]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
mm: memory: make numa_migrate_prep() non-static
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
fa6c0231 10#include <linux/sched/mm.h>
f7ccbae4 11#include <linux/sched/coredump.h>
6a3827d7 12#include <linux/sched/numa_balancing.h>
71e3aac0
AA
13#include <linux/highmem.h>
14#include <linux/hugetlb.h>
15#include <linux/mmu_notifier.h>
16#include <linux/rmap.h>
17#include <linux/swap.h>
97ae1749 18#include <linux/shrinker.h>
ba76149f 19#include <linux/mm_inline.h>
e9b61f19 20#include <linux/swapops.h>
4897c765 21#include <linux/dax.h>
ba76149f 22#include <linux/khugepaged.h>
878aee7d 23#include <linux/freezer.h>
f25748e3 24#include <linux/pfn_t.h>
a664b2d8 25#include <linux/mman.h>
3565fce3 26#include <linux/memremap.h>
325adeb5 27#include <linux/pagemap.h>
49071d43 28#include <linux/debugfs.h>
4daae3b4 29#include <linux/migrate.h>
43b5fbbd 30#include <linux/hashtable.h>
6b251fc9 31#include <linux/userfaultfd_k.h>
33c3fc71 32#include <linux/page_idle.h>
baa355fd 33#include <linux/shmem_fs.h>
6b31d595 34#include <linux/oom.h>
98fa15f3 35#include <linux/numa.h>
f7da677b 36#include <linux/page_owner.h>
97ae1749 37
71e3aac0
AA
38#include <asm/tlb.h>
39#include <asm/pgalloc.h>
40#include "internal.h"
41
ba76149f 42/*
b14d595a
MD
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
ba76149f 49 */
71e3aac0 50unsigned long transparent_hugepage_flags __read_mostly =
13ece886 51#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
53#endif
54#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56#endif
444eb2a4 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 60
9a982250 61static struct shrinker deferred_split_shrinker;
f000565a 62
97ae1749 63static atomic_t huge_zero_refcount;
56873f43 64struct page *huge_zero_page __read_mostly;
3b77e8c8 65unsigned long huge_zero_pfn __read_mostly = ~0UL;
4a6c1297 66
e6be37b2
ML
67static inline bool file_thp_enabled(struct vm_area_struct *vma)
68{
69 return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
70 !inode_is_open_for_write(vma->vm_file->f_inode) &&
71 (vma->vm_flags & VM_EXEC);
72}
73
74bool transparent_hugepage_active(struct vm_area_struct *vma)
7635d9cb 75{
c0630669
YS
76 /* The addr is used to check if the vma size fits */
77 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
78
79 if (!transhuge_vma_suitable(vma, addr))
80 return false;
7635d9cb
MH
81 if (vma_is_anonymous(vma))
82 return __transparent_hugepage_enabled(vma);
c0630669
YS
83 if (vma_is_shmem(vma))
84 return shmem_huge_enabled(vma);
e6be37b2
ML
85 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
86 return file_thp_enabled(vma);
7635d9cb
MH
87
88 return false;
89}
90
aaa9705b 91static bool get_huge_zero_page(void)
97ae1749
KS
92{
93 struct page *zero_page;
94retry:
95 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
aaa9705b 96 return true;
97ae1749
KS
97
98 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 99 HPAGE_PMD_ORDER);
d8a8e1f0
KS
100 if (!zero_page) {
101 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
aaa9705b 102 return false;
d8a8e1f0
KS
103 }
104 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 105 preempt_disable();
5918d10a 106 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 107 preempt_enable();
5ddacbe9 108 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
109 goto retry;
110 }
3b77e8c8 111 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
97ae1749
KS
112
113 /* We take additional reference here. It will be put back by shrinker */
114 atomic_set(&huge_zero_refcount, 2);
115 preempt_enable();
aaa9705b 116 return true;
4a6c1297
KS
117}
118
6fcb52a5 119static void put_huge_zero_page(void)
4a6c1297 120{
97ae1749
KS
121 /*
122 * Counter should never go to zero here. Only shrinker can put
123 * last reference.
124 */
125 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
126}
127
6fcb52a5
AL
128struct page *mm_get_huge_zero_page(struct mm_struct *mm)
129{
130 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
131 return READ_ONCE(huge_zero_page);
132
133 if (!get_huge_zero_page())
134 return NULL;
135
136 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
137 put_huge_zero_page();
138
139 return READ_ONCE(huge_zero_page);
140}
141
142void mm_put_huge_zero_page(struct mm_struct *mm)
143{
144 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
145 put_huge_zero_page();
146}
147
48896466
GC
148static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
149 struct shrink_control *sc)
4a6c1297 150{
48896466
GC
151 /* we can free zero page only if last reference remains */
152 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
153}
97ae1749 154
48896466
GC
155static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
156 struct shrink_control *sc)
157{
97ae1749 158 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
159 struct page *zero_page = xchg(&huge_zero_page, NULL);
160 BUG_ON(zero_page == NULL);
3b77e8c8 161 WRITE_ONCE(huge_zero_pfn, ~0UL);
5ddacbe9 162 __free_pages(zero_page, compound_order(zero_page));
48896466 163 return HPAGE_PMD_NR;
97ae1749
KS
164 }
165
166 return 0;
4a6c1297
KS
167}
168
97ae1749 169static struct shrinker huge_zero_page_shrinker = {
48896466
GC
170 .count_objects = shrink_huge_zero_page_count,
171 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
172 .seeks = DEFAULT_SEEKS,
173};
174
71e3aac0 175#ifdef CONFIG_SYSFS
71e3aac0
AA
176static ssize_t enabled_show(struct kobject *kobj,
177 struct kobj_attribute *attr, char *buf)
178{
bfb0ffeb
JP
179 const char *output;
180
444eb2a4 181 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
bfb0ffeb
JP
182 output = "[always] madvise never";
183 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
184 &transparent_hugepage_flags))
185 output = "always [madvise] never";
444eb2a4 186 else
bfb0ffeb
JP
187 output = "always madvise [never]";
188
189 return sysfs_emit(buf, "%s\n", output);
71e3aac0 190}
444eb2a4 191
71e3aac0
AA
192static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
195{
21440d7e 196 ssize_t ret = count;
ba76149f 197
f42f2552 198 if (sysfs_streq(buf, "always")) {
21440d7e
DR
199 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
200 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 201 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
202 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
203 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 204 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
205 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
206 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
207 } else
208 ret = -EINVAL;
ba76149f
AA
209
210 if (ret > 0) {
b46e756f 211 int err = start_stop_khugepaged();
ba76149f
AA
212 if (err)
213 ret = err;
214 }
ba76149f 215 return ret;
71e3aac0
AA
216}
217static struct kobj_attribute enabled_attr =
218 __ATTR(enabled, 0644, enabled_show, enabled_store);
219
b46e756f 220ssize_t single_hugepage_flag_show(struct kobject *kobj,
bfb0ffeb
JP
221 struct kobj_attribute *attr, char *buf,
222 enum transparent_hugepage_flag flag)
71e3aac0 223{
bfb0ffeb
JP
224 return sysfs_emit(buf, "%d\n",
225 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 226}
e27e6151 227
b46e756f 228ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
229 struct kobj_attribute *attr,
230 const char *buf, size_t count,
231 enum transparent_hugepage_flag flag)
232{
e27e6151
BH
233 unsigned long value;
234 int ret;
235
236 ret = kstrtoul(buf, 10, &value);
237 if (ret < 0)
238 return ret;
239 if (value > 1)
240 return -EINVAL;
241
242 if (value)
71e3aac0 243 set_bit(flag, &transparent_hugepage_flags);
e27e6151 244 else
71e3aac0 245 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
246
247 return count;
248}
249
71e3aac0
AA
250static ssize_t defrag_show(struct kobject *kobj,
251 struct kobj_attribute *attr, char *buf)
252{
bfb0ffeb
JP
253 const char *output;
254
255 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
256 &transparent_hugepage_flags))
257 output = "[always] defer defer+madvise madvise never";
258 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
259 &transparent_hugepage_flags))
260 output = "always [defer] defer+madvise madvise never";
261 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
262 &transparent_hugepage_flags))
263 output = "always defer [defer+madvise] madvise never";
264 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
265 &transparent_hugepage_flags))
266 output = "always defer defer+madvise [madvise] never";
267 else
268 output = "always defer defer+madvise madvise [never]";
269
270 return sysfs_emit(buf, "%s\n", output);
71e3aac0 271}
21440d7e 272
71e3aac0
AA
273static ssize_t defrag_store(struct kobject *kobj,
274 struct kobj_attribute *attr,
275 const char *buf, size_t count)
276{
f42f2552 277 if (sysfs_streq(buf, "always")) {
21440d7e
DR
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
281 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 282 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
283 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
284 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
286 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 287 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
289 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
290 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
291 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 292 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
293 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
294 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
295 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
296 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 297 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
298 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
299 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
300 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
301 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
302 } else
303 return -EINVAL;
304
305 return count;
71e3aac0
AA
306}
307static struct kobj_attribute defrag_attr =
308 __ATTR(defrag, 0644, defrag_show, defrag_store);
309
79da5407 310static ssize_t use_zero_page_show(struct kobject *kobj,
ae7a927d 311 struct kobj_attribute *attr, char *buf)
79da5407 312{
b46e756f 313 return single_hugepage_flag_show(kobj, attr, buf,
ae7a927d 314 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
79da5407
KS
315}
316static ssize_t use_zero_page_store(struct kobject *kobj,
317 struct kobj_attribute *attr, const char *buf, size_t count)
318{
b46e756f 319 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
320 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
321}
322static struct kobj_attribute use_zero_page_attr =
323 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
324
325static ssize_t hpage_pmd_size_show(struct kobject *kobj,
ae7a927d 326 struct kobj_attribute *attr, char *buf)
49920d28 327{
ae7a927d 328 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
49920d28
HD
329}
330static struct kobj_attribute hpage_pmd_size_attr =
331 __ATTR_RO(hpage_pmd_size);
332
71e3aac0
AA
333static struct attribute *hugepage_attr[] = {
334 &enabled_attr.attr,
335 &defrag_attr.attr,
79da5407 336 &use_zero_page_attr.attr,
49920d28 337 &hpage_pmd_size_attr.attr,
396bcc52 338#ifdef CONFIG_SHMEM
5a6e75f8 339 &shmem_enabled_attr.attr,
71e3aac0
AA
340#endif
341 NULL,
342};
343
8aa95a21 344static const struct attribute_group hugepage_attr_group = {
71e3aac0 345 .attrs = hugepage_attr,
ba76149f
AA
346};
347
569e5590 348static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 349{
71e3aac0
AA
350 int err;
351
569e5590
SL
352 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
353 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 354 pr_err("failed to create transparent hugepage kobject\n");
569e5590 355 return -ENOMEM;
ba76149f
AA
356 }
357
569e5590 358 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 359 if (err) {
ae3a8c1c 360 pr_err("failed to register transparent hugepage group\n");
569e5590 361 goto delete_obj;
ba76149f
AA
362 }
363
569e5590 364 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 365 if (err) {
ae3a8c1c 366 pr_err("failed to register transparent hugepage group\n");
569e5590 367 goto remove_hp_group;
ba76149f 368 }
569e5590
SL
369
370 return 0;
371
372remove_hp_group:
373 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
374delete_obj:
375 kobject_put(*hugepage_kobj);
376 return err;
377}
378
379static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
380{
381 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
382 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
383 kobject_put(hugepage_kobj);
384}
385#else
386static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
387{
388 return 0;
389}
390
391static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
392{
393}
394#endif /* CONFIG_SYSFS */
395
396static int __init hugepage_init(void)
397{
398 int err;
399 struct kobject *hugepage_kobj;
400
401 if (!has_transparent_hugepage()) {
bae84953
AK
402 /*
403 * Hardware doesn't support hugepages, hence disable
404 * DAX PMD support.
405 */
406 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
569e5590
SL
407 return -EINVAL;
408 }
409
ff20c2e0
KS
410 /*
411 * hugepages can't be allocated by the buddy allocator
412 */
413 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
414 /*
415 * we use page->mapping and page->index in second tail page
416 * as list_head: assuming THP order >= 2
417 */
418 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
419
569e5590
SL
420 err = hugepage_init_sysfs(&hugepage_kobj);
421 if (err)
65ebb64f 422 goto err_sysfs;
ba76149f 423
b46e756f 424 err = khugepaged_init();
ba76149f 425 if (err)
65ebb64f 426 goto err_slab;
ba76149f 427
65ebb64f
KS
428 err = register_shrinker(&huge_zero_page_shrinker);
429 if (err)
430 goto err_hzp_shrinker;
9a982250
KS
431 err = register_shrinker(&deferred_split_shrinker);
432 if (err)
433 goto err_split_shrinker;
97ae1749 434
97562cd2
RR
435 /*
436 * By default disable transparent hugepages on smaller systems,
437 * where the extra memory used could hurt more than TLB overhead
438 * is likely to save. The admin can still enable it through /sys.
