]> git.ipfire.org Git - people/arne_f/kernel.git/blame - mm/huge_memory.c
khugepaged: ignore pmd tables with THP mapped with ptes
[people/arne_f/kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
4897c765 19#include <linux/dax.h>
ba76149f
AA
20#include <linux/kthread.h>
21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
a664b2d8 23#include <linux/mman.h>
325adeb5 24#include <linux/pagemap.h>
4daae3b4 25#include <linux/migrate.h>
43b5fbbd 26#include <linux/hashtable.h>
6b251fc9 27#include <linux/userfaultfd_k.h>
33c3fc71 28#include <linux/page_idle.h>
97ae1749 29
71e3aac0
AA
30#include <asm/tlb.h>
31#include <asm/pgalloc.h>
32#include "internal.h"
33
7d2eba05
EA
34enum scan_result {
35 SCAN_FAIL,
36 SCAN_SUCCEED,
37 SCAN_PMD_NULL,
38 SCAN_EXCEED_NONE_PTE,
39 SCAN_PTE_NON_PRESENT,
40 SCAN_PAGE_RO,
41 SCAN_NO_REFERENCED_PAGE,
42 SCAN_PAGE_NULL,
43 SCAN_SCAN_ABORT,
44 SCAN_PAGE_COUNT,
45 SCAN_PAGE_LRU,
46 SCAN_PAGE_LOCK,
47 SCAN_PAGE_ANON,
b1caa957 48 SCAN_PAGE_COMPOUND,
7d2eba05
EA
49 SCAN_ANY_PROCESS,
50 SCAN_VMA_NULL,
51 SCAN_VMA_CHECK,
52 SCAN_ADDRESS_RANGE,
53 SCAN_SWAP_CACHE_PAGE,
54 SCAN_DEL_PAGE_LRU,
55 SCAN_ALLOC_HUGE_PAGE_FAIL,
56 SCAN_CGROUP_CHARGE_FAIL
57};
58
59#define CREATE_TRACE_POINTS
60#include <trace/events/huge_memory.h>
61
ba76149f 62/*
8bfa3f9a
JW
63 * By default transparent hugepage support is disabled in order that avoid
64 * to risk increase the memory footprint of applications without a guaranteed
65 * benefit. When transparent hugepage support is enabled, is for all mappings,
66 * and khugepaged scans all mappings.
67 * Defrag is invoked by khugepaged hugepage allocations and by page faults
68 * for all hugepage allocations.
ba76149f 69 */
71e3aac0 70unsigned long transparent_hugepage_flags __read_mostly =
13ece886 71#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 72 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
73#endif
74#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
75 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
76#endif
d39d33c3 77 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
78 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
79 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
80
81/* default scan 8*512 pte (or vmas) every 30 second */
82static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
83static unsigned int khugepaged_pages_collapsed;
84static unsigned int khugepaged_full_scans;
85static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
86/* during fragmentation poll the hugepage allocator once every minute */
87static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
88static struct task_struct *khugepaged_thread __read_mostly;
89static DEFINE_MUTEX(khugepaged_mutex);
90static DEFINE_SPINLOCK(khugepaged_mm_lock);
91static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
92/*
93 * default collapse hugepages if there is at least one pte mapped like
94 * it would have happened if the vma was large enough during page
95 * fault.
96 */
97static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
98
99static int khugepaged(void *none);
ba76149f 100static int khugepaged_slab_init(void);
65ebb64f 101static void khugepaged_slab_exit(void);
ba76149f 102
43b5fbbd
SL
103#define MM_SLOTS_HASH_BITS 10
104static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
105
ba76149f
AA
106static struct kmem_cache *mm_slot_cache __read_mostly;
107
108/**
109 * struct mm_slot - hash lookup from mm to mm_slot
110 * @hash: hash collision list
111 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
112 * @mm: the mm that this information is valid for
113 */
114struct mm_slot {
115 struct hlist_node hash;
116 struct list_head mm_node;
117 struct mm_struct *mm;
118};
119
120/**
121 * struct khugepaged_scan - cursor for scanning
122 * @mm_head: the head of the mm list to scan
123 * @mm_slot: the current mm_slot we are scanning
124 * @address: the next address inside that to be scanned
125 *
126 * There is only the one khugepaged_scan instance of this cursor structure.
127 */
128struct khugepaged_scan {
129 struct list_head mm_head;
130 struct mm_slot *mm_slot;
131 unsigned long address;
2f1da642
HS
132};
133static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
134 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
135};
136
f000565a 137
2c0b80d4 138static void set_recommended_min_free_kbytes(void)
f000565a
AA
139{
140 struct zone *zone;
141 int nr_zones = 0;
142 unsigned long recommended_min;
f000565a 143
f000565a
AA
144 for_each_populated_zone(zone)
145 nr_zones++;
146
974a786e 147 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
f000565a
AA
148 recommended_min = pageblock_nr_pages * nr_zones * 2;
149
150 /*
151 * Make sure that on average at least two pageblocks are almost free
152 * of another type, one for a migratetype to fall back to and a
153 * second to avoid subsequent fallbacks of other types There are 3
154 * MIGRATE_TYPES we care about.
155 */
156 recommended_min += pageblock_nr_pages * nr_zones *
157 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
158
159 /* don't ever allow to reserve more than 5% of the lowmem */
160 recommended_min = min(recommended_min,
161 (unsigned long) nr_free_buffer_pages() / 20);
162 recommended_min <<= (PAGE_SHIFT-10);
163
42aa83cb
HP
164 if (recommended_min > min_free_kbytes) {
165 if (user_min_free_kbytes >= 0)
166 pr_info("raising min_free_kbytes from %d to %lu "
167 "to help transparent hugepage allocations\n",
168 min_free_kbytes, recommended_min);
169
f000565a 170 min_free_kbytes = recommended_min;
42aa83cb 171 }
f000565a 172 setup_per_zone_wmarks();
f000565a 173}
f000565a 174
79553da2 175static int start_stop_khugepaged(void)
ba76149f
AA
176{
177 int err = 0;
178 if (khugepaged_enabled()) {
ba76149f
AA
179 if (!khugepaged_thread)
180 khugepaged_thread = kthread_run(khugepaged, NULL,
181 "khugepaged");
18e8e5c7 182 if (IS_ERR(khugepaged_thread)) {
ae3a8c1c 183 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
184 err = PTR_ERR(khugepaged_thread);
185 khugepaged_thread = NULL;
79553da2 186 goto fail;
ba76149f 187 }
911891af
XG
188
189 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 190 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
191
192 set_recommended_min_free_kbytes();
911891af 193 } else if (khugepaged_thread) {
911891af
XG
194 kthread_stop(khugepaged_thread);
195 khugepaged_thread = NULL;
196 }
79553da2 197fail:
ba76149f
AA
198 return err;
199}
71e3aac0 200
97ae1749 201static atomic_t huge_zero_refcount;
56873f43 202struct page *huge_zero_page __read_mostly;
4a6c1297 203
fc437044 204struct page *get_huge_zero_page(void)
97ae1749
KS
205{
206 struct page *zero_page;
207retry:
208 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 209 return READ_ONCE(huge_zero_page);
97ae1749
KS
210
211 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 212 HPAGE_PMD_ORDER);
d8a8e1f0
KS
213 if (!zero_page) {
214 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 215 return NULL;
d8a8e1f0
KS
216 }
217 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 218 preempt_disable();
5918d10a 219 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 220 preempt_enable();
5ddacbe9 221 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
222 goto retry;
223 }
224
225 /* We take additional reference here. It will be put back by shrinker */
226 atomic_set(&huge_zero_refcount, 2);
227 preempt_enable();
4db0c3c2 228 return READ_ONCE(huge_zero_page);
4a6c1297
KS
229}
230
97ae1749 231static void put_huge_zero_page(void)
4a6c1297 232{
97ae1749
KS
233 /*
234 * Counter should never go to zero here. Only shrinker can put
235 * last reference.
236 */
237 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
238}
239
48896466
GC
240static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
241 struct shrink_control *sc)
4a6c1297 242{
48896466
GC
243 /* we can free zero page only if last reference remains */
244 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
245}
97ae1749 246
48896466
GC
247static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
248 struct shrink_control *sc)
249{
97ae1749 250 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
251 struct page *zero_page = xchg(&huge_zero_page, NULL);
252 BUG_ON(zero_page == NULL);
5ddacbe9 253 __free_pages(zero_page, compound_order(zero_page));
48896466 254 return HPAGE_PMD_NR;
97ae1749
KS
255 }
256
257 return 0;
4a6c1297
KS
258}
259
97ae1749 260static struct shrinker huge_zero_page_shrinker = {
48896466
GC
261 .count_objects = shrink_huge_zero_page_count,
262 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
263 .seeks = DEFAULT_SEEKS,
264};
265
71e3aac0 266#ifdef CONFIG_SYSFS
ba76149f 267
71e3aac0
AA
268static ssize_t double_flag_show(struct kobject *kobj,
269 struct kobj_attribute *attr, char *buf,
270 enum transparent_hugepage_flag enabled,
271 enum transparent_hugepage_flag req_madv)
272{
273 if (test_bit(enabled, &transparent_hugepage_flags)) {
274 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
275 return sprintf(buf, "[always] madvise never\n");
276 } else if (test_bit(req_madv, &transparent_hugepage_flags))
277 return sprintf(buf, "always [madvise] never\n");
278 else
279 return sprintf(buf, "always madvise [never]\n");
280}
281static ssize_t double_flag_store(struct kobject *kobj,
282 struct kobj_attribute *attr,
283 const char *buf, size_t count,
284 enum transparent_hugepage_flag enabled,
285 enum transparent_hugepage_flag req_madv)
286{
287 if (!memcmp("always", buf,
288 min(sizeof("always")-1, count))) {
289 set_bit(enabled, &transparent_hugepage_flags);
290 clear_bit(req_madv, &transparent_hugepage_flags);
291 } else if (!memcmp("madvise", buf,
292 min(sizeof("madvise")-1, count))) {
293 clear_bit(enabled, &transparent_hugepage_flags);
294 set_bit(req_madv, &transparent_hugepage_flags);
295 } else if (!memcmp("never", buf,
296 min(sizeof("never")-1, count))) {
297 clear_bit(enabled, &transparent_hugepage_flags);
298 clear_bit(req_madv, &transparent_hugepage_flags);
299 } else
300 return -EINVAL;
301
302 return count;
303}
304
305static ssize_t enabled_show(struct kobject *kobj,
306 struct kobj_attribute *attr, char *buf)
307{
308 return double_flag_show(kobj, attr, buf,
309 TRANSPARENT_HUGEPAGE_FLAG,
310 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
311}
312static ssize_t enabled_store(struct kobject *kobj,
313 struct kobj_attribute *attr,
314 const char *buf, size_t count)
315{
ba76149f
AA
316 ssize_t ret;
317
318 ret = double_flag_store(kobj, attr, buf, count,
319 TRANSPARENT_HUGEPAGE_FLAG,
320 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
321
322 if (ret > 0) {
911891af
XG
323 int err;
324
325 mutex_lock(&khugepaged_mutex);
79553da2 326 err = start_stop_khugepaged();
911891af
XG
327 mutex_unlock(&khugepaged_mutex);
328
ba76149f
AA
329 if (err)
330 ret = err;
331 }
332
333 return ret;
71e3aac0
AA
334}
335static struct kobj_attribute enabled_attr =
336 __ATTR(enabled, 0644, enabled_show, enabled_store);
337
338static ssize_t single_flag_show(struct kobject *kobj,
339 struct kobj_attribute *attr, char *buf,
340 enum transparent_hugepage_flag flag)
341{
e27e6151
BH
342 return sprintf(buf, "%d\n",
343 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 344}
e27e6151 345
71e3aac0
AA
346static ssize_t single_flag_store(struct kobject *kobj,
347 struct kobj_attribute *attr,
348 const char *buf, size_t count,
349 enum transparent_hugepage_flag flag)
350{
e27e6151
BH
351 unsigned long value;
352 int ret;
353
354 ret = kstrtoul(buf, 10, &value);
355 if (ret < 0)
356 return ret;
357 if (value > 1)
358 return -EINVAL;
359
360 if (value)
71e3aac0 361 set_bit(flag, &transparent_hugepage_flags);
e27e6151 362 else
71e3aac0 363 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
364
365 return count;
366}
367
368/*
369 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
370 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
371 * memory just to allocate one more hugepage.
