]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
fs: Constify vma argument to vma_is_dax
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
f7da677b 35#include <linux/page_owner.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
7635d9cb
MH
65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66{
c0630669
YS
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
7635d9cb
MH
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
c0630669
YS
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
7635d9cb
MH
76
77 return false;
78}
79
6fcb52a5 80static struct page *get_huge_zero_page(void)
97ae1749
KS
81{
82 struct page *zero_page;
83retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 85 return READ_ONCE(huge_zero_page);
97ae1749
KS
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 88 HPAGE_PMD_ORDER);
d8a8e1f0
KS
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 91 return NULL;
d8a8e1f0
KS
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 94 preempt_disable();
5918d10a 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 96 preempt_enable();
5ddacbe9 97 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
4db0c3c2 104 return READ_ONCE(huge_zero_page);
4a6c1297
KS
105}
106
6fcb52a5 107static void put_huge_zero_page(void)
4a6c1297 108{
97ae1749
KS
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
114}
115
6fcb52a5
AL
116struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117{
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128}
129
130void mm_put_huge_zero_page(struct mm_struct *mm)
131{
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134}
135
48896466
GC
136static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
4a6c1297 138{
48896466
GC
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141}
97ae1749 142
48896466
GC
143static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145{
97ae1749 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
5ddacbe9 149 __free_pages(zero_page, compound_order(zero_page));
48896466 150 return HPAGE_PMD_NR;
97ae1749
KS
151 }
152
153 return 0;
4a6c1297
KS
154}
155
97ae1749 156static struct shrinker huge_zero_page_shrinker = {
48896466
GC
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
159 .seeks = DEFAULT_SEEKS,
160};
161
71e3aac0 162#ifdef CONFIG_SYSFS
71e3aac0
AA
163static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165{
444eb2a4
MG
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
170 else
171 return sprintf(buf, "always madvise [never]\n");
71e3aac0 172}
444eb2a4 173
71e3aac0
AA
174static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
177{
21440d7e 178 ssize_t ret = count;
ba76149f 179
f42f2552 180 if (sysfs_streq(buf, "always")) {
21440d7e
DR
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 183 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 186 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else
190 ret = -EINVAL;
ba76149f
AA
191
192 if (ret > 0) {
b46e756f 193 int err = start_stop_khugepaged();
ba76149f
AA
194 if (err)
195 ret = err;
196 }
ba76149f 197 return ret;
71e3aac0
AA
198}
199static struct kobj_attribute enabled_attr =
200 __ATTR(enabled, 0644, enabled_show, enabled_store);
201
b46e756f 202ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
203 struct kobj_attribute *attr, char *buf,
204 enum transparent_hugepage_flag flag)
205{
e27e6151
BH
206 return sprintf(buf, "%d\n",
207 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 208}
e27e6151 209
b46e756f 210ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
211 struct kobj_attribute *attr,
212 const char *buf, size_t count,
213 enum transparent_hugepage_flag flag)
214{
e27e6151
BH
215 unsigned long value;
216 int ret;
217
218 ret = kstrtoul(buf, 10, &value);
219 if (ret < 0)
220 return ret;
221 if (value > 1)
222 return -EINVAL;
223
224 if (value)
71e3aac0 225 set_bit(flag, &transparent_hugepage_flags);
e27e6151 226 else
71e3aac0 227 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
228
229 return count;
230}
231
71e3aac0
AA
232static ssize_t defrag_show(struct kobject *kobj,
233 struct kobj_attribute *attr, char *buf)
234{
444eb2a4 235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 236 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
238 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 244}
21440d7e 245
71e3aac0
AA
246static ssize_t defrag_store(struct kobject *kobj,
247 struct kobj_attribute *attr,
248 const char *buf, size_t count)
249{
f42f2552 250 if (sysfs_streq(buf, "always")) {
21440d7e
DR
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 255 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 260 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 265 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 270 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 } else
276 return -EINVAL;
277
278 return count;
71e3aac0
AA
279}
280static struct kobj_attribute defrag_attr =
281 __ATTR(defrag, 0644, defrag_show, defrag_store);
282
79da5407
KS
283static ssize_t use_zero_page_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf)
285{
b46e756f 286 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288}
289static ssize_t use_zero_page_store(struct kobject *kobj,
290 struct kobj_attribute *attr, const char *buf, size_t count)
291{
b46e756f 292 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294}
295static struct kobj_attribute use_zero_page_attr =
296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
297
298static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300{
301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302}
303static struct kobj_attribute hpage_pmd_size_attr =
304 __ATTR_RO(hpage_pmd_size);
305
71e3aac0
AA
306#ifdef CONFIG_DEBUG_VM
307static ssize_t debug_cow_show(struct kobject *kobj,
308 struct kobj_attribute *attr, char *buf)
309{
b46e756f 310 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312}
313static ssize_t debug_cow_store(struct kobject *kobj,
314 struct kobj_attribute *attr,
315 const char *buf, size_t count)
316{
b46e756f 317 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319}
320static struct kobj_attribute debug_cow_attr =
321 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
322#endif /* CONFIG_DEBUG_VM */
323
324static struct attribute *hugepage_attr[] = {
325 &enabled_attr.attr,
326 &defrag_attr.attr,
79da5407 327 &use_zero_page_attr.attr,
49920d28 328 &hpage_pmd_size_attr.attr,
e496cf3d 329#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
330 &shmem_enabled_attr.attr,
331#endif
71e3aac0
AA
332#ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr.attr,
334#endif
335 NULL,
336};
337
8aa95a21 338static const struct attribute_group hugepage_attr_group = {
71e3aac0 339 .attrs = hugepage_attr,
ba76149f
AA
340};
341
569e5590 342static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 343{
71e3aac0
AA
344 int err;
345
569e5590
SL
346 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
347 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 348 pr_err("failed to create transparent hugepage kobject\n");
569e5590 349 return -ENOMEM;
ba76149f
AA
350 }
351
569e5590 352 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 353 if (err) {
ae3a8c1c 354 pr_err("failed to register transparent hugepage group\n");
569e5590 355 goto delete_obj;
ba76149f
AA
356 }
357
569e5590 358 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 359 if (err) {
ae3a8c1c 360 pr_err("failed to register transparent hugepage group\n");
569e5590 361 goto remove_hp_group;
ba76149f 362 }
569e5590
SL
363
364 return 0;
365
366remove_hp_group:
367 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
368delete_obj:
369 kobject_put(*hugepage_kobj);
370 return err;
371}
372
373static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
374{
375 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
376 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
377 kobject_put(hugepage_kobj);
378}
379#else
380static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
381{
382 return 0;
383}
384
385static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
386{
387}
388#endif /* CONFIG_SYSFS */
389
390static int __init hugepage_init(void)
391{
392 int err;
393 struct kobject *hugepage_kobj;
394
395 if (!has_transparent_hugepage()) {
396 transparent_hugepage_flags = 0;
397 return -EINVAL;
398 }
399
ff20c2e0
KS
400 /*
401 * hugepages can't be allocated by the buddy allocator
402 */
403 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
404 /*
405 * we use page->mapping and page->index in second tail page
406 * as list_head: assuming THP order >= 2
407 */
408 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
409
569e5590
SL
410 err = hugepage_init_sysfs(&hugepage_kobj);
411 if (err)
65ebb64f 412 goto err_sysfs;
ba76149f 413
b46e756f 414 err = khugepaged_init();
ba76149f 415 if (err)
65ebb64f 416 goto err_slab;
ba76149f 417
65ebb64f
KS
418 err = register_shrinker(&huge_zero_page_shrinker);
419 if (err)
420 goto err_hzp_shrinker;
9a982250
KS
421 err = register_shrinker(&deferred_split_shrinker);
422 if (err)
423 goto err_split_shrinker;
97ae1749 424
97562cd2
RR
425 /*
426 * By default disable transparent hugepages on smaller systems,
427 * where the extra memory used could hurt more than TLB overhead
428 * is likely to save. The admin can still enable it through /sys.
429 */
ca79b0c2 430 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 431 transparent_hugepage_flags = 0;
79553da2
KS
432 return 0;
433 }
97562cd2 434
79553da2 435 err = start_stop_khugepaged();
65ebb64f
KS
436 if (err)
437 goto err_khugepaged;
ba76149f 438
569e5590 439 return 0;
65ebb64f 440err_khugepaged:
9a982250
KS
441 unregister_shrinker(&deferred_split_shrinker);
442err_split_shrinker:
65ebb64f
KS
443 unregister_shrinker(&huge_zero_page_shrinker);
444err_hzp_shrinker:
b46e756f 445 khugepaged_destroy();
65ebb64f 446err_slab:
569e5590 447 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 448err_sysfs:
ba76149f 449 return err;
71e3aac0 450}
a64fb3cd 451subsys_initcall(hugepage_init);
71e3aac0
AA
452
453static int __init setup_transparent_hugepage(char *str)
454{
455 int ret = 0;
456 if (!str)
457 goto out;
458 if (!strcmp(str, "always")) {
459 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
460 &transparent_hugepage_flags);
461 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462 &transparent_hugepage_flags);
463 ret = 1;
464 } else if (!strcmp(str, "madvise")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466 &transparent_hugepage_flags);
467 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468 &transparent_hugepage_flags);
469 ret = 1;
470 } else if (!strcmp(str, "never")) {
471 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
472 &transparent_hugepage_flags);
473 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
474 &transparent_hugepage_flags);
475 ret = 1;
476 }
477out:
478 if (!ret)
ae3a8c1c 479 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
480 return ret;
481}
482__setup("transparent_hugepage=", setup_transparent_hugepage);
483
f55e1014 484pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 485{
f55e1014 486 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
487 pmd = pmd_mkwrite(pmd);
488 return pmd;
489}
490
87eaceb3
YS
491#ifdef CONFIG_MEMCG
492static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 493{
87eaceb3
YS
494 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
495 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
496
497 if (memcg)
498 return &memcg->deferred_split_queue;
499 else
500 return &pgdat->deferred_split_queue;
9a982250 501}
87eaceb3
YS
502#else
503static inline struct deferred_split *get_deferred_split_queue(struct page *page)
504{
505 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506
507 return &pgdat->deferred_split_queue;
508}
509#endif
9a982250
KS
510
511void prep_transhuge_page(struct page *page)
512{
513 /*
514 * we use page->mapping and page->indexlru in second tail page
515 * as list_head: assuming THP order >= 2
516 */
9a982250
KS
517
518 INIT_LIST_HEAD(page_deferred_list(page));
519 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
520}
521
005ba37c
SC
522bool is_transparent_hugepage(struct page *page)
523{
524 if (!PageCompound(page))
525 return 0;
526
527 page = compound_head(page);
528 return is_huge_zero_page(page) ||
529 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
530}
531EXPORT_SYMBOL_GPL(is_transparent_hugepage);
532
97d3d0f9
KS
533static unsigned long __thp_get_unmapped_area(struct file *filp,
534 unsigned long addr, unsigned long len,
74d2fad1
TK
535 loff_t off, unsigned long flags, unsigned long size)
536{
74d2fad1
TK
537 loff_t off_end = off + len;
538 loff_t off_align = round_up(off, size);
97d3d0f9 539 unsigned long len_pad, ret;
74d2fad1
TK
540
541 if (off_end <= off_align || (off_end - off_align) < size)
542 return 0;
543
544 len_pad = len + size;
545 if (len_pad < len || (off + len_pad) < off)
546 return 0;
547
97d3d0f9 548 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 549 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
550
551 /*
552 * The failure might be due to length padding. The caller will retry
553 * without the padding.
554 */
555 if (IS_ERR_VALUE(ret))
74d2fad1
TK
556 return 0;
557
97d3d0f9
KS
558 /*
559 * Do not try to align to THP boundary if allocation at the address
560 * hint succeeds.
