]> git.ipfire.org Git - people/ms/linux.git/blame - mm/huge_memory.c
mm: export various functions for the benefit of DAX
[people/ms/linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
4897c765 19#include <linux/dax.h>
ba76149f
AA
20#include <linux/kthread.h>
21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
a664b2d8 23#include <linux/mman.h>
325adeb5 24#include <linux/pagemap.h>
4daae3b4 25#include <linux/migrate.h>
43b5fbbd 26#include <linux/hashtable.h>
6b251fc9 27#include <linux/userfaultfd_k.h>
97ae1749 28
71e3aac0
AA
29#include <asm/tlb.h>
30#include <asm/pgalloc.h>
31#include "internal.h"
32
ba76149f 33/*
8bfa3f9a
JW
34 * By default transparent hugepage support is disabled in order that avoid
35 * to risk increase the memory footprint of applications without a guaranteed
36 * benefit. When transparent hugepage support is enabled, is for all mappings,
37 * and khugepaged scans all mappings.
38 * Defrag is invoked by khugepaged hugepage allocations and by page faults
39 * for all hugepage allocations.
ba76149f 40 */
71e3aac0 41unsigned long transparent_hugepage_flags __read_mostly =
13ece886 42#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 43 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
44#endif
45#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
46 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
47#endif
d39d33c3 48 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
49 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
50 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
51
52/* default scan 8*512 pte (or vmas) every 30 second */
53static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
54static unsigned int khugepaged_pages_collapsed;
55static unsigned int khugepaged_full_scans;
56static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
57/* during fragmentation poll the hugepage allocator once every minute */
58static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
59static struct task_struct *khugepaged_thread __read_mostly;
60static DEFINE_MUTEX(khugepaged_mutex);
61static DEFINE_SPINLOCK(khugepaged_mm_lock);
62static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
63/*
64 * default collapse hugepages if there is at least one pte mapped like
65 * it would have happened if the vma was large enough during page
66 * fault.
67 */
68static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
69
70static int khugepaged(void *none);
ba76149f 71static int khugepaged_slab_init(void);
65ebb64f 72static void khugepaged_slab_exit(void);
ba76149f 73
43b5fbbd
SL
74#define MM_SLOTS_HASH_BITS 10
75static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
76
ba76149f
AA
77static struct kmem_cache *mm_slot_cache __read_mostly;
78
79/**
80 * struct mm_slot - hash lookup from mm to mm_slot
81 * @hash: hash collision list
82 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
83 * @mm: the mm that this information is valid for
84 */
85struct mm_slot {
86 struct hlist_node hash;
87 struct list_head mm_node;
88 struct mm_struct *mm;
89};
90
91/**
92 * struct khugepaged_scan - cursor for scanning
93 * @mm_head: the head of the mm list to scan
94 * @mm_slot: the current mm_slot we are scanning
95 * @address: the next address inside that to be scanned
96 *
97 * There is only the one khugepaged_scan instance of this cursor structure.
98 */
99struct khugepaged_scan {
100 struct list_head mm_head;
101 struct mm_slot *mm_slot;
102 unsigned long address;
2f1da642
HS
103};
104static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
105 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
106};
107
f000565a
AA
108
109static int set_recommended_min_free_kbytes(void)
110{
111 struct zone *zone;
112 int nr_zones = 0;
113 unsigned long recommended_min;
f000565a 114
f000565a
AA
115 for_each_populated_zone(zone)
116 nr_zones++;
117
118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 recommended_min = pageblock_nr_pages * nr_zones * 2;
120
121 /*
122 * Make sure that on average at least two pageblocks are almost free
123 * of another type, one for a migratetype to fall back to and a
124 * second to avoid subsequent fallbacks of other types There are 3
125 * MIGRATE_TYPES we care about.
126 */
127 recommended_min += pageblock_nr_pages * nr_zones *
128 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
129
130 /* don't ever allow to reserve more than 5% of the lowmem */
131 recommended_min = min(recommended_min,
132 (unsigned long) nr_free_buffer_pages() / 20);
133 recommended_min <<= (PAGE_SHIFT-10);
134
42aa83cb
HP
135 if (recommended_min > min_free_kbytes) {
136 if (user_min_free_kbytes >= 0)
137 pr_info("raising min_free_kbytes from %d to %lu "
138 "to help transparent hugepage allocations\n",
139 min_free_kbytes, recommended_min);
140
f000565a 141 min_free_kbytes = recommended_min;
42aa83cb 142 }
f000565a
AA
143 setup_per_zone_wmarks();
144 return 0;
145}
f000565a 146
79553da2 147static int start_stop_khugepaged(void)
ba76149f
AA
148{
149 int err = 0;
150 if (khugepaged_enabled()) {
ba76149f
AA
151 if (!khugepaged_thread)
152 khugepaged_thread = kthread_run(khugepaged, NULL,
153 "khugepaged");
154 if (unlikely(IS_ERR(khugepaged_thread))) {
ae3a8c1c 155 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
156 err = PTR_ERR(khugepaged_thread);
157 khugepaged_thread = NULL;
79553da2 158 goto fail;
ba76149f 159 }
911891af
XG
160
161 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 162 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
163
164 set_recommended_min_free_kbytes();
911891af 165 } else if (khugepaged_thread) {
911891af
XG
166 kthread_stop(khugepaged_thread);
167 khugepaged_thread = NULL;
168 }
79553da2 169fail:
ba76149f
AA
170 return err;
171}
71e3aac0 172
97ae1749 173static atomic_t huge_zero_refcount;
56873f43 174struct page *huge_zero_page __read_mostly;
4a6c1297 175
fc437044 176struct page *get_huge_zero_page(void)
97ae1749
KS
177{
178 struct page *zero_page;
179retry:
180 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 181 return READ_ONCE(huge_zero_page);
97ae1749
KS
182
183 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 184 HPAGE_PMD_ORDER);
d8a8e1f0
KS
185 if (!zero_page) {
186 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 187 return NULL;
d8a8e1f0
KS
188 }
189 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 190 preempt_disable();
5918d10a 191 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 192 preempt_enable();
5ddacbe9 193 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
194 goto retry;
195 }
196
197 /* We take additional reference here. It will be put back by shrinker */
198 atomic_set(&huge_zero_refcount, 2);
199 preempt_enable();
4db0c3c2 200 return READ_ONCE(huge_zero_page);
4a6c1297
KS
201}
202
97ae1749 203static void put_huge_zero_page(void)
4a6c1297 204{
97ae1749
KS
205 /*
206 * Counter should never go to zero here. Only shrinker can put
207 * last reference.
208 */
209 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
210}
211
48896466
GC
212static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
213 struct shrink_control *sc)
4a6c1297 214{
48896466
GC
215 /* we can free zero page only if last reference remains */
216 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
217}
97ae1749 218
48896466
GC
219static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
220 struct shrink_control *sc)
221{
97ae1749 222 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
223 struct page *zero_page = xchg(&huge_zero_page, NULL);
224 BUG_ON(zero_page == NULL);
5ddacbe9 225 __free_pages(zero_page, compound_order(zero_page));
48896466 226 return HPAGE_PMD_NR;
97ae1749
KS
227 }
228
229 return 0;
4a6c1297
KS
230}
231
97ae1749 232static struct shrinker huge_zero_page_shrinker = {
48896466
GC
233 .count_objects = shrink_huge_zero_page_count,
234 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
235 .seeks = DEFAULT_SEEKS,
236};
237
71e3aac0 238#ifdef CONFIG_SYSFS
ba76149f 239
71e3aac0
AA
240static ssize_t double_flag_show(struct kobject *kobj,
241 struct kobj_attribute *attr, char *buf,
242 enum transparent_hugepage_flag enabled,
243 enum transparent_hugepage_flag req_madv)
244{
245 if (test_bit(enabled, &transparent_hugepage_flags)) {
246 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
247 return sprintf(buf, "[always] madvise never\n");
248 } else if (test_bit(req_madv, &transparent_hugepage_flags))
249 return sprintf(buf, "always [madvise] never\n");
250 else
251 return sprintf(buf, "always madvise [never]\n");
252}
253static ssize_t double_flag_store(struct kobject *kobj,
254 struct kobj_attribute *attr,
255 const char *buf, size_t count,
256 enum transparent_hugepage_flag enabled,
257 enum transparent_hugepage_flag req_madv)
258{
259 if (!memcmp("always", buf,
260 min(sizeof("always")-1, count))) {
261 set_bit(enabled, &transparent_hugepage_flags);
262 clear_bit(req_madv, &transparent_hugepage_flags);
263 } else if (!memcmp("madvise", buf,
264 min(sizeof("madvise")-1, count))) {
265 clear_bit(enabled, &transparent_hugepage_flags);
266 set_bit(req_madv, &transparent_hugepage_flags);
267 } else if (!memcmp("never", buf,
268 min(sizeof("never")-1, count))) {
269 clear_bit(enabled, &transparent_hugepage_flags);
270 clear_bit(req_madv, &transparent_hugepage_flags);
271 } else
272 return -EINVAL;
273
274 return count;
275}
276
277static ssize_t enabled_show(struct kobject *kobj,
278 struct kobj_attribute *attr, char *buf)
279{
280 return double_flag_show(kobj, attr, buf,
281 TRANSPARENT_HUGEPAGE_FLAG,
282 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
283}
284static ssize_t enabled_store(struct kobject *kobj,
285 struct kobj_attribute *attr,
286 const char *buf, size_t count)
287{
ba76149f
AA
288 ssize_t ret;
289
290 ret = double_flag_store(kobj, attr, buf, count,
291 TRANSPARENT_HUGEPAGE_FLAG,
292 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
293
294 if (ret > 0) {
911891af
XG
295 int err;
296
297 mutex_lock(&khugepaged_mutex);
79553da2 298 err = start_stop_khugepaged();
911891af
XG
299 mutex_unlock(&khugepaged_mutex);
300
ba76149f
AA
301 if (err)
302 ret = err;
303 }
304
305 return ret;
71e3aac0
AA
306}
307static struct kobj_attribute enabled_attr =
308 __ATTR(enabled, 0644, enabled_show, enabled_store);
309
310static ssize_t single_flag_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf,
312 enum transparent_hugepage_flag flag)
313{
e27e6151
BH
314 return sprintf(buf, "%d\n",
315 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 316}
e27e6151 317
71e3aac0
AA
318static ssize_t single_flag_store(struct kobject *kobj,
319 struct kobj_attribute *attr,
320 const char *buf, size_t count,
321 enum transparent_hugepage_flag flag)
322{
e27e6151
BH
323 unsigned long value;
324 int ret;
325
326 ret = kstrtoul(buf, 10, &value);
327 if (ret < 0)
328 return ret;
329 if (value > 1)
330 return -EINVAL;
331
332 if (value)
71e3aac0 333 set_bit(flag, &transparent_hugepage_flags);
e27e6151 334 else
71e3aac0 335 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
336
337 return count;
338}
339
340/*
341 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
342 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
343 * memory just to allocate one more hugepage.