372 */
373static ssize_t defrag_show(struct kobject *kobj,
374 struct kobj_attribute *attr, char *buf)
375{
376 return double_flag_show(kobj, attr, buf,
377 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
378 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
379}
380static ssize_t defrag_store(struct kobject *kobj,
381 struct kobj_attribute *attr,
382 const char *buf, size_t count)
383{
384 return double_flag_store(kobj, attr, buf, count,
385 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
386 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
387}
388static struct kobj_attribute defrag_attr =
389 __ATTR(defrag, 0644, defrag_show, defrag_store);
390
79da5407
KS
391static ssize_t use_zero_page_show(struct kobject *kobj,
392 struct kobj_attribute *attr, char *buf)
393{
394 return single_flag_show(kobj, attr, buf,
395 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
396}
397static ssize_t use_zero_page_store(struct kobject *kobj,
398 struct kobj_attribute *attr, const char *buf, size_t count)
399{
400 return single_flag_store(kobj, attr, buf, count,
401 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
402}
403static struct kobj_attribute use_zero_page_attr =
404 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
405#ifdef CONFIG_DEBUG_VM
406static ssize_t debug_cow_show(struct kobject *kobj,
407 struct kobj_attribute *attr, char *buf)
408{
409 return single_flag_show(kobj, attr, buf,
410 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
411}
412static ssize_t debug_cow_store(struct kobject *kobj,
413 struct kobj_attribute *attr,
414 const char *buf, size_t count)
415{
416 return single_flag_store(kobj, attr, buf, count,
417 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
418}
419static struct kobj_attribute debug_cow_attr =
420 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
421#endif /* CONFIG_DEBUG_VM */
422
423static struct attribute *hugepage_attr[] = {
424 &enabled_attr.attr,
425 &defrag_attr.attr,
79da5407 426 &use_zero_page_attr.attr,
71e3aac0
AA
427#ifdef CONFIG_DEBUG_VM
428 &debug_cow_attr.attr,
429#endif
430 NULL,
431};
432
433static struct attribute_group hugepage_attr_group = {
434 .attrs = hugepage_attr,
ba76149f
AA
435};
436
437static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
438 struct kobj_attribute *attr,
439 char *buf)
440{
441 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
442}
443
444static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
445 struct kobj_attribute *attr,
446 const char *buf, size_t count)
447{
448 unsigned long msecs;
449 int err;
450
3dbb95f7 451 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
452 if (err || msecs > UINT_MAX)
453 return -EINVAL;
454
455 khugepaged_scan_sleep_millisecs = msecs;
456 wake_up_interruptible(&khugepaged_wait);
457
458 return count;
459}
460static struct kobj_attribute scan_sleep_millisecs_attr =
461 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
462 scan_sleep_millisecs_store);
463
464static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
465 struct kobj_attribute *attr,
466 char *buf)
467{
468 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
469}
470
471static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
472 struct kobj_attribute *attr,
473 const char *buf, size_t count)
474{
475 unsigned long msecs;
476 int err;
477
3dbb95f7 478 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
479 if (err || msecs > UINT_MAX)
480 return -EINVAL;
481
482 khugepaged_alloc_sleep_millisecs = msecs;
483 wake_up_interruptible(&khugepaged_wait);
484
485 return count;
486}
487static struct kobj_attribute alloc_sleep_millisecs_attr =
488 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
489 alloc_sleep_millisecs_store);
490
491static ssize_t pages_to_scan_show(struct kobject *kobj,
492 struct kobj_attribute *attr,
493 char *buf)
494{
495 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
496}
497static ssize_t pages_to_scan_store(struct kobject *kobj,
498 struct kobj_attribute *attr,
499 const char *buf, size_t count)
500{
501 int err;
502 unsigned long pages;
503
3dbb95f7 504 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
505 if (err || !pages || pages > UINT_MAX)
506 return -EINVAL;
507
508 khugepaged_pages_to_scan = pages;
509
510 return count;
511}
512static struct kobj_attribute pages_to_scan_attr =
513 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
514 pages_to_scan_store);
515
516static ssize_t pages_collapsed_show(struct kobject *kobj,
517 struct kobj_attribute *attr,
518 char *buf)
519{
520 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
521}
522static struct kobj_attribute pages_collapsed_attr =
523 __ATTR_RO(pages_collapsed);
524
525static ssize_t full_scans_show(struct kobject *kobj,
526 struct kobj_attribute *attr,
527 char *buf)
528{
529 return sprintf(buf, "%u\n", khugepaged_full_scans);
530}
531static struct kobj_attribute full_scans_attr =
532 __ATTR_RO(full_scans);
533
534static ssize_t khugepaged_defrag_show(struct kobject *kobj,
535 struct kobj_attribute *attr, char *buf)
536{
537 return single_flag_show(kobj, attr, buf,
538 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
539}
540static ssize_t khugepaged_defrag_store(struct kobject *kobj,
541 struct kobj_attribute *attr,
542 const char *buf, size_t count)
543{
544 return single_flag_store(kobj, attr, buf, count,
545 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
546}
547static struct kobj_attribute khugepaged_defrag_attr =
548 __ATTR(defrag, 0644, khugepaged_defrag_show,
549 khugepaged_defrag_store);
550
551/*
552 * max_ptes_none controls if khugepaged should collapse hugepages over
553 * any unmapped ptes in turn potentially increasing the memory
554 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
555 * reduce the available free memory in the system as it
556 * runs. Increasing max_ptes_none will instead potentially reduce the
557 * free memory in the system during the khugepaged scan.
558 */
559static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
560 struct kobj_attribute *attr,
561 char *buf)
562{
563 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
564}
565static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
566 struct kobj_attribute *attr,
567 const char *buf, size_t count)
568{
569 int err;
570 unsigned long max_ptes_none;
571
3dbb95f7 572 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
573 if (err || max_ptes_none > HPAGE_PMD_NR-1)
574 return -EINVAL;
575
576 khugepaged_max_ptes_none = max_ptes_none;
577
578 return count;
579}
580static struct kobj_attribute khugepaged_max_ptes_none_attr =
581 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
582 khugepaged_max_ptes_none_store);
583
584static struct attribute *khugepaged_attr[] = {
585 &khugepaged_defrag_attr.attr,
586 &khugepaged_max_ptes_none_attr.attr,
587 &pages_to_scan_attr.attr,
588 &pages_collapsed_attr.attr,
589 &full_scans_attr.attr,
590 &scan_sleep_millisecs_attr.attr,
591 &alloc_sleep_millisecs_attr.attr,
592 NULL,
593};
594
595static struct attribute_group khugepaged_attr_group = {
596 .attrs = khugepaged_attr,
597 .name = "khugepaged",
71e3aac0 598};
71e3aac0 599
569e5590 600static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 601{
71e3aac0
AA
602 int err;
603
569e5590
SL
604 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
605 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 606 pr_err("failed to create transparent hugepage kobject\n");
569e5590 607 return -ENOMEM;
ba76149f
AA
608 }
609
569e5590 610 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 611 if (err) {
ae3a8c1c 612 pr_err("failed to register transparent hugepage group\n");
569e5590 613 goto delete_obj;
ba76149f
AA
614 }
615
569e5590 616 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 617 if (err) {
ae3a8c1c 618 pr_err("failed to register transparent hugepage group\n");
569e5590 619 goto remove_hp_group;
ba76149f 620 }
569e5590
SL
621
622 return 0;
623
624remove_hp_group:
625 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
626delete_obj:
627 kobject_put(*hugepage_kobj);
628 return err;
629}
630
631static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
632{
633 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
634 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
635 kobject_put(hugepage_kobj);
636}
637#else
638static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
639{
640 return 0;
641}
642
643static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
644{
645}
646#endif /* CONFIG_SYSFS */
647
648static int __init hugepage_init(void)
649{
650 int err;
651 struct kobject *hugepage_kobj;
652
653 if (!has_transparent_hugepage()) {
654 transparent_hugepage_flags = 0;
655 return -EINVAL;
656 }
657
658 err = hugepage_init_sysfs(&hugepage_kobj);
659 if (err)
65ebb64f 660 goto err_sysfs;
ba76149f
AA
661
662 err = khugepaged_slab_init();
663 if (err)
65ebb64f 664 goto err_slab;
ba76149f 665
65ebb64f
KS
666 err = register_shrinker(&huge_zero_page_shrinker);
667 if (err)
668 goto err_hzp_shrinker;
97ae1749 669
97562cd2
RR
670 /*
671 * By default disable transparent hugepages on smaller systems,
672 * where the extra memory used could hurt more than TLB overhead
673 * is likely to save. The admin can still enable it through /sys.
674 */
79553da2 675 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 676 transparent_hugepage_flags = 0;
79553da2
KS
677 return 0;
678 }
97562cd2 679
79553da2 680 err = start_stop_khugepaged();
65ebb64f
KS
681 if (err)
682 goto err_khugepaged;
ba76149f 683
569e5590 684 return 0;
65ebb64f
KS
685err_khugepaged:
686 unregister_shrinker(&huge_zero_page_shrinker);
687err_hzp_shrinker:
688 khugepaged_slab_exit();
689err_slab:
569e5590 690 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 691err_sysfs:
ba76149f 692 return err;
71e3aac0 693}
a64fb3cd 694subsys_initcall(hugepage_init);
71e3aac0
AA
695
696static int __init setup_transparent_hugepage(char *str)
697{
698 int ret = 0;
699 if (!str)
700 goto out;
701 if (!strcmp(str, "always")) {
702 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
703 &transparent_hugepage_flags);
704 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
705 &transparent_hugepage_flags);
706 ret = 1;
707 } else if (!strcmp(str, "madvise")) {
708 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
709 &transparent_hugepage_flags);
710 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
711 &transparent_hugepage_flags);
712 ret = 1;
713 } else if (!strcmp(str, "never")) {
714 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
715 &transparent_hugepage_flags);
716 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
717 &transparent_hugepage_flags);
718 ret = 1;
719 }
720out:
721 if (!ret)
ae3a8c1c 722 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
723 return ret;
724}
725__setup("transparent_hugepage=", setup_transparent_hugepage);
726
b32967ff 727pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
728{
729 if (likely(vma->vm_flags & VM_WRITE))
730 pmd = pmd_mkwrite(pmd);
731 return pmd;
732}
733
3122359a 734static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
735{
736 pmd_t entry;
3122359a 737 entry = mk_pmd(page, prot);
b3092b3b
BL
738 entry = pmd_mkhuge(entry);
739 return entry;
740}
741
71e3aac0
AA
742static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
743 struct vm_area_struct *vma,
230c92a8 744 unsigned long address, pmd_t *pmd,
6b251fc9
AA
745 struct page *page, gfp_t gfp,
746 unsigned int flags)
71e3aac0 747{
00501b53 748 struct mem_cgroup *memcg;
71e3aac0 749 pgtable_t pgtable;
c4088ebd 750 spinlock_t *ptl;
230c92a8 751 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 752
309381fe 753 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 754
f627c2f5 755 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
6b251fc9
AA
756 put_page(page);
757 count_vm_event(THP_FAULT_FALLBACK);
758 return VM_FAULT_FALLBACK;
759 }
00501b53 760
71e3aac0 761 pgtable = pte_alloc_one(mm, haddr);
00501b53 762 if (unlikely(!pgtable)) {
f627c2f5 763 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 764 put_page(page);
71e3aac0 765 return VM_FAULT_OOM;
00501b53 766 }
71e3aac0
AA
767
768 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
769 /*
770 * The memory barrier inside __SetPageUptodate makes sure that
771 * clear_huge_page writes become visible before the set_pmd_at()
772 * write.
773 */
71e3aac0
AA
774 __SetPageUptodate(page);
775
c4088ebd 776 ptl = pmd_lock(mm, pmd);
71e3aac0 777 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 778 spin_unlock(ptl);
f627c2f5 779 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0
AA
780 put_page(page);
781 pte_free(mm, pgtable);
782 } else {
783 pmd_t entry;
6b251fc9
AA
784
785 /* Deliver the page fault to userland */
786 if (userfaultfd_missing(vma)) {
787 int ret;
788
789 spin_unlock(ptl);
f627c2f5 790 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9
AA
791 put_page(page);
792 pte_free(mm, pgtable);
230c92a8 793 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
794 VM_UFFD_MISSING);
795 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
796 return ret;
797 }
798
3122359a
KS
799 entry = mk_huge_pmd(page, vma->vm_page_prot);
800 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 801 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 802 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 803 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 804 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 805 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 806 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 807 atomic_long_inc(&mm->nr_ptes);
c4088ebd 808 spin_unlock(ptl);
6b251fc9 809 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
810 }
811
aa2e878e 812 return 0;
71e3aac0
AA
813}
814
cc5d462f 815static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 816{
71baba4b 817 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
0bbbc0b3
AA
818}
819
c4088ebd 820/* Caller must hold page table lock. */
d295e341 821static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 822 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 823 struct page *zero_page)
fc9fe822
KS
824{
825 pmd_t entry;
7c414164
AM
826 if (!pmd_none(*pmd))
827 return false;
5918d10a 828 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 829 entry = pmd_mkhuge(entry);
6b0b50b0 830 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 831 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 832 atomic_long_inc(&mm->nr_ptes);
7c414164 833 return true;
fc9fe822
KS
834}
835
71e3aac0
AA
836int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
837 unsigned long address, pmd_t *pmd,
838 unsigned int flags)
839{
077fcf11 840 gfp_t gfp;
71e3aac0
AA
841 struct page *page;
842 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 843
128ec037 844 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 845 return VM_FAULT_FALLBACK;
7479df6d
KS
846 if (vma->vm_flags & VM_LOCKED)
847 return VM_FAULT_FALLBACK;
128ec037
KS
848 if (unlikely(anon_vma_prepare(vma)))
849 return VM_FAULT_OOM;
6d50e60c 850 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 851 return VM_FAULT_OOM;
593befa6 852 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 853 transparent_hugepage_use_zero_page()) {
c4088ebd 854 spinlock_t *ptl;
128ec037
KS
855 pgtable_t pgtable;
856 struct page *zero_page;
857 bool set;
6b251fc9 858 int ret;
128ec037
KS
859 pgtable = pte_alloc_one(mm, haddr);
860 if (unlikely(!pgtable))
ba76149f 861 return VM_FAULT_OOM;
128ec037
KS
862 zero_page = get_huge_zero_page();
863 if (unlikely(!zero_page)) {
864 pte_free(mm, pgtable);
81ab4201 865 count_vm_event(THP_FAULT_FALLBACK);
c0292554 866 return VM_FAULT_FALLBACK;
b9bbfbe3 867 }
c4088ebd 868 ptl = pmd_lock(mm, pmd);
6b251fc9
AA
869 ret = 0;
870 set = false;
871 if (pmd_none(*pmd)) {
872 if (userfaultfd_missing(vma)) {
873 spin_unlock(ptl);
230c92a8 874 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
875 VM_UFFD_MISSING);
876 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
877 } else {
878 set_huge_zero_page(pgtable, mm, vma,
879 haddr, pmd,
880 zero_page);
881 spin_unlock(ptl);
882 set = true;
883 }
884 } else
885 spin_unlock(ptl);
128ec037
KS
886 if (!set) {
887 pte_free(mm, pgtable);
888 put_huge_zero_page();
edad9d2c 889 }
6b251fc9 890 return ret;
71e3aac0 891 }
077fcf11
AK
892 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
893 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
894 if (unlikely(!page)) {
895 count_vm_event(THP_FAULT_FALLBACK);
c0292554 896 return VM_FAULT_FALLBACK;
128ec037 897 }
230c92a8
AA
898 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
899 flags);
71e3aac0
AA
900}
901
ae18d6dc 902static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
5cad465d
MW
903 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
904{
905 struct mm_struct *mm = vma->vm_mm;
906 pmd_t entry;
907 spinlock_t *ptl;
908
909 ptl = pmd_lock(mm, pmd);
910 if (pmd_none(*pmd)) {
911 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
912 if (write) {
913 entry = pmd_mkyoung(pmd_mkdirty(entry));
914 entry = maybe_pmd_mkwrite(entry, vma);
915 }
916 set_pmd_at(mm, addr, pmd, entry);
917 update_mmu_cache_pmd(vma, addr, pmd);
918 }
919 spin_unlock(ptl);
5cad465d
MW
920}
921
922int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
923 pmd_t *pmd, unsigned long pfn, bool write)
924{
925 pgprot_t pgprot = vma->vm_page_prot;
926 /*
927 * If we had pmd_special, we could avoid all these restrictions,
928 * but we need to be consistent with PTEs and architectures that
929 * can't support a 'special' bit.