561 */
562 if (ret == addr)
563 return addr;
564
565 ret += (off - ret) & (size - 1);
566 return ret;
74d2fad1
TK
567}
568
569unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
570 unsigned long len, unsigned long pgoff, unsigned long flags)
571{
97d3d0f9 572 unsigned long ret;
74d2fad1
TK
573 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
574
74d2fad1
TK
575 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
576 goto out;
577
97d3d0f9
KS
578 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
579 if (ret)
580 return ret;
581out:
74d2fad1
TK
582 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
583}
584EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
585
2b740303
SJ
586static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
587 struct page *page, gfp_t gfp)
71e3aac0 588{
82b0f8c3 589 struct vm_area_struct *vma = vmf->vma;
00501b53 590 struct mem_cgroup *memcg;
71e3aac0 591 pgtable_t pgtable;
82b0f8c3 592 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 593 vm_fault_t ret = 0;
71e3aac0 594
309381fe 595 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 596
2cf85583 597 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
598 put_page(page);
599 count_vm_event(THP_FAULT_FALLBACK);
600 return VM_FAULT_FALLBACK;
601 }
00501b53 602
4cf58924 603 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 604 if (unlikely(!pgtable)) {
6b31d595
MH
605 ret = VM_FAULT_OOM;
606 goto release;
00501b53 607 }
71e3aac0 608
c79b57e4 609 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
610 /*
611 * The memory barrier inside __SetPageUptodate makes sure that
612 * clear_huge_page writes become visible before the set_pmd_at()
613 * write.
614 */
71e3aac0
AA
615 __SetPageUptodate(page);
616
82b0f8c3
JK
617 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
618 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 619 goto unlock_release;
71e3aac0
AA
620 } else {
621 pmd_t entry;
6b251fc9 622
6b31d595
MH
623 ret = check_stable_address_space(vma->vm_mm);
624 if (ret)
625 goto unlock_release;
626
6b251fc9
AA
627 /* Deliver the page fault to userland */
628 if (userfaultfd_missing(vma)) {
2b740303 629 vm_fault_t ret2;
6b251fc9 630
82b0f8c3 631 spin_unlock(vmf->ptl);
f627c2f5 632 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 633 put_page(page);
bae473a4 634 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
635 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
636 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
637 return ret2;
6b251fc9
AA
638 }
639
3122359a 640 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 641 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 642 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 643 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 644 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
645 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
646 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 647 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 648 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 649 spin_unlock(vmf->ptl);
6b251fc9 650 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 651 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
71e3aac0
AA
652 }
653
aa2e878e 654 return 0;
6b31d595
MH
655unlock_release:
656 spin_unlock(vmf->ptl);
657release:
658 if (pgtable)
659 pte_free(vma->vm_mm, pgtable);
660 mem_cgroup_cancel_charge(page, memcg, true);
661 put_page(page);
662 return ret;
663
71e3aac0
AA
664}
665
444eb2a4 666/*
21440d7e
DR
667 * always: directly stall for all thp allocations
668 * defer: wake kswapd and fail if not immediately available
669 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
670 * fail if not immediately available
671 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
672 * available
673 * never: never stall for any thp allocation
444eb2a4 674 */
19deb769 675static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 676{
21440d7e 677 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
2f0799a0 678
ac79f78d 679 /* Always do synchronous compaction */
a8282608
AA
680 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
681 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
682
683 /* Kick kcompactd and fail quickly */
21440d7e 684 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 685 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
686
687 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 688 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
689 return GFP_TRANSHUGE_LIGHT |
690 (vma_madvised ? __GFP_DIRECT_RECLAIM :
691 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
692
693 /* Only do synchronous compaction if madvised */
21440d7e 694 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
695 return GFP_TRANSHUGE_LIGHT |
696 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 697
19deb769 698 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
699}
700
c4088ebd 701/* Caller must hold page table lock. */
d295e341 702static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 703 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 704 struct page *zero_page)
fc9fe822
KS
705{
706 pmd_t entry;
7c414164
AM
707 if (!pmd_none(*pmd))
708 return false;
5918d10a 709 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 710 entry = pmd_mkhuge(entry);
12c9d70b
MW
711 if (pgtable)
712 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 713 set_pmd_at(mm, haddr, pmd, entry);
c4812909 714 mm_inc_nr_ptes(mm);
7c414164 715 return true;
fc9fe822
KS
716}
717
2b740303 718vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 719{
82b0f8c3 720 struct vm_area_struct *vma = vmf->vma;
077fcf11 721 gfp_t gfp;
71e3aac0 722 struct page *page;
82b0f8c3 723 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 724
43675e6f 725 if (!transhuge_vma_suitable(vma, haddr))
c0292554 726 return VM_FAULT_FALLBACK;
128ec037
KS
727 if (unlikely(anon_vma_prepare(vma)))
728 return VM_FAULT_OOM;
6d50e60c 729 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 730 return VM_FAULT_OOM;
82b0f8c3 731 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 732 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
733 transparent_hugepage_use_zero_page()) {
734 pgtable_t pgtable;
735 struct page *zero_page;
736 bool set;
2b740303 737 vm_fault_t ret;
4cf58924 738 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 739 if (unlikely(!pgtable))
ba76149f 740 return VM_FAULT_OOM;
6fcb52a5 741 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 742 if (unlikely(!zero_page)) {
bae473a4 743 pte_free(vma->vm_mm, pgtable);
81ab4201 744 count_vm_event(THP_FAULT_FALLBACK);
c0292554 745 return VM_FAULT_FALLBACK;
b9bbfbe3 746 }
82b0f8c3 747 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
748 ret = 0;
749 set = false;
82b0f8c3 750 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
751 ret = check_stable_address_space(vma->vm_mm);
752 if (ret) {
753 spin_unlock(vmf->ptl);
754 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
755 spin_unlock(vmf->ptl);
756 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
757 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
758 } else {
bae473a4 759 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
760 haddr, vmf->pmd, zero_page);
761 spin_unlock(vmf->ptl);
6b251fc9
AA
762 set = true;
763 }
764 } else
82b0f8c3 765 spin_unlock(vmf->ptl);
6fcb52a5 766 if (!set)
bae473a4 767 pte_free(vma->vm_mm, pgtable);
6b251fc9 768 return ret;
71e3aac0 769 }
19deb769
DR
770 gfp = alloc_hugepage_direct_gfpmask(vma);
771 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
772 if (unlikely(!page)) {
773 count_vm_event(THP_FAULT_FALLBACK);
c0292554 774 return VM_FAULT_FALLBACK;
128ec037 775 }
9a982250 776 prep_transhuge_page(page);
82b0f8c3 777 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
778}
779
ae18d6dc 780static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
781 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
782 pgtable_t pgtable)
5cad465d
MW
783{
784 struct mm_struct *mm = vma->vm_mm;
785 pmd_t entry;
786 spinlock_t *ptl;
787
788 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
789 if (!pmd_none(*pmd)) {
790 if (write) {
791 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
792 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
793 goto out_unlock;
794 }
795 entry = pmd_mkyoung(*pmd);
796 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
797 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
798 update_mmu_cache_pmd(vma, addr, pmd);
799 }
800
801 goto out_unlock;
802 }
803
f25748e3
DW
804 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
805 if (pfn_t_devmap(pfn))
806 entry = pmd_mkdevmap(entry);
01871e59 807 if (write) {
f55e1014
LT
808 entry = pmd_mkyoung(pmd_mkdirty(entry));
809 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 810 }
3b6521f5
OH
811
812 if (pgtable) {
813 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 814 mm_inc_nr_ptes(mm);
c6f3c5ee 815 pgtable = NULL;
3b6521f5
OH
816 }
817
01871e59
RZ
818 set_pmd_at(mm, addr, pmd, entry);
819 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
820
821out_unlock:
5cad465d 822 spin_unlock(ptl);
c6f3c5ee
AK
823 if (pgtable)
824 pte_free(mm, pgtable);
5cad465d
MW
825}
826
fce86ff5 827vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
5cad465d 828{
fce86ff5
DW
829 unsigned long addr = vmf->address & PMD_MASK;
830 struct vm_area_struct *vma = vmf->vma;
5cad465d 831 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 832 pgtable_t pgtable = NULL;
fce86ff5 833
5cad465d
MW
834 /*
835 * If we had pmd_special, we could avoid all these restrictions,
836 * but we need to be consistent with PTEs and architectures that
837 * can't support a 'special' bit.
838 */
e1fb4a08
DJ
839 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
840 !pfn_t_devmap(pfn));
5cad465d
MW
841 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
842 (VM_PFNMAP|VM_MIXEDMAP));
843 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
844
845 if (addr < vma->vm_start || addr >= vma->vm_end)
846 return VM_FAULT_SIGBUS;
308a047c 847
3b6521f5 848 if (arch_needs_pgtable_deposit()) {
4cf58924 849 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
850 if (!pgtable)
851 return VM_FAULT_OOM;
852 }
853
308a047c
BP
854 track_pfn_insert(vma, &pgprot, pfn);
855
fce86ff5 856 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 857 return VM_FAULT_NOPAGE;
5cad465d 858}
dee41079 859EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 860
a00cc7d9 861#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 862static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 863{
f55e1014 864 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
865 pud = pud_mkwrite(pud);
866 return pud;
867}
868
869static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
870 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
871{
872 struct mm_struct *mm = vma->vm_mm;
873 pud_t entry;
874 spinlock_t *ptl;
875
876 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
877 if (!pud_none(*pud)) {
878 if (write) {
879 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
880 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
881 goto out_unlock;
882 }
883 entry = pud_mkyoung(*pud);
884 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
885 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
886 update_mmu_cache_pud(vma, addr, pud);
887 }
888 goto out_unlock;
889 }
890
a00cc7d9
MW
891 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
892 if (pfn_t_devmap(pfn))
893 entry = pud_mkdevmap(entry);
894 if (write) {
f55e1014
LT
895 entry = pud_mkyoung(pud_mkdirty(entry));
896 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
897 }
898 set_pud_at(mm, addr, pud, entry);
899 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
900
901out_unlock:
a00cc7d9
MW
902 spin_unlock(ptl);
903}
904
fce86ff5 905vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
a00cc7d9 906{
fce86ff5
DW
907 unsigned long addr = vmf->address & PUD_MASK;
908 struct vm_area_struct *vma = vmf->vma;
a00cc7d9 909 pgprot_t pgprot = vma->vm_page_prot;
fce86ff5 910
a00cc7d9
MW
911 /*
912 * If we had pud_special, we could avoid all these restrictions,
913 * but we need to be consistent with PTEs and architectures that
914 * can't support a 'special' bit.
915 */
62ec0d8c
DJ
916 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
917 !pfn_t_devmap(pfn));
a00cc7d9
MW
918 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
919 (VM_PFNMAP|VM_MIXEDMAP));
920 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
921
922 if (addr < vma->vm_start || addr >= vma->vm_end)
923 return VM_FAULT_SIGBUS;
924
925 track_pfn_insert(vma, &pgprot, pfn);
926
fce86ff5 927 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
928 return VM_FAULT_NOPAGE;
929}
930EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
931#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
932
3565fce3 933static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 934 pmd_t *pmd, int flags)
3565fce3
DW
935{
936 pmd_t _pmd;
937
a8f97366
KS
938 _pmd = pmd_mkyoung(*pmd);
939 if (flags & FOLL_WRITE)
940 _pmd = pmd_mkdirty(_pmd);
3565fce3 941 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 942 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
943 update_mmu_cache_pmd(vma, addr, pmd);
944}
945
946struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 947 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
948{
949 unsigned long pfn = pmd_pfn(*pmd);
950 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
951 struct page *page;
952
953 assert_spin_locked(pmd_lockptr(mm, pmd));
954
8310d48b
KF
955 /*
956 * When we COW a devmap PMD entry, we split it into PTEs, so we should
957 * not be in this function with `flags & FOLL_COW` set.
