]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/huge_memory.c
mm: use sysfs_emit for struct kobject * uses
[thirdparty/linux.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
f7da677b 35#include <linux/page_owner.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
7635d9cb
MH
65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66{
c0630669
YS
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
7635d9cb
MH
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
c0630669
YS
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
7635d9cb
MH
76
77 return false;
78}
79
6fcb52a5 80static struct page *get_huge_zero_page(void)
97ae1749
KS
81{
82 struct page *zero_page;
83retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 85 return READ_ONCE(huge_zero_page);
97ae1749
KS
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 88 HPAGE_PMD_ORDER);
d8a8e1f0
KS
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 91 return NULL;
d8a8e1f0
KS
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 94 preempt_disable();
5918d10a 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 96 preempt_enable();
5ddacbe9 97 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
4db0c3c2 104 return READ_ONCE(huge_zero_page);
4a6c1297
KS
105}
106
6fcb52a5 107static void put_huge_zero_page(void)
4a6c1297 108{
97ae1749
KS
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
114}
115
6fcb52a5
AL
116struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117{
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128}
129
130void mm_put_huge_zero_page(struct mm_struct *mm)
131{
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134}
135
48896466
GC
136static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
4a6c1297 138{
48896466
GC
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141}
97ae1749 142
48896466
GC
143static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145{
97ae1749 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
5ddacbe9 149 __free_pages(zero_page, compound_order(zero_page));
48896466 150 return HPAGE_PMD_NR;
97ae1749
KS
151 }
152
153 return 0;
4a6c1297
KS
154}
155
97ae1749 156static struct shrinker huge_zero_page_shrinker = {
48896466
GC
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
159 .seeks = DEFAULT_SEEKS,
160};
161
71e3aac0 162#ifdef CONFIG_SYSFS
71e3aac0
AA
163static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165{
444eb2a4 166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
ae7a927d 167 return sysfs_emit(buf, "[always] madvise never\n");
444eb2a4 168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
ae7a927d 169 return sysfs_emit(buf, "always [madvise] never\n");
444eb2a4 170 else
ae7a927d 171 return sysfs_emit(buf, "always madvise [never]\n");
71e3aac0 172}
444eb2a4 173
71e3aac0
AA
174static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
177{
21440d7e 178 ssize_t ret = count;
ba76149f 179
f42f2552 180 if (sysfs_streq(buf, "always")) {
21440d7e
DR
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 183 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 186 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else
190 ret = -EINVAL;
ba76149f
AA
191
192 if (ret > 0) {
b46e756f 193 int err = start_stop_khugepaged();
ba76149f
AA
194 if (err)
195 ret = err;
196 }
ba76149f 197 return ret;
71e3aac0
AA
198}
199static struct kobj_attribute enabled_attr =
200 __ATTR(enabled, 0644, enabled_show, enabled_store);
201
b46e756f 202ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
203 struct kobj_attribute *attr, char *buf,
204 enum transparent_hugepage_flag flag)
205{
e27e6151
BH
206 return sprintf(buf, "%d\n",
207 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 208}
e27e6151 209
b46e756f 210ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
211 struct kobj_attribute *attr,
212 const char *buf, size_t count,
213 enum transparent_hugepage_flag flag)
214{
e27e6151
BH
215 unsigned long value;
216 int ret;
217
218 ret = kstrtoul(buf, 10, &value);
219 if (ret < 0)
220 return ret;
221 if (value > 1)
222 return -EINVAL;
223
224 if (value)
71e3aac0 225 set_bit(flag, &transparent_hugepage_flags);
e27e6151 226 else
71e3aac0 227 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
228
229 return count;
230}
231
71e3aac0
AA
232static ssize_t defrag_show(struct kobject *kobj,
233 struct kobj_attribute *attr, char *buf)
234{
444eb2a4 235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
ae7a927d
JP
236 return sysfs_emit(buf,
237 "[always] defer defer+madvise madvise never\n");
444eb2a4 238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
ae7a927d
JP
239 return sysfs_emit(buf,
240 "always [defer] defer+madvise madvise never\n");
21440d7e 241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
ae7a927d
JP
242 return sysfs_emit(buf,
243 "always defer [defer+madvise] madvise never\n");
21440d7e 244 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
ae7a927d
JP
245 return sysfs_emit(buf,
246 "always defer defer+madvise [madvise] never\n");
247 return sysfs_emit(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 248}
21440d7e 249
71e3aac0
AA
250static ssize_t defrag_store(struct kobject *kobj,
251 struct kobj_attribute *attr,
252 const char *buf, size_t count)
253{
f42f2552 254 if (sysfs_streq(buf, "always")) {
21440d7e
DR
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
258 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 259 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 264 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 269 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
273 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 274 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
279 } else
280 return -EINVAL;
281
282 return count;
71e3aac0
AA
283}
284static struct kobj_attribute defrag_attr =
285 __ATTR(defrag, 0644, defrag_show, defrag_store);
286
79da5407 287static ssize_t use_zero_page_show(struct kobject *kobj,
ae7a927d 288 struct kobj_attribute *attr, char *buf)
79da5407 289{
b46e756f 290 return single_hugepage_flag_show(kobj, attr, buf,
ae7a927d 291 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
79da5407
KS
292}
293static ssize_t use_zero_page_store(struct kobject *kobj,
294 struct kobj_attribute *attr, const char *buf, size_t count)
295{
b46e756f 296 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
297 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
298}
299static struct kobj_attribute use_zero_page_attr =
300 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
301
302static ssize_t hpage_pmd_size_show(struct kobject *kobj,
ae7a927d 303 struct kobj_attribute *attr, char *buf)
49920d28 304{
ae7a927d 305 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
49920d28
HD
306}
307static struct kobj_attribute hpage_pmd_size_attr =
308 __ATTR_RO(hpage_pmd_size);
309
71e3aac0
AA
310static struct attribute *hugepage_attr[] = {
311 &enabled_attr.attr,
312 &defrag_attr.attr,
79da5407 313 &use_zero_page_attr.attr,
49920d28 314 &hpage_pmd_size_attr.attr,
396bcc52 315#ifdef CONFIG_SHMEM
5a6e75f8 316 &shmem_enabled_attr.attr,
71e3aac0
AA
317#endif
318 NULL,
319};
320
8aa95a21 321static const struct attribute_group hugepage_attr_group = {
71e3aac0 322 .attrs = hugepage_attr,
ba76149f
AA
323};
324
569e5590 325static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 326{
71e3aac0
AA
327 int err;
328
569e5590
SL
329 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
330 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 331 pr_err("failed to create transparent hugepage kobject\n");
569e5590 332 return -ENOMEM;
ba76149f
AA
333 }
334
569e5590 335 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 336 if (err) {
ae3a8c1c 337 pr_err("failed to register transparent hugepage group\n");
569e5590 338 goto delete_obj;
ba76149f
AA
339 }
340
569e5590 341 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 342 if (err) {
ae3a8c1c 343 pr_err("failed to register transparent hugepage group\n");
569e5590 344 goto remove_hp_group;
ba76149f 345 }
569e5590
SL
346
347 return 0;
348
349remove_hp_group:
350 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
351delete_obj:
352 kobject_put(*hugepage_kobj);
353 return err;
354}
355
356static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
357{
358 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
359 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
360 kobject_put(hugepage_kobj);
361}
362#else
363static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
364{
365 return 0;
366}
367
368static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
369{
370}
371#endif /* CONFIG_SYSFS */
372
373static int __init hugepage_init(void)
374{
375 int err;
376 struct kobject *hugepage_kobj;
377
378 if (!has_transparent_hugepage()) {
379 transparent_hugepage_flags = 0;
380 return -EINVAL;
381 }
382
ff20c2e0
KS
383 /*
384 * hugepages can't be allocated by the buddy allocator
385 */
386 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
387 /*
388 * we use page->mapping and page->index in second tail page
389 * as list_head: assuming THP order >= 2
390 */
391 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
392
569e5590
SL
393 err = hugepage_init_sysfs(&hugepage_kobj);
394 if (err)
65ebb64f 395 goto err_sysfs;
ba76149f 396
b46e756f 397 err = khugepaged_init();
ba76149f 398 if (err)
65ebb64f 399 goto err_slab;
ba76149f 400
65ebb64f
KS
401 err = register_shrinker(&huge_zero_page_shrinker);
402 if (err)
403 goto err_hzp_shrinker;
9a982250
KS
404 err = register_shrinker(&deferred_split_shrinker);
405 if (err)
406 goto err_split_shrinker;
97ae1749 407
97562cd2
RR
408 /*
409 * By default disable transparent hugepages on smaller systems,
410 * where the extra memory used could hurt more than TLB overhead
411 * is likely to save. The admin can still enable it through /sys.
412 */
ca79b0c2 413 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 414 transparent_hugepage_flags = 0;
79553da2
KS
415 return 0;
416 }
97562cd2 417
79553da2 418 err = start_stop_khugepaged();
65ebb64f
KS
419 if (err)
420 goto err_khugepaged;
ba76149f 421
569e5590 422 return 0;
65ebb64f 423err_khugepaged:
9a982250
KS
424 unregister_shrinker(&deferred_split_shrinker);
425err_split_shrinker:
65ebb64f
KS
426 unregister_shrinker(&huge_zero_page_shrinker);
427err_hzp_shrinker:
b46e756f 428 khugepaged_destroy();
65ebb64f 429err_slab:
569e5590 430 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 431err_sysfs:
ba76149f 432 return err;
71e3aac0 433}
a64fb3cd 434subsys_initcall(hugepage_init);
71e3aac0
AA
435
436static int __init setup_transparent_hugepage(char *str)
437{
438 int ret = 0;
439 if (!str)
440 goto out;
441 if (!strcmp(str, "always")) {
442 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
443 &transparent_hugepage_flags);
444 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
445 &transparent_hugepage_flags);
446 ret = 1;
447 } else if (!strcmp(str, "madvise")) {
448 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
449 &transparent_hugepage_flags);
450 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
451 &transparent_hugepage_flags);
452 ret = 1;
453 } else if (!strcmp(str, "never")) {
454 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
455 &transparent_hugepage_flags);
456 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
457 &transparent_hugepage_flags);
458 ret = 1;
459 }
460out:
461 if (!ret)
ae3a8c1c 462 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
463 return ret;
464}
465__setup("transparent_hugepage=", setup_transparent_hugepage);
466
f55e1014 467pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 468{
f55e1014 469 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
470 pmd = pmd_mkwrite(pmd);
471 return pmd;
472}
473
87eaceb3
YS
474#ifdef CONFIG_MEMCG
475static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 476{
87eaceb3
YS
477 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
478 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
479
480 if (memcg)
481 return &memcg->deferred_split_queue;
482 else
483 return &pgdat->deferred_split_queue;
9a982250 484}
87eaceb3
YS
485#else
486static inline struct deferred_split *get_deferred_split_queue(struct page *page)
487{
488 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
489
490 return &pgdat->deferred_split_queue;
491}
492#endif
9a982250
KS
493
494void prep_transhuge_page(struct page *page)
495{
496 /*
497 * we use page->mapping and page->indexlru in second tail page
498 * as list_head: assuming THP order >= 2
499 */
9a982250
KS
500
501 INIT_LIST_HEAD(page_deferred_list(page));
502 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
503}
504
005ba37c
SC
505bool is_transparent_hugepage(struct page *page)
506{
507 if (!PageCompound(page))
fa1f68cc 508 return false;
005ba37c
SC
509
510 page = compound_head(page);
511 return is_huge_zero_page(page) ||
512 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
513}
514EXPORT_SYMBOL_GPL(is_transparent_hugepage);
515
97d3d0f9
KS
516static unsigned long __thp_get_unmapped_area(struct file *filp,
517 unsigned long addr, unsigned long len,
74d2fad1
TK
518 loff_t off, unsigned long flags, unsigned long size)
519{
74d2fad1
TK
520 loff_t off_end = off + len;
521 loff_t off_align = round_up(off, size);
97d3d0f9 522 unsigned long len_pad, ret;
74d2fad1
TK
523
524 if (off_end <= off_align || (off_end - off_align) < size)
525 return 0;
526
527 len_pad = len + size;
528 if (len_pad < len || (off + len_pad) < off)
529 return 0;
530
97d3d0f9 531 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 532 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
533
534 /*
535 * The failure might be due to length padding. The caller will retry
536 * without the padding.
