]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/huge_memory.c
memcg: adjust to support new THP refcounting
[thirdparty/kernel/linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
4897c765 19#include <linux/dax.h>
ba76149f
AA
20#include <linux/kthread.h>
21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
a664b2d8 23#include <linux/mman.h>
325adeb5 24#include <linux/pagemap.h>
4daae3b4 25#include <linux/migrate.h>
43b5fbbd 26#include <linux/hashtable.h>
6b251fc9 27#include <linux/userfaultfd_k.h>
33c3fc71 28#include <linux/page_idle.h>
97ae1749 29
71e3aac0
AA
30#include <asm/tlb.h>
31#include <asm/pgalloc.h>
32#include "internal.h"
33
7d2eba05
EA
34enum scan_result {
35 SCAN_FAIL,
36 SCAN_SUCCEED,
37 SCAN_PMD_NULL,
38 SCAN_EXCEED_NONE_PTE,
39 SCAN_PTE_NON_PRESENT,
40 SCAN_PAGE_RO,
41 SCAN_NO_REFERENCED_PAGE,
42 SCAN_PAGE_NULL,
43 SCAN_SCAN_ABORT,
44 SCAN_PAGE_COUNT,
45 SCAN_PAGE_LRU,
46 SCAN_PAGE_LOCK,
47 SCAN_PAGE_ANON,
48 SCAN_ANY_PROCESS,
49 SCAN_VMA_NULL,
50 SCAN_VMA_CHECK,
51 SCAN_ADDRESS_RANGE,
52 SCAN_SWAP_CACHE_PAGE,
53 SCAN_DEL_PAGE_LRU,
54 SCAN_ALLOC_HUGE_PAGE_FAIL,
55 SCAN_CGROUP_CHARGE_FAIL
56};
57
58#define CREATE_TRACE_POINTS
59#include <trace/events/huge_memory.h>
60
ba76149f 61/*
8bfa3f9a
JW
62 * By default transparent hugepage support is disabled in order that avoid
63 * to risk increase the memory footprint of applications without a guaranteed
64 * benefit. When transparent hugepage support is enabled, is for all mappings,
65 * and khugepaged scans all mappings.
66 * Defrag is invoked by khugepaged hugepage allocations and by page faults
67 * for all hugepage allocations.
ba76149f 68 */
71e3aac0 69unsigned long transparent_hugepage_flags __read_mostly =
13ece886 70#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 71 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
72#endif
73#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
74 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
75#endif
d39d33c3 76 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
77 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
78 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
79
80/* default scan 8*512 pte (or vmas) every 30 second */
81static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
82static unsigned int khugepaged_pages_collapsed;
83static unsigned int khugepaged_full_scans;
84static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
85/* during fragmentation poll the hugepage allocator once every minute */
86static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
87static struct task_struct *khugepaged_thread __read_mostly;
88static DEFINE_MUTEX(khugepaged_mutex);
89static DEFINE_SPINLOCK(khugepaged_mm_lock);
90static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
91/*
92 * default collapse hugepages if there is at least one pte mapped like
93 * it would have happened if the vma was large enough during page
94 * fault.
95 */
96static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
97
98static int khugepaged(void *none);
ba76149f 99static int khugepaged_slab_init(void);
65ebb64f 100static void khugepaged_slab_exit(void);
ba76149f 101
43b5fbbd
SL
102#define MM_SLOTS_HASH_BITS 10
103static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
104
ba76149f
AA
105static struct kmem_cache *mm_slot_cache __read_mostly;
106
107/**
108 * struct mm_slot - hash lookup from mm to mm_slot
109 * @hash: hash collision list
110 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
111 * @mm: the mm that this information is valid for
112 */
113struct mm_slot {
114 struct hlist_node hash;
115 struct list_head mm_node;
116 struct mm_struct *mm;
117};
118
119/**
120 * struct khugepaged_scan - cursor for scanning
121 * @mm_head: the head of the mm list to scan
122 * @mm_slot: the current mm_slot we are scanning
123 * @address: the next address inside that to be scanned
124 *
125 * There is only the one khugepaged_scan instance of this cursor structure.
126 */
127struct khugepaged_scan {
128 struct list_head mm_head;
129 struct mm_slot *mm_slot;
130 unsigned long address;
2f1da642
HS
131};
132static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
133 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
134};
135
f000565a 136
2c0b80d4 137static void set_recommended_min_free_kbytes(void)
f000565a
AA
138{
139 struct zone *zone;
140 int nr_zones = 0;
141 unsigned long recommended_min;
f000565a 142
f000565a
AA
143 for_each_populated_zone(zone)
144 nr_zones++;
145
974a786e 146 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
f000565a
AA
147 recommended_min = pageblock_nr_pages * nr_zones * 2;
148
149 /*
150 * Make sure that on average at least two pageblocks are almost free
151 * of another type, one for a migratetype to fall back to and a
152 * second to avoid subsequent fallbacks of other types There are 3
153 * MIGRATE_TYPES we care about.
154 */
155 recommended_min += pageblock_nr_pages * nr_zones *
156 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
157
158 /* don't ever allow to reserve more than 5% of the lowmem */
159 recommended_min = min(recommended_min,
160 (unsigned long) nr_free_buffer_pages() / 20);
161 recommended_min <<= (PAGE_SHIFT-10);
162
42aa83cb
HP
163 if (recommended_min > min_free_kbytes) {
164 if (user_min_free_kbytes >= 0)
165 pr_info("raising min_free_kbytes from %d to %lu "
166 "to help transparent hugepage allocations\n",
167 min_free_kbytes, recommended_min);
168
f000565a 169 min_free_kbytes = recommended_min;
42aa83cb 170 }
f000565a 171 setup_per_zone_wmarks();
f000565a 172}
f000565a 173
79553da2 174static int start_stop_khugepaged(void)
ba76149f
AA
175{
176 int err = 0;
177 if (khugepaged_enabled()) {
ba76149f
AA
178 if (!khugepaged_thread)
179 khugepaged_thread = kthread_run(khugepaged, NULL,
180 "khugepaged");
18e8e5c7 181 if (IS_ERR(khugepaged_thread)) {
ae3a8c1c 182 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
183 err = PTR_ERR(khugepaged_thread);
184 khugepaged_thread = NULL;
79553da2 185 goto fail;
ba76149f 186 }
911891af
XG
187
188 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 189 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
190
191 set_recommended_min_free_kbytes();
911891af 192 } else if (khugepaged_thread) {
911891af
XG
193 kthread_stop(khugepaged_thread);
194 khugepaged_thread = NULL;
195 }
79553da2 196fail:
ba76149f
AA
197 return err;
198}
71e3aac0 199
97ae1749 200static atomic_t huge_zero_refcount;
56873f43 201struct page *huge_zero_page __read_mostly;
4a6c1297 202
fc437044 203struct page *get_huge_zero_page(void)
97ae1749
KS
204{
205 struct page *zero_page;
206retry:
207 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 208 return READ_ONCE(huge_zero_page);
97ae1749
KS
209
210 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 211 HPAGE_PMD_ORDER);
d8a8e1f0
KS
212 if (!zero_page) {
213 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 214 return NULL;
d8a8e1f0
KS
215 }
216 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 217 preempt_disable();
5918d10a 218 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 219 preempt_enable();
5ddacbe9 220 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
221 goto retry;
222 }
223
224 /* We take additional reference here. It will be put back by shrinker */
225 atomic_set(&huge_zero_refcount, 2);
226 preempt_enable();
4db0c3c2 227 return READ_ONCE(huge_zero_page);
4a6c1297
KS
228}
229
97ae1749 230static void put_huge_zero_page(void)
4a6c1297 231{
97ae1749
KS
232 /*
233 * Counter should never go to zero here. Only shrinker can put
234 * last reference.
235 */
236 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
237}
238
48896466
GC
239static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
240 struct shrink_control *sc)
4a6c1297 241{
48896466
GC
242 /* we can free zero page only if last reference remains */
243 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
244}
97ae1749 245
48896466
GC
246static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
247 struct shrink_control *sc)
248{
97ae1749 249 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
250 struct page *zero_page = xchg(&huge_zero_page, NULL);
251 BUG_ON(zero_page == NULL);
5ddacbe9 252 __free_pages(zero_page, compound_order(zero_page));
48896466 253 return HPAGE_PMD_NR;
97ae1749
KS
254 }
255
256 return 0;
4a6c1297
KS
257}
258
97ae1749 259static struct shrinker huge_zero_page_shrinker = {
48896466
GC
260 .count_objects = shrink_huge_zero_page_count,
261 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
262 .seeks = DEFAULT_SEEKS,
263};
264
71e3aac0 265#ifdef CONFIG_SYSFS
ba76149f 266
71e3aac0
AA
267static ssize_t double_flag_show(struct kobject *kobj,
268 struct kobj_attribute *attr, char *buf,
269 enum transparent_hugepage_flag enabled,
270 enum transparent_hugepage_flag req_madv)
271{
272 if (test_bit(enabled, &transparent_hugepage_flags)) {
273 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
274 return sprintf(buf, "[always] madvise never\n");
275 } else if (test_bit(req_madv, &transparent_hugepage_flags))
276 return sprintf(buf, "always [madvise] never\n");
277 else
278 return sprintf(buf, "always madvise [never]\n");
279}
280static ssize_t double_flag_store(struct kobject *kobj,
281 struct kobj_attribute *attr,
282 const char *buf, size_t count,
283 enum transparent_hugepage_flag enabled,
284 enum transparent_hugepage_flag req_madv)
285{
286 if (!memcmp("always", buf,
287 min(sizeof("always")-1, count))) {
288 set_bit(enabled, &transparent_hugepage_flags);
289 clear_bit(req_madv, &transparent_hugepage_flags);
290 } else if (!memcmp("madvise", buf,
291 min(sizeof("madvise")-1, count))) {
292 clear_bit(enabled, &transparent_hugepage_flags);
293 set_bit(req_madv, &transparent_hugepage_flags);
294 } else if (!memcmp("never", buf,
295 min(sizeof("never")-1, count))) {
296 clear_bit(enabled, &transparent_hugepage_flags);
297 clear_bit(req_madv, &transparent_hugepage_flags);
298 } else
299 return -EINVAL;
300
301 return count;
302}
303
304static ssize_t enabled_show(struct kobject *kobj,
305 struct kobj_attribute *attr, char *buf)
306{
307 return double_flag_show(kobj, attr, buf,
308 TRANSPARENT_HUGEPAGE_FLAG,
309 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
310}
311static ssize_t enabled_store(struct kobject *kobj,
312 struct kobj_attribute *attr,
313 const char *buf, size_t count)
314{
ba76149f
AA
315 ssize_t ret;
316
317 ret = double_flag_store(kobj, attr, buf, count,
318 TRANSPARENT_HUGEPAGE_FLAG,
319 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
320
321 if (ret > 0) {
911891af
XG
322 int err;
323
324 mutex_lock(&khugepaged_mutex);
79553da2 325 err = start_stop_khugepaged();
911891af
XG
326 mutex_unlock(&khugepaged_mutex);
327
ba76149f
AA
328 if (err)
329 ret = err;
330 }
331
332 return ret;
71e3aac0
AA
333}
334static struct kobj_attribute enabled_attr =
335 __ATTR(enabled, 0644, enabled_show, enabled_store);
336
337static ssize_t single_flag_show(struct kobject *kobj,
338 struct kobj_attribute *attr, char *buf,
339 enum transparent_hugepage_flag flag)
340{
e27e6151
BH
341 return sprintf(buf, "%d\n",
342 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 343}
e27e6151 344
71e3aac0
AA
345static ssize_t single_flag_store(struct kobject *kobj,
346 struct kobj_attribute *attr,
347 const char *buf, size_t count,
348 enum transparent_hugepage_flag flag)
349{
e27e6151
BH
350 unsigned long value;
351 int ret;
352
353 ret = kstrtoul(buf, 10, &value);
354 if (ret < 0)
355 return ret;
356 if (value > 1)
357 return -EINVAL;
358
359 if (value)
71e3aac0 360 set_bit(flag, &transparent_hugepage_flags);
e27e6151 361 else
71e3aac0 362 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
363
364 return count;
365}
366
367/*
368 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
369 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
370 * memory just to allocate one more hugepage.