344 */
345static ssize_t defrag_show(struct kobject *kobj,
346 struct kobj_attribute *attr, char *buf)
347{
348 return double_flag_show(kobj, attr, buf,
349 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
350 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
351}
352static ssize_t defrag_store(struct kobject *kobj,
353 struct kobj_attribute *attr,
354 const char *buf, size_t count)
355{
356 return double_flag_store(kobj, attr, buf, count,
357 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
358 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
359}
360static struct kobj_attribute defrag_attr =
361 __ATTR(defrag, 0644, defrag_show, defrag_store);
362
79da5407
KS
363static ssize_t use_zero_page_show(struct kobject *kobj,
364 struct kobj_attribute *attr, char *buf)
365{
366 return single_flag_show(kobj, attr, buf,
367 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
368}
369static ssize_t use_zero_page_store(struct kobject *kobj,
370 struct kobj_attribute *attr, const char *buf, size_t count)
371{
372 return single_flag_store(kobj, attr, buf, count,
373 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
374}
375static struct kobj_attribute use_zero_page_attr =
376 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
377#ifdef CONFIG_DEBUG_VM
378static ssize_t debug_cow_show(struct kobject *kobj,
379 struct kobj_attribute *attr, char *buf)
380{
381 return single_flag_show(kobj, attr, buf,
382 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
383}
384static ssize_t debug_cow_store(struct kobject *kobj,
385 struct kobj_attribute *attr,
386 const char *buf, size_t count)
387{
388 return single_flag_store(kobj, attr, buf, count,
389 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
390}
391static struct kobj_attribute debug_cow_attr =
392 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
393#endif /* CONFIG_DEBUG_VM */
394
395static struct attribute *hugepage_attr[] = {
396 &enabled_attr.attr,
397 &defrag_attr.attr,
79da5407 398 &use_zero_page_attr.attr,
71e3aac0
AA
399#ifdef CONFIG_DEBUG_VM
400 &debug_cow_attr.attr,
401#endif
402 NULL,
403};
404
405static struct attribute_group hugepage_attr_group = {
406 .attrs = hugepage_attr,
ba76149f
AA
407};
408
409static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
410 struct kobj_attribute *attr,
411 char *buf)
412{
413 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
414}
415
416static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
417 struct kobj_attribute *attr,
418 const char *buf, size_t count)
419{
420 unsigned long msecs;
421 int err;
422
3dbb95f7 423 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
424 if (err || msecs > UINT_MAX)
425 return -EINVAL;
426
427 khugepaged_scan_sleep_millisecs = msecs;
428 wake_up_interruptible(&khugepaged_wait);
429
430 return count;
431}
432static struct kobj_attribute scan_sleep_millisecs_attr =
433 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
434 scan_sleep_millisecs_store);
435
436static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
437 struct kobj_attribute *attr,
438 char *buf)
439{
440 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
441}
442
443static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
444 struct kobj_attribute *attr,
445 const char *buf, size_t count)
446{
447 unsigned long msecs;
448 int err;
449
3dbb95f7 450 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
451 if (err || msecs > UINT_MAX)
452 return -EINVAL;
453
454 khugepaged_alloc_sleep_millisecs = msecs;
455 wake_up_interruptible(&khugepaged_wait);
456
457 return count;
458}
459static struct kobj_attribute alloc_sleep_millisecs_attr =
460 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
461 alloc_sleep_millisecs_store);
462
463static ssize_t pages_to_scan_show(struct kobject *kobj,
464 struct kobj_attribute *attr,
465 char *buf)
466{
467 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
468}
469static ssize_t pages_to_scan_store(struct kobject *kobj,
470 struct kobj_attribute *attr,
471 const char *buf, size_t count)
472{
473 int err;
474 unsigned long pages;
475
3dbb95f7 476 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
477 if (err || !pages || pages > UINT_MAX)
478 return -EINVAL;
479
480 khugepaged_pages_to_scan = pages;
481
482 return count;
483}
484static struct kobj_attribute pages_to_scan_attr =
485 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
486 pages_to_scan_store);
487
488static ssize_t pages_collapsed_show(struct kobject *kobj,
489 struct kobj_attribute *attr,
490 char *buf)
491{
492 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
493}
494static struct kobj_attribute pages_collapsed_attr =
495 __ATTR_RO(pages_collapsed);
496
497static ssize_t full_scans_show(struct kobject *kobj,
498 struct kobj_attribute *attr,
499 char *buf)
500{
501 return sprintf(buf, "%u\n", khugepaged_full_scans);
502}
503static struct kobj_attribute full_scans_attr =
504 __ATTR_RO(full_scans);
505
506static ssize_t khugepaged_defrag_show(struct kobject *kobj,
507 struct kobj_attribute *attr, char *buf)
508{
509 return single_flag_show(kobj, attr, buf,
510 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
511}
512static ssize_t khugepaged_defrag_store(struct kobject *kobj,
513 struct kobj_attribute *attr,
514 const char *buf, size_t count)
515{
516 return single_flag_store(kobj, attr, buf, count,
517 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
518}
519static struct kobj_attribute khugepaged_defrag_attr =
520 __ATTR(defrag, 0644, khugepaged_defrag_show,
521 khugepaged_defrag_store);
522
523/*
524 * max_ptes_none controls if khugepaged should collapse hugepages over
525 * any unmapped ptes in turn potentially increasing the memory
526 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
527 * reduce the available free memory in the system as it
528 * runs. Increasing max_ptes_none will instead potentially reduce the
529 * free memory in the system during the khugepaged scan.
530 */
531static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
532 struct kobj_attribute *attr,
533 char *buf)
534{
535 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
536}
537static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
538 struct kobj_attribute *attr,
539 const char *buf, size_t count)
540{
541 int err;
542 unsigned long max_ptes_none;
543
3dbb95f7 544 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
545 if (err || max_ptes_none > HPAGE_PMD_NR-1)
546 return -EINVAL;
547
548 khugepaged_max_ptes_none = max_ptes_none;
549
550 return count;
551}
552static struct kobj_attribute khugepaged_max_ptes_none_attr =
553 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
554 khugepaged_max_ptes_none_store);
555
556static struct attribute *khugepaged_attr[] = {
557 &khugepaged_defrag_attr.attr,
558 &khugepaged_max_ptes_none_attr.attr,
559 &pages_to_scan_attr.attr,
560 &pages_collapsed_attr.attr,
561 &full_scans_attr.attr,
562 &scan_sleep_millisecs_attr.attr,
563 &alloc_sleep_millisecs_attr.attr,
564 NULL,
565};
566
567static struct attribute_group khugepaged_attr_group = {
568 .attrs = khugepaged_attr,
569 .name = "khugepaged",
71e3aac0 570};
71e3aac0 571
569e5590 572static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 573{
71e3aac0
AA
574 int err;
575
569e5590
SL
576 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
577 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 578 pr_err("failed to create transparent hugepage kobject\n");
569e5590 579 return -ENOMEM;
ba76149f
AA
580 }
581
569e5590 582 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 583 if (err) {
ae3a8c1c 584 pr_err("failed to register transparent hugepage group\n");
569e5590 585 goto delete_obj;
ba76149f
AA
586 }
587
569e5590 588 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 589 if (err) {
ae3a8c1c 590 pr_err("failed to register transparent hugepage group\n");
569e5590 591 goto remove_hp_group;
ba76149f 592 }
569e5590
SL
593
594 return 0;
595
596remove_hp_group:
597 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
598delete_obj:
599 kobject_put(*hugepage_kobj);
600 return err;
601}
602
603static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
604{
605 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
606 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
607 kobject_put(hugepage_kobj);
608}
609#else
610static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
611{
612 return 0;
613}
614
615static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
616{
617}
618#endif /* CONFIG_SYSFS */
619
620static int __init hugepage_init(void)
621{
622 int err;
623 struct kobject *hugepage_kobj;
624
625 if (!has_transparent_hugepage()) {
626 transparent_hugepage_flags = 0;
627 return -EINVAL;
628 }
629
630 err = hugepage_init_sysfs(&hugepage_kobj);
631 if (err)
65ebb64f 632 goto err_sysfs;
ba76149f
AA
633
634 err = khugepaged_slab_init();
635 if (err)
65ebb64f 636 goto err_slab;
ba76149f 637
65ebb64f
KS
638 err = register_shrinker(&huge_zero_page_shrinker);
639 if (err)
640 goto err_hzp_shrinker;
97ae1749 641
97562cd2
RR
642 /*
643 * By default disable transparent hugepages on smaller systems,
644 * where the extra memory used could hurt more than TLB overhead
645 * is likely to save. The admin can still enable it through /sys.
