]> git.ipfire.org Git - people/arne_f/kernel.git/blame - mm/huge_memory.c
thp: mprotect: transparent huge page support
[people/arne_f/kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
71e3aac0
AA
18#include <asm/tlb.h>
19#include <asm/pgalloc.h>
20#include "internal.h"
21
ba76149f
AA
22/*
23 * By default transparent hugepage support is enabled for all mappings
24 * and khugepaged scans all mappings. Defrag is only invoked by
25 * khugepaged hugepage allocations and by page faults inside
26 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
27 * allocations.
28 */
71e3aac0 29unsigned long transparent_hugepage_flags __read_mostly =
ba76149f
AA
30 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
31 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
32
33/* default scan 8*512 pte (or vmas) every 30 second */
34static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
35static unsigned int khugepaged_pages_collapsed;
36static unsigned int khugepaged_full_scans;
37static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
38/* during fragmentation poll the hugepage allocator once every minute */
39static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
40static struct task_struct *khugepaged_thread __read_mostly;
41static DEFINE_MUTEX(khugepaged_mutex);
42static DEFINE_SPINLOCK(khugepaged_mm_lock);
43static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
44/*
45 * default collapse hugepages if there is at least one pte mapped like
46 * it would have happened if the vma was large enough during page
47 * fault.
48 */
49static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
50
51static int khugepaged(void *none);
52static int mm_slots_hash_init(void);
53static int khugepaged_slab_init(void);
54static void khugepaged_slab_free(void);
55
56#define MM_SLOTS_HASH_HEADS 1024
57static struct hlist_head *mm_slots_hash __read_mostly;
58static struct kmem_cache *mm_slot_cache __read_mostly;
59
60/**
61 * struct mm_slot - hash lookup from mm to mm_slot
62 * @hash: hash collision list
63 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
64 * @mm: the mm that this information is valid for
65 */
66struct mm_slot {
67 struct hlist_node hash;
68 struct list_head mm_node;
69 struct mm_struct *mm;
70};
71
72/**
73 * struct khugepaged_scan - cursor for scanning
74 * @mm_head: the head of the mm list to scan
75 * @mm_slot: the current mm_slot we are scanning
76 * @address: the next address inside that to be scanned
77 *
78 * There is only the one khugepaged_scan instance of this cursor structure.
79 */
80struct khugepaged_scan {
81 struct list_head mm_head;
82 struct mm_slot *mm_slot;
83 unsigned long address;
84} khugepaged_scan = {
85 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
86};
87
88static int start_khugepaged(void)
89{
90 int err = 0;
91 if (khugepaged_enabled()) {
92 int wakeup;
93 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
94 err = -ENOMEM;
95 goto out;
96 }
97 mutex_lock(&khugepaged_mutex);
98 if (!khugepaged_thread)
99 khugepaged_thread = kthread_run(khugepaged, NULL,
100 "khugepaged");
101 if (unlikely(IS_ERR(khugepaged_thread))) {
102 printk(KERN_ERR
103 "khugepaged: kthread_run(khugepaged) failed\n");
104 err = PTR_ERR(khugepaged_thread);
105 khugepaged_thread = NULL;
106 }
107 wakeup = !list_empty(&khugepaged_scan.mm_head);
108 mutex_unlock(&khugepaged_mutex);
109 if (wakeup)
110 wake_up_interruptible(&khugepaged_wait);
111 } else
112 /* wakeup to exit */
113 wake_up_interruptible(&khugepaged_wait);
114out:
115 return err;
116}
71e3aac0
AA
117
118#ifdef CONFIG_SYSFS
ba76149f 119
71e3aac0
AA
120static ssize_t double_flag_show(struct kobject *kobj,
121 struct kobj_attribute *attr, char *buf,
122 enum transparent_hugepage_flag enabled,
123 enum transparent_hugepage_flag req_madv)
124{
125 if (test_bit(enabled, &transparent_hugepage_flags)) {
126 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
127 return sprintf(buf, "[always] madvise never\n");
128 } else if (test_bit(req_madv, &transparent_hugepage_flags))
129 return sprintf(buf, "always [madvise] never\n");
130 else
131 return sprintf(buf, "always madvise [never]\n");
132}
133static ssize_t double_flag_store(struct kobject *kobj,
134 struct kobj_attribute *attr,
135 const char *buf, size_t count,
136 enum transparent_hugepage_flag enabled,
137 enum transparent_hugepage_flag req_madv)
138{
139 if (!memcmp("always", buf,
140 min(sizeof("always")-1, count))) {
141 set_bit(enabled, &transparent_hugepage_flags);
142 clear_bit(req_madv, &transparent_hugepage_flags);
143 } else if (!memcmp("madvise", buf,
144 min(sizeof("madvise")-1, count))) {
145 clear_bit(enabled, &transparent_hugepage_flags);
146 set_bit(req_madv, &transparent_hugepage_flags);
147 } else if (!memcmp("never", buf,
148 min(sizeof("never")-1, count))) {
149 clear_bit(enabled, &transparent_hugepage_flags);
150 clear_bit(req_madv, &transparent_hugepage_flags);
151 } else
152 return -EINVAL;
153
154 return count;
155}
156
157static ssize_t enabled_show(struct kobject *kobj,
158 struct kobj_attribute *attr, char *buf)
159{
160 return double_flag_show(kobj, attr, buf,
161 TRANSPARENT_HUGEPAGE_FLAG,
162 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
163}
164static ssize_t enabled_store(struct kobject *kobj,
165 struct kobj_attribute *attr,
166 const char *buf, size_t count)
167{
ba76149f
AA
168 ssize_t ret;
169
170 ret = double_flag_store(kobj, attr, buf, count,
171 TRANSPARENT_HUGEPAGE_FLAG,
172 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
173
174 if (ret > 0) {
175 int err = start_khugepaged();
176 if (err)
177 ret = err;
178 }
179
180 return ret;
71e3aac0
AA
181}
182static struct kobj_attribute enabled_attr =
183 __ATTR(enabled, 0644, enabled_show, enabled_store);
184
185static ssize_t single_flag_show(struct kobject *kobj,
186 struct kobj_attribute *attr, char *buf,
187 enum transparent_hugepage_flag flag)
188{
189 if (test_bit(flag, &transparent_hugepage_flags))
190 return sprintf(buf, "[yes] no\n");
191 else
192 return sprintf(buf, "yes [no]\n");
193}
194static ssize_t single_flag_store(struct kobject *kobj,
195 struct kobj_attribute *attr,
196 const char *buf, size_t count,
197 enum transparent_hugepage_flag flag)
198{
199 if (!memcmp("yes", buf,
200 min(sizeof("yes")-1, count))) {
201 set_bit(flag, &transparent_hugepage_flags);
202 } else if (!memcmp("no", buf,
203 min(sizeof("no")-1, count))) {
204 clear_bit(flag, &transparent_hugepage_flags);
205 } else
206 return -EINVAL;
207
208 return count;
209}
210
211/*
212 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
213 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
214 * memory just to allocate one more hugepage.
