]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
Merge tag 'kvm-ppc-fixes-5.7-1' into topic/ppc-kvm
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
f7da677b 35#include <linux/page_owner.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
7635d9cb
MH
65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66{
c0630669
YS
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
7635d9cb
MH
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
c0630669
YS
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
7635d9cb
MH
76
77 return false;
78}
79
6fcb52a5 80static struct page *get_huge_zero_page(void)
97ae1749
KS
81{
82 struct page *zero_page;
83retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 85 return READ_ONCE(huge_zero_page);
97ae1749
KS
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 88 HPAGE_PMD_ORDER);
d8a8e1f0
KS
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 91 return NULL;
d8a8e1f0
KS
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 94 preempt_disable();
5918d10a 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 96 preempt_enable();
5ddacbe9 97 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
4db0c3c2 104 return READ_ONCE(huge_zero_page);
4a6c1297
KS
105}
106
6fcb52a5 107static void put_huge_zero_page(void)
4a6c1297 108{
97ae1749
KS
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
114}
115
6fcb52a5
AL
116struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117{
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128}
129
130void mm_put_huge_zero_page(struct mm_struct *mm)
131{
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134}
135
48896466
GC
136static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
4a6c1297 138{
48896466
GC
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141}
97ae1749 142
48896466
GC
143static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145{
97ae1749 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
5ddacbe9 149 __free_pages(zero_page, compound_order(zero_page));
48896466 150 return HPAGE_PMD_NR;
97ae1749
KS
151 }
152
153 return 0;
4a6c1297
KS
154}
155
97ae1749 156static struct shrinker huge_zero_page_shrinker = {
48896466
GC
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
159 .seeks = DEFAULT_SEEKS,
160};
161
71e3aac0 162#ifdef CONFIG_SYSFS
71e3aac0
AA
163static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165{
444eb2a4
MG
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
170 else
171 return sprintf(buf, "always madvise [never]\n");
71e3aac0 172}
444eb2a4 173
71e3aac0
AA
174static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
177{
21440d7e 178 ssize_t ret = count;
ba76149f 179
f42f2552 180 if (sysfs_streq(buf, "always")) {
21440d7e
DR
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 183 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 186 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else
190 ret = -EINVAL;
ba76149f
AA
191
192 if (ret > 0) {
b46e756f 193 int err = start_stop_khugepaged();
ba76149f
AA
194 if (err)
195 ret = err;
196 }
ba76149f 197 return ret;
71e3aac0
AA
198}
199static struct kobj_attribute enabled_attr =
200 __ATTR(enabled, 0644, enabled_show, enabled_store);
201
b46e756f 202ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
203 struct kobj_attribute *attr, char *buf,
204 enum transparent_hugepage_flag flag)
205{
e27e6151
BH
206 return sprintf(buf, "%d\n",
207 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 208}
e27e6151 209
b46e756f 210ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
211 struct kobj_attribute *attr,
212 const char *buf, size_t count,
213 enum transparent_hugepage_flag flag)
214{
e27e6151
BH
215 unsigned long value;
216 int ret;
217
218 ret = kstrtoul(buf, 10, &value);
219 if (ret < 0)
220 return ret;
221 if (value > 1)
222 return -EINVAL;
223
224 if (value)
71e3aac0 225 set_bit(flag, &transparent_hugepage_flags);
e27e6151 226 else
71e3aac0 227 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
228
229 return count;
230}
231
71e3aac0
AA
232static ssize_t defrag_show(struct kobject *kobj,
233 struct kobj_attribute *attr, char *buf)
234{
444eb2a4 235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 236 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
238 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 244}
21440d7e 245
71e3aac0
AA
246static ssize_t defrag_store(struct kobject *kobj,
247 struct kobj_attribute *attr,
248 const char *buf, size_t count)
249{
f42f2552 250 if (sysfs_streq(buf, "always")) {
21440d7e
DR
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 255 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 260 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 265 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 270 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 } else
276 return -EINVAL;
277
278 return count;
71e3aac0
AA
279}
280static struct kobj_attribute defrag_attr =
281 __ATTR(defrag, 0644, defrag_show, defrag_store);
282
79da5407
KS
283static ssize_t use_zero_page_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf)
285{
b46e756f 286 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288}
289static ssize_t use_zero_page_store(struct kobject *kobj,
290 struct kobj_attribute *attr, const char *buf, size_t count)
291{
b46e756f 292 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294}
295static struct kobj_attribute use_zero_page_attr =
296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
297
298static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300{
301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302}
303static struct kobj_attribute hpage_pmd_size_attr =
304 __ATTR_RO(hpage_pmd_size);
305
71e3aac0
AA
306#ifdef CONFIG_DEBUG_VM
307static ssize_t debug_cow_show(struct kobject *kobj,
308 struct kobj_attribute *attr, char *buf)
309{
b46e756f 310 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312}
313static ssize_t debug_cow_store(struct kobject *kobj,
314 struct kobj_attribute *attr,
315 const char *buf, size_t count)
316{
b46e756f 317 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319}
320static struct kobj_attribute debug_cow_attr =
321 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
322#endif /* CONFIG_DEBUG_VM */
323
324static struct attribute *hugepage_attr[] = {
325 &enabled_attr.attr,
326 &defrag_attr.attr,
79da5407 327 &use_zero_page_attr.attr,
49920d28 328 &hpage_pmd_size_attr.attr,
396bcc52 329#ifdef CONFIG_SHMEM
5a6e75f8
KS
330 &shmem_enabled_attr.attr,
331#endif
71e3aac0
AA
332#ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr.attr,
334#endif
335 NULL,
336};
337
8aa95a21 338static const struct attribute_group hugepage_attr_group = {
71e3aac0 339 .attrs = hugepage_attr,
ba76149f
AA
340};
341
569e5590 342static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 343{
71e3aac0
AA
344 int err;
345
569e5590
SL
346 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
347 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 348 pr_err("failed to create transparent hugepage kobject\n");
569e5590 349 return -ENOMEM;
ba76149f
AA
350 }
351
569e5590 352 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 353 if (err) {
ae3a8c1c 354 pr_err("failed to register transparent hugepage group\n");
569e5590 355 goto delete_obj;
ba76149f
AA
356 }
357
569e5590 358 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 359 if (err) {
ae3a8c1c 360 pr_err("failed to register transparent hugepage group\n");
569e5590 361 goto remove_hp_group;
ba76149f 362 }
569e5590
SL
363
364 return 0;
365
366remove_hp_group:
367 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
368delete_obj:
369 kobject_put(*hugepage_kobj);
370 return err;
371}
372
373static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
374{
375 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
376 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
377 kobject_put(hugepage_kobj);
378}
379#else
380static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
381{
382 return 0;
383}
384
385static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
386{
387}
388#endif /* CONFIG_SYSFS */
389
390static int __init hugepage_init(void)
391{
392 int err;
393 struct kobject *hugepage_kobj;
394
395 if (!has_transparent_hugepage()) {
396 transparent_hugepage_flags = 0;
397 return -EINVAL;
398 }
399
ff20c2e0
KS
400 /*
401 * hugepages can't be allocated by the buddy allocator
402 */
403 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
404 /*
405 * we use page->mapping and page->index in second tail page
406 * as list_head: assuming THP order >= 2
407 */
408 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
409
569e5590
SL
410 err = hugepage_init_sysfs(&hugepage_kobj);
411 if (err)
65ebb64f 412 goto err_sysfs;
ba76149f 413
b46e756f 414 err = khugepaged_init();
ba76149f 415 if (err)
65ebb64f 416 goto err_slab;
ba76149f 417
65ebb64f
KS
418 err = register_shrinker(&huge_zero_page_shrinker);
419 if (err)
420 goto err_hzp_shrinker;
9a982250
KS
421 err = register_shrinker(&deferred_split_shrinker);
422 if (err)
423 goto err_split_shrinker;
97ae1749 424
97562cd2
RR
425 /*
426 * By default disable transparent hugepages on smaller systems,
427 * where the extra memory used could hurt more than TLB overhead
428 * is likely to save. The admin can still enable it through /sys.
429 */
ca79b0c2 430 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 431 transparent_hugepage_flags = 0;
79553da2
KS
432 return 0;
433 }
97562cd2 434
79553da2 435 err = start_stop_khugepaged();
65ebb64f
KS
436 if (err)
437 goto err_khugepaged;
ba76149f 438
569e5590 439 return 0;
65ebb64f 440err_khugepaged:
9a982250
KS
441 unregister_shrinker(&deferred_split_shrinker);
442err_split_shrinker:
65ebb64f
KS
443 unregister_shrinker(&huge_zero_page_shrinker);
444err_hzp_shrinker:
b46e756f 445 khugepaged_destroy();
65ebb64f 446err_slab:
569e5590 447 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 448err_sysfs:
ba76149f 449 return err;
71e3aac0 450}
a64fb3cd 451subsys_initcall(hugepage_init);
71e3aac0
AA
452
453static int __init setup_transparent_hugepage(char *str)
454{
455 int ret = 0;
456 if (!str)
457 goto out;
458 if (!strcmp(str, "always")) {
459 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
460 &transparent_hugepage_flags);
461 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462 &transparent_hugepage_flags);
463 ret = 1;
464 } else if (!strcmp(str, "madvise")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466 &transparent_hugepage_flags);
467 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468 &transparent_hugepage_flags);
469 ret = 1;
470 } else if (!strcmp(str, "never")) {
471 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
472 &transparent_hugepage_flags);
473 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
474 &transparent_hugepage_flags);
475 ret = 1;
476 }
477out:
478 if (!ret)
ae3a8c1c 479 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
480 return ret;
481}
482__setup("transparent_hugepage=", setup_transparent_hugepage);
483
f55e1014 484pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 485{
f55e1014 486 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
487 pmd = pmd_mkwrite(pmd);
488 return pmd;
489}
490
87eaceb3
YS
491#ifdef CONFIG_MEMCG
492static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 493{
87eaceb3
YS
494 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
495 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
496
497 if (memcg)
498 return &memcg->deferred_split_queue;
499 else
500 return &pgdat->deferred_split_queue;
9a982250 501}
87eaceb3
YS
502#else
503static inline struct deferred_split *get_deferred_split_queue(struct page *page)
504{
505 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506
507 return &pgdat->deferred_split_queue;
508}
509#endif
9a982250
KS
510
511void prep_transhuge_page(struct page *page)
512{
513 /*
514 * we use page->mapping and page->indexlru in second tail page
515 * as list_head: assuming THP order >= 2
516 */
9a982250
KS
517
518 INIT_LIST_HEAD(page_deferred_list(page));
519 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
520}
521
005ba37c
SC
522bool is_transparent_hugepage(struct page *page)
523{
524 if (!PageCompound(page))
525 return 0;
526
527 page = compound_head(page);
528 return is_huge_zero_page(page) ||
529 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
530}
531EXPORT_SYMBOL_GPL(is_transparent_hugepage);
532
97d3d0f9
KS
533static unsigned long __thp_get_unmapped_area(struct file *filp,
534 unsigned long addr, unsigned long len,
74d2fad1
TK
535 loff_t off, unsigned long flags, unsigned long size)
536{
74d2fad1
TK
537 loff_t off_end = off + len;
538 loff_t off_align = round_up(off, size);
97d3d0f9 539 unsigned long len_pad, ret;
74d2fad1
TK
540
541 if (off_end <= off_align || (off_end - off_align) < size)
542 return 0;
543
544 len_pad = len + size;
545 if (len_pad < len || (off + len_pad) < off)
546 return 0;
547
97d3d0f9 548 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 549 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
550
551 /*
552 * The failure might be due to length padding. The caller will retry
553 * without the padding.
554 */
555 if (IS_ERR_VALUE(ret))
74d2fad1
TK
556 return 0;
557
97d3d0f9
KS
558 /*
559 * Do not try to align to THP boundary if allocation at the address
560 * hint succeeds.