646 */
79553da2 647 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 648 transparent_hugepage_flags = 0;
79553da2
KS
649 return 0;
650 }
97562cd2 651
79553da2 652 err = start_stop_khugepaged();
65ebb64f
KS
653 if (err)
654 goto err_khugepaged;
ba76149f 655
569e5590 656 return 0;
65ebb64f
KS
657err_khugepaged:
658 unregister_shrinker(&huge_zero_page_shrinker);
659err_hzp_shrinker:
660 khugepaged_slab_exit();
661err_slab:
569e5590 662 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 663err_sysfs:
ba76149f 664 return err;
71e3aac0 665}
a64fb3cd 666subsys_initcall(hugepage_init);
71e3aac0
AA
667
668static int __init setup_transparent_hugepage(char *str)
669{
670 int ret = 0;
671 if (!str)
672 goto out;
673 if (!strcmp(str, "always")) {
674 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
675 &transparent_hugepage_flags);
676 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
677 &transparent_hugepage_flags);
678 ret = 1;
679 } else if (!strcmp(str, "madvise")) {
680 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
681 &transparent_hugepage_flags);
682 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
683 &transparent_hugepage_flags);
684 ret = 1;
685 } else if (!strcmp(str, "never")) {
686 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
687 &transparent_hugepage_flags);
688 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
689 &transparent_hugepage_flags);
690 ret = 1;
691 }
692out:
693 if (!ret)
ae3a8c1c 694 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
695 return ret;
696}
697__setup("transparent_hugepage=", setup_transparent_hugepage);
698
b32967ff 699pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
700{
701 if (likely(vma->vm_flags & VM_WRITE))
702 pmd = pmd_mkwrite(pmd);
703 return pmd;
704}
705
3122359a 706static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
707{
708 pmd_t entry;
3122359a 709 entry = mk_pmd(page, prot);
b3092b3b
BL
710 entry = pmd_mkhuge(entry);
711 return entry;
712}
713
71e3aac0
AA
714static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
715 struct vm_area_struct *vma,
230c92a8 716 unsigned long address, pmd_t *pmd,
6b251fc9
AA
717 struct page *page, gfp_t gfp,
718 unsigned int flags)
71e3aac0 719{
00501b53 720 struct mem_cgroup *memcg;
71e3aac0 721 pgtable_t pgtable;
c4088ebd 722 spinlock_t *ptl;
230c92a8 723 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 724
309381fe 725 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 726
6b251fc9
AA
727 if (mem_cgroup_try_charge(page, mm, gfp, &memcg)) {
728 put_page(page);
729 count_vm_event(THP_FAULT_FALLBACK);
730 return VM_FAULT_FALLBACK;
731 }
00501b53 732
71e3aac0 733 pgtable = pte_alloc_one(mm, haddr);
00501b53
JW
734 if (unlikely(!pgtable)) {
735 mem_cgroup_cancel_charge(page, memcg);
6b251fc9 736 put_page(page);
71e3aac0 737 return VM_FAULT_OOM;
00501b53 738 }
71e3aac0
AA
739
740 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
741 /*
742 * The memory barrier inside __SetPageUptodate makes sure that
743 * clear_huge_page writes become visible before the set_pmd_at()
744 * write.
745 */
71e3aac0
AA
746 __SetPageUptodate(page);
747
c4088ebd 748 ptl = pmd_lock(mm, pmd);
71e3aac0 749 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 750 spin_unlock(ptl);
00501b53 751 mem_cgroup_cancel_charge(page, memcg);
71e3aac0
AA
752 put_page(page);
753 pte_free(mm, pgtable);
754 } else {
755 pmd_t entry;
6b251fc9
AA
756
757 /* Deliver the page fault to userland */
758 if (userfaultfd_missing(vma)) {
759 int ret;
760
761 spin_unlock(ptl);
762 mem_cgroup_cancel_charge(page, memcg);
763 put_page(page);
764 pte_free(mm, pgtable);
230c92a8 765 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
766 VM_UFFD_MISSING);
767 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
768 return ret;
769 }
770
3122359a
KS
771 entry = mk_huge_pmd(page, vma->vm_page_prot);
772 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
71e3aac0 773 page_add_new_anon_rmap(page, vma, haddr);
00501b53
JW
774 mem_cgroup_commit_charge(page, memcg, false);
775 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 776 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 777 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 778 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 779 atomic_long_inc(&mm->nr_ptes);
c4088ebd 780 spin_unlock(ptl);
6b251fc9 781 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
782 }
783
aa2e878e 784 return 0;
71e3aac0
AA
785}
786
cc5d462f 787static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 788{
cc5d462f 789 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
790}
791
c4088ebd 792/* Caller must hold page table lock. */
4897c765 793bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 794 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 795 struct page *zero_page)
fc9fe822
KS
796{
797 pmd_t entry;
7c414164
AM
798 if (!pmd_none(*pmd))
799 return false;
5918d10a 800 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 801 entry = pmd_mkhuge(entry);
6b0b50b0 802 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 803 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 804 atomic_long_inc(&mm->nr_ptes);
7c414164 805 return true;
fc9fe822
KS
806}
807
71e3aac0
AA
808int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
809 unsigned long address, pmd_t *pmd,
810 unsigned int flags)
811{
077fcf11 812 gfp_t gfp;
71e3aac0
AA
813 struct page *page;
814 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 815
128ec037 816 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 817 return VM_FAULT_FALLBACK;
128ec037
KS
818 if (unlikely(anon_vma_prepare(vma)))
819 return VM_FAULT_OOM;
6d50e60c 820 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 821 return VM_FAULT_OOM;
593befa6 822 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 823 transparent_hugepage_use_zero_page()) {
c4088ebd 824 spinlock_t *ptl;
128ec037
KS
825 pgtable_t pgtable;
826 struct page *zero_page;
827 bool set;
6b251fc9 828 int ret;
128ec037
KS
829 pgtable = pte_alloc_one(mm, haddr);
830 if (unlikely(!pgtable))
ba76149f 831 return VM_FAULT_OOM;
128ec037
KS
832 zero_page = get_huge_zero_page();
833 if (unlikely(!zero_page)) {
834 pte_free(mm, pgtable);
81ab4201 835 count_vm_event(THP_FAULT_FALLBACK);
c0292554 836 return VM_FAULT_FALLBACK;
b9bbfbe3 837 }
c4088ebd 838 ptl = pmd_lock(mm, pmd);
6b251fc9
AA
839 ret = 0;
840 set = false;
841 if (pmd_none(*pmd)) {
842 if (userfaultfd_missing(vma)) {
843 spin_unlock(ptl);
230c92a8 844 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
845 VM_UFFD_MISSING);
846 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
847 } else {
848 set_huge_zero_page(pgtable, mm, vma,
849 haddr, pmd,
850 zero_page);
851 spin_unlock(ptl);
852 set = true;
853 }
854 } else
855 spin_unlock(ptl);
128ec037
KS
856 if (!set) {
857 pte_free(mm, pgtable);
858 put_huge_zero_page();
edad9d2c 859 }
6b251fc9 860 return ret;
71e3aac0 861 }
077fcf11
AK
862 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
863 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
864 if (unlikely(!page)) {
865 count_vm_event(THP_FAULT_FALLBACK);
c0292554 866 return VM_FAULT_FALLBACK;
128ec037 867 }
230c92a8
AA
868 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
869 flags);
71e3aac0
AA
870}
871
872int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
873 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
874 struct vm_area_struct *vma)
875{
c4088ebd 876 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
877 struct page *src_page;
878 pmd_t pmd;
879 pgtable_t pgtable;
880 int ret;
881
882 ret = -ENOMEM;
883 pgtable = pte_alloc_one(dst_mm, addr);
884 if (unlikely(!pgtable))
885 goto out;
886
c4088ebd
KS
887 dst_ptl = pmd_lock(dst_mm, dst_pmd);
888 src_ptl = pmd_lockptr(src_mm, src_pmd);
889 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
890
891 ret = -EAGAIN;
892 pmd = *src_pmd;
893 if (unlikely(!pmd_trans_huge(pmd))) {
894 pte_free(dst_mm, pgtable);
895 goto out_unlock;
896 }
fc9fe822 897 /*
c4088ebd 898 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
899 * under splitting since we don't split the page itself, only pmd to
900 * a page table.
901 */
902 if (is_huge_zero_pmd(pmd)) {
5918d10a 903 struct page *zero_page;
97ae1749
KS
904 /*
905 * get_huge_zero_page() will never allocate a new page here,
906 * since we already have a zero page to copy. It just takes a
907 * reference.
908 */
5918d10a 909 zero_page = get_huge_zero_page();
6b251fc9 910 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 911 zero_page);
fc9fe822
KS
912 ret = 0;
913 goto out_unlock;
914 }
de466bd6 915
71e3aac0
AA
916 if (unlikely(pmd_trans_splitting(pmd))) {
917 /* split huge page running from under us */
c4088ebd
KS
918 spin_unlock(src_ptl);
919 spin_unlock(dst_ptl);
71e3aac0
AA
920 pte_free(dst_mm, pgtable);
921
922 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
923 goto out;
924 }
925 src_page = pmd_page(pmd);
309381fe 926 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
71e3aac0
AA
927 get_page(src_page);
928 page_dup_rmap(src_page);
929 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
930
931 pmdp_set_wrprotect(src_mm, addr, src_pmd);
932 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 933 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 934 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e1f56c89 935 atomic_long_inc(&dst_mm->nr_ptes);
71e3aac0
AA
936
937 ret = 0;
938out_unlock:
c4088ebd
KS
939 spin_unlock(src_ptl);
940 spin_unlock(dst_ptl);
71e3aac0
AA
941out:
942 return ret;
943}
944
a1dd450b
WD
945void huge_pmd_set_accessed(struct mm_struct *mm,
946 struct vm_area_struct *vma,
947 unsigned long address,
948 pmd_t *pmd, pmd_t orig_pmd,
949 int dirty)
950{
c4088ebd 951 spinlock_t *ptl;
a1dd450b
WD
952 pmd_t entry;
953 unsigned long haddr;
954
c4088ebd 955 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
956 if (unlikely(!pmd_same(*pmd, orig_pmd)))
957 goto unlock;
958
959 entry = pmd_mkyoung(orig_pmd);
960 haddr = address & HPAGE_PMD_MASK;
961 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
962 update_mmu_cache_pmd(vma, address, pmd);
963
964unlock:
c4088ebd 965 spin_unlock(ptl);
a1dd450b
WD
966}
967
5338a937
HD
968/*
969 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
970 * during copy_user_huge_page()'s copy_page_rep(): in the case when
971 * the source page gets split and a tail freed before copy completes.
972 * Called under pmd_lock of checked pmd, so safe from splitting itself.