371 */
372static ssize_t defrag_show(struct kobject *kobj,
373 struct kobj_attribute *attr, char *buf)
374{
375 return double_flag_show(kobj, attr, buf,
376 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
377 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
378}
379static ssize_t defrag_store(struct kobject *kobj,
380 struct kobj_attribute *attr,
381 const char *buf, size_t count)
382{
383 return double_flag_store(kobj, attr, buf, count,
384 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
385 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
386}
387static struct kobj_attribute defrag_attr =
388 __ATTR(defrag, 0644, defrag_show, defrag_store);
389
79da5407
KS
390static ssize_t use_zero_page_show(struct kobject *kobj,
391 struct kobj_attribute *attr, char *buf)
392{
393 return single_flag_show(kobj, attr, buf,
394 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
395}
396static ssize_t use_zero_page_store(struct kobject *kobj,
397 struct kobj_attribute *attr, const char *buf, size_t count)
398{
399 return single_flag_store(kobj, attr, buf, count,
400 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
401}
402static struct kobj_attribute use_zero_page_attr =
403 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
404#ifdef CONFIG_DEBUG_VM
405static ssize_t debug_cow_show(struct kobject *kobj,
406 struct kobj_attribute *attr, char *buf)
407{
408 return single_flag_show(kobj, attr, buf,
409 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
410}
411static ssize_t debug_cow_store(struct kobject *kobj,
412 struct kobj_attribute *attr,
413 const char *buf, size_t count)
414{
415 return single_flag_store(kobj, attr, buf, count,
416 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
417}
418static struct kobj_attribute debug_cow_attr =
419 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
420#endif /* CONFIG_DEBUG_VM */
421
422static struct attribute *hugepage_attr[] = {
423 &enabled_attr.attr,
424 &defrag_attr.attr,
79da5407 425 &use_zero_page_attr.attr,
71e3aac0
AA
426#ifdef CONFIG_DEBUG_VM
427 &debug_cow_attr.attr,
428#endif
429 NULL,
430};
431
432static struct attribute_group hugepage_attr_group = {
433 .attrs = hugepage_attr,
ba76149f
AA
434};
435
436static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
437 struct kobj_attribute *attr,
438 char *buf)
439{
440 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
441}
442
443static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
444 struct kobj_attribute *attr,
445 const char *buf, size_t count)
446{
447 unsigned long msecs;
448 int err;
449
3dbb95f7 450 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
451 if (err || msecs > UINT_MAX)
452 return -EINVAL;
453
454 khugepaged_scan_sleep_millisecs = msecs;
455 wake_up_interruptible(&khugepaged_wait);
456
457 return count;
458}
459static struct kobj_attribute scan_sleep_millisecs_attr =
460 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
461 scan_sleep_millisecs_store);
462
463static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
464 struct kobj_attribute *attr,
465 char *buf)
466{
467 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
468}
469
470static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
471 struct kobj_attribute *attr,
472 const char *buf, size_t count)
473{
474 unsigned long msecs;
475 int err;
476
3dbb95f7 477 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
478 if (err || msecs > UINT_MAX)
479 return -EINVAL;
480
481 khugepaged_alloc_sleep_millisecs = msecs;
482 wake_up_interruptible(&khugepaged_wait);
483
484 return count;
485}
486static struct kobj_attribute alloc_sleep_millisecs_attr =
487 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
488 alloc_sleep_millisecs_store);
489
490static ssize_t pages_to_scan_show(struct kobject *kobj,
491 struct kobj_attribute *attr,
492 char *buf)
493{
494 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
495}
496static ssize_t pages_to_scan_store(struct kobject *kobj,
497 struct kobj_attribute *attr,
498 const char *buf, size_t count)
499{
500 int err;
501 unsigned long pages;
502
3dbb95f7 503 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
504 if (err || !pages || pages > UINT_MAX)
505 return -EINVAL;
506
507 khugepaged_pages_to_scan = pages;
508
509 return count;
510}
511static struct kobj_attribute pages_to_scan_attr =
512 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
513 pages_to_scan_store);
514
515static ssize_t pages_collapsed_show(struct kobject *kobj,
516 struct kobj_attribute *attr,
517 char *buf)
518{
519 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
520}
521static struct kobj_attribute pages_collapsed_attr =
522 __ATTR_RO(pages_collapsed);
523
524static ssize_t full_scans_show(struct kobject *kobj,
525 struct kobj_attribute *attr,
526 char *buf)
527{
528 return sprintf(buf, "%u\n", khugepaged_full_scans);
529}
530static struct kobj_attribute full_scans_attr =
531 __ATTR_RO(full_scans);
532
533static ssize_t khugepaged_defrag_show(struct kobject *kobj,
534 struct kobj_attribute *attr, char *buf)
535{
536 return single_flag_show(kobj, attr, buf,
537 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
538}
539static ssize_t khugepaged_defrag_store(struct kobject *kobj,
540 struct kobj_attribute *attr,
541 const char *buf, size_t count)
542{
543 return single_flag_store(kobj, attr, buf, count,
544 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
545}
546static struct kobj_attribute khugepaged_defrag_attr =
547 __ATTR(defrag, 0644, khugepaged_defrag_show,
548 khugepaged_defrag_store);
549
550/*
551 * max_ptes_none controls if khugepaged should collapse hugepages over
552 * any unmapped ptes in turn potentially increasing the memory
553 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
554 * reduce the available free memory in the system as it
555 * runs. Increasing max_ptes_none will instead potentially reduce the
556 * free memory in the system during the khugepaged scan.
557 */
558static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
559 struct kobj_attribute *attr,
560 char *buf)
561{
562 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
563}
564static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
565 struct kobj_attribute *attr,
566 const char *buf, size_t count)
567{
568 int err;
569 unsigned long max_ptes_none;
570
3dbb95f7 571 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
572 if (err || max_ptes_none > HPAGE_PMD_NR-1)
573 return -EINVAL;
574
575 khugepaged_max_ptes_none = max_ptes_none;
576
577 return count;
578}
579static struct kobj_attribute khugepaged_max_ptes_none_attr =
580 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
581 khugepaged_max_ptes_none_store);
582
583static struct attribute *khugepaged_attr[] = {
584 &khugepaged_defrag_attr.attr,
585 &khugepaged_max_ptes_none_attr.attr,
586 &pages_to_scan_attr.attr,
587 &pages_collapsed_attr.attr,
588 &full_scans_attr.attr,
589 &scan_sleep_millisecs_attr.attr,
590 &alloc_sleep_millisecs_attr.attr,
591 NULL,
592};
593
594static struct attribute_group khugepaged_attr_group = {
595 .attrs = khugepaged_attr,
596 .name = "khugepaged",
71e3aac0 597};
71e3aac0 598
569e5590 599static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 600{
71e3aac0
AA
601 int err;
602
569e5590
SL
603 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
604 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 605 pr_err("failed to create transparent hugepage kobject\n");
569e5590 606 return -ENOMEM;
ba76149f
AA
607 }
608
569e5590 609 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 610 if (err) {
ae3a8c1c 611 pr_err("failed to register transparent hugepage group\n");
569e5590 612 goto delete_obj;
ba76149f
AA
613 }
614
569e5590 615 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 616 if (err) {
ae3a8c1c 617 pr_err("failed to register transparent hugepage group\n");
569e5590 618 goto remove_hp_group;
ba76149f 619 }
569e5590
SL
620
621 return 0;
622
623remove_hp_group:
624 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
625delete_obj:
626 kobject_put(*hugepage_kobj);
627 return err;
628}
629
630static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
631{
632 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
633 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
634 kobject_put(hugepage_kobj);
635}
636#else
637static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
638{
639 return 0;
640}
641
642static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
643{
644}
645#endif /* CONFIG_SYSFS */
646
647static int __init hugepage_init(void)
648{
649 int err;
650 struct kobject *hugepage_kobj;
651
652 if (!has_transparent_hugepage()) {
653 transparent_hugepage_flags = 0;
654 return -EINVAL;
655 }
656
657 err = hugepage_init_sysfs(&hugepage_kobj);
658 if (err)
65ebb64f 659 goto err_sysfs;
ba76149f
AA
660
661 err = khugepaged_slab_init();
662 if (err)
65ebb64f 663 goto err_slab;
ba76149f 664
65ebb64f
KS
665 err = register_shrinker(&huge_zero_page_shrinker);
666 if (err)
667 goto err_hzp_shrinker;
97ae1749 668
97562cd2
RR
669 /*
670 * By default disable transparent hugepages on smaller systems,
671 * where the extra memory used could hurt more than TLB overhead
672 * is likely to save. The admin can still enable it through /sys.
673 */
79553da2 674 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 675 transparent_hugepage_flags = 0;
79553da2
KS
676 return 0;
677 }
97562cd2 678
79553da2 679 err = start_stop_khugepaged();
65ebb64f
KS
680 if (err)
681 goto err_khugepaged;
ba76149f 682
569e5590 683 return 0;
65ebb64f
KS
684err_khugepaged:
685 unregister_shrinker(&huge_zero_page_shrinker);
686err_hzp_shrinker:
687 khugepaged_slab_exit();
688err_slab:
569e5590 689 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 690err_sysfs:
ba76149f 691 return err;
71e3aac0 692}
a64fb3cd 693subsys_initcall(hugepage_init);
71e3aac0
AA
694
695static int __init setup_transparent_hugepage(char *str)
696{
697 int ret = 0;
698 if (!str)
699 goto out;
700 if (!strcmp(str, "always")) {
701 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
702 &transparent_hugepage_flags);
703 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
704 &transparent_hugepage_flags);
705 ret = 1;
706 } else if (!strcmp(str, "madvise")) {
707 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
708 &transparent_hugepage_flags);
709 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
710 &transparent_hugepage_flags);
711 ret = 1;
712 } else if (!strcmp(str, "never")) {
713 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
714 &transparent_hugepage_flags);
715 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
716 &transparent_hugepage_flags);
717 ret = 1;
718 }
719out:
720 if (!ret)
ae3a8c1c 721 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
722 return ret;
723}
724__setup("transparent_hugepage=", setup_transparent_hugepage);
725
b32967ff 726pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
727{
728 if (likely(vma->vm_flags & VM_WRITE))
729 pmd = pmd_mkwrite(pmd);
730 return pmd;
731}
732
3122359a 733static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
734{
735 pmd_t entry;
3122359a 736 entry = mk_pmd(page, prot);
b3092b3b
BL
737 entry = pmd_mkhuge(entry);
738 return entry;
739}
740
71e3aac0
AA
741static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
742 struct vm_area_struct *vma,
230c92a8 743 unsigned long address, pmd_t *pmd,
6b251fc9
AA
744 struct page *page, gfp_t gfp,
745 unsigned int flags)
71e3aac0 746{
00501b53 747 struct mem_cgroup *memcg;
71e3aac0 748 pgtable_t pgtable;
c4088ebd 749 spinlock_t *ptl;
230c92a8 750 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 751
309381fe 752 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 753
f627c2f5 754 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
6b251fc9
AA
755 put_page(page);
756 count_vm_event(THP_FAULT_FALLBACK);
757 return VM_FAULT_FALLBACK;
758 }
00501b53 759
71e3aac0 760 pgtable = pte_alloc_one(mm, haddr);
00501b53 761 if (unlikely(!pgtable)) {
f627c2f5 762 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 763 put_page(page);
71e3aac0 764 return VM_FAULT_OOM;
00501b53 765 }
71e3aac0
AA
766
767 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
768 /*
769 * The memory barrier inside __SetPageUptodate makes sure that
770 * clear_huge_page writes become visible before the set_pmd_at()
771 * write.
772 */
71e3aac0
AA
773 __SetPageUptodate(page);
774
c4088ebd 775 ptl = pmd_lock(mm, pmd);
71e3aac0 776 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 777 spin_unlock(ptl);
f627c2f5 778 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0
AA
779 put_page(page);
780 pte_free(mm, pgtable);
781 } else {
782 pmd_t entry;
6b251fc9
AA
783
784 /* Deliver the page fault to userland */
785 if (userfaultfd_missing(vma)) {
786 int ret;
787
788 spin_unlock(ptl);
f627c2f5 789 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9
AA
790 put_page(page);
791 pte_free(mm, pgtable);
230c92a8 792 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
793 VM_UFFD_MISSING);
794 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
795 return ret;
796 }
797
3122359a
KS
798 entry = mk_huge_pmd(page, vma->vm_page_prot);
799 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 800 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 801 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 802 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 803 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 804 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 805 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 806 atomic_long_inc(&mm->nr_ptes);
c4088ebd 807 spin_unlock(ptl);
6b251fc9 808 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
809 }
810
aa2e878e 811 return 0;
71e3aac0
AA
812}
813
cc5d462f 814static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 815{
71baba4b 816 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
0bbbc0b3
AA
817}
818
c4088ebd 819/* Caller must hold page table lock. */
d295e341 820static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 821 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 822 struct page *zero_page)
fc9fe822
KS
823{
824 pmd_t entry;
7c414164
AM
825 if (!pmd_none(*pmd))
826 return false;
5918d10a 827 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 828 entry = pmd_mkhuge(entry);
6b0b50b0 829 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 830 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 831 atomic_long_inc(&mm->nr_ptes);
7c414164 832 return true;
fc9fe822
KS
833}
834
71e3aac0
AA
835int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
836 unsigned long address, pmd_t *pmd,
837 unsigned int flags)
838{
077fcf11 839 gfp_t gfp;
71e3aac0
AA
840 struct page *page;
841 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 842
128ec037 843 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 844 return VM_FAULT_FALLBACK;
128ec037
KS
845 if (unlikely(anon_vma_prepare(vma)))
846 return VM_FAULT_OOM;
6d50e60c 847 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 848 return VM_FAULT_OOM;
593befa6 849 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 850 transparent_hugepage_use_zero_page()) {
c4088ebd 851 spinlock_t *ptl;
128ec037
KS
852 pgtable_t pgtable;
853 struct page *zero_page;
854 bool set;
6b251fc9 855 int ret;
128ec037
KS
856 pgtable = pte_alloc_one(mm, haddr);
857 if (unlikely(!pgtable))
ba76149f 858 return VM_FAULT_OOM;
128ec037
KS
859 zero_page = get_huge_zero_page();
860 if (unlikely(!zero_page)) {
861 pte_free(mm, pgtable);
81ab4201 862 count_vm_event(THP_FAULT_FALLBACK);
c0292554 863 return VM_FAULT_FALLBACK;
b9bbfbe3 864 }
c4088ebd 865 ptl = pmd_lock(mm, pmd);
6b251fc9
AA
866 ret = 0;
867 set = false;
868 if (pmd_none(*pmd)) {
869 if (userfaultfd_missing(vma)) {
870 spin_unlock(ptl);
230c92a8 871 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
872 VM_UFFD_MISSING);
873 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
874 } else {
875 set_huge_zero_page(pgtable, mm, vma,
876 haddr, pmd,
877 zero_page);
878 spin_unlock(ptl);
879 set = true;
880 }
881 } else
882 spin_unlock(ptl);
128ec037
KS
883 if (!set) {
884 pte_free(mm, pgtable);
885 put_huge_zero_page();
edad9d2c 886 }
6b251fc9 887 return ret;
71e3aac0 888 }
077fcf11
AK
889 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
890 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
891 if (unlikely(!page)) {
892 count_vm_event(THP_FAULT_FALLBACK);
c0292554 893 return VM_FAULT_FALLBACK;
128ec037 894 }
230c92a8
AA
895 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
896 flags);
71e3aac0
AA
897}
898
ae18d6dc 899static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
5cad465d
MW
900 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
901{
902 struct mm_struct *mm = vma->vm_mm;
903 pmd_t entry;
904 spinlock_t *ptl;
905
906 ptl = pmd_lock(mm, pmd);
907 if (pmd_none(*pmd)) {
908 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
909 if (write) {
910 entry = pmd_mkyoung(pmd_mkdirty(entry));
911 entry = maybe_pmd_mkwrite(entry, vma);
912 }
913 set_pmd_at(mm, addr, pmd, entry);
914 update_mmu_cache_pmd(vma, addr, pmd);
915 }
916 spin_unlock(ptl);
5cad465d
MW
917}
918
919int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
920 pmd_t *pmd, unsigned long pfn, bool write)
921{
922 pgprot_t pgprot = vma->vm_page_prot;
923 /*
924 * If we had pmd_special, we could avoid all these restrictions,
925 * but we need to be consistent with PTEs and architectures that
926 * can't support a 'special' bit.