958 */
959 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
960
f6f37321 961 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
962 return NULL;
963
964 if (pmd_present(*pmd) && pmd_devmap(*pmd))
965 /* pass */;
966 else
967 return NULL;
968
969 if (flags & FOLL_TOUCH)
a8f97366 970 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
971
972 /*
973 * device mapped pages can only be returned if the
974 * caller will manage the page reference count.
975 */
976 if (!(flags & FOLL_GET))
977 return ERR_PTR(-EEXIST);
978
979 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
980 *pgmap = get_dev_pagemap(pfn, *pgmap);
981 if (!*pgmap)
3565fce3
DW
982 return ERR_PTR(-EFAULT);
983 page = pfn_to_page(pfn);
984 get_page(page);
3565fce3
DW
985
986 return page;
987}
988
71e3aac0
AA
989int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
990 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
991 struct vm_area_struct *vma)
992{
c4088ebd 993 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
994 struct page *src_page;
995 pmd_t pmd;
12c9d70b 996 pgtable_t pgtable = NULL;
628d47ce 997 int ret = -ENOMEM;
71e3aac0 998
628d47ce
KS
999 /* Skip if can be re-fill on fault */
1000 if (!vma_is_anonymous(vma))
1001 return 0;
1002
4cf58924 1003 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1004 if (unlikely(!pgtable))
1005 goto out;
71e3aac0 1006
c4088ebd
KS
1007 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1008 src_ptl = pmd_lockptr(src_mm, src_pmd);
1009 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1010
1011 ret = -EAGAIN;
1012 pmd = *src_pmd;
84c3fc4e
ZY
1013
1014#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1015 if (unlikely(is_swap_pmd(pmd))) {
1016 swp_entry_t entry = pmd_to_swp_entry(pmd);
1017
1018 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1019 if (is_write_migration_entry(entry)) {
1020 make_migration_entry_read(&entry);
1021 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1022 if (pmd_swp_soft_dirty(*src_pmd))
1023 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1024 set_pmd_at(src_mm, addr, src_pmd, pmd);
1025 }
dd8a67f9 1026 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1027 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1028 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1029 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1030 ret = 0;
1031 goto out_unlock;
1032 }
1033#endif
1034
628d47ce 1035 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1036 pte_free(dst_mm, pgtable);
1037 goto out_unlock;
1038 }
fc9fe822 1039 /*
c4088ebd 1040 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1041 * under splitting since we don't split the page itself, only pmd to
1042 * a page table.
1043 */
1044 if (is_huge_zero_pmd(pmd)) {
5918d10a 1045 struct page *zero_page;
97ae1749
KS
1046 /*
1047 * get_huge_zero_page() will never allocate a new page here,
1048 * since we already have a zero page to copy. It just takes a
1049 * reference.
1050 */
6fcb52a5 1051 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1052 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1053 zero_page);
fc9fe822
KS
1054 ret = 0;
1055 goto out_unlock;
1056 }
de466bd6 1057
628d47ce
KS
1058 src_page = pmd_page(pmd);
1059 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1060 get_page(src_page);
1061 page_dup_rmap(src_page, true);
1062 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1063 mm_inc_nr_ptes(dst_mm);
628d47ce 1064 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1065
1066 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1067 pmd = pmd_mkold(pmd_wrprotect(pmd));
1068 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1069
1070 ret = 0;
1071out_unlock:
c4088ebd
KS
1072 spin_unlock(src_ptl);
1073 spin_unlock(dst_ptl);
71e3aac0
AA
1074out:
1075 return ret;
1076}
1077
a00cc7d9
MW
1078#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1079static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1080 pud_t *pud, int flags)
a00cc7d9
MW
1081{
1082 pud_t _pud;
1083
a8f97366
KS
1084 _pud = pud_mkyoung(*pud);
1085 if (flags & FOLL_WRITE)
1086 _pud = pud_mkdirty(_pud);
a00cc7d9 1087 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1088 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1089 update_mmu_cache_pud(vma, addr, pud);
1090}
1091
1092struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1093 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1094{
1095 unsigned long pfn = pud_pfn(*pud);
1096 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1097 struct page *page;
1098
1099 assert_spin_locked(pud_lockptr(mm, pud));
1100
f6f37321 1101 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1102 return NULL;
1103
1104 if (pud_present(*pud) && pud_devmap(*pud))
1105 /* pass */;
1106 else
1107 return NULL;
1108
1109 if (flags & FOLL_TOUCH)
a8f97366 1110 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1111
1112 /*
1113 * device mapped pages can only be returned if the
1114 * caller will manage the page reference count.
1115 */
1116 if (!(flags & FOLL_GET))
1117 return ERR_PTR(-EEXIST);
1118
1119 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1120 *pgmap = get_dev_pagemap(pfn, *pgmap);
1121 if (!*pgmap)
a00cc7d9
MW
1122 return ERR_PTR(-EFAULT);
1123 page = pfn_to_page(pfn);
1124 get_page(page);
a00cc7d9
MW
1125
1126 return page;
1127}
1128
1129int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1130 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1131 struct vm_area_struct *vma)
1132{
1133 spinlock_t *dst_ptl, *src_ptl;
1134 pud_t pud;
1135 int ret;
1136
1137 dst_ptl = pud_lock(dst_mm, dst_pud);
1138 src_ptl = pud_lockptr(src_mm, src_pud);
1139 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1140
1141 ret = -EAGAIN;
1142 pud = *src_pud;
1143 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1144 goto out_unlock;
1145
1146 /*
1147 * When page table lock is held, the huge zero pud should not be
1148 * under splitting since we don't split the page itself, only pud to
1149 * a page table.
1150 */
1151 if (is_huge_zero_pud(pud)) {
1152 /* No huge zero pud yet */
1153 }
1154
1155 pudp_set_wrprotect(src_mm, addr, src_pud);
1156 pud = pud_mkold(pud_wrprotect(pud));
1157 set_pud_at(dst_mm, addr, dst_pud, pud);
1158
1159 ret = 0;
1160out_unlock:
1161 spin_unlock(src_ptl);
1162 spin_unlock(dst_ptl);
1163 return ret;
1164}
1165
1166void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1167{
1168 pud_t entry;
1169 unsigned long haddr;
1170 bool write = vmf->flags & FAULT_FLAG_WRITE;
1171
1172 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1173 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1174 goto unlock;
1175
1176 entry = pud_mkyoung(orig_pud);
1177 if (write)
1178 entry = pud_mkdirty(entry);
1179 haddr = vmf->address & HPAGE_PUD_MASK;
1180 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1181 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1182
1183unlock:
1184 spin_unlock(vmf->ptl);
1185}
1186#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1187
82b0f8c3 1188void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1189{
1190 pmd_t entry;
1191 unsigned long haddr;
20f664aa 1192 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1193
82b0f8c3
JK
1194 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1195 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1196 goto unlock;
1197
1198 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1199 if (write)
1200 entry = pmd_mkdirty(entry);
82b0f8c3 1201 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1202 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1203 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1204
1205unlock:
82b0f8c3 1206 spin_unlock(vmf->ptl);
a1dd450b
WD
1207}
1208
2b740303
SJ
1209static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1210 pmd_t orig_pmd, struct page *page)
71e3aac0 1211{
82b0f8c3
JK
1212 struct vm_area_struct *vma = vmf->vma;
1213 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1214 struct mem_cgroup *memcg;
71e3aac0
AA
1215 pgtable_t pgtable;
1216 pmd_t _pmd;
2b740303
SJ
1217 int i;
1218 vm_fault_t ret = 0;
71e3aac0 1219 struct page **pages;
ac46d4f3 1220 struct mmu_notifier_range range;
71e3aac0 1221
6da2ec56
KC
1222 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1223 GFP_KERNEL);
71e3aac0
AA
1224 if (unlikely(!pages)) {
1225 ret |= VM_FAULT_OOM;
1226 goto out;
1227 }
1228
1229 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1230 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1231 vmf->address, page_to_nid(page));
b9bbfbe3 1232 if (unlikely(!pages[i] ||
2cf85583 1233 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1234 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1235 if (pages[i])
71e3aac0 1236 put_page(pages[i]);
b9bbfbe3 1237 while (--i >= 0) {
00501b53
JW
1238 memcg = (void *)page_private(pages[i]);
1239 set_page_private(pages[i], 0);
f627c2f5
KS
1240 mem_cgroup_cancel_charge(pages[i], memcg,
1241 false);
b9bbfbe3
AA
1242 put_page(pages[i]);
1243 }
71e3aac0
AA
1244 kfree(pages);
1245 ret |= VM_FAULT_OOM;
1246 goto out;
1247 }
00501b53 1248 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1249 }
1250
1251 for (i = 0; i < HPAGE_PMD_NR; i++) {
1252 copy_user_highpage(pages[i], page + i,
0089e485 1253 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1254 __SetPageUptodate(pages[i]);
1255 cond_resched();
1256 }
1257
7269f999
JG
1258 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1259 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1260 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1261
82b0f8c3
JK
1262 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1263 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1264 goto out_free_pages;
309381fe 1265 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1266
0f10851e
JG
1267 /*
1268 * Leave pmd empty until pte is filled note we must notify here as
1269 * concurrent CPU thread might write to new page before the call to
1270 * mmu_notifier_invalidate_range_end() happens which can lead to a
1271 * device seeing memory write in different order than CPU.
1272 *
ad56b738 1273 * See Documentation/vm/mmu_notifier.rst
0f10851e 1274 */
82b0f8c3 1275 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1276
82b0f8c3 1277 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1278 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1279
1280 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1281 pte_t entry;
71e3aac0
AA
1282 entry = mk_pte(pages[i], vma->vm_page_prot);
1283 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1284 memcg = (void *)page_private(pages[i]);
1285 set_page_private(pages[i], 0);
82b0f8c3 1286 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1287 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1288 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1289 vmf->pte = pte_offset_map(&_pmd, haddr);
1290 VM_BUG_ON(!pte_none(*vmf->pte));
1291 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1292 pte_unmap(vmf->pte);
71e3aac0
AA
1293 }
1294 kfree(pages);
1295
71e3aac0 1296 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1297 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1298 page_remove_rmap(page, true);
82b0f8c3 1299 spin_unlock(vmf->ptl);
71e3aac0 1300
4645b9fe
JG
1301 /*
1302 * No need to double call mmu_notifier->invalidate_range() callback as
1303 * the above pmdp_huge_clear_flush_notify() did already call it.
1304 */
ac46d4f3 1305 mmu_notifier_invalidate_range_only_end(&range);
2ec74c3e 1306
71e3aac0
AA
1307 ret |= VM_FAULT_WRITE;
1308 put_page(page);
1309
1310out:
1311 return ret;
1312
1313out_free_pages:
82b0f8c3 1314 spin_unlock(vmf->ptl);
ac46d4f3 1315 mmu_notifier_invalidate_range_end(&range);
b9bbfbe3 1316 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1317 memcg = (void *)page_private(pages[i]);
1318 set_page_private(pages[i], 0);
f627c2f5 1319 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1320 put_page(pages[i]);
b9bbfbe3 1321 }
71e3aac0
AA
1322 kfree(pages);
1323 goto out;
1324}
1325
2b740303 1326vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1327{
82b0f8c3 1328 struct vm_area_struct *vma = vmf->vma;
93b4796d 1329 struct page *page = NULL, *new_page;
00501b53 1330 struct mem_cgroup *memcg;
82b0f8c3 1331 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
ac46d4f3 1332 struct mmu_notifier_range range;
3b363692 1333 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1334 vm_fault_t ret = 0;
71e3aac0 1335
82b0f8c3 1336 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1337 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1338 if (is_huge_zero_pmd(orig_pmd))
1339 goto alloc;
82b0f8c3
JK
1340 spin_lock(vmf->ptl);
1341 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1342 goto out_unlock;
1343
1344 page = pmd_page(orig_pmd);
309381fe 1345 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1346 /*
1347 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1348 * part.