930 */
931 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
932 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
933 (VM_PFNMAP|VM_MIXEDMAP));
934 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
935 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
936
937 if (addr < vma->vm_start || addr >= vma->vm_end)
938 return VM_FAULT_SIGBUS;
939 if (track_pfn_insert(vma, &pgprot, pfn))
940 return VM_FAULT_SIGBUS;
ae18d6dc
MW
941 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
942 return VM_FAULT_NOPAGE;
5cad465d
MW
943}
944
71e3aac0
AA
945int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
947 struct vm_area_struct *vma)
948{
c4088ebd 949 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
950 struct page *src_page;
951 pmd_t pmd;
952 pgtable_t pgtable;
953 int ret;
954
955 ret = -ENOMEM;
956 pgtable = pte_alloc_one(dst_mm, addr);
957 if (unlikely(!pgtable))
958 goto out;
959
c4088ebd
KS
960 dst_ptl = pmd_lock(dst_mm, dst_pmd);
961 src_ptl = pmd_lockptr(src_mm, src_pmd);
962 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
963
964 ret = -EAGAIN;
965 pmd = *src_pmd;
966 if (unlikely(!pmd_trans_huge(pmd))) {
967 pte_free(dst_mm, pgtable);
968 goto out_unlock;
969 }
fc9fe822 970 /*
c4088ebd 971 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
972 * under splitting since we don't split the page itself, only pmd to
973 * a page table.
974 */
975 if (is_huge_zero_pmd(pmd)) {
5918d10a 976 struct page *zero_page;
97ae1749
KS
977 /*
978 * get_huge_zero_page() will never allocate a new page here,
979 * since we already have a zero page to copy. It just takes a
980 * reference.
981 */
5918d10a 982 zero_page = get_huge_zero_page();
6b251fc9 983 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 984 zero_page);
fc9fe822
KS
985 ret = 0;
986 goto out_unlock;
987 }
de466bd6 988
71e3aac0
AA
989 if (unlikely(pmd_trans_splitting(pmd))) {
990 /* split huge page running from under us */
c4088ebd
KS
991 spin_unlock(src_ptl);
992 spin_unlock(dst_ptl);
71e3aac0
AA
993 pte_free(dst_mm, pgtable);
994
995 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
996 goto out;
997 }
998 src_page = pmd_page(pmd);
309381fe 999 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
71e3aac0
AA
1000 get_page(src_page);
1001 page_dup_rmap(src_page);
1002 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1003
1004 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1005 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 1006 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 1007 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e1f56c89 1008 atomic_long_inc(&dst_mm->nr_ptes);
71e3aac0
AA
1009
1010 ret = 0;
1011out_unlock:
c4088ebd
KS
1012 spin_unlock(src_ptl);
1013 spin_unlock(dst_ptl);
71e3aac0
AA
1014out:
1015 return ret;
1016}
1017
a1dd450b
WD
1018void huge_pmd_set_accessed(struct mm_struct *mm,
1019 struct vm_area_struct *vma,
1020 unsigned long address,
1021 pmd_t *pmd, pmd_t orig_pmd,
1022 int dirty)
1023{
c4088ebd 1024 spinlock_t *ptl;
a1dd450b
WD
1025 pmd_t entry;
1026 unsigned long haddr;
1027
c4088ebd 1028 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
1029 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1030 goto unlock;
1031
1032 entry = pmd_mkyoung(orig_pmd);
1033 haddr = address & HPAGE_PMD_MASK;
1034 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1035 update_mmu_cache_pmd(vma, address, pmd);
1036
1037unlock:
c4088ebd 1038 spin_unlock(ptl);
a1dd450b
WD
1039}
1040
5338a937
HD
1041/*
1042 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
1043 * during copy_user_huge_page()'s copy_page_rep(): in the case when
1044 * the source page gets split and a tail freed before copy completes.
1045 * Called under pmd_lock of checked pmd, so safe from splitting itself.
1046 */
1047static void get_user_huge_page(struct page *page)
1048{
1049 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1050 struct page *endpage = page + HPAGE_PMD_NR;
1051
1052 atomic_add(HPAGE_PMD_NR, &page->_count);
1053 while (++page < endpage)
1054 get_huge_page_tail(page);
1055 } else {
1056 get_page(page);
1057 }
1058}
1059
1060static void put_user_huge_page(struct page *page)
1061{
1062 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1063 struct page *endpage = page + HPAGE_PMD_NR;
1064
1065 while (page < endpage)
1066 put_page(page++);
1067 } else {
1068 put_page(page);
1069 }
1070}
1071
71e3aac0
AA
1072static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1073 struct vm_area_struct *vma,
1074 unsigned long address,
1075 pmd_t *pmd, pmd_t orig_pmd,
1076 struct page *page,
1077 unsigned long haddr)
1078{
00501b53 1079 struct mem_cgroup *memcg;
c4088ebd 1080 spinlock_t *ptl;
71e3aac0
AA
1081 pgtable_t pgtable;
1082 pmd_t _pmd;
1083 int ret = 0, i;
1084 struct page **pages;
2ec74c3e
SG
1085 unsigned long mmun_start; /* For mmu_notifiers */
1086 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1087
1088 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1089 GFP_KERNEL);
1090 if (unlikely(!pages)) {
1091 ret |= VM_FAULT_OOM;
1092 goto out;
1093 }
1094
1095 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1096 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1097 __GFP_OTHER_NODE,
19ee151e 1098 vma, address, page_to_nid(page));
b9bbfbe3 1099 if (unlikely(!pages[i] ||
00501b53 1100 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
f627c2f5 1101 &memcg, false))) {
b9bbfbe3 1102 if (pages[i])
71e3aac0 1103 put_page(pages[i]);
b9bbfbe3 1104 while (--i >= 0) {
00501b53
JW
1105 memcg = (void *)page_private(pages[i]);
1106 set_page_private(pages[i], 0);
f627c2f5
KS
1107 mem_cgroup_cancel_charge(pages[i], memcg,
1108 false);
b9bbfbe3
AA
1109 put_page(pages[i]);
1110 }
71e3aac0
AA
1111 kfree(pages);
1112 ret |= VM_FAULT_OOM;
1113 goto out;
1114 }
00501b53 1115 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1116 }
1117
1118 for (i = 0; i < HPAGE_PMD_NR; i++) {
1119 copy_user_highpage(pages[i], page + i,
0089e485 1120 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1121 __SetPageUptodate(pages[i]);
1122 cond_resched();
1123 }
1124
2ec74c3e
SG
1125 mmun_start = haddr;
1126 mmun_end = haddr + HPAGE_PMD_SIZE;
1127 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1128
c4088ebd 1129 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1130 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1131 goto out_free_pages;
309381fe 1132 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1133
8809aa2d 1134 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1135 /* leave pmd empty until pte is filled */
1136
6b0b50b0 1137 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1138 pmd_populate(mm, &_pmd, pgtable);
1139
1140 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1141 pte_t *pte, entry;
1142 entry = mk_pte(pages[i], vma->vm_page_prot);
1143 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1144 memcg = (void *)page_private(pages[i]);
1145 set_page_private(pages[i], 0);
d281ee61 1146 page_add_new_anon_rmap(pages[i], vma, haddr, false);
f627c2f5 1147 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1148 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1149 pte = pte_offset_map(&_pmd, haddr);
1150 VM_BUG_ON(!pte_none(*pte));
1151 set_pte_at(mm, haddr, pte, entry);
1152 pte_unmap(pte);
1153 }
1154 kfree(pages);
1155
71e3aac0
AA
1156 smp_wmb(); /* make pte visible before pmd */
1157 pmd_populate(mm, pmd, pgtable);
d281ee61 1158 page_remove_rmap(page, true);
c4088ebd 1159 spin_unlock(ptl);
71e3aac0 1160
2ec74c3e
SG
1161 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1162
71e3aac0
AA
1163 ret |= VM_FAULT_WRITE;
1164 put_page(page);
1165
1166out:
1167 return ret;
1168
1169out_free_pages:
c4088ebd 1170 spin_unlock(ptl);
2ec74c3e 1171 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1172 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1173 memcg = (void *)page_private(pages[i]);
1174 set_page_private(pages[i], 0);
f627c2f5 1175 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1176 put_page(pages[i]);
b9bbfbe3 1177 }
71e3aac0
AA
1178 kfree(pages);
1179 goto out;
1180}
1181
1182int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1183 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1184{
c4088ebd 1185 spinlock_t *ptl;
71e3aac0 1186 int ret = 0;
93b4796d 1187 struct page *page = NULL, *new_page;
00501b53 1188 struct mem_cgroup *memcg;
71e3aac0 1189 unsigned long haddr;
2ec74c3e
SG
1190 unsigned long mmun_start; /* For mmu_notifiers */
1191 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1192 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1193
c4088ebd 1194 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1195 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1196 haddr = address & HPAGE_PMD_MASK;
1197 if (is_huge_zero_pmd(orig_pmd))
1198 goto alloc;
c4088ebd 1199 spin_lock(ptl);
71e3aac0
AA
1200 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1201 goto out_unlock;
1202
1203 page = pmd_page(orig_pmd);
309381fe 1204 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1205 /*
1206 * We can only reuse the page if nobody else maps the huge page or it's
1207 * part. We can do it by checking page_mapcount() on each sub-page, but
1208 * it's expensive.
1209 * The cheaper way is to check page_count() to be equal 1: every
1210 * mapcount takes page reference reference, so this way we can
1211 * guarantee, that the PMD is the only mapping.
1212 * This can give false negative if somebody pinned the page, but that's
1213 * fine.
1214 */
1215 if (page_mapcount(page) == 1 && page_count(page) == 1) {
71e3aac0
AA
1216 pmd_t entry;
1217 entry = pmd_mkyoung(orig_pmd);
1218 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1219 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1220 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1221 ret |= VM_FAULT_WRITE;
1222 goto out_unlock;
1223 }
5338a937 1224 get_user_huge_page(page);
c4088ebd 1225 spin_unlock(ptl);
93b4796d 1226alloc:
71e3aac0 1227 if (transparent_hugepage_enabled(vma) &&
077fcf11 1228 !transparent_hugepage_debug_cow()) {
3b363692
MH
1229 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1230 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1231 } else
71e3aac0
AA
1232 new_page = NULL;
1233
1234 if (unlikely(!new_page)) {
eecc1e42 1235 if (!page) {
e9b71ca9
KS
1236 split_huge_page_pmd(vma, address, pmd);
1237 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1238 } else {
1239 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1240 pmd, orig_pmd, page, haddr);
9845cbbd 1241 if (ret & VM_FAULT_OOM) {
93b4796d 1242 split_huge_page(page);
9845cbbd
KS
1243 ret |= VM_FAULT_FALLBACK;
1244 }
5338a937 1245 put_user_huge_page(page);
93b4796d 1246 }
17766dde 1247 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1248 goto out;
1249 }
1250
f627c2f5
KS
1251 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1252 true))) {
b9bbfbe3 1253 put_page(new_page);
93b4796d
KS
1254 if (page) {
1255 split_huge_page(page);
5338a937 1256 put_user_huge_page(page);
9845cbbd
KS
1257 } else
1258 split_huge_page_pmd(vma, address, pmd);
1259 ret |= VM_FAULT_FALLBACK;
17766dde 1260 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1261 goto out;
1262 }
1263
17766dde
DR
1264 count_vm_event(THP_FAULT_ALLOC);
1265
eecc1e42 1266 if (!page)
93b4796d
KS
1267 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1268 else
1269 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1270 __SetPageUptodate(new_page);
1271
2ec74c3e
SG
1272 mmun_start = haddr;
1273 mmun_end = haddr + HPAGE_PMD_SIZE;
1274 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1275
c4088ebd 1276 spin_lock(ptl);
93b4796d 1277 if (page)
5338a937 1278 put_user_huge_page(page);
b9bbfbe3 1279 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1280 spin_unlock(ptl);
f627c2f5 1281 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1282 put_page(new_page);
2ec74c3e 1283 goto out_mn;
b9bbfbe3 1284 } else {
71e3aac0 1285 pmd_t entry;
3122359a
KS
1286 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1287 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
8809aa2d 1288 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
d281ee61 1289 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1290 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1291 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1292 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1293 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1294 if (!page) {
93b4796d 1295 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1296 put_huge_zero_page();
1297 } else {
309381fe 1298 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1299 page_remove_rmap(page, true);
93b4796d
KS
1300 put_page(page);
1301 }
71e3aac0
AA
1302 ret |= VM_FAULT_WRITE;
1303 }
c4088ebd 1304 spin_unlock(ptl);
2ec74c3e
SG
1305out_mn:
1306 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1307out:
1308 return ret;
2ec74c3e 1309out_unlock:
c4088ebd 1310 spin_unlock(ptl);
2ec74c3e 1311 return ret;
71e3aac0
AA
1312}
1313
b676b293 1314struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1315 unsigned long addr,
1316 pmd_t *pmd,
1317 unsigned int flags)
1318{
b676b293 1319 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1320 struct page *page = NULL;
1321
c4088ebd 1322 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1323
1324 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1325 goto out;
1326
85facf25
KS
1327 /* Avoid dumping huge zero page */
1328 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1329 return ERR_PTR(-EFAULT);
1330
2b4847e7 1331 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1332 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1333 goto out;
1334
71e3aac0 1335 page = pmd_page(*pmd);
309381fe 1336 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0
AA
1337 if (flags & FOLL_TOUCH) {
1338 pmd_t _pmd;
1339 /*
1340 * We should set the dirty bit only for FOLL_WRITE but
1341 * for now the dirty bit in the pmd is meaningless.
