]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/huge_memory.c
mm, shmem: add vmstat for hugepage fallback
[thirdparty/linux.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
f7da677b 35#include <linux/page_owner.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
7635d9cb
MH
65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66{
c0630669
YS
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
7635d9cb
MH
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
c0630669
YS
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
7635d9cb
MH
76
77 return false;
78}
79
6fcb52a5 80static struct page *get_huge_zero_page(void)
97ae1749
KS
81{
82 struct page *zero_page;
83retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 85 return READ_ONCE(huge_zero_page);
97ae1749
KS
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 88 HPAGE_PMD_ORDER);
d8a8e1f0
KS
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 91 return NULL;
d8a8e1f0
KS
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 94 preempt_disable();
5918d10a 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 96 preempt_enable();
5ddacbe9 97 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
4db0c3c2 104 return READ_ONCE(huge_zero_page);
4a6c1297
KS
105}
106
6fcb52a5 107static void put_huge_zero_page(void)
4a6c1297 108{
97ae1749
KS
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
114}
115
6fcb52a5
AL
116struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117{
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128}
129
130void mm_put_huge_zero_page(struct mm_struct *mm)
131{
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134}
135
48896466
GC
136static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
4a6c1297 138{
48896466
GC
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141}
97ae1749 142
48896466
GC
143static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145{
97ae1749 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
5ddacbe9 149 __free_pages(zero_page, compound_order(zero_page));
48896466 150 return HPAGE_PMD_NR;
97ae1749
KS
151 }
152
153 return 0;
4a6c1297
KS
154}
155
97ae1749 156static struct shrinker huge_zero_page_shrinker = {
48896466
GC
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
159 .seeks = DEFAULT_SEEKS,
160};
161
71e3aac0 162#ifdef CONFIG_SYSFS
71e3aac0
AA
163static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165{
444eb2a4
MG
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
170 else
171 return sprintf(buf, "always madvise [never]\n");
71e3aac0 172}
444eb2a4 173
71e3aac0
AA
174static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
177{
21440d7e 178 ssize_t ret = count;
ba76149f 179
f42f2552 180 if (sysfs_streq(buf, "always")) {
21440d7e
DR
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 183 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 186 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else
190 ret = -EINVAL;
ba76149f
AA
191
192 if (ret > 0) {
b46e756f 193 int err = start_stop_khugepaged();
ba76149f
AA
194 if (err)
195 ret = err;
196 }
ba76149f 197 return ret;
71e3aac0
AA
198}
199static struct kobj_attribute enabled_attr =
200 __ATTR(enabled, 0644, enabled_show, enabled_store);
201
b46e756f 202ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
203 struct kobj_attribute *attr, char *buf,
204 enum transparent_hugepage_flag flag)
205{
e27e6151
BH
206 return sprintf(buf, "%d\n",
207 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 208}
e27e6151 209
b46e756f 210ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
211 struct kobj_attribute *attr,
212 const char *buf, size_t count,
213 enum transparent_hugepage_flag flag)
214{
e27e6151
BH
215 unsigned long value;
216 int ret;
217
218 ret = kstrtoul(buf, 10, &value);
219 if (ret < 0)
220 return ret;
221 if (value > 1)
222 return -EINVAL;
223
224 if (value)
71e3aac0 225 set_bit(flag, &transparent_hugepage_flags);
e27e6151 226 else
71e3aac0 227 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
228
229 return count;
230}
231
71e3aac0
AA
232static ssize_t defrag_show(struct kobject *kobj,
233 struct kobj_attribute *attr, char *buf)
234{
444eb2a4 235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 236 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
238 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 244}
21440d7e 245
71e3aac0
AA
246static ssize_t defrag_store(struct kobject *kobj,
247 struct kobj_attribute *attr,
248 const char *buf, size_t count)
249{
f42f2552 250 if (sysfs_streq(buf, "always")) {
21440d7e
DR
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 255 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 260 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 265 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 270 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 } else
276 return -EINVAL;
277
278 return count;
71e3aac0
AA
279}
280static struct kobj_attribute defrag_attr =
281 __ATTR(defrag, 0644, defrag_show, defrag_store);
282
79da5407
KS
283static ssize_t use_zero_page_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf)
285{
b46e756f 286 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288}
289static ssize_t use_zero_page_store(struct kobject *kobj,
290 struct kobj_attribute *attr, const char *buf, size_t count)
291{
b46e756f 292 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294}
295static struct kobj_attribute use_zero_page_attr =
296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
297
298static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300{
301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302}
303static struct kobj_attribute hpage_pmd_size_attr =
304 __ATTR_RO(hpage_pmd_size);
305
71e3aac0
AA
306#ifdef CONFIG_DEBUG_VM
307static ssize_t debug_cow_show(struct kobject *kobj,
308 struct kobj_attribute *attr, char *buf)
309{
b46e756f 310 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312}
313static ssize_t debug_cow_store(struct kobject *kobj,
314 struct kobj_attribute *attr,
315 const char *buf, size_t count)
316{
b46e756f 317 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319}
320static struct kobj_attribute debug_cow_attr =
321 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
322#endif /* CONFIG_DEBUG_VM */
323
324static struct attribute *hugepage_attr[] = {
325 &enabled_attr.attr,
326 &defrag_attr.attr,
79da5407 327 &use_zero_page_attr.attr,
49920d28 328 &hpage_pmd_size_attr.attr,
e496cf3d 329#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
330 &shmem_enabled_attr.attr,
331#endif
71e3aac0
AA
332#ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr.attr,
334#endif
335 NULL,
336};
337
8aa95a21 338static const struct attribute_group hugepage_attr_group = {
71e3aac0 339 .attrs = hugepage_attr,
ba76149f
AA
340};
341
569e5590 342static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 343{
71e3aac0
AA
344 int err;
345
569e5590
SL
346 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
347 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 348 pr_err("failed to create transparent hugepage kobject\n");
569e5590 349 return -ENOMEM;
ba76149f
AA
350 }
351
569e5590 352 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 353 if (err) {
ae3a8c1c 354 pr_err("failed to register transparent hugepage group\n");
569e5590 355 goto delete_obj;
ba76149f
AA
356 }
357
569e5590 358 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 359 if (err) {
ae3a8c1c 360 pr_err("failed to register transparent hugepage group\n");
569e5590 361 goto remove_hp_group;
ba76149f 362 }
569e5590
SL
363
364 return 0;
365
366remove_hp_group:
367 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
368delete_obj:
369 kobject_put(*hugepage_kobj);
370 return err;
371}
372
373static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
374{
375 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
376 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
377 kobject_put(hugepage_kobj);
378}
379#else
380static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
381{
382 return 0;
383}
384
385static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
386{
387}
388#endif /* CONFIG_SYSFS */
389
390static int __init hugepage_init(void)
391{
392 int err;
393 struct kobject *hugepage_kobj;
394
395 if (!has_transparent_hugepage()) {
396 transparent_hugepage_flags = 0;
397 return -EINVAL;
398 }
399
ff20c2e0
KS
400 /*
401 * hugepages can't be allocated by the buddy allocator
402 */
403 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
404 /*
405 * we use page->mapping and page->index in second tail page
406 * as list_head: assuming THP order >= 2
407 */
408 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
409
569e5590
SL
410 err = hugepage_init_sysfs(&hugepage_kobj);
411 if (err)
65ebb64f 412 goto err_sysfs;
ba76149f 413
b46e756f 414 err = khugepaged_init();
ba76149f 415 if (err)
65ebb64f 416 goto err_slab;
ba76149f 417
65ebb64f
KS
418 err = register_shrinker(&huge_zero_page_shrinker);
419 if (err)
420 goto err_hzp_shrinker;
9a982250
KS
421 err = register_shrinker(&deferred_split_shrinker);
422 if (err)
423 goto err_split_shrinker;
97ae1749 424
97562cd2
RR
425 /*
426 * By default disable transparent hugepages on smaller systems,
427 * where the extra memory used could hurt more than TLB overhead
428 * is likely to save. The admin can still enable it through /sys.
429 */
ca79b0c2 430 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 431 transparent_hugepage_flags = 0;
79553da2
KS
432 return 0;
433 }
97562cd2 434
79553da2 435 err = start_stop_khugepaged();
65ebb64f
KS
436 if (err)
437 goto err_khugepaged;
ba76149f 438
569e5590 439 return 0;
65ebb64f 440err_khugepaged:
9a982250
KS
441 unregister_shrinker(&deferred_split_shrinker);
442err_split_shrinker:
65ebb64f
KS
443 unregister_shrinker(&huge_zero_page_shrinker);
444err_hzp_shrinker:
b46e756f 445 khugepaged_destroy();
65ebb64f 446err_slab:
569e5590 447 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 448err_sysfs:
ba76149f 449 return err;
71e3aac0 450}
a64fb3cd 451subsys_initcall(hugepage_init);
71e3aac0
AA
452
453static int __init setup_transparent_hugepage(char *str)
454{
455 int ret = 0;
456 if (!str)
457 goto out;
458 if (!strcmp(str, "always")) {
459 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
460 &transparent_hugepage_flags);
461 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462 &transparent_hugepage_flags);
463 ret = 1;
464 } else if (!strcmp(str, "madvise")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466 &transparent_hugepage_flags);
467 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468 &transparent_hugepage_flags);
469 ret = 1;
470 } else if (!strcmp(str, "never")) {
471 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
472 &transparent_hugepage_flags);
473 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
474 &transparent_hugepage_flags);
475 ret = 1;
476 }
477out:
478 if (!ret)
ae3a8c1c 479 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
480 return ret;
481}
482__setup("transparent_hugepage=", setup_transparent_hugepage);
483
f55e1014 484pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 485{
f55e1014 486 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
487 pmd = pmd_mkwrite(pmd);
488 return pmd;
489}
490
87eaceb3
YS
491#ifdef CONFIG_MEMCG
492static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 493{
87eaceb3
YS
494 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
495 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
496
497 if (memcg)
498 return &memcg->deferred_split_queue;
499 else
500 return &pgdat->deferred_split_queue;
9a982250 501}
87eaceb3
YS
502#else
503static inline struct deferred_split *get_deferred_split_queue(struct page *page)
504{
505 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506
507 return &pgdat->deferred_split_queue;
508}
509#endif
9a982250
KS
510
511void prep_transhuge_page(struct page *page)
512{
513 /*
514 * we use page->mapping and page->indexlru in second tail page
515 * as list_head: assuming THP order >= 2
516 */
9a982250
KS
517
518 INIT_LIST_HEAD(page_deferred_list(page));
519 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
520}
521
005ba37c
SC
522bool is_transparent_hugepage(struct page *page)
523{
524 if (!PageCompound(page))
525 return 0;
526
527 page = compound_head(page);
528 return is_huge_zero_page(page) ||
529 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
530}
531EXPORT_SYMBOL_GPL(is_transparent_hugepage);
532
97d3d0f9
KS
533static unsigned long __thp_get_unmapped_area(struct file *filp,
534 unsigned long addr, unsigned long len,
74d2fad1
TK
535 loff_t off, unsigned long flags, unsigned long size)
536{
74d2fad1
TK
537 loff_t off_end = off + len;
538 loff_t off_align = round_up(off, size);
97d3d0f9 539 unsigned long len_pad, ret;
74d2fad1
TK
540
541 if (off_end <= off_align || (off_end - off_align) < size)
542 return 0;
543
544 len_pad = len + size;
545 if (len_pad < len || (off + len_pad) < off)
546 return 0;
547
97d3d0f9 548 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 549 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
550
551 /*
552 * The failure might be due to length padding. The caller will retry
553 * without the padding.
554 */
555 if (IS_ERR_VALUE(ret))
74d2fad1
TK
556 return 0;
557
97d3d0f9
KS
558 /*
559 * Do not try to align to THP boundary if allocation at the address
560 * hint succeeds.