537 */
538 if (IS_ERR_VALUE(ret))
74d2fad1
TK
539 return 0;
540
97d3d0f9
KS
541 /*
542 * Do not try to align to THP boundary if allocation at the address
543 * hint succeeds.
544 */
545 if (ret == addr)
546 return addr;
547
548 ret += (off - ret) & (size - 1);
549 return ret;
74d2fad1
TK
550}
551
552unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
553 unsigned long len, unsigned long pgoff, unsigned long flags)
554{
97d3d0f9 555 unsigned long ret;
74d2fad1
TK
556 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
557
74d2fad1
TK
558 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
559 goto out;
560
97d3d0f9
KS
561 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
562 if (ret)
563 return ret;
564out:
74d2fad1
TK
565 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
566}
567EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
568
2b740303
SJ
569static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
570 struct page *page, gfp_t gfp)
71e3aac0 571{
82b0f8c3 572 struct vm_area_struct *vma = vmf->vma;
71e3aac0 573 pgtable_t pgtable;
82b0f8c3 574 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 575 vm_fault_t ret = 0;
71e3aac0 576
309381fe 577 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 578
d9eb1ea2 579 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
6b251fc9
AA
580 put_page(page);
581 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 582 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
6b251fc9
AA
583 return VM_FAULT_FALLBACK;
584 }
9d82c694 585 cgroup_throttle_swaprate(page, gfp);
00501b53 586
4cf58924 587 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 588 if (unlikely(!pgtable)) {
6b31d595
MH
589 ret = VM_FAULT_OOM;
590 goto release;
00501b53 591 }
71e3aac0 592
c79b57e4 593 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
594 /*
595 * The memory barrier inside __SetPageUptodate makes sure that
596 * clear_huge_page writes become visible before the set_pmd_at()
597 * write.
598 */
71e3aac0
AA
599 __SetPageUptodate(page);
600
82b0f8c3
JK
601 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
602 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 603 goto unlock_release;
71e3aac0
AA
604 } else {
605 pmd_t entry;
6b251fc9 606
6b31d595
MH
607 ret = check_stable_address_space(vma->vm_mm);
608 if (ret)
609 goto unlock_release;
610
6b251fc9
AA
611 /* Deliver the page fault to userland */
612 if (userfaultfd_missing(vma)) {
2b740303 613 vm_fault_t ret2;
6b251fc9 614
82b0f8c3 615 spin_unlock(vmf->ptl);
6b251fc9 616 put_page(page);
bae473a4 617 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
618 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
619 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
620 return ret2;
6b251fc9
AA
621 }
622
3122359a 623 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 624 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 625 page_add_new_anon_rmap(page, vma, haddr, true);
b518154e 626 lru_cache_add_inactive_or_unevictable(page, vma);
82b0f8c3
JK
627 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
628 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 629 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 630 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 631 spin_unlock(vmf->ptl);
6b251fc9 632 count_vm_event(THP_FAULT_ALLOC);
9d82c694 633 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
71e3aac0
AA
634 }
635
aa2e878e 636 return 0;
6b31d595
MH
637unlock_release:
638 spin_unlock(vmf->ptl);
639release:
640 if (pgtable)
641 pte_free(vma->vm_mm, pgtable);
6b31d595
MH
642 put_page(page);
643 return ret;
644
71e3aac0
AA
645}
646
444eb2a4 647/*
21440d7e
DR
648 * always: directly stall for all thp allocations
649 * defer: wake kswapd and fail if not immediately available
650 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
651 * fail if not immediately available
652 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
653 * available
654 * never: never stall for any thp allocation
444eb2a4 655 */
19deb769 656static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 657{
21440d7e 658 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
2f0799a0 659
ac79f78d 660 /* Always do synchronous compaction */
a8282608
AA
661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
662 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
663
664 /* Kick kcompactd and fail quickly */
21440d7e 665 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 666 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
667
668 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 669 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
670 return GFP_TRANSHUGE_LIGHT |
671 (vma_madvised ? __GFP_DIRECT_RECLAIM :
672 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
673
674 /* Only do synchronous compaction if madvised */
21440d7e 675 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
676 return GFP_TRANSHUGE_LIGHT |
677 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 678
19deb769 679 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
680}
681
c4088ebd 682/* Caller must hold page table lock. */
d295e341 683static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 684 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 685 struct page *zero_page)
fc9fe822
KS
686{
687 pmd_t entry;
7c414164
AM
688 if (!pmd_none(*pmd))
689 return false;
5918d10a 690 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 691 entry = pmd_mkhuge(entry);
12c9d70b
MW
692 if (pgtable)
693 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 694 set_pmd_at(mm, haddr, pmd, entry);
c4812909 695 mm_inc_nr_ptes(mm);
7c414164 696 return true;
fc9fe822
KS
697}
698
2b740303 699vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 700{
82b0f8c3 701 struct vm_area_struct *vma = vmf->vma;
077fcf11 702 gfp_t gfp;
71e3aac0 703 struct page *page;
82b0f8c3 704 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 705
43675e6f 706 if (!transhuge_vma_suitable(vma, haddr))
c0292554 707 return VM_FAULT_FALLBACK;
128ec037
KS
708 if (unlikely(anon_vma_prepare(vma)))
709 return VM_FAULT_OOM;
6d50e60c 710 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 711 return VM_FAULT_OOM;
82b0f8c3 712 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 713 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
714 transparent_hugepage_use_zero_page()) {
715 pgtable_t pgtable;
716 struct page *zero_page;
2b740303 717 vm_fault_t ret;
4cf58924 718 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 719 if (unlikely(!pgtable))
ba76149f 720 return VM_FAULT_OOM;
6fcb52a5 721 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 722 if (unlikely(!zero_page)) {
bae473a4 723 pte_free(vma->vm_mm, pgtable);
81ab4201 724 count_vm_event(THP_FAULT_FALLBACK);
c0292554 725 return VM_FAULT_FALLBACK;
b9bbfbe3 726 }
82b0f8c3 727 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9 728 ret = 0;
82b0f8c3 729 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
730 ret = check_stable_address_space(vma->vm_mm);
731 if (ret) {
732 spin_unlock(vmf->ptl);
bfe8cc1d 733 pte_free(vma->vm_mm, pgtable);
6b31d595 734 } else if (userfaultfd_missing(vma)) {
82b0f8c3 735 spin_unlock(vmf->ptl);
bfe8cc1d 736 pte_free(vma->vm_mm, pgtable);
82b0f8c3 737 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
738 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
739 } else {
bae473a4 740 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
741 haddr, vmf->pmd, zero_page);
742 spin_unlock(vmf->ptl);
6b251fc9 743 }
bfe8cc1d 744 } else {
82b0f8c3 745 spin_unlock(vmf->ptl);
bae473a4 746 pte_free(vma->vm_mm, pgtable);
bfe8cc1d 747 }
6b251fc9 748 return ret;
71e3aac0 749 }
19deb769
DR
750 gfp = alloc_hugepage_direct_gfpmask(vma);
751 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
752 if (unlikely(!page)) {
753 count_vm_event(THP_FAULT_FALLBACK);
c0292554 754 return VM_FAULT_FALLBACK;
128ec037 755 }
9a982250 756 prep_transhuge_page(page);
82b0f8c3 757 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
758}
759
ae18d6dc 760static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
761 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
762 pgtable_t pgtable)
5cad465d
MW
763{
764 struct mm_struct *mm = vma->vm_mm;
765 pmd_t entry;
766 spinlock_t *ptl;
767
768 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
769 if (!pmd_none(*pmd)) {
770 if (write) {
771 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
772 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
773 goto out_unlock;
774 }
775 entry = pmd_mkyoung(*pmd);
776 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
777 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
778 update_mmu_cache_pmd(vma, addr, pmd);
779 }
780
781 goto out_unlock;
782 }
783
f25748e3
DW
784 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
785 if (pfn_t_devmap(pfn))
786 entry = pmd_mkdevmap(entry);
01871e59 787 if (write) {
f55e1014
LT
788 entry = pmd_mkyoung(pmd_mkdirty(entry));
789 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 790 }
3b6521f5
OH
791
792 if (pgtable) {
793 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 794 mm_inc_nr_ptes(mm);
c6f3c5ee 795 pgtable = NULL;
3b6521f5
OH
796 }
797
01871e59
RZ
798 set_pmd_at(mm, addr, pmd, entry);
799 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
800
801out_unlock:
5cad465d 802 spin_unlock(ptl);
c6f3c5ee
AK
803 if (pgtable)
804 pte_free(mm, pgtable);
5cad465d
MW
805}
806
9a9731b1
THV
807/**
808 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
809 * @vmf: Structure describing the fault
810 * @pfn: pfn to insert
811 * @pgprot: page protection to use
812 * @write: whether it's a write fault
813 *
814 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
815 * also consult the vmf_insert_mixed_prot() documentation when
816 * @pgprot != @vmf->vma->vm_page_prot.
817 *
818 * Return: vm_fault_t value.
819 */
820vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
821 pgprot_t pgprot, bool write)
5cad465d 822{
fce86ff5
DW
823 unsigned long addr = vmf->address & PMD_MASK;
824 struct vm_area_struct *vma = vmf->vma;
3b6521f5 825 pgtable_t pgtable = NULL;
fce86ff5 826
5cad465d
MW
827 /*
828 * If we had pmd_special, we could avoid all these restrictions,
829 * but we need to be consistent with PTEs and architectures that
830 * can't support a 'special' bit.
831 */
e1fb4a08
DJ
832 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
833 !pfn_t_devmap(pfn));
5cad465d
MW
834 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
835 (VM_PFNMAP|VM_MIXEDMAP));
836 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
837
838 if (addr < vma->vm_start || addr >= vma->vm_end)
839 return VM_FAULT_SIGBUS;
308a047c 840
3b6521f5 841 if (arch_needs_pgtable_deposit()) {
4cf58924 842 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
843 if (!pgtable)
844 return VM_FAULT_OOM;
845 }
846
308a047c
BP
847 track_pfn_insert(vma, &pgprot, pfn);
848
fce86ff5 849 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 850 return VM_FAULT_NOPAGE;
5cad465d 851}
9a9731b1 852EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
5cad465d 853
a00cc7d9 854#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 855static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 856{
f55e1014 857 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
858 pud = pud_mkwrite(pud);
859 return pud;
860}
861
862static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
863 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
864{
865 struct mm_struct *mm = vma->vm_mm;
866 pud_t entry;
867 spinlock_t *ptl;
868
869 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
870 if (!pud_none(*pud)) {
871 if (write) {
872 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
873 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
874 goto out_unlock;
875 }
876 entry = pud_mkyoung(*pud);
877 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
878 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
879 update_mmu_cache_pud(vma, addr, pud);
880 }
881 goto out_unlock;
882 }
883
a00cc7d9
MW
884 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
885 if (pfn_t_devmap(pfn))
886 entry = pud_mkdevmap(entry);
887 if (write) {
f55e1014
LT
888 entry = pud_mkyoung(pud_mkdirty(entry));
889 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
890 }
891 set_pud_at(mm, addr, pud, entry);
892 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
893
894out_unlock:
a00cc7d9
MW
895 spin_unlock(ptl);
896}
897
9a9731b1
THV
898/**
899 * vmf_insert_pfn_pud_prot - insert a pud size pfn
900 * @vmf: Structure describing the fault
901 * @pfn: pfn to insert
902 * @pgprot: page protection to use
903 * @write: whether it's a write fault
904 *
905 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
906 * also consult the vmf_insert_mixed_prot() documentation when
907 * @pgprot != @vmf->vma->vm_page_prot.