927 */
928 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
929 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
930 (VM_PFNMAP|VM_MIXEDMAP));
931 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
932 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
933
934 if (addr < vma->vm_start || addr >= vma->vm_end)
935 return VM_FAULT_SIGBUS;
936 if (track_pfn_insert(vma, &pgprot, pfn))
937 return VM_FAULT_SIGBUS;
ae18d6dc
MW
938 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
939 return VM_FAULT_NOPAGE;
5cad465d
MW
940}
941
71e3aac0
AA
942int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
944 struct vm_area_struct *vma)
945{
c4088ebd 946 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
947 struct page *src_page;
948 pmd_t pmd;
949 pgtable_t pgtable;
950 int ret;
951
952 ret = -ENOMEM;
953 pgtable = pte_alloc_one(dst_mm, addr);
954 if (unlikely(!pgtable))
955 goto out;
956
c4088ebd
KS
957 dst_ptl = pmd_lock(dst_mm, dst_pmd);
958 src_ptl = pmd_lockptr(src_mm, src_pmd);
959 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
960
961 ret = -EAGAIN;
962 pmd = *src_pmd;
963 if (unlikely(!pmd_trans_huge(pmd))) {
964 pte_free(dst_mm, pgtable);
965 goto out_unlock;
966 }
fc9fe822 967 /*
c4088ebd 968 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
969 * under splitting since we don't split the page itself, only pmd to
970 * a page table.
971 */
972 if (is_huge_zero_pmd(pmd)) {
5918d10a 973 struct page *zero_page;
97ae1749
KS
974 /*
975 * get_huge_zero_page() will never allocate a new page here,
976 * since we already have a zero page to copy. It just takes a
977 * reference.
978 */
5918d10a 979 zero_page = get_huge_zero_page();
6b251fc9 980 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 981 zero_page);
fc9fe822
KS
982 ret = 0;
983 goto out_unlock;
984 }
de466bd6 985
71e3aac0
AA
986 if (unlikely(pmd_trans_splitting(pmd))) {
987 /* split huge page running from under us */
c4088ebd
KS
988 spin_unlock(src_ptl);
989 spin_unlock(dst_ptl);
71e3aac0
AA
990 pte_free(dst_mm, pgtable);
991
992 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
993 goto out;
994 }
995 src_page = pmd_page(pmd);
309381fe 996 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
71e3aac0
AA
997 get_page(src_page);
998 page_dup_rmap(src_page);
999 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1000
1001 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1002 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 1003 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 1004 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e1f56c89 1005 atomic_long_inc(&dst_mm->nr_ptes);
71e3aac0
AA
1006
1007 ret = 0;
1008out_unlock:
c4088ebd
KS
1009 spin_unlock(src_ptl);
1010 spin_unlock(dst_ptl);
71e3aac0
AA
1011out:
1012 return ret;
1013}
1014
a1dd450b
WD
1015void huge_pmd_set_accessed(struct mm_struct *mm,
1016 struct vm_area_struct *vma,
1017 unsigned long address,
1018 pmd_t *pmd, pmd_t orig_pmd,
1019 int dirty)
1020{
c4088ebd 1021 spinlock_t *ptl;
a1dd450b
WD
1022 pmd_t entry;
1023 unsigned long haddr;
1024
c4088ebd 1025 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
1026 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1027 goto unlock;
1028
1029 entry = pmd_mkyoung(orig_pmd);
1030 haddr = address & HPAGE_PMD_MASK;
1031 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1032 update_mmu_cache_pmd(vma, address, pmd);
1033
1034unlock:
c4088ebd 1035 spin_unlock(ptl);
a1dd450b
WD
1036}
1037
5338a937
HD
1038/*
1039 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
1040 * during copy_user_huge_page()'s copy_page_rep(): in the case when
1041 * the source page gets split and a tail freed before copy completes.
1042 * Called under pmd_lock of checked pmd, so safe from splitting itself.
1043 */
1044static void get_user_huge_page(struct page *page)
1045{
1046 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1047 struct page *endpage = page + HPAGE_PMD_NR;
1048
1049 atomic_add(HPAGE_PMD_NR, &page->_count);
1050 while (++page < endpage)
1051 get_huge_page_tail(page);
1052 } else {
1053 get_page(page);
1054 }
1055}
1056
1057static void put_user_huge_page(struct page *page)
1058{
1059 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1060 struct page *endpage = page + HPAGE_PMD_NR;
1061
1062 while (page < endpage)
1063 put_page(page++);
1064 } else {
1065 put_page(page);
1066 }
1067}
1068
71e3aac0
AA
1069static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1070 struct vm_area_struct *vma,
1071 unsigned long address,
1072 pmd_t *pmd, pmd_t orig_pmd,
1073 struct page *page,
1074 unsigned long haddr)
1075{
00501b53 1076 struct mem_cgroup *memcg;
c4088ebd 1077 spinlock_t *ptl;
71e3aac0
AA
1078 pgtable_t pgtable;
1079 pmd_t _pmd;
1080 int ret = 0, i;
1081 struct page **pages;
2ec74c3e
SG
1082 unsigned long mmun_start; /* For mmu_notifiers */
1083 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1084
1085 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1086 GFP_KERNEL);
1087 if (unlikely(!pages)) {
1088 ret |= VM_FAULT_OOM;
1089 goto out;
1090 }
1091
1092 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1093 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1094 __GFP_OTHER_NODE,
19ee151e 1095 vma, address, page_to_nid(page));
b9bbfbe3 1096 if (unlikely(!pages[i] ||
00501b53 1097 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
f627c2f5 1098 &memcg, false))) {
b9bbfbe3 1099 if (pages[i])
71e3aac0 1100 put_page(pages[i]);
b9bbfbe3 1101 while (--i >= 0) {
00501b53
JW
1102 memcg = (void *)page_private(pages[i]);
1103 set_page_private(pages[i], 0);
f627c2f5
KS
1104 mem_cgroup_cancel_charge(pages[i], memcg,
1105 false);
b9bbfbe3
AA
1106 put_page(pages[i]);
1107 }
71e3aac0
AA
1108 kfree(pages);
1109 ret |= VM_FAULT_OOM;
1110 goto out;
1111 }
00501b53 1112 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1113 }
1114
1115 for (i = 0; i < HPAGE_PMD_NR; i++) {
1116 copy_user_highpage(pages[i], page + i,
0089e485 1117 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1118 __SetPageUptodate(pages[i]);
1119 cond_resched();
1120 }
1121
2ec74c3e
SG
1122 mmun_start = haddr;
1123 mmun_end = haddr + HPAGE_PMD_SIZE;
1124 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1125
c4088ebd 1126 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1127 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1128 goto out_free_pages;
309381fe 1129 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1130
8809aa2d 1131 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1132 /* leave pmd empty until pte is filled */
1133
6b0b50b0 1134 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1135 pmd_populate(mm, &_pmd, pgtable);
1136
1137 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1138 pte_t *pte, entry;
1139 entry = mk_pte(pages[i], vma->vm_page_prot);
1140 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1141 memcg = (void *)page_private(pages[i]);
1142 set_page_private(pages[i], 0);
d281ee61 1143 page_add_new_anon_rmap(pages[i], vma, haddr, false);
f627c2f5 1144 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1145 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1146 pte = pte_offset_map(&_pmd, haddr);
1147 VM_BUG_ON(!pte_none(*pte));
1148 set_pte_at(mm, haddr, pte, entry);
1149 pte_unmap(pte);
1150 }
1151 kfree(pages);
1152
71e3aac0
AA
1153 smp_wmb(); /* make pte visible before pmd */
1154 pmd_populate(mm, pmd, pgtable);
d281ee61 1155 page_remove_rmap(page, true);
c4088ebd 1156 spin_unlock(ptl);
71e3aac0 1157
2ec74c3e
SG
1158 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1159
71e3aac0
AA
1160 ret |= VM_FAULT_WRITE;
1161 put_page(page);
1162
1163out:
1164 return ret;
1165
1166out_free_pages:
c4088ebd 1167 spin_unlock(ptl);
2ec74c3e 1168 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1169 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1170 memcg = (void *)page_private(pages[i]);
1171 set_page_private(pages[i], 0);
f627c2f5 1172 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1173 put_page(pages[i]);
b9bbfbe3 1174 }
71e3aac0
AA
1175 kfree(pages);
1176 goto out;
1177}
1178
1179int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1180 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1181{
c4088ebd 1182 spinlock_t *ptl;
71e3aac0 1183 int ret = 0;
93b4796d 1184 struct page *page = NULL, *new_page;
00501b53 1185 struct mem_cgroup *memcg;
71e3aac0 1186 unsigned long haddr;
2ec74c3e
SG
1187 unsigned long mmun_start; /* For mmu_notifiers */
1188 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1189 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1190
c4088ebd 1191 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1192 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1193 haddr = address & HPAGE_PMD_MASK;
1194 if (is_huge_zero_pmd(orig_pmd))
1195 goto alloc;
c4088ebd 1196 spin_lock(ptl);
71e3aac0
AA
1197 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1198 goto out_unlock;
1199
1200 page = pmd_page(orig_pmd);
309381fe 1201 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
71e3aac0
AA
1202 if (page_mapcount(page) == 1) {
1203 pmd_t entry;
1204 entry = pmd_mkyoung(orig_pmd);
1205 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1206 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1207 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1208 ret |= VM_FAULT_WRITE;
1209 goto out_unlock;
1210 }
5338a937 1211 get_user_huge_page(page);
c4088ebd 1212 spin_unlock(ptl);
93b4796d 1213alloc:
71e3aac0 1214 if (transparent_hugepage_enabled(vma) &&
077fcf11 1215 !transparent_hugepage_debug_cow()) {
3b363692
MH
1216 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1217 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1218 } else
71e3aac0
AA
1219 new_page = NULL;
1220
1221 if (unlikely(!new_page)) {
eecc1e42 1222 if (!page) {
e9b71ca9
KS
1223 split_huge_page_pmd(vma, address, pmd);
1224 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1225 } else {
1226 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1227 pmd, orig_pmd, page, haddr);
9845cbbd 1228 if (ret & VM_FAULT_OOM) {
93b4796d 1229 split_huge_page(page);
9845cbbd
KS
1230 ret |= VM_FAULT_FALLBACK;
1231 }
5338a937 1232 put_user_huge_page(page);
93b4796d 1233 }
17766dde 1234 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1235 goto out;
1236 }
1237
f627c2f5
KS
1238 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1239 true))) {
b9bbfbe3 1240 put_page(new_page);
93b4796d
KS
1241 if (page) {
1242 split_huge_page(page);
5338a937 1243 put_user_huge_page(page);
9845cbbd
KS
1244 } else
1245 split_huge_page_pmd(vma, address, pmd);
1246 ret |= VM_FAULT_FALLBACK;
17766dde 1247 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1248 goto out;
1249 }
1250
17766dde
DR
1251 count_vm_event(THP_FAULT_ALLOC);
1252
eecc1e42 1253 if (!page)
93b4796d
KS
1254 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1255 else
1256 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1257 __SetPageUptodate(new_page);
1258
2ec74c3e
SG
1259 mmun_start = haddr;
1260 mmun_end = haddr + HPAGE_PMD_SIZE;
1261 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1262
c4088ebd 1263 spin_lock(ptl);
93b4796d 1264 if (page)
5338a937 1265 put_user_huge_page(page);
b9bbfbe3 1266 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1267 spin_unlock(ptl);
f627c2f5 1268 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1269 put_page(new_page);
2ec74c3e 1270 goto out_mn;
b9bbfbe3 1271 } else {
71e3aac0 1272 pmd_t entry;
3122359a
KS
1273 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1274 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
8809aa2d 1275 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
d281ee61 1276 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1277 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1278 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1279 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1280 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1281 if (!page) {
93b4796d 1282 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1283 put_huge_zero_page();
1284 } else {
309381fe 1285 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1286 page_remove_rmap(page, true);
93b4796d
KS
1287 put_page(page);
1288 }
71e3aac0
AA
1289 ret |= VM_FAULT_WRITE;
1290 }
c4088ebd 1291 spin_unlock(ptl);
2ec74c3e
SG
1292out_mn:
1293 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1294out:
1295 return ret;
2ec74c3e 1296out_unlock:
c4088ebd 1297 spin_unlock(ptl);
2ec74c3e 1298 return ret;
71e3aac0
AA
1299}
1300
b676b293 1301struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1302 unsigned long addr,
1303 pmd_t *pmd,
1304 unsigned int flags)
1305{
b676b293 1306 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1307 struct page *page = NULL;
1308
c4088ebd 1309 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1310
1311 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1312 goto out;
1313
85facf25
KS
1314 /* Avoid dumping huge zero page */
1315 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1316 return ERR_PTR(-EFAULT);
1317
2b4847e7 1318 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1319 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1320 goto out;
1321
71e3aac0 1322 page = pmd_page(*pmd);
309381fe 1323 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0
AA
1324 if (flags & FOLL_TOUCH) {
1325 pmd_t _pmd;
1326 /*
1327 * We should set the dirty bit only for FOLL_WRITE but
1328 * for now the dirty bit in the pmd is meaningless.