215 */
216static ssize_t defrag_show(struct kobject *kobj,
217 struct kobj_attribute *attr, char *buf)
218{
219 return double_flag_show(kobj, attr, buf,
220 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
221 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
222}
223static ssize_t defrag_store(struct kobject *kobj,
224 struct kobj_attribute *attr,
225 const char *buf, size_t count)
226{
227 return double_flag_store(kobj, attr, buf, count,
228 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
229 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
230}
231static struct kobj_attribute defrag_attr =
232 __ATTR(defrag, 0644, defrag_show, defrag_store);
233
234#ifdef CONFIG_DEBUG_VM
235static ssize_t debug_cow_show(struct kobject *kobj,
236 struct kobj_attribute *attr, char *buf)
237{
238 return single_flag_show(kobj, attr, buf,
239 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
240}
241static ssize_t debug_cow_store(struct kobject *kobj,
242 struct kobj_attribute *attr,
243 const char *buf, size_t count)
244{
245 return single_flag_store(kobj, attr, buf, count,
246 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
247}
248static struct kobj_attribute debug_cow_attr =
249 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
250#endif /* CONFIG_DEBUG_VM */
251
252static struct attribute *hugepage_attr[] = {
253 &enabled_attr.attr,
254 &defrag_attr.attr,
255#ifdef CONFIG_DEBUG_VM
256 &debug_cow_attr.attr,
257#endif
258 NULL,
259};
260
261static struct attribute_group hugepage_attr_group = {
262 .attrs = hugepage_attr,
ba76149f
AA
263};
264
265static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
266 struct kobj_attribute *attr,
267 char *buf)
268{
269 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
270}
271
272static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
273 struct kobj_attribute *attr,
274 const char *buf, size_t count)
275{
276 unsigned long msecs;
277 int err;
278
279 err = strict_strtoul(buf, 10, &msecs);
280 if (err || msecs > UINT_MAX)
281 return -EINVAL;
282
283 khugepaged_scan_sleep_millisecs = msecs;
284 wake_up_interruptible(&khugepaged_wait);
285
286 return count;
287}
288static struct kobj_attribute scan_sleep_millisecs_attr =
289 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
290 scan_sleep_millisecs_store);
291
292static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
293 struct kobj_attribute *attr,
294 char *buf)
295{
296 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
297}
298
299static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
300 struct kobj_attribute *attr,
301 const char *buf, size_t count)
302{
303 unsigned long msecs;
304 int err;
305
306 err = strict_strtoul(buf, 10, &msecs);
307 if (err || msecs > UINT_MAX)
308 return -EINVAL;
309
310 khugepaged_alloc_sleep_millisecs = msecs;
311 wake_up_interruptible(&khugepaged_wait);
312
313 return count;
314}
315static struct kobj_attribute alloc_sleep_millisecs_attr =
316 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
317 alloc_sleep_millisecs_store);
318
319static ssize_t pages_to_scan_show(struct kobject *kobj,
320 struct kobj_attribute *attr,
321 char *buf)
322{
323 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
324}
325static ssize_t pages_to_scan_store(struct kobject *kobj,
326 struct kobj_attribute *attr,
327 const char *buf, size_t count)
328{
329 int err;
330 unsigned long pages;
331
332 err = strict_strtoul(buf, 10, &pages);
333 if (err || !pages || pages > UINT_MAX)
334 return -EINVAL;
335
336 khugepaged_pages_to_scan = pages;
337
338 return count;
339}
340static struct kobj_attribute pages_to_scan_attr =
341 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
342 pages_to_scan_store);
343
344static ssize_t pages_collapsed_show(struct kobject *kobj,
345 struct kobj_attribute *attr,
346 char *buf)
347{
348 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
349}
350static struct kobj_attribute pages_collapsed_attr =
351 __ATTR_RO(pages_collapsed);
352
353static ssize_t full_scans_show(struct kobject *kobj,
354 struct kobj_attribute *attr,
355 char *buf)
356{
357 return sprintf(buf, "%u\n", khugepaged_full_scans);
358}
359static struct kobj_attribute full_scans_attr =
360 __ATTR_RO(full_scans);
361
362static ssize_t khugepaged_defrag_show(struct kobject *kobj,
363 struct kobj_attribute *attr, char *buf)
364{
365 return single_flag_show(kobj, attr, buf,
366 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
367}
368static ssize_t khugepaged_defrag_store(struct kobject *kobj,
369 struct kobj_attribute *attr,
370 const char *buf, size_t count)
371{
372 return single_flag_store(kobj, attr, buf, count,
373 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
374}
375static struct kobj_attribute khugepaged_defrag_attr =
376 __ATTR(defrag, 0644, khugepaged_defrag_show,
377 khugepaged_defrag_store);
378
379/*
380 * max_ptes_none controls if khugepaged should collapse hugepages over
381 * any unmapped ptes in turn potentially increasing the memory
382 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
383 * reduce the available free memory in the system as it
384 * runs. Increasing max_ptes_none will instead potentially reduce the
385 * free memory in the system during the khugepaged scan.
386 */
387static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
388 struct kobj_attribute *attr,
389 char *buf)
390{
391 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
392}
393static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
394 struct kobj_attribute *attr,
395 const char *buf, size_t count)
396{
397 int err;
398 unsigned long max_ptes_none;
399
400 err = strict_strtoul(buf, 10, &max_ptes_none);
401 if (err || max_ptes_none > HPAGE_PMD_NR-1)
402 return -EINVAL;
403
404 khugepaged_max_ptes_none = max_ptes_none;
405
406 return count;
407}
408static struct kobj_attribute khugepaged_max_ptes_none_attr =
409 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
410 khugepaged_max_ptes_none_store);
411
412static struct attribute *khugepaged_attr[] = {
413 &khugepaged_defrag_attr.attr,
414 &khugepaged_max_ptes_none_attr.attr,
415 &pages_to_scan_attr.attr,
416 &pages_collapsed_attr.attr,
417 &full_scans_attr.attr,
418 &scan_sleep_millisecs_attr.attr,
419 &alloc_sleep_millisecs_attr.attr,
420 NULL,
421};
422
423static struct attribute_group khugepaged_attr_group = {
424 .attrs = khugepaged_attr,
425 .name = "khugepaged",
71e3aac0
AA
426};
427#endif /* CONFIG_SYSFS */
428
429static int __init hugepage_init(void)
430{
71e3aac0 431 int err;
ba76149f
AA
432#ifdef CONFIG_SYSFS
433 static struct kobject *hugepage_kobj;
71e3aac0 434
ba76149f
AA
435 err = -ENOMEM;
436 hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
437 if (unlikely(!hugepage_kobj)) {
438 printk(KERN_ERR "hugepage: failed kobject create\n");
439 goto out;
440 }
441
442 err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
443 if (err) {
444 printk(KERN_ERR "hugepage: failed register hugeage group\n");
445 goto out;
446 }
447
448 err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
449 if (err) {
450 printk(KERN_ERR "hugepage: failed register hugeage group\n");
451 goto out;
452 }
71e3aac0 453#endif
ba76149f
AA
454
455 err = khugepaged_slab_init();
456 if (err)
457 goto out;
458
459 err = mm_slots_hash_init();
460 if (err) {
461 khugepaged_slab_free();
462 goto out;
463 }
464
465 start_khugepaged();
466
467out:
468 return err;
71e3aac0
AA
469}
470module_init(hugepage_init)
471
472static int __init setup_transparent_hugepage(char *str)
473{
474 int ret = 0;
475 if (!str)
476 goto out;
477 if (!strcmp(str, "always")) {
478 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
479 &transparent_hugepage_flags);
480 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
481 &transparent_hugepage_flags);
482 ret = 1;
483 } else if (!strcmp(str, "madvise")) {
484 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
485 &transparent_hugepage_flags);
486 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
487 &transparent_hugepage_flags);
488 ret = 1;
489 } else if (!strcmp(str, "never")) {
490 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
491 &transparent_hugepage_flags);
492 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
493 &transparent_hugepage_flags);
494 ret = 1;
495 }
496out:
497 if (!ret)
498 printk(KERN_WARNING
499 "transparent_hugepage= cannot parse, ignored\n");
500 return ret;
501}
502__setup("transparent_hugepage=", setup_transparent_hugepage);
503
504static void prepare_pmd_huge_pte(pgtable_t pgtable,
505 struct mm_struct *mm)
506{
507 assert_spin_locked(&mm->page_table_lock);
508
509 /* FIFO */
510 if (!mm->pmd_huge_pte)
511 INIT_LIST_HEAD(&pgtable->lru);
512 else
513 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
514 mm->pmd_huge_pte = pgtable;
515}
516
517static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
518{
519 if (likely(vma->vm_flags & VM_WRITE))
520 pmd = pmd_mkwrite(pmd);
521 return pmd;
522}
523
524static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
525 struct vm_area_struct *vma,
526 unsigned long haddr, pmd_t *pmd,
527 struct page *page)
528{
529 int ret = 0;
530 pgtable_t pgtable;
531
532 VM_BUG_ON(!PageCompound(page));
533 pgtable = pte_alloc_one(mm, haddr);
534 if (unlikely(!pgtable)) {
b9bbfbe3 535 mem_cgroup_uncharge_page(page);
71e3aac0
AA
536 put_page(page);
537 return VM_FAULT_OOM;
538 }
539
540 clear_huge_page(page, haddr, HPAGE_PMD_NR);
541 __SetPageUptodate(page);
542
543 spin_lock(&mm->page_table_lock);
544 if (unlikely(!pmd_none(*pmd))) {
545 spin_unlock(&mm->page_table_lock);
b9bbfbe3 546 mem_cgroup_uncharge_page(page);
71e3aac0
AA
547 put_page(page);
548 pte_free(mm, pgtable);
549 } else {
550 pmd_t entry;
551 entry = mk_pmd(page, vma->vm_page_prot);
552 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
553 entry = pmd_mkhuge(entry);
554 /*
555 * The spinlocking to take the lru_lock inside
556 * page_add_new_anon_rmap() acts as a full memory
557 * barrier to be sure clear_huge_page writes become
558 * visible after the set_pmd_at() write.
