked from the VM.
2187 */
344aa35c 2188 if (!trylock_page(page))
ba76149f 2189 goto out;
10359213
EA
2190
2191 /*
2192 * cannot use mapcount: can't collapse if there's a gup pin.
2193 * The page must only be referenced by the scanned process
2194 * and page swap cache.
2195 */
2196 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2197 unlock_page(page);
2198 goto out;
2199 }
2200 if (pte_write(pteval)) {
2201 writable = true;
2202 } else {
2203 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2204 unlock_page(page);
2205 goto out;
2206 }
2207 /*
2208 * Page is not in the swap cache. It can be collapsed
2209 * into a THP.
2210 */
2211 }
2212
ba76149f
AA
2213 /*
2214 * Isolate the page to avoid collapsing an hugepage
2215 * currently in use by the VM.
2216 */
2217 if (isolate_lru_page(page)) {
2218 unlock_page(page);
ba76149f
AA
2219 goto out;
2220 }
2221 /* 0 stands for page_is_file_cache(page) == false */
2222 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2223 VM_BUG_ON_PAGE(!PageLocked(page), page);
2224 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2225
2226 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
2227 if (pte_young(pteval) || PageReferenced(page) ||
2228 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2229 referenced = true;
ba76149f 2230 }
10359213 2231 if (likely(referenced && writable))
344aa35c 2232 return 1;
ba76149f 2233out:
344aa35c
BL
2234 release_pte_pages(pte, _pte);
2235 return 0;
ba76149f
AA
2236}
2237
2238static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2239 struct vm_area_struct *vma,
2240 unsigned long address,
2241 spinlock_t *ptl)
2242{
2243 pte_t *_pte;
2244 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2245 pte_t pteval = *_pte;
2246 struct page *src_page;
2247
ca0984ca 2248 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2249 clear_user_highpage(page, address);
2250 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2251 if (is_zero_pfn(pte_pfn(pteval))) {
2252 /*
2253 * ptl mostly unnecessary.
2254 */
2255 spin_lock(ptl);
2256 /*
2257 * paravirt calls inside pte_clear here are
2258 * superfluous.
2259 */
2260 pte_clear(vma->vm_mm, address, _pte);
2261 spin_unlock(ptl);
2262 }
ba76149f
AA
2263 } else {
2264 src_page = pte_page(pteval);
2265 copy_user_highpage(page, src_page, address, vma);
309381fe 2266 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2267 release_pte_page(src_page);
2268 /*
2269 * ptl mostly unnecessary, but preempt has to
2270 * be disabled to update the per-cpu stats
2271 * inside page_remove_rmap().
2272 */
2273 spin_lock(ptl);
2274 /*
2275 * paravirt calls inside pte_clear here are
2276 * superfluous.
2277 */
2278 pte_clear(vma->vm_mm, address, _pte);
2279 page_remove_rmap(src_page);
2280 spin_unlock(ptl);
2281 free_page_and_swap_cache(src_page);
2282 }
2283
2284 address += PAGE_SIZE;
2285 page++;
2286 }
2287}
2288
26234f36 2289static void khugepaged_alloc_sleep(void)
ba76149f 2290{
26234f36
XG
2291 wait_event_freezable_timeout(khugepaged_wait, false,
2292 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2293}
ba76149f 2294
9f1b868a
BL
2295static int khugepaged_node_load[MAX_NUMNODES];
2296
14a4e214
DR
2297static bool khugepaged_scan_abort(int nid)
2298{
2299 int i;
2300
2301 /*
2302 * If zone_reclaim_mode is disabled, then no extra effort is made to
2303 * allocate memory locally.