1342 * And if the dirty bit will become meaningful and
1343 * we'll only set it with FOLL_WRITE, an atomic
1344 * set_bit will be required on the pmd to set the
1345 * young bit, instead of the current set_pmd_at.
1346 */
1347 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1348 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1349 pmd, _pmd, 1))
1350 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1351 }
de60f5f1 1352 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
b676b293
DR
1353 if (page->mapping && trylock_page(page)) {
1354 lru_add_drain();
1355 if (page->mapping)
1356 mlock_vma_page(page);
1357 unlock_page(page);
1358 }
1359 }
71e3aac0 1360 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1361 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1362 if (flags & FOLL_GET)
70b50f94 1363 get_page_foll(page);
71e3aac0
AA
1364
1365out:
1366 return page;
1367}
1368
d10e63f2 1369/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1370int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1371 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1372{
c4088ebd 1373 spinlock_t *ptl;
b8916634 1374 struct anon_vma *anon_vma = NULL;
b32967ff 1375 struct page *page;
d10e63f2 1376 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1377 int page_nid = -1, this_nid = numa_node_id();
90572890 1378 int target_nid, last_cpupid = -1;
8191acbd
MG
1379 bool page_locked;
1380 bool migrated = false;
b191f9b1 1381 bool was_writable;
6688cc05 1382 int flags = 0;
d10e63f2 1383
c0e7cad9
MG
1384 /* A PROT_NONE fault should not end up here */
1385 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1386
c4088ebd 1387 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1388 if (unlikely(!pmd_same(pmd, *pmdp)))
1389 goto out_unlock;
1390
de466bd6
MG
1391 /*
1392 * If there are potential migrations, wait for completion and retry
1393 * without disrupting NUMA hinting information. Do not relock and
1394 * check_same as the page may no longer be mapped.
1395 */
1396 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1397 page = pmd_page(*pmdp);
de466bd6 1398 spin_unlock(ptl);
5d833062 1399 wait_on_page_locked(page);
de466bd6
MG
1400 goto out;
1401 }
1402
d10e63f2 1403 page = pmd_page(pmd);
a1a46184 1404 BUG_ON(is_huge_zero_page(page));
8191acbd 1405 page_nid = page_to_nid(page);
90572890 1406 last_cpupid = page_cpupid_last(page);
03c5a6e1 1407 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1408 if (page_nid == this_nid) {
03c5a6e1 1409 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1410 flags |= TNF_FAULT_LOCAL;
1411 }
4daae3b4 1412
bea66fbd
MG
1413 /* See similar comment in do_numa_page for explanation */
1414 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1415 flags |= TNF_NO_GROUP;
1416
ff9042b1
MG
1417 /*
1418 * Acquire the page lock to serialise THP migrations but avoid dropping
1419 * page_table_lock if at all possible
1420 */
b8916634
MG
1421 page_locked = trylock_page(page);
1422 target_nid = mpol_misplaced(page, vma, haddr);
1423 if (target_nid == -1) {
1424 /* If the page was locked, there are no parallel migrations */
a54a407f 1425 if (page_locked)
b8916634 1426 goto clear_pmdnuma;
2b4847e7 1427 }
4daae3b4 1428
de466bd6 1429 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1430 if (!page_locked) {
c4088ebd 1431 spin_unlock(ptl);
b8916634 1432 wait_on_page_locked(page);
a54a407f 1433 page_nid = -1;
b8916634
MG
1434 goto out;
1435 }
1436
2b4847e7
MG
1437 /*
1438 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1439 * to serialises splits
1440 */
b8916634 1441 get_page(page);
c4088ebd 1442 spin_unlock(ptl);
b8916634 1443 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1444
c69307d5 1445 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1446 spin_lock(ptl);
b32967ff
MG
1447 if (unlikely(!pmd_same(pmd, *pmdp))) {
1448 unlock_page(page);
1449 put_page(page);
a54a407f 1450 page_nid = -1;
4daae3b4 1451 goto out_unlock;
b32967ff 1452 }
ff9042b1 1453
c3a489ca
MG
1454 /* Bail if we fail to protect against THP splits for any reason */
1455 if (unlikely(!anon_vma)) {
1456 put_page(page);
1457 page_nid = -1;
1458 goto clear_pmdnuma;
1459 }
1460
a54a407f
MG
1461 /*
1462 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1463 * and access rights restored.
a54a407f 1464 */
c4088ebd 1465 spin_unlock(ptl);
b32967ff 1466 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1467 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1468 if (migrated) {
1469 flags |= TNF_MIGRATED;
8191acbd 1470 page_nid = target_nid;
074c2381
MG
1471 } else
1472 flags |= TNF_MIGRATE_FAIL;
b32967ff 1473
8191acbd 1474 goto out;
b32967ff 1475clear_pmdnuma:
a54a407f 1476 BUG_ON(!PageLocked(page));
b191f9b1 1477 was_writable = pmd_write(pmd);
4d942466 1478 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1479 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1480 if (was_writable)
1481 pmd = pmd_mkwrite(pmd);
d10e63f2 1482 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1483 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1484 unlock_page(page);
d10e63f2 1485out_unlock:
c4088ebd 1486 spin_unlock(ptl);
b8916634
MG
1487
1488out:
1489 if (anon_vma)
1490 page_unlock_anon_vma_read(anon_vma);
1491
8191acbd 1492 if (page_nid != -1)
6688cc05 1493 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1494
d10e63f2
MG
1495 return 0;
1496}
1497
71e3aac0 1498int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1499 pmd_t *pmd, unsigned long addr)
71e3aac0 1500{
da146769 1501 pmd_t orig_pmd;
bf929152 1502 spinlock_t *ptl;
71e3aac0 1503
da146769
KS
1504 if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
1505 return 0;
1506 /*
1507 * For architectures like ppc64 we look at deposited pgtable
1508 * when calling pmdp_huge_get_and_clear. So do the
1509 * pgtable_trans_huge_withdraw after finishing pmdp related
1510 * operations.
1511 */
1512 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1513 tlb->fullmm);
1514 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1515 if (vma_is_dax(vma)) {
1516 spin_unlock(ptl);
1517 if (is_huge_zero_pmd(orig_pmd))
97ae1749 1518 put_huge_zero_page();
da146769
KS
1519 } else if (is_huge_zero_pmd(orig_pmd)) {
1520 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1521 atomic_long_dec(&tlb->mm->nr_ptes);
1522 spin_unlock(ptl);
1523 put_huge_zero_page();
1524 } else {
1525 struct page *page = pmd_page(orig_pmd);
d281ee61 1526 page_remove_rmap(page, true);
da146769
KS
1527 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1528 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1529 VM_BUG_ON_PAGE(!PageHead(page), page);
1530 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1531 atomic_long_dec(&tlb->mm->nr_ptes);
1532 spin_unlock(ptl);
1533 tlb_remove_page(tlb, page);
025c5b24 1534 }
da146769 1535 return 1;
71e3aac0
AA
1536}
1537
37a1c49a
AA
1538int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1539 unsigned long old_addr,
1540 unsigned long new_addr, unsigned long old_end,
1541 pmd_t *old_pmd, pmd_t *new_pmd)
1542{
bf929152 1543 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1544 int ret = 0;
1545 pmd_t pmd;
1546
1547 struct mm_struct *mm = vma->vm_mm;
1548
1549 if ((old_addr & ~HPAGE_PMD_MASK) ||
1550 (new_addr & ~HPAGE_PMD_MASK) ||
1551 old_end - old_addr < HPAGE_PMD_SIZE ||
1552 (new_vma->vm_flags & VM_NOHUGEPAGE))
1553 goto out;
1554
1555 /*
1556 * The destination pmd shouldn't be established, free_pgtables()
1557 * should have release it.
1558 */
1559 if (WARN_ON(!pmd_none(*new_pmd))) {
1560 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1561 goto out;
1562 }
1563
bf929152
KS
1564 /*
1565 * We don't have to worry about the ordering of src and dst
1566 * ptlocks because exclusive mmap_sem prevents deadlock.
1567 */
1568 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
025c5b24 1569 if (ret == 1) {
bf929152
KS
1570 new_ptl = pmd_lockptr(mm, new_pmd);
1571 if (new_ptl != old_ptl)
1572 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1573 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1574 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1575
b3084f4d
AK
1576 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1577 pgtable_t pgtable;
3592806c
KS
1578 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1579 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1580 }
b3084f4d
AK
1581 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1582 if (new_ptl != old_ptl)
1583 spin_unlock(new_ptl);
bf929152 1584 spin_unlock(old_ptl);
37a1c49a
AA
1585 }
1586out:
1587 return ret;
1588}
1589
f123d74a
MG
1590/*
1591 * Returns
1592 * - 0 if PMD could not be locked
1593 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1594 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1595 */
cd7548ab 1596int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1597 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1598{
1599 struct mm_struct *mm = vma->vm_mm;
bf929152 1600 spinlock_t *ptl;
cd7548ab
JW
1601 int ret = 0;
1602
bf929152 1603 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24 1604 pmd_t entry;
b191f9b1 1605 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1606 ret = 1;
e944fd67
MG
1607
1608 /*
1609 * Avoid trapping faults against the zero page. The read-only
1610 * data is likely to be read-cached on the local CPU and
1611 * local/remote hits to the zero page are not interesting.
1612 */
1613 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1614 spin_unlock(ptl);
ba68bc01 1615 return ret;
e944fd67
MG
1616 }
1617
10c1045f 1618 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1619 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1620 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1621 if (preserve_write)
1622 entry = pmd_mkwrite(entry);
10c1045f
MG
1623 ret = HPAGE_PMD_NR;
1624 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1625 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1626 }
bf929152 1627 spin_unlock(ptl);
025c5b24
NH
1628 }
1629
1630 return ret;
1631}
1632
1633/*
1634 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1635 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1636 *
1637 * Note that if it returns 1, this routine returns without unlocking page
1638 * table locks. So callers must unlock them.
1639 */
bf929152
KS
1640int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1641 spinlock_t **ptl)
025c5b24 1642{
bf929152 1643 *ptl = pmd_lock(vma->vm_mm, pmd);
cd7548ab
JW
1644 if (likely(pmd_trans_huge(*pmd))) {
1645 if (unlikely(pmd_trans_splitting(*pmd))) {
bf929152 1646 spin_unlock(*ptl);
cd7548ab 1647 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1648 return -1;
cd7548ab 1649 } else {
025c5b24
NH
1650 /* Thp mapped by 'pmd' is stable, so we can
1651 * handle it as it is. */
1652 return 1;
cd7548ab 1653 }
025c5b24 1654 }
bf929152 1655 spin_unlock(*ptl);
025c5b24 1656 return 0;
cd7548ab
JW
1657}
1658
117b0791
KS
1659/*
1660 * This function returns whether a given @page is mapped onto the @address
1661 * in the virtual space of @mm.
1662 *
1663 * When it's true, this function returns *pmd with holding the page table lock
1664 * and passing it back to the caller via @ptl.
1665 * If it's false, returns NULL without holding the page table lock.