561 */
562 if (ret == addr)
563 return addr;
564
565 ret += (off - ret) & (size - 1);
566 return ret;
74d2fad1
TK
567}
568
569unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
570 unsigned long len, unsigned long pgoff, unsigned long flags)
571{
97d3d0f9 572 unsigned long ret;
74d2fad1
TK
573 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
574
74d2fad1
TK
575 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
576 goto out;
577
97d3d0f9
KS
578 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
579 if (ret)
580 return ret;
581out:
74d2fad1
TK
582 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
583}
584EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
585
2b740303
SJ
586static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
587 struct page *page, gfp_t gfp)
71e3aac0 588{
82b0f8c3 589 struct vm_area_struct *vma = vmf->vma;
00501b53 590 struct mem_cgroup *memcg;
71e3aac0 591 pgtable_t pgtable;
82b0f8c3 592 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 593 vm_fault_t ret = 0;
71e3aac0 594
309381fe 595 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 596
2cf85583 597 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
598 put_page(page);
599 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 600 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
6b251fc9
AA
601 return VM_FAULT_FALLBACK;
602 }
00501b53 603
4cf58924 604 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 605 if (unlikely(!pgtable)) {
6b31d595
MH
606 ret = VM_FAULT_OOM;
607 goto release;
00501b53 608 }
71e3aac0 609
c79b57e4 610 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
611 /*
612 * The memory barrier inside __SetPageUptodate makes sure that
613 * clear_huge_page writes become visible before the set_pmd_at()
614 * write.
615 */
71e3aac0
AA
616 __SetPageUptodate(page);
617
82b0f8c3
JK
618 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
619 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 620 goto unlock_release;
71e3aac0
AA
621 } else {
622 pmd_t entry;
6b251fc9 623
6b31d595
MH
624 ret = check_stable_address_space(vma->vm_mm);
625 if (ret)
626 goto unlock_release;
627
6b251fc9
AA
628 /* Deliver the page fault to userland */
629 if (userfaultfd_missing(vma)) {
2b740303 630 vm_fault_t ret2;
6b251fc9 631
82b0f8c3 632 spin_unlock(vmf->ptl);
f627c2f5 633 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 634 put_page(page);
bae473a4 635 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
636 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
637 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
638 return ret2;
6b251fc9
AA
639 }
640
3122359a 641 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 642 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 643 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 644 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 645 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
646 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
647 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 648 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 649 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 650 spin_unlock(vmf->ptl);
6b251fc9 651 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 652 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
71e3aac0
AA
653 }
654
aa2e878e 655 return 0;
6b31d595
MH
656unlock_release:
657 spin_unlock(vmf->ptl);
658release:
659 if (pgtable)
660 pte_free(vma->vm_mm, pgtable);
661 mem_cgroup_cancel_charge(page, memcg, true);
662 put_page(page);
663 return ret;
664
71e3aac0
AA
665}
666
444eb2a4 667/*
21440d7e
DR
668 * always: directly stall for all thp allocations
669 * defer: wake kswapd and fail if not immediately available
670 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
671 * fail if not immediately available
672 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
673 * available
674 * never: never stall for any thp allocation
444eb2a4 675 */
19deb769 676static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 677{
21440d7e 678 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
2f0799a0 679
ac79f78d 680 /* Always do synchronous compaction */
a8282608
AA
681 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
682 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
683
684 /* Kick kcompactd and fail quickly */
21440d7e 685 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 686 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
687
688 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 689 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
690 return GFP_TRANSHUGE_LIGHT |
691 (vma_madvised ? __GFP_DIRECT_RECLAIM :
692 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
693
694 /* Only do synchronous compaction if madvised */
21440d7e 695 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
696 return GFP_TRANSHUGE_LIGHT |
697 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 698
19deb769 699 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
700}
701
c4088ebd 702/* Caller must hold page table lock. */
d295e341 703static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 704 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 705 struct page *zero_page)
fc9fe822
KS
706{
707 pmd_t entry;
7c414164
AM
708 if (!pmd_none(*pmd))
709 return false;
5918d10a 710 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 711 entry = pmd_mkhuge(entry);
12c9d70b
MW
712 if (pgtable)
713 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 714 set_pmd_at(mm, haddr, pmd, entry);
c4812909 715 mm_inc_nr_ptes(mm);
7c414164 716 return true;
fc9fe822
KS
717}
718
2b740303 719vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 720{
82b0f8c3 721 struct vm_area_struct *vma = vmf->vma;
077fcf11 722 gfp_t gfp;
71e3aac0 723 struct page *page;
82b0f8c3 724 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 725
43675e6f 726 if (!transhuge_vma_suitable(vma, haddr))
c0292554 727 return VM_FAULT_FALLBACK;
128ec037
KS
728 if (unlikely(anon_vma_prepare(vma)))
729 return VM_FAULT_OOM;
6d50e60c 730 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 731 return VM_FAULT_OOM;
82b0f8c3 732 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 733 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
734 transparent_hugepage_use_zero_page()) {
735 pgtable_t pgtable;
736 struct page *zero_page;
737 bool set;
2b740303 738 vm_fault_t ret;
4cf58924 739 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 740 if (unlikely(!pgtable))
ba76149f 741 return VM_FAULT_OOM;
6fcb52a5 742 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 743 if (unlikely(!zero_page)) {
bae473a4 744 pte_free(vma->vm_mm, pgtable);
81ab4201 745 count_vm_event(THP_FAULT_FALLBACK);
c0292554 746 return VM_FAULT_FALLBACK;
b9bbfbe3 747 }
82b0f8c3 748 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
749 ret = 0;
750 set = false;
82b0f8c3 751 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
752 ret = check_stable_address_space(vma->vm_mm);
753 if (ret) {
754 spin_unlock(vmf->ptl);
755 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
756 spin_unlock(vmf->ptl);
757 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
758 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
759 } else {
bae473a4 760 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
761 haddr, vmf->pmd, zero_page);
762 spin_unlock(vmf->ptl);
6b251fc9
AA
763 set = true;
764 }
765 } else
82b0f8c3 766 spin_unlock(vmf->ptl);
6fcb52a5 767 if (!set)
bae473a4 768 pte_free(vma->vm_mm, pgtable);
6b251fc9 769 return ret;
71e3aac0 770 }
19deb769
DR
771 gfp = alloc_hugepage_direct_gfpmask(vma);
772 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
773 if (unlikely(!page)) {
774 count_vm_event(THP_FAULT_FALLBACK);
c0292554 775 return VM_FAULT_FALLBACK;
128ec037 776 }
9a982250 777 prep_transhuge_page(page);
82b0f8c3 778 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
779}
780
ae18d6dc 781static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
782 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
783 pgtable_t pgtable)
5cad465d
MW
784{
785 struct mm_struct *mm = vma->vm_mm;
786 pmd_t entry;
787 spinlock_t *ptl;
788
789 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
790 if (!pmd_none(*pmd)) {
791 if (write) {
792 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
793 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
794 goto out_unlock;
795 }
796 entry = pmd_mkyoung(*pmd);
797 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
798 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
799 update_mmu_cache_pmd(vma, addr, pmd);
800 }
801
802 goto out_unlock;
803 }
804
f25748e3
DW
805 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
806 if (pfn_t_devmap(pfn))
807 entry = pmd_mkdevmap(entry);
01871e59 808 if (write) {
f55e1014
LT
809 entry = pmd_mkyoung(pmd_mkdirty(entry));
810 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 811 }
3b6521f5
OH
812
813 if (pgtable) {
814 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 815 mm_inc_nr_ptes(mm);
c6f3c5ee 816 pgtable = NULL;
3b6521f5
OH
817 }
818
01871e59
RZ
819 set_pmd_at(mm, addr, pmd, entry);
820 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
821
822out_unlock:
5cad465d 823 spin_unlock(ptl);
c6f3c5ee
AK
824 if (pgtable)
825 pte_free(mm, pgtable);
5cad465d
MW
826}
827
9a9731b1
THV
828/**
829 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
830 * @vmf: Structure describing the fault
831 * @pfn: pfn to insert
832 * @pgprot: page protection to use
833 * @write: whether it's a write fault
834 *
835 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
836 * also consult the vmf_insert_mixed_prot() documentation when
837 * @pgprot != @vmf->vma->vm_page_prot.
838 *
839 * Return: vm_fault_t value.
840 */
841vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
842 pgprot_t pgprot, bool write)
5cad465d 843{
fce86ff5
DW
844 unsigned long addr = vmf->address & PMD_MASK;
845 struct vm_area_struct *vma = vmf->vma;
3b6521f5 846 pgtable_t pgtable = NULL;
fce86ff5 847
5cad465d
MW
848 /*
849 * If we had pmd_special, we could avoid all these restrictions,
850 * but we need to be consistent with PTEs and architectures that
851 * can't support a 'special' bit.
852 */
e1fb4a08
DJ
853 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
854 !pfn_t_devmap(pfn));
5cad465d
MW
855 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
856 (VM_PFNMAP|VM_MIXEDMAP));
857 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
858
859 if (addr < vma->vm_start || addr >= vma->vm_end)
860 return VM_FAULT_SIGBUS;
308a047c 861
3b6521f5 862 if (arch_needs_pgtable_deposit()) {
4cf58924 863 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
864 if (!pgtable)
865 return VM_FAULT_OOM;
866 }
867
308a047c
BP
868 track_pfn_insert(vma, &pgprot, pfn);
869
fce86ff5 870 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 871 return VM_FAULT_NOPAGE;
5cad465d 872}
9a9731b1 873EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
5cad465d 874
a00cc7d9 875#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 876static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 877{
f55e1014 878 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
879 pud = pud_mkwrite(pud);
880 return pud;
881}
882
883static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
884 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
885{
886 struct mm_struct *mm = vma->vm_mm;
887 pud_t entry;
888 spinlock_t *ptl;
889
890 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
891 if (!pud_none(*pud)) {
892 if (write) {
893 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
894 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
895 goto out_unlock;
896 }
897 entry = pud_mkyoung(*pud);
898 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
899 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
900 update_mmu_cache_pud(vma, addr, pud);
901 }
902 goto out_unlock;
903 }
904
a00cc7d9
MW
905 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
906 if (pfn_t_devmap(pfn))
907 entry = pud_mkdevmap(entry);
908 if (write) {
f55e1014
LT
909 entry = pud_mkyoung(pud_mkdirty(entry));
910 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
911 }
912 set_pud_at(mm, addr, pud, entry);
913 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
914
915out_unlock:
a00cc7d9
MW
916 spin_unlock(ptl);
917}
918
9a9731b1
THV
919/**
920 * vmf_insert_pfn_pud_prot - insert a pud size pfn
921 * @vmf: Structure describing the fault
922 * @pfn: pfn to insert
923 * @pgprot: page protection to use
924 * @write: whether it's a write fault
925 *
926 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
927 * also consult the vmf_insert_mixed_prot() documentation when
928 * @pgprot != @vmf->vma->vm_page_prot.
929 *
930 * Return: vm_fault_t value.
931 */
932vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
933 pgprot_t pgprot, bool write)
a00cc7d9 934{
fce86ff5
DW
935 unsigned long addr = vmf->address & PUD_MASK;
936 struct vm_area_struct *vma = vmf->vma;
fce86ff5 937
a00cc7d9
MW
938 /*
939 * If we had pud_special, we could avoid all these restrictions,
940 * but we need to be consistent with PTEs and architectures that
941 * can't support a 'special' bit.
942 */
62ec0d8c
DJ
943 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
944 !pfn_t_devmap(pfn));
a00cc7d9
MW
945 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
946 (VM_PFNMAP|VM_MIXEDMAP));
947 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
948
949 if (addr < vma->vm_start || addr >= vma->vm_end)
950 return VM_FAULT_SIGBUS;
951
952 track_pfn_insert(vma, &pgprot, pfn);
953
fce86ff5 954 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
955 return VM_FAULT_NOPAGE;
956}
9a9731b1 957EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
a00cc7d9
MW
958#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
959
3565fce3 960static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 961 pmd_t *pmd, int flags)
3565fce3
DW
962{
963 pmd_t _pmd;
964
a8f97366
KS
965 _pmd = pmd_mkyoung(*pmd);
966 if (flags & FOLL_WRITE)
967 _pmd = pmd_mkdirty(_pmd);
3565fce3 968 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 969 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
970 update_mmu_cache_pmd(vma, addr, pmd);
971}
972
973struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 974 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
975{
976 unsigned long pfn = pmd_pfn(*pmd);
977 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
978 struct page *page;
979
980 assert_spin_locked(pmd_lockptr(mm, pmd));
981
8310d48b
KF
982 /*
983 * When we COW a devmap PMD entry, we split it into PTEs, so we should
984 * not be in this function with `flags & FOLL_COW` set.