973 */
974static void get_user_huge_page(struct page *page)
975{
976 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
977 struct page *endpage = page + HPAGE_PMD_NR;
978
979 atomic_add(HPAGE_PMD_NR, &page->_count);
980 while (++page < endpage)
981 get_huge_page_tail(page);
982 } else {
983 get_page(page);
984 }
985}
986
987static void put_user_huge_page(struct page *page)
988{
989 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
990 struct page *endpage = page + HPAGE_PMD_NR;
991
992 while (page < endpage)
993 put_page(page++);
994 } else {
995 put_page(page);
996 }
997}
998
71e3aac0
AA
999static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1000 struct vm_area_struct *vma,
1001 unsigned long address,
1002 pmd_t *pmd, pmd_t orig_pmd,
1003 struct page *page,
1004 unsigned long haddr)
1005{
00501b53 1006 struct mem_cgroup *memcg;
c4088ebd 1007 spinlock_t *ptl;
71e3aac0
AA
1008 pgtable_t pgtable;
1009 pmd_t _pmd;
1010 int ret = 0, i;
1011 struct page **pages;
2ec74c3e
SG
1012 unsigned long mmun_start; /* For mmu_notifiers */
1013 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1014
1015 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1016 GFP_KERNEL);
1017 if (unlikely(!pages)) {
1018 ret |= VM_FAULT_OOM;
1019 goto out;
1020 }
1021
1022 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1023 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1024 __GFP_OTHER_NODE,
19ee151e 1025 vma, address, page_to_nid(page));
b9bbfbe3 1026 if (unlikely(!pages[i] ||
00501b53
JW
1027 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1028 &memcg))) {
b9bbfbe3 1029 if (pages[i])
71e3aac0 1030 put_page(pages[i]);
b9bbfbe3 1031 while (--i >= 0) {
00501b53
JW
1032 memcg = (void *)page_private(pages[i]);
1033 set_page_private(pages[i], 0);
1034 mem_cgroup_cancel_charge(pages[i], memcg);
b9bbfbe3
AA
1035 put_page(pages[i]);
1036 }
71e3aac0
AA
1037 kfree(pages);
1038 ret |= VM_FAULT_OOM;
1039 goto out;
1040 }
00501b53 1041 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1042 }
1043
1044 for (i = 0; i < HPAGE_PMD_NR; i++) {
1045 copy_user_highpage(pages[i], page + i,
0089e485 1046 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1047 __SetPageUptodate(pages[i]);
1048 cond_resched();
1049 }
1050
2ec74c3e
SG
1051 mmun_start = haddr;
1052 mmun_end = haddr + HPAGE_PMD_SIZE;
1053 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1054
c4088ebd 1055 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1056 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1057 goto out_free_pages;
309381fe 1058 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1059
8809aa2d 1060 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1061 /* leave pmd empty until pte is filled */
1062
6b0b50b0 1063 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1064 pmd_populate(mm, &_pmd, pgtable);
1065
1066 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1067 pte_t *pte, entry;
1068 entry = mk_pte(pages[i], vma->vm_page_prot);
1069 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1070 memcg = (void *)page_private(pages[i]);
1071 set_page_private(pages[i], 0);
71e3aac0 1072 page_add_new_anon_rmap(pages[i], vma, haddr);
00501b53
JW
1073 mem_cgroup_commit_charge(pages[i], memcg, false);
1074 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1075 pte = pte_offset_map(&_pmd, haddr);
1076 VM_BUG_ON(!pte_none(*pte));
1077 set_pte_at(mm, haddr, pte, entry);
1078 pte_unmap(pte);
1079 }
1080 kfree(pages);
1081
71e3aac0
AA
1082 smp_wmb(); /* make pte visible before pmd */
1083 pmd_populate(mm, pmd, pgtable);
1084 page_remove_rmap(page);
c4088ebd 1085 spin_unlock(ptl);
71e3aac0 1086
2ec74c3e
SG
1087 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1088
71e3aac0
AA
1089 ret |= VM_FAULT_WRITE;
1090 put_page(page);
1091
1092out:
1093 return ret;
1094
1095out_free_pages:
c4088ebd 1096 spin_unlock(ptl);
2ec74c3e 1097 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1098 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1099 memcg = (void *)page_private(pages[i]);
1100 set_page_private(pages[i], 0);
1101 mem_cgroup_cancel_charge(pages[i], memcg);
71e3aac0 1102 put_page(pages[i]);
b9bbfbe3 1103 }
71e3aac0
AA
1104 kfree(pages);
1105 goto out;
1106}
1107
1108int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1109 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1110{
c4088ebd 1111 spinlock_t *ptl;
71e3aac0 1112 int ret = 0;
93b4796d 1113 struct page *page = NULL, *new_page;
00501b53 1114 struct mem_cgroup *memcg;
71e3aac0 1115 unsigned long haddr;
2ec74c3e
SG
1116 unsigned long mmun_start; /* For mmu_notifiers */
1117 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1118 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1119
c4088ebd 1120 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1121 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1122 haddr = address & HPAGE_PMD_MASK;
1123 if (is_huge_zero_pmd(orig_pmd))
1124 goto alloc;
c4088ebd 1125 spin_lock(ptl);
71e3aac0
AA
1126 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1127 goto out_unlock;
1128
1129 page = pmd_page(orig_pmd);
309381fe 1130 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
71e3aac0
AA
1131 if (page_mapcount(page) == 1) {
1132 pmd_t entry;
1133 entry = pmd_mkyoung(orig_pmd);
1134 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1135 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1136 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1137 ret |= VM_FAULT_WRITE;
1138 goto out_unlock;
1139 }
5338a937 1140 get_user_huge_page(page);
c4088ebd 1141 spin_unlock(ptl);
93b4796d 1142alloc:
71e3aac0 1143 if (transparent_hugepage_enabled(vma) &&
077fcf11 1144 !transparent_hugepage_debug_cow()) {
3b363692
MH
1145 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1146 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1147 } else
71e3aac0
AA
1148 new_page = NULL;
1149
1150 if (unlikely(!new_page)) {
eecc1e42 1151 if (!page) {
e9b71ca9
KS
1152 split_huge_page_pmd(vma, address, pmd);
1153 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1154 } else {
1155 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1156 pmd, orig_pmd, page, haddr);
9845cbbd 1157 if (ret & VM_FAULT_OOM) {
93b4796d 1158 split_huge_page(page);
9845cbbd
KS
1159 ret |= VM_FAULT_FALLBACK;
1160 }
5338a937 1161 put_user_huge_page(page);
93b4796d 1162 }
17766dde 1163 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1164 goto out;
1165 }
1166
3b363692 1167 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
b9bbfbe3 1168 put_page(new_page);
93b4796d
KS
1169 if (page) {
1170 split_huge_page(page);
5338a937 1171 put_user_huge_page(page);
9845cbbd
KS
1172 } else
1173 split_huge_page_pmd(vma, address, pmd);
1174 ret |= VM_FAULT_FALLBACK;
17766dde 1175 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1176 goto out;
1177 }
1178
17766dde
DR
1179 count_vm_event(THP_FAULT_ALLOC);
1180
eecc1e42 1181 if (!page)
93b4796d
KS
1182 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1183 else
1184 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1185 __SetPageUptodate(new_page);
1186
2ec74c3e
SG
1187 mmun_start = haddr;
1188 mmun_end = haddr + HPAGE_PMD_SIZE;
1189 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1190
c4088ebd 1191 spin_lock(ptl);
93b4796d 1192 if (page)
5338a937 1193 put_user_huge_page(page);
b9bbfbe3 1194 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1195 spin_unlock(ptl);
00501b53 1196 mem_cgroup_cancel_charge(new_page, memcg);
71e3aac0 1197 put_page(new_page);
2ec74c3e 1198 goto out_mn;
b9bbfbe3 1199 } else {
71e3aac0 1200 pmd_t entry;
3122359a
KS
1201 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1202 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
8809aa2d 1203 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0 1204 page_add_new_anon_rmap(new_page, vma, haddr);
00501b53
JW
1205 mem_cgroup_commit_charge(new_page, memcg, false);
1206 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1207 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1208 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1209 if (!page) {
93b4796d 1210 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1211 put_huge_zero_page();
1212 } else {
309381fe 1213 VM_BUG_ON_PAGE(!PageHead(page), page);
93b4796d
KS
1214 page_remove_rmap(page);
1215 put_page(page);
1216 }
71e3aac0
AA
1217 ret |= VM_FAULT_WRITE;
1218 }
c4088ebd 1219 spin_unlock(ptl);
2ec74c3e
SG
1220out_mn:
1221 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1222out:
1223 return ret;
2ec74c3e 1224out_unlock:
c4088ebd 1225 spin_unlock(ptl);
2ec74c3e 1226 return ret;
71e3aac0
AA
1227}
1228
b676b293 1229struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1230 unsigned long addr,
1231 pmd_t *pmd,
1232 unsigned int flags)
1233{
b676b293 1234 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1235 struct page *page = NULL;
1236
c4088ebd 1237 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1238
1239 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1240 goto out;
1241
85facf25
KS
1242 /* Avoid dumping huge zero page */
1243 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1244 return ERR_PTR(-EFAULT);
1245
2b4847e7 1246 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1247 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1248 goto out;
1249
71e3aac0 1250 page = pmd_page(*pmd);
309381fe 1251 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0
AA
1252 if (flags & FOLL_TOUCH) {
1253 pmd_t _pmd;
1254 /*
1255 * We should set the dirty bit only for FOLL_WRITE but
1256 * for now the dirty bit in the pmd is meaningless.
1257 * And if the dirty bit will become meaningful and
1258 * we'll only set it with FOLL_WRITE, an atomic
1259 * set_bit will be required on the pmd to set the
1260 * young bit, instead of the current set_pmd_at.
1261 */
1262 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1263 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1264 pmd, _pmd, 1))
1265 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1266 }
84d33df2 1267 if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
b676b293
DR
1268 if (page->mapping && trylock_page(page)) {
1269 lru_add_drain();
1270 if (page->mapping)
1271 mlock_vma_page(page);
1272 unlock_page(page);
1273 }
1274 }
71e3aac0 1275 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1276 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1277 if (flags & FOLL_GET)
70b50f94 1278 get_page_foll(page);
71e3aac0
AA
1279
1280out:
1281 return page;
1282}
1283
d10e63f2 1284/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1285int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1286 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1287{
c4088ebd 1288 spinlock_t *ptl;
b8916634 1289 struct anon_vma *anon_vma = NULL;
b32967ff 1290 struct page *page;
d10e63f2 1291 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1292 int page_nid = -1, this_nid = numa_node_id();
90572890 1293 int target_nid, last_cpupid = -1;
8191acbd
MG
1294 bool page_locked;
1295 bool migrated = false;
b191f9b1 1296 bool was_writable;
6688cc05 1297 int flags = 0;
d10e63f2 1298
c0e7cad9
MG
1299 /* A PROT_NONE fault should not end up here */
1300 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1301
c4088ebd 1302 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1303 if (unlikely(!pmd_same(pmd, *pmdp)))
1304 goto out_unlock;
1305
de466bd6
MG
1306 /*
1307 * If there are potential migrations, wait for completion and retry
1308 * without disrupting NUMA hinting information. Do not relock and
1309 * check_same as the page may no longer be mapped.