908 *
909 * Return: vm_fault_t value.
910 */
911vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
912 pgprot_t pgprot, bool write)
a00cc7d9 913{
fce86ff5
DW
914 unsigned long addr = vmf->address & PUD_MASK;
915 struct vm_area_struct *vma = vmf->vma;
fce86ff5 916
a00cc7d9
MW
917 /*
918 * If we had pud_special, we could avoid all these restrictions,
919 * but we need to be consistent with PTEs and architectures that
920 * can't support a 'special' bit.
921 */
62ec0d8c
DJ
922 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
923 !pfn_t_devmap(pfn));
a00cc7d9
MW
924 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
925 (VM_PFNMAP|VM_MIXEDMAP));
926 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
927
928 if (addr < vma->vm_start || addr >= vma->vm_end)
929 return VM_FAULT_SIGBUS;
930
931 track_pfn_insert(vma, &pgprot, pfn);
932
fce86ff5 933 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
934 return VM_FAULT_NOPAGE;
935}
9a9731b1 936EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
a00cc7d9
MW
937#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
938
3565fce3 939static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 940 pmd_t *pmd, int flags)
3565fce3
DW
941{
942 pmd_t _pmd;
943
a8f97366
KS
944 _pmd = pmd_mkyoung(*pmd);
945 if (flags & FOLL_WRITE)
946 _pmd = pmd_mkdirty(_pmd);
3565fce3 947 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 948 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
949 update_mmu_cache_pmd(vma, addr, pmd);
950}
951
952struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 953 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
954{
955 unsigned long pfn = pmd_pfn(*pmd);
956 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
957 struct page *page;
958
959 assert_spin_locked(pmd_lockptr(mm, pmd));
960
8310d48b
KF
961 /*
962 * When we COW a devmap PMD entry, we split it into PTEs, so we should
963 * not be in this function with `flags & FOLL_COW` set.
964 */
965 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
966
3faa52c0
JH
967 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
968 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
969 (FOLL_PIN | FOLL_GET)))
970 return NULL;
971
f6f37321 972 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
973 return NULL;
974
975 if (pmd_present(*pmd) && pmd_devmap(*pmd))
976 /* pass */;
977 else
978 return NULL;
979
980 if (flags & FOLL_TOUCH)
a8f97366 981 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
982
983 /*
984 * device mapped pages can only be returned if the
985 * caller will manage the page reference count.
986 */
3faa52c0 987 if (!(flags & (FOLL_GET | FOLL_PIN)))
3565fce3
DW
988 return ERR_PTR(-EEXIST);
989
990 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
991 *pgmap = get_dev_pagemap(pfn, *pgmap);
992 if (!*pgmap)
3565fce3
DW
993 return ERR_PTR(-EFAULT);
994 page = pfn_to_page(pfn);
3faa52c0
JH
995 if (!try_grab_page(page, flags))
996 page = ERR_PTR(-ENOMEM);
3565fce3
DW
997
998 return page;
999}
1000
71e3aac0
AA
1001int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003 struct vm_area_struct *vma)
1004{
c4088ebd 1005 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1006 struct page *src_page;
1007 pmd_t pmd;
12c9d70b 1008 pgtable_t pgtable = NULL;
628d47ce 1009 int ret = -ENOMEM;
71e3aac0 1010
628d47ce
KS
1011 /* Skip if can be re-fill on fault */
1012 if (!vma_is_anonymous(vma))
1013 return 0;
1014
4cf58924 1015 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1016 if (unlikely(!pgtable))
1017 goto out;
71e3aac0 1018
c4088ebd
KS
1019 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1020 src_ptl = pmd_lockptr(src_mm, src_pmd);
1021 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1022
1023 ret = -EAGAIN;
1024 pmd = *src_pmd;
84c3fc4e 1025
b569a176
PX
1026 /*
1027 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1028 * does not have the VM_UFFD_WP, which means that the uffd
1029 * fork event is not enabled.
1030 */
1031 if (!(vma->vm_flags & VM_UFFD_WP))
1032 pmd = pmd_clear_uffd_wp(pmd);
1033
84c3fc4e
ZY
1034#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1035 if (unlikely(is_swap_pmd(pmd))) {
1036 swp_entry_t entry = pmd_to_swp_entry(pmd);
1037
1038 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1039 if (is_write_migration_entry(entry)) {
1040 make_migration_entry_read(&entry);
1041 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1042 if (pmd_swp_soft_dirty(*src_pmd))
1043 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1044 set_pmd_at(src_mm, addr, src_pmd, pmd);
1045 }
dd8a67f9 1046 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1047 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1048 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1049 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1050 ret = 0;
1051 goto out_unlock;
1052 }
1053#endif
1054
628d47ce 1055 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1056 pte_free(dst_mm, pgtable);
1057 goto out_unlock;
1058 }
fc9fe822 1059 /*
c4088ebd 1060 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1061 * under splitting since we don't split the page itself, only pmd to
1062 * a page table.
1063 */
1064 if (is_huge_zero_pmd(pmd)) {
5918d10a 1065 struct page *zero_page;
97ae1749
KS
1066 /*
1067 * get_huge_zero_page() will never allocate a new page here,
1068 * since we already have a zero page to copy. It just takes a
1069 * reference.
1070 */
6fcb52a5 1071 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1072 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1073 zero_page);
fc9fe822
KS
1074 ret = 0;
1075 goto out_unlock;
1076 }
de466bd6 1077
628d47ce
KS
1078 src_page = pmd_page(pmd);
1079 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
d042035e
PX
1080
1081 /*
1082 * If this page is a potentially pinned page, split and retry the fault
1083 * with smaller page size. Normally this should not happen because the
1084 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1085 * best effort that the pinned pages won't be replaced by another
1086 * random page during the coming copy-on-write.
1087 */
1088 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1089 atomic_read(&src_mm->has_pinned) &&
1090 page_maybe_dma_pinned(src_page))) {
1091 pte_free(dst_mm, pgtable);
1092 spin_unlock(src_ptl);
1093 spin_unlock(dst_ptl);
1094 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1095 return -EAGAIN;
1096 }
1097
628d47ce
KS
1098 get_page(src_page);
1099 page_dup_rmap(src_page, true);
1100 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1101 mm_inc_nr_ptes(dst_mm);
628d47ce 1102 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1103
1104 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1105 pmd = pmd_mkold(pmd_wrprotect(pmd));
1106 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1107
1108 ret = 0;
1109out_unlock:
c4088ebd
KS
1110 spin_unlock(src_ptl);
1111 spin_unlock(dst_ptl);
71e3aac0
AA
1112out:
1113 return ret;
1114}
1115
a00cc7d9
MW
1116#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1117static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1118 pud_t *pud, int flags)
a00cc7d9
MW
1119{
1120 pud_t _pud;
1121
a8f97366
KS
1122 _pud = pud_mkyoung(*pud);
1123 if (flags & FOLL_WRITE)
1124 _pud = pud_mkdirty(_pud);
a00cc7d9 1125 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1126 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1127 update_mmu_cache_pud(vma, addr, pud);
1128}
1129
1130struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1131 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1132{
1133 unsigned long pfn = pud_pfn(*pud);
1134 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1135 struct page *page;
1136
1137 assert_spin_locked(pud_lockptr(mm, pud));
1138
f6f37321 1139 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1140 return NULL;
1141
3faa52c0
JH
1142 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1143 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1144 (FOLL_PIN | FOLL_GET)))
1145 return NULL;
1146
a00cc7d9
MW
1147 if (pud_present(*pud) && pud_devmap(*pud))
1148 /* pass */;
1149 else
1150 return NULL;
1151
1152 if (flags & FOLL_TOUCH)
a8f97366 1153 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1154
1155 /*
1156 * device mapped pages can only be returned if the
1157 * caller will manage the page reference count.
3faa52c0
JH
1158 *
1159 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
a00cc7d9 1160 */
3faa52c0 1161 if (!(flags & (FOLL_GET | FOLL_PIN)))
a00cc7d9
MW
1162 return ERR_PTR(-EEXIST);
1163
1164 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1165 *pgmap = get_dev_pagemap(pfn, *pgmap);
1166 if (!*pgmap)
a00cc7d9
MW
1167 return ERR_PTR(-EFAULT);
1168 page = pfn_to_page(pfn);
3faa52c0
JH
1169 if (!try_grab_page(page, flags))
1170 page = ERR_PTR(-ENOMEM);
a00cc7d9
MW
1171
1172 return page;
1173}
1174
1175int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1176 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1177 struct vm_area_struct *vma)
1178{
1179 spinlock_t *dst_ptl, *src_ptl;
1180 pud_t pud;
1181 int ret;
1182
1183 dst_ptl = pud_lock(dst_mm, dst_pud);
1184 src_ptl = pud_lockptr(src_mm, src_pud);
1185 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1186
1187 ret = -EAGAIN;
1188 pud = *src_pud;
1189 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1190 goto out_unlock;
1191
1192 /*
1193 * When page table lock is held, the huge zero pud should not be
1194 * under splitting since we don't split the page itself, only pud to
1195 * a page table.
1196 */
1197 if (is_huge_zero_pud(pud)) {
1198 /* No huge zero pud yet */
1199 }
1200
d042035e
PX
1201 /* Please refer to comments in copy_huge_pmd() */
1202 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1203 atomic_read(&src_mm->has_pinned) &&
1204 page_maybe_dma_pinned(pud_page(pud)))) {
1205 spin_unlock(src_ptl);
1206 spin_unlock(dst_ptl);
1207 __split_huge_pud(vma, src_pud, addr);
1208 return -EAGAIN;
1209 }
1210
a00cc7d9
MW
1211 pudp_set_wrprotect(src_mm, addr, src_pud);
1212 pud = pud_mkold(pud_wrprotect(pud));
1213 set_pud_at(dst_mm, addr, dst_pud, pud);
1214
1215 ret = 0;
1216out_unlock:
1217 spin_unlock(src_ptl);
1218 spin_unlock(dst_ptl);
1219 return ret;
1220}
1221
1222void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1223{
1224 pud_t entry;
1225 unsigned long haddr;
1226 bool write = vmf->flags & FAULT_FLAG_WRITE;
1227
1228 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1229 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1230 goto unlock;
1231
1232 entry = pud_mkyoung(orig_pud);
1233 if (write)
1234 entry = pud_mkdirty(entry);
1235 haddr = vmf->address & HPAGE_PUD_MASK;
1236 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1237 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1238
1239unlock:
1240 spin_unlock(vmf->ptl);
1241}
1242#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1243
82b0f8c3 1244void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1245{
1246 pmd_t entry;
1247 unsigned long haddr;
20f664aa 1248 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1249
82b0f8c3
JK
1250 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1251 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1252 goto unlock;
1253
1254 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1255 if (write)
1256 entry = pmd_mkdirty(entry);
82b0f8c3 1257 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1258 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1259 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1260
1261unlock:
82b0f8c3 1262 spin_unlock(vmf->ptl);
a1dd450b
WD
1263}
1264
2b740303 1265vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1266{
82b0f8c3 1267 struct vm_area_struct *vma = vmf->vma;
3917c802 1268 struct page *page;
82b0f8c3 1269 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 1270
82b0f8c3 1271 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1272 VM_BUG_ON_VMA(!vma->anon_vma, vma);
3917c802 1273
93b4796d 1274 if (is_huge_zero_pmd(orig_pmd))
3917c802
KS
1275 goto fallback;
1276
82b0f8c3 1277 spin_lock(vmf->ptl);
3917c802
KS
1278
1279 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1280 spin_unlock(vmf->ptl);
1281 return 0;
1282 }
71e3aac0
AA
1283
1284 page = pmd_page(orig_pmd);
309381fe 1285 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
3917c802
KS
1286
1287 /* Lock page for reuse_swap_page() */
ba3c4ce6
HY
1288 if (!trylock_page(page)) {
1289 get_page(page);
1290 spin_unlock(vmf->ptl);
1291 lock_page(page);
1292 spin_lock(vmf->ptl);
1293 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
3917c802 1294 spin_unlock(vmf->ptl);
ba3c4ce6
HY
1295 unlock_page(page);
1296 put_page(page);
3917c802 1297 return 0;
ba3c4ce6
HY
1298 }
1299 put_page(page);
1300 }
3917c802
KS
1301
1302 /*
1303 * We can only reuse the page if nobody else maps the huge page or it's
1304 * part.