1f25fe20 1349 */
ba3c4ce6
HY
1350 if (!trylock_page(page)) {
1351 get_page(page);
1352 spin_unlock(vmf->ptl);
1353 lock_page(page);
1354 spin_lock(vmf->ptl);
1355 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1356 unlock_page(page);
1357 put_page(page);
1358 goto out_unlock;
1359 }
1360 put_page(page);
1361 }
1362 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1363 pmd_t entry;
1364 entry = pmd_mkyoung(orig_pmd);
f55e1014 1365 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1366 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1367 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1368 ret |= VM_FAULT_WRITE;
ba3c4ce6 1369 unlock_page(page);
71e3aac0
AA
1370 goto out_unlock;
1371 }
ba3c4ce6 1372 unlock_page(page);
ddc58f27 1373 get_page(page);
82b0f8c3 1374 spin_unlock(vmf->ptl);
93b4796d 1375alloc:
7635d9cb 1376 if (__transparent_hugepage_enabled(vma) &&
077fcf11 1377 !transparent_hugepage_debug_cow()) {
19deb769
DR
1378 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1379 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1380 } else
71e3aac0
AA
1381 new_page = NULL;
1382
9a982250
KS
1383 if (likely(new_page)) {
1384 prep_transhuge_page(new_page);
1385 } else {
eecc1e42 1386 if (!page) {
82b0f8c3 1387 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1388 ret |= VM_FAULT_FALLBACK;
93b4796d 1389 } else {
82b0f8c3 1390 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1391 if (ret & VM_FAULT_OOM) {
82b0f8c3 1392 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1393 ret |= VM_FAULT_FALLBACK;
1394 }
ddc58f27 1395 put_page(page);
93b4796d 1396 }
17766dde 1397 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1398 goto out;
1399 }
1400
2cf85583 1401 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1402 huge_gfp, &memcg, true))) {
b9bbfbe3 1403 put_page(new_page);
82b0f8c3 1404 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1405 if (page)
ddc58f27 1406 put_page(page);
9845cbbd 1407 ret |= VM_FAULT_FALLBACK;
17766dde 1408 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1409 goto out;
1410 }
1411
17766dde 1412 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 1413 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
17766dde 1414
eecc1e42 1415 if (!page)
c79b57e4 1416 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1417 else
c9f4cd71
HY
1418 copy_user_huge_page(new_page, page, vmf->address,
1419 vma, HPAGE_PMD_NR);
71e3aac0
AA
1420 __SetPageUptodate(new_page);
1421
7269f999
JG
1422 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1423 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1424 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1425
82b0f8c3 1426 spin_lock(vmf->ptl);
93b4796d 1427 if (page)
ddc58f27 1428 put_page(page);
82b0f8c3
JK
1429 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1430 spin_unlock(vmf->ptl);
f627c2f5 1431 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1432 put_page(new_page);
2ec74c3e 1433 goto out_mn;
b9bbfbe3 1434 } else {
71e3aac0 1435 pmd_t entry;
3122359a 1436 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1437 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1438 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1439 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1440 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1441 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1442 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1443 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1444 if (!page) {
bae473a4 1445 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1446 } else {
309381fe 1447 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1448 page_remove_rmap(page, true);
93b4796d
KS
1449 put_page(page);
1450 }
71e3aac0
AA
1451 ret |= VM_FAULT_WRITE;
1452 }
82b0f8c3 1453 spin_unlock(vmf->ptl);
2ec74c3e 1454out_mn:
4645b9fe
JG
1455 /*
1456 * No need to double call mmu_notifier->invalidate_range() callback as
1457 * the above pmdp_huge_clear_flush_notify() did already call it.
1458 */
ac46d4f3 1459 mmu_notifier_invalidate_range_only_end(&range);
71e3aac0
AA
1460out:
1461 return ret;
2ec74c3e 1462out_unlock:
82b0f8c3 1463 spin_unlock(vmf->ptl);
2ec74c3e 1464 return ret;
71e3aac0
AA
1465}
1466
8310d48b
KF
1467/*
1468 * FOLL_FORCE can write to even unwritable pmd's, but only
1469 * after we've gone through a COW cycle and they are dirty.
1470 */
1471static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1472{
f6f37321 1473 return pmd_write(pmd) ||
8310d48b
KF
1474 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1475}
1476
b676b293 1477struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1478 unsigned long addr,
1479 pmd_t *pmd,
1480 unsigned int flags)
1481{
b676b293 1482 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1483 struct page *page = NULL;
1484
c4088ebd 1485 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1486
8310d48b 1487 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1488 goto out;
1489
85facf25
KS
1490 /* Avoid dumping huge zero page */
1491 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1492 return ERR_PTR(-EFAULT);
1493
2b4847e7 1494 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1495 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1496 goto out;
1497
71e3aac0 1498 page = pmd_page(*pmd);
ca120cf6 1499 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1500 if (flags & FOLL_TOUCH)
a8f97366 1501 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1502 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1503 /*
1504 * We don't mlock() pte-mapped THPs. This way we can avoid
1505 * leaking mlocked pages into non-VM_LOCKED VMAs.
1506 *
9a73f61b
KS
1507 * For anon THP:
1508 *
e90309c9
KS
1509 * In most cases the pmd is the only mapping of the page as we
1510 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1511 * writable private mappings in populate_vma_page_range().
1512 *
1513 * The only scenario when we have the page shared here is if we
1514 * mlocking read-only mapping shared over fork(). We skip
1515 * mlocking such pages.
9a73f61b
KS
1516 *
1517 * For file THP:
1518 *
1519 * We can expect PageDoubleMap() to be stable under page lock:
1520 * for file pages we set it in page_add_file_rmap(), which
1521 * requires page to be locked.
e90309c9 1522 */
9a73f61b
KS
1523
1524 if (PageAnon(page) && compound_mapcount(page) != 1)
1525 goto skip_mlock;
1526 if (PageDoubleMap(page) || !page->mapping)
1527 goto skip_mlock;
1528 if (!trylock_page(page))
1529 goto skip_mlock;
1530 lru_add_drain();
1531 if (page->mapping && !PageDoubleMap(page))
1532 mlock_vma_page(page);
1533 unlock_page(page);
b676b293 1534 }
9a73f61b 1535skip_mlock:
71e3aac0 1536 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1537 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1538 if (flags & FOLL_GET)
ddc58f27 1539 get_page(page);
71e3aac0
AA
1540
1541out:
1542 return page;
1543}
1544
d10e63f2 1545/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1546vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1547{
82b0f8c3 1548 struct vm_area_struct *vma = vmf->vma;
b8916634 1549 struct anon_vma *anon_vma = NULL;
b32967ff 1550 struct page *page;
82b0f8c3 1551 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1552 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1553 int target_nid, last_cpupid = -1;
8191acbd
MG
1554 bool page_locked;
1555 bool migrated = false;
b191f9b1 1556 bool was_writable;
6688cc05 1557 int flags = 0;
d10e63f2 1558
82b0f8c3
JK
1559 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1560 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1561 goto out_unlock;
1562
de466bd6
MG
1563 /*
1564 * If there are potential migrations, wait for completion and retry
1565 * without disrupting NUMA hinting information. Do not relock and
1566 * check_same as the page may no longer be mapped.
1567 */
82b0f8c3
JK
1568 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1569 page = pmd_page(*vmf->pmd);
3c226c63
MR
1570 if (!get_page_unless_zero(page))
1571 goto out_unlock;
82b0f8c3 1572 spin_unlock(vmf->ptl);
9a1ea439 1573 put_and_wait_on_page_locked(page);
de466bd6
MG
1574 goto out;
1575 }
1576
d10e63f2 1577 page = pmd_page(pmd);
a1a46184 1578 BUG_ON(is_huge_zero_page(page));
8191acbd 1579 page_nid = page_to_nid(page);
90572890 1580 last_cpupid = page_cpupid_last(page);
03c5a6e1 1581 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1582 if (page_nid == this_nid) {
03c5a6e1 1583 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1584 flags |= TNF_FAULT_LOCAL;
1585 }
4daae3b4 1586
bea66fbd 1587 /* See similar comment in do_numa_page for explanation */
288bc549 1588 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1589 flags |= TNF_NO_GROUP;
1590
ff9042b1
MG
1591 /*
1592 * Acquire the page lock to serialise THP migrations but avoid dropping
1593 * page_table_lock if at all possible
1594 */
b8916634
MG
1595 page_locked = trylock_page(page);
1596 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1597 if (target_nid == NUMA_NO_NODE) {
b8916634 1598 /* If the page was locked, there are no parallel migrations */
a54a407f 1599 if (page_locked)
b8916634 1600 goto clear_pmdnuma;
2b4847e7 1601 }
4daae3b4 1602
de466bd6 1603 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1604 if (!page_locked) {
98fa15f3 1605 page_nid = NUMA_NO_NODE;
3c226c63
MR
1606 if (!get_page_unless_zero(page))
1607 goto out_unlock;
82b0f8c3 1608 spin_unlock(vmf->ptl);
9a1ea439 1609 put_and_wait_on_page_locked(page);
b8916634
MG
1610 goto out;
1611 }
1612
2b4847e7
MG
1613 /*
1614 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1615 * to serialises splits
1616 */
b8916634 1617 get_page(page);
82b0f8c3 1618 spin_unlock(vmf->ptl);
b8916634 1619 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1620
c69307d5 1621 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1622 spin_lock(vmf->ptl);
1623 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1624 unlock_page(page);
1625 put_page(page);
98fa15f3 1626 page_nid = NUMA_NO_NODE;
4daae3b4 1627 goto out_unlock;
b32967ff 1628 }
ff9042b1 1629
c3a489ca
MG
1630 /* Bail if we fail to protect against THP splits for any reason */
1631 if (unlikely(!anon_vma)) {
1632 put_page(page);
98fa15f3 1633 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1634 goto clear_pmdnuma;
1635 }
1636
8b1b436d
PZ
1637 /*
1638 * Since we took the NUMA fault, we must have observed the !accessible
1639 * bit. Make sure all other CPUs agree with that, to avoid them
1640 * modifying the page we're about to migrate.
1641 *
1642 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1643 * inc_tlb_flush_pending().
1644 *
1645 * We are not sure a pending tlb flush here is for a huge page
1646 * mapping or not. Hence use the tlb range variant
8b1b436d 1647 */
7066f0f9 1648 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1649 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1650 /*
1651 * change_huge_pmd() released the pmd lock before
1652 * invalidating the secondary MMUs sharing the primary
1653 * MMU pagetables (with ->invalidate_range()). The
1654 * mmu_notifier_invalidate_range_end() (which
1655 * internally calls ->invalidate_range()) in
1656 * change_pmd_range() will run after us, so we can't
1657 * rely on it here and we need an explicit invalidate.