2304 */
2305 if (!zone_reclaim_mode)
2306 return false;
2307
2308 /* If there is a count for this node already, it must be acceptable */
2309 if (khugepaged_node_load[nid])
2310 return false;
2311
2312 for (i = 0; i < MAX_NUMNODES; i++) {
2313 if (!khugepaged_node_load[i])
2314 continue;
2315 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2316 return true;
2317 }
2318 return false;
2319}
2320
26234f36 2321#ifdef CONFIG_NUMA
9f1b868a
BL
2322static int khugepaged_find_target_node(void)
2323{
2324 static int last_khugepaged_target_node = NUMA_NO_NODE;
2325 int nid, target_node = 0, max_value = 0;
2326
2327 /* find first node with max normal pages hit */
2328 for (nid = 0; nid < MAX_NUMNODES; nid++)
2329 if (khugepaged_node_load[nid] > max_value) {
2330 max_value = khugepaged_node_load[nid];
2331 target_node = nid;
2332 }
2333
2334 /* do some balance if several nodes have the same hit record */
2335 if (target_node <= last_khugepaged_target_node)
2336 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2337 nid++)
2338 if (max_value == khugepaged_node_load[nid]) {
2339 target_node = nid;
2340 break;
2341 }
2342
2343 last_khugepaged_target_node = target_node;
2344 return target_node;
2345}
2346
26234f36
XG
2347static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2348{
2349 if (IS_ERR(*hpage)) {
2350 if (!*wait)
2351 return false;
2352
2353 *wait = false;
e3b4126c 2354 *hpage = NULL;
26234f36
XG
2355 khugepaged_alloc_sleep();
2356 } else if (*hpage) {
2357 put_page(*hpage);
2358 *hpage = NULL;
2359 }
2360
2361 return true;
2362}
2363
3b363692
MH
2364static struct page *
2365khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
26234f36
XG
2366 struct vm_area_struct *vma, unsigned long address,
2367 int node)
2368{
309381fe 2369 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2370
ce83d217 2371 /*
8b164568
VB
2372 * Before allocating the hugepage, release the mmap_sem read lock.
2373 * The allocation can take potentially a long time if it involves
2374 * sync compaction, and we do not need to hold the mmap_sem during
2375 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2376 */
8b164568
VB
2377 up_read(&mm->mmap_sem);
2378
3b363692 2379 *hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2380 if (unlikely(!*hpage)) {
81ab4201 2381 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2382 *hpage = ERR_PTR(-ENOMEM);
26234f36 2383 return NULL;
ce83d217 2384 }
26234f36 2385
65b3c07b 2386 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2387 return *hpage;
2388}
2389#else
9f1b868a
BL
2390static int khugepaged_find_target_node(void)
2391{
2392 return 0;
2393}
2394
10dc4155
BL
2395static inline struct page *alloc_hugepage(int defrag)
2396{
2397 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2398 HPAGE_PMD_ORDER);
2399}
2400
26234f36
XG
2401static struct page *khugepaged_alloc_hugepage(bool *wait)
2402{
2403 struct page *hpage;
2404
2405 do {
2406 hpage = alloc_hugepage(khugepaged_defrag());
2407 if (!hpage) {
2408 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2409 if (!*wait)
2410 return NULL;
2411
2412 *wait = false;
2413 khugepaged_alloc_sleep();
2414 } else
2415 count_vm_event(THP_COLLAPSE_ALLOC);
2416 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2417
2418 return hpage;
2419}
2420
2421static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2422{
2423 if (!*hpage)
2424 *hpage = khugepaged_alloc_hugepage(wait);
2425
2426 if (unlikely(!*hpage))
2427 return false;
2428
2429 return true;
2430}
2431
3b363692
MH
2432static struct page *
2433khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
26234f36
XG
2434 struct vm_area_struct *vma, unsigned long address,
2435 int node)
2436{
2437 up_read(&mm->mmap_sem);
2438 VM_BUG_ON(!*hpage);
3b363692 2439
26234f36
XG
2440 return *hpage;
2441}
692e0b35
AA
2442#endif
2443
fa475e51
BL
2444static bool hugepage_vma_check(struct vm_area_struct *vma)
2445{
2446 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2447 (vma->vm_flags & VM_NOHUGEPAGE))
2448 return false;
2449
2450 if (!vma->anon_vma || vma->vm_ops)
2451 return false;
2452 if (is_vma_temporary_stack(vma))