1305 */
ba3c4ce6 1306 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1307 pmd_t entry;
1308 entry = pmd_mkyoung(orig_pmd);
f55e1014 1309 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3917c802 1310 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
82b0f8c3 1311 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
ba3c4ce6 1312 unlock_page(page);
82b0f8c3 1313 spin_unlock(vmf->ptl);
3917c802 1314 return VM_FAULT_WRITE;
71e3aac0 1315 }
3917c802
KS
1316
1317 unlock_page(page);
82b0f8c3 1318 spin_unlock(vmf->ptl);
3917c802
KS
1319fallback:
1320 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1321 return VM_FAULT_FALLBACK;
71e3aac0
AA
1322}
1323
8310d48b 1324/*
a308c71b
PX
1325 * FOLL_FORCE can write to even unwritable pmd's, but only
1326 * after we've gone through a COW cycle and they are dirty.
8310d48b
KF
1327 */
1328static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1329{
a308c71b
PX
1330 return pmd_write(pmd) ||
1331 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
8310d48b
KF
1332}
1333
b676b293 1334struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1335 unsigned long addr,
1336 pmd_t *pmd,
1337 unsigned int flags)
1338{
b676b293 1339 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1340 struct page *page = NULL;
1341
c4088ebd 1342 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1343
8310d48b 1344 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1345 goto out;
1346
85facf25
KS
1347 /* Avoid dumping huge zero page */
1348 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1349 return ERR_PTR(-EFAULT);
1350
2b4847e7 1351 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1352 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1353 goto out;
1354
71e3aac0 1355 page = pmd_page(*pmd);
ca120cf6 1356 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3faa52c0
JH
1357
1358 if (!try_grab_page(page, flags))
1359 return ERR_PTR(-ENOMEM);
1360
3565fce3 1361 if (flags & FOLL_TOUCH)
a8f97366 1362 touch_pmd(vma, addr, pmd, flags);
3faa52c0 1363
de60f5f1 1364 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1365 /*
1366 * We don't mlock() pte-mapped THPs. This way we can avoid
1367 * leaking mlocked pages into non-VM_LOCKED VMAs.
1368 *
9a73f61b
KS
1369 * For anon THP:
1370 *
e90309c9
KS
1371 * In most cases the pmd is the only mapping of the page as we
1372 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1373 * writable private mappings in populate_vma_page_range().
1374 *
1375 * The only scenario when we have the page shared here is if we
1376 * mlocking read-only mapping shared over fork(). We skip
1377 * mlocking such pages.
9a73f61b
KS
1378 *
1379 * For file THP:
1380 *
1381 * We can expect PageDoubleMap() to be stable under page lock:
1382 * for file pages we set it in page_add_file_rmap(), which
1383 * requires page to be locked.
e90309c9 1384 */
9a73f61b
KS
1385
1386 if (PageAnon(page) && compound_mapcount(page) != 1)
1387 goto skip_mlock;
1388 if (PageDoubleMap(page) || !page->mapping)
1389 goto skip_mlock;
1390 if (!trylock_page(page))
1391 goto skip_mlock;
9a73f61b
KS
1392 if (page->mapping && !PageDoubleMap(page))
1393 mlock_vma_page(page);
1394 unlock_page(page);
b676b293 1395 }
9a73f61b 1396skip_mlock:
71e3aac0 1397 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1398 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0
AA
1399
1400out:
1401 return page;
1402}
1403
d10e63f2 1404/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1405vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1406{
82b0f8c3 1407 struct vm_area_struct *vma = vmf->vma;
b8916634 1408 struct anon_vma *anon_vma = NULL;
b32967ff 1409 struct page *page;
82b0f8c3 1410 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1411 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1412 int target_nid, last_cpupid = -1;
8191acbd
MG
1413 bool page_locked;
1414 bool migrated = false;
b191f9b1 1415 bool was_writable;
6688cc05 1416 int flags = 0;
d10e63f2 1417
82b0f8c3
JK
1418 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1419 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1420 goto out_unlock;
1421
de466bd6
MG
1422 /*
1423 * If there are potential migrations, wait for completion and retry
1424 * without disrupting NUMA hinting information. Do not relock and
1425 * check_same as the page may no longer be mapped.
1426 */
82b0f8c3
JK
1427 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1428 page = pmd_page(*vmf->pmd);
3c226c63
MR
1429 if (!get_page_unless_zero(page))
1430 goto out_unlock;
82b0f8c3 1431 spin_unlock(vmf->ptl);
9a1ea439 1432 put_and_wait_on_page_locked(page);
de466bd6
MG
1433 goto out;
1434 }
1435
d10e63f2 1436 page = pmd_page(pmd);
a1a46184 1437 BUG_ON(is_huge_zero_page(page));
8191acbd 1438 page_nid = page_to_nid(page);
90572890 1439 last_cpupid = page_cpupid_last(page);
03c5a6e1 1440 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1441 if (page_nid == this_nid) {
03c5a6e1 1442 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1443 flags |= TNF_FAULT_LOCAL;
1444 }
4daae3b4 1445
bea66fbd 1446 /* See similar comment in do_numa_page for explanation */
288bc549 1447 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1448 flags |= TNF_NO_GROUP;
1449
ff9042b1
MG
1450 /*
1451 * Acquire the page lock to serialise THP migrations but avoid dropping
1452 * page_table_lock if at all possible
1453 */
b8916634
MG
1454 page_locked = trylock_page(page);
1455 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1456 if (target_nid == NUMA_NO_NODE) {
b8916634 1457 /* If the page was locked, there are no parallel migrations */
a54a407f 1458 if (page_locked)
b8916634 1459 goto clear_pmdnuma;
2b4847e7 1460 }
4daae3b4 1461
de466bd6 1462 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1463 if (!page_locked) {
98fa15f3 1464 page_nid = NUMA_NO_NODE;
3c226c63
MR
1465 if (!get_page_unless_zero(page))
1466 goto out_unlock;
82b0f8c3 1467 spin_unlock(vmf->ptl);
9a1ea439 1468 put_and_wait_on_page_locked(page);
b8916634
MG
1469 goto out;
1470 }
1471
2b4847e7
MG
1472 /*
1473 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1474 * to serialises splits
1475 */
b8916634 1476 get_page(page);
82b0f8c3 1477 spin_unlock(vmf->ptl);
b8916634 1478 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1479
c69307d5 1480 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1481 spin_lock(vmf->ptl);
1482 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1483 unlock_page(page);
1484 put_page(page);
98fa15f3 1485 page_nid = NUMA_NO_NODE;
4daae3b4 1486 goto out_unlock;
b32967ff 1487 }
ff9042b1 1488
c3a489ca
MG
1489 /* Bail if we fail to protect against THP splits for any reason */
1490 if (unlikely(!anon_vma)) {
1491 put_page(page);
98fa15f3 1492 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1493 goto clear_pmdnuma;
1494 }
1495
8b1b436d
PZ
1496 /*
1497 * Since we took the NUMA fault, we must have observed the !accessible
1498 * bit. Make sure all other CPUs agree with that, to avoid them
1499 * modifying the page we're about to migrate.
1500 *
1501 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1502 * inc_tlb_flush_pending().
1503 *
1504 * We are not sure a pending tlb flush here is for a huge page
1505 * mapping or not. Hence use the tlb range variant
8b1b436d 1506 */
7066f0f9 1507 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1508 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1509 /*
1510 * change_huge_pmd() released the pmd lock before
1511 * invalidating the secondary MMUs sharing the primary
1512 * MMU pagetables (with ->invalidate_range()). The
1513 * mmu_notifier_invalidate_range_end() (which
1514 * internally calls ->invalidate_range()) in
1515 * change_pmd_range() will run after us, so we can't
1516 * rely on it here and we need an explicit invalidate.
1517 */
1518 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1519 haddr + HPAGE_PMD_SIZE);
1520 }
8b1b436d 1521
a54a407f
MG
1522 /*
1523 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1524 * and access rights restored.
a54a407f 1525 */
82b0f8c3 1526 spin_unlock(vmf->ptl);
8b1b436d 1527
bae473a4 1528 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1529 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1530 if (migrated) {
1531 flags |= TNF_MIGRATED;
8191acbd 1532 page_nid = target_nid;
074c2381
MG
1533 } else
1534 flags |= TNF_MIGRATE_FAIL;
b32967ff 1535
8191acbd 1536 goto out;
b32967ff 1537clear_pmdnuma:
a54a407f 1538 BUG_ON(!PageLocked(page));
288bc549 1539 was_writable = pmd_savedwrite(pmd);
4d942466 1540 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1541 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1542 if (was_writable)
1543 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1544 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1545 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1546 unlock_page(page);
d10e63f2 1547out_unlock:
82b0f8c3 1548 spin_unlock(vmf->ptl);
b8916634
MG
1549
1550out:
1551 if (anon_vma)
1552 page_unlock_anon_vma_read(anon_vma);
1553
98fa15f3 1554 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1555 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1556 flags);
8191acbd 1557
d10e63f2
MG
1558 return 0;
1559}
1560
319904ad
HY
1561/*
1562 * Return true if we do MADV_FREE successfully on entire pmd page.
1563 * Otherwise, return false.
1564 */
1565bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1566 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1567{
1568 spinlock_t *ptl;
1569 pmd_t orig_pmd;
1570 struct page *page;
1571 struct mm_struct *mm = tlb->mm;
319904ad 1572 bool ret = false;
b8d3c4c3 1573
ed6a7935 1574 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1575
b6ec57f4
KS
1576 ptl = pmd_trans_huge_lock(pmd, vma);
1577 if (!ptl)
25eedabe 1578 goto out_unlocked;
b8d3c4c3
MK
1579
1580 orig_pmd = *pmd;
319904ad 1581 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1582 goto out;
b8d3c4c3 1583
84c3fc4e
ZY
1584 if (unlikely(!pmd_present(orig_pmd))) {
1585 VM_BUG_ON(thp_migration_supported() &&
1586 !is_pmd_migration_entry(orig_pmd));
1587 goto out;
1588 }
1589
b8d3c4c3
MK
1590 page = pmd_page(orig_pmd);
1591 /*
1592 * If other processes are mapping this page, we couldn't discard
1593 * the page unless they all do MADV_FREE so let's skip the page.
1594 */
1595 if (page_mapcount(page) != 1)
1596 goto out;
1597
1598 if (!trylock_page(page))
1599 goto out;
1600
1601 /*
1602 * If user want to discard part-pages of THP, split it so MADV_FREE
1603 * will deactivate only them.