561 */
562 if (ret == addr)
563 return addr;
564
565 ret += (off - ret) & (size - 1);
566 return ret;
74d2fad1
TK
567}
568
569unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
570 unsigned long len, unsigned long pgoff, unsigned long flags)
571{
97d3d0f9 572 unsigned long ret;
74d2fad1
TK
573 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
574
74d2fad1
TK
575 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
576 goto out;
577
97d3d0f9
KS
578 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
579 if (ret)
580 return ret;
581out:
74d2fad1
TK
582 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
583}
584EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
585
2b740303
SJ
586static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
587 struct page *page, gfp_t gfp)
71e3aac0 588{
82b0f8c3 589 struct vm_area_struct *vma = vmf->vma;
00501b53 590 struct mem_cgroup *memcg;
71e3aac0 591 pgtable_t pgtable;
82b0f8c3 592 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 593 vm_fault_t ret = 0;
71e3aac0 594
309381fe 595 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 596
2cf85583 597 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
598 put_page(page);
599 count_vm_event(THP_FAULT_FALLBACK);
600 return VM_FAULT_FALLBACK;
601 }
00501b53 602
4cf58924 603 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 604 if (unlikely(!pgtable)) {
6b31d595
MH
605 ret = VM_FAULT_OOM;
606 goto release;
00501b53 607 }
71e3aac0 608
c79b57e4 609 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
610 /*
611 * The memory barrier inside __SetPageUptodate makes sure that
612 * clear_huge_page writes become visible before the set_pmd_at()
613 * write.
614 */
71e3aac0
AA
615 __SetPageUptodate(page);
616
82b0f8c3
JK
617 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
618 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 619 goto unlock_release;
71e3aac0
AA
620 } else {
621 pmd_t entry;
6b251fc9 622
6b31d595
MH
623 ret = check_stable_address_space(vma->vm_mm);
624 if (ret)
625 goto unlock_release;
626
6b251fc9
AA
627 /* Deliver the page fault to userland */
628 if (userfaultfd_missing(vma)) {
2b740303 629 vm_fault_t ret2;
6b251fc9 630
82b0f8c3 631 spin_unlock(vmf->ptl);
f627c2f5 632 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 633 put_page(page);
bae473a4 634 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
635 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
636 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
637 return ret2;
6b251fc9
AA
638 }
639
3122359a 640 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 641 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 642 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 643 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 644 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
645 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
646 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 647 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 648 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 649 spin_unlock(vmf->ptl);
6b251fc9 650 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 651 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
71e3aac0
AA
652 }
653
aa2e878e 654 return 0;
6b31d595
MH
655unlock_release:
656 spin_unlock(vmf->ptl);
657release:
658 if (pgtable)
659 pte_free(vma->vm_mm, pgtable);
660 mem_cgroup_cancel_charge(page, memcg, true);
661 put_page(page);
662 return ret;
663
71e3aac0
AA
664}
665
444eb2a4 666/*
21440d7e
DR
667 * always: directly stall for all thp allocations
668 * defer: wake kswapd and fail if not immediately available
669 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
670 * fail if not immediately available
671 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
672 * available
673 * never: never stall for any thp allocation
444eb2a4 674 */
19deb769 675static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 676{
21440d7e 677 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
2f0799a0 678
ac79f78d 679 /* Always do synchronous compaction */
a8282608
AA
680 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
681 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
682
683 /* Kick kcompactd and fail quickly */
21440d7e 684 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 685 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
686
687 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 688 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
689 return GFP_TRANSHUGE_LIGHT |
690 (vma_madvised ? __GFP_DIRECT_RECLAIM :
691 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
692
693 /* Only do synchronous compaction if madvised */
21440d7e 694 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
695 return GFP_TRANSHUGE_LIGHT |
696 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 697
19deb769 698 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
699}
700
c4088ebd 701/* Caller must hold page table lock. */
d295e341 702static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 703 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 704 struct page *zero_page)
fc9fe822
KS
705{
706 pmd_t entry;
7c414164
AM
707 if (!pmd_none(*pmd))
708 return false;
5918d10a 709 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 710 entry = pmd_mkhuge(entry);
12c9d70b
MW
711 if (pgtable)
712 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 713 set_pmd_at(mm, haddr, pmd, entry);
c4812909 714 mm_inc_nr_ptes(mm);
7c414164 715 return true;
fc9fe822
KS
716}
717
2b740303 718vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 719{
82b0f8c3 720 struct vm_area_struct *vma = vmf->vma;
077fcf11 721 gfp_t gfp;
71e3aac0 722 struct page *page;
82b0f8c3 723 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 724
43675e6f 725 if (!transhuge_vma_suitable(vma, haddr))
c0292554 726 return VM_FAULT_FALLBACK;
128ec037
KS
727 if (unlikely(anon_vma_prepare(vma)))
728 return VM_FAULT_OOM;
6d50e60c 729 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 730 return VM_FAULT_OOM;
82b0f8c3 731 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 732 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
733 transparent_hugepage_use_zero_page()) {
734 pgtable_t pgtable;
735 struct page *zero_page;
736 bool set;
2b740303 737 vm_fault_t ret;
4cf58924 738 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 739 if (unlikely(!pgtable))
ba76149f 740 return VM_FAULT_OOM;
6fcb52a5 741 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 742 if (unlikely(!zero_page)) {
bae473a4 743 pte_free(vma->vm_mm, pgtable);
81ab4201 744 count_vm_event(THP_FAULT_FALLBACK);
c0292554 745 return VM_FAULT_FALLBACK;
b9bbfbe3 746 }
82b0f8c3 747 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
748 ret = 0;
749 set = false;
82b0f8c3 750 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
751 ret = check_stable_address_space(vma->vm_mm);
752 if (ret) {
753 spin_unlock(vmf->ptl);
754 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
755 spin_unlock(vmf->ptl);
756 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
757 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
758 } else {
bae473a4 759 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
760 haddr, vmf->pmd, zero_page);
761 spin_unlock(vmf->ptl);
6b251fc9
AA
762 set = true;
763 }
764 } else
82b0f8c3 765 spin_unlock(vmf->ptl);
6fcb52a5 766 if (!set)
bae473a4 767 pte_free(vma->vm_mm, pgtable);
6b251fc9 768 return ret;
71e3aac0 769 }
19deb769
DR
770 gfp = alloc_hugepage_direct_gfpmask(vma);
771 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
772 if (unlikely(!page)) {
773 count_vm_event(THP_FAULT_FALLBACK);
c0292554 774 return VM_FAULT_FALLBACK;
128ec037 775 }
9a982250 776 prep_transhuge_page(page);
82b0f8c3 777 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
778}
779
ae18d6dc 780static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
781 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
782 pgtable_t pgtable)
5cad465d
MW
783{
784 struct mm_struct *mm = vma->vm_mm;
785 pmd_t entry;
786 spinlock_t *ptl;
787
788 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
789 if (!pmd_none(*pmd)) {
790 if (write) {
791 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
792 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
793 goto out_unlock;
794 }
795 entry = pmd_mkyoung(*pmd);
796 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
797 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
798 update_mmu_cache_pmd(vma, addr, pmd);
799 }
800
801 goto out_unlock;
802 }
803
f25748e3
DW
804 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
805 if (pfn_t_devmap(pfn))
806 entry = pmd_mkdevmap(entry);
01871e59 807 if (write) {
f55e1014
LT
808 entry = pmd_mkyoung(pmd_mkdirty(entry));
809 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 810 }
3b6521f5
OH
811
812 if (pgtable) {
813 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 814 mm_inc_nr_ptes(mm);
c6f3c5ee 815 pgtable = NULL;
3b6521f5
OH
816 }
817
01871e59
RZ
818 set_pmd_at(mm, addr, pmd, entry);
819 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
820
821out_unlock:
5cad465d 822 spin_unlock(ptl);
c6f3c5ee
AK
823 if (pgtable)
824 pte_free(mm, pgtable);
5cad465d
MW
825}
826
9a9731b1
THV
827/**
828 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
829 * @vmf: Structure describing the fault
830 * @pfn: pfn to insert
831 * @pgprot: page protection to use
832 * @write: whether it's a write fault
833 *
834 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
835 * also consult the vmf_insert_mixed_prot() documentation when
836 * @pgprot != @vmf->vma->vm_page_prot.
837 *
838 * Return: vm_fault_t value.
839 */
840vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
841 pgprot_t pgprot, bool write)
5cad465d 842{
fce86ff5
DW
843 unsigned long addr = vmf->address & PMD_MASK;
844 struct vm_area_struct *vma = vmf->vma;
3b6521f5 845 pgtable_t pgtable = NULL;
fce86ff5 846
5cad465d
MW
847 /*
848 * If we had pmd_special, we could avoid all these restrictions,
849 * but we need to be consistent with PTEs and architectures that
850 * can't support a 'special' bit.
851 */
e1fb4a08
DJ
852 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
853 !pfn_t_devmap(pfn));
5cad465d
MW
854 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
855 (VM_PFNMAP|VM_MIXEDMAP));
856 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
857
858 if (addr < vma->vm_start || addr >= vma->vm_end)
859 return VM_FAULT_SIGBUS;
308a047c 860
3b6521f5 861 if (arch_needs_pgtable_deposit()) {
4cf58924 862 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
863 if (!pgtable)
864 return VM_FAULT_OOM;
865 }
866
308a047c
BP
867 track_pfn_insert(vma, &pgprot, pfn);
868
fce86ff5 869 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 870 return VM_FAULT_NOPAGE;
5cad465d 871}
9a9731b1 872EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
5cad465d 873
a00cc7d9 874#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 875static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 876{
f55e1014 877 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
878 pud = pud_mkwrite(pud);
879 return pud;
880}
881
882static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
883 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
884{
885 struct mm_struct *mm = vma->vm_mm;
886 pud_t entry;
887 spinlock_t *ptl;
888
889 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
890 if (!pud_none(*pud)) {
891 if (write) {
892 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
893 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
894 goto out_unlock;
895 }
896 entry = pud_mkyoung(*pud);
897 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
898 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
899 update_mmu_cache_pud(vma, addr, pud);
900 }
901 goto out_unlock;
902 }
903
a00cc7d9
MW
904 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
905 if (pfn_t_devmap(pfn))
906 entry = pud_mkdevmap(entry);
907 if (write) {
f55e1014
LT
908 entry = pud_mkyoung(pud_mkdirty(entry));
909 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
910 }
911 set_pud_at(mm, addr, pud, entry);
912 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
913
914out_unlock:
a00cc7d9
MW
915 spin_unlock(ptl);
916}
917
9a9731b1
THV
918/**
919 * vmf_insert_pfn_pud_prot - insert a pud size pfn
920 * @vmf: Structure describing the fault
921 * @pfn: pfn to insert
922 * @pgprot: page protection to use
923 * @write: whether it's a write fault
924 *
925 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
926 * also consult the vmf_insert_mixed_prot() documentation when
927 * @pgprot != @vmf->vma->vm_page_prot.
928 *
929 * Return: vm_fault_t value.
930 */
931vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
932 pgprot_t pgprot, bool write)
a00cc7d9 933{
fce86ff5
DW
934 unsigned long addr = vmf->address & PUD_MASK;
935 struct vm_area_struct *vma = vmf->vma;
fce86ff5 936
a00cc7d9
MW
937 /*
938 * If we had pud_special, we could avoid all these restrictions,
939 * but we need to be consistent with PTEs and architectures that
940 * can't support a 'special' bit.