559 */
560 page_add_new_anon_rmap(page, vma, haddr);
561 set_pmd_at(mm, haddr, pmd, entry);
562 prepare_pmd_huge_pte(pgtable, mm);
563 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
564 spin_unlock(&mm->page_table_lock);
565 }
566
567 return ret;
568}
569
570static inline struct page *alloc_hugepage(int defrag)
571{
572 return alloc_pages(GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT),
573 HPAGE_PMD_ORDER);
574}
575
576int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
577 unsigned long address, pmd_t *pmd,
578 unsigned int flags)
579{
580 struct page *page;
581 unsigned long haddr = address & HPAGE_PMD_MASK;
582 pte_t *pte;
583
584 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
585 if (unlikely(anon_vma_prepare(vma)))
586 return VM_FAULT_OOM;
ba76149f
AA
587 if (unlikely(khugepaged_enter(vma)))
588 return VM_FAULT_OOM;
71e3aac0
AA
589 page = alloc_hugepage(transparent_hugepage_defrag(vma));
590 if (unlikely(!page))
591 goto out;
b9bbfbe3
AA
592 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
593 put_page(page);
594 goto out;
595 }
71e3aac0
AA
596
597 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
598 }
599out:
600 /*
601 * Use __pte_alloc instead of pte_alloc_map, because we can't
602 * run pte_offset_map on the pmd, if an huge pmd could
603 * materialize from under us from a different thread.
604 */
605 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
606 return VM_FAULT_OOM;
607 /* if an huge pmd materialized from under us just retry later */
608 if (unlikely(pmd_trans_huge(*pmd)))
609 return 0;
610 /*
611 * A regular pmd is established and it can't morph into a huge pmd
612 * from under us anymore at this point because we hold the mmap_sem
613 * read mode and khugepaged takes it in write mode. So now it's
614 * safe to run pte_offset_map().
615 */
616 pte = pte_offset_map(pmd, address);
617 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
618}
619
620int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
621 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
622 struct vm_area_struct *vma)
623{
624 struct page *src_page;
625 pmd_t pmd;
626 pgtable_t pgtable;
627 int ret;
628
629 ret = -ENOMEM;
630 pgtable = pte_alloc_one(dst_mm, addr);
631 if (unlikely(!pgtable))
632 goto out;
633
634 spin_lock(&dst_mm->page_table_lock);
635 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
636
637 ret = -EAGAIN;
638 pmd = *src_pmd;
639 if (unlikely(!pmd_trans_huge(pmd))) {
640 pte_free(dst_mm, pgtable);
641 goto out_unlock;
642 }
643 if (unlikely(pmd_trans_splitting(pmd))) {
644 /* split huge page running from under us */
645 spin_unlock(&src_mm->page_table_lock);
646 spin_unlock(&dst_mm->page_table_lock);
647 pte_free(dst_mm, pgtable);
648
649 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
650 goto out;
651 }
652 src_page = pmd_page(pmd);
653 VM_BUG_ON(!PageHead(src_page));
654 get_page(src_page);
655 page_dup_rmap(src_page);
656 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
657
658 pmdp_set_wrprotect(src_mm, addr, src_pmd);
659 pmd = pmd_mkold(pmd_wrprotect(pmd));
660 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
661 prepare_pmd_huge_pte(pgtable, dst_mm);
662
663 ret = 0;
664out_unlock:
665 spin_unlock(&src_mm->page_table_lock);
666 spin_unlock(&dst_mm->page_table_lock);
667out:
668 return ret;
669}
670
671/* no "address" argument so destroys page coloring of some arch */
672pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
673{
674 pgtable_t pgtable;
675
676 assert_spin_locked(&mm->page_table_lock);
677
678 /* FIFO */
679 pgtable = mm->pmd_huge_pte;
680 if (list_empty(&pgtable->lru))
681 mm->pmd_huge_pte = NULL;
682 else {
683 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
684 struct page, lru);
685 list_del(&pgtable->lru);
686 }
687 return pgtable;
688}
689
690static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
691 struct vm_area_struct *vma,
692 unsigned long address,
693 pmd_t *pmd, pmd_t orig_pmd,
694 struct page *page,
695 unsigned long haddr)
696{
697 pgtable_t pgtable;
698 pmd_t _pmd;
699 int ret = 0, i;
700 struct page **pages;
701
702 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
703 GFP_KERNEL);
704 if (unlikely(!pages)) {
705 ret |= VM_FAULT_OOM;
706 goto out;
707 }
708
709 for (i = 0; i < HPAGE_PMD_NR; i++) {
710 pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
711 vma, address);
b9bbfbe3
AA
712 if (unlikely(!pages[i] ||
713 mem_cgroup_newpage_charge(pages[i], mm,
714 GFP_KERNEL))) {
715 if (pages[i])
71e3aac0 716 put_page(pages[i]);
b9bbfbe3
AA
717 mem_cgroup_uncharge_start();
718 while (--i >= 0) {
719 mem_cgroup_uncharge_page(pages[i]);
720 put_page(pages[i]);
721 }
722 mem_cgroup_uncharge_end();
71e3aac0
AA
723 kfree(pages);
724 ret |= VM_FAULT_OOM;
725 goto out;
726 }
727 }
728
729 for (i = 0; i < HPAGE_PMD_NR; i++) {
730 copy_user_highpage(pages[i], page + i,
731 haddr + PAGE_SHIFT*i, vma);
732 __SetPageUptodate(pages[i]);
733 cond_resched();
734 }
735
736 spin_lock(&mm->page_table_lock);
737 if (unlikely(!pmd_same(*pmd, orig_pmd)))
738 goto out_free_pages;
739 VM_BUG_ON(!PageHead(page));
740
741 pmdp_clear_flush_notify(vma, haddr, pmd);
742 /* leave pmd empty until pte is filled */
743
744 pgtable = get_pmd_huge_pte(mm);
745 pmd_populate(mm, &_pmd, pgtable);
746
747 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
748 pte_t *pte, entry;
749 entry = mk_pte(pages[i], vma->vm_page_prot);
750 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
751 page_add_new_anon_rmap(pages[i], vma, haddr);
752 pte = pte_offset_map(&_pmd, haddr);
753 VM_BUG_ON(!pte_none(*pte));
754 set_pte_at(mm, haddr, pte, entry);
755 pte_unmap(pte);
756 }
757 kfree(pages);
758
759 mm->nr_ptes++;
760 smp_wmb(); /* make pte visible before pmd */
761 pmd_populate(mm, pmd, pgtable);
762 page_remove_rmap(page);
763 spin_unlock(&mm->page_table_lock);
764
765 ret |= VM_FAULT_WRITE;
766 put_page(page);
767
768out:
769 return ret;
770
771out_free_pages:
772 spin_unlock(&mm->page_table_lock);
b9bbfbe3
AA
773 mem_cgroup_uncharge_start();
774 for (i = 0; i < HPAGE_PMD_NR; i++) {
775 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 776 put_page(pages[i]);
b9bbfbe3
AA
777 }
778 mem_cgroup_uncharge_end();
71e3aac0
AA
779 kfree(pages);
780 goto out;
781}
782
783int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
784 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
785{
786 int ret = 0;
787 struct page *page, *new_page;
788 unsigned long haddr;
789
790 VM_BUG_ON(!vma->anon_vma);
791 spin_lock(&mm->page_table_lock);
792 if (unlikely(!pmd_same(*pmd, orig_pmd)))
793 goto out_unlock;
794
795 page = pmd_page(orig_pmd);