985 */
986 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
987
3faa52c0
JH
988 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
989 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
990 (FOLL_PIN | FOLL_GET)))
991 return NULL;
992
f6f37321 993 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
994 return NULL;
995
996 if (pmd_present(*pmd) && pmd_devmap(*pmd))
997 /* pass */;
998 else
999 return NULL;
1000
1001 if (flags & FOLL_TOUCH)
a8f97366 1002 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
1003
1004 /*
1005 * device mapped pages can only be returned if the
1006 * caller will manage the page reference count.
1007 */
3faa52c0 1008 if (!(flags & (FOLL_GET | FOLL_PIN)))
3565fce3
DW
1009 return ERR_PTR(-EEXIST);
1010
1011 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1012 *pgmap = get_dev_pagemap(pfn, *pgmap);
1013 if (!*pgmap)
3565fce3
DW
1014 return ERR_PTR(-EFAULT);
1015 page = pfn_to_page(pfn);
3faa52c0
JH
1016 if (!try_grab_page(page, flags))
1017 page = ERR_PTR(-ENOMEM);
3565fce3
DW
1018
1019 return page;
1020}
1021
71e3aac0
AA
1022int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1023 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1024 struct vm_area_struct *vma)
1025{
c4088ebd 1026 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1027 struct page *src_page;
1028 pmd_t pmd;
12c9d70b 1029 pgtable_t pgtable = NULL;
628d47ce 1030 int ret = -ENOMEM;
71e3aac0 1031
628d47ce
KS
1032 /* Skip if can be re-fill on fault */
1033 if (!vma_is_anonymous(vma))
1034 return 0;
1035
4cf58924 1036 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1037 if (unlikely(!pgtable))
1038 goto out;
71e3aac0 1039
c4088ebd
KS
1040 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1041 src_ptl = pmd_lockptr(src_mm, src_pmd);
1042 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1043
1044 ret = -EAGAIN;
1045 pmd = *src_pmd;
84c3fc4e 1046
b569a176
PX
1047 /*
1048 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1049 * does not have the VM_UFFD_WP, which means that the uffd
1050 * fork event is not enabled.
1051 */
1052 if (!(vma->vm_flags & VM_UFFD_WP))
1053 pmd = pmd_clear_uffd_wp(pmd);
1054
84c3fc4e
ZY
1055#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1056 if (unlikely(is_swap_pmd(pmd))) {
1057 swp_entry_t entry = pmd_to_swp_entry(pmd);
1058
1059 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1060 if (is_write_migration_entry(entry)) {
1061 make_migration_entry_read(&entry);
1062 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1063 if (pmd_swp_soft_dirty(*src_pmd))
1064 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1065 set_pmd_at(src_mm, addr, src_pmd, pmd);
1066 }
dd8a67f9 1067 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1068 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1069 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1070 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1071 ret = 0;
1072 goto out_unlock;
1073 }
1074#endif
1075
628d47ce 1076 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1077 pte_free(dst_mm, pgtable);
1078 goto out_unlock;
1079 }
fc9fe822 1080 /*
c4088ebd 1081 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1082 * under splitting since we don't split the page itself, only pmd to
1083 * a page table.
1084 */
1085 if (is_huge_zero_pmd(pmd)) {
5918d10a 1086 struct page *zero_page;
97ae1749
KS
1087 /*
1088 * get_huge_zero_page() will never allocate a new page here,
1089 * since we already have a zero page to copy. It just takes a
1090 * reference.
1091 */
6fcb52a5 1092 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1093 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1094 zero_page);
fc9fe822
KS
1095 ret = 0;
1096 goto out_unlock;
1097 }
de466bd6 1098
628d47ce
KS
1099 src_page = pmd_page(pmd);
1100 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1101 get_page(src_page);
1102 page_dup_rmap(src_page, true);
1103 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1104 mm_inc_nr_ptes(dst_mm);
628d47ce 1105 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1106
1107 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1108 pmd = pmd_mkold(pmd_wrprotect(pmd));
1109 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1110
1111 ret = 0;
1112out_unlock:
c4088ebd
KS
1113 spin_unlock(src_ptl);
1114 spin_unlock(dst_ptl);
71e3aac0
AA
1115out:
1116 return ret;
1117}
1118
a00cc7d9
MW
1119#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1120static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1121 pud_t *pud, int flags)
a00cc7d9
MW
1122{
1123 pud_t _pud;
1124
a8f97366
KS
1125 _pud = pud_mkyoung(*pud);
1126 if (flags & FOLL_WRITE)
1127 _pud = pud_mkdirty(_pud);
a00cc7d9 1128 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1129 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1130 update_mmu_cache_pud(vma, addr, pud);
1131}
1132
1133struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1134 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1135{
1136 unsigned long pfn = pud_pfn(*pud);
1137 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1138 struct page *page;
1139
1140 assert_spin_locked(pud_lockptr(mm, pud));
1141
f6f37321 1142 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1143 return NULL;
1144
3faa52c0
JH
1145 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1146 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1147 (FOLL_PIN | FOLL_GET)))
1148 return NULL;
1149
a00cc7d9
MW
1150 if (pud_present(*pud) && pud_devmap(*pud))
1151 /* pass */;
1152 else
1153 return NULL;
1154
1155 if (flags & FOLL_TOUCH)
a8f97366 1156 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1157
1158 /*
1159 * device mapped pages can only be returned if the
1160 * caller will manage the page reference count.
3faa52c0
JH
1161 *
1162 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
a00cc7d9 1163 */
3faa52c0 1164 if (!(flags & (FOLL_GET | FOLL_PIN)))
a00cc7d9
MW
1165 return ERR_PTR(-EEXIST);
1166
1167 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1168 *pgmap = get_dev_pagemap(pfn, *pgmap);
1169 if (!*pgmap)
a00cc7d9
MW
1170 return ERR_PTR(-EFAULT);
1171 page = pfn_to_page(pfn);
3faa52c0
JH
1172 if (!try_grab_page(page, flags))
1173 page = ERR_PTR(-ENOMEM);
a00cc7d9
MW
1174
1175 return page;
1176}
1177
1178int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1179 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1180 struct vm_area_struct *vma)
1181{
1182 spinlock_t *dst_ptl, *src_ptl;
1183 pud_t pud;
1184 int ret;
1185
1186 dst_ptl = pud_lock(dst_mm, dst_pud);
1187 src_ptl = pud_lockptr(src_mm, src_pud);
1188 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1189
1190 ret = -EAGAIN;
1191 pud = *src_pud;
1192 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1193 goto out_unlock;
1194
1195 /*
1196 * When page table lock is held, the huge zero pud should not be
1197 * under splitting since we don't split the page itself, only pud to
1198 * a page table.
1199 */
1200 if (is_huge_zero_pud(pud)) {
1201 /* No huge zero pud yet */
1202 }
1203
1204 pudp_set_wrprotect(src_mm, addr, src_pud);
1205 pud = pud_mkold(pud_wrprotect(pud));
1206 set_pud_at(dst_mm, addr, dst_pud, pud);
1207
1208 ret = 0;
1209out_unlock:
1210 spin_unlock(src_ptl);
1211 spin_unlock(dst_ptl);
1212 return ret;
1213}
1214
1215void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1216{
1217 pud_t entry;
1218 unsigned long haddr;
1219 bool write = vmf->flags & FAULT_FLAG_WRITE;
1220
1221 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1222 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1223 goto unlock;
1224
1225 entry = pud_mkyoung(orig_pud);
1226 if (write)
1227 entry = pud_mkdirty(entry);
1228 haddr = vmf->address & HPAGE_PUD_MASK;
1229 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1230 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1231
1232unlock:
1233 spin_unlock(vmf->ptl);
1234}
1235#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1236
82b0f8c3 1237void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1238{
1239 pmd_t entry;
1240 unsigned long haddr;
20f664aa 1241 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1242
82b0f8c3
JK
1243 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1244 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1245 goto unlock;
1246
1247 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1248 if (write)
1249 entry = pmd_mkdirty(entry);
82b0f8c3 1250 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1251 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1252 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1253
1254unlock:
82b0f8c3 1255 spin_unlock(vmf->ptl);
a1dd450b
WD
1256}
1257
2b740303
SJ
1258static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1259 pmd_t orig_pmd, struct page *page)
71e3aac0 1260{
82b0f8c3
JK
1261 struct vm_area_struct *vma = vmf->vma;
1262 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1263 struct mem_cgroup *memcg;
71e3aac0
AA
1264 pgtable_t pgtable;
1265 pmd_t _pmd;
2b740303
SJ
1266 int i;
1267 vm_fault_t ret = 0;
71e3aac0 1268 struct page **pages;
ac46d4f3 1269 struct mmu_notifier_range range;
71e3aac0 1270
6da2ec56
KC
1271 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1272 GFP_KERNEL);
71e3aac0
AA
1273 if (unlikely(!pages)) {
1274 ret |= VM_FAULT_OOM;
1275 goto out;
1276 }
1277
1278 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1279 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1280 vmf->address, page_to_nid(page));
b9bbfbe3 1281 if (unlikely(!pages[i] ||
2cf85583 1282 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1283 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1284 if (pages[i])
71e3aac0 1285 put_page(pages[i]);
b9bbfbe3 1286 while (--i >= 0) {
00501b53
JW
1287 memcg = (void *)page_private(pages[i]);
1288 set_page_private(pages[i], 0);
f627c2f5
KS
1289 mem_cgroup_cancel_charge(pages[i], memcg,
1290 false);
b9bbfbe3
AA
1291 put_page(pages[i]);
1292 }
71e3aac0
AA
1293 kfree(pages);
1294 ret |= VM_FAULT_OOM;
1295 goto out;
1296 }
00501b53 1297 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1298 }
1299
1300 for (i = 0; i < HPAGE_PMD_NR; i++) {
1301 copy_user_highpage(pages[i], page + i,
0089e485 1302 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1303 __SetPageUptodate(pages[i]);
1304 cond_resched();
1305 }
1306
7269f999
JG
1307 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1308 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1309 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1310
82b0f8c3
JK
1311 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1312 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1313 goto out_free_pages;
309381fe 1314 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1315
0f10851e
JG
1316 /*
1317 * Leave pmd empty until pte is filled note we must notify here as
1318 * concurrent CPU thread might write to new page before the call to
1319 * mmu_notifier_invalidate_range_end() happens which can lead to a
1320 * device seeing memory write in different order than CPU.
1321 *
ad56b738 1322 * See Documentation/vm/mmu_notifier.rst
0f10851e 1323 */
82b0f8c3 1324 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1325
82b0f8c3 1326 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1327 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1328
1329 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1330 pte_t entry;
71e3aac0
AA
1331 entry = mk_pte(pages[i], vma->vm_page_prot);
1332 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1333 memcg = (void *)page_private(pages[i]);
1334 set_page_private(pages[i], 0);
82b0f8c3 1335 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1336 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1337 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1338 vmf->pte = pte_offset_map(&_pmd, haddr);
1339 VM_BUG_ON(!pte_none(*vmf->pte));
1340 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1341 pte_unmap(vmf->pte);
71e3aac0
AA
1342 }
1343 kfree(pages);
1344
71e3aac0 1345 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1346 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1347 page_remove_rmap(page, true);
82b0f8c3 1348 spin_unlock(vmf->ptl);
71e3aac0 1349
4645b9fe
JG
1350 /*
1351 * No need to double call mmu_notifier->invalidate_range() callback as
1352 * the above pmdp_huge_clear_flush_notify() did already call it.