2453 return false;
81d1b09c 2454 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2455 return true;
2456}
2457
26234f36
XG
2458static void collapse_huge_page(struct mm_struct *mm,
2459 unsigned long address,
2460 struct page **hpage,
2461 struct vm_area_struct *vma,
2462 int node)
2463{
26234f36
XG
2464 pmd_t *pmd, _pmd;
2465 pte_t *pte;
2466 pgtable_t pgtable;
2467 struct page *new_page;
c4088ebd 2468 spinlock_t *pmd_ptl, *pte_ptl;
26234f36
XG
2469 int isolated;
2470 unsigned long hstart, hend;
00501b53 2471 struct mem_cgroup *memcg;
2ec74c3e
SG
2472 unsigned long mmun_start; /* For mmu_notifiers */
2473 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2474 gfp_t gfp;
26234f36
XG
2475
2476 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2477
3b363692
MH
2478 /* Only allocate from the target node */
2479 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2480 __GFP_THISNODE;
2481
26234f36 2482 /* release the mmap_sem read lock. */
3b363692 2483 new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
26234f36
XG
2484 if (!new_page)
2485 return;
2486
00501b53 2487 if (unlikely(mem_cgroup_try_charge(new_page, mm,
3b363692 2488 gfp, &memcg)))
ce83d217 2489 return;
ba76149f
AA
2490
2491 /*
2492 * Prevent all access to pagetables with the exception of
2493 * gup_fast later hanlded by the ptep_clear_flush and the VM
2494 * handled by the anon_vma lock + PG_lock.
2495 */
2496 down_write(&mm->mmap_sem);
2497 if (unlikely(khugepaged_test_exit(mm)))
2498 goto out;
2499
2500 vma = find_vma(mm, address);
a8f531eb
L
2501 if (!vma)
2502 goto out;
ba76149f
AA
2503 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2504 hend = vma->vm_end & HPAGE_PMD_MASK;
2505 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2506 goto out;
fa475e51 2507 if (!hugepage_vma_check(vma))
a7d6e4ec 2508 goto out;
6219049a
BL
2509 pmd = mm_find_pmd(mm, address);
2510 if (!pmd)
ba76149f 2511 goto out;
ba76149f 2512
4fc3f1d6 2513 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2514
2515 pte = pte_offset_map(pmd, address);
c4088ebd 2516 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2517
2ec74c3e
SG
2518 mmun_start = address;
2519 mmun_end = address + HPAGE_PMD_SIZE;
2520 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2521 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2522 /*
2523 * After this gup_fast can't run anymore. This also removes
2524 * any huge TLB entry from the CPU so we won't allow
2525 * huge and small TLB entries for the same virtual address
2526 * to avoid the risk of CPU bugs in that area.
2527 */
15a25b2e 2528 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2529 spin_unlock(pmd_ptl);
2ec74c3e 2530 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2531
c4088ebd 2532 spin_lock(pte_ptl);
ba76149f 2533 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2534 spin_unlock(pte_ptl);
ba76149f
AA
2535
2536 if (unlikely(!isolated)) {
453c7192 2537 pte_unmap(pte);
c4088ebd 2538 spin_lock(pmd_ptl);
ba76149f 2539 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2540 /*
2541 * We can only use set_pmd_at when establishing
2542 * hugepmds and never for establishing regular pmds that
2543 * points to regular pagetables. Use pmd_populate for that
2544 */
2545 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2546 spin_unlock(pmd_ptl);
08b52706 2547 anon_vma_unlock_write(vma->anon_vma);
ce83d217 2548 goto out;
ba76149f
AA
2549 }
2550
2551 /*
2552 * All pages are isolated and locked so anon_vma rmap
2553 * can't run anymore.
2554 */
08b52706 2555 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2556
c4088ebd 2557 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2558 pte_unmap(pte);
ba76149f
AA
2559 __SetPageUptodate(new_page);
2560 pgtable = pmd_pgtable(_pmd);
ba76149f 2561
3122359a
KS
2562 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2563 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2564
2565 /*
2566 * spin_lock() below is not the equivalent of smp_wmb(), so
2567 * this is needed to avoid the copy_huge_page writes to become
2568 * visible after the set_pmd_at() write.