796 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
797 haddr = address & HPAGE_PMD_MASK;
798 if (page_mapcount(page) == 1) {
799 pmd_t entry;
800 entry = pmd_mkyoung(orig_pmd);
801 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
802 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
803 update_mmu_cache(vma, address, entry);
804 ret |= VM_FAULT_WRITE;
805 goto out_unlock;
806 }
807 get_page(page);
808 spin_unlock(&mm->page_table_lock);
809
810 if (transparent_hugepage_enabled(vma) &&
811 !transparent_hugepage_debug_cow())
812 new_page = alloc_hugepage(transparent_hugepage_defrag(vma));
813 else
814 new_page = NULL;
815
816 if (unlikely(!new_page)) {
817 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
818 pmd, orig_pmd, page, haddr);
819 put_page(page);
820 goto out;
821 }
822
b9bbfbe3
AA
823 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
824 put_page(new_page);
825 put_page(page);
826 ret |= VM_FAULT_OOM;
827 goto out;
828 }
829
71e3aac0
AA
830 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
831 __SetPageUptodate(new_page);
832
833 spin_lock(&mm->page_table_lock);
834 put_page(page);
b9bbfbe3
AA
835 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
836 mem_cgroup_uncharge_page(new_page);
71e3aac0 837 put_page(new_page);
b9bbfbe3 838 } else {
71e3aac0
AA
839 pmd_t entry;
840 VM_BUG_ON(!PageHead(page));
841 entry = mk_pmd(new_page, vma->vm_page_prot);
842 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
843 entry = pmd_mkhuge(entry);
844 pmdp_clear_flush_notify(vma, haddr, pmd);
845 page_add_new_anon_rmap(new_page, vma, haddr);
846 set_pmd_at(mm, haddr, pmd, entry);
847 update_mmu_cache(vma, address, entry);
848 page_remove_rmap(page);
849 put_page(page);
850 ret |= VM_FAULT_WRITE;
851 }
852out_unlock:
853 spin_unlock(&mm->page_table_lock);
854out:
855 return ret;
856}
857
858struct page *follow_trans_huge_pmd(struct mm_struct *mm,
859 unsigned long addr,
860 pmd_t *pmd,
861 unsigned int flags)
862{
863 struct page *page = NULL;
864
865 assert_spin_locked(&mm->page_table_lock);
866
867 if (flags & FOLL_WRITE && !pmd_write(*pmd))
868 goto out;
869
870 page = pmd_page(*pmd);
871 VM_BUG_ON(!PageHead(page));
872 if (flags & FOLL_TOUCH) {
873 pmd_t _pmd;
874 /*
875 * We should set the dirty bit only for FOLL_WRITE but
876 * for now the dirty bit in the pmd is meaningless.
877 * And if the dirty bit will become meaningful and
878 * we'll only set it with FOLL_WRITE, an atomic
879 * set_bit will be required on the pmd to set the
880 * young bit, instead of the current set_pmd_at.
881 */
882 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
883 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
884 }
885 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
886 VM_BUG_ON(!PageCompound(page));
887 if (flags & FOLL_GET)
888 get_page(page);
889
890out:
891 return page;
892}
893
894int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
895 pmd_t *pmd)
896{
897 int ret = 0;
898
899 spin_lock(&tlb->mm->page_table_lock);
900 if (likely(pmd_trans_huge(*pmd))) {
901 if (unlikely(pmd_trans_splitting(*pmd))) {
902 spin_unlock(&tlb->mm->page_table_lock);
903 wait_split_huge_page(vma->anon_vma,
904 pmd);
905 } else {
906 struct page *page;
907 pgtable_t pgtable;
908 pgtable = get_pmd_huge_pte(tlb->mm);
909 page = pmd_page(*pmd);
910 pmd_clear(pmd);
911 page_remove_rmap(page);
912 VM_BUG_ON(page_mapcount(page) < 0);
913 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
914 VM_BUG_ON(!PageHead(page));
915 spin_unlock(&tlb->mm->page_table_lock);
916 tlb_remove_page(tlb, page);
917 pte_free(tlb->mm, pgtable);
918 ret = 1;
919 }
920 } else
921 spin_unlock(&tlb->mm->page_table_lock);
922
923 return ret;
924}
925
0ca1634d
JW
926int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
927 unsigned long addr, unsigned long end,
928 unsigned char *vec)
929{
930 int ret = 0;
931
932 spin_lock(&vma->vm_mm->page_table_lock);
933 if (likely(pmd_trans_huge(*pmd))) {
934 ret = !pmd_trans_splitting(*pmd);
935 spin_unlock(&vma->vm_mm->page_table_lock);
936 if (unlikely(!ret))
937 wait_split_huge_page(vma->anon_vma, pmd);
938 else {
939 /*
940 * All logical pages in the range are present
941 * if backed by a huge page.
942 */
943 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
944 }
945 } else
946 spin_unlock(&vma->vm_mm->page_table_lock);
947
948 return ret;
949}
950
cd7548ab
JW
951int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
952 unsigned long addr, pgprot_t newprot)
953{
954 struct mm_struct *mm = vma->vm_mm;
955 int ret = 0;
956
957 spin_lock(&mm->page_table_lock);
958 if (likely(pmd_trans_huge(*pmd))) {
959 if (unlikely(pmd_trans_splitting(*pmd))) {
960 spin_unlock(&mm->page_table_lock);
961 wait_split_huge_page(vma->anon_vma, pmd);
962 } else {
963 pmd_t entry;
964
965 entry = pmdp_get_and_clear(mm, addr, pmd);
966 entry = pmd_modify(entry, newprot);
967 set_pmd_at(mm, addr, pmd, entry);
968 spin_unlock(&vma->vm_mm->page_table_lock);
969 flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
970 ret = 1;
971 }
972 } else
973 spin_unlock(&vma->vm_mm->page_table_lock);
974
975 return ret;
976}
977
71e3aac0
AA
978pmd_t *page_check_address_pmd(struct page *page,
979 struct mm_struct *mm,
980 unsigned long address,
981 enum page_check_address_pmd_flag flag)
982{
983 pgd_t *pgd;
984 pud_t *pud;
985 pmd_t *pmd, *ret = NULL;
986
987 if (address & ~HPAGE_PMD_MASK)
988 goto out;
989
990 pgd = pgd_offset(mm, address);
991 if (!pgd_present(*pgd))
992 goto out;
993
994 pud = pud_offset(pgd, address);
995 if (!pud_present(*pud))
996 goto out;
997
998 pmd = pmd_offset(pud, address);
999 if (pmd_none(*pmd))
1000 goto out;
1001 if (pmd_page(*pmd) != page)
1002 goto out;
1003 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1004 pmd_trans_splitting(*pmd));
1005 if (pmd_trans_huge(*pmd)) {
1006 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1007 !pmd_trans_splitting(*pmd));
1008 ret = pmd;
1009 }
1010out:
1011 return ret;
1012}
1013
1014static int __split_huge_page_splitting(struct page *page,
1015 struct vm_area_struct *vma,
1016 unsigned long address)
1017{
1018 struct mm_struct *mm = vma->vm_mm;
1019 pmd_t *pmd;
1020 int ret = 0;
1021
1022 spin_lock(&mm->page_table_lock);
1023 pmd = page_check_address_pmd(page, mm, address,
1024 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1025 if (pmd) {
1026 /*
1027 * We can't temporarily set the pmd to null in order
1028 * to split it, the pmd must remain marked huge at all
1029 * times or the VM won't take the pmd_trans_huge paths
1030 * and it won't wait on the anon_vma->root->lock to
1031 * serialize against split_huge_page*.