1658 */
1659 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1660 haddr + HPAGE_PMD_SIZE);
1661 }
8b1b436d 1662
a54a407f
MG
1663 /*
1664 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1665 * and access rights restored.
a54a407f 1666 */
82b0f8c3 1667 spin_unlock(vmf->ptl);
8b1b436d 1668
bae473a4 1669 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1670 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1671 if (migrated) {
1672 flags |= TNF_MIGRATED;
8191acbd 1673 page_nid = target_nid;
074c2381
MG
1674 } else
1675 flags |= TNF_MIGRATE_FAIL;
b32967ff 1676
8191acbd 1677 goto out;
b32967ff 1678clear_pmdnuma:
a54a407f 1679 BUG_ON(!PageLocked(page));
288bc549 1680 was_writable = pmd_savedwrite(pmd);
4d942466 1681 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1682 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1683 if (was_writable)
1684 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1685 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1686 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1687 unlock_page(page);
d10e63f2 1688out_unlock:
82b0f8c3 1689 spin_unlock(vmf->ptl);
b8916634
MG
1690
1691out:
1692 if (anon_vma)
1693 page_unlock_anon_vma_read(anon_vma);
1694
98fa15f3 1695 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1696 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1697 flags);
8191acbd 1698
d10e63f2
MG
1699 return 0;
1700}
1701
319904ad
HY
1702/*
1703 * Return true if we do MADV_FREE successfully on entire pmd page.
1704 * Otherwise, return false.
1705 */
1706bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1707 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1708{
1709 spinlock_t *ptl;
1710 pmd_t orig_pmd;
1711 struct page *page;
1712 struct mm_struct *mm = tlb->mm;
319904ad 1713 bool ret = false;
b8d3c4c3 1714
ed6a7935 1715 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1716
b6ec57f4
KS
1717 ptl = pmd_trans_huge_lock(pmd, vma);
1718 if (!ptl)
25eedabe 1719 goto out_unlocked;
b8d3c4c3
MK
1720
1721 orig_pmd = *pmd;
319904ad 1722 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1723 goto out;
b8d3c4c3 1724
84c3fc4e
ZY
1725 if (unlikely(!pmd_present(orig_pmd))) {
1726 VM_BUG_ON(thp_migration_supported() &&
1727 !is_pmd_migration_entry(orig_pmd));
1728 goto out;
1729 }
1730
b8d3c4c3
MK
1731 page = pmd_page(orig_pmd);
1732 /*
1733 * If other processes are mapping this page, we couldn't discard
1734 * the page unless they all do MADV_FREE so let's skip the page.
1735 */
1736 if (page_mapcount(page) != 1)
1737 goto out;
1738
1739 if (!trylock_page(page))
1740 goto out;
1741
1742 /*
1743 * If user want to discard part-pages of THP, split it so MADV_FREE
1744 * will deactivate only them.
1745 */
1746 if (next - addr != HPAGE_PMD_SIZE) {
1747 get_page(page);
1748 spin_unlock(ptl);
9818b8cd 1749 split_huge_page(page);
b8d3c4c3 1750 unlock_page(page);
bbf29ffc 1751 put_page(page);
b8d3c4c3
MK
1752 goto out_unlocked;
1753 }
1754
1755 if (PageDirty(page))
1756 ClearPageDirty(page);
1757 unlock_page(page);
1758
b8d3c4c3 1759 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1760 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1761 orig_pmd = pmd_mkold(orig_pmd);
1762 orig_pmd = pmd_mkclean(orig_pmd);
1763
1764 set_pmd_at(mm, addr, pmd, orig_pmd);
1765 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1766 }
802a3a92
SL
1767
1768 mark_page_lazyfree(page);
319904ad 1769 ret = true;
b8d3c4c3
MK
1770out:
1771 spin_unlock(ptl);
1772out_unlocked:
1773 return ret;
1774}
1775
953c66c2
AK
1776static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1777{
1778 pgtable_t pgtable;
1779
1780 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1781 pte_free(mm, pgtable);
c4812909 1782 mm_dec_nr_ptes(mm);
953c66c2
AK
1783}
1784
71e3aac0 1785int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1786 pmd_t *pmd, unsigned long addr)
71e3aac0 1787{
da146769 1788 pmd_t orig_pmd;
bf929152 1789 spinlock_t *ptl;
71e3aac0 1790
ed6a7935 1791 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1792
b6ec57f4
KS
1793 ptl = __pmd_trans_huge_lock(pmd, vma);
1794 if (!ptl)
da146769
KS
1795 return 0;
1796 /*
1797 * For architectures like ppc64 we look at deposited pgtable
1798 * when calling pmdp_huge_get_and_clear. So do the
1799 * pgtable_trans_huge_withdraw after finishing pmdp related
1800 * operations.
1801 */
1802 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1803 tlb->fullmm);
1804 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1805 if (vma_is_dax(vma)) {
3b6521f5
OH
1806 if (arch_needs_pgtable_deposit())
1807 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1808 spin_unlock(ptl);
1809 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1810 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1811 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1812 zap_deposited_table(tlb->mm, pmd);
da146769 1813 spin_unlock(ptl);
c0f2e176 1814 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1815 } else {
616b8371
ZY
1816 struct page *page = NULL;
1817 int flush_needed = 1;
1818
1819 if (pmd_present(orig_pmd)) {
1820 page = pmd_page(orig_pmd);
1821 page_remove_rmap(page, true);
1822 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1823 VM_BUG_ON_PAGE(!PageHead(page), page);
1824 } else if (thp_migration_supported()) {
1825 swp_entry_t entry;
1826
1827 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1828 entry = pmd_to_swp_entry(orig_pmd);
1829 page = pfn_to_page(swp_offset(entry));
1830 flush_needed = 0;
1831 } else
1832 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1833
b5072380 1834 if (PageAnon(page)) {
c14a6eb4 1835 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1836 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1837 } else {
953c66c2
AK
1838 if (arch_needs_pgtable_deposit())
1839 zap_deposited_table(tlb->mm, pmd);
fadae295 1840 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1841 }
616b8371 1842
da146769 1843 spin_unlock(ptl);
616b8371
ZY
1844 if (flush_needed)
1845 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1846 }
da146769 1847 return 1;
71e3aac0
AA
1848}
1849
1dd38b6c
AK
1850#ifndef pmd_move_must_withdraw
1851static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1852 spinlock_t *old_pmd_ptl,
1853 struct vm_area_struct *vma)
1854{
1855 /*
1856 * With split pmd lock we also need to move preallocated
1857 * PTE page table if new_pmd is on different PMD page table.
1858 *
1859 * We also don't deposit and withdraw tables for file pages.
1860 */
1861 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1862}
1863#endif
1864
ab6e3d09
NH
1865static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1866{
1867#ifdef CONFIG_MEM_SOFT_DIRTY
1868 if (unlikely(is_pmd_migration_entry(pmd)))
1869 pmd = pmd_swp_mksoft_dirty(pmd);
1870 else if (pmd_present(pmd))
1871 pmd = pmd_mksoft_dirty(pmd);
1872#endif
1873 return pmd;
1874}
1875
bf8616d5 1876bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1877 unsigned long new_addr, unsigned long old_end,
eb66ae03 1878 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1879{
bf929152 1880 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1881 pmd_t pmd;
37a1c49a 1882 struct mm_struct *mm = vma->vm_mm;
5d190420 1883 bool force_flush = false;
37a1c49a
AA
1884
1885 if ((old_addr & ~HPAGE_PMD_MASK) ||
1886 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1887 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1888 return false;
37a1c49a
AA
1889
1890 /*
1891 * The destination pmd shouldn't be established, free_pgtables()
1892 * should have release it.
1893 */
1894 if (WARN_ON(!pmd_none(*new_pmd))) {
1895 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1896 return false;
37a1c49a
AA
1897 }
1898
bf929152
KS
1899 /*
1900 * We don't have to worry about the ordering of src and dst
1901 * ptlocks because exclusive mmap_sem prevents deadlock.
1902 */
b6ec57f4
KS
1903 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1904 if (old_ptl) {
bf929152
KS
1905 new_ptl = pmd_lockptr(mm, new_pmd);
1906 if (new_ptl != old_ptl)
1907 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1908 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1909 if (pmd_present(pmd))
a2ce2666 1910 force_flush = true;
025c5b24 1911 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1912
1dd38b6c 1913 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1914 pgtable_t pgtable;
3592806c
KS
1915 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1916 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1917 }
ab6e3d09
NH
1918 pmd = move_soft_dirty_pmd(pmd);
1919 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1920 if (force_flush)
1921 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1922 if (new_ptl != old_ptl)
1923 spin_unlock(new_ptl);
bf929152 1924 spin_unlock(old_ptl);
4b471e88 1925 return true;
37a1c49a 1926 }
4b471e88 1927 return false;
37a1c49a
AA
1928}
1929
f123d74a
MG
1930/*
1931 * Returns
1932 * - 0 if PMD could not be locked
1933 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1934 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1935 */
cd7548ab 1936int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1937 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1938{
1939 struct mm_struct *mm = vma->vm_mm;
bf929152 1940 spinlock_t *ptl;
0a85e51d
KS
1941 pmd_t entry;
1942 bool preserve_write;
1943 int ret;
cd7548ab 1944
b6ec57f4 1945 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1946 if (!ptl)
1947 return 0;
e944fd67 1948
0a85e51d
KS
1949 preserve_write = prot_numa && pmd_write(*pmd);
1950 ret = 1;
e944fd67 1951
84c3fc4e
ZY
1952#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1953 if (is_swap_pmd(*pmd)) {
1954 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1955
1956 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1957 if (is_write_migration_entry(entry)) {
1958 pmd_t newpmd;
1959 /*
1960 * A protection check is difficult so
1961 * just be safe and disable write
1962 */
1963 make_migration_entry_read(&entry);
1964 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1965 if (pmd_swp_soft_dirty(*pmd))
1966 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1967 set_pmd_at(mm, addr, pmd, newpmd);
1968 }
1969 goto unlock;
1970 }
1971#endif
1972
0a85e51d
KS
1973 /*
1974 * Avoid trapping faults against the zero page. The read-only
1975 * data is likely to be read-cached on the local CPU and
1976 * local/remote hits to the zero page are not interesting.
1977 */
1978 if (prot_numa && is_huge_zero_pmd(*pmd))
1979 goto unlock;
025c5b24 1980
0a85e51d
KS
1981 if (prot_numa && pmd_protnone(*pmd))
1982 goto unlock;
1983
ced10803
KS
1984 /*
1985 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1986 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1987 * which is also under down_read(mmap_sem):
1988 *
1989 * CPU0: CPU1:
1990 * change_huge_pmd(prot_numa=1)
1991 * pmdp_huge_get_and_clear_notify()
1992 * madvise_dontneed()
1993 * zap_pmd_range()
1994 * pmd_trans_huge(*pmd) == 0 (without ptl)
1995 * // skip the pmd
1996 * set_pmd_at();
1997 * // pmd is re-established
1998 *
1999 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2000 * which may break userspace.
2001 *
2002 * pmdp_invalidate() is required to make sure we don't miss
2003 * dirty/young flags set by hardware.
2004 */
a3cf988f 2005 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 2006
0a85e51d
KS
2007 entry = pmd_modify(entry, newprot);
2008 if (preserve_write)
2009 entry = pmd_mk_savedwrite(entry);
2010 ret = HPAGE_PMD_NR;
2011 set_pmd_at(mm, addr, pmd, entry);
2012 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2013unlock:
2014 spin_unlock(ptl);
025c5b24
NH
2015 return ret;
2016}
2017
2018/*
8f19b0c0 2019 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 2020 *
8f19b0c0
HY
2021 * Note that if it returns page table lock pointer, this routine returns without
2022 * unlocking page table lock. So callers must unlock it.
025c5b24 2023 */
b6ec57f4 2024spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 2025{
b6ec57f4
KS
2026 spinlock_t *ptl;
2027 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
2028 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2029 pmd_devmap(*pmd)))
b6ec57f4
KS
2030 return ptl;
2031 spin_unlock(ptl);
2032 return NULL;
cd7548ab
JW
2033}
2034
a00cc7d9
MW
2035/*
2036 * Returns true if a given pud maps a thp, false otherwise.