941 */
62ec0d8c
DJ
942 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
943 !pfn_t_devmap(pfn));
a00cc7d9
MW
944 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
945 (VM_PFNMAP|VM_MIXEDMAP));
946 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
947
948 if (addr < vma->vm_start || addr >= vma->vm_end)
949 return VM_FAULT_SIGBUS;
950
951 track_pfn_insert(vma, &pgprot, pfn);
952
fce86ff5 953 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
954 return VM_FAULT_NOPAGE;
955}
9a9731b1 956EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
a00cc7d9
MW
957#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
958
3565fce3 959static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 960 pmd_t *pmd, int flags)
3565fce3
DW
961{
962 pmd_t _pmd;
963
a8f97366
KS
964 _pmd = pmd_mkyoung(*pmd);
965 if (flags & FOLL_WRITE)
966 _pmd = pmd_mkdirty(_pmd);
3565fce3 967 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 968 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
969 update_mmu_cache_pmd(vma, addr, pmd);
970}
971
972struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 973 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
974{
975 unsigned long pfn = pmd_pfn(*pmd);
976 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
977 struct page *page;
978
979 assert_spin_locked(pmd_lockptr(mm, pmd));
980
8310d48b
KF
981 /*
982 * When we COW a devmap PMD entry, we split it into PTEs, so we should
983 * not be in this function with `flags & FOLL_COW` set.
984 */
985 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
986
3faa52c0
JH
987 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
988 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
989 (FOLL_PIN | FOLL_GET)))
990 return NULL;
991
f6f37321 992 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
993 return NULL;
994
995 if (pmd_present(*pmd) && pmd_devmap(*pmd))
996 /* pass */;
997 else
998 return NULL;
999
1000 if (flags & FOLL_TOUCH)
a8f97366 1001 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
1002
1003 /*
1004 * device mapped pages can only be returned if the
1005 * caller will manage the page reference count.
1006 */
3faa52c0 1007 if (!(flags & (FOLL_GET | FOLL_PIN)))
3565fce3
DW
1008 return ERR_PTR(-EEXIST);
1009
1010 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1011 *pgmap = get_dev_pagemap(pfn, *pgmap);
1012 if (!*pgmap)
3565fce3
DW
1013 return ERR_PTR(-EFAULT);
1014 page = pfn_to_page(pfn);
3faa52c0
JH
1015 if (!try_grab_page(page, flags))
1016 page = ERR_PTR(-ENOMEM);
3565fce3
DW
1017
1018 return page;
1019}
1020
71e3aac0
AA
1021int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1022 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1023 struct vm_area_struct *vma)
1024{
c4088ebd 1025 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1026 struct page *src_page;
1027 pmd_t pmd;
12c9d70b 1028 pgtable_t pgtable = NULL;
628d47ce 1029 int ret = -ENOMEM;
71e3aac0 1030
628d47ce
KS
1031 /* Skip if can be re-fill on fault */
1032 if (!vma_is_anonymous(vma))
1033 return 0;
1034
4cf58924 1035 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1036 if (unlikely(!pgtable))
1037 goto out;
71e3aac0 1038
c4088ebd
KS
1039 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1040 src_ptl = pmd_lockptr(src_mm, src_pmd);
1041 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1042
1043 ret = -EAGAIN;
1044 pmd = *src_pmd;
84c3fc4e
ZY
1045
1046#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1047 if (unlikely(is_swap_pmd(pmd))) {
1048 swp_entry_t entry = pmd_to_swp_entry(pmd);
1049
1050 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1051 if (is_write_migration_entry(entry)) {
1052 make_migration_entry_read(&entry);
1053 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1054 if (pmd_swp_soft_dirty(*src_pmd))
1055 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1056 set_pmd_at(src_mm, addr, src_pmd, pmd);
1057 }
dd8a67f9 1058 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1059 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1060 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1061 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1062 ret = 0;
1063 goto out_unlock;
1064 }
1065#endif
1066
628d47ce 1067 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1068 pte_free(dst_mm, pgtable);
1069 goto out_unlock;
1070 }
fc9fe822 1071 /*
c4088ebd 1072 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1073 * under splitting since we don't split the page itself, only pmd to
1074 * a page table.
1075 */
1076 if (is_huge_zero_pmd(pmd)) {
5918d10a 1077 struct page *zero_page;
97ae1749
KS
1078 /*
1079 * get_huge_zero_page() will never allocate a new page here,
1080 * since we already have a zero page to copy. It just takes a
1081 * reference.
1082 */
6fcb52a5 1083 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1084 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1085 zero_page);
fc9fe822
KS
1086 ret = 0;
1087 goto out_unlock;
1088 }
de466bd6 1089
628d47ce
KS
1090 src_page = pmd_page(pmd);
1091 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1092 get_page(src_page);
1093 page_dup_rmap(src_page, true);
1094 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1095 mm_inc_nr_ptes(dst_mm);
628d47ce 1096 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1097
1098 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1099 pmd = pmd_mkold(pmd_wrprotect(pmd));
1100 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1101
1102 ret = 0;
1103out_unlock:
c4088ebd
KS
1104 spin_unlock(src_ptl);
1105 spin_unlock(dst_ptl);
71e3aac0
AA
1106out:
1107 return ret;
1108}
1109
a00cc7d9
MW
1110#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1111static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1112 pud_t *pud, int flags)
a00cc7d9
MW
1113{
1114 pud_t _pud;
1115
a8f97366
KS
1116 _pud = pud_mkyoung(*pud);
1117 if (flags & FOLL_WRITE)
1118 _pud = pud_mkdirty(_pud);
a00cc7d9 1119 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1120 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1121 update_mmu_cache_pud(vma, addr, pud);
1122}
1123
1124struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1125 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1126{
1127 unsigned long pfn = pud_pfn(*pud);
1128 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1129 struct page *page;
1130
1131 assert_spin_locked(pud_lockptr(mm, pud));
1132
f6f37321 1133 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1134 return NULL;
1135
3faa52c0
JH
1136 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1137 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1138 (FOLL_PIN | FOLL_GET)))
1139 return NULL;
1140
a00cc7d9
MW
1141 if (pud_present(*pud) && pud_devmap(*pud))
1142 /* pass */;
1143 else
1144 return NULL;
1145
1146 if (flags & FOLL_TOUCH)
a8f97366 1147 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1148
1149 /*
1150 * device mapped pages can only be returned if the
1151 * caller will manage the page reference count.
3faa52c0
JH
1152 *
1153 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
a00cc7d9 1154 */
3faa52c0 1155 if (!(flags & (FOLL_GET | FOLL_PIN)))
a00cc7d9
MW
1156 return ERR_PTR(-EEXIST);
1157
1158 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1159 *pgmap = get_dev_pagemap(pfn, *pgmap);
1160 if (!*pgmap)
a00cc7d9
MW
1161 return ERR_PTR(-EFAULT);
1162 page = pfn_to_page(pfn);
3faa52c0
JH
1163 if (!try_grab_page(page, flags))
1164 page = ERR_PTR(-ENOMEM);
a00cc7d9
MW
1165
1166 return page;
1167}
1168
1169int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1170 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1171 struct vm_area_struct *vma)
1172{
1173 spinlock_t *dst_ptl, *src_ptl;
1174 pud_t pud;
1175 int ret;
1176
1177 dst_ptl = pud_lock(dst_mm, dst_pud);
1178 src_ptl = pud_lockptr(src_mm, src_pud);
1179 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1180
1181 ret = -EAGAIN;
1182 pud = *src_pud;
1183 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1184 goto out_unlock;
1185
1186 /*
1187 * When page table lock is held, the huge zero pud should not be
1188 * under splitting since we don't split the page itself, only pud to
1189 * a page table.
1190 */
1191 if (is_huge_zero_pud(pud)) {
1192 /* No huge zero pud yet */
1193 }
1194
1195 pudp_set_wrprotect(src_mm, addr, src_pud);
1196 pud = pud_mkold(pud_wrprotect(pud));
1197 set_pud_at(dst_mm, addr, dst_pud, pud);
1198
1199 ret = 0;
1200out_unlock:
1201 spin_unlock(src_ptl);
1202 spin_unlock(dst_ptl);
1203 return ret;
1204}
1205
1206void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1207{
1208 pud_t entry;
1209 unsigned long haddr;
1210 bool write = vmf->flags & FAULT_FLAG_WRITE;
1211
1212 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1213 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1214 goto unlock;
1215
1216 entry = pud_mkyoung(orig_pud);
1217 if (write)
1218 entry = pud_mkdirty(entry);
1219 haddr = vmf->address & HPAGE_PUD_MASK;
1220 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1221 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1222
1223unlock:
1224 spin_unlock(vmf->ptl);
1225}
1226#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1227
82b0f8c3 1228void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1229{
1230 pmd_t entry;
1231 unsigned long haddr;
20f664aa 1232 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1233
82b0f8c3
JK
1234 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1235 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1236 goto unlock;
1237
1238 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1239 if (write)
1240 entry = pmd_mkdirty(entry);
82b0f8c3 1241 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1242 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1243 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1244
1245unlock:
82b0f8c3 1246 spin_unlock(vmf->ptl);
a1dd450b
WD
1247}
1248
2b740303
SJ
1249static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1250 pmd_t orig_pmd, struct page *page)
71e3aac0 1251{
82b0f8c3
JK
1252 struct vm_area_struct *vma = vmf->vma;
1253 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1254 struct mem_cgroup *memcg;
71e3aac0
AA
1255 pgtable_t pgtable;
1256 pmd_t _pmd;
2b740303
SJ
1257 int i;
1258 vm_fault_t ret = 0;
71e3aac0 1259 struct page **pages;
ac46d4f3 1260 struct mmu_notifier_range range;
71e3aac0 1261
6da2ec56
KC
1262 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1263 GFP_KERNEL);
71e3aac0
AA
1264 if (unlikely(!pages)) {
1265 ret |= VM_FAULT_OOM;
1266 goto out;
1267 }
1268
1269 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1270 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1271 vmf->address, page_to_nid(page));
b9bbfbe3 1272 if (unlikely(!pages[i] ||
2cf85583 1273 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1274 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1275 if (pages[i])
71e3aac0 1276 put_page(pages[i]);
b9bbfbe3 1277 while (--i >= 0) {
00501b53
JW
1278 memcg = (void *)page_private(pages[i]);
1279 set_page_private(pages[i], 0);
f627c2f5
KS
1280 mem_cgroup_cancel_charge(pages[i], memcg,
1281 false);
b9bbfbe3
AA
1282 put_page(pages[i]);
1283 }
71e3aac0
AA
1284 kfree(pages);
1285 ret |= VM_FAULT_OOM;
1286 goto out;
1287 }
00501b53 1288 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1289 }
1290
1291 for (i = 0; i < HPAGE_PMD_NR; i++) {
1292 copy_user_highpage(pages[i], page + i,
0089e485 1293 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1294 __SetPageUptodate(pages[i]);
1295 cond_resched();
1296 }
1297
7269f999
JG
1298 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1299 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1300 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1301
82b0f8c3
JK
1302 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1303 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1304 goto out_free_pages;
309381fe 1305 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1306
0f10851e
JG
1307 /*
1308 * Leave pmd empty until pte is filled note we must notify here as
1309 * concurrent CPU thread might write to new page before the call to
1310 * mmu_notifier_invalidate_range_end() happens which can lead to a
1311 * device seeing memory write in different order than CPU.
1312 *
ad56b738 1313 * See Documentation/vm/mmu_notifier.rst
0f10851e 1314 */
82b0f8c3 1315 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1316
82b0f8c3 1317 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1318 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1319
1320 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1321 pte_t entry;
71e3aac0
AA
1322 entry = mk_pte(pages[i], vma->vm_page_prot);
1323 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1324 memcg = (void *)page_private(pages[i]);
1325 set_page_private(pages[i], 0);
82b0f8c3 1326 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1327 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1328 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1329 vmf->pte = pte_offset_map(&_pmd, haddr);
1330 VM_BUG_ON(!pte_none(*vmf->pte));
1331 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1332 pte_unmap(vmf->pte);
71e3aac0
AA
1333 }
1334 kfree(pages);
1335
71e3aac0 1336 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1337 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1338 page_remove_rmap(page, true);
82b0f8c3 1339 spin_unlock(vmf->ptl);
71e3aac0 1340
4645b9fe
JG
1341 /*
1342 * No need to double call mmu_notifier->invalidate_range() callback as
1343 * the above pmdp_huge_clear_flush_notify() did already call it.