1353 */
ac46d4f3 1354 mmu_notifier_invalidate_range_only_end(&range);
2ec74c3e 1355
71e3aac0
AA
1356 ret |= VM_FAULT_WRITE;
1357 put_page(page);
1358
1359out:
1360 return ret;
1361
1362out_free_pages:
82b0f8c3 1363 spin_unlock(vmf->ptl);
ac46d4f3 1364 mmu_notifier_invalidate_range_end(&range);
b9bbfbe3 1365 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1366 memcg = (void *)page_private(pages[i]);
1367 set_page_private(pages[i], 0);
f627c2f5 1368 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1369 put_page(pages[i]);
b9bbfbe3 1370 }
71e3aac0
AA
1371 kfree(pages);
1372 goto out;
1373}
1374
2b740303 1375vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1376{
82b0f8c3 1377 struct vm_area_struct *vma = vmf->vma;
93b4796d 1378 struct page *page = NULL, *new_page;
00501b53 1379 struct mem_cgroup *memcg;
82b0f8c3 1380 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
ac46d4f3 1381 struct mmu_notifier_range range;
3b363692 1382 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1383 vm_fault_t ret = 0;
71e3aac0 1384
82b0f8c3 1385 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1386 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1387 if (is_huge_zero_pmd(orig_pmd))
1388 goto alloc;
82b0f8c3
JK
1389 spin_lock(vmf->ptl);
1390 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1391 goto out_unlock;
1392
1393 page = pmd_page(orig_pmd);
309381fe 1394 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1395 /*
1396 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1397 * part.
1f25fe20 1398 */
ba3c4ce6
HY
1399 if (!trylock_page(page)) {
1400 get_page(page);
1401 spin_unlock(vmf->ptl);
1402 lock_page(page);
1403 spin_lock(vmf->ptl);
1404 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1405 unlock_page(page);
1406 put_page(page);
1407 goto out_unlock;
1408 }
1409 put_page(page);
1410 }
1411 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1412 pmd_t entry;
1413 entry = pmd_mkyoung(orig_pmd);
f55e1014 1414 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1415 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1416 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1417 ret |= VM_FAULT_WRITE;
ba3c4ce6 1418 unlock_page(page);
71e3aac0
AA
1419 goto out_unlock;
1420 }
ba3c4ce6 1421 unlock_page(page);
ddc58f27 1422 get_page(page);
82b0f8c3 1423 spin_unlock(vmf->ptl);
93b4796d 1424alloc:
7635d9cb 1425 if (__transparent_hugepage_enabled(vma) &&
077fcf11 1426 !transparent_hugepage_debug_cow()) {
19deb769
DR
1427 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1428 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1429 } else
71e3aac0
AA
1430 new_page = NULL;
1431
9a982250
KS
1432 if (likely(new_page)) {
1433 prep_transhuge_page(new_page);
1434 } else {
eecc1e42 1435 if (!page) {
82b0f8c3 1436 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1437 ret |= VM_FAULT_FALLBACK;
93b4796d 1438 } else {
82b0f8c3 1439 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1440 if (ret & VM_FAULT_OOM) {
82b0f8c3 1441 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1442 ret |= VM_FAULT_FALLBACK;
1443 }
ddc58f27 1444 put_page(page);
93b4796d 1445 }
17766dde 1446 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1447 goto out;
1448 }
1449
2cf85583 1450 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1451 huge_gfp, &memcg, true))) {
b9bbfbe3 1452 put_page(new_page);
82b0f8c3 1453 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1454 if (page)
ddc58f27 1455 put_page(page);
9845cbbd 1456 ret |= VM_FAULT_FALLBACK;
17766dde 1457 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 1458 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
b9bbfbe3
AA
1459 goto out;
1460 }
1461
17766dde 1462 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 1463 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
17766dde 1464
eecc1e42 1465 if (!page)
c79b57e4 1466 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1467 else
c9f4cd71
HY
1468 copy_user_huge_page(new_page, page, vmf->address,
1469 vma, HPAGE_PMD_NR);
71e3aac0
AA
1470 __SetPageUptodate(new_page);
1471
7269f999
JG
1472 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1473 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1474 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1475
82b0f8c3 1476 spin_lock(vmf->ptl);
93b4796d 1477 if (page)
ddc58f27 1478 put_page(page);
82b0f8c3
JK
1479 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1480 spin_unlock(vmf->ptl);
f627c2f5 1481 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1482 put_page(new_page);
2ec74c3e 1483 goto out_mn;
b9bbfbe3 1484 } else {
71e3aac0 1485 pmd_t entry;
3122359a 1486 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1487 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1488 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1489 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1490 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1491 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1492 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1493 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1494 if (!page) {
bae473a4 1495 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1496 } else {
309381fe 1497 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1498 page_remove_rmap(page, true);
93b4796d
KS
1499 put_page(page);
1500 }
71e3aac0
AA
1501 ret |= VM_FAULT_WRITE;
1502 }
82b0f8c3 1503 spin_unlock(vmf->ptl);
2ec74c3e 1504out_mn:
4645b9fe
JG
1505 /*
1506 * No need to double call mmu_notifier->invalidate_range() callback as
1507 * the above pmdp_huge_clear_flush_notify() did already call it.
1508 */
ac46d4f3 1509 mmu_notifier_invalidate_range_only_end(&range);
71e3aac0
AA
1510out:
1511 return ret;
2ec74c3e 1512out_unlock:
82b0f8c3 1513 spin_unlock(vmf->ptl);
2ec74c3e 1514 return ret;
71e3aac0
AA
1515}
1516
8310d48b
KF
1517/*
1518 * FOLL_FORCE can write to even unwritable pmd's, but only
1519 * after we've gone through a COW cycle and they are dirty.
1520 */
1521static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1522{
f6f37321 1523 return pmd_write(pmd) ||
8310d48b
KF
1524 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1525}
1526
b676b293 1527struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1528 unsigned long addr,
1529 pmd_t *pmd,
1530 unsigned int flags)
1531{
b676b293 1532 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1533 struct page *page = NULL;
1534
c4088ebd 1535 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1536
8310d48b 1537 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1538 goto out;
1539
85facf25
KS
1540 /* Avoid dumping huge zero page */
1541 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1542 return ERR_PTR(-EFAULT);
1543
2b4847e7 1544 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1545 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1546 goto out;
1547
71e3aac0 1548 page = pmd_page(*pmd);
ca120cf6 1549 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3faa52c0
JH
1550
1551 if (!try_grab_page(page, flags))
1552 return ERR_PTR(-ENOMEM);
1553
3565fce3 1554 if (flags & FOLL_TOUCH)
a8f97366 1555 touch_pmd(vma, addr, pmd, flags);
3faa52c0 1556
de60f5f1 1557 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1558 /*
1559 * We don't mlock() pte-mapped THPs. This way we can avoid
1560 * leaking mlocked pages into non-VM_LOCKED VMAs.
1561 *
9a73f61b
KS
1562 * For anon THP:
1563 *
e90309c9
KS
1564 * In most cases the pmd is the only mapping of the page as we
1565 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1566 * writable private mappings in populate_vma_page_range().
1567 *
1568 * The only scenario when we have the page shared here is if we
1569 * mlocking read-only mapping shared over fork(). We skip
1570 * mlocking such pages.
9a73f61b
KS
1571 *
1572 * For file THP:
1573 *
1574 * We can expect PageDoubleMap() to be stable under page lock:
1575 * for file pages we set it in page_add_file_rmap(), which
1576 * requires page to be locked.
e90309c9 1577 */
9a73f61b
KS
1578
1579 if (PageAnon(page) && compound_mapcount(page) != 1)
1580 goto skip_mlock;
1581 if (PageDoubleMap(page) || !page->mapping)
1582 goto skip_mlock;
1583 if (!trylock_page(page))
1584 goto skip_mlock;
1585 lru_add_drain();
1586 if (page->mapping && !PageDoubleMap(page))
1587 mlock_vma_page(page);
1588 unlock_page(page);
b676b293 1589 }
9a73f61b 1590skip_mlock:
71e3aac0 1591 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1592 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0
AA
1593
1594out:
1595 return page;
1596}
1597
d10e63f2 1598/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1599vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1600{
82b0f8c3 1601 struct vm_area_struct *vma = vmf->vma;
b8916634 1602 struct anon_vma *anon_vma = NULL;
b32967ff 1603 struct page *page;
82b0f8c3 1604 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1605 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1606 int target_nid, last_cpupid = -1;
8191acbd
MG
1607 bool page_locked;
1608 bool migrated = false;
b191f9b1 1609 bool was_writable;
6688cc05 1610 int flags = 0;
d10e63f2 1611
82b0f8c3
JK
1612 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1613 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1614 goto out_unlock;
1615
de466bd6
MG
1616 /*
1617 * If there are potential migrations, wait for completion and retry
1618 * without disrupting NUMA hinting information. Do not relock and
1619 * check_same as the page may no longer be mapped.
1620 */
82b0f8c3
JK
1621 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1622 page = pmd_page(*vmf->pmd);
3c226c63
MR
1623 if (!get_page_unless_zero(page))
1624 goto out_unlock;
82b0f8c3 1625 spin_unlock(vmf->ptl);
9a1ea439 1626 put_and_wait_on_page_locked(page);
de466bd6
MG
1627 goto out;
1628 }
1629
d10e63f2 1630 page = pmd_page(pmd);
a1a46184 1631 BUG_ON(is_huge_zero_page(page));
8191acbd 1632 page_nid = page_to_nid(page);
90572890 1633 last_cpupid = page_cpupid_last(page);
03c5a6e1 1634 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1635 if (page_nid == this_nid) {
03c5a6e1 1636 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1637 flags |= TNF_FAULT_LOCAL;
1638 }
4daae3b4 1639
bea66fbd 1640 /* See similar comment in do_numa_page for explanation */
288bc549 1641 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1642 flags |= TNF_NO_GROUP;
1643
ff9042b1
MG
1644 /*
1645 * Acquire the page lock to serialise THP migrations but avoid dropping
1646 * page_table_lock if at all possible
1647 */
b8916634
MG
1648 page_locked = trylock_page(page);
1649 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1650 if (target_nid == NUMA_NO_NODE) {
b8916634 1651 /* If the page was locked, there are no parallel migrations */
a54a407f 1652 if (page_locked)
b8916634 1653 goto clear_pmdnuma;
2b4847e7 1654 }
4daae3b4 1655
de466bd6 1656 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1657 if (!page_locked) {
98fa15f3 1658 page_nid = NUMA_NO_NODE;
3c226c63
MR
1659 if (!get_page_unless_zero(page))
1660 goto out_unlock;
82b0f8c3 1661 spin_unlock(vmf->ptl);
9a1ea439 1662 put_and_wait_on_page_locked(page);
b8916634
MG
1663 goto out;
1664 }
1665
2b4847e7
MG
1666 /*
1667 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1668 * to serialises splits
1669 */
b8916634 1670 get_page(page);
82b0f8c3 1671 spin_unlock(vmf->ptl);
b8916634 1672 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1673
c69307d5 1674 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1675 spin_lock(vmf->ptl);
1676 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1677 unlock_page(page);
1678 put_page(page);
98fa15f3 1679 page_nid = NUMA_NO_NODE;
4daae3b4 1680 goto out_unlock;
b32967ff 1681 }
ff9042b1 1682
c3a489ca
MG
1683 /* Bail if we fail to protect against THP splits for any reason */
1684 if (unlikely(!anon_vma)) {
1685 put_page(page);
98fa15f3 1686 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1687 goto clear_pmdnuma;
1688 }
1689
8b1b436d
PZ
1690 /*
1691 * Since we took the NUMA fault, we must have observed the !accessible
1692 * bit. Make sure all other CPUs agree with that, to avoid them
1693 * modifying the page we're about to migrate.
1694 *
1695 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1696 * inc_tlb_flush_pending().
1697 *
1698 * We are not sure a pending tlb flush here is for a huge page
1699 * mapping or not. Hence use the tlb range variant
8b1b436d 1700 */
7066f0f9 1701 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1702 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1703 /*
1704 * change_huge_pmd() released the pmd lock before
1705 * invalidating the secondary MMUs sharing the primary
1706 * MMU pagetables (with ->invalidate_range()). The
1707 * mmu_notifier_invalidate_range_end() (which
1708 * internally calls ->invalidate_range()) in
1709 * change_pmd_range() will run after us, so we can't
1710 * rely on it here and we need an explicit invalidate.