2569 */
2570 smp_wmb();
2571
c4088ebd 2572 spin_lock(pmd_ptl);
ba76149f
AA
2573 BUG_ON(!pmd_none(*pmd));
2574 page_add_new_anon_rmap(new_page, vma, address);
00501b53
JW
2575 mem_cgroup_commit_charge(new_page, memcg, false);
2576 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2577 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2578 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2579 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2580 spin_unlock(pmd_ptl);
ba76149f
AA
2581
2582 *hpage = NULL;
420256ef 2583
ba76149f 2584 khugepaged_pages_collapsed++;
ce83d217 2585out_up_write:
ba76149f 2586 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2587 return;
2588
ce83d217 2589out:
00501b53 2590 mem_cgroup_cancel_charge(new_page, memcg);
ce83d217 2591 goto out_up_write;
ba76149f
AA
2592}
2593
2594static int khugepaged_scan_pmd(struct mm_struct *mm,
2595 struct vm_area_struct *vma,
2596 unsigned long address,
2597 struct page **hpage)
2598{
ba76149f
AA
2599 pmd_t *pmd;
2600 pte_t *pte, *_pte;
ca0984ca 2601 int ret = 0, none_or_zero = 0;
ba76149f
AA
2602 struct page *page;
2603 unsigned long _address;
2604 spinlock_t *ptl;
00ef2d2f 2605 int node = NUMA_NO_NODE;
10359213 2606 bool writable = false, referenced = false;
ba76149f
AA
2607
2608 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2609
6219049a
BL
2610 pmd = mm_find_pmd(mm, address);
2611 if (!pmd)
ba76149f 2612 goto out;
ba76149f 2613
9f1b868a 2614 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2615 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2616 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2617 _pte++, _address += PAGE_SIZE) {
2618 pte_t pteval = *_pte;
ca0984ca 2619 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05
AA
2620 if (!userfaultfd_armed(vma) &&
2621 ++none_or_zero <= khugepaged_max_ptes_none)
ba76149f
AA
2622 continue;
2623 else
2624 goto out_unmap;
2625 }
10359213 2626 if (!pte_present(pteval))
ba76149f 2627 goto out_unmap;
10359213
EA
2628 if (pte_write(pteval))
2629 writable = true;
2630
ba76149f
AA
2631 page = vm_normal_page(vma, _address, pteval);
2632 if (unlikely(!page))
2633 goto out_unmap;
5c4b4be3 2634 /*
9f1b868a
BL
2635 * Record which node the original page is from and save this
2636 * information to khugepaged_node_load[].
2637 * Khupaged will allocate hugepage from the node has the max
2638 * hit record.
5c4b4be3 2639 */
9f1b868a 2640 node = page_to_nid(page);
14a4e214
DR
2641 if (khugepaged_scan_abort(node))
2642 goto out_unmap;
9f1b868a 2643 khugepaged_node_load[node]++;
309381fe 2644 VM_BUG_ON_PAGE(PageCompound(page), page);
ba76149f
AA
2645 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2646 goto out_unmap;
10359213
EA
2647 /*
2648 * cannot use mapcount: can't collapse if there's a gup pin.
2649 * The page must only be referenced by the scanned process
2650 * and page swap cache.
2651 */
2652 if (page_count(page) != 1 + !!PageSwapCache(page))
ba76149f 2653 goto out_unmap;
8ee53820
AA
2654 if (pte_young(pteval) || PageReferenced(page) ||
2655 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2656 referenced = true;
ba76149f 2657 }
10359213 2658 if (referenced && writable)
ba76149f
AA
2659 ret = 1;
2660out_unmap:
2661 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2662 if (ret) {
2663 node = khugepaged_find_target_node();
ce83d217 2664 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2665 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2666 }
ba76149f
AA
2667out:
2668 return ret;
2669}
2670
2671static void collect_mm_slot(struct mm_slot *mm_slot)
2672{
2673 struct mm_struct *mm = mm_slot->mm;
2674
b9980cdc 2675 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2676
2677 if (khugepaged_test_exit(mm)) {
2678 /* free mm_slot */
43b5fbbd 2679 hash_del(&mm_slot->hash);
ba76149f
AA
2680 list_del(&mm_slot->mm_node);
2681
2682 /*
2683 * Not strictly needed because the mm exited already.