1604 */
1605 if (next - addr != HPAGE_PMD_SIZE) {
1606 get_page(page);
1607 spin_unlock(ptl);
9818b8cd 1608 split_huge_page(page);
b8d3c4c3 1609 unlock_page(page);
bbf29ffc 1610 put_page(page);
b8d3c4c3
MK
1611 goto out_unlocked;
1612 }
1613
1614 if (PageDirty(page))
1615 ClearPageDirty(page);
1616 unlock_page(page);
1617
b8d3c4c3 1618 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1619 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1620 orig_pmd = pmd_mkold(orig_pmd);
1621 orig_pmd = pmd_mkclean(orig_pmd);
1622
1623 set_pmd_at(mm, addr, pmd, orig_pmd);
1624 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1625 }
802a3a92
SL
1626
1627 mark_page_lazyfree(page);
319904ad 1628 ret = true;
b8d3c4c3
MK
1629out:
1630 spin_unlock(ptl);
1631out_unlocked:
1632 return ret;
1633}
1634
953c66c2
AK
1635static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1636{
1637 pgtable_t pgtable;
1638
1639 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1640 pte_free(mm, pgtable);
c4812909 1641 mm_dec_nr_ptes(mm);
953c66c2
AK
1642}
1643
71e3aac0 1644int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1645 pmd_t *pmd, unsigned long addr)
71e3aac0 1646{
da146769 1647 pmd_t orig_pmd;
bf929152 1648 spinlock_t *ptl;
71e3aac0 1649
ed6a7935 1650 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1651
b6ec57f4
KS
1652 ptl = __pmd_trans_huge_lock(pmd, vma);
1653 if (!ptl)
da146769
KS
1654 return 0;
1655 /*
1656 * For architectures like ppc64 we look at deposited pgtable
1657 * when calling pmdp_huge_get_and_clear. So do the
1658 * pgtable_trans_huge_withdraw after finishing pmdp related
1659 * operations.
1660 */
93a98695
AK
1661 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1662 tlb->fullmm);
da146769 1663 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2484ca9b 1664 if (vma_is_special_huge(vma)) {
3b6521f5
OH
1665 if (arch_needs_pgtable_deposit())
1666 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1667 spin_unlock(ptl);
1668 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1669 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1670 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1671 zap_deposited_table(tlb->mm, pmd);
da146769 1672 spin_unlock(ptl);
c0f2e176 1673 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1674 } else {
616b8371
ZY
1675 struct page *page = NULL;
1676 int flush_needed = 1;
1677
1678 if (pmd_present(orig_pmd)) {
1679 page = pmd_page(orig_pmd);
1680 page_remove_rmap(page, true);
1681 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1682 VM_BUG_ON_PAGE(!PageHead(page), page);
1683 } else if (thp_migration_supported()) {
1684 swp_entry_t entry;
1685
1686 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1687 entry = pmd_to_swp_entry(orig_pmd);
1688 page = pfn_to_page(swp_offset(entry));
1689 flush_needed = 0;
1690 } else
1691 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1692
b5072380 1693 if (PageAnon(page)) {
c14a6eb4 1694 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1695 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1696 } else {
953c66c2
AK
1697 if (arch_needs_pgtable_deposit())
1698 zap_deposited_table(tlb->mm, pmd);
fadae295 1699 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1700 }
616b8371 1701
da146769 1702 spin_unlock(ptl);
616b8371
ZY
1703 if (flush_needed)
1704 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1705 }
da146769 1706 return 1;
71e3aac0
AA
1707}
1708
1dd38b6c
AK
1709#ifndef pmd_move_must_withdraw
1710static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1711 spinlock_t *old_pmd_ptl,
1712 struct vm_area_struct *vma)
1713{
1714 /*
1715 * With split pmd lock we also need to move preallocated
1716 * PTE page table if new_pmd is on different PMD page table.
1717 *
1718 * We also don't deposit and withdraw tables for file pages.
1719 */
1720 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1721}
1722#endif
1723
ab6e3d09
NH
1724static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1725{
1726#ifdef CONFIG_MEM_SOFT_DIRTY
1727 if (unlikely(is_pmd_migration_entry(pmd)))
1728 pmd = pmd_swp_mksoft_dirty(pmd);
1729 else if (pmd_present(pmd))
1730 pmd = pmd_mksoft_dirty(pmd);
1731#endif
1732 return pmd;
1733}
1734
bf8616d5 1735bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
b8aa9d9d 1736 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1737{
bf929152 1738 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1739 pmd_t pmd;
37a1c49a 1740 struct mm_struct *mm = vma->vm_mm;
5d190420 1741 bool force_flush = false;
37a1c49a 1742
37a1c49a
AA
1743 /*
1744 * The destination pmd shouldn't be established, free_pgtables()
1745 * should have release it.
1746 */
1747 if (WARN_ON(!pmd_none(*new_pmd))) {
1748 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1749 return false;
37a1c49a
AA
1750 }
1751
bf929152
KS
1752 /*
1753 * We don't have to worry about the ordering of src and dst
c1e8d7c6 1754 * ptlocks because exclusive mmap_lock prevents deadlock.
bf929152 1755 */
b6ec57f4
KS
1756 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1757 if (old_ptl) {
bf929152
KS
1758 new_ptl = pmd_lockptr(mm, new_pmd);
1759 if (new_ptl != old_ptl)
1760 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1761 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1762 if (pmd_present(pmd))
a2ce2666 1763 force_flush = true;
025c5b24 1764 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1765
1dd38b6c 1766 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1767 pgtable_t pgtable;
3592806c
KS
1768 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1769 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1770 }
ab6e3d09
NH
1771 pmd = move_soft_dirty_pmd(pmd);
1772 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1773 if (force_flush)
1774 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1775 if (new_ptl != old_ptl)
1776 spin_unlock(new_ptl);
bf929152 1777 spin_unlock(old_ptl);
4b471e88 1778 return true;
37a1c49a 1779 }
4b471e88 1780 return false;
37a1c49a
AA
1781}
1782
f123d74a
MG
1783/*
1784 * Returns
1785 * - 0 if PMD could not be locked
1786 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1787 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1788 */
cd7548ab 1789int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
58705444 1790 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
cd7548ab
JW
1791{
1792 struct mm_struct *mm = vma->vm_mm;
bf929152 1793 spinlock_t *ptl;
0a85e51d
KS
1794 pmd_t entry;
1795 bool preserve_write;
1796 int ret;
58705444 1797 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
292924b2
PX
1798 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1799 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
cd7548ab 1800
b6ec57f4 1801 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1802 if (!ptl)
1803 return 0;
e944fd67 1804
0a85e51d
KS
1805 preserve_write = prot_numa && pmd_write(*pmd);
1806 ret = 1;
e944fd67 1807
84c3fc4e
ZY
1808#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1809 if (is_swap_pmd(*pmd)) {
1810 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1811
1812 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1813 if (is_write_migration_entry(entry)) {
1814 pmd_t newpmd;
1815 /*
1816 * A protection check is difficult so
1817 * just be safe and disable write
1818 */
1819 make_migration_entry_read(&entry);
1820 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1821 if (pmd_swp_soft_dirty(*pmd))
1822 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1823 set_pmd_at(mm, addr, pmd, newpmd);
1824 }
1825 goto unlock;
1826 }
1827#endif
1828
0a85e51d
KS
1829 /*
1830 * Avoid trapping faults against the zero page. The read-only
1831 * data is likely to be read-cached on the local CPU and
1832 * local/remote hits to the zero page are not interesting.
1833 */
1834 if (prot_numa && is_huge_zero_pmd(*pmd))
1835 goto unlock;
025c5b24 1836
0a85e51d
KS
1837 if (prot_numa && pmd_protnone(*pmd))
1838 goto unlock;
1839
ced10803 1840 /*
3e4e28c5 1841 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
ced10803 1842 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
3e4e28c5 1843 * which is also under mmap_read_lock(mm):
ced10803
KS
1844 *
1845 * CPU0: CPU1:
1846 * change_huge_pmd(prot_numa=1)
1847 * pmdp_huge_get_and_clear_notify()
1848 * madvise_dontneed()
1849 * zap_pmd_range()
1850 * pmd_trans_huge(*pmd) == 0 (without ptl)
1851 * // skip the pmd
1852 * set_pmd_at();
1853 * // pmd is re-established
1854 *
1855 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1856 * which may break userspace.
1857 *
1858 * pmdp_invalidate() is required to make sure we don't miss
1859 * dirty/young flags set by hardware.
1860 */
a3cf988f 1861 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1862
0a85e51d
KS
1863 entry = pmd_modify(entry, newprot);
1864 if (preserve_write)
1865 entry = pmd_mk_savedwrite(entry);
292924b2
PX
1866 if (uffd_wp) {
1867 entry = pmd_wrprotect(entry);
1868 entry = pmd_mkuffd_wp(entry);
1869 } else if (uffd_wp_resolve) {
1870 /*
1871 * Leave the write bit to be handled by PF interrupt
1872 * handler, then things like COW could be properly
1873 * handled.
1874 */
1875 entry = pmd_clear_uffd_wp(entry);
1876 }
0a85e51d
KS
1877 ret = HPAGE_PMD_NR;
1878 set_pmd_at(mm, addr, pmd, entry);
1879 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1880unlock:
1881 spin_unlock(ptl);
025c5b24
NH
1882 return ret;
1883}
1884
1885/*
8f19b0c0 1886 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1887 *
8f19b0c0
HY
1888 * Note that if it returns page table lock pointer, this routine returns without
1889 * unlocking page table lock. So callers must unlock it.
025c5b24 1890 */
b6ec57f4 1891spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1892{
b6ec57f4
KS
1893 spinlock_t *ptl;
1894 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1895 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1896 pmd_devmap(*pmd)))
b6ec57f4
KS
1897 return ptl;
1898 spin_unlock(ptl);
1899 return NULL;
cd7548ab
JW
1900}
1901
a00cc7d9
MW
1902/*
1903 * Returns true if a given pud maps a thp, false otherwise.
1904 *
1905 * Note that if it returns true, this routine returns without unlocking page
1906 * table lock. So callers must unlock it.
1907 */
1908spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1909{
1910 spinlock_t *ptl;
1911
1912 ptl = pud_lock(vma->vm_mm, pud);
1913 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1914 return ptl;
1915 spin_unlock(ptl);
1916 return NULL;
1917}
1918
1919#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1920int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1921 pud_t *pud, unsigned long addr)
1922{
a00cc7d9
MW
1923 spinlock_t *ptl;
1924
1925 ptl = __pud_trans_huge_lock(pud, vma);
1926 if (!ptl)
1927 return 0;
1928 /*
1929 * For architectures like ppc64 we look at deposited pgtable
1930 * when calling pudp_huge_get_and_clear. So do the
1931 * pgtable_trans_huge_withdraw after finishing pudp related
1932 * operations.
1933 */
70516b93 1934 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9 1935 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2484ca9b 1936 if (vma_is_special_huge(vma)) {
a00cc7d9
MW
1937 spin_unlock(ptl);
1938 /* No zero page support yet */
1939 } else {
1940 /* No support for anonymous PUD pages yet */
1941 BUG();
1942 }
1943 return 1;
1944}
1945
1946static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1947 unsigned long haddr)
1948{
1949 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1950 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1951 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1952 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1953
ce9311cf 1954 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1955
1956 pudp_huge_clear_flush_notify(vma, haddr, pud);
1957}
1958
1959void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1960 unsigned long address)
1961{
1962 spinlock_t *ptl;
ac46d4f3 1963 struct mmu_notifier_range range;
a00cc7d9 1964
7269f999 1965 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1966 address & HPAGE_PUD_MASK,
ac46d4f3
JG
1967 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1968 mmu_notifier_invalidate_range_start(&range);
1969 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
1970 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1971 goto out;
ac46d4f3 1972 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
1973
1974out:
1975 spin_unlock(ptl);
4645b9fe
JG
1976 /*
1977 * No need to double call mmu_notifier->invalidate_range() callback as
1978 * the above pudp_huge_clear_flush_notify() did already call it.