1711 */
1712 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1713 haddr + HPAGE_PMD_SIZE);
1714 }
8b1b436d 1715
a54a407f
MG
1716 /*
1717 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1718 * and access rights restored.
a54a407f 1719 */
82b0f8c3 1720 spin_unlock(vmf->ptl);
8b1b436d 1721
bae473a4 1722 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1723 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1724 if (migrated) {
1725 flags |= TNF_MIGRATED;
8191acbd 1726 page_nid = target_nid;
074c2381
MG
1727 } else
1728 flags |= TNF_MIGRATE_FAIL;
b32967ff 1729
8191acbd 1730 goto out;
b32967ff 1731clear_pmdnuma:
a54a407f 1732 BUG_ON(!PageLocked(page));
288bc549 1733 was_writable = pmd_savedwrite(pmd);
4d942466 1734 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1735 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1736 if (was_writable)
1737 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1738 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1739 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1740 unlock_page(page);
d10e63f2 1741out_unlock:
82b0f8c3 1742 spin_unlock(vmf->ptl);
b8916634
MG
1743
1744out:
1745 if (anon_vma)
1746 page_unlock_anon_vma_read(anon_vma);
1747
98fa15f3 1748 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1749 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1750 flags);
8191acbd 1751
d10e63f2
MG
1752 return 0;
1753}
1754
319904ad
HY
1755/*
1756 * Return true if we do MADV_FREE successfully on entire pmd page.
1757 * Otherwise, return false.
1758 */
1759bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1760 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1761{
1762 spinlock_t *ptl;
1763 pmd_t orig_pmd;
1764 struct page *page;
1765 struct mm_struct *mm = tlb->mm;
319904ad 1766 bool ret = false;
b8d3c4c3 1767
ed6a7935 1768 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1769
b6ec57f4
KS
1770 ptl = pmd_trans_huge_lock(pmd, vma);
1771 if (!ptl)
25eedabe 1772 goto out_unlocked;
b8d3c4c3
MK
1773
1774 orig_pmd = *pmd;
319904ad 1775 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1776 goto out;
b8d3c4c3 1777
84c3fc4e
ZY
1778 if (unlikely(!pmd_present(orig_pmd))) {
1779 VM_BUG_ON(thp_migration_supported() &&
1780 !is_pmd_migration_entry(orig_pmd));
1781 goto out;
1782 }
1783
b8d3c4c3
MK
1784 page = pmd_page(orig_pmd);
1785 /*
1786 * If other processes are mapping this page, we couldn't discard
1787 * the page unless they all do MADV_FREE so let's skip the page.
1788 */
1789 if (page_mapcount(page) != 1)
1790 goto out;
1791
1792 if (!trylock_page(page))
1793 goto out;
1794
1795 /*
1796 * If user want to discard part-pages of THP, split it so MADV_FREE
1797 * will deactivate only them.
1798 */
1799 if (next - addr != HPAGE_PMD_SIZE) {
1800 get_page(page);
1801 spin_unlock(ptl);
9818b8cd 1802 split_huge_page(page);
b8d3c4c3 1803 unlock_page(page);
bbf29ffc 1804 put_page(page);
b8d3c4c3
MK
1805 goto out_unlocked;
1806 }
1807
1808 if (PageDirty(page))
1809 ClearPageDirty(page);
1810 unlock_page(page);
1811
b8d3c4c3 1812 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1813 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1814 orig_pmd = pmd_mkold(orig_pmd);
1815 orig_pmd = pmd_mkclean(orig_pmd);
1816
1817 set_pmd_at(mm, addr, pmd, orig_pmd);
1818 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1819 }
802a3a92
SL
1820
1821 mark_page_lazyfree(page);
319904ad 1822 ret = true;
b8d3c4c3
MK
1823out:
1824 spin_unlock(ptl);
1825out_unlocked:
1826 return ret;
1827}
1828
953c66c2
AK
1829static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1830{
1831 pgtable_t pgtable;
1832
1833 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1834 pte_free(mm, pgtable);
c4812909 1835 mm_dec_nr_ptes(mm);
953c66c2
AK
1836}
1837
71e3aac0 1838int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1839 pmd_t *pmd, unsigned long addr)
71e3aac0 1840{
da146769 1841 pmd_t orig_pmd;
bf929152 1842 spinlock_t *ptl;
71e3aac0 1843
ed6a7935 1844 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1845
b6ec57f4
KS
1846 ptl = __pmd_trans_huge_lock(pmd, vma);
1847 if (!ptl)
da146769
KS
1848 return 0;
1849 /*
1850 * For architectures like ppc64 we look at deposited pgtable
1851 * when calling pmdp_huge_get_and_clear. So do the
1852 * pgtable_trans_huge_withdraw after finishing pmdp related
1853 * operations.
1854 */
1855 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1856 tlb->fullmm);
1857 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2484ca9b 1858 if (vma_is_special_huge(vma)) {
3b6521f5
OH
1859 if (arch_needs_pgtable_deposit())
1860 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1861 spin_unlock(ptl);
1862 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1863 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1864 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1865 zap_deposited_table(tlb->mm, pmd);
da146769 1866 spin_unlock(ptl);
c0f2e176 1867 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1868 } else {
616b8371
ZY
1869 struct page *page = NULL;
1870 int flush_needed = 1;
1871
1872 if (pmd_present(orig_pmd)) {
1873 page = pmd_page(orig_pmd);
1874 page_remove_rmap(page, true);
1875 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1876 VM_BUG_ON_PAGE(!PageHead(page), page);
1877 } else if (thp_migration_supported()) {
1878 swp_entry_t entry;
1879
1880 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1881 entry = pmd_to_swp_entry(orig_pmd);
1882 page = pfn_to_page(swp_offset(entry));
1883 flush_needed = 0;
1884 } else
1885 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1886
b5072380 1887 if (PageAnon(page)) {
c14a6eb4 1888 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1889 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1890 } else {
953c66c2
AK
1891 if (arch_needs_pgtable_deposit())
1892 zap_deposited_table(tlb->mm, pmd);
fadae295 1893 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1894 }
616b8371 1895
da146769 1896 spin_unlock(ptl);
616b8371
ZY
1897 if (flush_needed)
1898 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1899 }
da146769 1900 return 1;
71e3aac0
AA
1901}
1902
1dd38b6c
AK
1903#ifndef pmd_move_must_withdraw
1904static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1905 spinlock_t *old_pmd_ptl,
1906 struct vm_area_struct *vma)
1907{
1908 /*
1909 * With split pmd lock we also need to move preallocated
1910 * PTE page table if new_pmd is on different PMD page table.
1911 *
1912 * We also don't deposit and withdraw tables for file pages.
1913 */
1914 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1915}
1916#endif
1917
ab6e3d09
NH
1918static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1919{
1920#ifdef CONFIG_MEM_SOFT_DIRTY
1921 if (unlikely(is_pmd_migration_entry(pmd)))
1922 pmd = pmd_swp_mksoft_dirty(pmd);
1923 else if (pmd_present(pmd))
1924 pmd = pmd_mksoft_dirty(pmd);
1925#endif
1926 return pmd;
1927}
1928
bf8616d5 1929bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1930 unsigned long new_addr, unsigned long old_end,
eb66ae03 1931 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1932{
bf929152 1933 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1934 pmd_t pmd;
37a1c49a 1935 struct mm_struct *mm = vma->vm_mm;
5d190420 1936 bool force_flush = false;
37a1c49a
AA
1937
1938 if ((old_addr & ~HPAGE_PMD_MASK) ||
1939 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1940 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1941 return false;
37a1c49a
AA
1942
1943 /*
1944 * The destination pmd shouldn't be established, free_pgtables()
1945 * should have release it.
1946 */
1947 if (WARN_ON(!pmd_none(*new_pmd))) {
1948 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1949 return false;
37a1c49a
AA
1950 }
1951
bf929152
KS
1952 /*
1953 * We don't have to worry about the ordering of src and dst
1954 * ptlocks because exclusive mmap_sem prevents deadlock.
1955 */
b6ec57f4
KS
1956 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1957 if (old_ptl) {
bf929152
KS
1958 new_ptl = pmd_lockptr(mm, new_pmd);
1959 if (new_ptl != old_ptl)
1960 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1961 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1962 if (pmd_present(pmd))
a2ce2666 1963 force_flush = true;
025c5b24 1964 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1965
1dd38b6c 1966 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1967 pgtable_t pgtable;
3592806c
KS
1968 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1969 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1970 }
ab6e3d09
NH
1971 pmd = move_soft_dirty_pmd(pmd);
1972 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1973 if (force_flush)
1974 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1975 if (new_ptl != old_ptl)
1976 spin_unlock(new_ptl);
bf929152 1977 spin_unlock(old_ptl);
4b471e88 1978 return true;
37a1c49a 1979 }
4b471e88 1980 return false;
37a1c49a
AA
1981}
1982
f123d74a
MG
1983/*
1984 * Returns
1985 * - 0 if PMD could not be locked
1986 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1987 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1988 */
cd7548ab 1989int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
58705444 1990 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
cd7548ab
JW
1991{
1992 struct mm_struct *mm = vma->vm_mm;
bf929152 1993 spinlock_t *ptl;
0a85e51d
KS
1994 pmd_t entry;
1995 bool preserve_write;
1996 int ret;
58705444 1997 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
292924b2
PX
1998 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1999 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
cd7548ab 2000
b6ec57f4 2001 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
2002 if (!ptl)
2003 return 0;
e944fd67 2004
0a85e51d
KS
2005 preserve_write = prot_numa && pmd_write(*pmd);
2006 ret = 1;
e944fd67 2007
84c3fc4e
ZY
2008#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2009 if (is_swap_pmd(*pmd)) {
2010 swp_entry_t entry = pmd_to_swp_entry(*pmd);
2011
2012 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2013 if (is_write_migration_entry(entry)) {
2014 pmd_t newpmd;
2015 /*
2016 * A protection check is difficult so
2017 * just be safe and disable write
2018 */
2019 make_migration_entry_read(&entry);
2020 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
2021 if (pmd_swp_soft_dirty(*pmd))
2022 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
2023 set_pmd_at(mm, addr, pmd, newpmd);
2024 }
2025 goto unlock;
2026 }
2027#endif
2028
0a85e51d
KS
2029 /*
2030 * Avoid trapping faults against the zero page. The read-only
2031 * data is likely to be read-cached on the local CPU and
2032 * local/remote hits to the zero page are not interesting.
2033 */
2034 if (prot_numa && is_huge_zero_pmd(*pmd))
2035 goto unlock;
025c5b24 2036
0a85e51d
KS
2037 if (prot_numa && pmd_protnone(*pmd))
2038 goto unlock;
2039
ced10803
KS
2040 /*
2041 * In case prot_numa, we are under down_read(mmap_sem). It's critical
2042 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2043 * which is also under down_read(mmap_sem):
2044 *
2045 * CPU0: CPU1:
2046 * change_huge_pmd(prot_numa=1)
2047 * pmdp_huge_get_and_clear_notify()
2048 * madvise_dontneed()
2049 * zap_pmd_range()
2050 * pmd_trans_huge(*pmd) == 0 (without ptl)
2051 * // skip the pmd
2052 * set_pmd_at();
2053 * // pmd is re-established
2054 *
2055 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2056 * which may break userspace.
2057 *
2058 * pmdp_invalidate() is required to make sure we don't miss
2059 * dirty/young flags set by hardware.
2060 */
a3cf988f 2061 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 2062
0a85e51d
KS
2063 entry = pmd_modify(entry, newprot);
2064 if (preserve_write)
2065 entry = pmd_mk_savedwrite(entry);
292924b2
PX
2066 if (uffd_wp) {
2067 entry = pmd_wrprotect(entry);
2068 entry = pmd_mkuffd_wp(entry);
2069 } else if (uffd_wp_resolve) {
2070 /*
2071 * Leave the write bit to be handled by PF interrupt
2072 * handler, then things like COW could be properly
2073 * handled.