1032 */
1033 pmdp_splitting_flush_notify(vma, address, pmd);
1034 ret = 1;
1035 }
1036 spin_unlock(&mm->page_table_lock);
1037
1038 return ret;
1039}
1040
1041static void __split_huge_page_refcount(struct page *page)
1042{
1043 int i;
1044 unsigned long head_index = page->index;
1045 struct zone *zone = page_zone(page);
1046
1047 /* prevent PageLRU to go away from under us, and freeze lru stats */
1048 spin_lock_irq(&zone->lru_lock);
1049 compound_lock(page);
1050
1051 for (i = 1; i < HPAGE_PMD_NR; i++) {
1052 struct page *page_tail = page + i;
1053
1054 /* tail_page->_count cannot change */
1055 atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1056 BUG_ON(page_count(page) <= 0);
1057 atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1058 BUG_ON(atomic_read(&page_tail->_count) <= 0);
1059
1060 /* after clearing PageTail the gup refcount can be released */
1061 smp_mb();
1062
1063 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1064 page_tail->flags |= (page->flags &
1065 ((1L << PG_referenced) |
1066 (1L << PG_swapbacked) |
1067 (1L << PG_mlocked) |
1068 (1L << PG_uptodate)));
1069 page_tail->flags |= (1L << PG_dirty);
1070
1071 /*
1072 * 1) clear PageTail before overwriting first_page
1073 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1074 */
1075 smp_wmb();
1076
1077 /*
1078 * __split_huge_page_splitting() already set the
1079 * splitting bit in all pmd that could map this
1080 * hugepage, that will ensure no CPU can alter the
1081 * mapcount on the head page. The mapcount is only
1082 * accounted in the head page and it has to be
1083 * transferred to all tail pages in the below code. So
1084 * for this code to be safe, the split the mapcount
1085 * can't change. But that doesn't mean userland can't
1086 * keep changing and reading the page contents while
1087 * we transfer the mapcount, so the pmd splitting
1088 * status is achieved setting a reserved bit in the
1089 * pmd, not by clearing the present bit.
1090 */
1091 BUG_ON(page_mapcount(page_tail));
1092 page_tail->_mapcount = page->_mapcount;
1093
1094 BUG_ON(page_tail->mapping);
1095 page_tail->mapping = page->mapping;
1096
1097 page_tail->index = ++head_index;
1098
1099 BUG_ON(!PageAnon(page_tail));
1100 BUG_ON(!PageUptodate(page_tail));
1101 BUG_ON(!PageDirty(page_tail));
1102 BUG_ON(!PageSwapBacked(page_tail));
1103
1104 lru_add_page_tail(zone, page, page_tail);
1105 }
1106
79134171
AA
1107 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1108 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1109
71e3aac0
AA
1110 ClearPageCompound(page);
1111 compound_unlock(page);
1112 spin_unlock_irq(&zone->lru_lock);
1113
1114 for (i = 1; i < HPAGE_PMD_NR; i++) {
1115 struct page *page_tail = page + i;
1116 BUG_ON(page_count(page_tail) <= 0);
1117 /*
1118 * Tail pages may be freed if there wasn't any mapping
1119 * like if add_to_swap() is running on a lru page that
1120 * had its mapping zapped. And freeing these pages
1121 * requires taking the lru_lock so we do the put_page
1122 * of the tail pages after the split is complete.
1123 */
1124 put_page(page_tail);
1125 }
1126
1127 /*
1128 * Only the head page (now become a regular page) is required
1129 * to be pinned by the caller.
1130 */
1131 BUG_ON(page_count(page) <= 0);
1132}
1133
1134static int __split_huge_page_map(struct page *page,
1135 struct vm_area_struct *vma,
1136 unsigned long address)
1137{
1138 struct mm_struct *mm = vma->vm_mm;
1139 pmd_t *pmd, _pmd;
1140 int ret = 0, i;
1141 pgtable_t pgtable;
1142 unsigned long haddr;
1143
1144 spin_lock(&mm->page_table_lock);
1145 pmd = page_check_address_pmd(page, mm, address,
1146 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1147 if (pmd) {
1148 pgtable = get_pmd_huge_pte(mm);
1149 pmd_populate(mm, &_pmd, pgtable);
1150
1151 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1152 i++, haddr += PAGE_SIZE) {
1153 pte_t *pte, entry;
1154 BUG_ON(PageCompound(page+i));
1155 entry = mk_pte(page + i, vma->vm_page_prot);
1156 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1157 if (!pmd_write(*pmd))
1158 entry = pte_wrprotect(entry);
1159 else
1160 BUG_ON(page_mapcount(page) != 1);
1161 if (!pmd_young(*pmd))
1162 entry = pte_mkold(entry);
1163 pte = pte_offset_map(&_pmd, haddr);
1164 BUG_ON(!pte_none(*pte));
1165 set_pte_at(mm, haddr, pte, entry);
1166 pte_unmap(pte);
1167 }
1168
1169 mm->nr_ptes++;
1170 smp_wmb(); /* make pte visible before pmd */
1171 /*
1172 * Up to this point the pmd is present and huge and
1173 * userland has the whole access to the hugepage
1174 * during the split (which happens in place). If we
1175 * overwrite the pmd with the not-huge version
1176 * pointing to the pte here (which of course we could
1177 * if all CPUs were bug free), userland could trigger
1178 * a small page size TLB miss on the small sized TLB
1179 * while the hugepage TLB entry is still established
1180 * in the huge TLB. Some CPU doesn't like that. See
1181 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1182 * Erratum 383 on page 93. Intel should be safe but is
1183 * also warns that it's only safe if the permission
1184 * and cache attributes of the two entries loaded in
1185 * the two TLB is identical (which should be the case
1186 * here). But it is generally safer to never allow
1187 * small and huge TLB entries for the same virtual
1188 * address to be loaded simultaneously. So instead of
1189 * doing "pmd_populate(); flush_tlb_range();" we first
1190 * mark the current pmd notpresent (atomically because
1191 * here the pmd_trans_huge and pmd_trans_splitting
1192 * must remain set at all times on the pmd until the
1193 * split is complete for this pmd), then we flush the
1194 * SMP TLB and finally we write the non-huge version
1195 * of the pmd entry with pmd_populate.
1196 */
1197 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1198 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1199 pmd_populate(mm, pmd, pgtable);
1200 ret = 1;
1201 }
1202 spin_unlock(&mm->page_table_lock);
1203
1204 return ret;
1205}
1206
1207/* must be called with anon_vma->root->lock hold */
1208static void __split_huge_page(struct page *page,
1209 struct anon_vma *anon_vma)
1210{
1211 int mapcount, mapcount2;
1212 struct anon_vma_chain *avc;
1213
1214 BUG_ON(!PageHead(page));
1215 BUG_ON(PageTail(page));
1216
1217 mapcount = 0;
1218 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1219 struct vm_area_struct *vma = avc->vma;
1220 unsigned long addr = vma_address(page, vma);
1221 BUG_ON(is_vma_temporary_stack(vma));
1222 if (addr == -EFAULT)
1223 continue;
1224 mapcount += __split_huge_page_splitting(page, vma, addr);
1225 }
05759d38
AA
1226 /*
1227 * It is critical that new vmas are added to the tail of the
1228 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1229 * and establishes a child pmd before
1230 * __split_huge_page_splitting() freezes the parent pmd (so if
1231 * we fail to prevent copy_huge_pmd() from running until the
1232 * whole __split_huge_page() is complete), we will still see
1233 * the newly established pmd of the child later during the
1234 * walk, to be able to set it as pmd_trans_splitting too.
1235 */
1236 if (mapcount != page_mapcount(page))
1237 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1238 mapcount, page_mapcount(page));
71e3aac0
AA
1239 BUG_ON(mapcount != page_mapcount(page));
1240
1241 __split_huge_page_refcount(page);
1242
1243 mapcount2 = 0;
1244 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1245 struct vm_area_struct *vma = avc->vma;
1246 unsigned long addr = vma_address(page, vma);
1247 BUG_ON(is_vma_temporary_stack(vma));
1248 if (addr == -EFAULT)
1249 continue;
1250 mapcount2 += __split_huge_page_map(page, vma, addr);
1251 }
05759d38
AA
1252 if (mapcount != mapcount2)
1253 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1254 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1255 BUG_ON(mapcount != mapcount2);
1256}
1257
1258int split_huge_page(struct page *page)
1259{
1260 struct anon_vma *anon_vma;
1261 int ret = 1;
1262
1263 BUG_ON(!PageAnon(page));
1264 anon_vma = page_lock_anon_vma(page);
1265 if (!anon_vma)
1266 goto out;
1267 ret = 0;
1268 if (!PageCompound(page))
1269 goto out_unlock;
1270
1271 BUG_ON(!PageSwapBacked(page));
1272 __split_huge_page(page, anon_vma);
1273
1274 BUG_ON(PageCompound(page));
1275out_unlock:
1276 page_unlock_anon_vma(anon_vma);
1277out:
1278 return ret;
1279}
1280
0af4e98b
AA
1281int hugepage_madvise(unsigned long *vm_flags)
1282{
1283 /*
1284 * Be somewhat over-protective like KSM for now!