1979 */
ac46d4f3 1980 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
1981}
1982#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1983
eef1b3ba
KS
1984static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1985 unsigned long haddr, pmd_t *pmd)
1986{
1987 struct mm_struct *mm = vma->vm_mm;
1988 pgtable_t pgtable;
1989 pmd_t _pmd;
1990 int i;
1991
0f10851e
JG
1992 /*
1993 * Leave pmd empty until pte is filled note that it is fine to delay
1994 * notification until mmu_notifier_invalidate_range_end() as we are
1995 * replacing a zero pmd write protected page with a zero pte write
1996 * protected page.
1997 *
ad56b738 1998 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
1999 */
2000 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2001
2002 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2003 pmd_populate(mm, &_pmd, pgtable);
2004
2005 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2006 pte_t *pte, entry;
2007 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2008 entry = pte_mkspecial(entry);
2009 pte = pte_offset_map(&_pmd, haddr);
2010 VM_BUG_ON(!pte_none(*pte));
2011 set_pte_at(mm, haddr, pte, entry);
2012 pte_unmap(pte);
2013 }
2014 smp_wmb(); /* make pte visible before pmd */
2015 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2016}
2017
2018static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2019 unsigned long haddr, bool freeze)
eef1b3ba
KS
2020{
2021 struct mm_struct *mm = vma->vm_mm;
2022 struct page *page;
2023 pgtable_t pgtable;
423ac9af 2024 pmd_t old_pmd, _pmd;
292924b2 2025 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2ac015e2 2026 unsigned long addr;
eef1b3ba
KS
2027 int i;
2028
2029 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2030 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2031 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2032 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2033 && !pmd_devmap(*pmd));
eef1b3ba
KS
2034
2035 count_vm_event(THP_SPLIT_PMD);
2036
d21b9e57
KS
2037 if (!vma_is_anonymous(vma)) {
2038 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2039 /*
2040 * We are going to unmap this huge page. So
2041 * just go ahead and zap it
2042 */
2043 if (arch_needs_pgtable_deposit())
2044 zap_deposited_table(mm, pmd);
2484ca9b 2045 if (vma_is_special_huge(vma))
d21b9e57
KS
2046 return;
2047 page = pmd_page(_pmd);
e1f1b157
HD
2048 if (!PageDirty(page) && pmd_dirty(_pmd))
2049 set_page_dirty(page);
d21b9e57
KS
2050 if (!PageReferenced(page) && pmd_young(_pmd))
2051 SetPageReferenced(page);
2052 page_remove_rmap(page, true);
2053 put_page(page);
fadae295 2054 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba 2055 return;
ec0abae6 2056 } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2057 /*
2058 * FIXME: Do we want to invalidate secondary mmu by calling
2059 * mmu_notifier_invalidate_range() see comments below inside
2060 * __split_huge_pmd() ?
2061 *
2062 * We are going from a zero huge page write protected to zero
2063 * small page also write protected so it does not seems useful
2064 * to invalidate secondary mmu at this time.
2065 */
eef1b3ba
KS
2066 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2067 }
2068
423ac9af
AK
2069 /*
2070 * Up to this point the pmd is present and huge and userland has the
2071 * whole access to the hugepage during the split (which happens in
2072 * place). If we overwrite the pmd with the not-huge version pointing
2073 * to the pte here (which of course we could if all CPUs were bug
2074 * free), userland could trigger a small page size TLB miss on the
2075 * small sized TLB while the hugepage TLB entry is still established in
2076 * the huge TLB. Some CPU doesn't like that.
42742d9b
AK
2077 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2078 * 383 on page 105. Intel should be safe but is also warns that it's
423ac9af
AK
2079 * only safe if the permission and cache attributes of the two entries
2080 * loaded in the two TLB is identical (which should be the case here).
2081 * But it is generally safer to never allow small and huge TLB entries
2082 * for the same virtual address to be loaded simultaneously. So instead
2083 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2084 * current pmd notpresent (atomically because here the pmd_trans_huge
2085 * must remain set at all times on the pmd until the split is complete
2086 * for this pmd), then we flush the SMP TLB and finally we write the
2087 * non-huge version of the pmd entry with pmd_populate.
2088 */
2089 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2090
423ac9af 2091 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2092 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2093 swp_entry_t entry;
2094
423ac9af 2095 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2096 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2097 write = is_write_migration_entry(entry);
2098 young = false;
2099 soft_dirty = pmd_swp_soft_dirty(old_pmd);
f45ec5ff 2100 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2e83ee1d 2101 } else {
423ac9af 2102 page = pmd_page(old_pmd);
2e83ee1d
PX
2103 if (pmd_dirty(old_pmd))
2104 SetPageDirty(page);
2105 write = pmd_write(old_pmd);
2106 young = pmd_young(old_pmd);
2107 soft_dirty = pmd_soft_dirty(old_pmd);
292924b2 2108 uffd_wp = pmd_uffd_wp(old_pmd);
2e83ee1d 2109 }
eef1b3ba 2110 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2111 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2112
423ac9af
AK
2113 /*
2114 * Withdraw the table only after we mark the pmd entry invalid.
2115 * This's critical for some architectures (Power).
2116 */
eef1b3ba
KS
2117 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2118 pmd_populate(mm, &_pmd, pgtable);
2119
2ac015e2 2120 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2121 pte_t entry, *pte;
2122 /*
2123 * Note that NUMA hinting access restrictions are not
2124 * transferred to avoid any possibility of altering
2125 * permissions across VMAs.
2126 */
84c3fc4e 2127 if (freeze || pmd_migration) {
ba988280
KS
2128 swp_entry_t swp_entry;
2129 swp_entry = make_migration_entry(page + i, write);
2130 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2131 if (soft_dirty)
2132 entry = pte_swp_mksoft_dirty(entry);
f45ec5ff
PX
2133 if (uffd_wp)
2134 entry = pte_swp_mkuffd_wp(entry);
ba988280 2135 } else {
6d2329f8 2136 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2137 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2138 if (!write)
2139 entry = pte_wrprotect(entry);
2140 if (!young)
2141 entry = pte_mkold(entry);
804dd150
AA
2142 if (soft_dirty)
2143 entry = pte_mksoft_dirty(entry);
292924b2
PX
2144 if (uffd_wp)
2145 entry = pte_mkuffd_wp(entry);
ba988280 2146 }
2ac015e2 2147 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2148 BUG_ON(!pte_none(*pte));
2ac015e2 2149 set_pte_at(mm, addr, pte, entry);
ec0abae6 2150 if (!pmd_migration)
eef1b3ba 2151 atomic_inc(&page[i]._mapcount);
ec0abae6 2152 pte_unmap(pte);
eef1b3ba
KS
2153 }
2154
ec0abae6
RC
2155 if (!pmd_migration) {
2156 /*
2157 * Set PG_double_map before dropping compound_mapcount to avoid
2158 * false-negative page_mapped().
2159 */
2160 if (compound_mapcount(page) > 1 &&
2161 !TestSetPageDoubleMap(page)) {
eef1b3ba 2162 for (i = 0; i < HPAGE_PMD_NR; i++)
ec0abae6
RC
2163 atomic_inc(&page[i]._mapcount);
2164 }
2165
2166 lock_page_memcg(page);
2167 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2168 /* Last compound_mapcount is gone. */
2169 __dec_lruvec_page_state(page, NR_ANON_THPS);
2170 if (TestClearPageDoubleMap(page)) {
2171 /* No need in mapcount reference anymore */
2172 for (i = 0; i < HPAGE_PMD_NR; i++)
2173 atomic_dec(&page[i]._mapcount);
2174 }
eef1b3ba 2175 }
ec0abae6 2176 unlock_page_memcg(page);
eef1b3ba
KS
2177 }
2178
2179 smp_wmb(); /* make pte visible before pmd */
2180 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2181
2182 if (freeze) {
2ac015e2 2183 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2184 page_remove_rmap(page + i, false);
2185 put_page(page + i);
2186 }
2187 }
eef1b3ba
KS
2188}
2189
2190void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2191 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2192{
2193 spinlock_t *ptl;
ac46d4f3 2194 struct mmu_notifier_range range;
c444eb56
AA
2195 bool was_locked = false;
2196 pmd_t _pmd;
eef1b3ba 2197
7269f999 2198 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2199 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2200 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2201 mmu_notifier_invalidate_range_start(&range);
2202 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2203
2204 /*
2205 * If caller asks to setup a migration entries, we need a page to check
2206 * pmd against. Otherwise we can end up replacing wrong page.
2207 */
2208 VM_BUG_ON(freeze && !page);
c444eb56
AA
2209 if (page) {
2210 VM_WARN_ON_ONCE(!PageLocked(page));
2211 was_locked = true;
2212 if (page != pmd_page(*pmd))
2213 goto out;
2214 }
33f4751e 2215
c444eb56 2216repeat:
5c7fb56e 2217 if (pmd_trans_huge(*pmd)) {
c444eb56
AA
2218 if (!page) {
2219 page = pmd_page(*pmd);
2220 if (unlikely(!trylock_page(page))) {
2221 get_page(page);
2222 _pmd = *pmd;
2223 spin_unlock(ptl);
2224 lock_page(page);
2225 spin_lock(ptl);
2226 if (unlikely(!pmd_same(*pmd, _pmd))) {
2227 unlock_page(page);
2228 put_page(page);
2229 page = NULL;
2230 goto repeat;
2231 }
2232 put_page(page);
2233 }
2234 }
5c7fb56e 2235 if (PageMlocked(page))
5f737714 2236 clear_page_mlock(page);
84c3fc4e 2237 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2238 goto out;
ac46d4f3 2239 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2240out:
eef1b3ba 2241 spin_unlock(ptl);
c444eb56
AA
2242 if (!was_locked && page)
2243 unlock_page(page);
4645b9fe
JG
2244 /*
2245 * No need to double call mmu_notifier->invalidate_range() callback.
2246 * They are 3 cases to consider inside __split_huge_pmd_locked():
2247 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2248 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2249 * fault will trigger a flush_notify before pointing to a new page
2250 * (it is fine if the secondary mmu keeps pointing to the old zero
2251 * page in the meantime)
2252 * 3) Split a huge pmd into pte pointing to the same page. No need
2253 * to invalidate secondary tlb entry they are all still valid.
2254 * any further changes to individual pte will notify. So no need
2255 * to call mmu_notifier->invalidate_range()
2256 */
ac46d4f3 2257 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2258}
2259
fec89c10
KS
2260void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2261 bool freeze, struct page *page)
94fcc585 2262{
f72e7dcd 2263 pgd_t *pgd;
c2febafc 2264 p4d_t *p4d;
f72e7dcd 2265 pud_t *pud;
94fcc585
AA
2266 pmd_t *pmd;
2267
78ddc534 2268 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2269 if (!pgd_present(*pgd))
2270 return;
2271
c2febafc
KS
2272 p4d = p4d_offset(pgd, address);
2273 if (!p4d_present(*p4d))
2274 return;
2275
2276 pud = pud_offset(p4d, address);
f72e7dcd
HD
2277 if (!pud_present(*pud))
2278 return;
2279
2280 pmd = pmd_offset(pud, address);
fec89c10 2281
33f4751e 2282 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2283}
2284
e1b9996b 2285void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2286 unsigned long start,
2287 unsigned long end,
2288 long adjust_next)
2289{
2290 /*
2291 * If the new start address isn't hpage aligned and it could
2292 * previously contain an hugepage: check if we need to split
2293 * an huge pmd.
2294 */
2295 if (start & ~HPAGE_PMD_MASK &&
2296 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2297 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2298 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2299
2300 /*
2301 * If the new end address isn't hpage aligned and it could
2302 * previously contain an hugepage: check if we need to split
2303 * an huge pmd.
2304 */
2305 if (end & ~HPAGE_PMD_MASK &&
2306 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2307 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2308 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2309
2310 /*
2311 * If we're also updating the vma->vm_next->vm_start, if the new
f9d86a60 2312 * vm_next->vm_start isn't hpage aligned and it could previously
94fcc585
AA
2313 * contain an hugepage: check if we need to split an huge pmd.