439 */
ca79b0c2 440 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 441 transparent_hugepage_flags = 0;
79553da2
KS
442 return 0;
443 }
97562cd2 444
79553da2 445 err = start_stop_khugepaged();
65ebb64f
KS
446 if (err)
447 goto err_khugepaged;
ba76149f 448
569e5590 449 return 0;
65ebb64f 450err_khugepaged:
9a982250
KS
451 unregister_shrinker(&deferred_split_shrinker);
452err_split_shrinker:
65ebb64f
KS
453 unregister_shrinker(&huge_zero_page_shrinker);
454err_hzp_shrinker:
b46e756f 455 khugepaged_destroy();
65ebb64f 456err_slab:
569e5590 457 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 458err_sysfs:
ba76149f 459 return err;
71e3aac0 460}
a64fb3cd 461subsys_initcall(hugepage_init);
71e3aac0
AA
462
463static int __init setup_transparent_hugepage(char *str)
464{
465 int ret = 0;
466 if (!str)
467 goto out;
468 if (!strcmp(str, "always")) {
469 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 &transparent_hugepage_flags);
471 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 &transparent_hugepage_flags);
473 ret = 1;
474 } else if (!strcmp(str, "madvise")) {
475 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
476 &transparent_hugepage_flags);
477 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
478 &transparent_hugepage_flags);
479 ret = 1;
480 } else if (!strcmp(str, "never")) {
481 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
482 &transparent_hugepage_flags);
483 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
484 &transparent_hugepage_flags);
485 ret = 1;
486 }
487out:
488 if (!ret)
ae3a8c1c 489 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
490 return ret;
491}
492__setup("transparent_hugepage=", setup_transparent_hugepage);
493
f55e1014 494pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 495{
f55e1014 496 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
497 pmd = pmd_mkwrite(pmd);
498 return pmd;
499}
500
87eaceb3
YS
501#ifdef CONFIG_MEMCG
502static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 503{
bcfe06bf 504 struct mem_cgroup *memcg = page_memcg(compound_head(page));
87eaceb3
YS
505 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506
507 if (memcg)
508 return &memcg->deferred_split_queue;
509 else
510 return &pgdat->deferred_split_queue;
9a982250 511}
87eaceb3
YS
512#else
513static inline struct deferred_split *get_deferred_split_queue(struct page *page)
514{
515 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
516
517 return &pgdat->deferred_split_queue;
518}
519#endif
9a982250
KS
520
521void prep_transhuge_page(struct page *page)
522{
523 /*
524 * we use page->mapping and page->indexlru in second tail page
525 * as list_head: assuming THP order >= 2
526 */
9a982250
KS
527
528 INIT_LIST_HEAD(page_deferred_list(page));
529 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
530}
531
005ba37c
SC
532bool is_transparent_hugepage(struct page *page)
533{
534 if (!PageCompound(page))
fa1f68cc 535 return false;
005ba37c
SC
536
537 page = compound_head(page);
538 return is_huge_zero_page(page) ||
539 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
540}
541EXPORT_SYMBOL_GPL(is_transparent_hugepage);
542
97d3d0f9
KS
543static unsigned long __thp_get_unmapped_area(struct file *filp,
544 unsigned long addr, unsigned long len,
74d2fad1
TK
545 loff_t off, unsigned long flags, unsigned long size)
546{
74d2fad1
TK
547 loff_t off_end = off + len;
548 loff_t off_align = round_up(off, size);
97d3d0f9 549 unsigned long len_pad, ret;
74d2fad1
TK
550
551 if (off_end <= off_align || (off_end - off_align) < size)
552 return 0;
553
554 len_pad = len + size;
555 if (len_pad < len || (off + len_pad) < off)
556 return 0;
557
97d3d0f9 558 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 559 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
560
561 /*
562 * The failure might be due to length padding. The caller will retry
563 * without the padding.
564 */
565 if (IS_ERR_VALUE(ret))
74d2fad1
TK
566 return 0;
567
97d3d0f9
KS
568 /*
569 * Do not try to align to THP boundary if allocation at the address
570 * hint succeeds.
571 */
572 if (ret == addr)
573 return addr;
574
575 ret += (off - ret) & (size - 1);
576 return ret;
74d2fad1
TK
577}
578
579unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
580 unsigned long len, unsigned long pgoff, unsigned long flags)
581{
97d3d0f9 582 unsigned long ret;
74d2fad1
TK
583 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
584
74d2fad1
TK
585 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
586 goto out;
587
97d3d0f9
KS
588 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
589 if (ret)
590 return ret;
591out:
74d2fad1
TK
592 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
593}
594EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
595
2b740303
SJ
596static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
597 struct page *page, gfp_t gfp)
71e3aac0 598{
82b0f8c3 599 struct vm_area_struct *vma = vmf->vma;
71e3aac0 600 pgtable_t pgtable;
82b0f8c3 601 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 602 vm_fault_t ret = 0;
71e3aac0 603
309381fe 604 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 605
d9eb1ea2 606 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
6b251fc9
AA
607 put_page(page);
608 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 609 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
6b251fc9
AA
610 return VM_FAULT_FALLBACK;
611 }
9d82c694 612 cgroup_throttle_swaprate(page, gfp);
00501b53 613
4cf58924 614 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 615 if (unlikely(!pgtable)) {
6b31d595
MH
616 ret = VM_FAULT_OOM;
617 goto release;
00501b53 618 }
71e3aac0 619
c79b57e4 620 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
621 /*
622 * The memory barrier inside __SetPageUptodate makes sure that
623 * clear_huge_page writes become visible before the set_pmd_at()
624 * write.
625 */
71e3aac0
AA
626 __SetPageUptodate(page);
627
82b0f8c3
JK
628 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
629 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 630 goto unlock_release;
71e3aac0
AA
631 } else {
632 pmd_t entry;
6b251fc9 633
6b31d595
MH
634 ret = check_stable_address_space(vma->vm_mm);
635 if (ret)
636 goto unlock_release;
637
6b251fc9
AA
638 /* Deliver the page fault to userland */
639 if (userfaultfd_missing(vma)) {
82b0f8c3 640 spin_unlock(vmf->ptl);
6b251fc9 641 put_page(page);
bae473a4 642 pte_free(vma->vm_mm, pgtable);
8fd5eda4
ML
643 ret = handle_userfault(vmf, VM_UFFD_MISSING);
644 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
645 return ret;
6b251fc9
AA
646 }
647
3122359a 648 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 649 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 650 page_add_new_anon_rmap(page, vma, haddr, true);
b518154e 651 lru_cache_add_inactive_or_unevictable(page, vma);
82b0f8c3
JK
652 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
653 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
fca40573 654 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
bae473a4 655 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 656 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 657 spin_unlock(vmf->ptl);
6b251fc9 658 count_vm_event(THP_FAULT_ALLOC);
9d82c694 659 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
71e3aac0
AA
660 }
661
aa2e878e 662 return 0;
6b31d595
MH
663unlock_release:
664 spin_unlock(vmf->ptl);
665release:
666 if (pgtable)
667 pte_free(vma->vm_mm, pgtable);
6b31d595
MH
668 put_page(page);
669 return ret;
670
71e3aac0
AA
671}
672
444eb2a4 673/*
21440d7e
DR
674 * always: directly stall for all thp allocations
675 * defer: wake kswapd and fail if not immediately available
676 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
677 * fail if not immediately available
678 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
679 * available
680 * never: never stall for any thp allocation
444eb2a4 681 */
164cc4fe 682gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
444eb2a4 683{
164cc4fe 684 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
2f0799a0 685
ac79f78d 686 /* Always do synchronous compaction */
a8282608
AA
687 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
688 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
689
690 /* Kick kcompactd and fail quickly */
21440d7e 691 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 692 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
693
694 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 695 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
696 return GFP_TRANSHUGE_LIGHT |
697 (vma_madvised ? __GFP_DIRECT_RECLAIM :
698 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
699
700 /* Only do synchronous compaction if madvised */
21440d7e 701 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
702 return GFP_TRANSHUGE_LIGHT |
703 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 704
19deb769 705 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
706}
707
c4088ebd 708/* Caller must hold page table lock. */
2efeb8da 709static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 710 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 711 struct page *zero_page)
fc9fe822
KS
712{
713 pmd_t entry;
7c414164 714 if (!pmd_none(*pmd))
2efeb8da 715 return;
5918d10a 716 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 717 entry = pmd_mkhuge(entry);
12c9d70b
MW
718 if (pgtable)
719 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 720 set_pmd_at(mm, haddr, pmd, entry);
c4812909 721 mm_inc_nr_ptes(mm);
fc9fe822
KS
722}
723
2b740303 724vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 725{
82b0f8c3 726 struct vm_area_struct *vma = vmf->vma;
077fcf11 727 gfp_t gfp;
71e3aac0 728 struct page *page;
82b0f8c3 729 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 730
43675e6f 731 if (!transhuge_vma_suitable(vma, haddr))
c0292554 732 return VM_FAULT_FALLBACK;
128ec037
KS
733 if (unlikely(anon_vma_prepare(vma)))
734 return VM_FAULT_OOM;
6d50e60c 735 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 736 return VM_FAULT_OOM;
82b0f8c3 737 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 738 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
739 transparent_hugepage_use_zero_page()) {
740 pgtable_t pgtable;
741 struct page *zero_page;
2b740303 742 vm_fault_t ret;
4cf58924 743 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 744 if (unlikely(!pgtable))
ba76149f 745 return VM_FAULT_OOM;
6fcb52a5 746 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 747 if (unlikely(!zero_page)) {
bae473a4 748 pte_free(vma->vm_mm, pgtable);
81ab4201 749 count_vm_event(THP_FAULT_FALLBACK);
c0292554 750 return VM_FAULT_FALLBACK;
b9bbfbe3 751 }
82b0f8c3 752 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9 753 ret = 0;
82b0f8c3 754 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
755 ret = check_stable_address_space(vma->vm_mm);
756 if (ret) {
757 spin_unlock(vmf->ptl);
bfe8cc1d 758 pte_free(vma->vm_mm, pgtable);
6b31d595 759 } else if (userfaultfd_missing(vma)) {
82b0f8c3 760 spin_unlock(vmf->ptl);
bfe8cc1d 761 pte_free(vma->vm_mm, pgtable);
82b0f8c3 762 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
763 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
764 } else {
bae473a4 765 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3 766 haddr, vmf->pmd, zero_page);
fca40573 767 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
82b0f8c3 768 spin_unlock(vmf->ptl);
6b251fc9 769 }
bfe8cc1d 770 } else {
82b0f8c3 771 spin_unlock(vmf->ptl);
bae473a4 772 pte_free(vma->vm_mm, pgtable);
bfe8cc1d 773 }
6b251fc9 774 return ret;
71e3aac0 775 }
164cc4fe 776 gfp = vma_thp_gfp_mask(vma);
19deb769 777 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
778 if (unlikely(!page)) {
779 count_vm_event(THP_FAULT_FALLBACK);
c0292554 780 return VM_FAULT_FALLBACK;
128ec037 781 }
9a982250 782 prep_transhuge_page(page);
82b0f8c3 783 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
784}
785
ae18d6dc 786static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
787 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
788 pgtable_t pgtable)
5cad465d
MW
789{
790 struct mm_struct *mm = vma->vm_mm;
791 pmd_t entry;
792 spinlock_t *ptl;
793
794 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
795 if (!pmd_none(*pmd)) {
796 if (write) {
797 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
798 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
799 goto out_unlock;
800 }
801 entry = pmd_mkyoung(*pmd);
802 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
803 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
804 update_mmu_cache_pmd(vma, addr, pmd);
805 }
806
807 goto out_unlock;
808 }
809
f25748e3
DW
810 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
811 if (pfn_t_devmap(pfn))
812 entry = pmd_mkdevmap(entry);
01871e59 813 if (write) {
f55e1014
LT
814 entry = pmd_mkyoung(pmd_mkdirty(entry));
815 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 816 }
3b6521f5
OH
817
818 if (pgtable) {
819 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 820 mm_inc_nr_ptes(mm);
c6f3c5ee 821 pgtable = NULL;
3b6521f5
OH
822 }
823
01871e59
RZ
824 set_pmd_at(mm, addr, pmd, entry);
825 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
826
827out_unlock:
5cad465d 828 spin_unlock(ptl);
c6f3c5ee
AK
829 if (pgtable)
830 pte_free(mm, pgtable);
5cad465d
MW
831}
832
9a9731b1
THV
833/**
834 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
835 * @vmf: Structure describing the fault
836 * @pfn: pfn to insert
837 * @pgprot: page protection to use
838 * @write: whether it's a write fault
839 *
840 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
841 * also consult the vmf_insert_mixed_prot() documentation when
842 * @pgprot != @vmf->vma->vm_page_prot.
843 *
844 * Return: vm_fault_t value.
845 */
846vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
847 pgprot_t pgprot, bool write)
5cad465d 848{
fce86ff5
DW
849 unsigned long addr = vmf->address & PMD_MASK;
850 struct vm_area_struct *vma = vmf->vma;
3b6521f5 851 pgtable_t pgtable = NULL;
fce86ff5 852
5cad465d
MW
853 /*
854 * If we had pmd_special, we could avoid all these restrictions,
855 * but we need to be consistent with PTEs and architectures that
856 * can't support a 'special' bit.