1285 */
1286 if (*vm_flags & (VM_HUGEPAGE | VM_SHARED | VM_MAYSHARE |
1287 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1288 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1289 VM_MIXEDMAP | VM_SAO))
1290 return -EINVAL;
1291
1292 *vm_flags |= VM_HUGEPAGE;
1293
1294 return 0;
1295}
1296
ba76149f
AA
1297static int __init khugepaged_slab_init(void)
1298{
1299 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1300 sizeof(struct mm_slot),
1301 __alignof__(struct mm_slot), 0, NULL);
1302 if (!mm_slot_cache)
1303 return -ENOMEM;
1304
1305 return 0;
1306}
1307
1308static void __init khugepaged_slab_free(void)
1309{
1310 kmem_cache_destroy(mm_slot_cache);
1311 mm_slot_cache = NULL;
1312}
1313
1314static inline struct mm_slot *alloc_mm_slot(void)
1315{
1316 if (!mm_slot_cache) /* initialization failed */
1317 return NULL;
1318 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1319}
1320
1321static inline void free_mm_slot(struct mm_slot *mm_slot)
1322{
1323 kmem_cache_free(mm_slot_cache, mm_slot);
1324}
1325
1326static int __init mm_slots_hash_init(void)
1327{
1328 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1329 GFP_KERNEL);
1330 if (!mm_slots_hash)
1331 return -ENOMEM;
1332 return 0;
1333}
1334
1335#if 0
1336static void __init mm_slots_hash_free(void)
1337{
1338 kfree(mm_slots_hash);
1339 mm_slots_hash = NULL;
1340}
1341#endif
1342
1343static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1344{
1345 struct mm_slot *mm_slot;
1346 struct hlist_head *bucket;
1347 struct hlist_node *node;
1348
1349 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1350 % MM_SLOTS_HASH_HEADS];
1351 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1352 if (mm == mm_slot->mm)
1353 return mm_slot;
1354 }
1355 return NULL;
1356}
1357
1358static void insert_to_mm_slots_hash(struct mm_struct *mm,
1359 struct mm_slot *mm_slot)
1360{
1361 struct hlist_head *bucket;
1362
1363 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1364 % MM_SLOTS_HASH_HEADS];
1365 mm_slot->mm = mm;
1366 hlist_add_head(&mm_slot->hash, bucket);
1367}
1368
1369static inline int khugepaged_test_exit(struct mm_struct *mm)
1370{
1371 return atomic_read(&mm->mm_users) == 0;
1372}
1373
1374int __khugepaged_enter(struct mm_struct *mm)
1375{
1376 struct mm_slot *mm_slot;
1377 int wakeup;
1378
1379 mm_slot = alloc_mm_slot();
1380 if (!mm_slot)
1381 return -ENOMEM;
1382
1383 /* __khugepaged_exit() must not run from under us */
1384 VM_BUG_ON(khugepaged_test_exit(mm));
1385 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1386 free_mm_slot(mm_slot);
1387 return 0;
1388 }
1389
1390 spin_lock(&khugepaged_mm_lock);
1391 insert_to_mm_slots_hash(mm, mm_slot);
1392 /*
1393 * Insert just behind the scanning cursor, to let the area settle
1394 * down a little.
1395 */
1396 wakeup = list_empty(&khugepaged_scan.mm_head);
1397 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1398 spin_unlock(&khugepaged_mm_lock);
1399
1400 atomic_inc(&mm->mm_count);
1401 if (wakeup)
1402 wake_up_interruptible(&khugepaged_wait);
1403
1404 return 0;
1405}
1406
1407int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1408{
1409 unsigned long hstart, hend;
1410 if (!vma->anon_vma)
1411 /*
1412 * Not yet faulted in so we will register later in the
1413 * page fault if needed.
1414 */
1415 return 0;
1416 if (vma->vm_file || vma->vm_ops)
1417 /* khugepaged not yet working on file or special mappings */
1418 return 0;
1419 VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1420 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1421 hend = vma->vm_end & HPAGE_PMD_MASK;
1422 if (hstart < hend)
1423 return khugepaged_enter(vma);
1424 return 0;
1425}
1426
1427void __khugepaged_exit(struct mm_struct *mm)
1428{
1429 struct mm_slot *mm_slot;
1430 int free = 0;
1431
1432 spin_lock(&khugepaged_mm_lock);
1433 mm_slot = get_mm_slot(mm);
1434 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1435 hlist_del(&mm_slot->hash);
1436 list_del(&mm_slot->mm_node);
1437 free = 1;
1438 }
1439
1440 if (free) {
1441 spin_unlock(&khugepaged_mm_lock);
1442 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1443 free_mm_slot(mm_slot);
1444 mmdrop(mm);
1445 } else if (mm_slot) {
1446 spin_unlock(&khugepaged_mm_lock);
1447 /*
1448 * This is required to serialize against
1449 * khugepaged_test_exit() (which is guaranteed to run
1450 * under mmap sem read mode). Stop here (after we
1451 * return all pagetables will be destroyed) until
1452 * khugepaged has finished working on the pagetables
1453 * under the mmap_sem.
1454 */
1455 down_write(&mm->mmap_sem);
1456 up_write(&mm->mmap_sem);
1457 } else
1458 spin_unlock(&khugepaged_mm_lock);
1459}
1460
1461static void release_pte_page(struct page *page)
1462{
1463 /* 0 stands for page_is_file_cache(page) == false */
1464 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1465 unlock_page(page);
1466 putback_lru_page(page);
1467}
1468
1469static void release_pte_pages(pte_t *pte, pte_t *_pte)
1470{
1471 while (--_pte >= pte) {
1472 pte_t pteval = *_pte;
1473 if (!pte_none(pteval))
1474 release_pte_page(pte_page(pteval));
1475 }
1476}
1477
1478static void release_all_pte_pages(pte_t *pte)
1479{
1480 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1481}
1482
1483static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1484 unsigned long address,
1485 pte_t *pte)
1486{
1487 struct page *page;
1488 pte_t *_pte;
1489 int referenced = 0, isolated = 0, none = 0;
1490 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1491 _pte++, address += PAGE_SIZE) {
1492 pte_t pteval = *_pte;
1493 if (pte_none(pteval)) {
1494 if (++none <= khugepaged_max_ptes_none)
1495 continue;
1496 else {
1497 release_pte_pages(pte, _pte);
1498 goto out;
1499 }
1500 }
1501 if (!pte_present(pteval) || !pte_write(pteval)) {
1502 release_pte_pages(pte, _pte);
1503 goto out;
1504 }
1505 page = vm_normal_page(vma, address, pteval);
1506 if (unlikely(!page)) {
1507 release_pte_pages(pte, _pte);
1508 goto out;
1509 }
1510 VM_BUG_ON(PageCompound(page));
1511 BUG_ON(!PageAnon(page));
1512 VM_BUG_ON(!PageSwapBacked(page));
1513
1514 /* cannot use mapcount: can't collapse if there's a gup pin */
1515 if (page_count(page) != 1) {
1516 release_pte_pages(pte, _pte);
1517 goto out;
1518 }
1519 /*
1520 * We can do it before isolate_lru_page because the
1521 * page can't be freed from under us. NOTE: PG_lock
1522 * is needed to serialize against split_huge_page
1523 * when invoked from the VM.
1524 */
1525 if (!trylock_page(page)) {
1526 release_pte_pages(pte, _pte);
1527 goto out;
1528 }
1529 /*
1530 * Isolate the page to avoid collapsing an hugepage
1531 * currently in use by the VM.