1329 * And if the dirty bit will become meaningful and
1330 * we'll only set it with FOLL_WRITE, an atomic
1331 * set_bit will be required on the pmd to set the
1332 * young bit, instead of the current set_pmd_at.
1333 */
1334 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1335 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1336 pmd, _pmd, 1))
1337 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1338 }
de60f5f1 1339 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
b676b293
DR
1340 if (page->mapping && trylock_page(page)) {
1341 lru_add_drain();
1342 if (page->mapping)
1343 mlock_vma_page(page);
1344 unlock_page(page);
1345 }
1346 }
71e3aac0 1347 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1348 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1349 if (flags & FOLL_GET)
70b50f94 1350 get_page_foll(page);
71e3aac0
AA
1351
1352out:
1353 return page;
1354}
1355
d10e63f2 1356/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1357int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1358 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1359{
c4088ebd 1360 spinlock_t *ptl;
b8916634 1361 struct anon_vma *anon_vma = NULL;
b32967ff 1362 struct page *page;
d10e63f2 1363 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1364 int page_nid = -1, this_nid = numa_node_id();
90572890 1365 int target_nid, last_cpupid = -1;
8191acbd
MG
1366 bool page_locked;
1367 bool migrated = false;
b191f9b1 1368 bool was_writable;
6688cc05 1369 int flags = 0;
d10e63f2 1370
c0e7cad9
MG
1371 /* A PROT_NONE fault should not end up here */
1372 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1373
c4088ebd 1374 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1375 if (unlikely(!pmd_same(pmd, *pmdp)))
1376 goto out_unlock;
1377
de466bd6
MG
1378 /*
1379 * If there are potential migrations, wait for completion and retry
1380 * without disrupting NUMA hinting information. Do not relock and
1381 * check_same as the page may no longer be mapped.
1382 */
1383 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1384 page = pmd_page(*pmdp);
de466bd6 1385 spin_unlock(ptl);
5d833062 1386 wait_on_page_locked(page);
de466bd6
MG
1387 goto out;
1388 }
1389
d10e63f2 1390 page = pmd_page(pmd);
a1a46184 1391 BUG_ON(is_huge_zero_page(page));
8191acbd 1392 page_nid = page_to_nid(page);
90572890 1393 last_cpupid = page_cpupid_last(page);
03c5a6e1 1394 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1395 if (page_nid == this_nid) {
03c5a6e1 1396 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1397 flags |= TNF_FAULT_LOCAL;
1398 }
4daae3b4 1399
bea66fbd
MG
1400 /* See similar comment in do_numa_page for explanation */
1401 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1402 flags |= TNF_NO_GROUP;
1403
ff9042b1
MG
1404 /*
1405 * Acquire the page lock to serialise THP migrations but avoid dropping
1406 * page_table_lock if at all possible
1407 */
b8916634
MG
1408 page_locked = trylock_page(page);
1409 target_nid = mpol_misplaced(page, vma, haddr);
1410 if (target_nid == -1) {
1411 /* If the page was locked, there are no parallel migrations */
a54a407f 1412 if (page_locked)
b8916634 1413 goto clear_pmdnuma;
2b4847e7 1414 }
4daae3b4 1415
de466bd6 1416 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1417 if (!page_locked) {
c4088ebd 1418 spin_unlock(ptl);
b8916634 1419 wait_on_page_locked(page);
a54a407f 1420 page_nid = -1;
b8916634
MG
1421 goto out;
1422 }
1423
2b4847e7
MG
1424 /*
1425 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1426 * to serialises splits
1427 */
b8916634 1428 get_page(page);
c4088ebd 1429 spin_unlock(ptl);
b8916634 1430 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1431
c69307d5 1432 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1433 spin_lock(ptl);
b32967ff
MG
1434 if (unlikely(!pmd_same(pmd, *pmdp))) {
1435 unlock_page(page);
1436 put_page(page);
a54a407f 1437 page_nid = -1;
4daae3b4 1438 goto out_unlock;
b32967ff 1439 }
ff9042b1 1440
c3a489ca
MG
1441 /* Bail if we fail to protect against THP splits for any reason */
1442 if (unlikely(!anon_vma)) {
1443 put_page(page);
1444 page_nid = -1;
1445 goto clear_pmdnuma;
1446 }
1447
a54a407f
MG
1448 /*
1449 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1450 * and access rights restored.
a54a407f 1451 */
c4088ebd 1452 spin_unlock(ptl);
b32967ff 1453 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1454 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1455 if (migrated) {
1456 flags |= TNF_MIGRATED;
8191acbd 1457 page_nid = target_nid;
074c2381
MG
1458 } else
1459 flags |= TNF_MIGRATE_FAIL;
b32967ff 1460
8191acbd 1461 goto out;
b32967ff 1462clear_pmdnuma:
a54a407f 1463 BUG_ON(!PageLocked(page));
b191f9b1 1464 was_writable = pmd_write(pmd);
4d942466 1465 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1466 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1467 if (was_writable)
1468 pmd = pmd_mkwrite(pmd);
d10e63f2 1469 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1470 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1471 unlock_page(page);
d10e63f2 1472out_unlock:
c4088ebd 1473 spin_unlock(ptl);
b8916634
MG
1474
1475out:
1476 if (anon_vma)
1477 page_unlock_anon_vma_read(anon_vma);
1478
8191acbd 1479 if (page_nid != -1)
6688cc05 1480 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1481
d10e63f2
MG
1482 return 0;
1483}
1484
71e3aac0 1485int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1486 pmd_t *pmd, unsigned long addr)
71e3aac0 1487{
da146769 1488 pmd_t orig_pmd;
bf929152 1489 spinlock_t *ptl;
71e3aac0 1490
da146769
KS
1491 if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
1492 return 0;
1493 /*
1494 * For architectures like ppc64 we look at deposited pgtable
1495 * when calling pmdp_huge_get_and_clear. So do the
1496 * pgtable_trans_huge_withdraw after finishing pmdp related
1497 * operations.
1498 */
1499 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1500 tlb->fullmm);
1501 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1502 if (vma_is_dax(vma)) {
1503 spin_unlock(ptl);
1504 if (is_huge_zero_pmd(orig_pmd))
97ae1749 1505 put_huge_zero_page();
da146769
KS
1506 } else if (is_huge_zero_pmd(orig_pmd)) {
1507 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1508 atomic_long_dec(&tlb->mm->nr_ptes);
1509 spin_unlock(ptl);
1510 put_huge_zero_page();
1511 } else {
1512 struct page *page = pmd_page(orig_pmd);
d281ee61 1513 page_remove_rmap(page, true);
da146769
KS
1514 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1515 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1516 VM_BUG_ON_PAGE(!PageHead(page), page);
1517 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1518 atomic_long_dec(&tlb->mm->nr_ptes);
1519 spin_unlock(ptl);
1520 tlb_remove_page(tlb, page);
025c5b24 1521 }
da146769 1522 return 1;
71e3aac0
AA
1523}
1524
37a1c49a
AA
1525int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1526 unsigned long old_addr,
1527 unsigned long new_addr, unsigned long old_end,
1528 pmd_t *old_pmd, pmd_t *new_pmd)
1529{
bf929152 1530 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1531 int ret = 0;
1532 pmd_t pmd;
1533
1534 struct mm_struct *mm = vma->vm_mm;
1535
1536 if ((old_addr & ~HPAGE_PMD_MASK) ||
1537 (new_addr & ~HPAGE_PMD_MASK) ||
1538 old_end - old_addr < HPAGE_PMD_SIZE ||
1539 (new_vma->vm_flags & VM_NOHUGEPAGE))
1540 goto out;
1541
1542 /*
1543 * The destination pmd shouldn't be established, free_pgtables()
1544 * should have release it.
1545 */
1546 if (WARN_ON(!pmd_none(*new_pmd))) {
1547 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1548 goto out;
1549 }
1550
bf929152
KS
1551 /*
1552 * We don't have to worry about the ordering of src and dst
1553 * ptlocks because exclusive mmap_sem prevents deadlock.
1554 */
1555 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
025c5b24 1556 if (ret == 1) {
bf929152
KS
1557 new_ptl = pmd_lockptr(mm, new_pmd);
1558 if (new_ptl != old_ptl)
1559 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1560 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1561 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1562
b3084f4d
AK
1563 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1564 pgtable_t pgtable;
3592806c
KS
1565 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1566 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1567 }
b3084f4d
AK
1568 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1569 if (new_ptl != old_ptl)
1570 spin_unlock(new_ptl);
bf929152 1571 spin_unlock(old_ptl);
37a1c49a
AA
1572 }
1573out:
1574 return ret;
1575}
1576
f123d74a
MG
1577/*
1578 * Returns
1579 * - 0 if PMD could not be locked
1580 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1581 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1582 */
cd7548ab 1583int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1584 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1585{
1586 struct mm_struct *mm = vma->vm_mm;
bf929152 1587 spinlock_t *ptl;
cd7548ab
JW
1588 int ret = 0;
1589
bf929152 1590 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24 1591 pmd_t entry;
b191f9b1 1592 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1593 ret = 1;
e944fd67
MG
1594
1595 /*
1596 * Avoid trapping faults against the zero page. The read-only
1597 * data is likely to be read-cached on the local CPU and
1598 * local/remote hits to the zero page are not interesting.
1599 */
1600 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1601 spin_unlock(ptl);
ba68bc01 1602 return ret;
e944fd67
MG
1603 }
1604
10c1045f 1605 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1606 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1607 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1608 if (preserve_write)
1609 entry = pmd_mkwrite(entry);
10c1045f
MG
1610 ret = HPAGE_PMD_NR;
1611 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1612 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1613 }
bf929152 1614 spin_unlock(ptl);
025c5b24
NH
1615 }
1616
1617 return ret;
1618}
1619
1620/*
1621 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1622 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1623 *
1624 * Note that if it returns 1, this routine returns without unlocking page
1625 * table locks. So callers must unlock them.
1626 */
bf929152
KS
1627int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1628 spinlock_t **ptl)
025c5b24 1629{
bf929152 1630 *ptl = pmd_lock(vma->vm_mm, pmd);
cd7548ab
JW
1631 if (likely(pmd_trans_huge(*pmd))) {
1632 if (unlikely(pmd_trans_splitting(*pmd))) {
bf929152 1633 spin_unlock(*ptl);
cd7548ab 1634 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1635 return -1;
cd7548ab 1636 } else {
025c5b24
NH
1637 /* Thp mapped by 'pmd' is stable, so we can
1638 * handle it as it is. */
1639 return 1;
cd7548ab 1640 }
025c5b24 1641 }
bf929152 1642 spin_unlock(*ptl);
025c5b24 1643 return 0;
cd7548ab
JW
1644}
1645
117b0791
KS
1646/*
1647 * This function returns whether a given @page is mapped onto the @address
1648 * in the virtual space of @mm.
1649 *
1650 * When it's true, this function returns *pmd with holding the page table lock
1651 * and passing it back to the caller via @ptl.
1652 * If it's false, returns NULL without holding the page table lock.
1653 */
71e3aac0
AA
1654pmd_t *page_check_address_pmd(struct page *page,
1655 struct mm_struct *mm,
1656 unsigned long address,
117b0791
KS
1657 enum page_check_address_pmd_flag flag,
1658 spinlock_t **ptl)
71e3aac0 1659{
b5a8cad3
KS
1660 pgd_t *pgd;
1661 pud_t *pud;
117b0791 1662 pmd_t *pmd;
71e3aac0
AA
1663
1664 if (address & ~HPAGE_PMD_MASK)
117b0791 1665 return NULL;
71e3aac0 1666
b5a8cad3
KS
1667 pgd = pgd_offset(mm, address);
1668 if (!pgd_present(*pgd))
117b0791 1669 return NULL;
b5a8cad3
KS
1670 pud = pud_offset(pgd, address);
1671 if (!pud_present(*pud))
1672 return NULL;
1673 pmd = pmd_offset(pud, address);
1674
117b0791 1675 *ptl = pmd_lock(mm, pmd);
b5a8cad3 1676 if (!pmd_present(*pmd))
117b0791 1677 goto unlock;
71e3aac0 1678 if (pmd_page(*pmd) != page)
117b0791 1679 goto unlock;
94fcc585
AA
1680 /*
1681 * split_vma() may create temporary aliased mappings. There is
1682 * no risk as long as all huge pmd are found and have their
1683 * splitting bit set before __split_huge_page_refcount
1684 * runs. Finding the same huge pmd more than once during the
1685 * same rmap walk is not a problem.