857 */
e1fb4a08
DJ
858 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
859 !pfn_t_devmap(pfn));
5cad465d
MW
860 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
861 (VM_PFNMAP|VM_MIXEDMAP));
862 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
863
864 if (addr < vma->vm_start || addr >= vma->vm_end)
865 return VM_FAULT_SIGBUS;
308a047c 866
3b6521f5 867 if (arch_needs_pgtable_deposit()) {
4cf58924 868 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
869 if (!pgtable)
870 return VM_FAULT_OOM;
871 }
872
308a047c
BP
873 track_pfn_insert(vma, &pgprot, pfn);
874
fce86ff5 875 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 876 return VM_FAULT_NOPAGE;
5cad465d 877}
9a9731b1 878EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
5cad465d 879
a00cc7d9 880#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 881static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 882{
f55e1014 883 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
884 pud = pud_mkwrite(pud);
885 return pud;
886}
887
888static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
889 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
890{
891 struct mm_struct *mm = vma->vm_mm;
892 pud_t entry;
893 spinlock_t *ptl;
894
895 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
896 if (!pud_none(*pud)) {
897 if (write) {
898 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
899 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
900 goto out_unlock;
901 }
902 entry = pud_mkyoung(*pud);
903 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
904 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
905 update_mmu_cache_pud(vma, addr, pud);
906 }
907 goto out_unlock;
908 }
909
a00cc7d9
MW
910 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
911 if (pfn_t_devmap(pfn))
912 entry = pud_mkdevmap(entry);
913 if (write) {
f55e1014
LT
914 entry = pud_mkyoung(pud_mkdirty(entry));
915 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
916 }
917 set_pud_at(mm, addr, pud, entry);
918 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
919
920out_unlock:
a00cc7d9
MW
921 spin_unlock(ptl);
922}
923
9a9731b1
THV
924/**
925 * vmf_insert_pfn_pud_prot - insert a pud size pfn
926 * @vmf: Structure describing the fault
927 * @pfn: pfn to insert
928 * @pgprot: page protection to use
929 * @write: whether it's a write fault
930 *
931 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
932 * also consult the vmf_insert_mixed_prot() documentation when
933 * @pgprot != @vmf->vma->vm_page_prot.
934 *
935 * Return: vm_fault_t value.
936 */
937vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
938 pgprot_t pgprot, bool write)
a00cc7d9 939{
fce86ff5
DW
940 unsigned long addr = vmf->address & PUD_MASK;
941 struct vm_area_struct *vma = vmf->vma;
fce86ff5 942
a00cc7d9
MW
943 /*
944 * If we had pud_special, we could avoid all these restrictions,
945 * but we need to be consistent with PTEs and architectures that
946 * can't support a 'special' bit.
947 */
62ec0d8c
DJ
948 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
949 !pfn_t_devmap(pfn));
a00cc7d9
MW
950 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
951 (VM_PFNMAP|VM_MIXEDMAP));
952 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
953
954 if (addr < vma->vm_start || addr >= vma->vm_end)
955 return VM_FAULT_SIGBUS;
956
957 track_pfn_insert(vma, &pgprot, pfn);
958
fce86ff5 959 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
960 return VM_FAULT_NOPAGE;
961}
9a9731b1 962EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
a00cc7d9
MW
963#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
964
3565fce3 965static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 966 pmd_t *pmd, int flags)
3565fce3
DW
967{
968 pmd_t _pmd;
969
a8f97366
KS
970 _pmd = pmd_mkyoung(*pmd);
971 if (flags & FOLL_WRITE)
972 _pmd = pmd_mkdirty(_pmd);
3565fce3 973 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 974 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
975 update_mmu_cache_pmd(vma, addr, pmd);
976}
977
978struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 979 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
980{
981 unsigned long pfn = pmd_pfn(*pmd);
982 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
983 struct page *page;
984
985 assert_spin_locked(pmd_lockptr(mm, pmd));
986
8310d48b
KF
987 /*
988 * When we COW a devmap PMD entry, we split it into PTEs, so we should
989 * not be in this function with `flags & FOLL_COW` set.
990 */
991 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
992
3faa52c0
JH
993 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
994 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
995 (FOLL_PIN | FOLL_GET)))
996 return NULL;
997
f6f37321 998 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
999 return NULL;
1000
1001 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1002 /* pass */;
1003 else
1004 return NULL;
1005
1006 if (flags & FOLL_TOUCH)
a8f97366 1007 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
1008
1009 /*
1010 * device mapped pages can only be returned if the
1011 * caller will manage the page reference count.
1012 */
3faa52c0 1013 if (!(flags & (FOLL_GET | FOLL_PIN)))
3565fce3
DW
1014 return ERR_PTR(-EEXIST);
1015
1016 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1017 *pgmap = get_dev_pagemap(pfn, *pgmap);
1018 if (!*pgmap)
3565fce3
DW
1019 return ERR_PTR(-EFAULT);
1020 page = pfn_to_page(pfn);
3faa52c0
JH
1021 if (!try_grab_page(page, flags))
1022 page = ERR_PTR(-ENOMEM);
3565fce3
DW
1023
1024 return page;
1025}
1026
71e3aac0
AA
1027int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1028 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
8f34f1ea 1029 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
71e3aac0 1030{
c4088ebd 1031 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1032 struct page *src_page;
1033 pmd_t pmd;
12c9d70b 1034 pgtable_t pgtable = NULL;
628d47ce 1035 int ret = -ENOMEM;
71e3aac0 1036
628d47ce 1037 /* Skip if can be re-fill on fault */
8f34f1ea 1038 if (!vma_is_anonymous(dst_vma))
628d47ce
KS
1039 return 0;
1040
4cf58924 1041 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1042 if (unlikely(!pgtable))
1043 goto out;
71e3aac0 1044
c4088ebd
KS
1045 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1046 src_ptl = pmd_lockptr(src_mm, src_pmd);
1047 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1048
1049 ret = -EAGAIN;
1050 pmd = *src_pmd;
84c3fc4e
ZY
1051
1052#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1053 if (unlikely(is_swap_pmd(pmd))) {
1054 swp_entry_t entry = pmd_to_swp_entry(pmd);
1055
1056 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057 if (is_write_migration_entry(entry)) {
1058 make_migration_entry_read(&entry);
1059 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1060 if (pmd_swp_soft_dirty(*src_pmd))
1061 pmd = pmd_swp_mksoft_dirty(pmd);
8f34f1ea
PX
1062 if (pmd_swp_uffd_wp(*src_pmd))
1063 pmd = pmd_swp_mkuffd_wp(pmd);
84c3fc4e
ZY
1064 set_pmd_at(src_mm, addr, src_pmd, pmd);
1065 }
dd8a67f9 1066 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1067 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1068 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
8f34f1ea
PX
1069 if (!userfaultfd_wp(dst_vma))
1070 pmd = pmd_swp_clear_uffd_wp(pmd);
84c3fc4e
ZY
1071 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1072 ret = 0;
1073 goto out_unlock;
1074 }
1075#endif
1076
628d47ce 1077 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1078 pte_free(dst_mm, pgtable);
1079 goto out_unlock;
1080 }
fc9fe822 1081 /*
c4088ebd 1082 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1083 * under splitting since we don't split the page itself, only pmd to
1084 * a page table.
1085 */
1086 if (is_huge_zero_pmd(pmd)) {
97ae1749
KS
1087 /*
1088 * get_huge_zero_page() will never allocate a new page here,
1089 * since we already have a zero page to copy. It just takes a
1090 * reference.
1091 */
5fc7a5f6
PX
1092 mm_get_huge_zero_page(dst_mm);
1093 goto out_zero_page;
fc9fe822 1094 }
de466bd6 1095
628d47ce
KS
1096 src_page = pmd_page(pmd);
1097 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
d042035e
PX
1098
1099 /*
1100 * If this page is a potentially pinned page, split and retry the fault
1101 * with smaller page size. Normally this should not happen because the
1102 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1103 * best effort that the pinned pages won't be replaced by another
1104 * random page during the coming copy-on-write.
1105 */
8f34f1ea 1106 if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
d042035e
PX
1107 pte_free(dst_mm, pgtable);
1108 spin_unlock(src_ptl);
1109 spin_unlock(dst_ptl);
8f34f1ea 1110 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
d042035e
PX
1111 return -EAGAIN;
1112 }
1113
628d47ce
KS
1114 get_page(src_page);
1115 page_dup_rmap(src_page, true);
1116 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
5fc7a5f6 1117out_zero_page:
c4812909 1118 mm_inc_nr_ptes(dst_mm);
628d47ce 1119 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 1120 pmdp_set_wrprotect(src_mm, addr, src_pmd);
8f34f1ea
PX
1121 if (!userfaultfd_wp(dst_vma))
1122 pmd = pmd_clear_uffd_wp(pmd);
71e3aac0
AA
1123 pmd = pmd_mkold(pmd_wrprotect(pmd));
1124 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1125
1126 ret = 0;
1127out_unlock:
c4088ebd
KS
1128 spin_unlock(src_ptl);
1129 spin_unlock(dst_ptl);
71e3aac0
AA
1130out:
1131 return ret;
1132}
1133
a00cc7d9
MW
1134#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1135static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1136 pud_t *pud, int flags)
a00cc7d9
MW
1137{
1138 pud_t _pud;
1139
a8f97366
KS
1140 _pud = pud_mkyoung(*pud);
1141 if (flags & FOLL_WRITE)
1142 _pud = pud_mkdirty(_pud);
a00cc7d9 1143 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1144 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1145 update_mmu_cache_pud(vma, addr, pud);
1146}
1147
1148struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1149 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1150{
1151 unsigned long pfn = pud_pfn(*pud);
1152 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1153 struct page *page;
1154
1155 assert_spin_locked(pud_lockptr(mm, pud));
1156
f6f37321 1157 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1158 return NULL;
1159
3faa52c0
JH
1160 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1161 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1162 (FOLL_PIN | FOLL_GET)))
1163 return NULL;
1164
a00cc7d9
MW
1165 if (pud_present(*pud) && pud_devmap(*pud))
1166 /* pass */;
1167 else
1168 return NULL;
1169
1170 if (flags & FOLL_TOUCH)
a8f97366 1171 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1172
1173 /*
1174 * device mapped pages can only be returned if the
1175 * caller will manage the page reference count.
3faa52c0
JH
1176 *
1177 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
a00cc7d9 1178 */
3faa52c0 1179 if (!(flags & (FOLL_GET | FOLL_PIN)))
a00cc7d9
MW
1180 return ERR_PTR(-EEXIST);
1181
1182 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1183 *pgmap = get_dev_pagemap(pfn, *pgmap);
1184 if (!*pgmap)
a00cc7d9
MW
1185 return ERR_PTR(-EFAULT);
1186 page = pfn_to_page(pfn);
3faa52c0
JH
1187 if (!try_grab_page(page, flags))
1188 page = ERR_PTR(-ENOMEM);
a00cc7d9
MW
1189
1190 return page;
1191}
1192
1193int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1194 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1195 struct vm_area_struct *vma)
1196{
1197 spinlock_t *dst_ptl, *src_ptl;
1198 pud_t pud;
1199 int ret;
1200
1201 dst_ptl = pud_lock(dst_mm, dst_pud);
1202 src_ptl = pud_lockptr(src_mm, src_pud);
1203 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1204
1205 ret = -EAGAIN;
1206 pud = *src_pud;
1207 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1208 goto out_unlock;
1209
1210 /*
1211 * When page table lock is held, the huge zero pud should not be
1212 * under splitting since we don't split the page itself, only pud to
1213 * a page table.
1214 */
1215 if (is_huge_zero_pud(pud)) {
1216 /* No huge zero pud yet */
1217 }
1218
d042035e 1219 /* Please refer to comments in copy_huge_pmd() */
97a7e473 1220 if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
d042035e
PX
1221 spin_unlock(src_ptl);
1222 spin_unlock(dst_ptl);
1223 __split_huge_pud(vma, src_pud, addr);
1224 return -EAGAIN;
1225 }
1226
a00cc7d9
MW
1227 pudp_set_wrprotect(src_mm, addr, src_pud);
1228 pud = pud_mkold(pud_wrprotect(pud));
1229 set_pud_at(dst_mm, addr, dst_pud, pud);
1230
1231 ret = 0;
1232out_unlock:
1233 spin_unlock(src_ptl);
1234 spin_unlock(dst_ptl);
1235 return ret;
1236}
1237
1238void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1239{
1240 pud_t entry;
1241 unsigned long haddr;
1242 bool write = vmf->flags & FAULT_FLAG_WRITE;
1243
1244 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1245 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1246 goto unlock;
1247
1248 entry = pud_mkyoung(orig_pud);
1249 if (write)
1250 entry = pud_mkdirty(entry);
1251 haddr = vmf->address & HPAGE_PUD_MASK;
1252 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1253 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1254
1255unlock:
1256 spin_unlock(vmf->ptl);
1257}
1258#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1259
5db4f15c 1260void huge_pmd_set_accessed(struct vm_fault *vmf)
a1dd450b
WD
1261{
1262 pmd_t entry;
1263 unsigned long haddr;
20f664aa 1264 bool write = vmf->flags & FAULT_FLAG_WRITE;
5db4f15c 1265 pmd_t orig_pmd = vmf->orig_pmd;
a1dd450b 1266
82b0f8c3
JK
1267 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1268 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1269 goto unlock;
1270
1271 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1272 if (write)
1273 entry = pmd_mkdirty(entry);
82b0f8c3 1274 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1275 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1276 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1277
1278unlock:
82b0f8c3 1279 spin_unlock(vmf->ptl);
a1dd450b
WD
1280}
1281
5db4f15c 1282vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
71e3aac0 1283{
82b0f8c3 1284 struct vm_area_struct *vma = vmf->vma;
3917c802 1285 struct page *page;
82b0f8c3 1286 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
5db4f15c 1287 pmd_t orig_pmd = vmf->orig_pmd;
71e3aac0 1288
82b0f8c3 1289 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1290 VM_BUG_ON_VMA(!vma->anon_vma, vma);
3917c802 1291
93b4796d 1292 if (is_huge_zero_pmd(orig_pmd))
3917c802
KS
1293 goto fallback;
1294
82b0f8c3 1295 spin_lock(vmf->ptl);
3917c802
KS
1296
1297 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1298 spin_unlock(vmf->ptl);
1299 return 0;
1300 }
71e3aac0
AA
1301
1302 page = pmd_page(orig_pmd);
f6004e73 1303 VM_BUG_ON_PAGE(!PageHead(page), page);
3917c802
KS
1304
1305 /* Lock page for reuse_swap_page() */
ba3c4ce6
HY
1306 if (!trylock_page(page)) {
1307 get_page(page);
1308 spin_unlock(vmf->ptl);
1309 lock_page(page);
1310 spin_lock(vmf->ptl);
1311 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
3917c802 1312 spin_unlock(vmf->ptl);
ba3c4ce6
HY
1313 unlock_page(page);
1314 put_page(page);
3917c802 1315 return 0;
ba3c4ce6
HY
1316 }
1317 put_page(page);
1318 }
3917c802
KS
1319
1320 /*
1321 * We can only reuse the page if nobody else maps the huge page or it's
1322 * part.