1666 */
71e3aac0
AA
1667pmd_t *page_check_address_pmd(struct page *page,
1668 struct mm_struct *mm,
1669 unsigned long address,
117b0791
KS
1670 enum page_check_address_pmd_flag flag,
1671 spinlock_t **ptl)
71e3aac0 1672{
b5a8cad3
KS
1673 pgd_t *pgd;
1674 pud_t *pud;
117b0791 1675 pmd_t *pmd;
71e3aac0
AA
1676
1677 if (address & ~HPAGE_PMD_MASK)
117b0791 1678 return NULL;
71e3aac0 1679
b5a8cad3
KS
1680 pgd = pgd_offset(mm, address);
1681 if (!pgd_present(*pgd))
117b0791 1682 return NULL;
b5a8cad3
KS
1683 pud = pud_offset(pgd, address);
1684 if (!pud_present(*pud))
1685 return NULL;
1686 pmd = pmd_offset(pud, address);
1687
117b0791 1688 *ptl = pmd_lock(mm, pmd);
b5a8cad3 1689 if (!pmd_present(*pmd))
117b0791 1690 goto unlock;
71e3aac0 1691 if (pmd_page(*pmd) != page)
117b0791 1692 goto unlock;
94fcc585
AA
1693 /*
1694 * split_vma() may create temporary aliased mappings. There is
1695 * no risk as long as all huge pmd are found and have their
1696 * splitting bit set before __split_huge_page_refcount
1697 * runs. Finding the same huge pmd more than once during the
1698 * same rmap walk is not a problem.
1699 */
1700 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1701 pmd_trans_splitting(*pmd))
117b0791 1702 goto unlock;
71e3aac0
AA
1703 if (pmd_trans_huge(*pmd)) {
1704 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1705 !pmd_trans_splitting(*pmd));
117b0791 1706 return pmd;
71e3aac0 1707 }
117b0791
KS
1708unlock:
1709 spin_unlock(*ptl);
1710 return NULL;
71e3aac0
AA
1711}
1712
1713static int __split_huge_page_splitting(struct page *page,
1714 struct vm_area_struct *vma,
1715 unsigned long address)
1716{
1717 struct mm_struct *mm = vma->vm_mm;
117b0791 1718 spinlock_t *ptl;
71e3aac0
AA
1719 pmd_t *pmd;
1720 int ret = 0;
2ec74c3e
SG
1721 /* For mmu_notifiers */
1722 const unsigned long mmun_start = address;
1723 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1724
2ec74c3e 1725 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0 1726 pmd = page_check_address_pmd(page, mm, address,
117b0791 1727 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
71e3aac0
AA
1728 if (pmd) {
1729 /*
1730 * We can't temporarily set the pmd to null in order
1731 * to split it, the pmd must remain marked huge at all
1732 * times or the VM won't take the pmd_trans_huge paths
5a505085 1733 * and it won't wait on the anon_vma->root->rwsem to
71e3aac0
AA
1734 * serialize against split_huge_page*.
1735 */
2ec74c3e 1736 pmdp_splitting_flush(vma, address, pmd);
34ee645e 1737
71e3aac0 1738 ret = 1;
117b0791 1739 spin_unlock(ptl);
71e3aac0 1740 }
2ec74c3e 1741 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1742
1743 return ret;
1744}
1745
5bc7b8ac
SL
1746static void __split_huge_page_refcount(struct page *page,
1747 struct list_head *list)
71e3aac0
AA
1748{
1749 int i;
71e3aac0 1750 struct zone *zone = page_zone(page);
fa9add64 1751 struct lruvec *lruvec;
70b50f94 1752 int tail_count = 0;
71e3aac0
AA
1753
1754 /* prevent PageLRU to go away from under us, and freeze lru stats */
1755 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1756 lruvec = mem_cgroup_page_lruvec(page, zone);
1757
71e3aac0 1758 compound_lock(page);
e94c8a9c
KH
1759 /* complete memcg works before add pages to LRU */
1760 mem_cgroup_split_huge_fixup(page);
71e3aac0 1761
45676885 1762 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1763 struct page *page_tail = page + i;
1764
70b50f94
AA
1765 /* tail_page->_mapcount cannot change */
1766 BUG_ON(page_mapcount(page_tail) < 0);
1767 tail_count += page_mapcount(page_tail);
1768 /* check for overflow */
1769 BUG_ON(tail_count < 0);
1770 BUG_ON(atomic_read(&page_tail->_count) != 0);
1771 /*
1772 * tail_page->_count is zero and not changing from
1773 * under us. But get_page_unless_zero() may be running
1774 * from under us on the tail_page. If we used
1775 * atomic_set() below instead of atomic_add(), we
1776 * would then run atomic_set() concurrently with
1777 * get_page_unless_zero(), and atomic_set() is
1778 * implemented in C not using locked ops. spin_unlock
1779 * on x86 sometime uses locked ops because of PPro
1780 * errata 66, 92, so unless somebody can guarantee
1781 * atomic_set() here would be safe on all archs (and
1782 * not only on x86), it's safer to use atomic_add().
1783 */
1784 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1785 &page_tail->_count);
71e3aac0
AA
1786
1787 /* after clearing PageTail the gup refcount can be released */
3a79d52a 1788 smp_mb__after_atomic();
71e3aac0 1789
f4c18e6f 1790 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
71e3aac0
AA
1791 page_tail->flags |= (page->flags &
1792 ((1L << PG_referenced) |
1793 (1L << PG_swapbacked) |
1794 (1L << PG_mlocked) |
e180cf80
KS
1795 (1L << PG_uptodate) |
1796 (1L << PG_active) |
1797 (1L << PG_unevictable)));
71e3aac0
AA
1798 page_tail->flags |= (1L << PG_dirty);
1799
1d798ca3 1800 clear_compound_head(page_tail);
71e3aac0 1801
33c3fc71
VD
1802 if (page_is_young(page))
1803 set_page_young(page_tail);
1804 if (page_is_idle(page))
1805 set_page_idle(page_tail);
1806
71e3aac0
AA
1807 /*
1808 * __split_huge_page_splitting() already set the
1809 * splitting bit in all pmd that could map this
1810 * hugepage, that will ensure no CPU can alter the
1811 * mapcount on the head page. The mapcount is only
1812 * accounted in the head page and it has to be
1813 * transferred to all tail pages in the below code. So
1814 * for this code to be safe, the split the mapcount
1815 * can't change. But that doesn't mean userland can't
1816 * keep changing and reading the page contents while
1817 * we transfer the mapcount, so the pmd splitting
1818 * status is achieved setting a reserved bit in the
1819 * pmd, not by clearing the present bit.
1820 */
71e3aac0
AA
1821 page_tail->_mapcount = page->_mapcount;
1822
1c290f64 1823 BUG_ON(page_tail->mapping != TAIL_MAPPING);
71e3aac0
AA
1824 page_tail->mapping = page->mapping;
1825
45676885 1826 page_tail->index = page->index + i;
90572890 1827 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
71e3aac0
AA
1828
1829 BUG_ON(!PageAnon(page_tail));
1830 BUG_ON(!PageUptodate(page_tail));
1831 BUG_ON(!PageDirty(page_tail));
1832 BUG_ON(!PageSwapBacked(page_tail));
1833
5bc7b8ac 1834 lru_add_page_tail(page, page_tail, lruvec, list);
71e3aac0 1835 }
70b50f94
AA
1836 atomic_sub(tail_count, &page->_count);
1837 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1838
fa9add64 1839 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171 1840
71e3aac0
AA
1841 ClearPageCompound(page);
1842 compound_unlock(page);
1843 spin_unlock_irq(&zone->lru_lock);
1844
1845 for (i = 1; i < HPAGE_PMD_NR; i++) {
1846 struct page *page_tail = page + i;
1847 BUG_ON(page_count(page_tail) <= 0);
1848 /*
1849 * Tail pages may be freed if there wasn't any mapping
1850 * like if add_to_swap() is running on a lru page that
1851 * had its mapping zapped. And freeing these pages
1852 * requires taking the lru_lock so we do the put_page
1853 * of the tail pages after the split is complete.
1854 */
1855 put_page(page_tail);
1856 }
1857
1858 /*
1859 * Only the head page (now become a regular page) is required
1860 * to be pinned by the caller.
1861 */
1862 BUG_ON(page_count(page) <= 0);
1863}
1864
1865static int __split_huge_page_map(struct page *page,
1866 struct vm_area_struct *vma,
1867 unsigned long address)
1868{
1869 struct mm_struct *mm = vma->vm_mm;
117b0791 1870 spinlock_t *ptl;
71e3aac0
AA
1871 pmd_t *pmd, _pmd;
1872 int ret = 0, i;
1873 pgtable_t pgtable;
1874 unsigned long haddr;
1875
71e3aac0 1876 pmd = page_check_address_pmd(page, mm, address,
117b0791 1877 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
71e3aac0 1878 if (pmd) {
6b0b50b0 1879 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0 1880 pmd_populate(mm, &_pmd, pgtable);
f8303c25
WL
1881 if (pmd_write(*pmd))
1882 BUG_ON(page_mapcount(page) != 1);
71e3aac0 1883
e3ebcf64
GS
1884 haddr = address;
1885 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1886 pte_t *pte, entry;
1887 BUG_ON(PageCompound(page+i));
abc40bd2 1888 /*
8a0516ed
MG
1889 * Note that NUMA hinting access restrictions are not
1890 * transferred to avoid any possibility of altering
1891 * permissions across VMAs.
abc40bd2 1892 */
71e3aac0
AA
1893 entry = mk_pte(page + i, vma->vm_page_prot);
1894 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1895 if (!pmd_write(*pmd))
1896 entry = pte_wrprotect(entry);
71e3aac0
AA
1897 if (!pmd_young(*pmd))
1898 entry = pte_mkold(entry);
1899 pte = pte_offset_map(&_pmd, haddr);
1900 BUG_ON(!pte_none(*pte));
1901 set_pte_at(mm, haddr, pte, entry);
1902 pte_unmap(pte);
1903 }
1904
71e3aac0
AA
1905 smp_wmb(); /* make pte visible before pmd */
1906 /*
1907 * Up to this point the pmd is present and huge and
1908 * userland has the whole access to the hugepage
1909 * during the split (which happens in place). If we
1910 * overwrite the pmd with the not-huge version
1911 * pointing to the pte here (which of course we could
1912 * if all CPUs were bug free), userland could trigger
1913 * a small page size TLB miss on the small sized TLB
1914 * while the hugepage TLB entry is still established
1915 * in the huge TLB. Some CPU doesn't like that. See
1916 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1917 * Erratum 383 on page 93. Intel should be safe but is
1918 * also warns that it's only safe if the permission
1919 * and cache attributes of the two entries loaded in
1920 * the two TLB is identical (which should be the case
1921 * here). But it is generally safer to never allow
1922 * small and huge TLB entries for the same virtual
1923 * address to be loaded simultaneously. So instead of
12ebc158 1924 * doing "pmd_populate(); flush_pmd_tlb_range();" we first
71e3aac0
AA
1925 * mark the current pmd notpresent (atomically because
1926 * here the pmd_trans_huge and pmd_trans_splitting
1927 * must remain set at all times on the pmd until the
1928 * split is complete for this pmd), then we flush the
1929 * SMP TLB and finally we write the non-huge version
1930 * of the pmd entry with pmd_populate.
1931 */
46dcde73 1932 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1933 pmd_populate(mm, pmd, pgtable);
1934 ret = 1;
117b0791 1935 spin_unlock(ptl);
71e3aac0 1936 }
71e3aac0
AA
1937
1938 return ret;
1939}
1940
5a505085 1941/* must be called with anon_vma->root->rwsem held */
71e3aac0 1942static void __split_huge_page(struct page *page,
5bc7b8ac
SL
1943 struct anon_vma *anon_vma,
1944 struct list_head *list)
71e3aac0
AA
1945{
1946 int mapcount, mapcount2;
bf181b9f 1947 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1948 struct anon_vma_chain *avc;
1949
1950 BUG_ON(!PageHead(page));
1951 BUG_ON(PageTail(page));
1952
1953 mapcount = 0;
bf181b9f 1954 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1955 struct vm_area_struct *vma = avc->vma;
1956 unsigned long addr = vma_address(page, vma);
1957 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1958 mapcount += __split_huge_page_splitting(page, vma, addr);
1959 }
05759d38
AA
1960 /*
1961 * It is critical that new vmas are added to the tail of the
1962 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1963 * and establishes a child pmd before
1964 * __split_huge_page_splitting() freezes the parent pmd (so if
1965 * we fail to prevent copy_huge_pmd() from running until the
1966 * whole __split_huge_page() is complete), we will still see
1967 * the newly established pmd of the child later during the
1968 * walk, to be able to set it as pmd_trans_splitting too.
1969 */
ff9e43eb 1970 if (mapcount != page_mapcount(page)) {
ae3a8c1c
AM
1971 pr_err("mapcount %d page_mapcount %d\n",
1972 mapcount, page_mapcount(page));
ff9e43eb
KS
1973 BUG();
1974 }
71e3aac0 1975
5bc7b8ac 1976 __split_huge_page_refcount(page, list);
71e3aac0
AA
1977
1978 mapcount2 = 0;
bf181b9f 1979 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1980 struct vm_area_struct *vma = avc->vma;
1981 unsigned long addr = vma_address(page, vma);
1982 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1983 mapcount2 += __split_huge_page_map(page, vma, addr);
1984 }
ff9e43eb 1985 if (mapcount != mapcount2) {
ae3a8c1c
AM
1986 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1987 mapcount, mapcount2, page_mapcount(page));
ff9e43eb
KS
1988 BUG();
1989 }
71e3aac0
AA
1990}
1991
5bc7b8ac
SL
1992/*
1993 * Split a hugepage into normal pages. This doesn't change the position of head
1994 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1995 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1996 * from the hugepage.
1997 * Return 0 if the hugepage is split successfully otherwise return 1.