1686 */
1687 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1688 pmd_trans_splitting(*pmd))
117b0791 1689 goto unlock;
71e3aac0
AA
1690 if (pmd_trans_huge(*pmd)) {
1691 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1692 !pmd_trans_splitting(*pmd));
117b0791 1693 return pmd;
71e3aac0 1694 }
117b0791
KS
1695unlock:
1696 spin_unlock(*ptl);
1697 return NULL;
71e3aac0
AA
1698}
1699
1700static int __split_huge_page_splitting(struct page *page,
1701 struct vm_area_struct *vma,
1702 unsigned long address)
1703{
1704 struct mm_struct *mm = vma->vm_mm;
117b0791 1705 spinlock_t *ptl;
71e3aac0
AA
1706 pmd_t *pmd;
1707 int ret = 0;
2ec74c3e
SG
1708 /* For mmu_notifiers */
1709 const unsigned long mmun_start = address;
1710 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1711
2ec74c3e 1712 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0 1713 pmd = page_check_address_pmd(page, mm, address,
117b0791 1714 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
71e3aac0
AA
1715 if (pmd) {
1716 /*
1717 * We can't temporarily set the pmd to null in order
1718 * to split it, the pmd must remain marked huge at all
1719 * times or the VM won't take the pmd_trans_huge paths
5a505085 1720 * and it won't wait on the anon_vma->root->rwsem to
71e3aac0
AA
1721 * serialize against split_huge_page*.
1722 */
2ec74c3e 1723 pmdp_splitting_flush(vma, address, pmd);
34ee645e 1724
71e3aac0 1725 ret = 1;
117b0791 1726 spin_unlock(ptl);
71e3aac0 1727 }
2ec74c3e 1728 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1729
1730 return ret;
1731}
1732
5bc7b8ac
SL
1733static void __split_huge_page_refcount(struct page *page,
1734 struct list_head *list)
71e3aac0
AA
1735{
1736 int i;
71e3aac0 1737 struct zone *zone = page_zone(page);
fa9add64 1738 struct lruvec *lruvec;
70b50f94 1739 int tail_count = 0;
71e3aac0
AA
1740
1741 /* prevent PageLRU to go away from under us, and freeze lru stats */
1742 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1743 lruvec = mem_cgroup_page_lruvec(page, zone);
1744
71e3aac0 1745 compound_lock(page);
e94c8a9c
KH
1746 /* complete memcg works before add pages to LRU */
1747 mem_cgroup_split_huge_fixup(page);
71e3aac0 1748
45676885 1749 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1750 struct page *page_tail = page + i;
1751
70b50f94
AA
1752 /* tail_page->_mapcount cannot change */
1753 BUG_ON(page_mapcount(page_tail) < 0);
1754 tail_count += page_mapcount(page_tail);
1755 /* check for overflow */
1756 BUG_ON(tail_count < 0);
1757 BUG_ON(atomic_read(&page_tail->_count) != 0);
1758 /*
1759 * tail_page->_count is zero and not changing from
1760 * under us. But get_page_unless_zero() may be running
1761 * from under us on the tail_page. If we used
1762 * atomic_set() below instead of atomic_add(), we
1763 * would then run atomic_set() concurrently with
1764 * get_page_unless_zero(), and atomic_set() is
1765 * implemented in C not using locked ops. spin_unlock
1766 * on x86 sometime uses locked ops because of PPro
1767 * errata 66, 92, so unless somebody can guarantee
1768 * atomic_set() here would be safe on all archs (and
1769 * not only on x86), it's safer to use atomic_add().
1770 */
1771 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1772 &page_tail->_count);
71e3aac0
AA
1773
1774 /* after clearing PageTail the gup refcount can be released */
3a79d52a 1775 smp_mb__after_atomic();
71e3aac0 1776
f4c18e6f 1777 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
71e3aac0
AA
1778 page_tail->flags |= (page->flags &
1779 ((1L << PG_referenced) |
1780 (1L << PG_swapbacked) |
1781 (1L << PG_mlocked) |
e180cf80
KS
1782 (1L << PG_uptodate) |
1783 (1L << PG_active) |
1784 (1L << PG_unevictable)));
71e3aac0
AA
1785 page_tail->flags |= (1L << PG_dirty);
1786
1d798ca3 1787 clear_compound_head(page_tail);
71e3aac0 1788
33c3fc71
VD
1789 if (page_is_young(page))
1790 set_page_young(page_tail);
1791 if (page_is_idle(page))
1792 set_page_idle(page_tail);
1793
71e3aac0
AA
1794 /*
1795 * __split_huge_page_splitting() already set the
1796 * splitting bit in all pmd that could map this
1797 * hugepage, that will ensure no CPU can alter the
1798 * mapcount on the head page. The mapcount is only
1799 * accounted in the head page and it has to be
1800 * transferred to all tail pages in the below code. So
1801 * for this code to be safe, the split the mapcount
1802 * can't change. But that doesn't mean userland can't
1803 * keep changing and reading the page contents while
1804 * we transfer the mapcount, so the pmd splitting
1805 * status is achieved setting a reserved bit in the
1806 * pmd, not by clearing the present bit.
1807 */
71e3aac0
AA
1808 page_tail->_mapcount = page->_mapcount;
1809
1c290f64 1810 BUG_ON(page_tail->mapping != TAIL_MAPPING);
71e3aac0
AA
1811 page_tail->mapping = page->mapping;
1812
45676885 1813 page_tail->index = page->index + i;
90572890 1814 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
71e3aac0
AA
1815
1816 BUG_ON(!PageAnon(page_tail));
1817 BUG_ON(!PageUptodate(page_tail));
1818 BUG_ON(!PageDirty(page_tail));
1819 BUG_ON(!PageSwapBacked(page_tail));
1820
5bc7b8ac 1821 lru_add_page_tail(page, page_tail, lruvec, list);
71e3aac0 1822 }
70b50f94
AA
1823 atomic_sub(tail_count, &page->_count);
1824 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1825
fa9add64 1826 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171 1827
71e3aac0
AA
1828 ClearPageCompound(page);
1829 compound_unlock(page);
1830 spin_unlock_irq(&zone->lru_lock);
1831
1832 for (i = 1; i < HPAGE_PMD_NR; i++) {
1833 struct page *page_tail = page + i;
1834 BUG_ON(page_count(page_tail) <= 0);
1835 /*
1836 * Tail pages may be freed if there wasn't any mapping
1837 * like if add_to_swap() is running on a lru page that
1838 * had its mapping zapped. And freeing these pages
1839 * requires taking the lru_lock so we do the put_page
1840 * of the tail pages after the split is complete.
1841 */
1842 put_page(page_tail);
1843 }
1844
1845 /*
1846 * Only the head page (now become a regular page) is required
1847 * to be pinned by the caller.
1848 */
1849 BUG_ON(page_count(page) <= 0);
1850}
1851
1852static int __split_huge_page_map(struct page *page,
1853 struct vm_area_struct *vma,
1854 unsigned long address)
1855{
1856 struct mm_struct *mm = vma->vm_mm;
117b0791 1857 spinlock_t *ptl;
71e3aac0
AA
1858 pmd_t *pmd, _pmd;
1859 int ret = 0, i;
1860 pgtable_t pgtable;
1861 unsigned long haddr;
1862
71e3aac0 1863 pmd = page_check_address_pmd(page, mm, address,
117b0791 1864 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
71e3aac0 1865 if (pmd) {
6b0b50b0 1866 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0 1867 pmd_populate(mm, &_pmd, pgtable);
f8303c25
WL
1868 if (pmd_write(*pmd))
1869 BUG_ON(page_mapcount(page) != 1);
71e3aac0 1870
e3ebcf64
GS
1871 haddr = address;
1872 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1873 pte_t *pte, entry;
1874 BUG_ON(PageCompound(page+i));
abc40bd2 1875 /*
8a0516ed
MG
1876 * Note that NUMA hinting access restrictions are not
1877 * transferred to avoid any possibility of altering
1878 * permissions across VMAs.
abc40bd2 1879 */
71e3aac0
AA
1880 entry = mk_pte(page + i, vma->vm_page_prot);
1881 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1882 if (!pmd_write(*pmd))
1883 entry = pte_wrprotect(entry);
71e3aac0
AA
1884 if (!pmd_young(*pmd))
1885 entry = pte_mkold(entry);
1886 pte = pte_offset_map(&_pmd, haddr);
1887 BUG_ON(!pte_none(*pte));
1888 set_pte_at(mm, haddr, pte, entry);
1889 pte_unmap(pte);
1890 }
1891
71e3aac0
AA
1892 smp_wmb(); /* make pte visible before pmd */
1893 /*
1894 * Up to this point the pmd is present and huge and
1895 * userland has the whole access to the hugepage
1896 * during the split (which happens in place). If we
1897 * overwrite the pmd with the not-huge version
1898 * pointing to the pte here (which of course we could
1899 * if all CPUs were bug free), userland could trigger
1900 * a small page size TLB miss on the small sized TLB
1901 * while the hugepage TLB entry is still established
1902 * in the huge TLB. Some CPU doesn't like that. See
1903 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1904 * Erratum 383 on page 93. Intel should be safe but is
1905 * also warns that it's only safe if the permission
1906 * and cache attributes of the two entries loaded in
1907 * the two TLB is identical (which should be the case
1908 * here). But it is generally safer to never allow
1909 * small and huge TLB entries for the same virtual
1910 * address to be loaded simultaneously. So instead of
12ebc158 1911 * doing "pmd_populate(); flush_pmd_tlb_range();" we first
71e3aac0
AA
1912 * mark the current pmd notpresent (atomically because
1913 * here the pmd_trans_huge and pmd_trans_splitting
1914 * must remain set at all times on the pmd until the
1915 * split is complete for this pmd), then we flush the
1916 * SMP TLB and finally we write the non-huge version
1917 * of the pmd entry with pmd_populate.
1918 */
46dcde73 1919 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1920 pmd_populate(mm, pmd, pgtable);
1921 ret = 1;
117b0791 1922 spin_unlock(ptl);
71e3aac0 1923 }
71e3aac0
AA
1924
1925 return ret;
1926}
1927
5a505085 1928/* must be called with anon_vma->root->rwsem held */
71e3aac0 1929static void __split_huge_page(struct page *page,
5bc7b8ac
SL
1930 struct anon_vma *anon_vma,
1931 struct list_head *list)
71e3aac0
AA
1932{
1933 int mapcount, mapcount2;
bf181b9f 1934 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1935 struct anon_vma_chain *avc;
1936
1937 BUG_ON(!PageHead(page));
1938 BUG_ON(PageTail(page));
1939
1940 mapcount = 0;
bf181b9f 1941 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1942 struct vm_area_struct *vma = avc->vma;
1943 unsigned long addr = vma_address(page, vma);
1944 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1945 mapcount += __split_huge_page_splitting(page, vma, addr);
1946 }
05759d38
AA
1947 /*
1948 * It is critical that new vmas are added to the tail of the
1949 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1950 * and establishes a child pmd before
1951 * __split_huge_page_splitting() freezes the parent pmd (so if
1952 * we fail to prevent copy_huge_pmd() from running until the
1953 * whole __split_huge_page() is complete), we will still see
1954 * the newly established pmd of the child later during the
1955 * walk, to be able to set it as pmd_trans_splitting too.
1956 */
ff9e43eb 1957 if (mapcount != page_mapcount(page)) {
ae3a8c1c
AM
1958 pr_err("mapcount %d page_mapcount %d\n",
1959 mapcount, page_mapcount(page));
ff9e43eb
KS
1960 BUG();
1961 }
71e3aac0 1962
5bc7b8ac 1963 __split_huge_page_refcount(page, list);
71e3aac0
AA
1964
1965 mapcount2 = 0;
bf181b9f 1966 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1967 struct vm_area_struct *vma = avc->vma;
1968 unsigned long addr = vma_address(page, vma);
1969 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1970 mapcount2 += __split_huge_page_map(page, vma, addr);
1971 }
ff9e43eb 1972 if (mapcount != mapcount2) {
ae3a8c1c
AM
1973 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1974 mapcount, mapcount2, page_mapcount(page));
ff9e43eb
KS
1975 BUG();
1976 }
71e3aac0
AA
1977}
1978
5bc7b8ac
SL
1979/*
1980 * Split a hugepage into normal pages. This doesn't change the position of head
1981 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1982 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1983 * from the hugepage.
1984 * Return 0 if the hugepage is split successfully otherwise return 1.
1985 */
1986int split_huge_page_to_list(struct page *page, struct list_head *list)
71e3aac0
AA
1987{
1988 struct anon_vma *anon_vma;
1989 int ret = 1;
1990
5918d10a 1991 BUG_ON(is_huge_zero_page(page));
71e3aac0 1992 BUG_ON(!PageAnon(page));
062f1af2
MG
1993
1994 /*
1995 * The caller does not necessarily hold an mmap_sem that would prevent
1996 * the anon_vma disappearing so we first we take a reference to it
1997 * and then lock the anon_vma for write. This is similar to
1998 * page_lock_anon_vma_read except the write lock is taken to serialise
1999 * against parallel split or collapse operations.