1310 */
1311 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1312 page = pmd_page(*pmdp);
de466bd6 1313 spin_unlock(ptl);
5d833062 1314 wait_on_page_locked(page);
de466bd6
MG
1315 goto out;
1316 }
1317
d10e63f2 1318 page = pmd_page(pmd);
a1a46184 1319 BUG_ON(is_huge_zero_page(page));
8191acbd 1320 page_nid = page_to_nid(page);
90572890 1321 last_cpupid = page_cpupid_last(page);
03c5a6e1 1322 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1323 if (page_nid == this_nid) {
03c5a6e1 1324 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1325 flags |= TNF_FAULT_LOCAL;
1326 }
4daae3b4 1327
bea66fbd
MG
1328 /* See similar comment in do_numa_page for explanation */
1329 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1330 flags |= TNF_NO_GROUP;
1331
ff9042b1
MG
1332 /*
1333 * Acquire the page lock to serialise THP migrations but avoid dropping
1334 * page_table_lock if at all possible
1335 */
b8916634
MG
1336 page_locked = trylock_page(page);
1337 target_nid = mpol_misplaced(page, vma, haddr);
1338 if (target_nid == -1) {
1339 /* If the page was locked, there are no parallel migrations */
a54a407f 1340 if (page_locked)
b8916634 1341 goto clear_pmdnuma;
2b4847e7 1342 }
4daae3b4 1343
de466bd6 1344 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1345 if (!page_locked) {
c4088ebd 1346 spin_unlock(ptl);
b8916634 1347 wait_on_page_locked(page);
a54a407f 1348 page_nid = -1;
b8916634
MG
1349 goto out;
1350 }
1351
2b4847e7
MG
1352 /*
1353 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1354 * to serialises splits
1355 */
b8916634 1356 get_page(page);
c4088ebd 1357 spin_unlock(ptl);
b8916634 1358 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1359
c69307d5 1360 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1361 spin_lock(ptl);
b32967ff
MG
1362 if (unlikely(!pmd_same(pmd, *pmdp))) {
1363 unlock_page(page);
1364 put_page(page);
a54a407f 1365 page_nid = -1;
4daae3b4 1366 goto out_unlock;
b32967ff 1367 }
ff9042b1 1368
c3a489ca
MG
1369 /* Bail if we fail to protect against THP splits for any reason */
1370 if (unlikely(!anon_vma)) {
1371 put_page(page);
1372 page_nid = -1;
1373 goto clear_pmdnuma;
1374 }
1375
a54a407f
MG
1376 /*
1377 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1378 * and access rights restored.
a54a407f 1379 */
c4088ebd 1380 spin_unlock(ptl);
b32967ff 1381 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1382 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1383 if (migrated) {
1384 flags |= TNF_MIGRATED;
8191acbd 1385 page_nid = target_nid;
074c2381
MG
1386 } else
1387 flags |= TNF_MIGRATE_FAIL;
b32967ff 1388
8191acbd 1389 goto out;
b32967ff 1390clear_pmdnuma:
a54a407f 1391 BUG_ON(!PageLocked(page));
b191f9b1 1392 was_writable = pmd_write(pmd);
4d942466 1393 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1394 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1395 if (was_writable)
1396 pmd = pmd_mkwrite(pmd);
d10e63f2 1397 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1398 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1399 unlock_page(page);
d10e63f2 1400out_unlock:
c4088ebd 1401 spin_unlock(ptl);
b8916634
MG
1402
1403out:
1404 if (anon_vma)
1405 page_unlock_anon_vma_read(anon_vma);
1406
8191acbd 1407 if (page_nid != -1)
6688cc05 1408 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1409
d10e63f2
MG
1410 return 0;
1411}
1412
71e3aac0 1413int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1414 pmd_t *pmd, unsigned long addr)
71e3aac0 1415{
bf929152 1416 spinlock_t *ptl;
71e3aac0
AA
1417 int ret = 0;
1418
bf929152 1419 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24 1420 pgtable_t pgtable;
f5c8ad47 1421 pmd_t orig_pmd;
a6bf2bb0
AK
1422 /*
1423 * For architectures like ppc64 we look at deposited pgtable
8809aa2d 1424 * when calling pmdp_huge_get_and_clear. So do the
a6bf2bb0
AK
1425 * pgtable_trans_huge_withdraw after finishing pmdp related
1426 * operations.
1427 */
8809aa2d
AK
1428 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1429 tlb->fullmm);
025c5b24 1430 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
4897c765
MW
1431 if (vma_is_dax(vma)) {
1432 if (is_huge_zero_pmd(orig_pmd)) {
1433 pgtable = NULL;
1434 } else {
1435 spin_unlock(ptl);
1436 return 1;
1437 }
1438 } else {
1439 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1440 }
479f0abb 1441 if (is_huge_zero_pmd(orig_pmd)) {
e1f56c89 1442 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1443 spin_unlock(ptl);
97ae1749 1444 put_huge_zero_page();
479f0abb 1445 } else {
4897c765 1446 struct page *page = pmd_page(orig_pmd);
479f0abb 1447 page_remove_rmap(page);
309381fe 1448 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
479f0abb 1449 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
309381fe 1450 VM_BUG_ON_PAGE(!PageHead(page), page);
e1f56c89 1451 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1452 spin_unlock(ptl);
479f0abb
KS
1453 tlb_remove_page(tlb, page);
1454 }
4897c765
MW
1455 if (pgtable)
1456 pte_free(tlb->mm, pgtable);
025c5b24
NH
1457 ret = 1;
1458 }
71e3aac0
AA
1459 return ret;
1460}
1461
37a1c49a
AA
1462int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1463 unsigned long old_addr,
1464 unsigned long new_addr, unsigned long old_end,
1465 pmd_t *old_pmd, pmd_t *new_pmd)
1466{
bf929152 1467 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1468 int ret = 0;
1469 pmd_t pmd;
1470
1471 struct mm_struct *mm = vma->vm_mm;
1472
1473 if ((old_addr & ~HPAGE_PMD_MASK) ||
1474 (new_addr & ~HPAGE_PMD_MASK) ||
1475 old_end - old_addr < HPAGE_PMD_SIZE ||
1476 (new_vma->vm_flags & VM_NOHUGEPAGE))
1477 goto out;
1478
1479 /*
1480 * The destination pmd shouldn't be established, free_pgtables()
1481 * should have release it.
1482 */
1483 if (WARN_ON(!pmd_none(*new_pmd))) {
1484 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1485 goto out;
1486 }
1487
bf929152
KS
1488 /*
1489 * We don't have to worry about the ordering of src and dst
1490 * ptlocks because exclusive mmap_sem prevents deadlock.
1491 */
1492 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
025c5b24 1493 if (ret == 1) {
bf929152
KS
1494 new_ptl = pmd_lockptr(mm, new_pmd);
1495 if (new_ptl != old_ptl)
1496 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1497 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1498 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1499
b3084f4d
AK
1500 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1501 pgtable_t pgtable;
3592806c
KS
1502 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1503 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1504 }
b3084f4d
AK
1505 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1506 if (new_ptl != old_ptl)
1507 spin_unlock(new_ptl);
bf929152 1508 spin_unlock(old_ptl);
37a1c49a
AA
1509 }
1510out:
1511 return ret;
1512}
1513
f123d74a
MG
1514/*
1515 * Returns
1516 * - 0 if PMD could not be locked
1517 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1518 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1519 */
cd7548ab 1520int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1521 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1522{
1523 struct mm_struct *mm = vma->vm_mm;
bf929152 1524 spinlock_t *ptl;
cd7548ab
JW
1525 int ret = 0;
1526
bf929152 1527 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24 1528 pmd_t entry;
b191f9b1 1529 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1530 ret = 1;
e944fd67
MG
1531
1532 /*
1533 * Avoid trapping faults against the zero page. The read-only
1534 * data is likely to be read-cached on the local CPU and
1535 * local/remote hits to the zero page are not interesting.
1536 */
1537 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1538 spin_unlock(ptl);
ba68bc01 1539 return ret;
e944fd67
MG
1540 }
1541
10c1045f 1542 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1543 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1544 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1545 if (preserve_write)
1546 entry = pmd_mkwrite(entry);
10c1045f
MG
1547 ret = HPAGE_PMD_NR;
1548 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1549 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1550 }
bf929152 1551 spin_unlock(ptl);
025c5b24
NH
1552 }
1553
1554 return ret;
1555}
1556
1557/*
1558 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1559 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1560 *
1561 * Note that if it returns 1, this routine returns without unlocking page
1562 * table locks. So callers must unlock them.
1563 */
bf929152
KS
1564int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1565 spinlock_t **ptl)
025c5b24 1566{
bf929152 1567 *ptl = pmd_lock(vma->vm_mm, pmd);
cd7548ab
JW
1568 if (likely(pmd_trans_huge(*pmd))) {
1569 if (unlikely(pmd_trans_splitting(*pmd))) {
bf929152 1570 spin_unlock(*ptl);
cd7548ab 1571 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1572 return -1;
cd7548ab 1573 } else {
025c5b24
NH
1574 /* Thp mapped by 'pmd' is stable, so we can
1575 * handle it as it is. */
1576 return 1;
cd7548ab 1577 }
025c5b24 1578 }
bf929152 1579 spin_unlock(*ptl);
025c5b24 1580 return 0;
cd7548ab
JW
1581}
1582
117b0791
KS
1583/*
1584 * This function returns whether a given @page is mapped onto the @address
1585 * in the virtual space of @mm.
1586 *
1587 * When it's true, this function returns *pmd with holding the page table lock
1588 * and passing it back to the caller via @ptl.
1589 * If it's false, returns NULL without holding the page table lock.