2684 *
2685 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2686 */
2687
2688 /* khugepaged_mm_lock actually not necessary for the below */
2689 free_mm_slot(mm_slot);
2690 mmdrop(mm);
2691 }
2692}
2693
2694static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2695 struct page **hpage)
2f1da642
HS
2696 __releases(&khugepaged_mm_lock)
2697 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2698{
2699 struct mm_slot *mm_slot;
2700 struct mm_struct *mm;
2701 struct vm_area_struct *vma;
2702 int progress = 0;
2703
2704 VM_BUG_ON(!pages);
b9980cdc 2705 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2706
2707 if (khugepaged_scan.mm_slot)
2708 mm_slot = khugepaged_scan.mm_slot;
2709 else {
2710 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2711 struct mm_slot, mm_node);
2712 khugepaged_scan.address = 0;
2713 khugepaged_scan.mm_slot = mm_slot;
2714 }
2715 spin_unlock(&khugepaged_mm_lock);
2716
2717 mm = mm_slot->mm;
2718 down_read(&mm->mmap_sem);
2719 if (unlikely(khugepaged_test_exit(mm)))
2720 vma = NULL;
2721 else
2722 vma = find_vma(mm, khugepaged_scan.address);
2723
2724 progress++;
2725 for (; vma; vma = vma->vm_next) {
2726 unsigned long hstart, hend;
2727
2728 cond_resched();
2729 if (unlikely(khugepaged_test_exit(mm))) {
2730 progress++;
2731 break;
2732 }
fa475e51
BL
2733 if (!hugepage_vma_check(vma)) {
2734skip:
ba76149f
AA
2735 progress++;
2736 continue;
2737 }
ba76149f
AA
2738 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2739 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2740 if (hstart >= hend)
2741 goto skip;
2742 if (khugepaged_scan.address > hend)
2743 goto skip;
ba76149f
AA
2744 if (khugepaged_scan.address < hstart)
2745 khugepaged_scan.address = hstart;
a7d6e4ec 2746 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2747
2748 while (khugepaged_scan.address < hend) {
2749 int ret;
2750 cond_resched();
2751 if (unlikely(khugepaged_test_exit(mm)))
2752 goto breakouterloop;
2753
2754 VM_BUG_ON(khugepaged_scan.address < hstart ||
2755 khugepaged_scan.address + HPAGE_PMD_SIZE >
2756 hend);
2757 ret = khugepaged_scan_pmd(mm, vma,
2758 khugepaged_scan.address,
2759 hpage);
2760 /* move to next address */
2761 khugepaged_scan.address += HPAGE_PMD_SIZE;
2762 progress += HPAGE_PMD_NR;
2763 if (ret)
2764 /* we released mmap_sem so break loop */
2765 goto breakouterloop_mmap_sem;
2766 if (progress >= pages)
2767 goto breakouterloop;
2768 }
2769 }
2770breakouterloop:
2771 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2772breakouterloop_mmap_sem:
2773
2774 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2775 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2776 /*
2777 * Release the current mm_slot if this mm is about to die, or
2778 * if we scanned all vmas of this mm.
2779 */
2780 if (khugepaged_test_exit(mm) || !vma) {
2781 /*
2782 * Make sure that if mm_users is reaching zero while
2783 * khugepaged runs here, khugepaged_exit will find
2784 * mm_slot not pointing to the exiting mm.