1323 */
ba3c4ce6 1324 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1325 pmd_t entry;
1326 entry = pmd_mkyoung(orig_pmd);
f55e1014 1327 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3917c802 1328 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
82b0f8c3 1329 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
ba3c4ce6 1330 unlock_page(page);
82b0f8c3 1331 spin_unlock(vmf->ptl);
3917c802 1332 return VM_FAULT_WRITE;
71e3aac0 1333 }
3917c802
KS
1334
1335 unlock_page(page);
82b0f8c3 1336 spin_unlock(vmf->ptl);
3917c802
KS
1337fallback:
1338 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1339 return VM_FAULT_FALLBACK;
71e3aac0
AA
1340}
1341
8310d48b 1342/*
a308c71b
PX
1343 * FOLL_FORCE can write to even unwritable pmd's, but only
1344 * after we've gone through a COW cycle and they are dirty.
8310d48b
KF
1345 */
1346static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1347{
a308c71b
PX
1348 return pmd_write(pmd) ||
1349 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
8310d48b
KF
1350}
1351
b676b293 1352struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1353 unsigned long addr,
1354 pmd_t *pmd,
1355 unsigned int flags)
1356{
b676b293 1357 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1358 struct page *page = NULL;
1359
c4088ebd 1360 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1361
8310d48b 1362 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1363 goto out;
1364
85facf25
KS
1365 /* Avoid dumping huge zero page */
1366 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1367 return ERR_PTR(-EFAULT);
1368
2b4847e7 1369 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1370 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1371 goto out;
1372
71e3aac0 1373 page = pmd_page(*pmd);
ca120cf6 1374 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3faa52c0
JH
1375
1376 if (!try_grab_page(page, flags))
1377 return ERR_PTR(-ENOMEM);
1378
3565fce3 1379 if (flags & FOLL_TOUCH)
a8f97366 1380 touch_pmd(vma, addr, pmd, flags);
3faa52c0 1381
de60f5f1 1382 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1383 /*
1384 * We don't mlock() pte-mapped THPs. This way we can avoid
1385 * leaking mlocked pages into non-VM_LOCKED VMAs.
1386 *
9a73f61b
KS
1387 * For anon THP:
1388 *
e90309c9
KS
1389 * In most cases the pmd is the only mapping of the page as we
1390 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1391 * writable private mappings in populate_vma_page_range().
1392 *
1393 * The only scenario when we have the page shared here is if we
1394 * mlocking read-only mapping shared over fork(). We skip
1395 * mlocking such pages.
9a73f61b
KS
1396 *
1397 * For file THP:
1398 *
1399 * We can expect PageDoubleMap() to be stable under page lock:
1400 * for file pages we set it in page_add_file_rmap(), which
1401 * requires page to be locked.
e90309c9 1402 */
9a73f61b
KS
1403
1404 if (PageAnon(page) && compound_mapcount(page) != 1)
1405 goto skip_mlock;
1406 if (PageDoubleMap(page) || !page->mapping)
1407 goto skip_mlock;
1408 if (!trylock_page(page))
1409 goto skip_mlock;
9a73f61b
KS
1410 if (page->mapping && !PageDoubleMap(page))
1411 mlock_vma_page(page);
1412 unlock_page(page);
b676b293 1413 }
9a73f61b 1414skip_mlock:
71e3aac0 1415 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1416 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0
AA
1417
1418out:
1419 return page;
1420}
1421
d10e63f2 1422/* NUMA hinting page fault entry point for trans huge pmds */
5db4f15c 1423vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
d10e63f2 1424{
82b0f8c3 1425 struct vm_area_struct *vma = vmf->vma;
5db4f15c 1426 pmd_t pmd = vmf->orig_pmd;
b8916634 1427 struct anon_vma *anon_vma = NULL;
b32967ff 1428 struct page *page;
82b0f8c3 1429 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1430 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1431 int target_nid, last_cpupid = -1;
8191acbd
MG
1432 bool page_locked;
1433 bool migrated = false;
b191f9b1 1434 bool was_writable;
6688cc05 1435 int flags = 0;
d10e63f2 1436
82b0f8c3
JK
1437 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1438 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1439 goto out_unlock;
1440
de466bd6
MG
1441 /*
1442 * If there are potential migrations, wait for completion and retry
1443 * without disrupting NUMA hinting information. Do not relock and
1444 * check_same as the page may no longer be mapped.
1445 */
82b0f8c3
JK
1446 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1447 page = pmd_page(*vmf->pmd);
3c226c63
MR
1448 if (!get_page_unless_zero(page))
1449 goto out_unlock;
82b0f8c3 1450 spin_unlock(vmf->ptl);
48054625 1451 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
de466bd6
MG
1452 goto out;
1453 }
1454
d10e63f2 1455 page = pmd_page(pmd);
a1a46184 1456 BUG_ON(is_huge_zero_page(page));
8191acbd 1457 page_nid = page_to_nid(page);
90572890 1458 last_cpupid = page_cpupid_last(page);
03c5a6e1 1459 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1460 if (page_nid == this_nid) {
03c5a6e1 1461 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1462 flags |= TNF_FAULT_LOCAL;
1463 }
4daae3b4 1464
bea66fbd 1465 /* See similar comment in do_numa_page for explanation */
288bc549 1466 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1467 flags |= TNF_NO_GROUP;
1468
ff9042b1
MG
1469 /*
1470 * Acquire the page lock to serialise THP migrations but avoid dropping
1471 * page_table_lock if at all possible
1472 */
b8916634
MG
1473 page_locked = trylock_page(page);
1474 target_nid = mpol_misplaced(page, vma, haddr);
de466bd6 1475 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1476 if (!page_locked) {
98fa15f3 1477 page_nid = NUMA_NO_NODE;
3c226c63
MR
1478 if (!get_page_unless_zero(page))
1479 goto out_unlock;
82b0f8c3 1480 spin_unlock(vmf->ptl);
48054625 1481 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
b8916634 1482 goto out;
6beb5e8b
ML
1483 } else if (target_nid == NUMA_NO_NODE) {
1484 /* There are no parallel migrations and page is in the right
1485 * node. Clear the numa hinting info in this pmd.
1486 */
1487 goto clear_pmdnuma;
b8916634
MG
1488 }
1489
2b4847e7
MG
1490 /*
1491 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1492 * to serialises splits
1493 */
b8916634 1494 get_page(page);
82b0f8c3 1495 spin_unlock(vmf->ptl);
b8916634 1496 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1497
c69307d5 1498 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1499 spin_lock(vmf->ptl);
1500 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1501 unlock_page(page);
1502 put_page(page);
98fa15f3 1503 page_nid = NUMA_NO_NODE;
4daae3b4 1504 goto out_unlock;
b32967ff 1505 }
ff9042b1 1506
c3a489ca
MG
1507 /* Bail if we fail to protect against THP splits for any reason */
1508 if (unlikely(!anon_vma)) {
1509 put_page(page);
98fa15f3 1510 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1511 goto clear_pmdnuma;
1512 }
1513
8b1b436d
PZ
1514 /*
1515 * Since we took the NUMA fault, we must have observed the !accessible
1516 * bit. Make sure all other CPUs agree with that, to avoid them
1517 * modifying the page we're about to migrate.
1518 *
1519 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1520 * inc_tlb_flush_pending().
1521 *
1522 * We are not sure a pending tlb flush here is for a huge page
1523 * mapping or not. Hence use the tlb range variant
8b1b436d 1524 */
7066f0f9 1525 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1526 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1527 /*
1528 * change_huge_pmd() released the pmd lock before
1529 * invalidating the secondary MMUs sharing the primary
1530 * MMU pagetables (with ->invalidate_range()). The
1531 * mmu_notifier_invalidate_range_end() (which
1532 * internally calls ->invalidate_range()) in
1533 * change_pmd_range() will run after us, so we can't
1534 * rely on it here and we need an explicit invalidate.
1535 */
1536 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1537 haddr + HPAGE_PMD_SIZE);
1538 }
8b1b436d 1539
a54a407f
MG
1540 /*
1541 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1542 * and access rights restored.
a54a407f 1543 */
82b0f8c3 1544 spin_unlock(vmf->ptl);
8b1b436d 1545
bae473a4 1546 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1547 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1548 if (migrated) {
1549 flags |= TNF_MIGRATED;
8191acbd 1550 page_nid = target_nid;
074c2381
MG
1551 } else
1552 flags |= TNF_MIGRATE_FAIL;
b32967ff 1553
8191acbd 1554 goto out;
b32967ff 1555clear_pmdnuma:
a54a407f 1556 BUG_ON(!PageLocked(page));
288bc549 1557 was_writable = pmd_savedwrite(pmd);
4d942466 1558 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1559 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1560 if (was_writable)
1561 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1562 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1563 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1564 unlock_page(page);
d10e63f2 1565out_unlock:
82b0f8c3 1566 spin_unlock(vmf->ptl);
b8916634
MG
1567
1568out:
1569 if (anon_vma)
1570 page_unlock_anon_vma_read(anon_vma);
1571
98fa15f3 1572 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1573 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1574 flags);
8191acbd 1575
d10e63f2
MG
1576 return 0;
1577}
1578
319904ad
HY
1579/*
1580 * Return true if we do MADV_FREE successfully on entire pmd page.
1581 * Otherwise, return false.
1582 */
1583bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1584 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1585{
1586 spinlock_t *ptl;
1587 pmd_t orig_pmd;
1588 struct page *page;
1589 struct mm_struct *mm = tlb->mm;
319904ad 1590 bool ret = false;
b8d3c4c3 1591
ed6a7935 1592 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1593
b6ec57f4
KS
1594 ptl = pmd_trans_huge_lock(pmd, vma);
1595 if (!ptl)
25eedabe 1596 goto out_unlocked;
b8d3c4c3
MK
1597
1598 orig_pmd = *pmd;
319904ad 1599 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1600 goto out;
b8d3c4c3 1601
84c3fc4e
ZY
1602 if (unlikely(!pmd_present(orig_pmd))) {
1603 VM_BUG_ON(thp_migration_supported() &&
1604 !is_pmd_migration_entry(orig_pmd));
1605 goto out;
1606 }
1607
b8d3c4c3
MK
1608 page = pmd_page(orig_pmd);
1609 /*
1610 * If other processes are mapping this page, we couldn't discard
1611 * the page unless they all do MADV_FREE so let's skip the page.
1612 */
babbbdd0 1613 if (total_mapcount(page) != 1)
b8d3c4c3
MK
1614 goto out;
1615
1616 if (!trylock_page(page))
1617 goto out;
1618
1619 /*
1620 * If user want to discard part-pages of THP, split it so MADV_FREE
1621 * will deactivate only them.
1622 */
1623 if (next - addr != HPAGE_PMD_SIZE) {
1624 get_page(page);
1625 spin_unlock(ptl);
9818b8cd 1626 split_huge_page(page);
b8d3c4c3 1627 unlock_page(page);
bbf29ffc 1628 put_page(page);
b8d3c4c3
MK
1629 goto out_unlocked;
1630 }
1631
1632 if (PageDirty(page))
1633 ClearPageDirty(page);
1634 unlock_page(page);
1635
b8d3c4c3 1636 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1637 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1638 orig_pmd = pmd_mkold(orig_pmd);
1639 orig_pmd = pmd_mkclean(orig_pmd);
1640
1641 set_pmd_at(mm, addr, pmd, orig_pmd);
1642 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1643 }
802a3a92
SL
1644
1645 mark_page_lazyfree(page);
319904ad 1646 ret = true;
b8d3c4c3
MK
1647out:
1648 spin_unlock(ptl);
1649out_unlocked:
1650 return ret;
1651}
1652
953c66c2
AK
1653static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1654{
1655 pgtable_t pgtable;
1656
1657 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1658 pte_free(mm, pgtable);
c4812909 1659 mm_dec_nr_ptes(mm);
953c66c2
AK
1660}
1661
71e3aac0 1662int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1663 pmd_t *pmd, unsigned long addr)
71e3aac0 1664{
da146769 1665 pmd_t orig_pmd;
bf929152 1666 spinlock_t *ptl;
71e3aac0 1667
ed6a7935 1668 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1669
b6ec57f4
KS
1670 ptl = __pmd_trans_huge_lock(pmd, vma);
1671 if (!ptl)
da146769
KS
1672 return 0;
1673 /*
1674 * For architectures like ppc64 we look at deposited pgtable
1675 * when calling pmdp_huge_get_and_clear. So do the
1676 * pgtable_trans_huge_withdraw after finishing pmdp related
1677 * operations.