1532 */
1533 if (isolate_lru_page(page)) {
1534 unlock_page(page);
1535 release_pte_pages(pte, _pte);
1536 goto out;
1537 }
1538 /* 0 stands for page_is_file_cache(page) == false */
1539 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1540 VM_BUG_ON(!PageLocked(page));
1541 VM_BUG_ON(PageLRU(page));
1542
1543 /* If there is no mapped pte young don't collapse the page */
1544 if (pte_young(pteval))
1545 referenced = 1;
1546 }
1547 if (unlikely(!referenced))
1548 release_all_pte_pages(pte);
1549 else
1550 isolated = 1;
1551out:
1552 return isolated;
1553}
1554
1555static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1556 struct vm_area_struct *vma,
1557 unsigned long address,
1558 spinlock_t *ptl)
1559{
1560 pte_t *_pte;
1561 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1562 pte_t pteval = *_pte;
1563 struct page *src_page;
1564
1565 if (pte_none(pteval)) {
1566 clear_user_highpage(page, address);
1567 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1568 } else {
1569 src_page = pte_page(pteval);
1570 copy_user_highpage(page, src_page, address, vma);
1571 VM_BUG_ON(page_mapcount(src_page) != 1);
1572 VM_BUG_ON(page_count(src_page) != 2);
1573 release_pte_page(src_page);
1574 /*
1575 * ptl mostly unnecessary, but preempt has to
1576 * be disabled to update the per-cpu stats
1577 * inside page_remove_rmap().
1578 */
1579 spin_lock(ptl);
1580 /*
1581 * paravirt calls inside pte_clear here are
1582 * superfluous.
1583 */
1584 pte_clear(vma->vm_mm, address, _pte);
1585 page_remove_rmap(src_page);
1586 spin_unlock(ptl);
1587 free_page_and_swap_cache(src_page);
1588 }
1589
1590 address += PAGE_SIZE;
1591 page++;
1592 }
1593}
1594
1595static void collapse_huge_page(struct mm_struct *mm,
1596 unsigned long address,
1597 struct page **hpage)
1598{
1599 struct vm_area_struct *vma;
1600 pgd_t *pgd;
1601 pud_t *pud;
1602 pmd_t *pmd, _pmd;
1603 pte_t *pte;
1604 pgtable_t pgtable;
1605 struct page *new_page;
1606 spinlock_t *ptl;
1607 int isolated;
1608 unsigned long hstart, hend;
1609
1610 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1611 VM_BUG_ON(!*hpage);
1612
1613 /*
1614 * Prevent all access to pagetables with the exception of
1615 * gup_fast later hanlded by the ptep_clear_flush and the VM
1616 * handled by the anon_vma lock + PG_lock.
1617 */
1618 down_write(&mm->mmap_sem);
1619 if (unlikely(khugepaged_test_exit(mm)))
1620 goto out;
1621
1622 vma = find_vma(mm, address);
1623 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1624 hend = vma->vm_end & HPAGE_PMD_MASK;
1625 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1626 goto out;
1627
1628 if (!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always())
1629 goto out;
1630
1631 /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
1632 if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
1633 goto out;
1634 VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1635
1636 pgd = pgd_offset(mm, address);
1637 if (!pgd_present(*pgd))
1638 goto out;
1639
1640 pud = pud_offset(pgd, address);
1641 if (!pud_present(*pud))
1642 goto out;
1643
1644 pmd = pmd_offset(pud, address);
1645 /* pmd can't go away or become huge under us */
1646 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1647 goto out;
1648
1649 new_page = *hpage;
1650 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
1651 goto out;
1652
1653 anon_vma_lock(vma->anon_vma);
1654
1655 pte = pte_offset_map(pmd, address);
1656 ptl = pte_lockptr(mm, pmd);
1657
1658 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1659 /*
1660 * After this gup_fast can't run anymore. This also removes
1661 * any huge TLB entry from the CPU so we won't allow
1662 * huge and small TLB entries for the same virtual address
1663 * to avoid the risk of CPU bugs in that area.
1664 */
1665 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1666 spin_unlock(&mm->page_table_lock);
1667
1668 spin_lock(ptl);
1669 isolated = __collapse_huge_page_isolate(vma, address, pte);
1670 spin_unlock(ptl);
1671 pte_unmap(pte);
1672
1673 if (unlikely(!isolated)) {
1674 spin_lock(&mm->page_table_lock);
1675 BUG_ON(!pmd_none(*pmd));
1676 set_pmd_at(mm, address, pmd, _pmd);
1677 spin_unlock(&mm->page_table_lock);
1678 anon_vma_unlock(vma->anon_vma);
1679 mem_cgroup_uncharge_page(new_page);
1680 goto out;
1681 }
1682
1683 /*
1684 * All pages are isolated and locked so anon_vma rmap
1685 * can't run anymore.
1686 */
1687 anon_vma_unlock(vma->anon_vma);
1688
1689 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1690 __SetPageUptodate(new_page);
1691 pgtable = pmd_pgtable(_pmd);
1692 VM_BUG_ON(page_count(pgtable) != 1);
1693 VM_BUG_ON(page_mapcount(pgtable) != 0);
1694
1695 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1696 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1697 _pmd = pmd_mkhuge(_pmd);
1698
1699 /*
1700 * spin_lock() below is not the equivalent of smp_wmb(), so
1701 * this is needed to avoid the copy_huge_page writes to become
1702 * visible after the set_pmd_at() write.
1703 */
1704 smp_wmb();
1705
1706 spin_lock(&mm->page_table_lock);
1707 BUG_ON(!pmd_none(*pmd));
1708 page_add_new_anon_rmap(new_page, vma, address);
1709 set_pmd_at(mm, address, pmd, _pmd);
1710 update_mmu_cache(vma, address, entry);
1711 prepare_pmd_huge_pte(pgtable, mm);
1712 mm->nr_ptes--;
1713 spin_unlock(&mm->page_table_lock);
1714
1715 *hpage = NULL;
1716 khugepaged_pages_collapsed++;
1717out:
1718 up_write(&mm->mmap_sem);
1719}
1720
1721static int khugepaged_scan_pmd(struct mm_struct *mm,
1722 struct vm_area_struct *vma,
1723 unsigned long address,
1724 struct page **hpage)
1725{
1726 pgd_t *pgd;
1727 pud_t *pud;
1728 pmd_t *pmd;
1729 pte_t *pte, *_pte;
1730 int ret = 0, referenced = 0, none = 0;
1731 struct page *page;
1732 unsigned long _address;
1733 spinlock_t *ptl;
1734
1735 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1736
1737 pgd = pgd_offset(mm, address);
1738 if (!pgd_present(*pgd))
1739 goto out;
1740
1741 pud = pud_offset(pgd, address);
1742 if (!pud_present(*pud))
1743 goto out;
1744
1745 pmd = pmd_offset(pud, address);
1746 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1747 goto out;
1748
1749 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1750 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1751 _pte++, _address += PAGE_SIZE) {
1752 pte_t pteval = *_pte;
1753 if (pte_none(pteval)) {
1754 if (++none <= khugepaged_max_ptes_none)
1755 continue;
1756 else
1757 goto out_unmap;
1758 }
1759 if (!pte_present(pteval) || !pte_write(pteval))
1760 goto out_unmap;
1761 page = vm_normal_page(vma, _address, pteval);
1762 if (unlikely(!page))
1763 goto out_unmap;
1764 VM_BUG_ON(PageCompound(page));
1765 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1766 goto out_unmap;
1767 /* cannot use mapcount: can't collapse if there's a gup pin */
1768 if (page_count(page) != 1)
1769 goto out_unmap;
1770 if (pte_young(pteval))
1771 referenced = 1;
1772 }
1773 if (referenced)
1774 ret = 1;
1775out_unmap:
1776 pte_unmap_unlock(pte, ptl);
1777 if (ret) {
1778 up_read(&mm->mmap_sem);
1779 collapse_huge_page(mm, address, hpage);
1780 }
1781out:
1782 return ret;
1783}
1784
1785static void collect_mm_slot(struct mm_slot *mm_slot)
1786{
1787 struct mm_struct *mm = mm_slot->mm;
1788
1789 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
1790
1791 if (khugepaged_test_exit(mm)) {
1792 /* free mm_slot */
1793 hlist_del(&mm_slot->hash);
1794 list_del(&mm_slot->mm_node);
1795
1796 /*
1797 * Not strictly needed because the mm exited already.