2074 */
2075 entry = pmd_clear_uffd_wp(entry);
2076 }
0a85e51d
KS
2077 ret = HPAGE_PMD_NR;
2078 set_pmd_at(mm, addr, pmd, entry);
2079 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2080unlock:
2081 spin_unlock(ptl);
025c5b24
NH
2082 return ret;
2083}
2084
2085/*
8f19b0c0 2086 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 2087 *
8f19b0c0
HY
2088 * Note that if it returns page table lock pointer, this routine returns without
2089 * unlocking page table lock. So callers must unlock it.
025c5b24 2090 */
b6ec57f4 2091spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 2092{
b6ec57f4
KS
2093 spinlock_t *ptl;
2094 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
2095 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2096 pmd_devmap(*pmd)))
b6ec57f4
KS
2097 return ptl;
2098 spin_unlock(ptl);
2099 return NULL;
cd7548ab
JW
2100}
2101
a00cc7d9
MW
2102/*
2103 * Returns true if a given pud maps a thp, false otherwise.
2104 *
2105 * Note that if it returns true, this routine returns without unlocking page
2106 * table lock. So callers must unlock it.
2107 */
2108spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2109{
2110 spinlock_t *ptl;
2111
2112 ptl = pud_lock(vma->vm_mm, pud);
2113 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2114 return ptl;
2115 spin_unlock(ptl);
2116 return NULL;
2117}
2118
2119#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2120int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2121 pud_t *pud, unsigned long addr)
2122{
a00cc7d9
MW
2123 spinlock_t *ptl;
2124
2125 ptl = __pud_trans_huge_lock(pud, vma);
2126 if (!ptl)
2127 return 0;
2128 /*
2129 * For architectures like ppc64 we look at deposited pgtable
2130 * when calling pudp_huge_get_and_clear. So do the
2131 * pgtable_trans_huge_withdraw after finishing pudp related
2132 * operations.
2133 */
70516b93 2134 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9 2135 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2484ca9b 2136 if (vma_is_special_huge(vma)) {
a00cc7d9
MW
2137 spin_unlock(ptl);
2138 /* No zero page support yet */
2139 } else {
2140 /* No support for anonymous PUD pages yet */
2141 BUG();
2142 }
2143 return 1;
2144}
2145
2146static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2147 unsigned long haddr)
2148{
2149 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2150 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2151 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2152 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2153
ce9311cf 2154 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2155
2156 pudp_huge_clear_flush_notify(vma, haddr, pud);
2157}
2158
2159void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2160 unsigned long address)
2161{
2162 spinlock_t *ptl;
ac46d4f3 2163 struct mmu_notifier_range range;
a00cc7d9 2164
7269f999 2165 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2166 address & HPAGE_PUD_MASK,
ac46d4f3
JG
2167 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2168 mmu_notifier_invalidate_range_start(&range);
2169 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
2170 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2171 goto out;
ac46d4f3 2172 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
2173
2174out:
2175 spin_unlock(ptl);
4645b9fe
JG
2176 /*
2177 * No need to double call mmu_notifier->invalidate_range() callback as
2178 * the above pudp_huge_clear_flush_notify() did already call it.
2179 */
ac46d4f3 2180 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
2181}
2182#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2183
eef1b3ba
KS
2184static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2185 unsigned long haddr, pmd_t *pmd)
2186{
2187 struct mm_struct *mm = vma->vm_mm;
2188 pgtable_t pgtable;
2189 pmd_t _pmd;
2190 int i;
2191
0f10851e
JG
2192 /*
2193 * Leave pmd empty until pte is filled note that it is fine to delay
2194 * notification until mmu_notifier_invalidate_range_end() as we are
2195 * replacing a zero pmd write protected page with a zero pte write
2196 * protected page.
2197 *
ad56b738 2198 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2199 */
2200 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2201
2202 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2203 pmd_populate(mm, &_pmd, pgtable);
2204
2205 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2206 pte_t *pte, entry;
2207 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2208 entry = pte_mkspecial(entry);
2209 pte = pte_offset_map(&_pmd, haddr);
2210 VM_BUG_ON(!pte_none(*pte));
2211 set_pte_at(mm, haddr, pte, entry);
2212 pte_unmap(pte);
2213 }
2214 smp_wmb(); /* make pte visible before pmd */
2215 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2216}
2217
2218static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2219 unsigned long haddr, bool freeze)
eef1b3ba
KS
2220{
2221 struct mm_struct *mm = vma->vm_mm;
2222 struct page *page;
2223 pgtable_t pgtable;
423ac9af 2224 pmd_t old_pmd, _pmd;
292924b2 2225 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2ac015e2 2226 unsigned long addr;
eef1b3ba
KS
2227 int i;
2228
2229 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2230 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2231 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2232 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2233 && !pmd_devmap(*pmd));
eef1b3ba
KS
2234
2235 count_vm_event(THP_SPLIT_PMD);
2236
d21b9e57
KS
2237 if (!vma_is_anonymous(vma)) {
2238 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2239 /*
2240 * We are going to unmap this huge page. So
2241 * just go ahead and zap it
2242 */
2243 if (arch_needs_pgtable_deposit())
2244 zap_deposited_table(mm, pmd);
2484ca9b 2245 if (vma_is_special_huge(vma))
d21b9e57
KS
2246 return;
2247 page = pmd_page(_pmd);
e1f1b157
HD
2248 if (!PageDirty(page) && pmd_dirty(_pmd))
2249 set_page_dirty(page);
d21b9e57
KS
2250 if (!PageReferenced(page) && pmd_young(_pmd))
2251 SetPageReferenced(page);
2252 page_remove_rmap(page, true);
2253 put_page(page);
fadae295 2254 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2255 return;
2256 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2257 /*
2258 * FIXME: Do we want to invalidate secondary mmu by calling
2259 * mmu_notifier_invalidate_range() see comments below inside
2260 * __split_huge_pmd() ?
2261 *
2262 * We are going from a zero huge page write protected to zero
2263 * small page also write protected so it does not seems useful
2264 * to invalidate secondary mmu at this time.
2265 */
eef1b3ba
KS
2266 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2267 }
2268
423ac9af
AK
2269 /*
2270 * Up to this point the pmd is present and huge and userland has the
2271 * whole access to the hugepage during the split (which happens in
2272 * place). If we overwrite the pmd with the not-huge version pointing
2273 * to the pte here (which of course we could if all CPUs were bug
2274 * free), userland could trigger a small page size TLB miss on the
2275 * small sized TLB while the hugepage TLB entry is still established in
2276 * the huge TLB. Some CPU doesn't like that.
2277 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2278 * 383 on page 93. Intel should be safe but is also warns that it's
2279 * only safe if the permission and cache attributes of the two entries
2280 * loaded in the two TLB is identical (which should be the case here).
2281 * But it is generally safer to never allow small and huge TLB entries
2282 * for the same virtual address to be loaded simultaneously. So instead
2283 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2284 * current pmd notpresent (atomically because here the pmd_trans_huge
2285 * must remain set at all times on the pmd until the split is complete
2286 * for this pmd), then we flush the SMP TLB and finally we write the
2287 * non-huge version of the pmd entry with pmd_populate.
2288 */
2289 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2290
423ac9af 2291 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2292 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2293 swp_entry_t entry;
2294
423ac9af 2295 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2296 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2297 write = is_write_migration_entry(entry);
2298 young = false;
2299 soft_dirty = pmd_swp_soft_dirty(old_pmd);
f45ec5ff 2300 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2e83ee1d 2301 } else {
423ac9af 2302 page = pmd_page(old_pmd);
2e83ee1d
PX
2303 if (pmd_dirty(old_pmd))
2304 SetPageDirty(page);
2305 write = pmd_write(old_pmd);
2306 young = pmd_young(old_pmd);
2307 soft_dirty = pmd_soft_dirty(old_pmd);
292924b2 2308 uffd_wp = pmd_uffd_wp(old_pmd);
2e83ee1d 2309 }
eef1b3ba 2310 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2311 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2312
423ac9af
AK
2313 /*
2314 * Withdraw the table only after we mark the pmd entry invalid.
2315 * This's critical for some architectures (Power).
2316 */
eef1b3ba
KS
2317 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2318 pmd_populate(mm, &_pmd, pgtable);
2319
2ac015e2 2320 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2321 pte_t entry, *pte;
2322 /*
2323 * Note that NUMA hinting access restrictions are not
2324 * transferred to avoid any possibility of altering
2325 * permissions across VMAs.
2326 */
84c3fc4e 2327 if (freeze || pmd_migration) {
ba988280
KS
2328 swp_entry_t swp_entry;
2329 swp_entry = make_migration_entry(page + i, write);
2330 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2331 if (soft_dirty)
2332 entry = pte_swp_mksoft_dirty(entry);
f45ec5ff
PX
2333 if (uffd_wp)
2334 entry = pte_swp_mkuffd_wp(entry);
ba988280 2335 } else {
6d2329f8 2336 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2337 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2338 if (!write)
2339 entry = pte_wrprotect(entry);
2340 if (!young)
2341 entry = pte_mkold(entry);
804dd150
AA
2342 if (soft_dirty)
2343 entry = pte_mksoft_dirty(entry);
292924b2
PX
2344 if (uffd_wp)
2345 entry = pte_mkuffd_wp(entry);
ba988280 2346 }
2ac015e2 2347 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2348 BUG_ON(!pte_none(*pte));
2ac015e2 2349 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2350 atomic_inc(&page[i]._mapcount);
2351 pte_unmap(pte);
2352 }
2353
2354 /*
2355 * Set PG_double_map before dropping compound_mapcount to avoid
2356 * false-negative page_mapped().
2357 */
2358 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2359 for (i = 0; i < HPAGE_PMD_NR; i++)
2360 atomic_inc(&page[i]._mapcount);
2361 }
2362
2363 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2364 /* Last compound_mapcount is gone. */
11fb9989 2365 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2366 if (TestClearPageDoubleMap(page)) {
2367 /* No need in mapcount reference anymore */
2368 for (i = 0; i < HPAGE_PMD_NR; i++)
2369 atomic_dec(&page[i]._mapcount);
2370 }
2371 }
2372
2373 smp_wmb(); /* make pte visible before pmd */
2374 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2375
2376 if (freeze) {
2ac015e2 2377 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2378 page_remove_rmap(page + i, false);
2379 put_page(page + i);
2380 }
2381 }
eef1b3ba
KS
2382}
2383
2384void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2385 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2386{
2387 spinlock_t *ptl;
ac46d4f3 2388 struct mmu_notifier_range range;
eef1b3ba 2389
7269f999 2390 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2391 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2392 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2393 mmu_notifier_invalidate_range_start(&range);
2394 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2395
2396 /*
2397 * If caller asks to setup a migration entries, we need a page to check
2398 * pmd against. Otherwise we can end up replacing wrong page.
2399 */
2400 VM_BUG_ON(freeze && !page);
2401 if (page && page != pmd_page(*pmd))
2402 goto out;
2403
5c7fb56e 2404 if (pmd_trans_huge(*pmd)) {
33f4751e 2405 page = pmd_page(*pmd);
5c7fb56e 2406 if (PageMlocked(page))
5f737714 2407 clear_page_mlock(page);
84c3fc4e 2408 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2409 goto out;
ac46d4f3 2410 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2411out:
eef1b3ba 2412 spin_unlock(ptl);
4645b9fe
JG
2413 /*
2414 * No need to double call mmu_notifier->invalidate_range() callback.
2415 * They are 3 cases to consider inside __split_huge_pmd_locked():
2416 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2417 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2418 * fault will trigger a flush_notify before pointing to a new page
2419 * (it is fine if the secondary mmu keeps pointing to the old zero
2420 * page in the meantime)
2421 * 3) Split a huge pmd into pte pointing to the same page. No need
2422 * to invalidate secondary tlb entry they are all still valid.