1344 */
ac46d4f3 1345 mmu_notifier_invalidate_range_only_end(&range);
2ec74c3e 1346
71e3aac0
AA
1347 ret |= VM_FAULT_WRITE;
1348 put_page(page);
1349
1350out:
1351 return ret;
1352
1353out_free_pages:
82b0f8c3 1354 spin_unlock(vmf->ptl);
ac46d4f3 1355 mmu_notifier_invalidate_range_end(&range);
b9bbfbe3 1356 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1357 memcg = (void *)page_private(pages[i]);
1358 set_page_private(pages[i], 0);
f627c2f5 1359 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1360 put_page(pages[i]);
b9bbfbe3 1361 }
71e3aac0
AA
1362 kfree(pages);
1363 goto out;
1364}
1365
2b740303 1366vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1367{
82b0f8c3 1368 struct vm_area_struct *vma = vmf->vma;
93b4796d 1369 struct page *page = NULL, *new_page;
00501b53 1370 struct mem_cgroup *memcg;
82b0f8c3 1371 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
ac46d4f3 1372 struct mmu_notifier_range range;
3b363692 1373 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1374 vm_fault_t ret = 0;
71e3aac0 1375
82b0f8c3 1376 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1377 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1378 if (is_huge_zero_pmd(orig_pmd))
1379 goto alloc;
82b0f8c3
JK
1380 spin_lock(vmf->ptl);
1381 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1382 goto out_unlock;
1383
1384 page = pmd_page(orig_pmd);
309381fe 1385 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1386 /*
1387 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1388 * part.
1f25fe20 1389 */
ba3c4ce6
HY
1390 if (!trylock_page(page)) {
1391 get_page(page);
1392 spin_unlock(vmf->ptl);
1393 lock_page(page);
1394 spin_lock(vmf->ptl);
1395 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1396 unlock_page(page);
1397 put_page(page);
1398 goto out_unlock;
1399 }
1400 put_page(page);
1401 }
1402 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1403 pmd_t entry;
1404 entry = pmd_mkyoung(orig_pmd);
f55e1014 1405 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1406 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1407 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1408 ret |= VM_FAULT_WRITE;
ba3c4ce6 1409 unlock_page(page);
71e3aac0
AA
1410 goto out_unlock;
1411 }
ba3c4ce6 1412 unlock_page(page);
ddc58f27 1413 get_page(page);
82b0f8c3 1414 spin_unlock(vmf->ptl);
93b4796d 1415alloc:
7635d9cb 1416 if (__transparent_hugepage_enabled(vma) &&
077fcf11 1417 !transparent_hugepage_debug_cow()) {
19deb769
DR
1418 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1419 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1420 } else
71e3aac0
AA
1421 new_page = NULL;
1422
9a982250
KS
1423 if (likely(new_page)) {
1424 prep_transhuge_page(new_page);
1425 } else {
eecc1e42 1426 if (!page) {
82b0f8c3 1427 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1428 ret |= VM_FAULT_FALLBACK;
93b4796d 1429 } else {
82b0f8c3 1430 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1431 if (ret & VM_FAULT_OOM) {
82b0f8c3 1432 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1433 ret |= VM_FAULT_FALLBACK;
1434 }
ddc58f27 1435 put_page(page);
93b4796d 1436 }
17766dde 1437 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1438 goto out;
1439 }
1440
2cf85583 1441 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1442 huge_gfp, &memcg, true))) {
b9bbfbe3 1443 put_page(new_page);
82b0f8c3 1444 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1445 if (page)
ddc58f27 1446 put_page(page);
9845cbbd 1447 ret |= VM_FAULT_FALLBACK;
17766dde 1448 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1449 goto out;
1450 }
1451
17766dde 1452 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 1453 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
17766dde 1454
eecc1e42 1455 if (!page)
c79b57e4 1456 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1457 else
c9f4cd71
HY
1458 copy_user_huge_page(new_page, page, vmf->address,
1459 vma, HPAGE_PMD_NR);
71e3aac0
AA
1460 __SetPageUptodate(new_page);
1461
7269f999
JG
1462 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1463 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1464 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1465
82b0f8c3 1466 spin_lock(vmf->ptl);
93b4796d 1467 if (page)
ddc58f27 1468 put_page(page);
82b0f8c3
JK
1469 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1470 spin_unlock(vmf->ptl);
f627c2f5 1471 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1472 put_page(new_page);
2ec74c3e 1473 goto out_mn;
b9bbfbe3 1474 } else {
71e3aac0 1475 pmd_t entry;
3122359a 1476 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1477 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1478 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1479 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1480 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1481 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1482 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1483 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1484 if (!page) {
bae473a4 1485 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1486 } else {
309381fe 1487 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1488 page_remove_rmap(page, true);
93b4796d
KS
1489 put_page(page);
1490 }
71e3aac0
AA
1491 ret |= VM_FAULT_WRITE;
1492 }
82b0f8c3 1493 spin_unlock(vmf->ptl);
2ec74c3e 1494out_mn:
4645b9fe
JG
1495 /*
1496 * No need to double call mmu_notifier->invalidate_range() callback as
1497 * the above pmdp_huge_clear_flush_notify() did already call it.
1498 */
ac46d4f3 1499 mmu_notifier_invalidate_range_only_end(&range);
71e3aac0
AA
1500out:
1501 return ret;
2ec74c3e 1502out_unlock:
82b0f8c3 1503 spin_unlock(vmf->ptl);
2ec74c3e 1504 return ret;
71e3aac0
AA
1505}
1506
8310d48b
KF
1507/*
1508 * FOLL_FORCE can write to even unwritable pmd's, but only
1509 * after we've gone through a COW cycle and they are dirty.
1510 */
1511static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1512{
f6f37321 1513 return pmd_write(pmd) ||
8310d48b
KF
1514 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1515}
1516
b676b293 1517struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1518 unsigned long addr,
1519 pmd_t *pmd,
1520 unsigned int flags)
1521{
b676b293 1522 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1523 struct page *page = NULL;
1524
c4088ebd 1525 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1526
8310d48b 1527 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1528 goto out;
1529
85facf25
KS
1530 /* Avoid dumping huge zero page */
1531 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1532 return ERR_PTR(-EFAULT);
1533
2b4847e7 1534 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1535 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1536 goto out;
1537
71e3aac0 1538 page = pmd_page(*pmd);
ca120cf6 1539 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3faa52c0
JH
1540
1541 if (!try_grab_page(page, flags))
1542 return ERR_PTR(-ENOMEM);
1543
3565fce3 1544 if (flags & FOLL_TOUCH)
a8f97366 1545 touch_pmd(vma, addr, pmd, flags);
3faa52c0 1546
de60f5f1 1547 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1548 /*
1549 * We don't mlock() pte-mapped THPs. This way we can avoid
1550 * leaking mlocked pages into non-VM_LOCKED VMAs.
1551 *
9a73f61b
KS
1552 * For anon THP:
1553 *
e90309c9
KS
1554 * In most cases the pmd is the only mapping of the page as we
1555 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1556 * writable private mappings in populate_vma_page_range().
1557 *
1558 * The only scenario when we have the page shared here is if we
1559 * mlocking read-only mapping shared over fork(). We skip
1560 * mlocking such pages.
9a73f61b
KS
1561 *
1562 * For file THP:
1563 *
1564 * We can expect PageDoubleMap() to be stable under page lock:
1565 * for file pages we set it in page_add_file_rmap(), which
1566 * requires page to be locked.
e90309c9 1567 */
9a73f61b
KS
1568
1569 if (PageAnon(page) && compound_mapcount(page) != 1)
1570 goto skip_mlock;
1571 if (PageDoubleMap(page) || !page->mapping)
1572 goto skip_mlock;
1573 if (!trylock_page(page))
1574 goto skip_mlock;
1575 lru_add_drain();
1576 if (page->mapping && !PageDoubleMap(page))
1577 mlock_vma_page(page);
1578 unlock_page(page);
b676b293 1579 }
9a73f61b 1580skip_mlock:
71e3aac0 1581 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1582 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0
AA
1583
1584out:
1585 return page;
1586}
1587
d10e63f2 1588/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1589vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1590{
82b0f8c3 1591 struct vm_area_struct *vma = vmf->vma;
b8916634 1592 struct anon_vma *anon_vma = NULL;
b32967ff 1593 struct page *page;
82b0f8c3 1594 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1595 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1596 int target_nid, last_cpupid = -1;
8191acbd
MG
1597 bool page_locked;
1598 bool migrated = false;
b191f9b1 1599 bool was_writable;
6688cc05 1600 int flags = 0;
d10e63f2 1601
82b0f8c3
JK
1602 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1603 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1604 goto out_unlock;
1605
de466bd6
MG
1606 /*
1607 * If there are potential migrations, wait for completion and retry
1608 * without disrupting NUMA hinting information. Do not relock and
1609 * check_same as the page may no longer be mapped.
1610 */
82b0f8c3
JK
1611 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1612 page = pmd_page(*vmf->pmd);
3c226c63
MR
1613 if (!get_page_unless_zero(page))
1614 goto out_unlock;
82b0f8c3 1615 spin_unlock(vmf->ptl);
9a1ea439 1616 put_and_wait_on_page_locked(page);
de466bd6
MG
1617 goto out;
1618 }
1619
d10e63f2 1620 page = pmd_page(pmd);
a1a46184 1621 BUG_ON(is_huge_zero_page(page));
8191acbd 1622 page_nid = page_to_nid(page);
90572890 1623 last_cpupid = page_cpupid_last(page);
03c5a6e1 1624 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1625 if (page_nid == this_nid) {
03c5a6e1 1626 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1627 flags |= TNF_FAULT_LOCAL;
1628 }
4daae3b4 1629
bea66fbd 1630 /* See similar comment in do_numa_page for explanation */
288bc549 1631 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1632 flags |= TNF_NO_GROUP;
1633
ff9042b1
MG
1634 /*
1635 * Acquire the page lock to serialise THP migrations but avoid dropping
1636 * page_table_lock if at all possible
1637 */
b8916634
MG
1638 page_locked = trylock_page(page);
1639 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1640 if (target_nid == NUMA_NO_NODE) {
b8916634 1641 /* If the page was locked, there are no parallel migrations */
a54a407f 1642 if (page_locked)
b8916634 1643 goto clear_pmdnuma;
2b4847e7 1644 }
4daae3b4 1645
de466bd6 1646 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1647 if (!page_locked) {
98fa15f3 1648 page_nid = NUMA_NO_NODE;
3c226c63
MR
1649 if (!get_page_unless_zero(page))
1650 goto out_unlock;
82b0f8c3 1651 spin_unlock(vmf->ptl);
9a1ea439 1652 put_and_wait_on_page_locked(page);
b8916634
MG
1653 goto out;
1654 }
1655
2b4847e7
MG
1656 /*
1657 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1658 * to serialises splits
1659 */
b8916634 1660 get_page(page);
82b0f8c3 1661 spin_unlock(vmf->ptl);
b8916634 1662 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1663
c69307d5 1664 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1665 spin_lock(vmf->ptl);
1666 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1667 unlock_page(page);
1668 put_page(page);
98fa15f3 1669 page_nid = NUMA_NO_NODE;
4daae3b4 1670 goto out_unlock;
b32967ff 1671 }
ff9042b1 1672
c3a489ca
MG
1673 /* Bail if we fail to protect against THP splits for any reason */
1674 if (unlikely(!anon_vma)) {
1675 put_page(page);
98fa15f3 1676 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1677 goto clear_pmdnuma;
1678 }
1679
8b1b436d
PZ
1680 /*
1681 * Since we took the NUMA fault, we must have observed the !accessible
1682 * bit. Make sure all other CPUs agree with that, to avoid them
1683 * modifying the page we're about to migrate.
1684 *
1685 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1686 * inc_tlb_flush_pending().