2000 */
2001 anon_vma = page_get_anon_vma(page);
71e3aac0
AA
2002 if (!anon_vma)
2003 goto out;
062f1af2
MG
2004 anon_vma_lock_write(anon_vma);
2005
71e3aac0
AA
2006 ret = 0;
2007 if (!PageCompound(page))
2008 goto out_unlock;
2009
2010 BUG_ON(!PageSwapBacked(page));
5bc7b8ac 2011 __split_huge_page(page, anon_vma, list);
81ab4201 2012 count_vm_event(THP_SPLIT);
71e3aac0
AA
2013
2014 BUG_ON(PageCompound(page));
2015out_unlock:
08b52706 2016 anon_vma_unlock_write(anon_vma);
062f1af2 2017 put_anon_vma(anon_vma);
71e3aac0
AA
2018out:
2019 return ret;
2020}
2021
9050d7eb 2022#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 2023
60ab3244
AA
2024int hugepage_madvise(struct vm_area_struct *vma,
2025 unsigned long *vm_flags, int advice)
0af4e98b 2026{
a664b2d8
AA
2027 switch (advice) {
2028 case MADV_HUGEPAGE:
1e1836e8
AT
2029#ifdef CONFIG_S390
2030 /*
2031 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
2032 * can't handle this properly after s390_enable_sie, so we simply
2033 * ignore the madvise to prevent qemu from causing a SIGSEGV.
2034 */
2035 if (mm_has_pgste(vma->vm_mm))
2036 return 0;
2037#endif
a664b2d8
AA
2038 /*
2039 * Be somewhat over-protective like KSM for now!
2040 */
1a763615 2041 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
2042 return -EINVAL;
2043 *vm_flags &= ~VM_NOHUGEPAGE;
2044 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
2045 /*
2046 * If the vma become good for khugepaged to scan,
2047 * register it here without waiting a page fault that
2048 * may not happen any time soon.
2049 */
6d50e60c 2050 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 2051 return -ENOMEM;
a664b2d8
AA
2052 break;
2053 case MADV_NOHUGEPAGE:
2054 /*
2055 * Be somewhat over-protective like KSM for now!
2056 */
1a763615 2057 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
2058 return -EINVAL;
2059 *vm_flags &= ~VM_HUGEPAGE;
2060 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
2061 /*
2062 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2063 * this vma even if we leave the mm registered in khugepaged if
2064 * it got registered before VM_NOHUGEPAGE was set.
2065 */
a664b2d8
AA
2066 break;
2067 }
0af4e98b
AA
2068
2069 return 0;
2070}
2071
ba76149f
AA
2072static int __init khugepaged_slab_init(void)
2073{
2074 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2075 sizeof(struct mm_slot),
2076 __alignof__(struct mm_slot), 0, NULL);
2077 if (!mm_slot_cache)
2078 return -ENOMEM;
2079
2080 return 0;
2081}
2082
65ebb64f
KS
2083static void __init khugepaged_slab_exit(void)
2084{
2085 kmem_cache_destroy(mm_slot_cache);
2086}
2087
ba76149f
AA
2088static inline struct mm_slot *alloc_mm_slot(void)
2089{
2090 if (!mm_slot_cache) /* initialization failed */
2091 return NULL;
2092 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2093}
2094
2095static inline void free_mm_slot(struct mm_slot *mm_slot)
2096{
2097 kmem_cache_free(mm_slot_cache, mm_slot);
2098}
2099
ba76149f
AA
2100static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2101{
2102 struct mm_slot *mm_slot;
ba76149f 2103
b67bfe0d 2104 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
2105 if (mm == mm_slot->mm)
2106 return mm_slot;
43b5fbbd 2107
ba76149f
AA
2108 return NULL;
2109}
2110
2111static void insert_to_mm_slots_hash(struct mm_struct *mm,
2112 struct mm_slot *mm_slot)
2113{
ba76149f 2114 mm_slot->mm = mm;
43b5fbbd 2115 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
2116}
2117
2118static inline int khugepaged_test_exit(struct mm_struct *mm)
2119{
2120 return atomic_read(&mm->mm_users) == 0;
2121}
2122
2123int __khugepaged_enter(struct mm_struct *mm)
2124{
2125 struct mm_slot *mm_slot;
2126 int wakeup;
2127
2128 mm_slot = alloc_mm_slot();
2129 if (!mm_slot)
2130 return -ENOMEM;
2131
2132 /* __khugepaged_exit() must not run from under us */
96dad67f 2133 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
2134 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2135 free_mm_slot(mm_slot);
2136 return 0;
2137 }
2138
2139 spin_lock(&khugepaged_mm_lock);
2140 insert_to_mm_slots_hash(mm, mm_slot);
2141 /*
2142 * Insert just behind the scanning cursor, to let the area settle
2143 * down a little.
2144 */
2145 wakeup = list_empty(&khugepaged_scan.mm_head);
2146 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2147 spin_unlock(&khugepaged_mm_lock);
2148
2149 atomic_inc(&mm->mm_count);
2150 if (wakeup)
2151 wake_up_interruptible(&khugepaged_wait);
2152
2153 return 0;
2154}
2155
6d50e60c
DR
2156int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2157 unsigned long vm_flags)
ba76149f
AA
2158{
2159 unsigned long hstart, hend;
2160 if (!vma->anon_vma)
2161 /*
2162 * Not yet faulted in so we will register later in the
2163 * page fault if needed.
2164 */
2165 return 0;
78f11a25 2166 if (vma->vm_ops)
ba76149f
AA
2167 /* khugepaged not yet working on file or special mappings */
2168 return 0;
6d50e60c 2169 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
2170 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2171 hend = vma->vm_end & HPAGE_PMD_MASK;
2172 if (hstart < hend)
6d50e60c 2173 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
2174 return 0;
2175}
2176
2177void __khugepaged_exit(struct mm_struct *mm)
2178{
2179 struct mm_slot *mm_slot;
2180 int free = 0;
2181
2182 spin_lock(&khugepaged_mm_lock);
2183 mm_slot = get_mm_slot(mm);
2184 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 2185 hash_del(&mm_slot->hash);
ba76149f
AA
2186 list_del(&mm_slot->mm_node);
2187 free = 1;
2188 }
d788e80a 2189 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2190
2191 if (free) {
ba76149f
AA
2192 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2193 free_mm_slot(mm_slot);
2194 mmdrop(mm);
2195 } else if (mm_slot) {
ba76149f
AA
2196 /*
2197 * This is required to serialize against
2198 * khugepaged_test_exit() (which is guaranteed to run
2199 * under mmap sem read mode). Stop here (after we
2200 * return all pagetables will be destroyed) until
2201 * khugepaged has finished working on the pagetables
2202 * under the mmap_sem.
2203 */
2204 down_write(&mm->mmap_sem);
2205 up_write(&mm->mmap_sem);
d788e80a 2206 }
ba76149f
AA
2207}
2208
2209static void release_pte_page(struct page *page)
2210{
2211 /* 0 stands for page_is_file_cache(page) == false */
2212 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2213 unlock_page(page);
2214 putback_lru_page(page);
2215}
2216
2217static void release_pte_pages(pte_t *pte, pte_t *_pte)
2218{
2219 while (--_pte >= pte) {
2220 pte_t pteval = *_pte;
ca0984ca 2221 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
2222 release_pte_page(pte_page(pteval));
2223 }
2224}
2225
ba76149f
AA
2226static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2227 unsigned long address,
2228 pte_t *pte)
2229{
7d2eba05 2230 struct page *page = NULL;
ba76149f 2231 pte_t *_pte;
7d2eba05 2232 int none_or_zero = 0, result = 0;
10359213 2233 bool referenced = false, writable = false;
7d2eba05 2234
ba76149f
AA
2235 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2236 _pte++, address += PAGE_SIZE) {
2237 pte_t pteval = *_pte;
47aee4d8
MK
2238 if (pte_none(pteval) || (pte_present(pteval) &&
2239 is_zero_pfn(pte_pfn(pteval)))) {
c1294d05 2240 if (!userfaultfd_armed(vma) &&
7d2eba05 2241 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2242 continue;
7d2eba05
EA
2243 } else {
2244 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2245 goto out;
7d2eba05 2246 }
ba76149f 2247 }
7d2eba05
EA
2248 if (!pte_present(pteval)) {
2249 result = SCAN_PTE_NON_PRESENT;
ba76149f 2250 goto out;
7d2eba05 2251 }
ba76149f 2252 page = vm_normal_page(vma, address, pteval);
7d2eba05
EA
2253 if (unlikely(!page)) {
2254 result = SCAN_PAGE_NULL;
ba76149f 2255 goto out;
7d2eba05 2256 }
344aa35c 2257
309381fe
SL
2258 VM_BUG_ON_PAGE(PageCompound(page), page);
2259 VM_BUG_ON_PAGE(!PageAnon(page), page);
2260 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 2261
ba76149f
AA
2262 /*
2263 * We can do it before isolate_lru_page because the
2264 * page can't be freed from under us. NOTE: PG_lock
2265 * is needed to serialize against split_huge_page
2266 * when invoked from the VM.
2267 */
7d2eba05
EA
2268 if (!trylock_page(page)) {
2269 result = SCAN_PAGE_LOCK;
ba76149f 2270 goto out;
7d2eba05 2271 }
10359213
EA
2272
2273 /*
2274 * cannot use mapcount: can't collapse if there's a gup pin.
2275 * The page must only be referenced by the scanned process
2276 * and page swap cache.
2277 */
2278 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2279 unlock_page(page);
7d2eba05 2280 result = SCAN_PAGE_COUNT;
10359213
EA
2281 goto out;
2282 }
2283 if (pte_write(pteval)) {
2284 writable = true;
2285 } else {
2286 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2287 unlock_page(page);
7d2eba05 2288 result = SCAN_SWAP_CACHE_PAGE;
10359213
EA
2289 goto out;
2290 }
2291 /*
2292 * Page is not in the swap cache. It can be collapsed
2293 * into a THP.
2294 */
2295 }
2296
ba76149f
AA
2297 /*
2298 * Isolate the page to avoid collapsing an hugepage
2299 * currently in use by the VM.
2300 */
2301 if (isolate_lru_page(page)) {
2302 unlock_page(page);
7d2eba05 2303 result = SCAN_DEL_PAGE_LRU;
ba76149f
AA
2304 goto out;
2305 }
2306 /* 0 stands for page_is_file_cache(page) == false */
2307 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2308 VM_BUG_ON_PAGE(!PageLocked(page), page);
2309 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2310
2311 /* If there is no mapped pte young don't collapse the page */
33c3fc71
VD
2312 if (pte_young(pteval) ||
2313 page_is_young(page) || PageReferenced(page) ||
8ee53820 2314 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2315 referenced = true;
ba76149f 2316 }
7d2eba05
EA
2317 if (likely(writable)) {
2318 if (likely(referenced)) {
2319 result = SCAN_SUCCEED;
2320 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2321 referenced, writable, result);
2322 return 1;
2323 }
2324 } else {
2325 result = SCAN_PAGE_RO;
2326 }
2327
ba76149f 2328out:
344aa35c 2329 release_pte_pages(pte, _pte);
7d2eba05
EA
2330 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2331 referenced, writable, result);
344aa35c 2332 return 0;
ba76149f
AA
2333}
2334
2335static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2336 struct vm_area_struct *vma,
2337 unsigned long address,
2338 spinlock_t *ptl)
2339{
2340 pte_t *_pte;
2341 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2342 pte_t pteval = *_pte;
2343 struct page *src_page;
2344
ca0984ca 2345 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2346 clear_user_highpage(page, address);
2347 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2348 if (is_zero_pfn(pte_pfn(pteval))) {
2349 /*
2350 * ptl mostly unnecessary.
2351 */
2352 spin_lock(ptl);
2353 /*
2354 * paravirt calls inside pte_clear here are
2355 * superfluous.
2356 */
2357 pte_clear(vma->vm_mm, address, _pte);
2358 spin_unlock(ptl);
2359 }
ba76149f
AA
2360 } else {
2361 src_page = pte_page(pteval);
2362 copy_user_highpage(page, src_page, address, vma);
309381fe 2363 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2364 release_pte_page(src_page);
2365 /*
2366 * ptl mostly unnecessary, but preempt has to
2367 * be disabled to update the per-cpu stats
2368 * inside page_remove_rmap().
2369 */
2370 spin_lock(ptl);
2371 /*
2372 * paravirt calls inside pte_clear here are
2373 * superfluous.
2374 */
2375 pte_clear(vma->vm_mm, address, _pte);
d281ee61 2376 page_remove_rmap(src_page, false);
ba76149f
AA
2377 spin_unlock(ptl);
2378 free_page_and_swap_cache(src_page);
2379 }
2380
2381 address += PAGE_SIZE;
2382 page++;
2383 }
2384}
2385
26234f36 2386static void khugepaged_alloc_sleep(void)
ba76149f 2387{
bde43c6c
PM
2388 DEFINE_WAIT(wait);
2389
2390 add_wait_queue(&khugepaged_wait, &wait);
2391 freezable_schedule_timeout_interruptible(
2392 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2393 remove_wait_queue(&khugepaged_wait, &wait);
26234f36 2394}
ba76149f 2395
9f1b868a
BL
2396static int khugepaged_node_load[MAX_NUMNODES];
2397
14a4e214
DR
2398static bool khugepaged_scan_abort(int nid)
2399{
2400 int i;
2401
2402 /*
2403 * If zone_reclaim_mode is disabled, then no extra effort is made to
2404 * allocate memory locally.