2037 *
2038 * Note that if it returns true, this routine returns without unlocking page
2039 * table lock. So callers must unlock it.
2040 */
2041spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2042{
2043 spinlock_t *ptl;
2044
2045 ptl = pud_lock(vma->vm_mm, pud);
2046 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2047 return ptl;
2048 spin_unlock(ptl);
2049 return NULL;
2050}
2051
2052#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2053int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2054 pud_t *pud, unsigned long addr)
2055{
a00cc7d9
MW
2056 spinlock_t *ptl;
2057
2058 ptl = __pud_trans_huge_lock(pud, vma);
2059 if (!ptl)
2060 return 0;
2061 /*
2062 * For architectures like ppc64 we look at deposited pgtable
2063 * when calling pudp_huge_get_and_clear. So do the
2064 * pgtable_trans_huge_withdraw after finishing pudp related
2065 * operations.
2066 */
70516b93 2067 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9
MW
2068 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2069 if (vma_is_dax(vma)) {
2070 spin_unlock(ptl);
2071 /* No zero page support yet */
2072 } else {
2073 /* No support for anonymous PUD pages yet */
2074 BUG();
2075 }
2076 return 1;
2077}
2078
2079static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2080 unsigned long haddr)
2081{
2082 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2083 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2084 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2085 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2086
ce9311cf 2087 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2088
2089 pudp_huge_clear_flush_notify(vma, haddr, pud);
2090}
2091
2092void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2093 unsigned long address)
2094{
2095 spinlock_t *ptl;
ac46d4f3 2096 struct mmu_notifier_range range;
a00cc7d9 2097
7269f999 2098 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2099 address & HPAGE_PUD_MASK,
ac46d4f3
JG
2100 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2101 mmu_notifier_invalidate_range_start(&range);
2102 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
2103 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2104 goto out;
ac46d4f3 2105 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
2106
2107out:
2108 spin_unlock(ptl);
4645b9fe
JG
2109 /*
2110 * No need to double call mmu_notifier->invalidate_range() callback as
2111 * the above pudp_huge_clear_flush_notify() did already call it.
2112 */
ac46d4f3 2113 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
2114}
2115#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2116
eef1b3ba
KS
2117static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2118 unsigned long haddr, pmd_t *pmd)
2119{
2120 struct mm_struct *mm = vma->vm_mm;
2121 pgtable_t pgtable;
2122 pmd_t _pmd;
2123 int i;
2124
0f10851e
JG
2125 /*
2126 * Leave pmd empty until pte is filled note that it is fine to delay
2127 * notification until mmu_notifier_invalidate_range_end() as we are
2128 * replacing a zero pmd write protected page with a zero pte write
2129 * protected page.
2130 *
ad56b738 2131 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2132 */
2133 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2134
2135 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2136 pmd_populate(mm, &_pmd, pgtable);
2137
2138 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2139 pte_t *pte, entry;
2140 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2141 entry = pte_mkspecial(entry);
2142 pte = pte_offset_map(&_pmd, haddr);
2143 VM_BUG_ON(!pte_none(*pte));
2144 set_pte_at(mm, haddr, pte, entry);
2145 pte_unmap(pte);
2146 }
2147 smp_wmb(); /* make pte visible before pmd */
2148 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2149}
2150
2151static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2152 unsigned long haddr, bool freeze)
eef1b3ba
KS
2153{
2154 struct mm_struct *mm = vma->vm_mm;
2155 struct page *page;
2156 pgtable_t pgtable;
423ac9af 2157 pmd_t old_pmd, _pmd;
a3cf988f 2158 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2159 unsigned long addr;
eef1b3ba
KS
2160 int i;
2161
2162 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2163 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2164 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2165 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2166 && !pmd_devmap(*pmd));
eef1b3ba
KS
2167
2168 count_vm_event(THP_SPLIT_PMD);
2169
d21b9e57
KS
2170 if (!vma_is_anonymous(vma)) {
2171 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2172 /*
2173 * We are going to unmap this huge page. So
2174 * just go ahead and zap it
2175 */
2176 if (arch_needs_pgtable_deposit())
2177 zap_deposited_table(mm, pmd);
d21b9e57
KS
2178 if (vma_is_dax(vma))
2179 return;
2180 page = pmd_page(_pmd);
e1f1b157
HD
2181 if (!PageDirty(page) && pmd_dirty(_pmd))
2182 set_page_dirty(page);
d21b9e57
KS
2183 if (!PageReferenced(page) && pmd_young(_pmd))
2184 SetPageReferenced(page);
2185 page_remove_rmap(page, true);
2186 put_page(page);
fadae295 2187 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2188 return;
2189 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2190 /*
2191 * FIXME: Do we want to invalidate secondary mmu by calling
2192 * mmu_notifier_invalidate_range() see comments below inside
2193 * __split_huge_pmd() ?
2194 *
2195 * We are going from a zero huge page write protected to zero
2196 * small page also write protected so it does not seems useful
2197 * to invalidate secondary mmu at this time.
2198 */
eef1b3ba
KS
2199 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2200 }
2201
423ac9af
AK
2202 /*
2203 * Up to this point the pmd is present and huge and userland has the
2204 * whole access to the hugepage during the split (which happens in
2205 * place). If we overwrite the pmd with the not-huge version pointing
2206 * to the pte here (which of course we could if all CPUs were bug
2207 * free), userland could trigger a small page size TLB miss on the
2208 * small sized TLB while the hugepage TLB entry is still established in
2209 * the huge TLB. Some CPU doesn't like that.
2210 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2211 * 383 on page 93. Intel should be safe but is also warns that it's
2212 * only safe if the permission and cache attributes of the two entries
2213 * loaded in the two TLB is identical (which should be the case here).
2214 * But it is generally safer to never allow small and huge TLB entries
2215 * for the same virtual address to be loaded simultaneously. So instead
2216 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2217 * current pmd notpresent (atomically because here the pmd_trans_huge
2218 * must remain set at all times on the pmd until the split is complete
2219 * for this pmd), then we flush the SMP TLB and finally we write the
2220 * non-huge version of the pmd entry with pmd_populate.
2221 */
2222 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2223
423ac9af 2224 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2225 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2226 swp_entry_t entry;
2227
423ac9af 2228 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2229 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2230 write = is_write_migration_entry(entry);
2231 young = false;
2232 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2233 } else {
423ac9af 2234 page = pmd_page(old_pmd);
2e83ee1d
PX
2235 if (pmd_dirty(old_pmd))
2236 SetPageDirty(page);
2237 write = pmd_write(old_pmd);
2238 young = pmd_young(old_pmd);
2239 soft_dirty = pmd_soft_dirty(old_pmd);
2240 }
eef1b3ba 2241 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2242 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2243
423ac9af
AK
2244 /*
2245 * Withdraw the table only after we mark the pmd entry invalid.
2246 * This's critical for some architectures (Power).
2247 */
eef1b3ba
KS
2248 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2249 pmd_populate(mm, &_pmd, pgtable);
2250
2ac015e2 2251 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2252 pte_t entry, *pte;
2253 /*
2254 * Note that NUMA hinting access restrictions are not
2255 * transferred to avoid any possibility of altering
2256 * permissions across VMAs.
2257 */
84c3fc4e 2258 if (freeze || pmd_migration) {
ba988280
KS
2259 swp_entry_t swp_entry;
2260 swp_entry = make_migration_entry(page + i, write);
2261 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2262 if (soft_dirty)
2263 entry = pte_swp_mksoft_dirty(entry);
ba988280 2264 } else {
6d2329f8 2265 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2266 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2267 if (!write)
2268 entry = pte_wrprotect(entry);
2269 if (!young)
2270 entry = pte_mkold(entry);
804dd150
AA
2271 if (soft_dirty)
2272 entry = pte_mksoft_dirty(entry);
ba988280 2273 }
2ac015e2 2274 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2275 BUG_ON(!pte_none(*pte));
2ac015e2 2276 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2277 atomic_inc(&page[i]._mapcount);
2278 pte_unmap(pte);
2279 }
2280
2281 /*
2282 * Set PG_double_map before dropping compound_mapcount to avoid
2283 * false-negative page_mapped().
2284 */
2285 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2286 for (i = 0; i < HPAGE_PMD_NR; i++)
2287 atomic_inc(&page[i]._mapcount);
2288 }
2289
2290 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2291 /* Last compound_mapcount is gone. */
11fb9989 2292 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2293 if (TestClearPageDoubleMap(page)) {
2294 /* No need in mapcount reference anymore */
2295 for (i = 0; i < HPAGE_PMD_NR; i++)
2296 atomic_dec(&page[i]._mapcount);
2297 }
2298 }
2299
2300 smp_wmb(); /* make pte visible before pmd */
2301 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2302
2303 if (freeze) {
2ac015e2 2304 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2305 page_remove_rmap(page + i, false);
2306 put_page(page + i);
2307 }
2308 }
eef1b3ba
KS
2309}
2310
2311void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2312 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2313{
2314 spinlock_t *ptl;
ac46d4f3 2315 struct mmu_notifier_range range;
eef1b3ba 2316
7269f999 2317 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2318 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2319 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2320 mmu_notifier_invalidate_range_start(&range);
2321 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2322
2323 /*
2324 * If caller asks to setup a migration entries, we need a page to check
2325 * pmd against. Otherwise we can end up replacing wrong page.
2326 */
2327 VM_BUG_ON(freeze && !page);
2328 if (page && page != pmd_page(*pmd))
2329 goto out;
2330
5c7fb56e 2331 if (pmd_trans_huge(*pmd)) {
33f4751e 2332 page = pmd_page(*pmd);
5c7fb56e 2333 if (PageMlocked(page))
5f737714 2334 clear_page_mlock(page);
84c3fc4e 2335 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2336 goto out;
ac46d4f3 2337 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2338out:
eef1b3ba 2339 spin_unlock(ptl);
4645b9fe
JG
2340 /*
2341 * No need to double call mmu_notifier->invalidate_range() callback.
2342 * They are 3 cases to consider inside __split_huge_pmd_locked():
2343 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2344 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2345 * fault will trigger a flush_notify before pointing to a new page
2346 * (it is fine if the secondary mmu keeps pointing to the old zero
2347 * page in the meantime)
2348 * 3) Split a huge pmd into pte pointing to the same page. No need
2349 * to invalidate secondary tlb entry they are all still valid.
2350 * any further changes to individual pte will notify. So no need
2351 * to call mmu_notifier->invalidate_range()
2352 */
ac46d4f3 2353 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2354}
2355
fec89c10
KS
2356void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2357 bool freeze, struct page *page)
94fcc585 2358{
f72e7dcd 2359 pgd_t *pgd;
c2febafc 2360 p4d_t *p4d;
f72e7dcd 2361 pud_t *pud;
94fcc585
AA
2362 pmd_t *pmd;
2363
78ddc534 2364 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2365 if (!pgd_present(*pgd))
2366 return;
2367
c2febafc
KS
2368 p4d = p4d_offset(pgd, address);
2369 if (!p4d_present(*p4d))
2370 return;
2371
2372 pud = pud_offset(p4d, address);
f72e7dcd
HD
2373 if (!pud_present(*pud))
2374 return;
2375
2376 pmd = pmd_offset(pud, address);
fec89c10 2377
33f4751e 2378 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2379}
2380
e1b9996b 2381void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2382 unsigned long start,
2383 unsigned long end,
2384 long adjust_next)
2385{
2386 /*
2387 * If the new start address isn't hpage aligned and it could
2388 * previously contain an hugepage: check if we need to split
2389 * an huge pmd.
2390 */
2391 if (start & ~HPAGE_PMD_MASK &&
2392 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2393 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2394 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2395
2396 /*
2397 * If the new end address isn't hpage aligned and it could
2398 * previously contain an hugepage: check if we need to split
2399 * an huge pmd.