1687 *
1688 * We are not sure a pending tlb flush here is for a huge page
1689 * mapping or not. Hence use the tlb range variant
8b1b436d 1690 */
7066f0f9 1691 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1692 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1693 /*
1694 * change_huge_pmd() released the pmd lock before
1695 * invalidating the secondary MMUs sharing the primary
1696 * MMU pagetables (with ->invalidate_range()). The
1697 * mmu_notifier_invalidate_range_end() (which
1698 * internally calls ->invalidate_range()) in
1699 * change_pmd_range() will run after us, so we can't
1700 * rely on it here and we need an explicit invalidate.
1701 */
1702 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1703 haddr + HPAGE_PMD_SIZE);
1704 }
8b1b436d 1705
a54a407f
MG
1706 /*
1707 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1708 * and access rights restored.
a54a407f 1709 */
82b0f8c3 1710 spin_unlock(vmf->ptl);
8b1b436d 1711
bae473a4 1712 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1713 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1714 if (migrated) {
1715 flags |= TNF_MIGRATED;
8191acbd 1716 page_nid = target_nid;
074c2381
MG
1717 } else
1718 flags |= TNF_MIGRATE_FAIL;
b32967ff 1719
8191acbd 1720 goto out;
b32967ff 1721clear_pmdnuma:
a54a407f 1722 BUG_ON(!PageLocked(page));
288bc549 1723 was_writable = pmd_savedwrite(pmd);
4d942466 1724 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1725 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1726 if (was_writable)
1727 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1728 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1729 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1730 unlock_page(page);
d10e63f2 1731out_unlock:
82b0f8c3 1732 spin_unlock(vmf->ptl);
b8916634
MG
1733
1734out:
1735 if (anon_vma)
1736 page_unlock_anon_vma_read(anon_vma);
1737
98fa15f3 1738 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1739 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1740 flags);
8191acbd 1741
d10e63f2
MG
1742 return 0;
1743}
1744
319904ad
HY
1745/*
1746 * Return true if we do MADV_FREE successfully on entire pmd page.
1747 * Otherwise, return false.
1748 */
1749bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1750 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1751{
1752 spinlock_t *ptl;
1753 pmd_t orig_pmd;
1754 struct page *page;
1755 struct mm_struct *mm = tlb->mm;
319904ad 1756 bool ret = false;
b8d3c4c3 1757
ed6a7935 1758 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1759
b6ec57f4
KS
1760 ptl = pmd_trans_huge_lock(pmd, vma);
1761 if (!ptl)
25eedabe 1762 goto out_unlocked;
b8d3c4c3
MK
1763
1764 orig_pmd = *pmd;
319904ad 1765 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1766 goto out;
b8d3c4c3 1767
84c3fc4e
ZY
1768 if (unlikely(!pmd_present(orig_pmd))) {
1769 VM_BUG_ON(thp_migration_supported() &&
1770 !is_pmd_migration_entry(orig_pmd));
1771 goto out;
1772 }
1773
b8d3c4c3
MK
1774 page = pmd_page(orig_pmd);
1775 /*
1776 * If other processes are mapping this page, we couldn't discard
1777 * the page unless they all do MADV_FREE so let's skip the page.
1778 */
1779 if (page_mapcount(page) != 1)
1780 goto out;
1781
1782 if (!trylock_page(page))
1783 goto out;
1784
1785 /*
1786 * If user want to discard part-pages of THP, split it so MADV_FREE
1787 * will deactivate only them.
1788 */
1789 if (next - addr != HPAGE_PMD_SIZE) {
1790 get_page(page);
1791 spin_unlock(ptl);
9818b8cd 1792 split_huge_page(page);
b8d3c4c3 1793 unlock_page(page);
bbf29ffc 1794 put_page(page);
b8d3c4c3
MK
1795 goto out_unlocked;
1796 }
1797
1798 if (PageDirty(page))
1799 ClearPageDirty(page);
1800 unlock_page(page);
1801
b8d3c4c3 1802 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1803 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1804 orig_pmd = pmd_mkold(orig_pmd);
1805 orig_pmd = pmd_mkclean(orig_pmd);
1806
1807 set_pmd_at(mm, addr, pmd, orig_pmd);
1808 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1809 }
802a3a92
SL
1810
1811 mark_page_lazyfree(page);
319904ad 1812 ret = true;
b8d3c4c3
MK
1813out:
1814 spin_unlock(ptl);
1815out_unlocked:
1816 return ret;
1817}
1818
953c66c2
AK
1819static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1820{
1821 pgtable_t pgtable;
1822
1823 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1824 pte_free(mm, pgtable);
c4812909 1825 mm_dec_nr_ptes(mm);
953c66c2
AK
1826}
1827
71e3aac0 1828int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1829 pmd_t *pmd, unsigned long addr)
71e3aac0 1830{
da146769 1831 pmd_t orig_pmd;
bf929152 1832 spinlock_t *ptl;
71e3aac0 1833
ed6a7935 1834 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1835
b6ec57f4
KS
1836 ptl = __pmd_trans_huge_lock(pmd, vma);
1837 if (!ptl)
da146769
KS
1838 return 0;
1839 /*
1840 * For architectures like ppc64 we look at deposited pgtable
1841 * when calling pmdp_huge_get_and_clear. So do the
1842 * pgtable_trans_huge_withdraw after finishing pmdp related
1843 * operations.
1844 */
1845 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1846 tlb->fullmm);
1847 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2484ca9b 1848 if (vma_is_special_huge(vma)) {
3b6521f5
OH
1849 if (arch_needs_pgtable_deposit())
1850 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1851 spin_unlock(ptl);
1852 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1853 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1854 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1855 zap_deposited_table(tlb->mm, pmd);
da146769 1856 spin_unlock(ptl);
c0f2e176 1857 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1858 } else {
616b8371
ZY
1859 struct page *page = NULL;
1860 int flush_needed = 1;
1861
1862 if (pmd_present(orig_pmd)) {
1863 page = pmd_page(orig_pmd);
1864 page_remove_rmap(page, true);
1865 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1866 VM_BUG_ON_PAGE(!PageHead(page), page);
1867 } else if (thp_migration_supported()) {
1868 swp_entry_t entry;
1869
1870 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1871 entry = pmd_to_swp_entry(orig_pmd);
1872 page = pfn_to_page(swp_offset(entry));
1873 flush_needed = 0;
1874 } else
1875 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1876
b5072380 1877 if (PageAnon(page)) {
c14a6eb4 1878 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1879 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1880 } else {
953c66c2
AK
1881 if (arch_needs_pgtable_deposit())
1882 zap_deposited_table(tlb->mm, pmd);
fadae295 1883 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1884 }
616b8371 1885
da146769 1886 spin_unlock(ptl);
616b8371
ZY
1887 if (flush_needed)
1888 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1889 }
da146769 1890 return 1;
71e3aac0
AA
1891}
1892
1dd38b6c
AK
1893#ifndef pmd_move_must_withdraw
1894static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1895 spinlock_t *old_pmd_ptl,
1896 struct vm_area_struct *vma)
1897{
1898 /*
1899 * With split pmd lock we also need to move preallocated
1900 * PTE page table if new_pmd is on different PMD page table.
1901 *
1902 * We also don't deposit and withdraw tables for file pages.
1903 */
1904 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1905}
1906#endif
1907
ab6e3d09
NH
1908static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1909{
1910#ifdef CONFIG_MEM_SOFT_DIRTY
1911 if (unlikely(is_pmd_migration_entry(pmd)))
1912 pmd = pmd_swp_mksoft_dirty(pmd);
1913 else if (pmd_present(pmd))
1914 pmd = pmd_mksoft_dirty(pmd);
1915#endif
1916 return pmd;
1917}
1918
bf8616d5 1919bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1920 unsigned long new_addr, unsigned long old_end,
eb66ae03 1921 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1922{
bf929152 1923 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1924 pmd_t pmd;
37a1c49a 1925 struct mm_struct *mm = vma->vm_mm;
5d190420 1926 bool force_flush = false;
37a1c49a
AA
1927
1928 if ((old_addr & ~HPAGE_PMD_MASK) ||
1929 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1930 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1931 return false;
37a1c49a
AA
1932
1933 /*
1934 * The destination pmd shouldn't be established, free_pgtables()
1935 * should have release it.
1936 */
1937 if (WARN_ON(!pmd_none(*new_pmd))) {
1938 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1939 return false;
37a1c49a
AA
1940 }
1941
bf929152
KS
1942 /*
1943 * We don't have to worry about the ordering of src and dst
1944 * ptlocks because exclusive mmap_sem prevents deadlock.
1945 */
b6ec57f4
KS
1946 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1947 if (old_ptl) {
bf929152
KS
1948 new_ptl = pmd_lockptr(mm, new_pmd);
1949 if (new_ptl != old_ptl)
1950 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1951 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1952 if (pmd_present(pmd))
a2ce2666 1953 force_flush = true;
025c5b24 1954 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1955
1dd38b6c 1956 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1957 pgtable_t pgtable;
3592806c
KS
1958 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1959 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1960 }
ab6e3d09
NH
1961 pmd = move_soft_dirty_pmd(pmd);
1962 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1963 if (force_flush)
1964 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1965 if (new_ptl != old_ptl)
1966 spin_unlock(new_ptl);
bf929152 1967 spin_unlock(old_ptl);
4b471e88 1968 return true;
37a1c49a 1969 }
4b471e88 1970 return false;
37a1c49a
AA
1971}
1972
f123d74a
MG
1973/*
1974 * Returns
1975 * - 0 if PMD could not be locked
1976 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1977 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1978 */
cd7548ab 1979int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1980 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1981{
1982 struct mm_struct *mm = vma->vm_mm;
bf929152 1983 spinlock_t *ptl;
0a85e51d
KS
1984 pmd_t entry;
1985 bool preserve_write;
1986 int ret;
cd7548ab 1987
b6ec57f4 1988 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1989 if (!ptl)
1990 return 0;
e944fd67 1991
0a85e51d
KS
1992 preserve_write = prot_numa && pmd_write(*pmd);
1993 ret = 1;
e944fd67 1994
84c3fc4e
ZY
1995#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1996 if (is_swap_pmd(*pmd)) {
1997 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1998
1999 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2000 if (is_write_migration_entry(entry)) {
2001 pmd_t newpmd;
2002 /*
2003 * A protection check is difficult so
2004 * just be safe and disable write
2005 */
2006 make_migration_entry_read(&entry);
2007 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
2008 if (pmd_swp_soft_dirty(*pmd))
2009 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
2010 set_pmd_at(mm, addr, pmd, newpmd);
2011 }
2012 goto unlock;
2013 }
2014#endif
2015
0a85e51d
KS
2016 /*
2017 * Avoid trapping faults against the zero page. The read-only
2018 * data is likely to be read-cached on the local CPU and
2019 * local/remote hits to the zero page are not interesting.
2020 */
2021 if (prot_numa && is_huge_zero_pmd(*pmd))
2022 goto unlock;
025c5b24 2023
0a85e51d
KS
2024 if (prot_numa && pmd_protnone(*pmd))
2025 goto unlock;
2026
ced10803
KS
2027 /*
2028 * In case prot_numa, we are under down_read(mmap_sem). It's critical
2029 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2030 * which is also under down_read(mmap_sem):
2031 *
2032 * CPU0: CPU1:
2033 * change_huge_pmd(prot_numa=1)
2034 * pmdp_huge_get_and_clear_notify()
2035 * madvise_dontneed()
2036 * zap_pmd_range()
2037 * pmd_trans_huge(*pmd) == 0 (without ptl)
2038 * // skip the pmd
2039 * set_pmd_at();
2040 * // pmd is re-established
2041 *
2042 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2043 * which may break userspace.
2044 *
2045 * pmdp_invalidate() is required to make sure we don't miss
2046 * dirty/young flags set by hardware.
2047 */
a3cf988f 2048 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 2049
0a85e51d
KS
2050 entry = pmd_modify(entry, newprot);
2051 if (preserve_write)
2052 entry = pmd_mk_savedwrite(entry);
2053 ret = HPAGE_PMD_NR;
2054 set_pmd_at(mm, addr, pmd, entry);
2055 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2056unlock:
2057 spin_unlock(ptl);
025c5b24
NH
2058 return ret;
2059}
2060
2061/*
8f19b0c0 2062 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 2063 *
8f19b0c0
HY
2064 * Note that if it returns page table lock pointer, this routine returns without
2065 * unlocking page table lock. So callers must unlock it.