2423 * any further changes to individual pte will notify. So no need
2424 * to call mmu_notifier->invalidate_range()
2425 */
ac46d4f3 2426 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2427}
2428
fec89c10
KS
2429void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2430 bool freeze, struct page *page)
94fcc585 2431{
f72e7dcd 2432 pgd_t *pgd;
c2febafc 2433 p4d_t *p4d;
f72e7dcd 2434 pud_t *pud;
94fcc585
AA
2435 pmd_t *pmd;
2436
78ddc534 2437 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2438 if (!pgd_present(*pgd))
2439 return;
2440
c2febafc
KS
2441 p4d = p4d_offset(pgd, address);
2442 if (!p4d_present(*p4d))
2443 return;
2444
2445 pud = pud_offset(p4d, address);
f72e7dcd
HD
2446 if (!pud_present(*pud))
2447 return;
2448
2449 pmd = pmd_offset(pud, address);
fec89c10 2450
33f4751e 2451 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2452}
2453
e1b9996b 2454void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2455 unsigned long start,
2456 unsigned long end,
2457 long adjust_next)
2458{
2459 /*
2460 * If the new start address isn't hpage aligned and it could
2461 * previously contain an hugepage: check if we need to split
2462 * an huge pmd.
2463 */
2464 if (start & ~HPAGE_PMD_MASK &&
2465 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2466 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2467 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2468
2469 /*
2470 * If the new end address isn't hpage aligned and it could
2471 * previously contain an hugepage: check if we need to split
2472 * an huge pmd.
2473 */
2474 if (end & ~HPAGE_PMD_MASK &&
2475 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2476 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2477 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2478
2479 /*
2480 * If we're also updating the vma->vm_next->vm_start, if the new
2481 * vm_next->vm_start isn't page aligned and it could previously
2482 * contain an hugepage: check if we need to split an huge pmd.
2483 */
2484 if (adjust_next > 0) {
2485 struct vm_area_struct *next = vma->vm_next;
2486 unsigned long nstart = next->vm_start;
2487 nstart += adjust_next << PAGE_SHIFT;
2488 if (nstart & ~HPAGE_PMD_MASK &&
2489 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2490 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2491 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2492 }
2493}
e9b61f19 2494
906f9cdf 2495static void unmap_page(struct page *page)
e9b61f19 2496{
baa355fd 2497 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2498 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2499 bool unmap_success;
e9b61f19
KS
2500
2501 VM_BUG_ON_PAGE(!PageHead(page), page);
2502
baa355fd 2503 if (PageAnon(page))
b5ff8161 2504 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2505
666e5a40
MK
2506 unmap_success = try_to_unmap(page, ttu_flags);
2507 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2508}
2509
906f9cdf 2510static void remap_page(struct page *page)
e9b61f19 2511{
fec89c10 2512 int i;
ace71a19
KS
2513 if (PageTransHuge(page)) {
2514 remove_migration_ptes(page, page, true);
2515 } else {
2516 for (i = 0; i < HPAGE_PMD_NR; i++)
2517 remove_migration_ptes(page + i, page + i, true);
2518 }
e9b61f19
KS
2519}
2520
8df651c7 2521static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2522 struct lruvec *lruvec, struct list_head *list)
2523{
e9b61f19
KS
2524 struct page *page_tail = head + tail;
2525
8df651c7 2526 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2527
2528 /*
605ca5ed
KK
2529 * Clone page flags before unfreezing refcount.
2530 *
2531 * After successful get_page_unless_zero() might follow flags change,
2532 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2533 */
e9b61f19
KS
2534 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2535 page_tail->flags |= (head->flags &
2536 ((1L << PG_referenced) |
2537 (1L << PG_swapbacked) |
38d8b4e6 2538 (1L << PG_swapcache) |
e9b61f19
KS
2539 (1L << PG_mlocked) |
2540 (1L << PG_uptodate) |
2541 (1L << PG_active) |
1899ad18 2542 (1L << PG_workingset) |
e9b61f19 2543 (1L << PG_locked) |
b8d3c4c3
MK
2544 (1L << PG_unevictable) |
2545 (1L << PG_dirty)));
e9b61f19 2546
173d9d9f
HD
2547 /* ->mapping in first tail page is compound_mapcount */
2548 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2549 page_tail);
2550 page_tail->mapping = head->mapping;
2551 page_tail->index = head->index + tail;
2552
605ca5ed 2553 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2554 smp_wmb();
2555
605ca5ed
KK
2556 /*
2557 * Clear PageTail before unfreezing page refcount.
2558 *
2559 * After successful get_page_unless_zero() might follow put_page()
2560 * which needs correct compound_head().
2561 */
e9b61f19
KS
2562 clear_compound_head(page_tail);
2563
605ca5ed
KK
2564 /* Finally unfreeze refcount. Additional reference from page cache. */
2565 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2566 PageSwapCache(head)));
2567
e9b61f19
KS
2568 if (page_is_young(head))
2569 set_page_young(page_tail);
2570 if (page_is_idle(head))
2571 set_page_idle(page_tail);
2572
e9b61f19 2573 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2574
2575 /*
2576 * always add to the tail because some iterators expect new
2577 * pages to show after the currently processed elements - e.g.
2578 * migrate_pages
2579 */
e9b61f19 2580 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2581}
2582
baa355fd 2583static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2584 pgoff_t end, unsigned long flags)
e9b61f19
KS
2585{
2586 struct page *head = compound_head(page);
f4b7e272 2587 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2588 struct lruvec *lruvec;
4101196b
MWO
2589 struct address_space *swap_cache = NULL;
2590 unsigned long offset = 0;
8df651c7 2591 int i;
e9b61f19 2592
f4b7e272 2593 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2594
2595 /* complete memcg works before add pages to LRU */
2596 mem_cgroup_split_huge_fixup(head);
2597
4101196b
MWO
2598 if (PageAnon(head) && PageSwapCache(head)) {
2599 swp_entry_t entry = { .val = page_private(head) };
2600
2601 offset = swp_offset(entry);
2602 swap_cache = swap_address_space(entry);
2603 xa_lock(&swap_cache->i_pages);
2604 }
2605
baa355fd 2606 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2607 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2608 /* Some pages can be beyond i_size: drop them from page cache */
2609 if (head[i].index >= end) {
2d077d4b 2610 ClearPageDirty(head + i);
baa355fd 2611 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2612 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2613 shmem_uncharge(head->mapping->host, 1);
baa355fd 2614 put_page(head + i);
4101196b
MWO
2615 } else if (!PageAnon(page)) {
2616 __xa_store(&head->mapping->i_pages, head[i].index,
2617 head + i, 0);
2618 } else if (swap_cache) {
2619 __xa_store(&swap_cache->i_pages, offset + i,
2620 head + i, 0);
baa355fd
KS
2621 }
2622 }
e9b61f19
KS
2623
2624 ClearPageCompound(head);
f7da677b
VB
2625
2626 split_page_owner(head, HPAGE_PMD_ORDER);
2627
baa355fd
KS
2628 /* See comment in __split_huge_page_tail() */
2629 if (PageAnon(head)) {
aa5dc07f 2630 /* Additional pin to swap cache */
4101196b 2631 if (PageSwapCache(head)) {
38d8b4e6 2632 page_ref_add(head, 2);
4101196b
MWO
2633 xa_unlock(&swap_cache->i_pages);
2634 } else {
38d8b4e6 2635 page_ref_inc(head);
4101196b 2636 }
baa355fd 2637 } else {
aa5dc07f 2638 /* Additional pin to page cache */
baa355fd 2639 page_ref_add(head, 2);
b93b0163 2640 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2641 }
2642
f4b7e272 2643 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2644
906f9cdf 2645 remap_page(head);
e9b61f19
KS
2646
2647 for (i = 0; i < HPAGE_PMD_NR; i++) {
2648 struct page *subpage = head + i;
2649 if (subpage == page)
2650 continue;
2651 unlock_page(subpage);
2652
2653 /*
2654 * Subpages may be freed if there wasn't any mapping
2655 * like if add_to_swap() is running on a lru page that
2656 * had its mapping zapped. And freeing these pages
2657 * requires taking the lru_lock so we do the put_page
2658 * of the tail pages after the split is complete.
2659 */
2660 put_page(subpage);
2661 }
2662}
2663
b20ce5e0
KS
2664int total_mapcount(struct page *page)
2665{
dd78fedd 2666 int i, compound, ret;
b20ce5e0
KS
2667
2668 VM_BUG_ON_PAGE(PageTail(page), page);
2669
2670 if (likely(!PageCompound(page)))
2671 return atomic_read(&page->_mapcount) + 1;
2672
dd78fedd 2673 compound = compound_mapcount(page);
b20ce5e0 2674 if (PageHuge(page))
dd78fedd
KS
2675 return compound;
2676 ret = compound;
b20ce5e0
KS
2677 for (i = 0; i < HPAGE_PMD_NR; i++)
2678 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2679 /* File pages has compound_mapcount included in _mapcount */
2680 if (!PageAnon(page))
2681 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2682 if (PageDoubleMap(page))
2683 ret -= HPAGE_PMD_NR;
2684 return ret;
2685}
2686
6d0a07ed
AA
2687/*
2688 * This calculates accurately how many mappings a transparent hugepage
2689 * has (unlike page_mapcount() which isn't fully accurate). This full
2690 * accuracy is primarily needed to know if copy-on-write faults can
2691 * reuse the page and change the mapping to read-write instead of
2692 * copying them. At the same time this returns the total_mapcount too.
2693 *
2694 * The function returns the highest mapcount any one of the subpages
2695 * has. If the return value is one, even if different processes are
2696 * mapping different subpages of the transparent hugepage, they can
2697 * all reuse it, because each process is reusing a different subpage.
2698 *
2699 * The total_mapcount is instead counting all virtual mappings of the
2700 * subpages. If the total_mapcount is equal to "one", it tells the
2701 * caller all mappings belong to the same "mm" and in turn the
2702 * anon_vma of the transparent hugepage can become the vma->anon_vma
2703 * local one as no other process may be mapping any of the subpages.
2704 *
2705 * It would be more accurate to replace page_mapcount() with
2706 * page_trans_huge_mapcount(), however we only use
2707 * page_trans_huge_mapcount() in the copy-on-write faults where we
2708 * need full accuracy to avoid breaking page pinning, because
2709 * page_trans_huge_mapcount() is slower than page_mapcount().
2710 */
2711int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2712{
2713 int i, ret, _total_mapcount, mapcount;
2714
2715 /* hugetlbfs shouldn't call it */
2716 VM_BUG_ON_PAGE(PageHuge(page), page);
2717
2718 if (likely(!PageTransCompound(page))) {
2719 mapcount = atomic_read(&page->_mapcount) + 1;
2720 if (total_mapcount)
2721 *total_mapcount = mapcount;
2722 return mapcount;
2723 }
2724
2725 page = compound_head(page);
2726
2727 _total_mapcount = ret = 0;
2728 for (i = 0; i < HPAGE_PMD_NR; i++) {
2729 mapcount = atomic_read(&page[i]._mapcount) + 1;
2730 ret = max(ret, mapcount);
2731 _total_mapcount += mapcount;
2732 }
2733 if (PageDoubleMap(page)) {
2734 ret -= 1;
2735 _total_mapcount -= HPAGE_PMD_NR;
2736 }
2737 mapcount = compound_mapcount(page);
2738 ret += mapcount;
2739 _total_mapcount += mapcount;
2740 if (total_mapcount)
2741 *total_mapcount = _total_mapcount;
2742 return ret;
2743}
2744
b8f593cd
HY
2745/* Racy check whether the huge page can be split */
2746bool can_split_huge_page(struct page *page, int *pextra_pins)
2747{
2748 int extra_pins;
2749
aa5dc07f 2750 /* Additional pins from page cache */
b8f593cd
HY
2751 if (PageAnon(page))
2752 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2753 else
2754 extra_pins = HPAGE_PMD_NR;
2755 if (pextra_pins)
2756 *pextra_pins = extra_pins;
2757 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2758}
2759
e9b61f19
KS
2760/*
2761 * This function splits huge page into normal pages. @page can point to any
2762 * subpage of huge page to split. Split doesn't change the position of @page.
2763 *
2764 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2765 * The huge page must be locked.
2766 *
2767 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2768 *
2769 * Both head page and tail pages will inherit mapping, flags, and so on from
2770 * the hugepage.
2771 *
2772 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2773 * they are not mapped.
2774 *
2775 * Returns 0 if the hugepage is split successfully.
2776 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2777 * us.