1998 */
1999int split_huge_page_to_list(struct page *page, struct list_head *list)
71e3aac0
AA
2000{
2001 struct anon_vma *anon_vma;
2002 int ret = 1;
2003
5918d10a 2004 BUG_ON(is_huge_zero_page(page));
71e3aac0 2005 BUG_ON(!PageAnon(page));
062f1af2
MG
2006
2007 /*
2008 * The caller does not necessarily hold an mmap_sem that would prevent
2009 * the anon_vma disappearing so we first we take a reference to it
2010 * and then lock the anon_vma for write. This is similar to
2011 * page_lock_anon_vma_read except the write lock is taken to serialise
2012 * against parallel split or collapse operations.
2013 */
2014 anon_vma = page_get_anon_vma(page);
71e3aac0
AA
2015 if (!anon_vma)
2016 goto out;
062f1af2
MG
2017 anon_vma_lock_write(anon_vma);
2018
71e3aac0
AA
2019 ret = 0;
2020 if (!PageCompound(page))
2021 goto out_unlock;
2022
2023 BUG_ON(!PageSwapBacked(page));
5bc7b8ac 2024 __split_huge_page(page, anon_vma, list);
81ab4201 2025 count_vm_event(THP_SPLIT);
71e3aac0
AA
2026
2027 BUG_ON(PageCompound(page));
2028out_unlock:
08b52706 2029 anon_vma_unlock_write(anon_vma);
062f1af2 2030 put_anon_vma(anon_vma);
71e3aac0
AA
2031out:
2032 return ret;
2033}
2034
9050d7eb 2035#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 2036
60ab3244
AA
2037int hugepage_madvise(struct vm_area_struct *vma,
2038 unsigned long *vm_flags, int advice)
0af4e98b 2039{
a664b2d8
AA
2040 switch (advice) {
2041 case MADV_HUGEPAGE:
1e1836e8
AT
2042#ifdef CONFIG_S390
2043 /*
2044 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
2045 * can't handle this properly after s390_enable_sie, so we simply
2046 * ignore the madvise to prevent qemu from causing a SIGSEGV.
2047 */
2048 if (mm_has_pgste(vma->vm_mm))
2049 return 0;
2050#endif
a664b2d8
AA
2051 /*
2052 * Be somewhat over-protective like KSM for now!
2053 */
1a763615 2054 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
2055 return -EINVAL;
2056 *vm_flags &= ~VM_NOHUGEPAGE;
2057 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
2058 /*
2059 * If the vma become good for khugepaged to scan,
2060 * register it here without waiting a page fault that
2061 * may not happen any time soon.
2062 */
6d50e60c 2063 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 2064 return -ENOMEM;
a664b2d8
AA
2065 break;
2066 case MADV_NOHUGEPAGE:
2067 /*
2068 * Be somewhat over-protective like KSM for now!
2069 */
1a763615 2070 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
2071 return -EINVAL;
2072 *vm_flags &= ~VM_HUGEPAGE;
2073 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
2074 /*
2075 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2076 * this vma even if we leave the mm registered in khugepaged if
2077 * it got registered before VM_NOHUGEPAGE was set.
2078 */
a664b2d8
AA
2079 break;
2080 }
0af4e98b
AA
2081
2082 return 0;
2083}
2084
ba76149f
AA
2085static int __init khugepaged_slab_init(void)
2086{
2087 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2088 sizeof(struct mm_slot),
2089 __alignof__(struct mm_slot), 0, NULL);
2090 if (!mm_slot_cache)
2091 return -ENOMEM;
2092
2093 return 0;
2094}
2095
65ebb64f
KS
2096static void __init khugepaged_slab_exit(void)
2097{
2098 kmem_cache_destroy(mm_slot_cache);
2099}
2100
ba76149f
AA
2101static inline struct mm_slot *alloc_mm_slot(void)
2102{
2103 if (!mm_slot_cache) /* initialization failed */
2104 return NULL;
2105 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2106}
2107
2108static inline void free_mm_slot(struct mm_slot *mm_slot)
2109{
2110 kmem_cache_free(mm_slot_cache, mm_slot);
2111}
2112
ba76149f
AA
2113static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2114{
2115 struct mm_slot *mm_slot;
ba76149f 2116
b67bfe0d 2117 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
2118 if (mm == mm_slot->mm)
2119 return mm_slot;
43b5fbbd 2120
ba76149f
AA
2121 return NULL;
2122}
2123
2124static void insert_to_mm_slots_hash(struct mm_struct *mm,
2125 struct mm_slot *mm_slot)
2126{
ba76149f 2127 mm_slot->mm = mm;
43b5fbbd 2128 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
2129}
2130
2131static inline int khugepaged_test_exit(struct mm_struct *mm)
2132{
2133 return atomic_read(&mm->mm_users) == 0;
2134}
2135
2136int __khugepaged_enter(struct mm_struct *mm)
2137{
2138 struct mm_slot *mm_slot;
2139 int wakeup;
2140
2141 mm_slot = alloc_mm_slot();
2142 if (!mm_slot)
2143 return -ENOMEM;
2144
2145 /* __khugepaged_exit() must not run from under us */
96dad67f 2146 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
2147 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2148 free_mm_slot(mm_slot);
2149 return 0;
2150 }
2151
2152 spin_lock(&khugepaged_mm_lock);
2153 insert_to_mm_slots_hash(mm, mm_slot);
2154 /*
2155 * Insert just behind the scanning cursor, to let the area settle
2156 * down a little.
2157 */
2158 wakeup = list_empty(&khugepaged_scan.mm_head);
2159 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2160 spin_unlock(&khugepaged_mm_lock);
2161
2162 atomic_inc(&mm->mm_count);
2163 if (wakeup)
2164 wake_up_interruptible(&khugepaged_wait);
2165
2166 return 0;
2167}
2168
6d50e60c
DR
2169int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2170 unsigned long vm_flags)
ba76149f
AA
2171{
2172 unsigned long hstart, hend;
2173 if (!vma->anon_vma)
2174 /*
2175 * Not yet faulted in so we will register later in the
2176 * page fault if needed.
2177 */
2178 return 0;
78f11a25 2179 if (vma->vm_ops)
ba76149f
AA
2180 /* khugepaged not yet working on file or special mappings */
2181 return 0;
6d50e60c 2182 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
2183 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2184 hend = vma->vm_end & HPAGE_PMD_MASK;
2185 if (hstart < hend)
6d50e60c 2186 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
2187 return 0;
2188}
2189
2190void __khugepaged_exit(struct mm_struct *mm)
2191{
2192 struct mm_slot *mm_slot;
2193 int free = 0;
2194
2195 spin_lock(&khugepaged_mm_lock);
2196 mm_slot = get_mm_slot(mm);
2197 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 2198 hash_del(&mm_slot->hash);
ba76149f
AA
2199 list_del(&mm_slot->mm_node);
2200 free = 1;
2201 }
d788e80a 2202 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2203
2204 if (free) {
ba76149f
AA
2205 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2206 free_mm_slot(mm_slot);
2207 mmdrop(mm);
2208 } else if (mm_slot) {
ba76149f
AA
2209 /*
2210 * This is required to serialize against
2211 * khugepaged_test_exit() (which is guaranteed to run
2212 * under mmap sem read mode). Stop here (after we
2213 * return all pagetables will be destroyed) until
2214 * khugepaged has finished working on the pagetables
2215 * under the mmap_sem.
2216 */
2217 down_write(&mm->mmap_sem);
2218 up_write(&mm->mmap_sem);
d788e80a 2219 }
ba76149f
AA
2220}
2221
2222static void release_pte_page(struct page *page)
2223{
2224 /* 0 stands for page_is_file_cache(page) == false */
2225 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2226 unlock_page(page);
2227 putback_lru_page(page);
2228}
2229
2230static void release_pte_pages(pte_t *pte, pte_t *_pte)
2231{
2232 while (--_pte >= pte) {
2233 pte_t pteval = *_pte;
ca0984ca 2234 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
2235 release_pte_page(pte_page(pteval));
2236 }
2237}
2238
ba76149f
AA
2239static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2240 unsigned long address,
2241 pte_t *pte)
2242{
7d2eba05 2243 struct page *page = NULL;
ba76149f 2244 pte_t *_pte;
7d2eba05 2245 int none_or_zero = 0, result = 0;
10359213 2246 bool referenced = false, writable = false;
7d2eba05 2247
ba76149f
AA
2248 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2249 _pte++, address += PAGE_SIZE) {
2250 pte_t pteval = *_pte;
47aee4d8
MK
2251 if (pte_none(pteval) || (pte_present(pteval) &&
2252 is_zero_pfn(pte_pfn(pteval)))) {
c1294d05 2253 if (!userfaultfd_armed(vma) &&
7d2eba05 2254 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2255 continue;
7d2eba05
EA
2256 } else {
2257 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2258 goto out;
7d2eba05 2259 }
ba76149f 2260 }
7d2eba05
EA
2261 if (!pte_present(pteval)) {
2262 result = SCAN_PTE_NON_PRESENT;
ba76149f 2263 goto out;
7d2eba05 2264 }
ba76149f 2265 page = vm_normal_page(vma, address, pteval);
7d2eba05
EA
2266 if (unlikely(!page)) {
2267 result = SCAN_PAGE_NULL;
ba76149f 2268 goto out;
7d2eba05 2269 }
344aa35c 2270
309381fe
SL
2271 VM_BUG_ON_PAGE(PageCompound(page), page);
2272 VM_BUG_ON_PAGE(!PageAnon(page), page);
2273 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 2274
ba76149f
AA
2275 /*
2276 * We can do it before isolate_lru_page because the
2277 * page can't be freed from under us. NOTE: PG_lock
2278 * is needed to serialize against split_huge_page
2279 * when invoked from the VM.
2280 */
7d2eba05
EA
2281 if (!trylock_page(page)) {
2282 result = SCAN_PAGE_LOCK;
ba76149f 2283 goto out;
7d2eba05 2284 }
10359213
EA
2285
2286 /*
2287 * cannot use mapcount: can't collapse if there's a gup pin.
2288 * The page must only be referenced by the scanned process
2289 * and page swap cache.
2290 */
2291 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2292 unlock_page(page);
7d2eba05 2293 result = SCAN_PAGE_COUNT;
10359213
EA
2294 goto out;
2295 }
2296 if (pte_write(pteval)) {
2297 writable = true;
2298 } else {
2299 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2300 unlock_page(page);
7d2eba05 2301 result = SCAN_SWAP_CACHE_PAGE;
10359213
EA
2302 goto out;
2303 }
2304 /*
2305 * Page is not in the swap cache. It can be collapsed
2306 * into a THP.
2307 */
2308 }
2309
ba76149f
AA
2310 /*
2311 * Isolate the page to avoid collapsing an hugepage
2312 * currently in use by the VM.
2313 */
2314 if (isolate_lru_page(page)) {
2315 unlock_page(page);
7d2eba05 2316 result = SCAN_DEL_PAGE_LRU;
ba76149f
AA
2317 goto out;
2318 }
2319 /* 0 stands for page_is_file_cache(page) == false */
2320 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2321 VM_BUG_ON_PAGE(!PageLocked(page), page);
2322 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2323
2324 /* If there is no mapped pte young don't collapse the page */
33c3fc71
VD
2325 if (pte_young(pteval) ||
2326 page_is_young(page) || PageReferenced(page) ||
8ee53820 2327 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2328 referenced = true;
ba76149f 2329 }
7d2eba05
EA
2330 if (likely(writable)) {
2331 if (likely(referenced)) {
2332 result = SCAN_SUCCEED;
2333 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2334 referenced, writable, result);
2335 return 1;
2336 }
2337 } else {
2338 result = SCAN_PAGE_RO;
2339 }
2340
ba76149f 2341out:
344aa35c 2342 release_pte_pages(pte, _pte);
7d2eba05
EA
2343 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2344 referenced, writable, result);
344aa35c 2345 return 0;
ba76149f
AA
2346}
2347
2348static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2349 struct vm_area_struct *vma,
2350 unsigned long address,
2351 spinlock_t *ptl)
2352{
2353 pte_t *_pte;
2354 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2355 pte_t pteval = *_pte;
2356 struct page *src_page;
2357
ca0984ca 2358 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2359 clear_user_highpage(page, address);
2360 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2361 if (is_zero_pfn(pte_pfn(pteval))) {
2362 /*
2363 * ptl mostly unnecessary.
2364 */
2365 spin_lock(ptl);
2366 /*
2367 * paravirt calls inside pte_clear here are
2368 * superfluous.
2369 */
2370 pte_clear(vma->vm_mm, address, _pte);
2371 spin_unlock(ptl);
2372 }
ba76149f
AA
2373 } else {
2374 src_page = pte_page(pteval);
2375 copy_user_highpage(page, src_page, address, vma);
309381fe 2376 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2377 release_pte_page(src_page);
2378 /*
2379 * ptl mostly unnecessary, but preempt has to
2380 * be disabled to update the per-cpu stats
2381 * inside page_remove_rmap().
2382 */
2383 spin_lock(ptl);
2384 /*
2385 * paravirt calls inside pte_clear here are
2386 * superfluous.
2387 */
2388 pte_clear(vma->vm_mm, address, _pte);
d281ee61 2389 page_remove_rmap(src_page, false);
ba76149f
AA
2390 spin_unlock(ptl);
2391 free_page_and_swap_cache(src_page);
2392 }
2393
2394 address += PAGE_SIZE;
2395 page++;
2396 }
2397}
2398
26234f36 2399static void khugepaged_alloc_sleep(void)
ba76149f 2400{
bde43c6c
PM
2401 DEFINE_WAIT(wait);
2402
2403 add_wait_queue(&khugepaged_wait, &wait);
2404 freezable_schedule_timeout_interruptible(
2405 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2406 remove_wait_queue(&khugepaged_wait, &wait);
26234f36 2407}
ba76149f 2408
9f1b868a
BL
2409static int khugepaged_node_load[MAX_NUMNODES];
2410
14a4e214
DR
2411static bool khugepaged_scan_abort(int nid)
2412{
2413 int i;
2414
2415 /*
2416 * If zone_reclaim_mode is disabled, then no extra effort is made to
2417 * allocate memory locally.