1678 */
93a98695
AK
1679 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1680 tlb->fullmm);
da146769 1681 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2484ca9b 1682 if (vma_is_special_huge(vma)) {
3b6521f5
OH
1683 if (arch_needs_pgtable_deposit())
1684 zap_deposited_table(tlb->mm, pmd);
da146769 1685 spin_unlock(ptl);
da146769 1686 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1687 zap_deposited_table(tlb->mm, pmd);
da146769 1688 spin_unlock(ptl);
da146769 1689 } else {
616b8371
ZY
1690 struct page *page = NULL;
1691 int flush_needed = 1;
1692
1693 if (pmd_present(orig_pmd)) {
1694 page = pmd_page(orig_pmd);
1695 page_remove_rmap(page, true);
1696 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1697 VM_BUG_ON_PAGE(!PageHead(page), page);
1698 } else if (thp_migration_supported()) {
1699 swp_entry_t entry;
1700
1701 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1702 entry = pmd_to_swp_entry(orig_pmd);
a44f89dc 1703 page = migration_entry_to_page(entry);
616b8371
ZY
1704 flush_needed = 0;
1705 } else
1706 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1707
b5072380 1708 if (PageAnon(page)) {
c14a6eb4 1709 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1710 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1711 } else {
953c66c2
AK
1712 if (arch_needs_pgtable_deposit())
1713 zap_deposited_table(tlb->mm, pmd);
fadae295 1714 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1715 }
616b8371 1716
da146769 1717 spin_unlock(ptl);
616b8371
ZY
1718 if (flush_needed)
1719 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1720 }
da146769 1721 return 1;
71e3aac0
AA
1722}
1723
1dd38b6c
AK
1724#ifndef pmd_move_must_withdraw
1725static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1726 spinlock_t *old_pmd_ptl,
1727 struct vm_area_struct *vma)
1728{
1729 /*
1730 * With split pmd lock we also need to move preallocated
1731 * PTE page table if new_pmd is on different PMD page table.
1732 *
1733 * We also don't deposit and withdraw tables for file pages.
1734 */
1735 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1736}
1737#endif
1738
ab6e3d09
NH
1739static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1740{
1741#ifdef CONFIG_MEM_SOFT_DIRTY
1742 if (unlikely(is_pmd_migration_entry(pmd)))
1743 pmd = pmd_swp_mksoft_dirty(pmd);
1744 else if (pmd_present(pmd))
1745 pmd = pmd_mksoft_dirty(pmd);
1746#endif
1747 return pmd;
1748}
1749
bf8616d5 1750bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
b8aa9d9d 1751 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1752{
bf929152 1753 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1754 pmd_t pmd;
37a1c49a 1755 struct mm_struct *mm = vma->vm_mm;
5d190420 1756 bool force_flush = false;
37a1c49a 1757
37a1c49a
AA
1758 /*
1759 * The destination pmd shouldn't be established, free_pgtables()
1760 * should have release it.
1761 */
1762 if (WARN_ON(!pmd_none(*new_pmd))) {
1763 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1764 return false;
37a1c49a
AA
1765 }
1766
bf929152
KS
1767 /*
1768 * We don't have to worry about the ordering of src and dst
c1e8d7c6 1769 * ptlocks because exclusive mmap_lock prevents deadlock.
bf929152 1770 */
b6ec57f4
KS
1771 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1772 if (old_ptl) {
bf929152
KS
1773 new_ptl = pmd_lockptr(mm, new_pmd);
1774 if (new_ptl != old_ptl)
1775 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1776 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1777 if (pmd_present(pmd))
a2ce2666 1778 force_flush = true;
025c5b24 1779 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1780
1dd38b6c 1781 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1782 pgtable_t pgtable;
3592806c
KS
1783 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1784 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1785 }
ab6e3d09
NH
1786 pmd = move_soft_dirty_pmd(pmd);
1787 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1788 if (force_flush)
1789 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1790 if (new_ptl != old_ptl)
1791 spin_unlock(new_ptl);
bf929152 1792 spin_unlock(old_ptl);
4b471e88 1793 return true;
37a1c49a 1794 }
4b471e88 1795 return false;
37a1c49a
AA
1796}
1797
f123d74a
MG
1798/*
1799 * Returns
1800 * - 0 if PMD could not be locked
f0953a1b
IM
1801 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1802 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
f123d74a 1803 */
cd7548ab 1804int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
58705444 1805 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
cd7548ab
JW
1806{
1807 struct mm_struct *mm = vma->vm_mm;
bf929152 1808 spinlock_t *ptl;
0a85e51d
KS
1809 pmd_t entry;
1810 bool preserve_write;
1811 int ret;
58705444 1812 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
292924b2
PX
1813 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1814 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
cd7548ab 1815
b6ec57f4 1816 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1817 if (!ptl)
1818 return 0;
e944fd67 1819
0a85e51d
KS
1820 preserve_write = prot_numa && pmd_write(*pmd);
1821 ret = 1;
e944fd67 1822
84c3fc4e
ZY
1823#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1824 if (is_swap_pmd(*pmd)) {
1825 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1826
1827 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1828 if (is_write_migration_entry(entry)) {
1829 pmd_t newpmd;
1830 /*
1831 * A protection check is difficult so
1832 * just be safe and disable write
1833 */
1834 make_migration_entry_read(&entry);
1835 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1836 if (pmd_swp_soft_dirty(*pmd))
1837 newpmd = pmd_swp_mksoft_dirty(newpmd);
8f34f1ea
PX
1838 if (pmd_swp_uffd_wp(*pmd))
1839 newpmd = pmd_swp_mkuffd_wp(newpmd);
84c3fc4e
ZY
1840 set_pmd_at(mm, addr, pmd, newpmd);
1841 }
1842 goto unlock;
1843 }
1844#endif
1845
0a85e51d
KS
1846 /*
1847 * Avoid trapping faults against the zero page. The read-only
1848 * data is likely to be read-cached on the local CPU and
1849 * local/remote hits to the zero page are not interesting.
1850 */
1851 if (prot_numa && is_huge_zero_pmd(*pmd))
1852 goto unlock;
025c5b24 1853
0a85e51d
KS
1854 if (prot_numa && pmd_protnone(*pmd))
1855 goto unlock;
1856
ced10803 1857 /*
3e4e28c5 1858 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
ced10803 1859 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
3e4e28c5 1860 * which is also under mmap_read_lock(mm):
ced10803
KS
1861 *
1862 * CPU0: CPU1:
1863 * change_huge_pmd(prot_numa=1)
1864 * pmdp_huge_get_and_clear_notify()
1865 * madvise_dontneed()
1866 * zap_pmd_range()
1867 * pmd_trans_huge(*pmd) == 0 (without ptl)
1868 * // skip the pmd
1869 * set_pmd_at();
1870 * // pmd is re-established
1871 *
1872 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1873 * which may break userspace.
1874 *
1875 * pmdp_invalidate() is required to make sure we don't miss
1876 * dirty/young flags set by hardware.
1877 */
a3cf988f 1878 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1879
0a85e51d
KS
1880 entry = pmd_modify(entry, newprot);
1881 if (preserve_write)
1882 entry = pmd_mk_savedwrite(entry);
292924b2
PX
1883 if (uffd_wp) {
1884 entry = pmd_wrprotect(entry);
1885 entry = pmd_mkuffd_wp(entry);
1886 } else if (uffd_wp_resolve) {
1887 /*
1888 * Leave the write bit to be handled by PF interrupt
1889 * handler, then things like COW could be properly
1890 * handled.
1891 */
1892 entry = pmd_clear_uffd_wp(entry);
1893 }
0a85e51d
KS
1894 ret = HPAGE_PMD_NR;
1895 set_pmd_at(mm, addr, pmd, entry);
1896 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1897unlock:
1898 spin_unlock(ptl);
025c5b24
NH
1899 return ret;
1900}
1901
1902/*
8f19b0c0 1903 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1904 *
8f19b0c0
HY
1905 * Note that if it returns page table lock pointer, this routine returns without
1906 * unlocking page table lock. So callers must unlock it.
025c5b24 1907 */
b6ec57f4 1908spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1909{
b6ec57f4
KS
1910 spinlock_t *ptl;
1911 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1912 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1913 pmd_devmap(*pmd)))
b6ec57f4
KS
1914 return ptl;
1915 spin_unlock(ptl);
1916 return NULL;
cd7548ab
JW
1917}
1918
a00cc7d9
MW
1919/*
1920 * Returns true if a given pud maps a thp, false otherwise.
1921 *
1922 * Note that if it returns true, this routine returns without unlocking page
1923 * table lock. So callers must unlock it.
1924 */
1925spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1926{
1927 spinlock_t *ptl;
1928
1929 ptl = pud_lock(vma->vm_mm, pud);
1930 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1931 return ptl;
1932 spin_unlock(ptl);
1933 return NULL;
1934}
1935
1936#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1937int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1938 pud_t *pud, unsigned long addr)
1939{
a00cc7d9
MW
1940 spinlock_t *ptl;
1941
1942 ptl = __pud_trans_huge_lock(pud, vma);
1943 if (!ptl)
1944 return 0;
1945 /*
1946 * For architectures like ppc64 we look at deposited pgtable
1947 * when calling pudp_huge_get_and_clear. So do the
1948 * pgtable_trans_huge_withdraw after finishing pudp related
1949 * operations.
1950 */
70516b93 1951 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9 1952 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2484ca9b 1953 if (vma_is_special_huge(vma)) {
a00cc7d9
MW
1954 spin_unlock(ptl);
1955 /* No zero page support yet */
1956 } else {
1957 /* No support for anonymous PUD pages yet */
1958 BUG();
1959 }
1960 return 1;
1961}
1962
1963static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1964 unsigned long haddr)
1965{
1966 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1967 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1968 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1969 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1970
ce9311cf 1971 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1972
1973 pudp_huge_clear_flush_notify(vma, haddr, pud);
1974}
1975
1976void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1977 unsigned long address)
1978{
1979 spinlock_t *ptl;
ac46d4f3 1980 struct mmu_notifier_range range;
a00cc7d9 1981
7269f999 1982 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1983 address & HPAGE_PUD_MASK,
ac46d4f3
JG
1984 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1985 mmu_notifier_invalidate_range_start(&range);
1986 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
1987 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1988 goto out;
ac46d4f3 1989 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
1990
1991out:
1992 spin_unlock(ptl);
4645b9fe
JG
1993 /*
1994 * No need to double call mmu_notifier->invalidate_range() callback as
1995 * the above pudp_huge_clear_flush_notify() did already call it.
1996 */
ac46d4f3 1997 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
1998}
1999#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2000
eef1b3ba
KS
2001static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2002 unsigned long haddr, pmd_t *pmd)
2003{
2004 struct mm_struct *mm = vma->vm_mm;
2005 pgtable_t pgtable;
2006 pmd_t _pmd;
2007 int i;
2008
0f10851e
JG
2009 /*
2010 * Leave pmd empty until pte is filled note that it is fine to delay
2011 * notification until mmu_notifier_invalidate_range_end() as we are
2012 * replacing a zero pmd write protected page with a zero pte write
2013 * protected page.
2014 *
ad56b738 2015 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2016 */
2017 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2018
2019 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2020 pmd_populate(mm, &_pmd, pgtable);
2021
2022 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2023 pte_t *pte, entry;
2024 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2025 entry = pte_mkspecial(entry);
2026 pte = pte_offset_map(&_pmd, haddr);
2027 VM_BUG_ON(!pte_none(*pte));
2028 set_pte_at(mm, haddr, pte, entry);
2029 pte_unmap(pte);
2030 }
2031 smp_wmb(); /* make pte visible before pmd */
2032 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2033}
2034
2035static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2036 unsigned long haddr, bool freeze)
eef1b3ba
KS
2037{
2038 struct mm_struct *mm = vma->vm_mm;
2039 struct page *page;
2040 pgtable_t pgtable;
423ac9af 2041 pmd_t old_pmd, _pmd;
292924b2 2042 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2ac015e2 2043 unsigned long addr;
eef1b3ba
KS
2044 int i;
2045
2046 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2047 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2048 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2049 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2050 && !pmd_devmap(*pmd));
eef1b3ba
KS
2051
2052 count_vm_event(THP_SPLIT_PMD);
2053
d21b9e57 2054 if (!vma_is_anonymous(vma)) {
99fa8a48 2055 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2056 /*
2057 * We are going to unmap this huge page. So
2058 * just go ahead and zap it
2059 */
2060 if (arch_needs_pgtable_deposit())
2061 zap_deposited_table(mm, pmd);
2484ca9b 2062 if (vma_is_special_huge(vma))
d21b9e57 2063 return;
99fa8a48
HD
2064 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2065 swp_entry_t entry;
2066
2067 entry = pmd_to_swp_entry(old_pmd);
2068 page = migration_entry_to_page(entry);
2069 } else {
2070 page = pmd_page(old_pmd);
2071 if (!PageDirty(page) && pmd_dirty(old_pmd))
2072 set_page_dirty(page);
2073 if (!PageReferenced(page) && pmd_young(old_pmd))
2074 SetPageReferenced(page);
2075 page_remove_rmap(page, true);
2076 put_page(page);
2077 }
fadae295 2078 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba 2079 return;
99fa8a48
HD
2080 }
2081
3b77e8c8 2082 if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2083 /*
2084 * FIXME: Do we want to invalidate secondary mmu by calling
2085 * mmu_notifier_invalidate_range() see comments below inside
2086 * __split_huge_pmd() ?
2087 *
2088 * We are going from a zero huge page write protected to zero
2089 * small page also write protected so it does not seems useful
2090 * to invalidate secondary mmu at this time.
2091 */
eef1b3ba
KS
2092 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2093 }
2094
423ac9af
AK
2095 /*
2096 * Up to this point the pmd is present and huge and userland has the
2097 * whole access to the hugepage during the split (which happens in
2098 * place). If we overwrite the pmd with the not-huge version pointing
2099 * to the pte here (which of course we could if all CPUs were bug
2100 * free), userland could trigger a small page size TLB miss on the
2101 * small sized TLB while the hugepage TLB entry is still established in
2102 * the huge TLB. Some CPU doesn't like that.