2778 */
2779int split_huge_page_to_list(struct page *page, struct list_head *list)
2780{
2781 struct page *head = compound_head(page);
a3d0a918 2782 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
a8803e6c 2783 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2784 struct anon_vma *anon_vma = NULL;
2785 struct address_space *mapping = NULL;
2786 int count, mapcount, extra_pins, ret;
d9654322 2787 bool mlocked;
0b9b6fff 2788 unsigned long flags;
006d3ff2 2789 pgoff_t end;
e9b61f19 2790
cb829624 2791 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2792 VM_BUG_ON_PAGE(!PageLocked(head), head);
2793 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2794
a8803e6c 2795 if (PageWriteback(head))
59807685
HY
2796 return -EBUSY;
2797
baa355fd
KS
2798 if (PageAnon(head)) {
2799 /*
2800 * The caller does not necessarily hold an mmap_sem that would
2801 * prevent the anon_vma disappearing so we first we take a
2802 * reference to it and then lock the anon_vma for write. This
2803 * is similar to page_lock_anon_vma_read except the write lock
2804 * is taken to serialise against parallel split or collapse
2805 * operations.
2806 */
2807 anon_vma = page_get_anon_vma(head);
2808 if (!anon_vma) {
2809 ret = -EBUSY;
2810 goto out;
2811 }
006d3ff2 2812 end = -1;
baa355fd
KS
2813 mapping = NULL;
2814 anon_vma_lock_write(anon_vma);
2815 } else {
2816 mapping = head->mapping;
2817
2818 /* Truncated ? */
2819 if (!mapping) {
2820 ret = -EBUSY;
2821 goto out;
2822 }
2823
baa355fd
KS
2824 anon_vma = NULL;
2825 i_mmap_lock_read(mapping);
006d3ff2
HD
2826
2827 /*
2828 *__split_huge_page() may need to trim off pages beyond EOF:
2829 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2830 * which cannot be nested inside the page tree lock. So note
2831 * end now: i_size itself may be changed at any moment, but
2832 * head page lock is good enough to serialize the trimming.
2833 */
2834 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2835 }
e9b61f19
KS
2836
2837 /*
906f9cdf 2838 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2839 * split PMDs
2840 */
b8f593cd 2841 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2842 ret = -EBUSY;
2843 goto out_unlock;
2844 }
2845
a8803e6c 2846 mlocked = PageMlocked(head);
906f9cdf 2847 unmap_page(head);
e9b61f19
KS
2848 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2849
d9654322
KS
2850 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2851 if (mlocked)
2852 lru_add_drain();
2853
baa355fd 2854 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2855 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2856
2857 if (mapping) {
aa5dc07f 2858 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2859
baa355fd 2860 /*
aa5dc07f 2861 * Check if the head page is present in page cache.
baa355fd
KS
2862 * We assume all tail are present too, if head is there.
2863 */
aa5dc07f
MW
2864 xa_lock(&mapping->i_pages);
2865 if (xas_load(&xas) != head)
baa355fd
KS
2866 goto fail;
2867 }
2868
0139aa7b 2869 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2870 spin_lock(&ds_queue->split_queue_lock);
e9b61f19
KS
2871 count = page_count(head);
2872 mapcount = total_mapcount(head);
baa355fd 2873 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2874 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2875 ds_queue->split_queue_len--;
9a982250
KS
2876 list_del(page_deferred_list(head));
2877 }
afb97172 2878 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2879 if (mapping) {
a8803e6c
WY
2880 if (PageSwapBacked(head))
2881 __dec_node_page_state(head, NR_SHMEM_THPS);
06d3eff6 2882 else
a8803e6c 2883 __dec_node_page_state(head, NR_FILE_THPS);
06d3eff6
KS
2884 }
2885
006d3ff2 2886 __split_huge_page(page, list, end, flags);
59807685
HY
2887 if (PageSwapCache(head)) {
2888 swp_entry_t entry = { .val = page_private(head) };
2889
2890 ret = split_swap_cluster(entry);
2891 } else
2892 ret = 0;
e9b61f19 2893 } else {
baa355fd
KS
2894 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2895 pr_alert("total_mapcount: %u, page_count(): %u\n",
2896 mapcount, count);
2897 if (PageTail(page))
2898 dump_page(head, NULL);
2899 dump_page(page, "total_mapcount(head) > 0");
2900 BUG();
2901 }
364c1eeb 2902 spin_unlock(&ds_queue->split_queue_lock);
baa355fd 2903fail: if (mapping)
b93b0163 2904 xa_unlock(&mapping->i_pages);
f4b7e272 2905 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
906f9cdf 2906 remap_page(head);
e9b61f19
KS
2907 ret = -EBUSY;
2908 }
2909
2910out_unlock:
baa355fd
KS
2911 if (anon_vma) {
2912 anon_vma_unlock_write(anon_vma);
2913 put_anon_vma(anon_vma);
2914 }
2915 if (mapping)
2916 i_mmap_unlock_read(mapping);
e9b61f19
KS
2917out:
2918 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2919 return ret;
2920}
9a982250
KS
2921
2922void free_transhuge_page(struct page *page)
2923{
87eaceb3 2924 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2925 unsigned long flags;
2926
364c1eeb 2927 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2928 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2929 ds_queue->split_queue_len--;
9a982250
KS
2930 list_del(page_deferred_list(page));
2931 }
364c1eeb 2932 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2933 free_compound_page(page);
2934}
2935
2936void deferred_split_huge_page(struct page *page)
2937{
87eaceb3
YS
2938 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2939#ifdef CONFIG_MEMCG
2940 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2941#endif
9a982250
KS
2942 unsigned long flags;
2943
2944 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2945
87eaceb3
YS
2946 /*
2947 * The try_to_unmap() in page reclaim path might reach here too,
2948 * this may cause a race condition to corrupt deferred split queue.
2949 * And, if page reclaim is already handling the same page, it is
2950 * unnecessary to handle it again in shrinker.
2951 *
2952 * Check PageSwapCache to determine if the page is being
2953 * handled by page reclaim since THP swap would add the page into
2954 * swap cache before calling try_to_unmap().
2955 */
2956 if (PageSwapCache(page))
2957 return;
2958
364c1eeb 2959 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2960 if (list_empty(page_deferred_list(page))) {
f9719a03 2961 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2962 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2963 ds_queue->split_queue_len++;
87eaceb3
YS
2964#ifdef CONFIG_MEMCG
2965 if (memcg)
2966 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2967 deferred_split_shrinker.id);
2968#endif
9a982250 2969 }
364c1eeb 2970 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2971}
2972
2973static unsigned long deferred_split_count(struct shrinker *shrink,
2974 struct shrink_control *sc)
2975{
a3d0a918 2976 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2977 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2978
2979#ifdef CONFIG_MEMCG
2980 if (sc->memcg)
2981 ds_queue = &sc->memcg->deferred_split_queue;
2982#endif
364c1eeb 2983 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2984}
2985
2986static unsigned long deferred_split_scan(struct shrinker *shrink,
2987 struct shrink_control *sc)
2988{
a3d0a918 2989 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2990 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2991 unsigned long flags;
2992 LIST_HEAD(list), *pos, *next;
2993 struct page *page;
2994 int split = 0;
2995
87eaceb3
YS
2996#ifdef CONFIG_MEMCG
2997 if (sc->memcg)
2998 ds_queue = &sc->memcg->deferred_split_queue;
2999#endif
3000
364c1eeb 3001 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 3002 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 3003 list_for_each_safe(pos, next, &ds_queue->split_queue) {
9a982250
KS
3004 page = list_entry((void *)pos, struct page, mapping);
3005 page = compound_head(page);
e3ae1953
KS
3006 if (get_page_unless_zero(page)) {
3007 list_move(page_deferred_list(page), &list);
3008 } else {
3009 /* We lost race with put_compound_page() */
9a982250 3010 list_del_init(page_deferred_list(page));
364c1eeb 3011 ds_queue->split_queue_len--;
9a982250 3012 }
e3ae1953
KS
3013 if (!--sc->nr_to_scan)
3014 break;
9a982250 3015 }
364c1eeb 3016 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
3017
3018 list_for_each_safe(pos, next, &list) {
3019 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
3020 if (!trylock_page(page))
3021 goto next;
9a982250
KS
3022 /* split_huge_page() removes page from list on success */
3023 if (!split_huge_page(page))
3024 split++;
3025 unlock_page(page);
fa41b900 3026next:
9a982250
KS
3027 put_page(page);
3028 }
3029
364c1eeb
YS
3030 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3031 list_splice_tail(&list, &ds_queue->split_queue);
3032 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 3033
cb8d68ec
KS
3034 /*
3035 * Stop shrinker if we didn't split any page, but the queue is empty.
3036 * This can happen if pages were freed under us.
3037 */
364c1eeb 3038 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
3039 return SHRINK_STOP;
3040 return split;
9a982250
KS
3041}
3042
3043static struct shrinker deferred_split_shrinker = {
3044 .count_objects = deferred_split_count,
3045 .scan_objects = deferred_split_scan,
3046 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
3047 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
3048 SHRINKER_NONSLAB,
9a982250 3049};
49071d43
KS
3050
3051#ifdef CONFIG_DEBUG_FS
3052static int split_huge_pages_set(void *data, u64 val)
3053{
3054 struct zone *zone;
3055 struct page *page;
3056 unsigned long pfn, max_zone_pfn;
3057 unsigned long total = 0, split = 0;
3058
3059 if (val != 1)
3060 return -EINVAL;
3061
3062 for_each_populated_zone(zone) {
3063 max_zone_pfn = zone_end_pfn(zone);
3064 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3065 if (!pfn_valid(pfn))
3066 continue;
3067
3068 page = pfn_to_page(pfn);
3069 if (!get_page_unless_zero(page))
3070 continue;
3071
3072 if (zone != page_zone(page))
3073 goto next;
3074
baa355fd 3075 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
3076 goto next;
3077
3078 total++;
3079 lock_page(page);
3080 if (!split_huge_page(page))
3081 split++;
3082 unlock_page(page);
3083next:
3084 put_page(page);
3085 }
3086 }
3087
145bdaa1 3088 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
3089
3090 return 0;
3091}
f1287869 3092DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
49071d43
KS
3093 "%llu\n");
3094
3095static int __init split_huge_pages_debugfs(void)
3096{
d9f7979c
GKH
3097 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3098 &split_huge_pages_fops);
49071d43
KS
3099 return 0;
3100}
3101late_initcall(split_huge_pages_debugfs);
3102#endif
616b8371
ZY
3103
3104#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3105void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3106 struct page *page)
3107{
3108 struct vm_area_struct *vma = pvmw->vma;
3109 struct mm_struct *mm = vma->vm_mm;
3110 unsigned long address = pvmw->address;
3111 pmd_t pmdval;
3112 swp_entry_t entry;
ab6e3d09 3113 pmd_t pmdswp;
616b8371
ZY
3114
3115 if (!(pvmw->pmd && !pvmw->pte))
3116 return;
3117
616b8371 3118 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 3119 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
3120 if (pmd_dirty(pmdval))
3121 set_page_dirty(page);
3122 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
3123 pmdswp = swp_entry_to_pmd(entry);
3124 if (pmd_soft_dirty(pmdval))
3125 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3126 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
3127 page_remove_rmap(page, true);
3128 put_page(page);
616b8371
ZY
3129}
3130
3131void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3132{
3133 struct vm_area_struct *vma = pvmw->vma;
3134 struct mm_struct *mm = vma->vm_mm;
3135 unsigned long address = pvmw->address;
3136 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3137 pmd_t pmde;
3138 swp_entry_t entry;
3139
3140 if (!(pvmw->pmd && !pvmw->pte))
3141 return;
3142
3143 entry = pmd_to_swp_entry(*pvmw->pmd);
3144 get_page(new);
3145 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
3146 if (pmd_swp_soft_dirty(*pvmw->pmd))
3147 pmde = pmd_mksoft_dirty(pmde);
616b8371 3148 if (is_write_migration_entry(entry))
f55e1014 3149 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
3150
3151 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
3152 if (PageAnon(new))
3153 page_add_anon_rmap(new, vma, mmun_start, true);
3154 else
3155 page_add_file_rmap(new, true);
616b8371 3156 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 3157 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
3158 mlock_vma_page(new);
3159 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3160}
3161#endif