2785 */
2786 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2787 khugepaged_scan.mm_slot = list_entry(
2788 mm_slot->mm_node.next,
2789 struct mm_slot, mm_node);
2790 khugepaged_scan.address = 0;
2791 } else {
2792 khugepaged_scan.mm_slot = NULL;
2793 khugepaged_full_scans++;
2794 }
2795
2796 collect_mm_slot(mm_slot);
2797 }
2798
2799 return progress;
2800}
2801
2802static int khugepaged_has_work(void)
2803{
2804 return !list_empty(&khugepaged_scan.mm_head) &&
2805 khugepaged_enabled();
2806}
2807
2808static int khugepaged_wait_event(void)
2809{
2810 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2811 kthread_should_stop();
ba76149f
AA
2812}
2813
d516904b 2814static void khugepaged_do_scan(void)
ba76149f 2815{
d516904b 2816 struct page *hpage = NULL;
ba76149f
AA
2817 unsigned int progress = 0, pass_through_head = 0;
2818 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2819 bool wait = true;
ba76149f
AA
2820
2821 barrier(); /* write khugepaged_pages_to_scan to local stack */
2822
2823 while (progress < pages) {
26234f36 2824 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2825 break;
26234f36 2826
420256ef 2827 cond_resched();
ba76149f 2828
cd092411 2829 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2830 break;
2831
ba76149f
AA
2832 spin_lock(&khugepaged_mm_lock);
2833 if (!khugepaged_scan.mm_slot)
2834 pass_through_head++;
2835 if (khugepaged_has_work() &&
2836 pass_through_head < 2)
2837 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2838 &hpage);
ba76149f
AA
2839 else
2840 progress = pages;
2841 spin_unlock(&khugepaged_mm_lock);
2842 }
ba76149f 2843
d516904b
XG
2844 if (!IS_ERR_OR_NULL(hpage))
2845 put_page(hpage);
0bbbc0b3
AA
2846}
2847
2017c0bf
XG
2848static void khugepaged_wait_work(void)
2849{
2017c0bf
XG
2850 if (khugepaged_has_work()) {
2851 if (!khugepaged_scan_sleep_millisecs)
2852 return;
2853
2854 wait_event_freezable_timeout(khugepaged_wait,
2855 kthread_should_stop(),
2856 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2857 return;
2858 }
2859
2860 if (khugepaged_enabled())
2861 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2862}
2863
ba76149f
AA
2864static int khugepaged(void *none)
2865{
2866 struct mm_slot *mm_slot;
2867
878aee7d 2868 set_freezable();
8698a745 2869 set_user_nice(current, MAX_NICE);
ba76149f 2870
b7231789
XG
2871 while (!kthread_should_stop()) {
2872 khugepaged_do_scan();
2873 khugepaged_wait_work();
2874 }
ba76149f
AA
2875
2876 spin_lock(&khugepaged_mm_lock);
2877 mm_slot = khugepaged_scan.mm_slot;
2878 khugepaged_scan.mm_slot = NULL;
2879 if (mm_slot)
2880 collect_mm_slot(mm_slot);
2881 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2882 return 0;
2883}
2884
c5a647d0
KS
2885static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2886 unsigned long haddr, pmd_t *pmd)
2887{
2888 struct mm_struct *mm = vma->vm_mm;
2889 pgtable_t pgtable;
2890 pmd_t _pmd;
2891 int i;
2892
8809aa2d 2893 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
c5a647d0
KS
2894 /* leave pmd empty until pte is filled */
2895
6b0b50b0 2896 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
c5a647d0
KS
2897 pmd_populate(mm, &_pmd, pgtable);
2898
2899 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2900 pte_t *pte, entry;
2901 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2902 entry = pte_mkspecial(entry);
2903 pte = pte_offset_map(&_pmd, haddr);
2904 VM_BUG_ON(!pte_none(*pte));
2905 set_pte_at(mm, haddr, pte, entry);
2906 pte_unmap(pte);
2907 }
2908 smp_wmb(); /* make pte visible before pmd */
2909 pmd_populate(mm, pmd, pgtable);
97ae1749 2910 put_huge_zero_page();
c5a647d0
KS
2911}
2912
e180377f
KS
2913void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2914 pmd_t *pmd)
71e3aac0 2915{
c4088ebd 2916 spinlock_t *ptl;
71e3aac0 2917 struct page *page;
e180377f 2918 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