2400 */
2401 if (end & ~HPAGE_PMD_MASK &&
2402 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2403 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2404 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2405
2406 /*
2407 * If we're also updating the vma->vm_next->vm_start, if the new
2408 * vm_next->vm_start isn't page aligned and it could previously
2409 * contain an hugepage: check if we need to split an huge pmd.
2410 */
2411 if (adjust_next > 0) {
2412 struct vm_area_struct *next = vma->vm_next;
2413 unsigned long nstart = next->vm_start;
2414 nstart += adjust_next << PAGE_SHIFT;
2415 if (nstart & ~HPAGE_PMD_MASK &&
2416 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2417 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2418 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2419 }
2420}
e9b61f19 2421
906f9cdf 2422static void unmap_page(struct page *page)
e9b61f19 2423{
baa355fd 2424 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2425 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2426 bool unmap_success;
e9b61f19
KS
2427
2428 VM_BUG_ON_PAGE(!PageHead(page), page);
2429
baa355fd 2430 if (PageAnon(page))
b5ff8161 2431 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2432
666e5a40
MK
2433 unmap_success = try_to_unmap(page, ttu_flags);
2434 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2435}
2436
906f9cdf 2437static void remap_page(struct page *page)
e9b61f19 2438{
fec89c10 2439 int i;
ace71a19
KS
2440 if (PageTransHuge(page)) {
2441 remove_migration_ptes(page, page, true);
2442 } else {
2443 for (i = 0; i < HPAGE_PMD_NR; i++)
2444 remove_migration_ptes(page + i, page + i, true);
2445 }
e9b61f19
KS
2446}
2447
8df651c7 2448static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2449 struct lruvec *lruvec, struct list_head *list)
2450{
e9b61f19
KS
2451 struct page *page_tail = head + tail;
2452
8df651c7 2453 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2454
2455 /*
605ca5ed
KK
2456 * Clone page flags before unfreezing refcount.
2457 *
2458 * After successful get_page_unless_zero() might follow flags change,
2459 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2460 */
e9b61f19
KS
2461 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2462 page_tail->flags |= (head->flags &
2463 ((1L << PG_referenced) |
2464 (1L << PG_swapbacked) |
38d8b4e6 2465 (1L << PG_swapcache) |
e9b61f19
KS
2466 (1L << PG_mlocked) |
2467 (1L << PG_uptodate) |
2468 (1L << PG_active) |
1899ad18 2469 (1L << PG_workingset) |
e9b61f19 2470 (1L << PG_locked) |
b8d3c4c3
MK
2471 (1L << PG_unevictable) |
2472 (1L << PG_dirty)));
e9b61f19 2473
173d9d9f
HD
2474 /* ->mapping in first tail page is compound_mapcount */
2475 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2476 page_tail);
2477 page_tail->mapping = head->mapping;
2478 page_tail->index = head->index + tail;
2479
605ca5ed 2480 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2481 smp_wmb();
2482
605ca5ed
KK
2483 /*
2484 * Clear PageTail before unfreezing page refcount.
2485 *
2486 * After successful get_page_unless_zero() might follow put_page()
2487 * which needs correct compound_head().
2488 */
e9b61f19
KS
2489 clear_compound_head(page_tail);
2490
605ca5ed
KK
2491 /* Finally unfreeze refcount. Additional reference from page cache. */
2492 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2493 PageSwapCache(head)));
2494
e9b61f19
KS
2495 if (page_is_young(head))
2496 set_page_young(page_tail);
2497 if (page_is_idle(head))
2498 set_page_idle(page_tail);
2499
e9b61f19 2500 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2501
2502 /*
2503 * always add to the tail because some iterators expect new
2504 * pages to show after the currently processed elements - e.g.
2505 * migrate_pages
2506 */
e9b61f19 2507 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2508}
2509
baa355fd 2510static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2511 pgoff_t end, unsigned long flags)
e9b61f19
KS
2512{
2513 struct page *head = compound_head(page);
f4b7e272 2514 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2515 struct lruvec *lruvec;
4101196b
MWO
2516 struct address_space *swap_cache = NULL;
2517 unsigned long offset = 0;
8df651c7 2518 int i;
e9b61f19 2519
f4b7e272 2520 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2521
2522 /* complete memcg works before add pages to LRU */
2523 mem_cgroup_split_huge_fixup(head);
2524
4101196b
MWO
2525 if (PageAnon(head) && PageSwapCache(head)) {
2526 swp_entry_t entry = { .val = page_private(head) };
2527
2528 offset = swp_offset(entry);
2529 swap_cache = swap_address_space(entry);
2530 xa_lock(&swap_cache->i_pages);
2531 }
2532
baa355fd 2533 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2534 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2535 /* Some pages can be beyond i_size: drop them from page cache */
2536 if (head[i].index >= end) {
2d077d4b 2537 ClearPageDirty(head + i);
baa355fd 2538 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2539 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2540 shmem_uncharge(head->mapping->host, 1);
baa355fd 2541 put_page(head + i);
4101196b
MWO
2542 } else if (!PageAnon(page)) {
2543 __xa_store(&head->mapping->i_pages, head[i].index,
2544 head + i, 0);
2545 } else if (swap_cache) {
2546 __xa_store(&swap_cache->i_pages, offset + i,
2547 head + i, 0);
baa355fd
KS
2548 }
2549 }
e9b61f19
KS
2550
2551 ClearPageCompound(head);
f7da677b
VB
2552
2553 split_page_owner(head, HPAGE_PMD_ORDER);
2554
baa355fd
KS
2555 /* See comment in __split_huge_page_tail() */
2556 if (PageAnon(head)) {
aa5dc07f 2557 /* Additional pin to swap cache */
4101196b 2558 if (PageSwapCache(head)) {
38d8b4e6 2559 page_ref_add(head, 2);
4101196b
MWO
2560 xa_unlock(&swap_cache->i_pages);
2561 } else {
38d8b4e6 2562 page_ref_inc(head);
4101196b 2563 }
baa355fd 2564 } else {
aa5dc07f 2565 /* Additional pin to page cache */
baa355fd 2566 page_ref_add(head, 2);
b93b0163 2567 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2568 }
2569
f4b7e272 2570 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2571
906f9cdf 2572 remap_page(head);
e9b61f19
KS
2573
2574 for (i = 0; i < HPAGE_PMD_NR; i++) {
2575 struct page *subpage = head + i;
2576 if (subpage == page)
2577 continue;
2578 unlock_page(subpage);
2579
2580 /*
2581 * Subpages may be freed if there wasn't any mapping
2582 * like if add_to_swap() is running on a lru page that
2583 * had its mapping zapped. And freeing these pages
2584 * requires taking the lru_lock so we do the put_page
2585 * of the tail pages after the split is complete.
2586 */
2587 put_page(subpage);
2588 }
2589}
2590
b20ce5e0
KS
2591int total_mapcount(struct page *page)
2592{
dd78fedd 2593 int i, compound, ret;
b20ce5e0
KS
2594
2595 VM_BUG_ON_PAGE(PageTail(page), page);
2596
2597 if (likely(!PageCompound(page)))
2598 return atomic_read(&page->_mapcount) + 1;
2599
dd78fedd 2600 compound = compound_mapcount(page);
b20ce5e0 2601 if (PageHuge(page))
dd78fedd
KS
2602 return compound;
2603 ret = compound;
b20ce5e0
KS
2604 for (i = 0; i < HPAGE_PMD_NR; i++)
2605 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2606 /* File pages has compound_mapcount included in _mapcount */
2607 if (!PageAnon(page))
2608 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2609 if (PageDoubleMap(page))
2610 ret -= HPAGE_PMD_NR;
2611 return ret;
2612}
2613
6d0a07ed
AA
2614/*
2615 * This calculates accurately how many mappings a transparent hugepage
2616 * has (unlike page_mapcount() which isn't fully accurate). This full
2617 * accuracy is primarily needed to know if copy-on-write faults can
2618 * reuse the page and change the mapping to read-write instead of
2619 * copying them. At the same time this returns the total_mapcount too.
2620 *
2621 * The function returns the highest mapcount any one of the subpages
2622 * has. If the return value is one, even if different processes are
2623 * mapping different subpages of the transparent hugepage, they can
2624 * all reuse it, because each process is reusing a different subpage.
2625 *
2626 * The total_mapcount is instead counting all virtual mappings of the
2627 * subpages. If the total_mapcount is equal to "one", it tells the
2628 * caller all mappings belong to the same "mm" and in turn the
2629 * anon_vma of the transparent hugepage can become the vma->anon_vma
2630 * local one as no other process may be mapping any of the subpages.
2631 *
2632 * It would be more accurate to replace page_mapcount() with
2633 * page_trans_huge_mapcount(), however we only use
2634 * page_trans_huge_mapcount() in the copy-on-write faults where we
2635 * need full accuracy to avoid breaking page pinning, because
2636 * page_trans_huge_mapcount() is slower than page_mapcount().
2637 */
2638int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2639{
2640 int i, ret, _total_mapcount, mapcount;
2641
2642 /* hugetlbfs shouldn't call it */
2643 VM_BUG_ON_PAGE(PageHuge(page), page);
2644
2645 if (likely(!PageTransCompound(page))) {
2646 mapcount = atomic_read(&page->_mapcount) + 1;
2647 if (total_mapcount)
2648 *total_mapcount = mapcount;
2649 return mapcount;
2650 }
2651
2652 page = compound_head(page);
2653
2654 _total_mapcount = ret = 0;
2655 for (i = 0; i < HPAGE_PMD_NR; i++) {
2656 mapcount = atomic_read(&page[i]._mapcount) + 1;
2657 ret = max(ret, mapcount);
2658 _total_mapcount += mapcount;
2659 }
2660 if (PageDoubleMap(page)) {
2661 ret -= 1;
2662 _total_mapcount -= HPAGE_PMD_NR;
2663 }
2664 mapcount = compound_mapcount(page);
2665 ret += mapcount;
2666 _total_mapcount += mapcount;
2667 if (total_mapcount)
2668 *total_mapcount = _total_mapcount;
2669 return ret;
2670}
2671
b8f593cd
HY
2672/* Racy check whether the huge page can be split */
2673bool can_split_huge_page(struct page *page, int *pextra_pins)
2674{
2675 int extra_pins;
2676
aa5dc07f 2677 /* Additional pins from page cache */
b8f593cd
HY
2678 if (PageAnon(page))
2679 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2680 else
2681 extra_pins = HPAGE_PMD_NR;
2682 if (pextra_pins)
2683 *pextra_pins = extra_pins;
2684 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2685}
2686
e9b61f19
KS
2687/*
2688 * This function splits huge page into normal pages. @page can point to any
2689 * subpage of huge page to split. Split doesn't change the position of @page.
2690 *
2691 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2692 * The huge page must be locked.
2693 *
2694 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2695 *
2696 * Both head page and tail pages will inherit mapping, flags, and so on from
2697 * the hugepage.
2698 *
2699 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2700 * they are not mapped.
2701 *
2702 * Returns 0 if the hugepage is split successfully.
2703 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2704 * us.
2705 */
2706int split_huge_page_to_list(struct page *page, struct list_head *list)
2707{
2708 struct page *head = compound_head(page);
a3d0a918 2709 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
a8803e6c 2710 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2711 struct anon_vma *anon_vma = NULL;
2712 struct address_space *mapping = NULL;
2713 int count, mapcount, extra_pins, ret;
d9654322 2714 bool mlocked;
0b9b6fff 2715 unsigned long flags;
006d3ff2 2716 pgoff_t end;
e9b61f19 2717
cb829624 2718 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2719 VM_BUG_ON_PAGE(!PageLocked(head), head);
2720 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2721
a8803e6c 2722 if (PageWriteback(head))
59807685
HY
2723 return -EBUSY;
2724
baa355fd
KS
2725 if (PageAnon(head)) {
2726 /*
2727 * The caller does not necessarily hold an mmap_sem that would
2728 * prevent the anon_vma disappearing so we first we take a
2729 * reference to it and then lock the anon_vma for write. This
2730 * is similar to page_lock_anon_vma_read except the write lock
2731 * is taken to serialise against parallel split or collapse
2732 * operations.