42742d9b
AK
2103 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2104 * 383 on page 105. Intel should be safe but is also warns that it's
423ac9af
AK
2105 * only safe if the permission and cache attributes of the two entries
2106 * loaded in the two TLB is identical (which should be the case here).
2107 * But it is generally safer to never allow small and huge TLB entries
2108 * for the same virtual address to be loaded simultaneously. So instead
2109 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2110 * current pmd notpresent (atomically because here the pmd_trans_huge
2111 * must remain set at all times on the pmd until the split is complete
2112 * for this pmd), then we flush the SMP TLB and finally we write the
2113 * non-huge version of the pmd entry with pmd_populate.
2114 */
2115 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2116
423ac9af 2117 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2118 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2119 swp_entry_t entry;
2120
423ac9af 2121 entry = pmd_to_swp_entry(old_pmd);
a44f89dc 2122 page = migration_entry_to_page(entry);
2e83ee1d
PX
2123 write = is_write_migration_entry(entry);
2124 young = false;
2125 soft_dirty = pmd_swp_soft_dirty(old_pmd);
f45ec5ff 2126 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2e83ee1d 2127 } else {
423ac9af 2128 page = pmd_page(old_pmd);
2e83ee1d
PX
2129 if (pmd_dirty(old_pmd))
2130 SetPageDirty(page);
2131 write = pmd_write(old_pmd);
2132 young = pmd_young(old_pmd);
2133 soft_dirty = pmd_soft_dirty(old_pmd);
292924b2 2134 uffd_wp = pmd_uffd_wp(old_pmd);
2e83ee1d 2135 }
eef1b3ba 2136 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2137 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2138
423ac9af
AK
2139 /*
2140 * Withdraw the table only after we mark the pmd entry invalid.
2141 * This's critical for some architectures (Power).
2142 */
eef1b3ba
KS
2143 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2144 pmd_populate(mm, &_pmd, pgtable);
2145
2ac015e2 2146 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2147 pte_t entry, *pte;
2148 /*
2149 * Note that NUMA hinting access restrictions are not
2150 * transferred to avoid any possibility of altering
2151 * permissions across VMAs.
2152 */
84c3fc4e 2153 if (freeze || pmd_migration) {
ba988280
KS
2154 swp_entry_t swp_entry;
2155 swp_entry = make_migration_entry(page + i, write);
2156 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2157 if (soft_dirty)
2158 entry = pte_swp_mksoft_dirty(entry);
f45ec5ff
PX
2159 if (uffd_wp)
2160 entry = pte_swp_mkuffd_wp(entry);
ba988280 2161 } else {
6d2329f8 2162 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2163 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2164 if (!write)
2165 entry = pte_wrprotect(entry);
2166 if (!young)
2167 entry = pte_mkold(entry);
804dd150
AA
2168 if (soft_dirty)
2169 entry = pte_mksoft_dirty(entry);
292924b2
PX
2170 if (uffd_wp)
2171 entry = pte_mkuffd_wp(entry);
ba988280 2172 }
2ac015e2 2173 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2174 BUG_ON(!pte_none(*pte));
2ac015e2 2175 set_pte_at(mm, addr, pte, entry);
ec0abae6 2176 if (!pmd_migration)
eef1b3ba 2177 atomic_inc(&page[i]._mapcount);
ec0abae6 2178 pte_unmap(pte);
eef1b3ba
KS
2179 }
2180
ec0abae6
RC
2181 if (!pmd_migration) {
2182 /*
2183 * Set PG_double_map before dropping compound_mapcount to avoid
2184 * false-negative page_mapped().
2185 */
2186 if (compound_mapcount(page) > 1 &&
2187 !TestSetPageDoubleMap(page)) {
eef1b3ba 2188 for (i = 0; i < HPAGE_PMD_NR; i++)
ec0abae6
RC
2189 atomic_inc(&page[i]._mapcount);
2190 }
2191
2192 lock_page_memcg(page);
2193 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2194 /* Last compound_mapcount is gone. */
69473e5d
MS
2195 __mod_lruvec_page_state(page, NR_ANON_THPS,
2196 -HPAGE_PMD_NR);
ec0abae6
RC
2197 if (TestClearPageDoubleMap(page)) {
2198 /* No need in mapcount reference anymore */
2199 for (i = 0; i < HPAGE_PMD_NR; i++)
2200 atomic_dec(&page[i]._mapcount);
2201 }
eef1b3ba 2202 }
ec0abae6 2203 unlock_page_memcg(page);
eef1b3ba
KS
2204 }
2205
2206 smp_wmb(); /* make pte visible before pmd */
2207 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2208
2209 if (freeze) {
2ac015e2 2210 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2211 page_remove_rmap(page + i, false);
2212 put_page(page + i);
2213 }
2214 }
eef1b3ba
KS
2215}
2216
2217void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2218 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2219{
2220 spinlock_t *ptl;
ac46d4f3 2221 struct mmu_notifier_range range;
1c2f6730 2222 bool do_unlock_page = false;
c444eb56 2223 pmd_t _pmd;
eef1b3ba 2224
7269f999 2225 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2226 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2227 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2228 mmu_notifier_invalidate_range_start(&range);
2229 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2230
2231 /*
2232 * If caller asks to setup a migration entries, we need a page to check
2233 * pmd against. Otherwise we can end up replacing wrong page.
2234 */
2235 VM_BUG_ON(freeze && !page);
c444eb56
AA
2236 if (page) {
2237 VM_WARN_ON_ONCE(!PageLocked(page));
c444eb56
AA
2238 if (page != pmd_page(*pmd))
2239 goto out;
2240 }
33f4751e 2241
c444eb56 2242repeat:
5c7fb56e 2243 if (pmd_trans_huge(*pmd)) {
c444eb56
AA
2244 if (!page) {
2245 page = pmd_page(*pmd);
1c2f6730
HD
2246 /*
2247 * An anonymous page must be locked, to ensure that a
2248 * concurrent reuse_swap_page() sees stable mapcount;
2249 * but reuse_swap_page() is not used on shmem or file,
2250 * and page lock must not be taken when zap_pmd_range()
2251 * calls __split_huge_pmd() while i_mmap_lock is held.
2252 */
2253 if (PageAnon(page)) {
2254 if (unlikely(!trylock_page(page))) {
2255 get_page(page);
2256 _pmd = *pmd;
2257 spin_unlock(ptl);
2258 lock_page(page);
2259 spin_lock(ptl);
2260 if (unlikely(!pmd_same(*pmd, _pmd))) {
2261 unlock_page(page);
2262 put_page(page);
2263 page = NULL;
2264 goto repeat;
2265 }
c444eb56 2266 put_page(page);
c444eb56 2267 }
1c2f6730 2268 do_unlock_page = true;
c444eb56
AA
2269 }
2270 }
5c7fb56e 2271 if (PageMlocked(page))
5f737714 2272 clear_page_mlock(page);
84c3fc4e 2273 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2274 goto out;
ac46d4f3 2275 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2276out:
eef1b3ba 2277 spin_unlock(ptl);
1c2f6730 2278 if (do_unlock_page)
c444eb56 2279 unlock_page(page);
4645b9fe
JG
2280 /*
2281 * No need to double call mmu_notifier->invalidate_range() callback.
2282 * They are 3 cases to consider inside __split_huge_pmd_locked():
2283 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2284 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2285 * fault will trigger a flush_notify before pointing to a new page
2286 * (it is fine if the secondary mmu keeps pointing to the old zero
2287 * page in the meantime)
2288 * 3) Split a huge pmd into pte pointing to the same page. No need
2289 * to invalidate secondary tlb entry they are all still valid.
2290 * any further changes to individual pte will notify. So no need
2291 * to call mmu_notifier->invalidate_range()
2292 */
ac46d4f3 2293 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2294}
2295
fec89c10
KS
2296void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2297 bool freeze, struct page *page)
94fcc585 2298{
f72e7dcd 2299 pgd_t *pgd;
c2febafc 2300 p4d_t *p4d;
f72e7dcd 2301 pud_t *pud;
94fcc585
AA
2302 pmd_t *pmd;
2303
78ddc534 2304 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2305 if (!pgd_present(*pgd))
2306 return;
2307
c2febafc
KS
2308 p4d = p4d_offset(pgd, address);
2309 if (!p4d_present(*p4d))
2310 return;
2311
2312 pud = pud_offset(p4d, address);
f72e7dcd
HD
2313 if (!pud_present(*pud))
2314 return;
2315
2316 pmd = pmd_offset(pud, address);
fec89c10 2317
33f4751e 2318 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2319}
2320
71f9e58e
ML
2321static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2322{
2323 /*
2324 * If the new address isn't hpage aligned and it could previously
2325 * contain an hugepage: check if we need to split an huge pmd.
2326 */
2327 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2328 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2329 ALIGN(address, HPAGE_PMD_SIZE)))
2330 split_huge_pmd_address(vma, address, false, NULL);
2331}
2332
e1b9996b 2333void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2334 unsigned long start,
2335 unsigned long end,
2336 long adjust_next)
2337{
71f9e58e
ML
2338 /* Check if we need to split start first. */
2339 split_huge_pmd_if_needed(vma, start);
94fcc585 2340
71f9e58e
ML
2341 /* Check if we need to split end next. */
2342 split_huge_pmd_if_needed(vma, end);
94fcc585
AA
2343
2344 /*
71f9e58e
ML
2345 * If we're also updating the vma->vm_next->vm_start,
2346 * check if we need to split it.
94fcc585
AA
2347 */
2348 if (adjust_next > 0) {
2349 struct vm_area_struct *next = vma->vm_next;
2350 unsigned long nstart = next->vm_start;
f9d86a60 2351 nstart += adjust_next;
71f9e58e 2352 split_huge_pmd_if_needed(next, nstart);
94fcc585
AA
2353 }
2354}
e9b61f19 2355
906f9cdf 2356static void unmap_page(struct page *page)
e9b61f19 2357{
732ed558 2358 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_SYNC |
c7ab0d2f 2359 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
e9b61f19
KS
2360
2361 VM_BUG_ON_PAGE(!PageHead(page), page);
2362
baa355fd 2363 if (PageAnon(page))
b5ff8161 2364 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2365
504e070d
YS
2366 try_to_unmap(page, ttu_flags);
2367
2368 VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
e9b61f19
KS
2369}
2370
8cce5475 2371static void remap_page(struct page *page, unsigned int nr)
e9b61f19 2372{
fec89c10 2373 int i;
ace71a19
KS
2374 if (PageTransHuge(page)) {
2375 remove_migration_ptes(page, page, true);
2376 } else {
8cce5475 2377 for (i = 0; i < nr; i++)
ace71a19
KS
2378 remove_migration_ptes(page + i, page + i, true);
2379 }
e9b61f19
KS
2380}
2381
94866635 2382static void lru_add_page_tail(struct page *head, struct page *tail,
88dcb9a3
AS
2383 struct lruvec *lruvec, struct list_head *list)
2384{
94866635
AS
2385 VM_BUG_ON_PAGE(!PageHead(head), head);
2386 VM_BUG_ON_PAGE(PageCompound(tail), head);
2387 VM_BUG_ON_PAGE(PageLRU(tail), head);
6168d0da 2388 lockdep_assert_held(&lruvec->lru_lock);
88dcb9a3 2389
6dbb5741 2390 if (list) {
88dcb9a3 2391 /* page reclaim is reclaiming a huge page */
6dbb5741 2392 VM_WARN_ON(PageLRU(head));
94866635
AS
2393 get_page(tail);
2394 list_add_tail(&tail->lru, list);
88dcb9a3 2395 } else {
6dbb5741
AS
2396 /* head is still on lru (and we have it frozen) */
2397 VM_WARN_ON(!PageLRU(head));
2398 SetPageLRU(tail);
2399 list_add_tail(&tail->lru, &head->lru);
88dcb9a3
AS
2400 }
2401}
2402
8df651c7 2403static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2404 struct lruvec *lruvec, struct list_head *list)
2405{
e9b61f19
KS
2406 struct page *page_tail = head + tail;
2407
8df651c7 2408 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2409
2410 /*
605ca5ed
KK
2411 * Clone page flags before unfreezing refcount.
2412 *
2413 * After successful get_page_unless_zero() might follow flags change,
8958b249 2414 * for example lock_page() which set PG_waiters.
e9b61f19 2415 */
e9b61f19
KS
2416 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2417 page_tail->flags |= (head->flags &
2418 ((1L << PG_referenced) |
2419 (1L << PG_swapbacked) |
38d8b4e6 2420 (1L << PG_swapcache) |
e9b61f19
KS
2421 (1L << PG_mlocked) |
2422 (1L << PG_uptodate) |
2423 (1L << PG_active) |
1899ad18 2424 (1L << PG_workingset) |
e9b61f19 2425 (1L << PG_locked) |
b8d3c4c3 2426 (1L << PG_unevictable) |
72e6afa0
CM
2427#ifdef CONFIG_64BIT
2428 (1L << PG_arch_2) |
2429#endif
b8d3c4c3 2430 (1L << PG_dirty)));
e9b61f19 2431
173d9d9f
HD
2432 /* ->mapping in first tail page is compound_mapcount */
2433 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2434 page_tail);
2435 page_tail->mapping = head->mapping;
2436 page_tail->index = head->index + tail;
2437
605ca5ed 2438 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2439 smp_wmb();
2440
605ca5ed
KK
2441 /*
2442 * Clear PageTail before unfreezing page refcount.
2443 *
2444 * After successful get_page_unless_zero() might follow put_page()
2445 * which needs correct compound_head().