2919 unsigned long haddr = address & HPAGE_PMD_MASK;
2920 unsigned long mmun_start; /* For mmu_notifiers */
2921 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
2922
2923 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 2924
c5a647d0
KS
2925 mmun_start = haddr;
2926 mmun_end = haddr + HPAGE_PMD_SIZE;
750e8165 2927again:
c5a647d0 2928 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2929 ptl = pmd_lock(mm, pmd);
71e3aac0 2930 if (unlikely(!pmd_trans_huge(*pmd))) {
c4088ebd 2931 spin_unlock(ptl);
c5a647d0
KS
2932 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2933 return;
2934 }
2935 if (is_huge_zero_pmd(*pmd)) {
2936 __split_huge_zero_page_pmd(vma, haddr, pmd);
c4088ebd 2937 spin_unlock(ptl);
c5a647d0 2938 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2939 return;
2940 }
2941 page = pmd_page(*pmd);
309381fe 2942 VM_BUG_ON_PAGE(!page_count(page), page);
71e3aac0 2943 get_page(page);
c4088ebd 2944 spin_unlock(ptl);
c5a647d0 2945 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2946
2947 split_huge_page(page);
2948
2949 put_page(page);
750e8165
HD
2950
2951 /*
2952 * We don't always have down_write of mmap_sem here: a racing
2953 * do_huge_pmd_wp_page() might have copied-on-write to another
2954 * huge page before our split_huge_page() got the anon_vma lock.
2955 */
2956 if (unlikely(pmd_trans_huge(*pmd)))
2957 goto again;
71e3aac0 2958}
94fcc585 2959
e180377f
KS
2960void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2961 pmd_t *pmd)
2962{
2963 struct vm_area_struct *vma;
2964
2965 vma = find_vma(mm, address);
2966 BUG_ON(vma == NULL);
2967 split_huge_page_pmd(vma, address, pmd);
2968}
2969
94fcc585
AA
2970static void split_huge_page_address(struct mm_struct *mm,
2971 unsigned long address)
2972{
f72e7dcd
HD
2973 pgd_t *pgd;
2974 pud_t *pud;
94fcc585
AA
2975 pmd_t *pmd;
2976
2977 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2978
f72e7dcd
HD
2979 pgd = pgd_offset(mm, address);
2980 if (!pgd_present(*pgd))
2981 return;
2982
2983 pud = pud_offset(pgd, address);
2984 if (!pud_present(*pud))
2985 return;
2986
2987 pmd = pmd_offset(pud, address);
2988 if (!pmd_present(*pmd))
94fcc585
AA
2989 return;
2990 /*
2991 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2992 * materialize from under us.
2993 */
e180377f 2994 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
2995}
2996
e1b9996b 2997void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2998 unsigned long start,
2999 unsigned long end,
3000 long adjust_next)
3001{
3002 /*
3003 * If the new start address isn't hpage aligned and it could
3004 * previously contain an hugepage: check if we need to split
3005 * an huge pmd.
3006 */
3007 if (start & ~HPAGE_PMD_MASK &&
3008 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3009 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3010 split_huge_page_address(vma->vm_mm, start);
3011
3012 /*
3013 * If the new end address isn't hpage aligned and it could
3014 * previously contain an hugepage: check if we need to split
3015 * an huge pmd.
3016 */
3017 if (end & ~HPAGE_PMD_MASK &&
3018 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3019 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3020 split_huge_page_address(vma->vm_mm, end);
3021
3022 /*
3023 * If we're also updating the vma->vm_next->vm_start, if the new
3024 * vm_next->vm_start isn't page aligned and it could previously
3025 * contain an hugepage: check if we need to split an huge pmd.
3026 */
3027 if (adjust_next > 0) {
3028 struct vm_area_struct *next = vma->vm_next;
3029 unsigned long nstart = next->vm_start;
3030 nstart += adjust_next << PAGE_SHIFT;
3031 if (nstart & ~HPAGE_PMD_MASK &&
3032 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3033 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3034 split_huge_page_address(next->vm_mm, nstart);
3035 }
3036}