025c5b24 2066 */
b6ec57f4 2067spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 2068{
b6ec57f4
KS
2069 spinlock_t *ptl;
2070 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
2071 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2072 pmd_devmap(*pmd)))
b6ec57f4
KS
2073 return ptl;
2074 spin_unlock(ptl);
2075 return NULL;
cd7548ab
JW
2076}
2077
a00cc7d9
MW
2078/*
2079 * Returns true if a given pud maps a thp, false otherwise.
2080 *
2081 * Note that if it returns true, this routine returns without unlocking page
2082 * table lock. So callers must unlock it.
2083 */
2084spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2085{
2086 spinlock_t *ptl;
2087
2088 ptl = pud_lock(vma->vm_mm, pud);
2089 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2090 return ptl;
2091 spin_unlock(ptl);
2092 return NULL;
2093}
2094
2095#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2096int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2097 pud_t *pud, unsigned long addr)
2098{
a00cc7d9
MW
2099 spinlock_t *ptl;
2100
2101 ptl = __pud_trans_huge_lock(pud, vma);
2102 if (!ptl)
2103 return 0;
2104 /*
2105 * For architectures like ppc64 we look at deposited pgtable
2106 * when calling pudp_huge_get_and_clear. So do the
2107 * pgtable_trans_huge_withdraw after finishing pudp related
2108 * operations.
2109 */
70516b93 2110 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9 2111 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2484ca9b 2112 if (vma_is_special_huge(vma)) {
a00cc7d9
MW
2113 spin_unlock(ptl);
2114 /* No zero page support yet */
2115 } else {
2116 /* No support for anonymous PUD pages yet */
2117 BUG();
2118 }
2119 return 1;
2120}
2121
2122static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2123 unsigned long haddr)
2124{
2125 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2126 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2127 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2128 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2129
ce9311cf 2130 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2131
2132 pudp_huge_clear_flush_notify(vma, haddr, pud);
2133}
2134
2135void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2136 unsigned long address)
2137{
2138 spinlock_t *ptl;
ac46d4f3 2139 struct mmu_notifier_range range;
a00cc7d9 2140
7269f999 2141 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2142 address & HPAGE_PUD_MASK,
ac46d4f3
JG
2143 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2144 mmu_notifier_invalidate_range_start(&range);
2145 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
2146 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2147 goto out;
ac46d4f3 2148 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
2149
2150out:
2151 spin_unlock(ptl);
4645b9fe
JG
2152 /*
2153 * No need to double call mmu_notifier->invalidate_range() callback as
2154 * the above pudp_huge_clear_flush_notify() did already call it.
2155 */
ac46d4f3 2156 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
2157}
2158#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2159
eef1b3ba
KS
2160static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2161 unsigned long haddr, pmd_t *pmd)
2162{
2163 struct mm_struct *mm = vma->vm_mm;
2164 pgtable_t pgtable;
2165 pmd_t _pmd;
2166 int i;
2167
0f10851e
JG
2168 /*
2169 * Leave pmd empty until pte is filled note that it is fine to delay
2170 * notification until mmu_notifier_invalidate_range_end() as we are
2171 * replacing a zero pmd write protected page with a zero pte write
2172 * protected page.
2173 *
ad56b738 2174 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2175 */
2176 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2177
2178 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2179 pmd_populate(mm, &_pmd, pgtable);
2180
2181 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2182 pte_t *pte, entry;
2183 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2184 entry = pte_mkspecial(entry);
2185 pte = pte_offset_map(&_pmd, haddr);
2186 VM_BUG_ON(!pte_none(*pte));
2187 set_pte_at(mm, haddr, pte, entry);
2188 pte_unmap(pte);
2189 }
2190 smp_wmb(); /* make pte visible before pmd */
2191 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2192}
2193
2194static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2195 unsigned long haddr, bool freeze)
eef1b3ba
KS
2196{
2197 struct mm_struct *mm = vma->vm_mm;
2198 struct page *page;
2199 pgtable_t pgtable;
423ac9af 2200 pmd_t old_pmd, _pmd;
a3cf988f 2201 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2202 unsigned long addr;
eef1b3ba
KS
2203 int i;
2204
2205 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2206 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2207 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2208 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2209 && !pmd_devmap(*pmd));
eef1b3ba
KS
2210
2211 count_vm_event(THP_SPLIT_PMD);
2212
d21b9e57
KS
2213 if (!vma_is_anonymous(vma)) {
2214 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2215 /*
2216 * We are going to unmap this huge page. So
2217 * just go ahead and zap it
2218 */
2219 if (arch_needs_pgtable_deposit())
2220 zap_deposited_table(mm, pmd);
2484ca9b 2221 if (vma_is_special_huge(vma))
d21b9e57
KS
2222 return;
2223 page = pmd_page(_pmd);
e1f1b157
HD
2224 if (!PageDirty(page) && pmd_dirty(_pmd))
2225 set_page_dirty(page);
d21b9e57
KS
2226 if (!PageReferenced(page) && pmd_young(_pmd))
2227 SetPageReferenced(page);
2228 page_remove_rmap(page, true);
2229 put_page(page);
fadae295 2230 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2231 return;
2232 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2233 /*
2234 * FIXME: Do we want to invalidate secondary mmu by calling
2235 * mmu_notifier_invalidate_range() see comments below inside
2236 * __split_huge_pmd() ?
2237 *
2238 * We are going from a zero huge page write protected to zero
2239 * small page also write protected so it does not seems useful
2240 * to invalidate secondary mmu at this time.
2241 */
eef1b3ba
KS
2242 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2243 }
2244
423ac9af
AK
2245 /*
2246 * Up to this point the pmd is present and huge and userland has the
2247 * whole access to the hugepage during the split (which happens in
2248 * place). If we overwrite the pmd with the not-huge version pointing
2249 * to the pte here (which of course we could if all CPUs were bug
2250 * free), userland could trigger a small page size TLB miss on the
2251 * small sized TLB while the hugepage TLB entry is still established in
2252 * the huge TLB. Some CPU doesn't like that.
2253 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2254 * 383 on page 93. Intel should be safe but is also warns that it's
2255 * only safe if the permission and cache attributes of the two entries
2256 * loaded in the two TLB is identical (which should be the case here).
2257 * But it is generally safer to never allow small and huge TLB entries
2258 * for the same virtual address to be loaded simultaneously. So instead
2259 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2260 * current pmd notpresent (atomically because here the pmd_trans_huge
2261 * must remain set at all times on the pmd until the split is complete
2262 * for this pmd), then we flush the SMP TLB and finally we write the
2263 * non-huge version of the pmd entry with pmd_populate.
2264 */
2265 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2266
423ac9af 2267 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2268 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2269 swp_entry_t entry;
2270
423ac9af 2271 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2272 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2273 write = is_write_migration_entry(entry);
2274 young = false;
2275 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2276 } else {
423ac9af 2277 page = pmd_page(old_pmd);
2e83ee1d
PX
2278 if (pmd_dirty(old_pmd))
2279 SetPageDirty(page);
2280 write = pmd_write(old_pmd);
2281 young = pmd_young(old_pmd);
2282 soft_dirty = pmd_soft_dirty(old_pmd);
2283 }
eef1b3ba 2284 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2285 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2286
423ac9af
AK
2287 /*
2288 * Withdraw the table only after we mark the pmd entry invalid.
2289 * This's critical for some architectures (Power).
2290 */
eef1b3ba
KS
2291 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2292 pmd_populate(mm, &_pmd, pgtable);
2293
2ac015e2 2294 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2295 pte_t entry, *pte;
2296 /*
2297 * Note that NUMA hinting access restrictions are not
2298 * transferred to avoid any possibility of altering
2299 * permissions across VMAs.
2300 */
84c3fc4e 2301 if (freeze || pmd_migration) {
ba988280
KS
2302 swp_entry_t swp_entry;
2303 swp_entry = make_migration_entry(page + i, write);
2304 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2305 if (soft_dirty)
2306 entry = pte_swp_mksoft_dirty(entry);
ba988280 2307 } else {
6d2329f8 2308 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2309 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2310 if (!write)
2311 entry = pte_wrprotect(entry);
2312 if (!young)
2313 entry = pte_mkold(entry);
804dd150
AA
2314 if (soft_dirty)
2315 entry = pte_mksoft_dirty(entry);
ba988280 2316 }
2ac015e2 2317 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2318 BUG_ON(!pte_none(*pte));
2ac015e2 2319 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2320 atomic_inc(&page[i]._mapcount);
2321 pte_unmap(pte);
2322 }
2323
2324 /*
2325 * Set PG_double_map before dropping compound_mapcount to avoid
2326 * false-negative page_mapped().
2327 */
2328 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2329 for (i = 0; i < HPAGE_PMD_NR; i++)
2330 atomic_inc(&page[i]._mapcount);
2331 }
2332
2333 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2334 /* Last compound_mapcount is gone. */
11fb9989 2335 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2336 if (TestClearPageDoubleMap(page)) {
2337 /* No need in mapcount reference anymore */
2338 for (i = 0; i < HPAGE_PMD_NR; i++)
2339 atomic_dec(&page[i]._mapcount);
2340 }
2341 }
2342
2343 smp_wmb(); /* make pte visible before pmd */
2344 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2345
2346 if (freeze) {
2ac015e2 2347 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2348 page_remove_rmap(page + i, false);
2349 put_page(page + i);
2350 }
2351 }
eef1b3ba
KS
2352}
2353
2354void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2355 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2356{
2357 spinlock_t *ptl;
ac46d4f3 2358 struct mmu_notifier_range range;
eef1b3ba 2359
7269f999 2360 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2361 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2362 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2363 mmu_notifier_invalidate_range_start(&range);
2364 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2365
2366 /*
2367 * If caller asks to setup a migration entries, we need a page to check
2368 * pmd against. Otherwise we can end up replacing wrong page.
2369 */
2370 VM_BUG_ON(freeze && !page);
2371 if (page && page != pmd_page(*pmd))
2372 goto out;
2373
5c7fb56e 2374 if (pmd_trans_huge(*pmd)) {
33f4751e 2375 page = pmd_page(*pmd);
5c7fb56e 2376 if (PageMlocked(page))
5f737714 2377 clear_page_mlock(page);
84c3fc4e 2378 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2379 goto out;
ac46d4f3 2380 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2381out:
eef1b3ba 2382 spin_unlock(ptl);
4645b9fe
JG
2383 /*
2384 * No need to double call mmu_notifier->invalidate_range() callback.
2385 * They are 3 cases to consider inside __split_huge_pmd_locked():
2386 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2387 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2388 * fault will trigger a flush_notify before pointing to a new page
2389 * (it is fine if the secondary mmu keeps pointing to the old zero
2390 * page in the meantime)
2391 * 3) Split a huge pmd into pte pointing to the same page. No need
2392 * to invalidate secondary tlb entry they are all still valid.
2393 * any further changes to individual pte will notify. So no need
2394 * to call mmu_notifier->invalidate_range()
2395 */
ac46d4f3 2396 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2397}
2398
fec89c10
KS
2399void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2400 bool freeze, struct page *page)
94fcc585 2401{
f72e7dcd 2402 pgd_t *pgd;
c2febafc 2403 p4d_t *p4d;
f72e7dcd 2404 pud_t *pud;
94fcc585
AA
2405 pmd_t *pmd;
2406
78ddc534 2407 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2408 if (!pgd_present(*pgd))
2409 return;
2410
c2febafc
KS
2411 p4d = p4d_offset(pgd, address);
2412 if (!p4d_present(*p4d))
2413 return;
2414
2415 pud = pud_offset(p4d, address);
f72e7dcd
HD
2416 if (!pud_present(*pud))
2417 return;
2418
2419 pmd = pmd_offset(pud, address);
fec89c10 2420
33f4751e 2421 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2422}
2423
e1b9996b 2424void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2425 unsigned long start,
2426 unsigned long end,
2427 long adjust_next)
2428{
2429 /*
2430 * If the new start address isn't hpage aligned and it could
2431 * previously contain an hugepage: check if we need to split
2432 * an huge pmd.