2314 */
2315 if (adjust_next > 0) {
2316 struct vm_area_struct *next = vma->vm_next;
2317 unsigned long nstart = next->vm_start;
f9d86a60 2318 nstart += adjust_next;
94fcc585
AA
2319 if (nstart & ~HPAGE_PMD_MASK &&
2320 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2321 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2322 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2323 }
2324}
e9b61f19 2325
906f9cdf 2326static void unmap_page(struct page *page)
e9b61f19 2327{
013339df 2328 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
c7ab0d2f 2329 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2330 bool unmap_success;
e9b61f19
KS
2331
2332 VM_BUG_ON_PAGE(!PageHead(page), page);
2333
baa355fd 2334 if (PageAnon(page))
b5ff8161 2335 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2336
666e5a40
MK
2337 unmap_success = try_to_unmap(page, ttu_flags);
2338 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2339}
2340
8cce5475 2341static void remap_page(struct page *page, unsigned int nr)
e9b61f19 2342{
fec89c10 2343 int i;
ace71a19
KS
2344 if (PageTransHuge(page)) {
2345 remove_migration_ptes(page, page, true);
2346 } else {
8cce5475 2347 for (i = 0; i < nr; i++)
ace71a19
KS
2348 remove_migration_ptes(page + i, page + i, true);
2349 }
e9b61f19
KS
2350}
2351
8df651c7 2352static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2353 struct lruvec *lruvec, struct list_head *list)
2354{
e9b61f19
KS
2355 struct page *page_tail = head + tail;
2356
8df651c7 2357 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2358
2359 /*
605ca5ed
KK
2360 * Clone page flags before unfreezing refcount.
2361 *
2362 * After successful get_page_unless_zero() might follow flags change,
2363 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2364 */
e9b61f19
KS
2365 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2366 page_tail->flags |= (head->flags &
2367 ((1L << PG_referenced) |
2368 (1L << PG_swapbacked) |
38d8b4e6 2369 (1L << PG_swapcache) |
e9b61f19
KS
2370 (1L << PG_mlocked) |
2371 (1L << PG_uptodate) |
2372 (1L << PG_active) |
1899ad18 2373 (1L << PG_workingset) |
e9b61f19 2374 (1L << PG_locked) |
b8d3c4c3 2375 (1L << PG_unevictable) |
72e6afa0
CM
2376#ifdef CONFIG_64BIT
2377 (1L << PG_arch_2) |
2378#endif
b8d3c4c3 2379 (1L << PG_dirty)));
e9b61f19 2380
173d9d9f
HD
2381 /* ->mapping in first tail page is compound_mapcount */
2382 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2383 page_tail);
2384 page_tail->mapping = head->mapping;
2385 page_tail->index = head->index + tail;
2386
605ca5ed 2387 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2388 smp_wmb();
2389
605ca5ed
KK
2390 /*
2391 * Clear PageTail before unfreezing page refcount.
2392 *
2393 * After successful get_page_unless_zero() might follow put_page()
2394 * which needs correct compound_head().
2395 */
e9b61f19
KS
2396 clear_compound_head(page_tail);
2397
605ca5ed
KK
2398 /* Finally unfreeze refcount. Additional reference from page cache. */
2399 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2400 PageSwapCache(head)));
2401
e9b61f19
KS
2402 if (page_is_young(head))
2403 set_page_young(page_tail);
2404 if (page_is_idle(head))
2405 set_page_idle(page_tail);
2406
e9b61f19 2407 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2408
2409 /*
2410 * always add to the tail because some iterators expect new
2411 * pages to show after the currently processed elements - e.g.
2412 * migrate_pages
2413 */
e9b61f19 2414 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2415}
2416
baa355fd 2417static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2418 pgoff_t end, unsigned long flags)
e9b61f19
KS
2419{
2420 struct page *head = compound_head(page);
f4b7e272 2421 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2422 struct lruvec *lruvec;
4101196b
MWO
2423 struct address_space *swap_cache = NULL;
2424 unsigned long offset = 0;
8cce5475 2425 unsigned int nr = thp_nr_pages(head);
8df651c7 2426 int i;
e9b61f19 2427
f4b7e272 2428 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2429
2430 /* complete memcg works before add pages to LRU */
2431 mem_cgroup_split_huge_fixup(head);
2432
4101196b
MWO
2433 if (PageAnon(head) && PageSwapCache(head)) {
2434 swp_entry_t entry = { .val = page_private(head) };
2435
2436 offset = swp_offset(entry);
2437 swap_cache = swap_address_space(entry);
2438 xa_lock(&swap_cache->i_pages);
2439 }
2440
8cce5475 2441 for (i = nr - 1; i >= 1; i--) {
8df651c7 2442 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2443 /* Some pages can be beyond i_size: drop them from page cache */
2444 if (head[i].index >= end) {
2d077d4b 2445 ClearPageDirty(head + i);
baa355fd 2446 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2447 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2448 shmem_uncharge(head->mapping->host, 1);
baa355fd 2449 put_page(head + i);
4101196b
MWO
2450 } else if (!PageAnon(page)) {
2451 __xa_store(&head->mapping->i_pages, head[i].index,
2452 head + i, 0);
2453 } else if (swap_cache) {
2454 __xa_store(&swap_cache->i_pages, offset + i,
2455 head + i, 0);
baa355fd
KS
2456 }
2457 }
e9b61f19
KS
2458
2459 ClearPageCompound(head);
f7da677b 2460
8cce5475 2461 split_page_owner(head, nr);
f7da677b 2462
baa355fd
KS
2463 /* See comment in __split_huge_page_tail() */
2464 if (PageAnon(head)) {
aa5dc07f 2465 /* Additional pin to swap cache */
4101196b 2466 if (PageSwapCache(head)) {
38d8b4e6 2467 page_ref_add(head, 2);
4101196b
MWO
2468 xa_unlock(&swap_cache->i_pages);
2469 } else {
38d8b4e6 2470 page_ref_inc(head);
4101196b 2471 }
baa355fd 2472 } else {
aa5dc07f 2473 /* Additional pin to page cache */
baa355fd 2474 page_ref_add(head, 2);
b93b0163 2475 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2476 }
2477
f4b7e272 2478 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2479
8cce5475 2480 remap_page(head, nr);
e9b61f19 2481
c4f9c701
HY
2482 if (PageSwapCache(head)) {
2483 swp_entry_t entry = { .val = page_private(head) };
2484
2485 split_swap_cluster(entry);
2486 }
2487
8cce5475 2488 for (i = 0; i < nr; i++) {
e9b61f19
KS
2489 struct page *subpage = head + i;
2490 if (subpage == page)
2491 continue;
2492 unlock_page(subpage);
2493
2494 /*
2495 * Subpages may be freed if there wasn't any mapping
2496 * like if add_to_swap() is running on a lru page that
2497 * had its mapping zapped. And freeing these pages
2498 * requires taking the lru_lock so we do the put_page
2499 * of the tail pages after the split is complete.
2500 */
2501 put_page(subpage);
2502 }
2503}
2504
b20ce5e0
KS
2505int total_mapcount(struct page *page)
2506{
86b562b6 2507 int i, compound, nr, ret;
b20ce5e0
KS
2508
2509 VM_BUG_ON_PAGE(PageTail(page), page);
2510
2511 if (likely(!PageCompound(page)))
2512 return atomic_read(&page->_mapcount) + 1;
2513
dd78fedd 2514 compound = compound_mapcount(page);
86b562b6 2515 nr = compound_nr(page);
b20ce5e0 2516 if (PageHuge(page))
dd78fedd
KS
2517 return compound;
2518 ret = compound;
86b562b6 2519 for (i = 0; i < nr; i++)
b20ce5e0 2520 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2521 /* File pages has compound_mapcount included in _mapcount */
2522 if (!PageAnon(page))
86b562b6 2523 return ret - compound * nr;
b20ce5e0 2524 if (PageDoubleMap(page))
86b562b6 2525 ret -= nr;
b20ce5e0
KS
2526 return ret;
2527}
2528
6d0a07ed
AA
2529/*
2530 * This calculates accurately how many mappings a transparent hugepage
2531 * has (unlike page_mapcount() which isn't fully accurate). This full
2532 * accuracy is primarily needed to know if copy-on-write faults can
2533 * reuse the page and change the mapping to read-write instead of
2534 * copying them. At the same time this returns the total_mapcount too.
2535 *
2536 * The function returns the highest mapcount any one of the subpages
2537 * has. If the return value is one, even if different processes are
2538 * mapping different subpages of the transparent hugepage, they can
2539 * all reuse it, because each process is reusing a different subpage.
2540 *
2541 * The total_mapcount is instead counting all virtual mappings of the
2542 * subpages. If the total_mapcount is equal to "one", it tells the
2543 * caller all mappings belong to the same "mm" and in turn the
2544 * anon_vma of the transparent hugepage can become the vma->anon_vma
2545 * local one as no other process may be mapping any of the subpages.
2546 *
2547 * It would be more accurate to replace page_mapcount() with
2548 * page_trans_huge_mapcount(), however we only use
2549 * page_trans_huge_mapcount() in the copy-on-write faults where we
2550 * need full accuracy to avoid breaking page pinning, because
2551 * page_trans_huge_mapcount() is slower than page_mapcount().
2552 */
2553int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2554{
2555 int i, ret, _total_mapcount, mapcount;
2556
2557 /* hugetlbfs shouldn't call it */
2558 VM_BUG_ON_PAGE(PageHuge(page), page);
2559
2560 if (likely(!PageTransCompound(page))) {
2561 mapcount = atomic_read(&page->_mapcount) + 1;
2562 if (total_mapcount)
2563 *total_mapcount = mapcount;
2564 return mapcount;
2565 }
2566
2567 page = compound_head(page);
2568
2569 _total_mapcount = ret = 0;
65dfe3c3 2570 for (i = 0; i < thp_nr_pages(page); i++) {
6d0a07ed
AA
2571 mapcount = atomic_read(&page[i]._mapcount) + 1;
2572 ret = max(ret, mapcount);
2573 _total_mapcount += mapcount;
2574 }
2575 if (PageDoubleMap(page)) {
2576 ret -= 1;
65dfe3c3 2577 _total_mapcount -= thp_nr_pages(page);
6d0a07ed
AA
2578 }
2579 mapcount = compound_mapcount(page);
2580 ret += mapcount;
2581 _total_mapcount += mapcount;
2582 if (total_mapcount)
2583 *total_mapcount = _total_mapcount;
2584 return ret;
2585}
2586
b8f593cd
HY
2587/* Racy check whether the huge page can be split */
2588bool can_split_huge_page(struct page *page, int *pextra_pins)
2589{
2590 int extra_pins;
2591
aa5dc07f 2592 /* Additional pins from page cache */
b8f593cd 2593 if (PageAnon(page))
e2333dad 2594 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
b8f593cd 2595 else
e2333dad 2596 extra_pins = thp_nr_pages(page);
b8f593cd
HY
2597 if (pextra_pins)
2598 *pextra_pins = extra_pins;
2599 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2600}
2601
e9b61f19
KS
2602/*
2603 * This function splits huge page into normal pages. @page can point to any
2604 * subpage of huge page to split. Split doesn't change the position of @page.
2605 *
2606 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2607 * The huge page must be locked.
2608 *
2609 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2610 *
2611 * Both head page and tail pages will inherit mapping, flags, and so on from
2612 * the hugepage.
2613 *
2614 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2615 * they are not mapped.
2616 *
2617 * Returns 0 if the hugepage is split successfully.
2618 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2619 * us.