2418 */
2419 if (!zone_reclaim_mode)
2420 return false;
2421
2422 /* If there is a count for this node already, it must be acceptable */
2423 if (khugepaged_node_load[nid])
2424 return false;
2425
2426 for (i = 0; i < MAX_NUMNODES; i++) {
2427 if (!khugepaged_node_load[i])
2428 continue;
2429 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2430 return true;
2431 }
2432 return false;
2433}
2434
26234f36 2435#ifdef CONFIG_NUMA
9f1b868a
BL
2436static int khugepaged_find_target_node(void)
2437{
2438 static int last_khugepaged_target_node = NUMA_NO_NODE;
2439 int nid, target_node = 0, max_value = 0;
2440
2441 /* find first node with max normal pages hit */
2442 for (nid = 0; nid < MAX_NUMNODES; nid++)
2443 if (khugepaged_node_load[nid] > max_value) {
2444 max_value = khugepaged_node_load[nid];
2445 target_node = nid;
2446 }
2447
2448 /* do some balance if several nodes have the same hit record */
2449 if (target_node <= last_khugepaged_target_node)
2450 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2451 nid++)
2452 if (max_value == khugepaged_node_load[nid]) {
2453 target_node = nid;
2454 break;
2455 }
2456
2457 last_khugepaged_target_node = target_node;
2458 return target_node;
2459}
2460
26234f36
XG
2461static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2462{
2463 if (IS_ERR(*hpage)) {
2464 if (!*wait)
2465 return false;
2466
2467 *wait = false;
e3b4126c 2468 *hpage = NULL;
26234f36
XG
2469 khugepaged_alloc_sleep();
2470 } else if (*hpage) {
2471 put_page(*hpage);
2472 *hpage = NULL;
2473 }
2474
2475 return true;
2476}
2477
3b363692
MH
2478static struct page *
2479khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2480 unsigned long address, int node)
26234f36 2481{
309381fe 2482 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2483
ce83d217 2484 /*
8b164568
VB
2485 * Before allocating the hugepage, release the mmap_sem read lock.
2486 * The allocation can take potentially a long time if it involves
2487 * sync compaction, and we do not need to hold the mmap_sem during
2488 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2489 */
8b164568
VB
2490 up_read(&mm->mmap_sem);
2491
96db800f 2492 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2493 if (unlikely(!*hpage)) {
81ab4201 2494 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2495 *hpage = ERR_PTR(-ENOMEM);
26234f36 2496 return NULL;
ce83d217 2497 }
26234f36 2498
65b3c07b 2499 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2500 return *hpage;
2501}
2502#else
9f1b868a
BL
2503static int khugepaged_find_target_node(void)
2504{
2505 return 0;
2506}
2507
10dc4155
BL
2508static inline struct page *alloc_hugepage(int defrag)
2509{
2510 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2511 HPAGE_PMD_ORDER);
2512}
2513
26234f36
XG
2514static struct page *khugepaged_alloc_hugepage(bool *wait)
2515{
2516 struct page *hpage;
2517
2518 do {
2519 hpage = alloc_hugepage(khugepaged_defrag());
2520 if (!hpage) {
2521 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2522 if (!*wait)
2523 return NULL;
2524
2525 *wait = false;
2526 khugepaged_alloc_sleep();
2527 } else
2528 count_vm_event(THP_COLLAPSE_ALLOC);
2529 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2530
2531 return hpage;
2532}
2533
2534static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2535{
2536 if (!*hpage)
2537 *hpage = khugepaged_alloc_hugepage(wait);
2538
2539 if (unlikely(!*hpage))
2540 return false;
2541
2542 return true;
2543}
2544
3b363692
MH
2545static struct page *
2546khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2547 unsigned long address, int node)
26234f36
XG
2548{
2549 up_read(&mm->mmap_sem);
2550 VM_BUG_ON(!*hpage);
3b363692 2551
26234f36
XG
2552 return *hpage;
2553}
692e0b35
AA
2554#endif
2555
fa475e51
BL
2556static bool hugepage_vma_check(struct vm_area_struct *vma)
2557{
2558 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2559 (vma->vm_flags & VM_NOHUGEPAGE))
2560 return false;
7479df6d
KS
2561 if (vma->vm_flags & VM_LOCKED)
2562 return false;
fa475e51
BL
2563 if (!vma->anon_vma || vma->vm_ops)
2564 return false;
2565 if (is_vma_temporary_stack(vma))
2566 return false;
81d1b09c 2567 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2568 return true;
2569}
2570
26234f36
XG
2571static void collapse_huge_page(struct mm_struct *mm,
2572 unsigned long address,
2573 struct page **hpage,
2574 struct vm_area_struct *vma,
2575 int node)
2576{
26234f36
XG
2577 pmd_t *pmd, _pmd;
2578 pte_t *pte;
2579 pgtable_t pgtable;
2580 struct page *new_page;
c4088ebd 2581 spinlock_t *pmd_ptl, *pte_ptl;
7d2eba05 2582 int isolated, result = 0;
26234f36 2583 unsigned long hstart, hend;
00501b53 2584 struct mem_cgroup *memcg;
2ec74c3e
SG
2585 unsigned long mmun_start; /* For mmu_notifiers */
2586 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2587 gfp_t gfp;
26234f36
XG
2588
2589 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2590
3b363692
MH
2591 /* Only allocate from the target node */
2592 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2593 __GFP_THISNODE;
2594
26234f36 2595 /* release the mmap_sem read lock. */
d6669d68 2596 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
7d2eba05
EA
2597 if (!new_page) {
2598 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2599 goto out_nolock;
2600 }
26234f36 2601
f627c2f5 2602 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
7d2eba05
EA
2603 result = SCAN_CGROUP_CHARGE_FAIL;
2604 goto out_nolock;
2605 }
ba76149f
AA
2606
2607 /*
2608 * Prevent all access to pagetables with the exception of
2609 * gup_fast later hanlded by the ptep_clear_flush and the VM
2610 * handled by the anon_vma lock + PG_lock.
2611 */
2612 down_write(&mm->mmap_sem);
7d2eba05
EA
2613 if (unlikely(khugepaged_test_exit(mm))) {
2614 result = SCAN_ANY_PROCESS;
ba76149f 2615 goto out;
7d2eba05 2616 }
ba76149f
AA
2617
2618 vma = find_vma(mm, address);
7d2eba05
EA
2619 if (!vma) {
2620 result = SCAN_VMA_NULL;
a8f531eb 2621 goto out;
7d2eba05 2622 }
ba76149f
AA
2623 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2624 hend = vma->vm_end & HPAGE_PMD_MASK;
7d2eba05
EA
2625 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2626 result = SCAN_ADDRESS_RANGE;
ba76149f 2627 goto out;
7d2eba05
EA
2628 }
2629 if (!hugepage_vma_check(vma)) {
2630 result = SCAN_VMA_CHECK;
a7d6e4ec 2631 goto out;
7d2eba05 2632 }
6219049a 2633 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2634 if (!pmd) {
2635 result = SCAN_PMD_NULL;
ba76149f 2636 goto out;
7d2eba05 2637 }
ba76149f 2638
4fc3f1d6 2639 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2640
2641 pte = pte_offset_map(pmd, address);
c4088ebd 2642 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2643
2ec74c3e
SG
2644 mmun_start = address;
2645 mmun_end = address + HPAGE_PMD_SIZE;
2646 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2647 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2648 /*
2649 * After this gup_fast can't run anymore. This also removes
2650 * any huge TLB entry from the CPU so we won't allow
2651 * huge and small TLB entries for the same virtual address
2652 * to avoid the risk of CPU bugs in that area.
2653 */
15a25b2e 2654 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2655 spin_unlock(pmd_ptl);
2ec74c3e 2656 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2657
c4088ebd 2658 spin_lock(pte_ptl);
ba76149f 2659 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2660 spin_unlock(pte_ptl);
ba76149f
AA
2661
2662 if (unlikely(!isolated)) {
453c7192 2663 pte_unmap(pte);
c4088ebd 2664 spin_lock(pmd_ptl);
ba76149f 2665 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2666 /*
2667 * We can only use set_pmd_at when establishing
2668 * hugepmds and never for establishing regular pmds that
2669 * points to regular pagetables. Use pmd_populate for that
2670 */
2671 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2672 spin_unlock(pmd_ptl);
08b52706 2673 anon_vma_unlock_write(vma->anon_vma);
7d2eba05 2674 result = SCAN_FAIL;
ce83d217 2675 goto out;
ba76149f
AA
2676 }
2677
2678 /*
2679 * All pages are isolated and locked so anon_vma rmap
2680 * can't run anymore.
2681 */
08b52706 2682 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2683
c4088ebd 2684 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2685 pte_unmap(pte);
ba76149f
AA
2686 __SetPageUptodate(new_page);
2687 pgtable = pmd_pgtable(_pmd);
ba76149f 2688
3122359a
KS
2689 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2690 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2691
2692 /*
2693 * spin_lock() below is not the equivalent of smp_wmb(), so
2694 * this is needed to avoid the copy_huge_page writes to become
2695 * visible after the set_pmd_at() write.
2696 */
2697 smp_wmb();
2698
c4088ebd 2699 spin_lock(pmd_ptl);
ba76149f 2700 BUG_ON(!pmd_none(*pmd));
d281ee61 2701 page_add_new_anon_rmap(new_page, vma, address, true);
f627c2f5 2702 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 2703 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2704 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2705 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2706 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2707 spin_unlock(pmd_ptl);
ba76149f
AA
2708
2709 *hpage = NULL;
420256ef 2710
ba76149f 2711 khugepaged_pages_collapsed++;
7d2eba05 2712 result = SCAN_SUCCEED;
ce83d217 2713out_up_write:
ba76149f 2714 up_write(&mm->mmap_sem);
7d2eba05 2715 trace_mm_collapse_huge_page(mm, isolated, result);
0bbbc0b3
AA
2716 return;
2717
7d2eba05
EA
2718out_nolock:
2719 trace_mm_collapse_huge_page(mm, isolated, result);
2720 return;
ce83d217 2721out:
f627c2f5 2722 mem_cgroup_cancel_charge(new_page, memcg, true);
ce83d217 2723 goto out_up_write;
ba76149f
AA
2724}
2725
2726static int khugepaged_scan_pmd(struct mm_struct *mm,
2727 struct vm_area_struct *vma,
2728 unsigned long address,
2729 struct page **hpage)
2730{
ba76149f
AA
2731 pmd_t *pmd;
2732 pte_t *pte, *_pte;
7d2eba05
EA
2733 int ret = 0, none_or_zero = 0, result = 0;
2734 struct page *page = NULL;
ba76149f
AA
2735 unsigned long _address;
2736 spinlock_t *ptl;
00ef2d2f 2737 int node = NUMA_NO_NODE;
10359213 2738 bool writable = false, referenced = false;
ba76149f
AA
2739
2740 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2741
6219049a 2742 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2743 if (!pmd) {
2744 result = SCAN_PMD_NULL;
ba76149f 2745 goto out;
7d2eba05 2746 }
ba76149f 2747
9f1b868a 2748 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2749 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2750 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2751 _pte++, _address += PAGE_SIZE) {
2752 pte_t pteval = *_pte;
ca0984ca 2753 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05 2754 if (!userfaultfd_armed(vma) &&
7d2eba05 2755 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2756 continue;
7d2eba05
EA
2757 } else {
2758 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2759 goto out_unmap;
7d2eba05 2760 }
ba76149f 2761 }
7d2eba05
EA
2762 if (!pte_present(pteval)) {
2763 result = SCAN_PTE_NON_PRESENT;
ba76149f 2764 goto out_unmap;
7d2eba05 2765 }
10359213
EA
2766 if (pte_write(pteval))
2767 writable = true;
2768
ba76149f 2769 page = vm_normal_page(vma, _address, pteval);
7d2eba05
EA
2770 if (unlikely(!page)) {
2771 result = SCAN_PAGE_NULL;
ba76149f 2772 goto out_unmap;
7d2eba05 2773 }
b1caa957
KS
2774
2775 /* TODO: teach khugepaged to collapse THP mapped with pte */
2776 if (PageCompound(page)) {
2777 result = SCAN_PAGE_COMPOUND;
2778 goto out_unmap;
2779 }
2780
5c4b4be3 2781 /*
9f1b868a
BL
2782 * Record which node the original page is from and save this
2783 * information to khugepaged_node_load[].
2784 * Khupaged will allocate hugepage from the node has the max
2785 * hit record.
5c4b4be3 2786 */
9f1b868a 2787 node = page_to_nid(page);
7d2eba05
EA
2788 if (khugepaged_scan_abort(node)) {
2789 result = SCAN_SCAN_ABORT;
14a4e214 2790 goto out_unmap;
7d2eba05 2791 }
9f1b868a 2792 khugepaged_node_load[node]++;
7d2eba05
EA
2793 if (!PageLRU(page)) {
2794 result = SCAN_SCAN_ABORT;
2795 goto out_unmap;
2796 }
2797 if (PageLocked(page)) {
2798 result = SCAN_PAGE_LOCK;
ba76149f 2799 goto out_unmap;
7d2eba05
EA
2800 }
2801 if (!PageAnon(page)) {
2802 result = SCAN_PAGE_ANON;
2803 goto out_unmap;
2804 }
2805
10359213
EA
2806 /*
2807 * cannot use mapcount: can't collapse if there's a gup pin.