1590 */
71e3aac0
AA
1591pmd_t *page_check_address_pmd(struct page *page,
1592 struct mm_struct *mm,
1593 unsigned long address,
117b0791
KS
1594 enum page_check_address_pmd_flag flag,
1595 spinlock_t **ptl)
71e3aac0 1596{
b5a8cad3
KS
1597 pgd_t *pgd;
1598 pud_t *pud;
117b0791 1599 pmd_t *pmd;
71e3aac0
AA
1600
1601 if (address & ~HPAGE_PMD_MASK)
117b0791 1602 return NULL;
71e3aac0 1603
b5a8cad3
KS
1604 pgd = pgd_offset(mm, address);
1605 if (!pgd_present(*pgd))
117b0791 1606 return NULL;
b5a8cad3
KS
1607 pud = pud_offset(pgd, address);
1608 if (!pud_present(*pud))
1609 return NULL;
1610 pmd = pmd_offset(pud, address);
1611
117b0791 1612 *ptl = pmd_lock(mm, pmd);
b5a8cad3 1613 if (!pmd_present(*pmd))
117b0791 1614 goto unlock;
71e3aac0 1615 if (pmd_page(*pmd) != page)
117b0791 1616 goto unlock;
94fcc585
AA
1617 /*
1618 * split_vma() may create temporary aliased mappings. There is
1619 * no risk as long as all huge pmd are found and have their
1620 * splitting bit set before __split_huge_page_refcount
1621 * runs. Finding the same huge pmd more than once during the
1622 * same rmap walk is not a problem.
1623 */
1624 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1625 pmd_trans_splitting(*pmd))
117b0791 1626 goto unlock;
71e3aac0
AA
1627 if (pmd_trans_huge(*pmd)) {
1628 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1629 !pmd_trans_splitting(*pmd));
117b0791 1630 return pmd;
71e3aac0 1631 }
117b0791
KS
1632unlock:
1633 spin_unlock(*ptl);
1634 return NULL;
71e3aac0
AA
1635}
1636
1637static int __split_huge_page_splitting(struct page *page,
1638 struct vm_area_struct *vma,
1639 unsigned long address)
1640{
1641 struct mm_struct *mm = vma->vm_mm;
117b0791 1642 spinlock_t *ptl;
71e3aac0
AA
1643 pmd_t *pmd;
1644 int ret = 0;
2ec74c3e
SG
1645 /* For mmu_notifiers */
1646 const unsigned long mmun_start = address;
1647 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1648
2ec74c3e 1649 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0 1650 pmd = page_check_address_pmd(page, mm, address,
117b0791 1651 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
71e3aac0
AA
1652 if (pmd) {
1653 /*
1654 * We can't temporarily set the pmd to null in order
1655 * to split it, the pmd must remain marked huge at all
1656 * times or the VM won't take the pmd_trans_huge paths
5a505085 1657 * and it won't wait on the anon_vma->root->rwsem to
71e3aac0
AA
1658 * serialize against split_huge_page*.
1659 */
2ec74c3e 1660 pmdp_splitting_flush(vma, address, pmd);
34ee645e 1661
71e3aac0 1662 ret = 1;
117b0791 1663 spin_unlock(ptl);
71e3aac0 1664 }
2ec74c3e 1665 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1666
1667 return ret;
1668}
1669
5bc7b8ac
SL
1670static void __split_huge_page_refcount(struct page *page,
1671 struct list_head *list)
71e3aac0
AA
1672{
1673 int i;
71e3aac0 1674 struct zone *zone = page_zone(page);
fa9add64 1675 struct lruvec *lruvec;
70b50f94 1676 int tail_count = 0;
71e3aac0
AA
1677
1678 /* prevent PageLRU to go away from under us, and freeze lru stats */
1679 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1680 lruvec = mem_cgroup_page_lruvec(page, zone);
1681
71e3aac0 1682 compound_lock(page);
e94c8a9c
KH
1683 /* complete memcg works before add pages to LRU */
1684 mem_cgroup_split_huge_fixup(page);
71e3aac0 1685
45676885 1686 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1687 struct page *page_tail = page + i;
1688
70b50f94
AA
1689 /* tail_page->_mapcount cannot change */
1690 BUG_ON(page_mapcount(page_tail) < 0);
1691 tail_count += page_mapcount(page_tail);
1692 /* check for overflow */
1693 BUG_ON(tail_count < 0);
1694 BUG_ON(atomic_read(&page_tail->_count) != 0);
1695 /*
1696 * tail_page->_count is zero and not changing from
1697 * under us. But get_page_unless_zero() may be running
1698 * from under us on the tail_page. If we used
1699 * atomic_set() below instead of atomic_add(), we
1700 * would then run atomic_set() concurrently with
1701 * get_page_unless_zero(), and atomic_set() is
1702 * implemented in C not using locked ops. spin_unlock
1703 * on x86 sometime uses locked ops because of PPro
1704 * errata 66, 92, so unless somebody can guarantee
1705 * atomic_set() here would be safe on all archs (and
1706 * not only on x86), it's safer to use atomic_add().
1707 */
1708 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1709 &page_tail->_count);
71e3aac0
AA
1710
1711 /* after clearing PageTail the gup refcount can be released */
3a79d52a 1712 smp_mb__after_atomic();
71e3aac0 1713
f4c18e6f 1714 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
71e3aac0
AA
1715 page_tail->flags |= (page->flags &
1716 ((1L << PG_referenced) |
1717 (1L << PG_swapbacked) |
1718 (1L << PG_mlocked) |
e180cf80
KS
1719 (1L << PG_uptodate) |
1720 (1L << PG_active) |
1721 (1L << PG_unevictable)));
71e3aac0
AA
1722 page_tail->flags |= (1L << PG_dirty);
1723
70b50f94 1724 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1725 smp_wmb();
1726
1727 /*
1728 * __split_huge_page_splitting() already set the
1729 * splitting bit in all pmd that could map this
1730 * hugepage, that will ensure no CPU can alter the
1731 * mapcount on the head page. The mapcount is only
1732 * accounted in the head page and it has to be
1733 * transferred to all tail pages in the below code. So
1734 * for this code to be safe, the split the mapcount
1735 * can't change. But that doesn't mean userland can't
1736 * keep changing and reading the page contents while
1737 * we transfer the mapcount, so the pmd splitting
1738 * status is achieved setting a reserved bit in the
1739 * pmd, not by clearing the present bit.
1740 */
71e3aac0
AA
1741 page_tail->_mapcount = page->_mapcount;
1742
1743 BUG_ON(page_tail->mapping);
1744 page_tail->mapping = page->mapping;
1745
45676885 1746 page_tail->index = page->index + i;
90572890 1747 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
71e3aac0
AA
1748
1749 BUG_ON(!PageAnon(page_tail));
1750 BUG_ON(!PageUptodate(page_tail));
1751 BUG_ON(!PageDirty(page_tail));
1752 BUG_ON(!PageSwapBacked(page_tail));
1753
5bc7b8ac 1754 lru_add_page_tail(page, page_tail, lruvec, list);
71e3aac0 1755 }
70b50f94
AA
1756 atomic_sub(tail_count, &page->_count);
1757 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1758
fa9add64 1759 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171 1760
71e3aac0
AA
1761 ClearPageCompound(page);
1762 compound_unlock(page);
1763 spin_unlock_irq(&zone->lru_lock);
1764
1765 for (i = 1; i < HPAGE_PMD_NR; i++) {
1766 struct page *page_tail = page + i;
1767 BUG_ON(page_count(page_tail) <= 0);
1768 /*
1769 * Tail pages may be freed if there wasn't any mapping
1770 * like if add_to_swap() is running on a lru page that
1771 * had its mapping zapped. And freeing these pages
1772 * requires taking the lru_lock so we do the put_page
1773 * of the tail pages after the split is complete.
1774 */
1775 put_page(page_tail);
1776 }
1777
1778 /*
1779 * Only the head page (now become a regular page) is required
1780 * to be pinned by the caller.
1781 */
1782 BUG_ON(page_count(page) <= 0);
1783}
1784
1785static int __split_huge_page_map(struct page *page,
1786 struct vm_area_struct *vma,
1787 unsigned long address)
1788{
1789 struct mm_struct *mm = vma->vm_mm;
117b0791 1790 spinlock_t *ptl;
71e3aac0
AA
1791 pmd_t *pmd, _pmd;
1792 int ret = 0, i;
1793 pgtable_t pgtable;
1794 unsigned long haddr;
1795
71e3aac0 1796 pmd = page_check_address_pmd(page, mm, address,
117b0791 1797 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
71e3aac0 1798 if (pmd) {
6b0b50b0 1799 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0 1800 pmd_populate(mm, &_pmd, pgtable);
f8303c25
WL
1801 if (pmd_write(*pmd))
1802 BUG_ON(page_mapcount(page) != 1);
71e3aac0 1803
e3ebcf64
GS
1804 haddr = address;
1805 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1806 pte_t *pte, entry;
1807 BUG_ON(PageCompound(page+i));
abc40bd2 1808 /*
8a0516ed
MG
1809 * Note that NUMA hinting access restrictions are not
1810 * transferred to avoid any possibility of altering
1811 * permissions across VMAs.
abc40bd2 1812 */
71e3aac0
AA
1813 entry = mk_pte(page + i, vma->vm_page_prot);
1814 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1815 if (!pmd_write(*pmd))
1816 entry = pte_wrprotect(entry);
71e3aac0
AA
1817 if (!pmd_young(*pmd))
1818 entry = pte_mkold(entry);
1819 pte = pte_offset_map(&_pmd, haddr);
1820 BUG_ON(!pte_none(*pte));
1821 set_pte_at(mm, haddr, pte, entry);
1822 pte_unmap(pte);
1823 }
1824
71e3aac0
AA
1825 smp_wmb(); /* make pte visible before pmd */
1826 /*
1827 * Up to this point the pmd is present and huge and
1828 * userland has the whole access to the hugepage
1829 * during the split (which happens in place). If we
1830 * overwrite the pmd with the not-huge version
1831 * pointing to the pte here (which of course we could
1832 * if all CPUs were bug free), userland could trigger
1833 * a small page size TLB miss on the small sized TLB
1834 * while the hugepage TLB entry is still established
1835 * in the huge TLB. Some CPU doesn't like that. See
1836 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1837 * Erratum 383 on page 93. Intel should be safe but is
1838 * also warns that it's only safe if the permission
1839 * and cache attributes of the two entries loaded in
1840 * the two TLB is identical (which should be the case
1841 * here). But it is generally safer to never allow
1842 * small and huge TLB entries for the same virtual
1843 * address to be loaded simultaneously. So instead of
1844 * doing "pmd_populate(); flush_tlb_range();" we first
1845 * mark the current pmd notpresent (atomically because
1846 * here the pmd_trans_huge and pmd_trans_splitting
1847 * must remain set at all times on the pmd until the
1848 * split is complete for this pmd), then we flush the
1849 * SMP TLB and finally we write the non-huge version
1850 * of the pmd entry with pmd_populate.