2620 */
2621int split_huge_page_to_list(struct page *page, struct list_head *list)
2622{
2623 struct page *head = compound_head(page);
a3d0a918 2624 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
a8803e6c 2625 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2626 struct anon_vma *anon_vma = NULL;
2627 struct address_space *mapping = NULL;
2628 int count, mapcount, extra_pins, ret;
0b9b6fff 2629 unsigned long flags;
006d3ff2 2630 pgoff_t end;
e9b61f19 2631
cb829624 2632 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2633 VM_BUG_ON_PAGE(!PageLocked(head), head);
2634 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2635
a8803e6c 2636 if (PageWriteback(head))
59807685
HY
2637 return -EBUSY;
2638
baa355fd
KS
2639 if (PageAnon(head)) {
2640 /*
c1e8d7c6 2641 * The caller does not necessarily hold an mmap_lock that would
baa355fd
KS
2642 * prevent the anon_vma disappearing so we first we take a
2643 * reference to it and then lock the anon_vma for write. This
2644 * is similar to page_lock_anon_vma_read except the write lock
2645 * is taken to serialise against parallel split or collapse
2646 * operations.
2647 */
2648 anon_vma = page_get_anon_vma(head);
2649 if (!anon_vma) {
2650 ret = -EBUSY;
2651 goto out;
2652 }
006d3ff2 2653 end = -1;
baa355fd
KS
2654 mapping = NULL;
2655 anon_vma_lock_write(anon_vma);
2656 } else {
2657 mapping = head->mapping;
2658
2659 /* Truncated ? */
2660 if (!mapping) {
2661 ret = -EBUSY;
2662 goto out;
2663 }
2664
baa355fd
KS
2665 anon_vma = NULL;
2666 i_mmap_lock_read(mapping);
006d3ff2
HD
2667
2668 /*
2669 *__split_huge_page() may need to trim off pages beyond EOF:
2670 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2671 * which cannot be nested inside the page tree lock. So note
2672 * end now: i_size itself may be changed at any moment, but
2673 * head page lock is good enough to serialize the trimming.
2674 */
2675 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2676 }
e9b61f19
KS
2677
2678 /*
906f9cdf 2679 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2680 * split PMDs
2681 */
b8f593cd 2682 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2683 ret = -EBUSY;
2684 goto out_unlock;
2685 }
2686
906f9cdf 2687 unmap_page(head);
e9b61f19
KS
2688 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2689
baa355fd 2690 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2691 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2692
2693 if (mapping) {
aa5dc07f 2694 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2695
baa355fd 2696 /*
aa5dc07f 2697 * Check if the head page is present in page cache.
baa355fd
KS
2698 * We assume all tail are present too, if head is there.
2699 */
aa5dc07f
MW
2700 xa_lock(&mapping->i_pages);
2701 if (xas_load(&xas) != head)
baa355fd
KS
2702 goto fail;
2703 }
2704
0139aa7b 2705 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2706 spin_lock(&ds_queue->split_queue_lock);
e9b61f19
KS
2707 count = page_count(head);
2708 mapcount = total_mapcount(head);
baa355fd 2709 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2710 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2711 ds_queue->split_queue_len--;
9a982250
KS
2712 list_del(page_deferred_list(head));
2713 }
afb97172 2714 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2715 if (mapping) {
a8803e6c 2716 if (PageSwapBacked(head))
b8eddff8 2717 __dec_lruvec_page_state(head, NR_SHMEM_THPS);
06d3eff6 2718 else
b8eddff8 2719 __dec_lruvec_page_state(head, NR_FILE_THPS);
06d3eff6
KS
2720 }
2721
006d3ff2 2722 __split_huge_page(page, list, end, flags);
c4f9c701 2723 ret = 0;
e9b61f19 2724 } else {
baa355fd
KS
2725 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2726 pr_alert("total_mapcount: %u, page_count(): %u\n",
2727 mapcount, count);
2728 if (PageTail(page))
2729 dump_page(head, NULL);
2730 dump_page(page, "total_mapcount(head) > 0");
2731 BUG();
2732 }
364c1eeb 2733 spin_unlock(&ds_queue->split_queue_lock);
baa355fd 2734fail: if (mapping)
b93b0163 2735 xa_unlock(&mapping->i_pages);
f4b7e272 2736 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
8cce5475 2737 remap_page(head, thp_nr_pages(head));
e9b61f19
KS
2738 ret = -EBUSY;
2739 }
2740
2741out_unlock:
baa355fd
KS
2742 if (anon_vma) {
2743 anon_vma_unlock_write(anon_vma);
2744 put_anon_vma(anon_vma);
2745 }
2746 if (mapping)
2747 i_mmap_unlock_read(mapping);
e9b61f19
KS
2748out:
2749 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2750 return ret;
2751}
9a982250
KS
2752
2753void free_transhuge_page(struct page *page)
2754{
87eaceb3 2755 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2756 unsigned long flags;
2757
364c1eeb 2758 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2759 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2760 ds_queue->split_queue_len--;
9a982250
KS
2761 list_del(page_deferred_list(page));
2762 }
364c1eeb 2763 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2764 free_compound_page(page);
2765}
2766
2767void deferred_split_huge_page(struct page *page)
2768{
87eaceb3
YS
2769 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2770#ifdef CONFIG_MEMCG
2771 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2772#endif
9a982250
KS
2773 unsigned long flags;
2774
2775 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2776
87eaceb3
YS
2777 /*
2778 * The try_to_unmap() in page reclaim path might reach here too,
2779 * this may cause a race condition to corrupt deferred split queue.
2780 * And, if page reclaim is already handling the same page, it is
2781 * unnecessary to handle it again in shrinker.
2782 *
2783 * Check PageSwapCache to determine if the page is being
2784 * handled by page reclaim since THP swap would add the page into
2785 * swap cache before calling try_to_unmap().
2786 */
2787 if (PageSwapCache(page))
2788 return;
2789
364c1eeb 2790 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2791 if (list_empty(page_deferred_list(page))) {
f9719a03 2792 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2793 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2794 ds_queue->split_queue_len++;
87eaceb3
YS
2795#ifdef CONFIG_MEMCG
2796 if (memcg)
2797 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2798 deferred_split_shrinker.id);
2799#endif
9a982250 2800 }
364c1eeb 2801 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2802}
2803
2804static unsigned long deferred_split_count(struct shrinker *shrink,
2805 struct shrink_control *sc)
2806{
a3d0a918 2807 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2808 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2809
2810#ifdef CONFIG_MEMCG
2811 if (sc->memcg)
2812 ds_queue = &sc->memcg->deferred_split_queue;
2813#endif
364c1eeb 2814 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2815}
2816
2817static unsigned long deferred_split_scan(struct shrinker *shrink,
2818 struct shrink_control *sc)
2819{
a3d0a918 2820 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2821 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2822 unsigned long flags;
2823 LIST_HEAD(list), *pos, *next;
2824 struct page *page;
2825 int split = 0;
2826
87eaceb3
YS
2827#ifdef CONFIG_MEMCG
2828 if (sc->memcg)
2829 ds_queue = &sc->memcg->deferred_split_queue;
2830#endif
2831
364c1eeb 2832 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2833 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2834 list_for_each_safe(pos, next, &ds_queue->split_queue) {
9a982250
KS
2835 page = list_entry((void *)pos, struct page, mapping);
2836 page = compound_head(page);
e3ae1953
KS
2837 if (get_page_unless_zero(page)) {
2838 list_move(page_deferred_list(page), &list);
2839 } else {
2840 /* We lost race with put_compound_page() */
9a982250 2841 list_del_init(page_deferred_list(page));
364c1eeb 2842 ds_queue->split_queue_len--;
9a982250 2843 }
e3ae1953
KS
2844 if (!--sc->nr_to_scan)
2845 break;
9a982250 2846 }
364c1eeb 2847 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2848
2849 list_for_each_safe(pos, next, &list) {
2850 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2851 if (!trylock_page(page))
2852 goto next;
9a982250
KS
2853 /* split_huge_page() removes page from list on success */
2854 if (!split_huge_page(page))
2855 split++;
2856 unlock_page(page);
fa41b900 2857next:
9a982250
KS
2858 put_page(page);
2859 }
2860
364c1eeb
YS
2861 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2862 list_splice_tail(&list, &ds_queue->split_queue);
2863 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 2864
cb8d68ec
KS
2865 /*
2866 * Stop shrinker if we didn't split any page, but the queue is empty.
2867 * This can happen if pages were freed under us.
2868 */
364c1eeb 2869 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
2870 return SHRINK_STOP;
2871 return split;
9a982250
KS
2872}
2873
2874static struct shrinker deferred_split_shrinker = {
2875 .count_objects = deferred_split_count,
2876 .scan_objects = deferred_split_scan,
2877 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
2878 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2879 SHRINKER_NONSLAB,
9a982250 2880};
49071d43
KS
2881
2882#ifdef CONFIG_DEBUG_FS
2883static int split_huge_pages_set(void *data, u64 val)
2884{
2885 struct zone *zone;
2886 struct page *page;
2887 unsigned long pfn, max_zone_pfn;
2888 unsigned long total = 0, split = 0;
2889
2890 if (val != 1)
2891 return -EINVAL;
2892
2893 for_each_populated_zone(zone) {
2894 max_zone_pfn = zone_end_pfn(zone);
2895 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2896 if (!pfn_valid(pfn))
2897 continue;
2898
2899 page = pfn_to_page(pfn);
2900 if (!get_page_unless_zero(page))
2901 continue;
2902
2903 if (zone != page_zone(page))
2904 goto next;
2905
baa355fd 2906 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2907 goto next;
2908
2909 total++;
2910 lock_page(page);
2911 if (!split_huge_page(page))
2912 split++;
2913 unlock_page(page);
2914next:
2915 put_page(page);
2916 }
2917 }
2918
145bdaa1 2919 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2920
2921 return 0;
2922}
f1287869 2923DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
49071d43
KS
2924 "%llu\n");
2925
2926static int __init split_huge_pages_debugfs(void)
2927{
d9f7979c
GKH
2928 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2929 &split_huge_pages_fops);
49071d43
KS
2930 return 0;
2931}
2932late_initcall(split_huge_pages_debugfs);
2933#endif
616b8371
ZY
2934
2935#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2936void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2937 struct page *page)
2938{
2939 struct vm_area_struct *vma = pvmw->vma;
2940 struct mm_struct *mm = vma->vm_mm;
2941 unsigned long address = pvmw->address;
2942 pmd_t pmdval;
2943 swp_entry_t entry;
ab6e3d09 2944 pmd_t pmdswp;
616b8371
ZY
2945
2946 if (!(pvmw->pmd && !pvmw->pte))
2947 return;
2948
616b8371 2949 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 2950 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
2951 if (pmd_dirty(pmdval))
2952 set_page_dirty(page);
2953 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2954 pmdswp = swp_entry_to_pmd(entry);
2955 if (pmd_soft_dirty(pmdval))
2956 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2957 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2958 page_remove_rmap(page, true);
2959 put_page(page);
616b8371
ZY
2960}
2961
2962void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2963{
2964 struct vm_area_struct *vma = pvmw->vma;
2965 struct mm_struct *mm = vma->vm_mm;
2966 unsigned long address = pvmw->address;
2967 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2968 pmd_t pmde;
2969 swp_entry_t entry;
2970
2971 if (!(pvmw->pmd && !pvmw->pte))
2972 return;
2973
2974 entry = pmd_to_swp_entry(*pvmw->pmd);
2975 get_page(new);
2976 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2977 if (pmd_swp_soft_dirty(*pvmw->pmd))
2978 pmde = pmd_mksoft_dirty(pmde);
616b8371 2979 if (is_write_migration_entry(entry))
f55e1014 2980 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2981
2982 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2983 if (PageAnon(new))
2984 page_add_anon_rmap(new, vma, mmun_start, true);
2985 else
2986 page_add_file_rmap(new, true);
616b8371 2987 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2988 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2989 mlock_vma_page(new);
2990 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2991}
2992#endif