2446 */
e9b61f19
KS
2447 clear_compound_head(page_tail);
2448
605ca5ed
KK
2449 /* Finally unfreeze refcount. Additional reference from page cache. */
2450 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2451 PageSwapCache(head)));
2452
e9b61f19
KS
2453 if (page_is_young(head))
2454 set_page_young(page_tail);
2455 if (page_is_idle(head))
2456 set_page_idle(page_tail);
2457
e9b61f19 2458 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2459
2460 /*
2461 * always add to the tail because some iterators expect new
2462 * pages to show after the currently processed elements - e.g.
2463 * migrate_pages
2464 */
e9b61f19 2465 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2466}
2467
baa355fd 2468static void __split_huge_page(struct page *page, struct list_head *list,
b6769834 2469 pgoff_t end)
e9b61f19
KS
2470{
2471 struct page *head = compound_head(page);
e9b61f19 2472 struct lruvec *lruvec;
4101196b
MWO
2473 struct address_space *swap_cache = NULL;
2474 unsigned long offset = 0;
8cce5475 2475 unsigned int nr = thp_nr_pages(head);
8df651c7 2476 int i;
e9b61f19 2477
e9b61f19 2478 /* complete memcg works before add pages to LRU */
be6c8982 2479 split_page_memcg(head, nr);
e9b61f19 2480
4101196b
MWO
2481 if (PageAnon(head) && PageSwapCache(head)) {
2482 swp_entry_t entry = { .val = page_private(head) };
2483
2484 offset = swp_offset(entry);
2485 swap_cache = swap_address_space(entry);
2486 xa_lock(&swap_cache->i_pages);
2487 }
2488
f0953a1b 2489 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
6168d0da 2490 lruvec = lock_page_lruvec(head);
b6769834 2491
8cce5475 2492 for (i = nr - 1; i >= 1; i--) {
8df651c7 2493 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2494 /* Some pages can be beyond i_size: drop them from page cache */
2495 if (head[i].index >= end) {
2d077d4b 2496 ClearPageDirty(head + i);
baa355fd 2497 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2498 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2499 shmem_uncharge(head->mapping->host, 1);
baa355fd 2500 put_page(head + i);
4101196b
MWO
2501 } else if (!PageAnon(page)) {
2502 __xa_store(&head->mapping->i_pages, head[i].index,
2503 head + i, 0);
2504 } else if (swap_cache) {
2505 __xa_store(&swap_cache->i_pages, offset + i,
2506 head + i, 0);
baa355fd
KS
2507 }
2508 }
e9b61f19
KS
2509
2510 ClearPageCompound(head);
6168d0da 2511 unlock_page_lruvec(lruvec);
b6769834 2512 /* Caller disabled irqs, so they are still disabled here */
f7da677b 2513
8cce5475 2514 split_page_owner(head, nr);
f7da677b 2515
baa355fd
KS
2516 /* See comment in __split_huge_page_tail() */
2517 if (PageAnon(head)) {
aa5dc07f 2518 /* Additional pin to swap cache */
4101196b 2519 if (PageSwapCache(head)) {
38d8b4e6 2520 page_ref_add(head, 2);
4101196b
MWO
2521 xa_unlock(&swap_cache->i_pages);
2522 } else {
38d8b4e6 2523 page_ref_inc(head);
4101196b 2524 }
baa355fd 2525 } else {
aa5dc07f 2526 /* Additional pin to page cache */
baa355fd 2527 page_ref_add(head, 2);
b93b0163 2528 xa_unlock(&head->mapping->i_pages);
baa355fd 2529 }
b6769834 2530 local_irq_enable();
e9b61f19 2531
8cce5475 2532 remap_page(head, nr);
e9b61f19 2533
c4f9c701
HY
2534 if (PageSwapCache(head)) {
2535 swp_entry_t entry = { .val = page_private(head) };
2536
2537 split_swap_cluster(entry);
2538 }
2539
8cce5475 2540 for (i = 0; i < nr; i++) {
e9b61f19
KS
2541 struct page *subpage = head + i;
2542 if (subpage == page)
2543 continue;
2544 unlock_page(subpage);
2545
2546 /*
2547 * Subpages may be freed if there wasn't any mapping
2548 * like if add_to_swap() is running on a lru page that
2549 * had its mapping zapped. And freeing these pages
2550 * requires taking the lru_lock so we do the put_page
2551 * of the tail pages after the split is complete.
2552 */
2553 put_page(subpage);
2554 }
2555}
2556
b20ce5e0
KS
2557int total_mapcount(struct page *page)
2558{
86b562b6 2559 int i, compound, nr, ret;
b20ce5e0
KS
2560
2561 VM_BUG_ON_PAGE(PageTail(page), page);
2562
2563 if (likely(!PageCompound(page)))
2564 return atomic_read(&page->_mapcount) + 1;
2565
dd78fedd 2566 compound = compound_mapcount(page);
86b562b6 2567 nr = compound_nr(page);
b20ce5e0 2568 if (PageHuge(page))
dd78fedd
KS
2569 return compound;
2570 ret = compound;
86b562b6 2571 for (i = 0; i < nr; i++)
b20ce5e0 2572 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2573 /* File pages has compound_mapcount included in _mapcount */
2574 if (!PageAnon(page))
86b562b6 2575 return ret - compound * nr;
b20ce5e0 2576 if (PageDoubleMap(page))
86b562b6 2577 ret -= nr;
b20ce5e0
KS
2578 return ret;
2579}
2580
6d0a07ed
AA
2581/*
2582 * This calculates accurately how many mappings a transparent hugepage
2583 * has (unlike page_mapcount() which isn't fully accurate). This full
2584 * accuracy is primarily needed to know if copy-on-write faults can
2585 * reuse the page and change the mapping to read-write instead of
2586 * copying them. At the same time this returns the total_mapcount too.
2587 *
2588 * The function returns the highest mapcount any one of the subpages
2589 * has. If the return value is one, even if different processes are
2590 * mapping different subpages of the transparent hugepage, they can
2591 * all reuse it, because each process is reusing a different subpage.
2592 *
2593 * The total_mapcount is instead counting all virtual mappings of the
2594 * subpages. If the total_mapcount is equal to "one", it tells the
2595 * caller all mappings belong to the same "mm" and in turn the
2596 * anon_vma of the transparent hugepage can become the vma->anon_vma
2597 * local one as no other process may be mapping any of the subpages.
2598 *
2599 * It would be more accurate to replace page_mapcount() with
2600 * page_trans_huge_mapcount(), however we only use
2601 * page_trans_huge_mapcount() in the copy-on-write faults where we
2602 * need full accuracy to avoid breaking page pinning, because
2603 * page_trans_huge_mapcount() is slower than page_mapcount().
2604 */
2605int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2606{
2607 int i, ret, _total_mapcount, mapcount;
2608
2609 /* hugetlbfs shouldn't call it */
2610 VM_BUG_ON_PAGE(PageHuge(page), page);
2611
2612 if (likely(!PageTransCompound(page))) {
2613 mapcount = atomic_read(&page->_mapcount) + 1;
2614 if (total_mapcount)
2615 *total_mapcount = mapcount;
2616 return mapcount;
2617 }
2618
2619 page = compound_head(page);
2620
2621 _total_mapcount = ret = 0;
65dfe3c3 2622 for (i = 0; i < thp_nr_pages(page); i++) {
6d0a07ed
AA
2623 mapcount = atomic_read(&page[i]._mapcount) + 1;
2624 ret = max(ret, mapcount);
2625 _total_mapcount += mapcount;
2626 }
2627 if (PageDoubleMap(page)) {
2628 ret -= 1;
65dfe3c3 2629 _total_mapcount -= thp_nr_pages(page);
6d0a07ed
AA
2630 }
2631 mapcount = compound_mapcount(page);
2632 ret += mapcount;
2633 _total_mapcount += mapcount;
2634 if (total_mapcount)
2635 *total_mapcount = _total_mapcount;
2636 return ret;
2637}
2638
b8f593cd
HY
2639/* Racy check whether the huge page can be split */
2640bool can_split_huge_page(struct page *page, int *pextra_pins)
2641{
2642 int extra_pins;
2643
aa5dc07f 2644 /* Additional pins from page cache */
b8f593cd 2645 if (PageAnon(page))
e2333dad 2646 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
b8f593cd 2647 else
e2333dad 2648 extra_pins = thp_nr_pages(page);
b8f593cd
HY
2649 if (pextra_pins)
2650 *pextra_pins = extra_pins;
2651 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2652}
2653
e9b61f19
KS
2654/*
2655 * This function splits huge page into normal pages. @page can point to any
2656 * subpage of huge page to split. Split doesn't change the position of @page.
2657 *
2658 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2659 * The huge page must be locked.
2660 *
2661 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2662 *
2663 * Both head page and tail pages will inherit mapping, flags, and so on from
2664 * the hugepage.
2665 *
2666 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2667 * they are not mapped.
2668 *
2669 * Returns 0 if the hugepage is split successfully.
2670 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2671 * us.
2672 */
2673int split_huge_page_to_list(struct page *page, struct list_head *list)
2674{
2675 struct page *head = compound_head(page);
a8803e6c 2676 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2677 struct anon_vma *anon_vma = NULL;
2678 struct address_space *mapping = NULL;
504e070d 2679 int extra_pins, ret;
006d3ff2 2680 pgoff_t end;
e9b61f19 2681
cb829624 2682 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2683 VM_BUG_ON_PAGE(!PageLocked(head), head);
2684 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2685
a8803e6c 2686 if (PageWriteback(head))
59807685
HY
2687 return -EBUSY;
2688
baa355fd
KS
2689 if (PageAnon(head)) {
2690 /*
c1e8d7c6 2691 * The caller does not necessarily hold an mmap_lock that would
baa355fd
KS
2692 * prevent the anon_vma disappearing so we first we take a
2693 * reference to it and then lock the anon_vma for write. This
2694 * is similar to page_lock_anon_vma_read except the write lock
2695 * is taken to serialise against parallel split or collapse
2696 * operations.
2697 */
2698 anon_vma = page_get_anon_vma(head);
2699 if (!anon_vma) {
2700 ret = -EBUSY;
2701 goto out;
2702 }
006d3ff2 2703 end = -1;
baa355fd
KS
2704 mapping = NULL;
2705 anon_vma_lock_write(anon_vma);
2706 } else {
2707 mapping = head->mapping;
2708
2709 /* Truncated ? */
2710 if (!mapping) {
2711 ret = -EBUSY;
2712 goto out;
2713 }
2714
baa355fd
KS
2715 anon_vma = NULL;
2716 i_mmap_lock_read(mapping);
006d3ff2
HD
2717
2718 /*
2719 *__split_huge_page() may need to trim off pages beyond EOF:
2720 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2721 * which cannot be nested inside the page tree lock. So note
2722 * end now: i_size itself may be changed at any moment, but
2723 * head page lock is good enough to serialize the trimming.
2724 */
2725 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2726 }
e9b61f19
KS
2727
2728 /*
906f9cdf 2729 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2730 * split PMDs
2731 */
b8f593cd 2732 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2733 ret = -EBUSY;
2734 goto out_unlock;
2735 }
2736
906f9cdf 2737 unmap_page(head);
e9b61f19 2738
b6769834
AS
2739 /* block interrupt reentry in xa_lock and spinlock */
2740 local_irq_disable();
baa355fd 2741 if (mapping) {
aa5dc07f 2742 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2743
baa355fd 2744 /*
aa5dc07f 2745 * Check if the head page is present in page cache.
baa355fd
KS
2746 * We assume all tail are present too, if head is there.
2747 */
aa5dc07f
MW
2748 xa_lock(&mapping->i_pages);
2749 if (xas_load(&xas) != head)
baa355fd
KS
2750 goto fail;
2751 }
2752
0139aa7b 2753 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2754 spin_lock(&ds_queue->split_queue_lock);
504e070d 2755 if (page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2756 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2757 ds_queue->split_queue_len--;
9a982250
KS
2758 list_del(page_deferred_list(head));
2759 }
afb97172 2760 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2761 if (mapping) {
bf9ecead
MS
2762 int nr = thp_nr_pages(head);
2763
a8803e6c 2764 if (PageSwapBacked(head))
57b2847d
MS
2765 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2766 -nr);
06d3eff6 2767 else
bf9ecead
MS
2768 __mod_lruvec_page_state(head, NR_FILE_THPS,
2769 -nr);
06d3eff6
KS
2770 }
2771
b6769834 2772 __split_huge_page(page, list, end);
c4f9c701 2773 ret = 0;
e9b61f19 2774 } else {
364c1eeb 2775 spin_unlock(&ds_queue->split_queue_lock);
504e070d
YS
2776fail:
2777 if (mapping)
b93b0163 2778 xa_unlock(&mapping->i_pages);
b6769834 2779 local_irq_enable();
8cce5475 2780 remap_page(head, thp_nr_pages(head));
e9b61f19
KS
2781 ret = -EBUSY;
2782 }
2783
2784out_unlock:
baa355fd
KS
2785 if (anon_vma) {
2786 anon_vma_unlock_write(anon_vma);
2787 put_anon_vma(anon_vma);
2788 }
2789 if (mapping)
2790 i_mmap_unlock_read(mapping);
e9b61f19
KS
2791out:
2792 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2793 return ret;
2794}
9a982250
KS
2795
2796void free_transhuge_page(struct page *page)
2797{
87eaceb3 2798 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2799 unsigned long flags;
2800
364c1eeb 2801 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2802 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2803 ds_queue->split_queue_len--;
9a982250
KS
2804 list_del(page_deferred_list(page));
2805 }
364c1eeb 2806 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2807 free_compound_page(page);
2808}
2809
2810void deferred_split_huge_page(struct page *page)
2811{
87eaceb3
YS
2812 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2813#ifdef CONFIG_MEMCG
bcfe06bf 2814 struct mem_cgroup *memcg = page_memcg(compound_head(page));
87eaceb3 2815#endif
9a982250
KS
2816 unsigned long flags;
2817
2818 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2819
87eaceb3
YS
2820 /*
2821 * The try_to_unmap() in page reclaim path might reach here too,
2822 * this may cause a race condition to corrupt deferred split queue.