1851 */
46dcde73 1852 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1853 pmd_populate(mm, pmd, pgtable);
1854 ret = 1;
117b0791 1855 spin_unlock(ptl);
71e3aac0 1856 }
71e3aac0
AA
1857
1858 return ret;
1859}
1860
5a505085 1861/* must be called with anon_vma->root->rwsem held */
71e3aac0 1862static void __split_huge_page(struct page *page,
5bc7b8ac
SL
1863 struct anon_vma *anon_vma,
1864 struct list_head *list)
71e3aac0
AA
1865{
1866 int mapcount, mapcount2;
bf181b9f 1867 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1868 struct anon_vma_chain *avc;
1869
1870 BUG_ON(!PageHead(page));
1871 BUG_ON(PageTail(page));
1872
1873 mapcount = 0;
bf181b9f 1874 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1875 struct vm_area_struct *vma = avc->vma;
1876 unsigned long addr = vma_address(page, vma);
1877 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1878 mapcount += __split_huge_page_splitting(page, vma, addr);
1879 }
05759d38
AA
1880 /*
1881 * It is critical that new vmas are added to the tail of the
1882 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1883 * and establishes a child pmd before
1884 * __split_huge_page_splitting() freezes the parent pmd (so if
1885 * we fail to prevent copy_huge_pmd() from running until the
1886 * whole __split_huge_page() is complete), we will still see
1887 * the newly established pmd of the child later during the
1888 * walk, to be able to set it as pmd_trans_splitting too.
1889 */
ff9e43eb 1890 if (mapcount != page_mapcount(page)) {
ae3a8c1c
AM
1891 pr_err("mapcount %d page_mapcount %d\n",
1892 mapcount, page_mapcount(page));
ff9e43eb
KS
1893 BUG();
1894 }
71e3aac0 1895
5bc7b8ac 1896 __split_huge_page_refcount(page, list);
71e3aac0
AA
1897
1898 mapcount2 = 0;
bf181b9f 1899 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1900 struct vm_area_struct *vma = avc->vma;
1901 unsigned long addr = vma_address(page, vma);
1902 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1903 mapcount2 += __split_huge_page_map(page, vma, addr);
1904 }
ff9e43eb 1905 if (mapcount != mapcount2) {
ae3a8c1c
AM
1906 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1907 mapcount, mapcount2, page_mapcount(page));
ff9e43eb
KS
1908 BUG();
1909 }
71e3aac0
AA
1910}
1911
5bc7b8ac
SL
1912/*
1913 * Split a hugepage into normal pages. This doesn't change the position of head
1914 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1915 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1916 * from the hugepage.
1917 * Return 0 if the hugepage is split successfully otherwise return 1.
1918 */
1919int split_huge_page_to_list(struct page *page, struct list_head *list)
71e3aac0
AA
1920{
1921 struct anon_vma *anon_vma;
1922 int ret = 1;
1923
5918d10a 1924 BUG_ON(is_huge_zero_page(page));
71e3aac0 1925 BUG_ON(!PageAnon(page));
062f1af2
MG
1926
1927 /*
1928 * The caller does not necessarily hold an mmap_sem that would prevent
1929 * the anon_vma disappearing so we first we take a reference to it
1930 * and then lock the anon_vma for write. This is similar to
1931 * page_lock_anon_vma_read except the write lock is taken to serialise
1932 * against parallel split or collapse operations.
1933 */
1934 anon_vma = page_get_anon_vma(page);
71e3aac0
AA
1935 if (!anon_vma)
1936 goto out;
062f1af2
MG
1937 anon_vma_lock_write(anon_vma);
1938
71e3aac0
AA
1939 ret = 0;
1940 if (!PageCompound(page))
1941 goto out_unlock;
1942
1943 BUG_ON(!PageSwapBacked(page));
5bc7b8ac 1944 __split_huge_page(page, anon_vma, list);
81ab4201 1945 count_vm_event(THP_SPLIT);
71e3aac0
AA
1946
1947 BUG_ON(PageCompound(page));
1948out_unlock:
08b52706 1949 anon_vma_unlock_write(anon_vma);
062f1af2 1950 put_anon_vma(anon_vma);
71e3aac0
AA
1951out:
1952 return ret;
1953}
1954
9050d7eb 1955#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1956
60ab3244
AA
1957int hugepage_madvise(struct vm_area_struct *vma,
1958 unsigned long *vm_flags, int advice)
0af4e98b 1959{
a664b2d8
AA
1960 switch (advice) {
1961 case MADV_HUGEPAGE:
1e1836e8
AT
1962#ifdef CONFIG_S390
1963 /*
1964 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1965 * can't handle this properly after s390_enable_sie, so we simply
1966 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1967 */
1968 if (mm_has_pgste(vma->vm_mm))
1969 return 0;
1970#endif
a664b2d8
AA
1971 /*
1972 * Be somewhat over-protective like KSM for now!
1973 */
78f11a25 1974 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8
AA
1975 return -EINVAL;
1976 *vm_flags &= ~VM_NOHUGEPAGE;
1977 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1978 /*
1979 * If the vma become good for khugepaged to scan,
1980 * register it here without waiting a page fault that
1981 * may not happen any time soon.
1982 */
6d50e60c 1983 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1984 return -ENOMEM;
a664b2d8
AA
1985 break;
1986 case MADV_NOHUGEPAGE:
1987 /*
1988 * Be somewhat over-protective like KSM for now!
1989 */
78f11a25 1990 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1991 return -EINVAL;
1992 *vm_flags &= ~VM_HUGEPAGE;
1993 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1994 /*
1995 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1996 * this vma even if we leave the mm registered in khugepaged if
1997 * it got registered before VM_NOHUGEPAGE was set.
1998 */
a664b2d8
AA
1999 break;
2000 }
0af4e98b
AA
2001
2002 return 0;
2003}
2004
ba76149f
AA
2005static int __init khugepaged_slab_init(void)
2006{
2007 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2008 sizeof(struct mm_slot),
2009 __alignof__(struct mm_slot), 0, NULL);
2010 if (!mm_slot_cache)
2011 return -ENOMEM;
2012
2013 return 0;
2014}
2015
65ebb64f
KS
2016static void __init khugepaged_slab_exit(void)
2017{
2018 kmem_cache_destroy(mm_slot_cache);
2019}
2020
ba76149f
AA
2021static inline struct mm_slot *alloc_mm_slot(void)
2022{
2023 if (!mm_slot_cache) /* initialization failed */
2024 return NULL;
2025 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2026}
2027
2028static inline void free_mm_slot(struct mm_slot *mm_slot)
2029{
2030 kmem_cache_free(mm_slot_cache, mm_slot);
2031}
2032
ba76149f
AA
2033static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2034{
2035 struct mm_slot *mm_slot;
ba76149f 2036
b67bfe0d 2037 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
2038 if (mm == mm_slot->mm)
2039 return mm_slot;
43b5fbbd 2040
ba76149f
AA
2041 return NULL;
2042}
2043
2044static void insert_to_mm_slots_hash(struct mm_struct *mm,
2045 struct mm_slot *mm_slot)
2046{
ba76149f 2047 mm_slot->mm = mm;
43b5fbbd 2048 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
2049}
2050
2051static inline int khugepaged_test_exit(struct mm_struct *mm)
2052{
2053 return atomic_read(&mm->mm_users) == 0;
2054}
2055
2056int __khugepaged_enter(struct mm_struct *mm)
2057{
2058 struct mm_slot *mm_slot;
2059 int wakeup;
2060
2061 mm_slot = alloc_mm_slot();
2062 if (!mm_slot)
2063 return -ENOMEM;
2064
2065 /* __khugepaged_exit() must not run from under us */
96dad67f 2066 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
2067 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2068 free_mm_slot(mm_slot);
2069 return 0;
2070 }
2071
2072 spin_lock(&khugepaged_mm_lock);
2073 insert_to_mm_slots_hash(mm, mm_slot);
2074 /*
2075 * Insert just behind the scanning cursor, to let the area settle
2076 * down a little.
2077 */
2078 wakeup = list_empty(&khugepaged_scan.mm_head);
2079 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2080 spin_unlock(&khugepaged_mm_lock);
2081
2082 atomic_inc(&mm->mm_count);
2083 if (wakeup)
2084 wake_up_interruptible(&khugepaged_wait);
2085
2086 return 0;
2087}
2088
6d50e60c
DR
2089int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2090 unsigned long vm_flags)
ba76149f
AA
2091{
2092 unsigned long hstart, hend;
2093 if (!vma->anon_vma)
2094 /*
2095 * Not yet faulted in so we will register later in the
2096 * page fault if needed.
2097 */
2098 return 0;
78f11a25 2099 if (vma->vm_ops)
ba76149f
AA
2100 /* khugepaged not yet working on file or special mappings */
2101 return 0;
6d50e60c 2102 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
2103 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2104 hend = vma->vm_end & HPAGE_PMD_MASK;
2105 if (hstart < hend)
6d50e60c 2106 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
2107 return 0;
2108}
2109
2110void __khugepaged_exit(struct mm_struct *mm)
2111{
2112 struct mm_slot *mm_slot;
2113 int free = 0;
2114
2115 spin_lock(&khugepaged_mm_lock);
2116 mm_slot = get_mm_slot(mm);
2117 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 2118 hash_del(&mm_slot->hash);
ba76149f
AA
2119 list_del(&mm_slot->mm_node);
2120 free = 1;
2121 }
d788e80a 2122 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2123
2124 if (free) {
ba76149f
AA
2125 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2126 free_mm_slot(mm_slot);
2127 mmdrop(mm);
2128 } else if (mm_slot) {
ba76149f
AA
2129 /*
2130 * This is required to serialize against
2131 * khugepaged_test_exit() (which is guaranteed to run
2132 * under mmap sem read mode). Stop here (after we
2133 * return all pagetables will be destroyed) until
2134 * khugepaged has finished working on the pagetables
2135 * under the mmap_sem.