2808 * The page must only be referenced by the scanned process
2809 * and page swap cache.
2810 */
7d2eba05
EA
2811 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2812 result = SCAN_PAGE_COUNT;
ba76149f 2813 goto out_unmap;
7d2eba05 2814 }
33c3fc71
VD
2815 if (pte_young(pteval) ||
2816 page_is_young(page) || PageReferenced(page) ||
8ee53820 2817 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2818 referenced = true;
ba76149f 2819 }
7d2eba05
EA
2820 if (writable) {
2821 if (referenced) {
2822 result = SCAN_SUCCEED;
2823 ret = 1;
2824 } else {
2825 result = SCAN_NO_REFERENCED_PAGE;
2826 }
2827 } else {
2828 result = SCAN_PAGE_RO;
2829 }
ba76149f
AA
2830out_unmap:
2831 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2832 if (ret) {
2833 node = khugepaged_find_target_node();
ce83d217 2834 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2835 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2836 }
ba76149f 2837out:
7d2eba05
EA
2838 trace_mm_khugepaged_scan_pmd(mm, page_to_pfn(page), writable, referenced,
2839 none_or_zero, result);
ba76149f
AA
2840 return ret;
2841}
2842
2843static void collect_mm_slot(struct mm_slot *mm_slot)
2844{
2845 struct mm_struct *mm = mm_slot->mm;
2846
b9980cdc 2847 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2848
2849 if (khugepaged_test_exit(mm)) {
2850 /* free mm_slot */
43b5fbbd 2851 hash_del(&mm_slot->hash);
ba76149f
AA
2852 list_del(&mm_slot->mm_node);
2853
2854 /*
2855 * Not strictly needed because the mm exited already.
2856 *
2857 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2858 */
2859
2860 /* khugepaged_mm_lock actually not necessary for the below */
2861 free_mm_slot(mm_slot);
2862 mmdrop(mm);
2863 }
2864}
2865
2866static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2867 struct page **hpage)
2f1da642
HS
2868 __releases(&khugepaged_mm_lock)
2869 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2870{
2871 struct mm_slot *mm_slot;
2872 struct mm_struct *mm;
2873 struct vm_area_struct *vma;
2874 int progress = 0;
2875
2876 VM_BUG_ON(!pages);
b9980cdc 2877 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2878
2879 if (khugepaged_scan.mm_slot)
2880 mm_slot = khugepaged_scan.mm_slot;
2881 else {
2882 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2883 struct mm_slot, mm_node);
2884 khugepaged_scan.address = 0;
2885 khugepaged_scan.mm_slot = mm_slot;
2886 }
2887 spin_unlock(&khugepaged_mm_lock);
2888
2889 mm = mm_slot->mm;
2890 down_read(&mm->mmap_sem);
2891 if (unlikely(khugepaged_test_exit(mm)))
2892 vma = NULL;
2893 else
2894 vma = find_vma(mm, khugepaged_scan.address);
2895
2896 progress++;
2897 for (; vma; vma = vma->vm_next) {
2898 unsigned long hstart, hend;
2899
2900 cond_resched();
2901 if (unlikely(khugepaged_test_exit(mm))) {
2902 progress++;
2903 break;
2904 }
fa475e51
BL
2905 if (!hugepage_vma_check(vma)) {
2906skip:
ba76149f
AA
2907 progress++;
2908 continue;
2909 }
ba76149f
AA
2910 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2911 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2912 if (hstart >= hend)
2913 goto skip;
2914 if (khugepaged_scan.address > hend)
2915 goto skip;
ba76149f
AA
2916 if (khugepaged_scan.address < hstart)
2917 khugepaged_scan.address = hstart;
a7d6e4ec 2918 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2919
2920 while (khugepaged_scan.address < hend) {
2921 int ret;
2922 cond_resched();
2923 if (unlikely(khugepaged_test_exit(mm)))
2924 goto breakouterloop;
2925
2926 VM_BUG_ON(khugepaged_scan.address < hstart ||
2927 khugepaged_scan.address + HPAGE_PMD_SIZE >
2928 hend);
2929 ret = khugepaged_scan_pmd(mm, vma,
2930 khugepaged_scan.address,
2931 hpage);
2932 /* move to next address */
2933 khugepaged_scan.address += HPAGE_PMD_SIZE;
2934 progress += HPAGE_PMD_NR;
2935 if (ret)
2936 /* we released mmap_sem so break loop */
2937 goto breakouterloop_mmap_sem;
2938 if (progress >= pages)
2939 goto breakouterloop;
2940 }
2941 }
2942breakouterloop:
2943 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2944breakouterloop_mmap_sem:
2945
2946 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2947 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2948 /*
2949 * Release the current mm_slot if this mm is about to die, or
2950 * if we scanned all vmas of this mm.
2951 */
2952 if (khugepaged_test_exit(mm) || !vma) {
2953 /*
2954 * Make sure that if mm_users is reaching zero while
2955 * khugepaged runs here, khugepaged_exit will find
2956 * mm_slot not pointing to the exiting mm.
2957 */
2958 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2959 khugepaged_scan.mm_slot = list_entry(
2960 mm_slot->mm_node.next,
2961 struct mm_slot, mm_node);
2962 khugepaged_scan.address = 0;
2963 } else {
2964 khugepaged_scan.mm_slot = NULL;
2965 khugepaged_full_scans++;
2966 }
2967
2968 collect_mm_slot(mm_slot);
2969 }
2970
2971 return progress;
2972}
2973
2974static int khugepaged_has_work(void)
2975{
2976 return !list_empty(&khugepaged_scan.mm_head) &&
2977 khugepaged_enabled();
2978}
2979
2980static int khugepaged_wait_event(void)
2981{
2982 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2983 kthread_should_stop();
ba76149f
AA
2984}
2985
d516904b 2986static void khugepaged_do_scan(void)
ba76149f 2987{
d516904b 2988 struct page *hpage = NULL;
ba76149f
AA
2989 unsigned int progress = 0, pass_through_head = 0;
2990 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2991 bool wait = true;
ba76149f
AA
2992
2993 barrier(); /* write khugepaged_pages_to_scan to local stack */
2994
2995 while (progress < pages) {
26234f36 2996 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2997 break;
26234f36 2998
420256ef 2999 cond_resched();
ba76149f 3000
cd092411 3001 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
3002 break;
3003
ba76149f
AA
3004 spin_lock(&khugepaged_mm_lock);
3005 if (!khugepaged_scan.mm_slot)
3006 pass_through_head++;
3007 if (khugepaged_has_work() &&
3008 pass_through_head < 2)
3009 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 3010 &hpage);
ba76149f
AA
3011 else
3012 progress = pages;
3013 spin_unlock(&khugepaged_mm_lock);
3014 }
ba76149f 3015
d516904b
XG
3016 if (!IS_ERR_OR_NULL(hpage))
3017 put_page(hpage);
0bbbc0b3
AA
3018}
3019
2017c0bf
XG
3020static void khugepaged_wait_work(void)
3021{
2017c0bf
XG
3022 if (khugepaged_has_work()) {
3023 if (!khugepaged_scan_sleep_millisecs)
3024 return;
3025
3026 wait_event_freezable_timeout(khugepaged_wait,
3027 kthread_should_stop(),
3028 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
3029 return;
3030 }
3031
3032 if (khugepaged_enabled())
3033 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
3034}
3035
ba76149f
AA
3036static int khugepaged(void *none)
3037{
3038 struct mm_slot *mm_slot;
3039
878aee7d 3040 set_freezable();
8698a745 3041 set_user_nice(current, MAX_NICE);
ba76149f 3042
b7231789
XG
3043 while (!kthread_should_stop()) {
3044 khugepaged_do_scan();
3045 khugepaged_wait_work();
3046 }
ba76149f
AA
3047
3048 spin_lock(&khugepaged_mm_lock);
3049 mm_slot = khugepaged_scan.mm_slot;
3050 khugepaged_scan.mm_slot = NULL;
3051 if (mm_slot)
3052 collect_mm_slot(mm_slot);
3053 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
3054 return 0;
3055}
3056
c5a647d0
KS
3057static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
3058 unsigned long haddr, pmd_t *pmd)
3059{
3060 struct mm_struct *mm = vma->vm_mm;
3061 pgtable_t pgtable;
3062 pmd_t _pmd;
3063 int i;
3064
8809aa2d 3065 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
c5a647d0
KS
3066 /* leave pmd empty until pte is filled */
3067
6b0b50b0 3068 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
c5a647d0
KS
3069 pmd_populate(mm, &_pmd, pgtable);
3070
3071 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
3072 pte_t *pte, entry;
3073 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
3074 entry = pte_mkspecial(entry);
3075 pte = pte_offset_map(&_pmd, haddr);
3076 VM_BUG_ON(!pte_none(*pte));
3077 set_pte_at(mm, haddr, pte, entry);
3078 pte_unmap(pte);
3079 }
3080 smp_wmb(); /* make pte visible before pmd */
3081 pmd_populate(mm, pmd, pgtable);
97ae1749 3082 put_huge_zero_page();
c5a647d0
KS
3083}
3084
e180377f
KS
3085void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
3086 pmd_t *pmd)
71e3aac0 3087{
c4088ebd 3088 spinlock_t *ptl;
4897c765 3089 struct page *page = NULL;
e180377f 3090 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
3091 unsigned long haddr = address & HPAGE_PMD_MASK;
3092 unsigned long mmun_start; /* For mmu_notifiers */
3093 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
3094
3095 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 3096
c5a647d0
KS
3097 mmun_start = haddr;
3098 mmun_end = haddr + HPAGE_PMD_SIZE;
750e8165 3099again:
c5a647d0 3100 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 3101 ptl = pmd_lock(mm, pmd);
4897c765
MW
3102 if (unlikely(!pmd_trans_huge(*pmd)))
3103 goto unlock;
3104 if (vma_is_dax(vma)) {
5b701b84
KS
3105 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
3106 if (is_huge_zero_pmd(_pmd))
3107 put_huge_zero_page();
4897c765 3108 } else if (is_huge_zero_pmd(*pmd)) {
c5a647d0 3109 __split_huge_zero_page_pmd(vma, haddr, pmd);
4897c765
MW
3110 } else {
3111 page = pmd_page(*pmd);
3112 VM_BUG_ON_PAGE(!page_count(page), page);
3113 get_page(page);
71e3aac0 3114 }
4897c765 3115 unlock:
c4088ebd 3116 spin_unlock(ptl);
c5a647d0 3117 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0 3118
4897c765
MW
3119 if (!page)
3120 return;
71e3aac0 3121
4897c765 3122 split_huge_page(page);
71e3aac0 3123 put_page(page);
750e8165
HD
3124
3125 /*
3126 * We don't always have down_write of mmap_sem here: a racing
3127 * do_huge_pmd_wp_page() might have copied-on-write to another
3128 * huge page before our split_huge_page() got the anon_vma lock.
3129 */
3130 if (unlikely(pmd_trans_huge(*pmd)))
3131 goto again;
71e3aac0 3132}
94fcc585 3133
e180377f
KS
3134void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
3135 pmd_t *pmd)
3136{
3137 struct vm_area_struct *vma;
3138
3139 vma = find_vma(mm, address);
3140 BUG_ON(vma == NULL);
3141 split_huge_page_pmd(vma, address, pmd);
3142}
3143
94fcc585
AA
3144static void split_huge_page_address(struct mm_struct *mm,
3145 unsigned long address)
3146{
f72e7dcd
HD
3147 pgd_t *pgd;
3148 pud_t *pud;
94fcc585
AA
3149 pmd_t *pmd;
3150
3151 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
3152
f72e7dcd
HD
3153 pgd = pgd_offset(mm, address);
3154 if (!pgd_present(*pgd))
3155 return;
3156
3157 pud = pud_offset(pgd, address);
3158 if (!pud_present(*pud))
3159 return;
3160
3161 pmd = pmd_offset(pud, address);
3162 if (!pmd_present(*pmd))
94fcc585
AA
3163 return;
3164 /*
3165 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3166 * materialize from under us.
3167 */
e180377f 3168 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
3169}
3170
e1b9996b 3171void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
3172 unsigned long start,
3173 unsigned long end,
3174 long adjust_next)
3175{
3176 /*
3177 * If the new start address isn't hpage aligned and it could
3178 * previously contain an hugepage: check if we need to split
3179 * an huge pmd.
3180 */
3181 if (start & ~HPAGE_PMD_MASK &&
3182 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3183 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3184 split_huge_page_address(vma->vm_mm, start);
3185
3186 /*
3187 * If the new end address isn't hpage aligned and it could
3188 * previously contain an hugepage: check if we need to split
3189 * an huge pmd.
3190 */
3191 if (end & ~HPAGE_PMD_MASK &&
3192 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3193 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3194 split_huge_page_address(vma->vm_mm, end);
3195
3196 /*
3197 * If we're also updating the vma->vm_next->vm_start, if the new
3198 * vm_next->vm_start isn't page aligned and it could previously
3199 * contain an hugepage: check if we need to split an huge pmd.
3200 */
3201 if (adjust_next > 0) {
3202 struct vm_area_struct *next = vma->vm_next;
3203 unsigned long nstart = next->vm_start;
3204 nstart += adjust_next << PAGE_SHIFT;
3205 if (nstart & ~HPAGE_PMD_MASK &&
3206 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3207 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3208 split_huge_page_address(next->vm_mm, nstart);
3209 }
3210}