2823 * And, if page reclaim is already handling the same page, it is
2824 * unnecessary to handle it again in shrinker.
2825 *
2826 * Check PageSwapCache to determine if the page is being
2827 * handled by page reclaim since THP swap would add the page into
2828 * swap cache before calling try_to_unmap().
2829 */
2830 if (PageSwapCache(page))
2831 return;
2832
364c1eeb 2833 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2834 if (list_empty(page_deferred_list(page))) {
f9719a03 2835 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2836 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2837 ds_queue->split_queue_len++;
87eaceb3
YS
2838#ifdef CONFIG_MEMCG
2839 if (memcg)
2bfd3637
YS
2840 set_shrinker_bit(memcg, page_to_nid(page),
2841 deferred_split_shrinker.id);
87eaceb3 2842#endif
9a982250 2843 }
364c1eeb 2844 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2845}
2846
2847static unsigned long deferred_split_count(struct shrinker *shrink,
2848 struct shrink_control *sc)
2849{
a3d0a918 2850 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2851 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2852
2853#ifdef CONFIG_MEMCG
2854 if (sc->memcg)
2855 ds_queue = &sc->memcg->deferred_split_queue;
2856#endif
364c1eeb 2857 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2858}
2859
2860static unsigned long deferred_split_scan(struct shrinker *shrink,
2861 struct shrink_control *sc)
2862{
a3d0a918 2863 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2864 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2865 unsigned long flags;
2866 LIST_HEAD(list), *pos, *next;
2867 struct page *page;
2868 int split = 0;
2869
87eaceb3
YS
2870#ifdef CONFIG_MEMCG
2871 if (sc->memcg)
2872 ds_queue = &sc->memcg->deferred_split_queue;
2873#endif
2874
364c1eeb 2875 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2876 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2877 list_for_each_safe(pos, next, &ds_queue->split_queue) {
dfe5c51c 2878 page = list_entry((void *)pos, struct page, deferred_list);
9a982250 2879 page = compound_head(page);
e3ae1953
KS
2880 if (get_page_unless_zero(page)) {
2881 list_move(page_deferred_list(page), &list);
2882 } else {
2883 /* We lost race with put_compound_page() */
9a982250 2884 list_del_init(page_deferred_list(page));
364c1eeb 2885 ds_queue->split_queue_len--;
9a982250 2886 }
e3ae1953
KS
2887 if (!--sc->nr_to_scan)
2888 break;
9a982250 2889 }
364c1eeb 2890 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2891
2892 list_for_each_safe(pos, next, &list) {
dfe5c51c 2893 page = list_entry((void *)pos, struct page, deferred_list);
fa41b900
KS
2894 if (!trylock_page(page))
2895 goto next;
9a982250
KS
2896 /* split_huge_page() removes page from list on success */
2897 if (!split_huge_page(page))
2898 split++;
2899 unlock_page(page);
fa41b900 2900next:
9a982250
KS
2901 put_page(page);
2902 }
2903
364c1eeb
YS
2904 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2905 list_splice_tail(&list, &ds_queue->split_queue);
2906 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 2907
cb8d68ec
KS
2908 /*
2909 * Stop shrinker if we didn't split any page, but the queue is empty.
2910 * This can happen if pages were freed under us.
2911 */
364c1eeb 2912 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
2913 return SHRINK_STOP;
2914 return split;
9a982250
KS
2915}
2916
2917static struct shrinker deferred_split_shrinker = {
2918 .count_objects = deferred_split_count,
2919 .scan_objects = deferred_split_scan,
2920 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
2921 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2922 SHRINKER_NONSLAB,
9a982250 2923};
49071d43
KS
2924
2925#ifdef CONFIG_DEBUG_FS
fa6c0231 2926static void split_huge_pages_all(void)
49071d43
KS
2927{
2928 struct zone *zone;
2929 struct page *page;
2930 unsigned long pfn, max_zone_pfn;
2931 unsigned long total = 0, split = 0;
2932
fa6c0231 2933 pr_debug("Split all THPs\n");
49071d43
KS
2934 for_each_populated_zone(zone) {
2935 max_zone_pfn = zone_end_pfn(zone);
2936 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2937 if (!pfn_valid(pfn))
2938 continue;
2939
2940 page = pfn_to_page(pfn);
2941 if (!get_page_unless_zero(page))
2942 continue;
2943
2944 if (zone != page_zone(page))
2945 goto next;
2946
baa355fd 2947 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2948 goto next;
2949
2950 total++;
2951 lock_page(page);
2952 if (!split_huge_page(page))
2953 split++;
2954 unlock_page(page);
2955next:
2956 put_page(page);
fa6c0231 2957 cond_resched();
49071d43
KS
2958 }
2959 }
2960
fa6c0231
ZY
2961 pr_debug("%lu of %lu THP split\n", split, total);
2962}
49071d43 2963
fa6c0231
ZY
2964static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2965{
2966 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2967 is_vm_hugetlb_page(vma);
2968}
2969
2970static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2971 unsigned long vaddr_end)
2972{
2973 int ret = 0;
2974 struct task_struct *task;
2975 struct mm_struct *mm;
2976 unsigned long total = 0, split = 0;
2977 unsigned long addr;
2978
2979 vaddr_start &= PAGE_MASK;
2980 vaddr_end &= PAGE_MASK;
2981
2982 /* Find the task_struct from pid */
2983 rcu_read_lock();
2984 task = find_task_by_vpid(pid);
2985 if (!task) {
2986 rcu_read_unlock();
2987 ret = -ESRCH;
2988 goto out;
2989 }
2990 get_task_struct(task);
2991 rcu_read_unlock();
2992
2993 /* Find the mm_struct */
2994 mm = get_task_mm(task);
2995 put_task_struct(task);
2996
2997 if (!mm) {
2998 ret = -EINVAL;
2999 goto out;
3000 }
3001
3002 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3003 pid, vaddr_start, vaddr_end);
3004
3005 mmap_read_lock(mm);
3006 /*
3007 * always increase addr by PAGE_SIZE, since we could have a PTE page
3008 * table filled with PTE-mapped THPs, each of which is distinct.
3009 */
3010 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3011 struct vm_area_struct *vma = find_vma(mm, addr);
3012 unsigned int follflags;
3013 struct page *page;
3014
3015 if (!vma || addr < vma->vm_start)
3016 break;
3017
3018 /* skip special VMA and hugetlb VMA */
3019 if (vma_not_suitable_for_thp_split(vma)) {
3020 addr = vma->vm_end;
3021 continue;
3022 }
3023
3024 /* FOLL_DUMP to ignore special (like zero) pages */
3025 follflags = FOLL_GET | FOLL_DUMP;
3026 page = follow_page(vma, addr, follflags);
3027
3028 if (IS_ERR(page))
3029 continue;
3030 if (!page)
3031 continue;
3032
3033 if (!is_transparent_hugepage(page))
3034 goto next;
3035
3036 total++;
3037 if (!can_split_huge_page(compound_head(page), NULL))
3038 goto next;
3039
3040 if (!trylock_page(page))
3041 goto next;
3042
3043 if (!split_huge_page(page))
3044 split++;
3045
3046 unlock_page(page);
3047next:
3048 put_page(page);
3049 cond_resched();
3050 }
3051 mmap_read_unlock(mm);
3052 mmput(mm);
3053
3054 pr_debug("%lu of %lu THP split\n", split, total);
3055
3056out:
3057 return ret;
49071d43 3058}
fa6c0231 3059
fbe37501
ZY
3060static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3061 pgoff_t off_end)
3062{
3063 struct filename *file;
3064 struct file *candidate;
3065 struct address_space *mapping;
3066 int ret = -EINVAL;
3067 pgoff_t index;
3068 int nr_pages = 1;
3069 unsigned long total = 0, split = 0;
3070
3071 file = getname_kernel(file_path);
3072 if (IS_ERR(file))
3073 return ret;
3074
3075 candidate = file_open_name(file, O_RDONLY, 0);
3076 if (IS_ERR(candidate))
3077 goto out;
3078
3079 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3080 file_path, off_start, off_end);
3081
3082 mapping = candidate->f_mapping;
3083
3084 for (index = off_start; index < off_end; index += nr_pages) {
3085 struct page *fpage = pagecache_get_page(mapping, index,
3086 FGP_ENTRY | FGP_HEAD, 0);
3087
3088 nr_pages = 1;
3089 if (xa_is_value(fpage) || !fpage)
3090 continue;
3091
3092 if (!is_transparent_hugepage(fpage))
3093 goto next;
3094
3095 total++;
3096 nr_pages = thp_nr_pages(fpage);
3097
3098 if (!trylock_page(fpage))
3099 goto next;
3100
3101 if (!split_huge_page(fpage))
3102 split++;
3103
3104 unlock_page(fpage);
3105next:
3106 put_page(fpage);
3107 cond_resched();
3108 }
3109
3110 filp_close(candidate, NULL);
3111 ret = 0;
3112
3113 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3114out:
3115 putname(file);
3116 return ret;
3117}
3118
fa6c0231
ZY
3119#define MAX_INPUT_BUF_SZ 255
3120
3121static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3122 size_t count, loff_t *ppops)
3123{
3124 static DEFINE_MUTEX(split_debug_mutex);
3125 ssize_t ret;
fbe37501
ZY
3126 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3127 char input_buf[MAX_INPUT_BUF_SZ];
fa6c0231
ZY
3128 int pid;
3129 unsigned long vaddr_start, vaddr_end;
3130
3131 ret = mutex_lock_interruptible(&split_debug_mutex);
3132 if (ret)
3133 return ret;
3134
3135 ret = -EFAULT;
3136
3137 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3138 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3139 goto out;
3140
3141 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
fbe37501
ZY
3142
3143 if (input_buf[0] == '/') {
3144 char *tok;
3145 char *buf = input_buf;
3146 char file_path[MAX_INPUT_BUF_SZ];
3147 pgoff_t off_start = 0, off_end = 0;
3148 size_t input_len = strlen(input_buf);
3149
3150 tok = strsep(&buf, ",");
3151 if (tok) {
3152 strncpy(file_path, tok, MAX_INPUT_BUF_SZ);
3153 } else {
3154 ret = -EINVAL;
3155 goto out;
3156 }
3157
3158 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3159 if (ret != 2) {
3160 ret = -EINVAL;
3161 goto out;
3162 }
3163 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3164 if (!ret)
3165 ret = input_len;
3166
3167 goto out;
3168 }
3169
fa6c0231
ZY
3170 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3171 if (ret == 1 && pid == 1) {
3172 split_huge_pages_all();
3173 ret = strlen(input_buf);
3174 goto out;
3175 } else if (ret != 3) {
3176 ret = -EINVAL;
3177 goto out;
3178 }
3179
3180 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3181 if (!ret)
3182 ret = strlen(input_buf);
3183out:
3184 mutex_unlock(&split_debug_mutex);
3185 return ret;
3186
3187}
3188
3189static const struct file_operations split_huge_pages_fops = {
3190 .owner = THIS_MODULE,
3191 .write = split_huge_pages_write,
3192 .llseek = no_llseek,
3193};
49071d43
KS
3194
3195static int __init split_huge_pages_debugfs(void)
3196{
d9f7979c
GKH
3197 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3198 &split_huge_pages_fops);
49071d43
KS
3199 return 0;
3200}
3201late_initcall(split_huge_pages_debugfs);
3202#endif
616b8371
ZY
3203
3204#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3205void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3206 struct page *page)
3207{
3208 struct vm_area_struct *vma = pvmw->vma;
3209 struct mm_struct *mm = vma->vm_mm;
3210 unsigned long address = pvmw->address;
3211 pmd_t pmdval;
3212 swp_entry_t entry;
ab6e3d09 3213 pmd_t pmdswp;
616b8371
ZY
3214
3215 if (!(pvmw->pmd && !pvmw->pte))
3216 return;
3217
616b8371 3218 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 3219 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
3220 if (pmd_dirty(pmdval))
3221 set_page_dirty(page);
3222 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
3223 pmdswp = swp_entry_to_pmd(entry);
3224 if (pmd_soft_dirty(pmdval))
3225 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3226 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
3227 page_remove_rmap(page, true);
3228 put_page(page);
616b8371
ZY
3229}
3230
3231void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3232{
3233 struct vm_area_struct *vma = pvmw->vma;
3234 struct mm_struct *mm = vma->vm_mm;
3235 unsigned long address = pvmw->address;
3236 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3237 pmd_t pmde;
3238 swp_entry_t entry;
3239
3240 if (!(pvmw->pmd && !pvmw->pte))
3241 return;
3242
3243 entry = pmd_to_swp_entry(*pvmw->pmd);
3244 get_page(new);
3245 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
3246 if (pmd_swp_soft_dirty(*pvmw->pmd))
3247 pmde = pmd_mksoft_dirty(pmde);
616b8371 3248 if (is_write_migration_entry(entry))
f55e1014 3249 pmde = maybe_pmd_mkwrite(pmde, vma);
8f34f1ea
PX
3250 if (pmd_swp_uffd_wp(*pvmw->pmd))
3251 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
616b8371
ZY
3252
3253 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
3254 if (PageAnon(new))
3255 page_add_anon_rmap(new, vma, mmun_start, true);
3256 else
3257 page_add_file_rmap(new, true);
616b8371 3258 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 3259 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
3260 mlock_vma_page(new);
3261 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3262}
3263#endif