2433 */
2434 if (start & ~HPAGE_PMD_MASK &&
2435 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2436 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2437 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2438
2439 /*
2440 * If the new end address isn't hpage aligned and it could
2441 * previously contain an hugepage: check if we need to split
2442 * an huge pmd.
2443 */
2444 if (end & ~HPAGE_PMD_MASK &&
2445 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2446 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2447 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2448
2449 /*
2450 * If we're also updating the vma->vm_next->vm_start, if the new
2451 * vm_next->vm_start isn't page aligned and it could previously
2452 * contain an hugepage: check if we need to split an huge pmd.
2453 */
2454 if (adjust_next > 0) {
2455 struct vm_area_struct *next = vma->vm_next;
2456 unsigned long nstart = next->vm_start;
2457 nstart += adjust_next << PAGE_SHIFT;
2458 if (nstart & ~HPAGE_PMD_MASK &&
2459 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2460 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2461 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2462 }
2463}
e9b61f19 2464
906f9cdf 2465static void unmap_page(struct page *page)
e9b61f19 2466{
baa355fd 2467 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2468 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2469 bool unmap_success;
e9b61f19
KS
2470
2471 VM_BUG_ON_PAGE(!PageHead(page), page);
2472
baa355fd 2473 if (PageAnon(page))
b5ff8161 2474 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2475
666e5a40
MK
2476 unmap_success = try_to_unmap(page, ttu_flags);
2477 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2478}
2479
906f9cdf 2480static void remap_page(struct page *page)
e9b61f19 2481{
fec89c10 2482 int i;
ace71a19
KS
2483 if (PageTransHuge(page)) {
2484 remove_migration_ptes(page, page, true);
2485 } else {
2486 for (i = 0; i < HPAGE_PMD_NR; i++)
2487 remove_migration_ptes(page + i, page + i, true);
2488 }
e9b61f19
KS
2489}
2490
8df651c7 2491static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2492 struct lruvec *lruvec, struct list_head *list)
2493{
e9b61f19
KS
2494 struct page *page_tail = head + tail;
2495
8df651c7 2496 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2497
2498 /*
605ca5ed
KK
2499 * Clone page flags before unfreezing refcount.
2500 *
2501 * After successful get_page_unless_zero() might follow flags change,
2502 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2503 */
e9b61f19
KS
2504 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2505 page_tail->flags |= (head->flags &
2506 ((1L << PG_referenced) |
2507 (1L << PG_swapbacked) |
38d8b4e6 2508 (1L << PG_swapcache) |
e9b61f19
KS
2509 (1L << PG_mlocked) |
2510 (1L << PG_uptodate) |
2511 (1L << PG_active) |
1899ad18 2512 (1L << PG_workingset) |
e9b61f19 2513 (1L << PG_locked) |
b8d3c4c3
MK
2514 (1L << PG_unevictable) |
2515 (1L << PG_dirty)));
e9b61f19 2516
173d9d9f
HD
2517 /* ->mapping in first tail page is compound_mapcount */
2518 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2519 page_tail);
2520 page_tail->mapping = head->mapping;
2521 page_tail->index = head->index + tail;
2522
605ca5ed 2523 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2524 smp_wmb();
2525
605ca5ed
KK
2526 /*
2527 * Clear PageTail before unfreezing page refcount.
2528 *
2529 * After successful get_page_unless_zero() might follow put_page()
2530 * which needs correct compound_head().
2531 */
e9b61f19
KS
2532 clear_compound_head(page_tail);
2533
605ca5ed
KK
2534 /* Finally unfreeze refcount. Additional reference from page cache. */
2535 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2536 PageSwapCache(head)));
2537
e9b61f19
KS
2538 if (page_is_young(head))
2539 set_page_young(page_tail);
2540 if (page_is_idle(head))
2541 set_page_idle(page_tail);
2542
e9b61f19 2543 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2544
2545 /*
2546 * always add to the tail because some iterators expect new
2547 * pages to show after the currently processed elements - e.g.
2548 * migrate_pages
2549 */
e9b61f19 2550 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2551}
2552
baa355fd 2553static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2554 pgoff_t end, unsigned long flags)
e9b61f19
KS
2555{
2556 struct page *head = compound_head(page);
f4b7e272 2557 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2558 struct lruvec *lruvec;
4101196b
MWO
2559 struct address_space *swap_cache = NULL;
2560 unsigned long offset = 0;
8df651c7 2561 int i;
e9b61f19 2562
f4b7e272 2563 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2564
2565 /* complete memcg works before add pages to LRU */
2566 mem_cgroup_split_huge_fixup(head);
2567
4101196b
MWO
2568 if (PageAnon(head) && PageSwapCache(head)) {
2569 swp_entry_t entry = { .val = page_private(head) };
2570
2571 offset = swp_offset(entry);
2572 swap_cache = swap_address_space(entry);
2573 xa_lock(&swap_cache->i_pages);
2574 }
2575
baa355fd 2576 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2577 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2578 /* Some pages can be beyond i_size: drop them from page cache */
2579 if (head[i].index >= end) {
2d077d4b 2580 ClearPageDirty(head + i);
baa355fd 2581 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2582 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2583 shmem_uncharge(head->mapping->host, 1);
baa355fd 2584 put_page(head + i);
4101196b
MWO
2585 } else if (!PageAnon(page)) {
2586 __xa_store(&head->mapping->i_pages, head[i].index,
2587 head + i, 0);
2588 } else if (swap_cache) {
2589 __xa_store(&swap_cache->i_pages, offset + i,
2590 head + i, 0);
baa355fd
KS
2591 }
2592 }
e9b61f19
KS
2593
2594 ClearPageCompound(head);
f7da677b
VB
2595
2596 split_page_owner(head, HPAGE_PMD_ORDER);
2597
baa355fd
KS
2598 /* See comment in __split_huge_page_tail() */
2599 if (PageAnon(head)) {
aa5dc07f 2600 /* Additional pin to swap cache */
4101196b 2601 if (PageSwapCache(head)) {
38d8b4e6 2602 page_ref_add(head, 2);
4101196b
MWO
2603 xa_unlock(&swap_cache->i_pages);
2604 } else {
38d8b4e6 2605 page_ref_inc(head);
4101196b 2606 }
baa355fd 2607 } else {
aa5dc07f 2608 /* Additional pin to page cache */
baa355fd 2609 page_ref_add(head, 2);
b93b0163 2610 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2611 }
2612
f4b7e272 2613 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2614
906f9cdf 2615 remap_page(head);
e9b61f19
KS
2616
2617 for (i = 0; i < HPAGE_PMD_NR; i++) {
2618 struct page *subpage = head + i;
2619 if (subpage == page)
2620 continue;
2621 unlock_page(subpage);
2622
2623 /*
2624 * Subpages may be freed if there wasn't any mapping
2625 * like if add_to_swap() is running on a lru page that
2626 * had its mapping zapped. And freeing these pages
2627 * requires taking the lru_lock so we do the put_page
2628 * of the tail pages after the split is complete.
2629 */
2630 put_page(subpage);
2631 }
2632}
2633
b20ce5e0
KS
2634int total_mapcount(struct page *page)
2635{
dd78fedd 2636 int i, compound, ret;
b20ce5e0
KS
2637
2638 VM_BUG_ON_PAGE(PageTail(page), page);
2639
2640 if (likely(!PageCompound(page)))
2641 return atomic_read(&page->_mapcount) + 1;
2642
dd78fedd 2643 compound = compound_mapcount(page);
b20ce5e0 2644 if (PageHuge(page))
dd78fedd
KS
2645 return compound;
2646 ret = compound;
b20ce5e0
KS
2647 for (i = 0; i < HPAGE_PMD_NR; i++)
2648 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2649 /* File pages has compound_mapcount included in _mapcount */
2650 if (!PageAnon(page))
2651 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2652 if (PageDoubleMap(page))
2653 ret -= HPAGE_PMD_NR;
2654 return ret;
2655}
2656
6d0a07ed
AA
2657/*
2658 * This calculates accurately how many mappings a transparent hugepage
2659 * has (unlike page_mapcount() which isn't fully accurate). This full
2660 * accuracy is primarily needed to know if copy-on-write faults can
2661 * reuse the page and change the mapping to read-write instead of
2662 * copying them. At the same time this returns the total_mapcount too.
2663 *
2664 * The function returns the highest mapcount any one of the subpages
2665 * has. If the return value is one, even if different processes are
2666 * mapping different subpages of the transparent hugepage, they can
2667 * all reuse it, because each process is reusing a different subpage.
2668 *
2669 * The total_mapcount is instead counting all virtual mappings of the
2670 * subpages. If the total_mapcount is equal to "one", it tells the
2671 * caller all mappings belong to the same "mm" and in turn the
2672 * anon_vma of the transparent hugepage can become the vma->anon_vma
2673 * local one as no other process may be mapping any of the subpages.
2674 *
2675 * It would be more accurate to replace page_mapcount() with
2676 * page_trans_huge_mapcount(), however we only use
2677 * page_trans_huge_mapcount() in the copy-on-write faults where we
2678 * need full accuracy to avoid breaking page pinning, because
2679 * page_trans_huge_mapcount() is slower than page_mapcount().
2680 */
2681int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2682{
2683 int i, ret, _total_mapcount, mapcount;
2684
2685 /* hugetlbfs shouldn't call it */
2686 VM_BUG_ON_PAGE(PageHuge(page), page);
2687
2688 if (likely(!PageTransCompound(page))) {
2689 mapcount = atomic_read(&page->_mapcount) + 1;
2690 if (total_mapcount)
2691 *total_mapcount = mapcount;
2692 return mapcount;
2693 }
2694
2695 page = compound_head(page);
2696
2697 _total_mapcount = ret = 0;
2698 for (i = 0; i < HPAGE_PMD_NR; i++) {
2699 mapcount = atomic_read(&page[i]._mapcount) + 1;
2700 ret = max(ret, mapcount);
2701 _total_mapcount += mapcount;
2702 }
2703 if (PageDoubleMap(page)) {
2704 ret -= 1;
2705 _total_mapcount -= HPAGE_PMD_NR;
2706 }
2707 mapcount = compound_mapcount(page);
2708 ret += mapcount;
2709 _total_mapcount += mapcount;
2710 if (total_mapcount)
2711 *total_mapcount = _total_mapcount;
2712 return ret;
2713}
2714
b8f593cd
HY
2715/* Racy check whether the huge page can be split */
2716bool can_split_huge_page(struct page *page, int *pextra_pins)
2717{
2718 int extra_pins;
2719
aa5dc07f 2720 /* Additional pins from page cache */
b8f593cd
HY
2721 if (PageAnon(page))
2722 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2723 else
2724 extra_pins = HPAGE_PMD_NR;
2725 if (pextra_pins)
2726 *pextra_pins = extra_pins;
2727 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2728}
2729
e9b61f19
KS
2730/*
2731 * This function splits huge page into normal pages. @page can point to any
2732 * subpage of huge page to split. Split doesn't change the position of @page.
2733 *
2734 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2735 * The huge page must be locked.
2736 *
2737 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2738 *
2739 * Both head page and tail pages will inherit mapping, flags, and so on from
2740 * the hugepage.
2741 *
2742 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2743 * they are not mapped.
2744 *
2745 * Returns 0 if the hugepage is split successfully.
2746 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2747 * us.