2405 */
2406 if (!zone_reclaim_mode)
2407 return false;
2408
2409 /* If there is a count for this node already, it must be acceptable */
2410 if (khugepaged_node_load[nid])
2411 return false;
2412
2413 for (i = 0; i < MAX_NUMNODES; i++) {
2414 if (!khugepaged_node_load[i])
2415 continue;
2416 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2417 return true;
2418 }
2419 return false;
2420}
2421
26234f36 2422#ifdef CONFIG_NUMA
9f1b868a
BL
2423static int khugepaged_find_target_node(void)
2424{
2425 static int last_khugepaged_target_node = NUMA_NO_NODE;
2426 int nid, target_node = 0, max_value = 0;
2427
2428 /* find first node with max normal pages hit */
2429 for (nid = 0; nid < MAX_NUMNODES; nid++)
2430 if (khugepaged_node_load[nid] > max_value) {
2431 max_value = khugepaged_node_load[nid];
2432 target_node = nid;
2433 }
2434
2435 /* do some balance if several nodes have the same hit record */
2436 if (target_node <= last_khugepaged_target_node)
2437 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2438 nid++)
2439 if (max_value == khugepaged_node_load[nid]) {
2440 target_node = nid;
2441 break;
2442 }
2443
2444 last_khugepaged_target_node = target_node;
2445 return target_node;
2446}
2447
26234f36
XG
2448static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2449{
2450 if (IS_ERR(*hpage)) {
2451 if (!*wait)
2452 return false;
2453
2454 *wait = false;
e3b4126c 2455 *hpage = NULL;
26234f36
XG
2456 khugepaged_alloc_sleep();
2457 } else if (*hpage) {
2458 put_page(*hpage);
2459 *hpage = NULL;
2460 }
2461
2462 return true;
2463}
2464
3b363692
MH
2465static struct page *
2466khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2467 unsigned long address, int node)
26234f36 2468{
309381fe 2469 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2470
ce83d217 2471 /*
8b164568
VB
2472 * Before allocating the hugepage, release the mmap_sem read lock.
2473 * The allocation can take potentially a long time if it involves
2474 * sync compaction, and we do not need to hold the mmap_sem during
2475 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2476 */
8b164568
VB
2477 up_read(&mm->mmap_sem);
2478
96db800f 2479 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2480 if (unlikely(!*hpage)) {
81ab4201 2481 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2482 *hpage = ERR_PTR(-ENOMEM);
26234f36 2483 return NULL;
ce83d217 2484 }
26234f36 2485
65b3c07b 2486 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2487 return *hpage;
2488}
2489#else
9f1b868a
BL
2490static int khugepaged_find_target_node(void)
2491{
2492 return 0;
2493}
2494
10dc4155
BL
2495static inline struct page *alloc_hugepage(int defrag)
2496{
2497 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2498 HPAGE_PMD_ORDER);
2499}
2500
26234f36
XG
2501static struct page *khugepaged_alloc_hugepage(bool *wait)
2502{
2503 struct page *hpage;
2504
2505 do {
2506 hpage = alloc_hugepage(khugepaged_defrag());
2507 if (!hpage) {
2508 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2509 if (!*wait)
2510 return NULL;
2511
2512 *wait = false;
2513 khugepaged_alloc_sleep();
2514 } else
2515 count_vm_event(THP_COLLAPSE_ALLOC);
2516 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2517
2518 return hpage;
2519}
2520
2521static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2522{
2523 if (!*hpage)
2524 *hpage = khugepaged_alloc_hugepage(wait);
2525
2526 if (unlikely(!*hpage))
2527 return false;
2528
2529 return true;
2530}
2531
3b363692
MH
2532static struct page *
2533khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2534 unsigned long address, int node)
26234f36
XG
2535{
2536 up_read(&mm->mmap_sem);
2537 VM_BUG_ON(!*hpage);
3b363692 2538
26234f36
XG
2539 return *hpage;
2540}
692e0b35
AA
2541#endif
2542
fa475e51
BL
2543static bool hugepage_vma_check(struct vm_area_struct *vma)
2544{
2545 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2546 (vma->vm_flags & VM_NOHUGEPAGE))
2547 return false;
2548
2549 if (!vma->anon_vma || vma->vm_ops)
2550 return false;
2551 if (is_vma_temporary_stack(vma))
2552 return false;
81d1b09c 2553 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2554 return true;
2555}
2556
26234f36
XG
2557static void collapse_huge_page(struct mm_struct *mm,
2558 unsigned long address,
2559 struct page **hpage,
2560 struct vm_area_struct *vma,
2561 int node)
2562{
26234f36
XG
2563 pmd_t *pmd, _pmd;
2564 pte_t *pte;
2565 pgtable_t pgtable;
2566 struct page *new_page;
c4088ebd 2567 spinlock_t *pmd_ptl, *pte_ptl;
7d2eba05 2568 int isolated, result = 0;
26234f36 2569 unsigned long hstart, hend;
00501b53 2570 struct mem_cgroup *memcg;
2ec74c3e
SG
2571 unsigned long mmun_start; /* For mmu_notifiers */
2572 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2573 gfp_t gfp;
26234f36
XG
2574
2575 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2576
3b363692
MH
2577 /* Only allocate from the target node */
2578 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2579 __GFP_THISNODE;
2580
26234f36 2581 /* release the mmap_sem read lock. */
d6669d68 2582 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
7d2eba05
EA
2583 if (!new_page) {
2584 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2585 goto out_nolock;
2586 }
26234f36 2587
f627c2f5 2588 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
7d2eba05
EA
2589 result = SCAN_CGROUP_CHARGE_FAIL;
2590 goto out_nolock;
2591 }
ba76149f
AA
2592
2593 /*
2594 * Prevent all access to pagetables with the exception of
2595 * gup_fast later hanlded by the ptep_clear_flush and the VM
2596 * handled by the anon_vma lock + PG_lock.
2597 */
2598 down_write(&mm->mmap_sem);
7d2eba05
EA
2599 if (unlikely(khugepaged_test_exit(mm))) {
2600 result = SCAN_ANY_PROCESS;
ba76149f 2601 goto out;
7d2eba05 2602 }
ba76149f
AA
2603
2604 vma = find_vma(mm, address);
7d2eba05
EA
2605 if (!vma) {
2606 result = SCAN_VMA_NULL;
a8f531eb 2607 goto out;
7d2eba05 2608 }
ba76149f
AA
2609 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2610 hend = vma->vm_end & HPAGE_PMD_MASK;
7d2eba05
EA
2611 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2612 result = SCAN_ADDRESS_RANGE;
ba76149f 2613 goto out;
7d2eba05
EA
2614 }
2615 if (!hugepage_vma_check(vma)) {
2616 result = SCAN_VMA_CHECK;
a7d6e4ec 2617 goto out;
7d2eba05 2618 }
6219049a 2619 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2620 if (!pmd) {
2621 result = SCAN_PMD_NULL;
ba76149f 2622 goto out;
7d2eba05 2623 }
ba76149f 2624
4fc3f1d6 2625 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2626
2627 pte = pte_offset_map(pmd, address);
c4088ebd 2628 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2629
2ec74c3e
SG
2630 mmun_start = address;
2631 mmun_end = address + HPAGE_PMD_SIZE;
2632 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2633 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2634 /*
2635 * After this gup_fast can't run anymore. This also removes
2636 * any huge TLB entry from the CPU so we won't allow
2637 * huge and small TLB entries for the same virtual address
2638 * to avoid the risk of CPU bugs in that area.
2639 */
15a25b2e 2640 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2641 spin_unlock(pmd_ptl);
2ec74c3e 2642 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2643
c4088ebd 2644 spin_lock(pte_ptl);
ba76149f 2645 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2646 spin_unlock(pte_ptl);
ba76149f
AA
2647
2648 if (unlikely(!isolated)) {
453c7192 2649 pte_unmap(pte);
c4088ebd 2650 spin_lock(pmd_ptl);
ba76149f 2651 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2652 /*
2653 * We can only use set_pmd_at when establishing
2654 * hugepmds and never for establishing regular pmds that
2655 * points to regular pagetables. Use pmd_populate for that
2656 */
2657 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2658 spin_unlock(pmd_ptl);
08b52706 2659 anon_vma_unlock_write(vma->anon_vma);
7d2eba05 2660 result = SCAN_FAIL;
ce83d217 2661 goto out;
ba76149f
AA
2662 }
2663
2664 /*
2665 * All pages are isolated and locked so anon_vma rmap
2666 * can't run anymore.
2667 */
08b52706 2668 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2669
c4088ebd 2670 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2671 pte_unmap(pte);
ba76149f
AA
2672 __SetPageUptodate(new_page);
2673 pgtable = pmd_pgtable(_pmd);
ba76149f 2674
3122359a
KS
2675 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2676 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2677
2678 /*
2679 * spin_lock() below is not the equivalent of smp_wmb(), so
2680 * this is needed to avoid the copy_huge_page writes to become
2681 * visible after the set_pmd_at() write.
2682 */
2683 smp_wmb();
2684
c4088ebd 2685 spin_lock(pmd_ptl);
ba76149f 2686 BUG_ON(!pmd_none(*pmd));
d281ee61 2687 page_add_new_anon_rmap(new_page, vma, address, true);
f627c2f5 2688 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 2689 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2690 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2691 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2692 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2693 spin_unlock(pmd_ptl);
ba76149f
AA
2694
2695 *hpage = NULL;
420256ef 2696
ba76149f 2697 khugepaged_pages_collapsed++;
7d2eba05 2698 result = SCAN_SUCCEED;
ce83d217 2699out_up_write:
ba76149f 2700 up_write(&mm->mmap_sem);
7d2eba05 2701 trace_mm_collapse_huge_page(mm, isolated, result);
0bbbc0b3
AA
2702 return;
2703
7d2eba05
EA
2704out_nolock:
2705 trace_mm_collapse_huge_page(mm, isolated, result);
2706 return;
ce83d217 2707out:
f627c2f5 2708 mem_cgroup_cancel_charge(new_page, memcg, true);
ce83d217 2709 goto out_up_write;
ba76149f
AA
2710}
2711
2712static int khugepaged_scan_pmd(struct mm_struct *mm,
2713 struct vm_area_struct *vma,
2714 unsigned long address,
2715 struct page **hpage)
2716{
ba76149f
AA
2717 pmd_t *pmd;
2718 pte_t *pte, *_pte;
7d2eba05
EA
2719 int ret = 0, none_or_zero = 0, result = 0;
2720 struct page *page = NULL;
ba76149f
AA
2721 unsigned long _address;
2722 spinlock_t *ptl;
00ef2d2f 2723 int node = NUMA_NO_NODE;
10359213 2724 bool writable = false, referenced = false;
ba76149f
AA
2725
2726 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2727
6219049a 2728 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2729 if (!pmd) {
2730 result = SCAN_PMD_NULL;
ba76149f 2731 goto out;
7d2eba05 2732 }
ba76149f 2733
9f1b868a 2734 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2735 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2736 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2737 _pte++, _address += PAGE_SIZE) {
2738 pte_t pteval = *_pte;
ca0984ca 2739 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05 2740 if (!userfaultfd_armed(vma) &&
7d2eba05 2741 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2742 continue;
7d2eba05
EA
2743 } else {
2744 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2745 goto out_unmap;
7d2eba05 2746 }
ba76149f 2747 }
7d2eba05
EA
2748 if (!pte_present(pteval)) {
2749 result = SCAN_PTE_NON_PRESENT;
ba76149f 2750 goto out_unmap;
7d2eba05 2751 }
10359213
EA
2752 if (pte_write(pteval))
2753 writable = true;
2754
ba76149f 2755 page = vm_normal_page(vma, _address, pteval);
7d2eba05
EA
2756 if (unlikely(!page)) {
2757 result = SCAN_PAGE_NULL;
ba76149f 2758 goto out_unmap;
7d2eba05 2759 }
5c4b4be3 2760 /*
9f1b868a
BL
2761 * Record which node the original page is from and save this
2762 * information to khugepaged_node_load[].
2763 * Khupaged will allocate hugepage from the node has the max
2764 * hit record.
5c4b4be3 2765 */
9f1b868a 2766 node = page_to_nid(page);
7d2eba05
EA
2767 if (khugepaged_scan_abort(node)) {
2768 result = SCAN_SCAN_ABORT;
14a4e214 2769 goto out_unmap;
7d2eba05 2770 }
9f1b868a 2771 khugepaged_node_load[node]++;
309381fe 2772 VM_BUG_ON_PAGE(PageCompound(page), page);
7d2eba05
EA
2773 if (!PageLRU(page)) {
2774 result = SCAN_SCAN_ABORT;
2775 goto out_unmap;
2776 }
2777 if (PageLocked(page)) {
2778 result = SCAN_PAGE_LOCK;
ba76149f 2779 goto out_unmap;
7d2eba05
EA
2780 }
2781 if (!PageAnon(page)) {
2782 result = SCAN_PAGE_ANON;
2783 goto out_unmap;
2784 }
2785
10359213
EA
2786 /*
2787 * cannot use mapcount: can't collapse if there's a gup pin.