2733 */
2734 anon_vma = page_get_anon_vma(head);
2735 if (!anon_vma) {
2736 ret = -EBUSY;
2737 goto out;
2738 }
006d3ff2 2739 end = -1;
baa355fd
KS
2740 mapping = NULL;
2741 anon_vma_lock_write(anon_vma);
2742 } else {
2743 mapping = head->mapping;
2744
2745 /* Truncated ? */
2746 if (!mapping) {
2747 ret = -EBUSY;
2748 goto out;
2749 }
2750
baa355fd
KS
2751 anon_vma = NULL;
2752 i_mmap_lock_read(mapping);
006d3ff2
HD
2753
2754 /*
2755 *__split_huge_page() may need to trim off pages beyond EOF:
2756 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2757 * which cannot be nested inside the page tree lock. So note
2758 * end now: i_size itself may be changed at any moment, but
2759 * head page lock is good enough to serialize the trimming.
2760 */
2761 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2762 }
e9b61f19
KS
2763
2764 /*
906f9cdf 2765 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2766 * split PMDs
2767 */
b8f593cd 2768 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2769 ret = -EBUSY;
2770 goto out_unlock;
2771 }
2772
a8803e6c 2773 mlocked = PageMlocked(head);
906f9cdf 2774 unmap_page(head);
e9b61f19
KS
2775 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2776
d9654322
KS
2777 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2778 if (mlocked)
2779 lru_add_drain();
2780
baa355fd 2781 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2782 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2783
2784 if (mapping) {
aa5dc07f 2785 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2786
baa355fd 2787 /*
aa5dc07f 2788 * Check if the head page is present in page cache.
baa355fd
KS
2789 * We assume all tail are present too, if head is there.
2790 */
aa5dc07f
MW
2791 xa_lock(&mapping->i_pages);
2792 if (xas_load(&xas) != head)
baa355fd
KS
2793 goto fail;
2794 }
2795
0139aa7b 2796 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2797 spin_lock(&ds_queue->split_queue_lock);
e9b61f19
KS
2798 count = page_count(head);
2799 mapcount = total_mapcount(head);
baa355fd 2800 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2801 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2802 ds_queue->split_queue_len--;
9a982250
KS
2803 list_del(page_deferred_list(head));
2804 }
afb97172 2805 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2806 if (mapping) {
a8803e6c
WY
2807 if (PageSwapBacked(head))
2808 __dec_node_page_state(head, NR_SHMEM_THPS);
06d3eff6 2809 else
a8803e6c 2810 __dec_node_page_state(head, NR_FILE_THPS);
06d3eff6
KS
2811 }
2812
006d3ff2 2813 __split_huge_page(page, list, end, flags);
59807685
HY
2814 if (PageSwapCache(head)) {
2815 swp_entry_t entry = { .val = page_private(head) };
2816
2817 ret = split_swap_cluster(entry);
2818 } else
2819 ret = 0;
e9b61f19 2820 } else {
baa355fd
KS
2821 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2822 pr_alert("total_mapcount: %u, page_count(): %u\n",
2823 mapcount, count);
2824 if (PageTail(page))
2825 dump_page(head, NULL);
2826 dump_page(page, "total_mapcount(head) > 0");
2827 BUG();
2828 }
364c1eeb 2829 spin_unlock(&ds_queue->split_queue_lock);
baa355fd 2830fail: if (mapping)
b93b0163 2831 xa_unlock(&mapping->i_pages);
f4b7e272 2832 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
906f9cdf 2833 remap_page(head);
e9b61f19
KS
2834 ret = -EBUSY;
2835 }
2836
2837out_unlock:
baa355fd
KS
2838 if (anon_vma) {
2839 anon_vma_unlock_write(anon_vma);
2840 put_anon_vma(anon_vma);
2841 }
2842 if (mapping)
2843 i_mmap_unlock_read(mapping);
e9b61f19
KS
2844out:
2845 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2846 return ret;
2847}
9a982250
KS
2848
2849void free_transhuge_page(struct page *page)
2850{
87eaceb3 2851 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2852 unsigned long flags;
2853
364c1eeb 2854 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2855 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2856 ds_queue->split_queue_len--;
9a982250
KS
2857 list_del(page_deferred_list(page));
2858 }
364c1eeb 2859 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2860 free_compound_page(page);
2861}
2862
2863void deferred_split_huge_page(struct page *page)
2864{
87eaceb3
YS
2865 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2866#ifdef CONFIG_MEMCG
2867 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2868#endif
9a982250
KS
2869 unsigned long flags;
2870
2871 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2872
87eaceb3
YS
2873 /*
2874 * The try_to_unmap() in page reclaim path might reach here too,
2875 * this may cause a race condition to corrupt deferred split queue.
2876 * And, if page reclaim is already handling the same page, it is
2877 * unnecessary to handle it again in shrinker.
2878 *
2879 * Check PageSwapCache to determine if the page is being
2880 * handled by page reclaim since THP swap would add the page into
2881 * swap cache before calling try_to_unmap().
2882 */
2883 if (PageSwapCache(page))
2884 return;
2885
364c1eeb 2886 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2887 if (list_empty(page_deferred_list(page))) {
f9719a03 2888 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2889 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2890 ds_queue->split_queue_len++;
87eaceb3
YS
2891#ifdef CONFIG_MEMCG
2892 if (memcg)
2893 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2894 deferred_split_shrinker.id);
2895#endif
9a982250 2896 }
364c1eeb 2897 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2898}
2899
2900static unsigned long deferred_split_count(struct shrinker *shrink,
2901 struct shrink_control *sc)
2902{
a3d0a918 2903 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2904 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2905
2906#ifdef CONFIG_MEMCG
2907 if (sc->memcg)
2908 ds_queue = &sc->memcg->deferred_split_queue;
2909#endif
364c1eeb 2910 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2911}
2912
2913static unsigned long deferred_split_scan(struct shrinker *shrink,
2914 struct shrink_control *sc)
2915{
a3d0a918 2916 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2917 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2918 unsigned long flags;
2919 LIST_HEAD(list), *pos, *next;
2920 struct page *page;
2921 int split = 0;
2922
87eaceb3
YS
2923#ifdef CONFIG_MEMCG
2924 if (sc->memcg)
2925 ds_queue = &sc->memcg->deferred_split_queue;
2926#endif
2927
364c1eeb 2928 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2929 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2930 list_for_each_safe(pos, next, &ds_queue->split_queue) {
9a982250
KS
2931 page = list_entry((void *)pos, struct page, mapping);
2932 page = compound_head(page);
e3ae1953
KS
2933 if (get_page_unless_zero(page)) {
2934 list_move(page_deferred_list(page), &list);
2935 } else {
2936 /* We lost race with put_compound_page() */
9a982250 2937 list_del_init(page_deferred_list(page));
364c1eeb 2938 ds_queue->split_queue_len--;
9a982250 2939 }
e3ae1953
KS
2940 if (!--sc->nr_to_scan)
2941 break;
9a982250 2942 }
364c1eeb 2943 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2944
2945 list_for_each_safe(pos, next, &list) {
2946 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2947 if (!trylock_page(page))
2948 goto next;
9a982250
KS
2949 /* split_huge_page() removes page from list on success */
2950 if (!split_huge_page(page))
2951 split++;
2952 unlock_page(page);
fa41b900 2953next:
9a982250
KS
2954 put_page(page);
2955 }
2956
364c1eeb
YS
2957 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2958 list_splice_tail(&list, &ds_queue->split_queue);
2959 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 2960
cb8d68ec
KS
2961 /*
2962 * Stop shrinker if we didn't split any page, but the queue is empty.
2963 * This can happen if pages were freed under us.
2964 */
364c1eeb 2965 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
2966 return SHRINK_STOP;
2967 return split;
9a982250
KS
2968}
2969
2970static struct shrinker deferred_split_shrinker = {
2971 .count_objects = deferred_split_count,
2972 .scan_objects = deferred_split_scan,
2973 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
2974 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2975 SHRINKER_NONSLAB,
9a982250 2976};
49071d43
KS
2977
2978#ifdef CONFIG_DEBUG_FS
2979static int split_huge_pages_set(void *data, u64 val)
2980{
2981 struct zone *zone;
2982 struct page *page;
2983 unsigned long pfn, max_zone_pfn;
2984 unsigned long total = 0, split = 0;
2985
2986 if (val != 1)
2987 return -EINVAL;
2988
2989 for_each_populated_zone(zone) {
2990 max_zone_pfn = zone_end_pfn(zone);
2991 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2992 if (!pfn_valid(pfn))
2993 continue;
2994
2995 page = pfn_to_page(pfn);
2996 if (!get_page_unless_zero(page))
2997 continue;
2998
2999 if (zone != page_zone(page))
3000 goto next;
3001
baa355fd 3002 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
3003 goto next;
3004
3005 total++;
3006 lock_page(page);
3007 if (!split_huge_page(page))
3008 split++;
3009 unlock_page(page);
3010next:
3011 put_page(page);
3012 }
3013 }
3014
145bdaa1 3015 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
3016
3017 return 0;
3018}
f1287869 3019DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
49071d43
KS
3020 "%llu\n");
3021
3022static int __init split_huge_pages_debugfs(void)
3023{
d9f7979c
GKH
3024 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3025 &split_huge_pages_fops);
49071d43
KS
3026 return 0;
3027}
3028late_initcall(split_huge_pages_debugfs);
3029#endif
616b8371
ZY
3030
3031#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3032void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3033 struct page *page)
3034{
3035 struct vm_area_struct *vma = pvmw->vma;
3036 struct mm_struct *mm = vma->vm_mm;
3037 unsigned long address = pvmw->address;
3038 pmd_t pmdval;
3039 swp_entry_t entry;
ab6e3d09 3040 pmd_t pmdswp;
616b8371
ZY
3041
3042 if (!(pvmw->pmd && !pvmw->pte))
3043 return;
3044
616b8371 3045 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 3046 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
3047 if (pmd_dirty(pmdval))
3048 set_page_dirty(page);
3049 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
3050 pmdswp = swp_entry_to_pmd(entry);
3051 if (pmd_soft_dirty(pmdval))
3052 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3053 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
3054 page_remove_rmap(page, true);
3055 put_page(page);
616b8371
ZY
3056}
3057
3058void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3059{
3060 struct vm_area_struct *vma = pvmw->vma;
3061 struct mm_struct *mm = vma->vm_mm;
3062 unsigned long address = pvmw->address;
3063 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3064 pmd_t pmde;
3065 swp_entry_t entry;
3066
3067 if (!(pvmw->pmd && !pvmw->pte))
3068 return;
3069
3070 entry = pmd_to_swp_entry(*pvmw->pmd);
3071 get_page(new);
3072 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
3073 if (pmd_swp_soft_dirty(*pvmw->pmd))
3074 pmde = pmd_mksoft_dirty(pmde);
616b8371 3075 if (is_write_migration_entry(entry))
f55e1014 3076 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
3077
3078 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
3079 if (PageAnon(new))
3080 page_add_anon_rmap(new, vma, mmun_start, true);
3081 else
3082 page_add_file_rmap(new, true);
616b8371 3083 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 3084 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
3085 mlock_vma_page(new);
3086 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3087}
3088#endif