2748 */
2749int split_huge_page_to_list(struct page *page, struct list_head *list)
2750{
2751 struct page *head = compound_head(page);
a3d0a918 2752 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
a8803e6c 2753 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2754 struct anon_vma *anon_vma = NULL;
2755 struct address_space *mapping = NULL;
2756 int count, mapcount, extra_pins, ret;
d9654322 2757 bool mlocked;
0b9b6fff 2758 unsigned long flags;
006d3ff2 2759 pgoff_t end;
e9b61f19 2760
cb829624 2761 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2762 VM_BUG_ON_PAGE(!PageLocked(head), head);
2763 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2764
a8803e6c 2765 if (PageWriteback(head))
59807685
HY
2766 return -EBUSY;
2767
baa355fd
KS
2768 if (PageAnon(head)) {
2769 /*
2770 * The caller does not necessarily hold an mmap_sem that would
2771 * prevent the anon_vma disappearing so we first we take a
2772 * reference to it and then lock the anon_vma for write. This
2773 * is similar to page_lock_anon_vma_read except the write lock
2774 * is taken to serialise against parallel split or collapse
2775 * operations.
2776 */
2777 anon_vma = page_get_anon_vma(head);
2778 if (!anon_vma) {
2779 ret = -EBUSY;
2780 goto out;
2781 }
006d3ff2 2782 end = -1;
baa355fd
KS
2783 mapping = NULL;
2784 anon_vma_lock_write(anon_vma);
2785 } else {
2786 mapping = head->mapping;
2787
2788 /* Truncated ? */
2789 if (!mapping) {
2790 ret = -EBUSY;
2791 goto out;
2792 }
2793
baa355fd
KS
2794 anon_vma = NULL;
2795 i_mmap_lock_read(mapping);
006d3ff2
HD
2796
2797 /*
2798 *__split_huge_page() may need to trim off pages beyond EOF:
2799 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2800 * which cannot be nested inside the page tree lock. So note
2801 * end now: i_size itself may be changed at any moment, but
2802 * head page lock is good enough to serialize the trimming.
2803 */
2804 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2805 }
e9b61f19
KS
2806
2807 /*
906f9cdf 2808 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2809 * split PMDs
2810 */
b8f593cd 2811 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2812 ret = -EBUSY;
2813 goto out_unlock;
2814 }
2815
a8803e6c 2816 mlocked = PageMlocked(head);
906f9cdf 2817 unmap_page(head);
e9b61f19
KS
2818 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2819
d9654322
KS
2820 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2821 if (mlocked)
2822 lru_add_drain();
2823
baa355fd 2824 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2825 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2826
2827 if (mapping) {
aa5dc07f 2828 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2829
baa355fd 2830 /*
aa5dc07f 2831 * Check if the head page is present in page cache.
baa355fd
KS
2832 * We assume all tail are present too, if head is there.
2833 */
aa5dc07f
MW
2834 xa_lock(&mapping->i_pages);
2835 if (xas_load(&xas) != head)
baa355fd
KS
2836 goto fail;
2837 }
2838
0139aa7b 2839 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2840 spin_lock(&ds_queue->split_queue_lock);
e9b61f19
KS
2841 count = page_count(head);
2842 mapcount = total_mapcount(head);
baa355fd 2843 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2844 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2845 ds_queue->split_queue_len--;
9a982250
KS
2846 list_del(page_deferred_list(head));
2847 }
afb97172 2848 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2849 if (mapping) {
a8803e6c
WY
2850 if (PageSwapBacked(head))
2851 __dec_node_page_state(head, NR_SHMEM_THPS);
06d3eff6 2852 else
a8803e6c 2853 __dec_node_page_state(head, NR_FILE_THPS);
06d3eff6
KS
2854 }
2855
006d3ff2 2856 __split_huge_page(page, list, end, flags);
59807685
HY
2857 if (PageSwapCache(head)) {
2858 swp_entry_t entry = { .val = page_private(head) };
2859
2860 ret = split_swap_cluster(entry);
2861 } else
2862 ret = 0;
e9b61f19 2863 } else {
baa355fd
KS
2864 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2865 pr_alert("total_mapcount: %u, page_count(): %u\n",
2866 mapcount, count);
2867 if (PageTail(page))
2868 dump_page(head, NULL);
2869 dump_page(page, "total_mapcount(head) > 0");
2870 BUG();
2871 }
364c1eeb 2872 spin_unlock(&ds_queue->split_queue_lock);
baa355fd 2873fail: if (mapping)
b93b0163 2874 xa_unlock(&mapping->i_pages);
f4b7e272 2875 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
906f9cdf 2876 remap_page(head);
e9b61f19
KS
2877 ret = -EBUSY;
2878 }
2879
2880out_unlock:
baa355fd
KS
2881 if (anon_vma) {
2882 anon_vma_unlock_write(anon_vma);
2883 put_anon_vma(anon_vma);
2884 }
2885 if (mapping)
2886 i_mmap_unlock_read(mapping);
e9b61f19
KS
2887out:
2888 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2889 return ret;
2890}
9a982250
KS
2891
2892void free_transhuge_page(struct page *page)
2893{
87eaceb3 2894 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2895 unsigned long flags;
2896
364c1eeb 2897 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2898 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2899 ds_queue->split_queue_len--;
9a982250
KS
2900 list_del(page_deferred_list(page));
2901 }
364c1eeb 2902 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2903 free_compound_page(page);
2904}
2905
2906void deferred_split_huge_page(struct page *page)
2907{
87eaceb3
YS
2908 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2909#ifdef CONFIG_MEMCG
2910 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2911#endif
9a982250
KS
2912 unsigned long flags;
2913
2914 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2915
87eaceb3
YS
2916 /*
2917 * The try_to_unmap() in page reclaim path might reach here too,
2918 * this may cause a race condition to corrupt deferred split queue.
2919 * And, if page reclaim is already handling the same page, it is
2920 * unnecessary to handle it again in shrinker.
2921 *
2922 * Check PageSwapCache to determine if the page is being
2923 * handled by page reclaim since THP swap would add the page into
2924 * swap cache before calling try_to_unmap().
2925 */
2926 if (PageSwapCache(page))
2927 return;
2928
364c1eeb 2929 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2930 if (list_empty(page_deferred_list(page))) {
f9719a03 2931 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2932 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2933 ds_queue->split_queue_len++;
87eaceb3
YS
2934#ifdef CONFIG_MEMCG
2935 if (memcg)
2936 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2937 deferred_split_shrinker.id);
2938#endif
9a982250 2939 }
364c1eeb 2940 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2941}
2942
2943static unsigned long deferred_split_count(struct shrinker *shrink,
2944 struct shrink_control *sc)
2945{
a3d0a918 2946 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2947 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2948
2949#ifdef CONFIG_MEMCG
2950 if (sc->memcg)
2951 ds_queue = &sc->memcg->deferred_split_queue;
2952#endif
364c1eeb 2953 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2954}
2955
2956static unsigned long deferred_split_scan(struct shrinker *shrink,
2957 struct shrink_control *sc)
2958{
a3d0a918 2959 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2960 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2961 unsigned long flags;
2962 LIST_HEAD(list), *pos, *next;
2963 struct page *page;
2964 int split = 0;
2965
87eaceb3
YS
2966#ifdef CONFIG_MEMCG
2967 if (sc->memcg)
2968 ds_queue = &sc->memcg->deferred_split_queue;
2969#endif
2970
364c1eeb 2971 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2972 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2973 list_for_each_safe(pos, next, &ds_queue->split_queue) {
9a982250
KS
2974 page = list_entry((void *)pos, struct page, mapping);
2975 page = compound_head(page);
e3ae1953
KS
2976 if (get_page_unless_zero(page)) {
2977 list_move(page_deferred_list(page), &list);
2978 } else {
2979 /* We lost race with put_compound_page() */
9a982250 2980 list_del_init(page_deferred_list(page));
364c1eeb 2981 ds_queue->split_queue_len--;
9a982250 2982 }
e3ae1953
KS
2983 if (!--sc->nr_to_scan)
2984 break;
9a982250 2985 }
364c1eeb 2986 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2987
2988 list_for_each_safe(pos, next, &list) {
2989 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2990 if (!trylock_page(page))
2991 goto next;
9a982250
KS
2992 /* split_huge_page() removes page from list on success */
2993 if (!split_huge_page(page))
2994 split++;
2995 unlock_page(page);
fa41b900 2996next:
9a982250
KS
2997 put_page(page);
2998 }
2999
364c1eeb
YS
3000 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3001 list_splice_tail(&list, &ds_queue->split_queue);
3002 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 3003
cb8d68ec
KS
3004 /*
3005 * Stop shrinker if we didn't split any page, but the queue is empty.
3006 * This can happen if pages were freed under us.
3007 */
364c1eeb 3008 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
3009 return SHRINK_STOP;
3010 return split;
9a982250
KS
3011}
3012
3013static struct shrinker deferred_split_shrinker = {
3014 .count_objects = deferred_split_count,
3015 .scan_objects = deferred_split_scan,
3016 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
3017 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
3018 SHRINKER_NONSLAB,
9a982250 3019};
49071d43
KS
3020
3021#ifdef CONFIG_DEBUG_FS
3022static int split_huge_pages_set(void *data, u64 val)
3023{
3024 struct zone *zone;
3025 struct page *page;
3026 unsigned long pfn, max_zone_pfn;
3027 unsigned long total = 0, split = 0;
3028
3029 if (val != 1)
3030 return -EINVAL;
3031
3032 for_each_populated_zone(zone) {
3033 max_zone_pfn = zone_end_pfn(zone);
3034 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3035 if (!pfn_valid(pfn))
3036 continue;
3037
3038 page = pfn_to_page(pfn);
3039 if (!get_page_unless_zero(page))
3040 continue;
3041
3042 if (zone != page_zone(page))
3043 goto next;
3044
baa355fd 3045 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
3046 goto next;
3047
3048 total++;
3049 lock_page(page);
3050 if (!split_huge_page(page))
3051 split++;
3052 unlock_page(page);
3053next:
3054 put_page(page);
3055 }
3056 }
3057
145bdaa1 3058 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
3059
3060 return 0;
3061}
f1287869 3062DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
49071d43
KS
3063 "%llu\n");
3064
3065static int __init split_huge_pages_debugfs(void)
3066{
d9f7979c
GKH
3067 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3068 &split_huge_pages_fops);
49071d43
KS
3069 return 0;
3070}
3071late_initcall(split_huge_pages_debugfs);
3072#endif
616b8371
ZY
3073
3074#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3075void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3076 struct page *page)
3077{
3078 struct vm_area_struct *vma = pvmw->vma;
3079 struct mm_struct *mm = vma->vm_mm;
3080 unsigned long address = pvmw->address;
3081 pmd_t pmdval;
3082 swp_entry_t entry;
ab6e3d09 3083 pmd_t pmdswp;
616b8371
ZY
3084
3085 if (!(pvmw->pmd && !pvmw->pte))
3086 return;
3087
616b8371 3088 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 3089 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
3090 if (pmd_dirty(pmdval))
3091 set_page_dirty(page);
3092 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
3093 pmdswp = swp_entry_to_pmd(entry);
3094 if (pmd_soft_dirty(pmdval))
3095 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3096 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
3097 page_remove_rmap(page, true);
3098 put_page(page);
616b8371
ZY
3099}
3100
3101void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3102{
3103 struct vm_area_struct *vma = pvmw->vma;
3104 struct mm_struct *mm = vma->vm_mm;
3105 unsigned long address = pvmw->address;
3106 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3107 pmd_t pmde;
3108 swp_entry_t entry;
3109
3110 if (!(pvmw->pmd && !pvmw->pte))
3111 return;
3112
3113 entry = pmd_to_swp_entry(*pvmw->pmd);
3114 get_page(new);
3115 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
3116 if (pmd_swp_soft_dirty(*pvmw->pmd))
3117 pmde = pmd_mksoft_dirty(pmde);
616b8371 3118 if (is_write_migration_entry(entry))
f55e1014 3119 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
3120
3121 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
3122 if (PageAnon(new))
3123 page_add_anon_rmap(new, vma, mmun_start, true);
3124 else
3125 page_add_file_rmap(new, true);
616b8371 3126 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 3127 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
3128 mlock_vma_page(new);
3129 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3130}
3131#endif