1798 *
1799 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1800 */
1801
1802 /* khugepaged_mm_lock actually not necessary for the below */
1803 free_mm_slot(mm_slot);
1804 mmdrop(mm);
1805 }
1806}
1807
1808static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1809 struct page **hpage)
1810{
1811 struct mm_slot *mm_slot;
1812 struct mm_struct *mm;
1813 struct vm_area_struct *vma;
1814 int progress = 0;
1815
1816 VM_BUG_ON(!pages);
1817 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
1818
1819 if (khugepaged_scan.mm_slot)
1820 mm_slot = khugepaged_scan.mm_slot;
1821 else {
1822 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1823 struct mm_slot, mm_node);
1824 khugepaged_scan.address = 0;
1825 khugepaged_scan.mm_slot = mm_slot;
1826 }
1827 spin_unlock(&khugepaged_mm_lock);
1828
1829 mm = mm_slot->mm;
1830 down_read(&mm->mmap_sem);
1831 if (unlikely(khugepaged_test_exit(mm)))
1832 vma = NULL;
1833 else
1834 vma = find_vma(mm, khugepaged_scan.address);
1835
1836 progress++;
1837 for (; vma; vma = vma->vm_next) {
1838 unsigned long hstart, hend;
1839
1840 cond_resched();
1841 if (unlikely(khugepaged_test_exit(mm))) {
1842 progress++;
1843 break;
1844 }
1845
1846 if (!(vma->vm_flags & VM_HUGEPAGE) &&
1847 !khugepaged_always()) {
1848 progress++;
1849 continue;
1850 }
1851
1852 /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
1853 if (!vma->anon_vma || vma->vm_ops || vma->vm_file) {
1854 khugepaged_scan.address = vma->vm_end;
1855 progress++;
1856 continue;
1857 }
1858 VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1859
1860 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1861 hend = vma->vm_end & HPAGE_PMD_MASK;
1862 if (hstart >= hend) {
1863 progress++;
1864 continue;
1865 }
1866 if (khugepaged_scan.address < hstart)
1867 khugepaged_scan.address = hstart;
1868 if (khugepaged_scan.address > hend) {
1869 khugepaged_scan.address = hend + HPAGE_PMD_SIZE;
1870 progress++;
1871 continue;
1872 }
1873 BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1874
1875 while (khugepaged_scan.address < hend) {
1876 int ret;
1877 cond_resched();
1878 if (unlikely(khugepaged_test_exit(mm)))
1879 goto breakouterloop;
1880
1881 VM_BUG_ON(khugepaged_scan.address < hstart ||
1882 khugepaged_scan.address + HPAGE_PMD_SIZE >
1883 hend);
1884 ret = khugepaged_scan_pmd(mm, vma,
1885 khugepaged_scan.address,
1886 hpage);
1887 /* move to next address */
1888 khugepaged_scan.address += HPAGE_PMD_SIZE;
1889 progress += HPAGE_PMD_NR;
1890 if (ret)
1891 /* we released mmap_sem so break loop */
1892 goto breakouterloop_mmap_sem;
1893 if (progress >= pages)
1894 goto breakouterloop;
1895 }
1896 }
1897breakouterloop:
1898 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1899breakouterloop_mmap_sem:
1900
1901 spin_lock(&khugepaged_mm_lock);
1902 BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1903 /*
1904 * Release the current mm_slot if this mm is about to die, or
1905 * if we scanned all vmas of this mm.
1906 */
1907 if (khugepaged_test_exit(mm) || !vma) {
1908 /*
1909 * Make sure that if mm_users is reaching zero while
1910 * khugepaged runs here, khugepaged_exit will find
1911 * mm_slot not pointing to the exiting mm.
1912 */
1913 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1914 khugepaged_scan.mm_slot = list_entry(
1915 mm_slot->mm_node.next,
1916 struct mm_slot, mm_node);
1917 khugepaged_scan.address = 0;
1918 } else {
1919 khugepaged_scan.mm_slot = NULL;
1920 khugepaged_full_scans++;
1921 }
1922
1923 collect_mm_slot(mm_slot);
1924 }
1925
1926 return progress;
1927}
1928
1929static int khugepaged_has_work(void)
1930{
1931 return !list_empty(&khugepaged_scan.mm_head) &&
1932 khugepaged_enabled();
1933}
1934
1935static int khugepaged_wait_event(void)
1936{
1937 return !list_empty(&khugepaged_scan.mm_head) ||
1938 !khugepaged_enabled();
1939}
1940
1941static void khugepaged_do_scan(struct page **hpage)
1942{
1943 unsigned int progress = 0, pass_through_head = 0;
1944 unsigned int pages = khugepaged_pages_to_scan;
1945
1946 barrier(); /* write khugepaged_pages_to_scan to local stack */
1947
1948 while (progress < pages) {
1949 cond_resched();
1950
1951 if (!*hpage) {
1952 *hpage = alloc_hugepage(khugepaged_defrag());
1953 if (unlikely(!*hpage))
1954 break;
1955 }
1956
1957 spin_lock(&khugepaged_mm_lock);
1958 if (!khugepaged_scan.mm_slot)
1959 pass_through_head++;
1960 if (khugepaged_has_work() &&
1961 pass_through_head < 2)
1962 progress += khugepaged_scan_mm_slot(pages - progress,
1963 hpage);
1964 else
1965 progress = pages;
1966 spin_unlock(&khugepaged_mm_lock);
1967 }
1968}
1969
1970static struct page *khugepaged_alloc_hugepage(void)
1971{
1972 struct page *hpage;
1973
1974 do {
1975 hpage = alloc_hugepage(khugepaged_defrag());
1976 if (!hpage) {
1977 DEFINE_WAIT(wait);
1978 add_wait_queue(&khugepaged_wait, &wait);
1979 schedule_timeout_interruptible(
1980 msecs_to_jiffies(
1981 khugepaged_alloc_sleep_millisecs));
1982 remove_wait_queue(&khugepaged_wait, &wait);
1983 }
1984 } while (unlikely(!hpage) &&
1985 likely(khugepaged_enabled()));
1986 return hpage;
1987}
1988
1989static void khugepaged_loop(void)
1990{
1991 struct page *hpage;
1992
1993 while (likely(khugepaged_enabled())) {
1994 hpage = khugepaged_alloc_hugepage();
1995 if (unlikely(!hpage))
1996 break;
1997
1998 khugepaged_do_scan(&hpage);
1999 if (hpage)
2000 put_page(hpage);
2001 if (khugepaged_has_work()) {
2002 DEFINE_WAIT(wait);
2003 if (!khugepaged_scan_sleep_millisecs)
2004 continue;
2005 add_wait_queue(&khugepaged_wait, &wait);
2006 schedule_timeout_interruptible(
2007 msecs_to_jiffies(
2008 khugepaged_scan_sleep_millisecs));
2009 remove_wait_queue(&khugepaged_wait, &wait);
2010 } else if (khugepaged_enabled())
2011 wait_event_interruptible(khugepaged_wait,
2012 khugepaged_wait_event());
2013 }
2014}
2015
2016static int khugepaged(void *none)
2017{
2018 struct mm_slot *mm_slot;
2019
2020 set_user_nice(current, 19);
2021
2022 /* serialize with start_khugepaged() */
2023 mutex_lock(&khugepaged_mutex);
2024
2025 for (;;) {
2026 mutex_unlock(&khugepaged_mutex);
2027 BUG_ON(khugepaged_thread != current);
2028 khugepaged_loop();
2029 BUG_ON(khugepaged_thread != current);
2030
2031 mutex_lock(&khugepaged_mutex);
2032 if (!khugepaged_enabled())
2033 break;
2034 }
2035
2036 spin_lock(&khugepaged_mm_lock);
2037 mm_slot = khugepaged_scan.mm_slot;
2038 khugepaged_scan.mm_slot = NULL;
2039 if (mm_slot)
2040 collect_mm_slot(mm_slot);
2041 spin_unlock(&khugepaged_mm_lock);
2042
2043 khugepaged_thread = NULL;
2044 mutex_unlock(&khugepaged_mutex);
2045
2046 return 0;
2047}
2048
71e3aac0
AA
2049void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2050{
2051 struct page *page;
2052
2053 spin_lock(&mm->page_table_lock);
2054 if (unlikely(!pmd_trans_huge(*pmd))) {
2055 spin_unlock(&mm->page_table_lock);
2056 return;
2057 }
2058 page = pmd_page(*pmd);
2059 VM_BUG_ON(!page_count(page));
2060 get_page(page);
2061 spin_unlock(&mm->page_table_lock);
2062
2063 split_huge_page(page);
2064
2065 put_page(page);
2066 BUG_ON(pmd_trans_huge(*pmd));
2067}