2788 * The page must only be referenced by the scanned process
2789 * and page swap cache.
2790 */
7d2eba05
EA
2791 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2792 result = SCAN_PAGE_COUNT;
ba76149f 2793 goto out_unmap;
7d2eba05 2794 }
33c3fc71
VD
2795 if (pte_young(pteval) ||
2796 page_is_young(page) || PageReferenced(page) ||
8ee53820 2797 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2798 referenced = true;
ba76149f 2799 }
7d2eba05
EA
2800 if (writable) {
2801 if (referenced) {
2802 result = SCAN_SUCCEED;
2803 ret = 1;
2804 } else {
2805 result = SCAN_NO_REFERENCED_PAGE;
2806 }
2807 } else {
2808 result = SCAN_PAGE_RO;
2809 }
ba76149f
AA
2810out_unmap:
2811 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2812 if (ret) {
2813 node = khugepaged_find_target_node();
ce83d217 2814 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2815 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2816 }
ba76149f 2817out:
7d2eba05
EA
2818 trace_mm_khugepaged_scan_pmd(mm, page_to_pfn(page), writable, referenced,
2819 none_or_zero, result);
ba76149f
AA
2820 return ret;
2821}
2822
2823static void collect_mm_slot(struct mm_slot *mm_slot)
2824{
2825 struct mm_struct *mm = mm_slot->mm;
2826
b9980cdc 2827 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2828
2829 if (khugepaged_test_exit(mm)) {
2830 /* free mm_slot */
43b5fbbd 2831 hash_del(&mm_slot->hash);
ba76149f
AA
2832 list_del(&mm_slot->mm_node);
2833
2834 /*
2835 * Not strictly needed because the mm exited already.
2836 *
2837 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2838 */
2839
2840 /* khugepaged_mm_lock actually not necessary for the below */
2841 free_mm_slot(mm_slot);
2842 mmdrop(mm);
2843 }
2844}
2845
2846static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2847 struct page **hpage)
2f1da642
HS
2848 __releases(&khugepaged_mm_lock)
2849 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2850{
2851 struct mm_slot *mm_slot;
2852 struct mm_struct *mm;
2853 struct vm_area_struct *vma;
2854 int progress = 0;
2855
2856 VM_BUG_ON(!pages);
b9980cdc 2857 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2858
2859 if (khugepaged_scan.mm_slot)
2860 mm_slot = khugepaged_scan.mm_slot;
2861 else {
2862 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2863 struct mm_slot, mm_node);
2864 khugepaged_scan.address = 0;
2865 khugepaged_scan.mm_slot = mm_slot;
2866 }
2867 spin_unlock(&khugepaged_mm_lock);
2868
2869 mm = mm_slot->mm;
2870 down_read(&mm->mmap_sem);
2871 if (unlikely(khugepaged_test_exit(mm)))
2872 vma = NULL;
2873 else
2874 vma = find_vma(mm, khugepaged_scan.address);
2875
2876 progress++;
2877 for (; vma; vma = vma->vm_next) {
2878 unsigned long hstart, hend;
2879
2880 cond_resched();
2881 if (unlikely(khugepaged_test_exit(mm))) {
2882 progress++;
2883 break;
2884 }
fa475e51
BL
2885 if (!hugepage_vma_check(vma)) {
2886skip:
ba76149f
AA
2887 progress++;
2888 continue;
2889 }
ba76149f
AA
2890 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2891 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2892 if (hstart >= hend)
2893 goto skip;
2894 if (khugepaged_scan.address > hend)
2895 goto skip;
ba76149f
AA
2896 if (khugepaged_scan.address < hstart)
2897 khugepaged_scan.address = hstart;
a7d6e4ec 2898 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2899
2900 while (khugepaged_scan.address < hend) {
2901 int ret;
2902 cond_resched();
2903 if (unlikely(khugepaged_test_exit(mm)))
2904 goto breakouterloop;
2905
2906 VM_BUG_ON(khugepaged_scan.address < hstart ||
2907 khugepaged_scan.address + HPAGE_PMD_SIZE >
2908 hend);
2909 ret = khugepaged_scan_pmd(mm, vma,
2910 khugepaged_scan.address,
2911 hpage);
2912 /* move to next address */
2913 khugepaged_scan.address += HPAGE_PMD_SIZE;
2914 progress += HPAGE_PMD_NR;
2915 if (ret)
2916 /* we released mmap_sem so break loop */
2917 goto breakouterloop_mmap_sem;
2918 if (progress >= pages)
2919 goto breakouterloop;
2920 }
2921 }
2922breakouterloop:
2923 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2924breakouterloop_mmap_sem:
2925
2926 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2927 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2928 /*
2929 * Release the current mm_slot if this mm is about to die, or
2930 * if we scanned all vmas of this mm.
2931 */
2932 if (khugepaged_test_exit(mm) || !vma) {
2933 /*
2934 * Make sure that if mm_users is reaching zero while
2935 * khugepaged runs here, khugepaged_exit will find
2936 * mm_slot not pointing to the exiting mm.
2937 */
2938 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2939 khugepaged_scan.mm_slot = list_entry(
2940 mm_slot->mm_node.next,
2941 struct mm_slot, mm_node);
2942 khugepaged_scan.address = 0;
2943 } else {
2944 khugepaged_scan.mm_slot = NULL;
2945 khugepaged_full_scans++;
2946 }
2947
2948 collect_mm_slot(mm_slot);
2949 }
2950
2951 return progress;
2952}
2953
2954static int khugepaged_has_work(void)
2955{
2956 return !list_empty(&khugepaged_scan.mm_head) &&
2957 khugepaged_enabled();
2958}
2959
2960static int khugepaged_wait_event(void)
2961{
2962 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2963 kthread_should_stop();
ba76149f
AA
2964}
2965
d516904b 2966static void khugepaged_do_scan(void)
ba76149f 2967{
d516904b 2968 struct page *hpage = NULL;
ba76149f
AA
2969 unsigned int progress = 0, pass_through_head = 0;
2970 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2971 bool wait = true;
ba76149f
AA
2972
2973 barrier(); /* write khugepaged_pages_to_scan to local stack */
2974
2975 while (progress < pages) {
26234f36 2976 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2977 break;
26234f36 2978
420256ef 2979 cond_resched();
ba76149f 2980
cd092411 2981 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2982 break;
2983
ba76149f
AA
2984 spin_lock(&khugepaged_mm_lock);
2985 if (!khugepaged_scan.mm_slot)
2986 pass_through_head++;
2987 if (khugepaged_has_work() &&
2988 pass_through_head < 2)
2989 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2990 &hpage);
ba76149f
AA
2991 else
2992 progress = pages;
2993 spin_unlock(&khugepaged_mm_lock);
2994 }
ba76149f 2995
d516904b
XG
2996 if (!IS_ERR_OR_NULL(hpage))
2997 put_page(hpage);
0bbbc0b3
AA
2998}
2999
2017c0bf
XG
3000static void khugepaged_wait_work(void)
3001{
2017c0bf
XG
3002 if (khugepaged_has_work()) {
3003 if (!khugepaged_scan_sleep_millisecs)
3004 return;
3005
3006 wait_event_freezable_timeout(khugepaged_wait,
3007 kthread_should_stop(),
3008 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
3009 return;
3010 }
3011
3012 if (khugepaged_enabled())
3013 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
3014}
3015
ba76149f
AA
3016static int khugepaged(void *none)
3017{
3018 struct mm_slot *mm_slot;
3019
878aee7d 3020 set_freezable();
8698a745 3021 set_user_nice(current, MAX_NICE);
ba76149f 3022
b7231789
XG
3023 while (!kthread_should_stop()) {
3024 khugepaged_do_scan();
3025 khugepaged_wait_work();
3026 }
ba76149f
AA
3027
3028 spin_lock(&khugepaged_mm_lock);
3029 mm_slot = khugepaged_scan.mm_slot;
3030 khugepaged_scan.mm_slot = NULL;
3031 if (mm_slot)
3032 collect_mm_slot(mm_slot);
3033 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
3034 return 0;
3035}
3036
c5a647d0
KS
3037static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
3038 unsigned long haddr, pmd_t *pmd)
3039{
3040 struct mm_struct *mm = vma->vm_mm;
3041 pgtable_t pgtable;
3042 pmd_t _pmd;
3043 int i;
3044
8809aa2d 3045 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
c5a647d0
KS
3046 /* leave pmd empty until pte is filled */
3047
6b0b50b0 3048 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
c5a647d0
KS
3049 pmd_populate(mm, &_pmd, pgtable);
3050
3051 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
3052 pte_t *pte, entry;
3053 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
3054 entry = pte_mkspecial(entry);
3055 pte = pte_offset_map(&_pmd, haddr);
3056 VM_BUG_ON(!pte_none(*pte));
3057 set_pte_at(mm, haddr, pte, entry);
3058 pte_unmap(pte);
3059 }
3060 smp_wmb(); /* make pte visible before pmd */
3061 pmd_populate(mm, pmd, pgtable);
97ae1749 3062 put_huge_zero_page();
c5a647d0
KS
3063}
3064
e180377f
KS
3065void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
3066 pmd_t *pmd)
71e3aac0 3067{
c4088ebd 3068 spinlock_t *ptl;
4897c765 3069 struct page *page = NULL;
e180377f 3070 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
3071 unsigned long haddr = address & HPAGE_PMD_MASK;
3072 unsigned long mmun_start; /* For mmu_notifiers */
3073 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
3074
3075 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 3076
c5a647d0
KS
3077 mmun_start = haddr;
3078 mmun_end = haddr + HPAGE_PMD_SIZE;
750e8165 3079again:
c5a647d0 3080 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 3081 ptl = pmd_lock(mm, pmd);
4897c765
MW
3082 if (unlikely(!pmd_trans_huge(*pmd)))
3083 goto unlock;
3084 if (vma_is_dax(vma)) {
5b701b84
KS
3085 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
3086 if (is_huge_zero_pmd(_pmd))
3087 put_huge_zero_page();
4897c765 3088 } else if (is_huge_zero_pmd(*pmd)) {
c5a647d0 3089 __split_huge_zero_page_pmd(vma, haddr, pmd);
4897c765
MW
3090 } else {
3091 page = pmd_page(*pmd);
3092 VM_BUG_ON_PAGE(!page_count(page), page);
3093 get_page(page);
71e3aac0 3094 }
4897c765 3095 unlock:
c4088ebd 3096 spin_unlock(ptl);
c5a647d0 3097 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0 3098
4897c765
MW
3099 if (!page)
3100 return;
71e3aac0 3101
4897c765 3102 split_huge_page(page);
71e3aac0 3103 put_page(page);
750e8165
HD
3104
3105 /*
3106 * We don't always have down_write of mmap_sem here: a racing
3107 * do_huge_pmd_wp_page() might have copied-on-write to another
3108 * huge page before our split_huge_page() got the anon_vma lock.
3109 */
3110 if (unlikely(pmd_trans_huge(*pmd)))
3111 goto again;
71e3aac0 3112}
94fcc585 3113
e180377f
KS
3114void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
3115 pmd_t *pmd)
3116{
3117 struct vm_area_struct *vma;
3118
3119 vma = find_vma(mm, address);
3120 BUG_ON(vma == NULL);
3121 split_huge_page_pmd(vma, address, pmd);
3122}
3123
94fcc585
AA
3124static void split_huge_page_address(struct mm_struct *mm,
3125 unsigned long address)
3126{
f72e7dcd
HD
3127 pgd_t *pgd;
3128 pud_t *pud;
94fcc585
AA
3129 pmd_t *pmd;
3130
3131 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
3132
f72e7dcd
HD
3133 pgd = pgd_offset(mm, address);
3134 if (!pgd_present(*pgd))
3135 return;
3136
3137 pud = pud_offset(pgd, address);
3138 if (!pud_present(*pud))
3139 return;
3140
3141 pmd = pmd_offset(pud, address);
3142 if (!pmd_present(*pmd))
94fcc585
AA
3143 return;
3144 /*
3145 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3146 * materialize from under us.
3147 */
e180377f 3148 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
3149}
3150
e1b9996b 3151void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
3152 unsigned long start,
3153 unsigned long end,
3154 long adjust_next)
3155{
3156 /*
3157 * If the new start address isn't hpage aligned and it could
3158 * previously contain an hugepage: check if we need to split
3159 * an huge pmd.
3160 */
3161 if (start & ~HPAGE_PMD_MASK &&
3162 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3163 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3164 split_huge_page_address(vma->vm_mm, start);
3165
3166 /*
3167 * If the new end address isn't hpage aligned and it could
3168 * previously contain an hugepage: check if we need to split
3169 * an huge pmd.
3170 */
3171 if (end & ~HPAGE_PMD_MASK &&
3172 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3173 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3174 split_huge_page_address(vma->vm_mm, end);
3175
3176 /*
3177 * If we're also updating the vma->vm_next->vm_start, if the new
3178 * vm_next->vm_start isn't page aligned and it could previously
3179 * contain an hugepage: check if we need to split an huge pmd.
3180 */
3181 if (adjust_next > 0) {
3182 struct vm_area_struct *next = vma->vm_next;
3183 unsigned long nstart = next->vm_start;
3184 nstart += adjust_next << PAGE_SHIFT;
3185 if (nstart & ~HPAGE_PMD_MASK &&
3186 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3187 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3188 split_huge_page_address(next->vm_mm, nstart);
3189 }
3190}