2136 */
2137 down_write(&mm->mmap_sem);
2138 up_write(&mm->mmap_sem);
d788e80a 2139 }
ba76149f
AA
2140}
2141
2142static void release_pte_page(struct page *page)
2143{
2144 /* 0 stands for page_is_file_cache(page) == false */
2145 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2146 unlock_page(page);
2147 putback_lru_page(page);
2148}
2149
2150static void release_pte_pages(pte_t *pte, pte_t *_pte)
2151{
2152 while (--_pte >= pte) {
2153 pte_t pteval = *_pte;
ca0984ca 2154 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
2155 release_pte_page(pte_page(pteval));
2156 }
2157}
2158
ba76149f
AA
2159static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2160 unsigned long address,
2161 pte_t *pte)
2162{
2163 struct page *page;
2164 pte_t *_pte;
ca0984ca 2165 int none_or_zero = 0;
10359213 2166 bool referenced = false, writable = false;
ba76149f
AA
2167 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2168 _pte++, address += PAGE_SIZE) {
2169 pte_t pteval = *_pte;
ca0984ca 2170 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05
AA
2171 if (!userfaultfd_armed(vma) &&
2172 ++none_or_zero <= khugepaged_max_ptes_none)
ba76149f 2173 continue;
344aa35c 2174 else
ba76149f 2175 goto out;
ba76149f 2176 }
10359213 2177 if (!pte_present(pteval))
ba76149f 2178 goto out;
ba76149f 2179 page = vm_normal_page(vma, address, pteval);
344aa35c 2180 if (unlikely(!page))
ba76149f 2181 goto out;
344aa35c 2182
309381fe
SL
2183 VM_BUG_ON_PAGE(PageCompound(page), page);
2184 VM_BUG_ON_PAGE(!PageAnon(page), page);
2185 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 2186
ba76149f
AA
2187 /*
2188 * We can do it before isolate_lru_page because the
2189 * page can't be freed from under us. NOTE: PG_lock
2190 * is needed to serialize against split_huge_page
2191 * when invoked from the VM.
2192 */
344aa35c 2193 if (!trylock_page(page))
ba76149f 2194 goto out;
10359213
EA
2195
2196 /*
2197 * cannot use mapcount: can't collapse if there's a gup pin.
2198 * The page must only be referenced by the scanned process
2199 * and page swap cache.
2200 */
2201 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2202 unlock_page(page);
2203 goto out;
2204 }
2205 if (pte_write(pteval)) {
2206 writable = true;
2207 } else {
2208 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2209 unlock_page(page);
2210 goto out;
2211 }
2212 /*
2213 * Page is not in the swap cache. It can be collapsed
2214 * into a THP.
2215 */
2216 }
2217
ba76149f
AA
2218 /*
2219 * Isolate the page to avoid collapsing an hugepage
2220 * currently in use by the VM.
2221 */
2222 if (isolate_lru_page(page)) {
2223 unlock_page(page);
ba76149f
AA
2224 goto out;
2225 }
2226 /* 0 stands for page_is_file_cache(page) == false */
2227 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2228 VM_BUG_ON_PAGE(!PageLocked(page), page);
2229 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2230
2231 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
2232 if (pte_young(pteval) || PageReferenced(page) ||
2233 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2234 referenced = true;
ba76149f 2235 }
10359213 2236 if (likely(referenced && writable))
344aa35c 2237 return 1;
ba76149f 2238out:
344aa35c
BL
2239 release_pte_pages(pte, _pte);
2240 return 0;
ba76149f
AA
2241}
2242
2243static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2244 struct vm_area_struct *vma,
2245 unsigned long address,
2246 spinlock_t *ptl)
2247{
2248 pte_t *_pte;
2249 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2250 pte_t pteval = *_pte;
2251 struct page *src_page;
2252
ca0984ca 2253 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2254 clear_user_highpage(page, address);
2255 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2256 if (is_zero_pfn(pte_pfn(pteval))) {
2257 /*
2258 * ptl mostly unnecessary.
2259 */
2260 spin_lock(ptl);
2261 /*
2262 * paravirt calls inside pte_clear here are
2263 * superfluous.
2264 */
2265 pte_clear(vma->vm_mm, address, _pte);
2266 spin_unlock(ptl);
2267 }
ba76149f
AA
2268 } else {
2269 src_page = pte_page(pteval);
2270 copy_user_highpage(page, src_page, address, vma);
309381fe 2271 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2272 release_pte_page(src_page);
2273 /*
2274 * ptl mostly unnecessary, but preempt has to
2275 * be disabled to update the per-cpu stats
2276 * inside page_remove_rmap().
2277 */
2278 spin_lock(ptl);
2279 /*
2280 * paravirt calls inside pte_clear here are
2281 * superfluous.
2282 */
2283 pte_clear(vma->vm_mm, address, _pte);
2284 page_remove_rmap(src_page);
2285 spin_unlock(ptl);
2286 free_page_and_swap_cache(src_page);
2287 }
2288
2289 address += PAGE_SIZE;
2290 page++;
2291 }
2292}
2293
26234f36 2294static void khugepaged_alloc_sleep(void)
ba76149f 2295{
26234f36
XG
2296 wait_event_freezable_timeout(khugepaged_wait, false,
2297 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2298}
ba76149f 2299
9f1b868a
BL
2300static int khugepaged_node_load[MAX_NUMNODES];
2301
14a4e214
DR
2302static bool khugepaged_scan_abort(int nid)
2303{
2304 int i;
2305
2306 /*
2307 * If zone_reclaim_mode is disabled, then no extra effort is made to
2308 * allocate memory locally.
2309 */
2310 if (!zone_reclaim_mode)
2311 return false;
2312
2313 /* If there is a count for this node already, it must be acceptable */
2314 if (khugepaged_node_load[nid])
2315 return false;
2316
2317 for (i = 0; i < MAX_NUMNODES; i++) {
2318 if (!khugepaged_node_load[i])
2319 continue;
2320 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2321 return true;
2322 }
2323 return false;
2324}
2325
26234f36 2326#ifdef CONFIG_NUMA
9f1b868a
BL
2327static int khugepaged_find_target_node(void)
2328{
2329 static int last_khugepaged_target_node = NUMA_NO_NODE;
2330 int nid, target_node = 0, max_value = 0;
2331
2332 /* find first node with max normal pages hit */
2333 for (nid = 0; nid < MAX_NUMNODES; nid++)
2334 if (khugepaged_node_load[nid] > max_value) {
2335 max_value = khugepaged_node_load[nid];
2336 target_node = nid;
2337 }
2338
2339 /* do some balance if several nodes have the same hit record */
2340 if (target_node <= last_khugepaged_target_node)
2341 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2342 nid++)
2343 if (max_value == khugepaged_node_load[nid]) {
2344 target_node = nid;
2345 break;
2346 }
2347
2348 last_khugepaged_target_node = target_node;
2349 return target_node;
2350}
2351
26234f36
XG
2352static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2353{
2354 if (IS_ERR(*hpage)) {
2355 if (!*wait)
2356 return false;
2357
2358 *wait = false;
e3b4126c 2359 *hpage = NULL;
26234f36
XG
2360 khugepaged_alloc_sleep();
2361 } else if (*hpage) {
2362 put_page(*hpage);
2363 *hpage = NULL;
2364 }
2365
2366 return true;
2367}
2368
3b363692
MH
2369static struct page *
2370khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
26234f36
XG
2371 struct vm_area_struct *vma, unsigned long address,
2372 int node)
2373{
309381fe 2374 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2375
ce83d217 2376 /*
8b164568
VB
2377 * Before allocating the hugepage, release the mmap_sem read lock.
2378 * The allocation can take potentially a long time if it involves
2379 * sync compaction, and we do not need to hold the mmap_sem during
2380 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2381 */
8b164568
VB
2382 up_read(&mm->mmap_sem);
2383
3b363692 2384 *hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2385 if (unlikely(!*hpage)) {
81ab4201 2386 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2387 *hpage = ERR_PTR(-ENOMEM);
26234f36 2388 return NULL;
ce83d217 2389 }
26234f36 2390
65b3c07b 2391 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2392 return *hpage;
2393}
2394#else
9f1b868a
BL
2395static int khugepaged_find_target_node(void)
2396{
2397 return 0;
2398}
2399
10dc4155
BL
2400static inline struct page *alloc_hugepage(int defrag)
2401{
2402 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2403 HPAGE_PMD_ORDER);
2404}
2405
26234f36
XG
2406static struct page *khugepaged_alloc_hugepage(bool *wait)
2407{
2408 struct page *hpage;
2409
2410 do {
2411 hpage = alloc_hugepage(khugepaged_defrag());
2412 if (!hpage) {
2413 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2414 if (!*wait)
2415 return NULL;
2416
2417 *wait = false;
2418 khugepaged_alloc_sleep();
2419 } else
2420 count_vm_event(THP_COLLAPSE_ALLOC);
2421 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2422
2423 return hpage;
2424}
2425
2426static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2427{
2428 if (!*hpage)
2429 *hpage = khugepaged_alloc_hugepage(wait);
2430
2431 if (unlikely(!*hpage))
2432 return false;
2433
2434 return true;
2435}
2436
3b363692
MH
2437static struct page *
2438khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
26234f36
XG
2439 struct vm_area_struct *vma, unsigned long address,
2440 int node)
2441{
2442 up_read(&mm->mmap_sem);
2443 VM_BUG_ON(!*hpage);
3b363692 2444
26234f36
XG
2445 return *hpage;
2446}
692e0b35
AA
2447#endif
2448
fa475e51
BL
2449static bool hugepage_vma_check(struct vm_area_struct *vma)
2450{
2451 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2452 (vma->vm_flags & VM_NOHUGEPAGE))
2453 return false;
2454
2455 if (!vma->anon_vma || vma->vm_ops)
2456 return false;
2457 if (is_vma_temporary_stack(vma))
2458 return false;
81d1b09c 2459 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2460 return true;
2461}
2462
26234f36
XG
2463static void collapse_huge_page(struct mm_struct *mm,
2464 unsigned long address,
2465 struct page **hpage,
2466 struct vm_area_struct *vma,
2467 int node)
2468{
26234f36
XG
2469 pmd_t *pmd, _pmd;
2470 pte_t *pte;
2471 pgtable_t pgtable;
2472 struct page *new_page;
c4088ebd 2473 spinlock_t *pmd_ptl, *pte_ptl;
26234f36
XG
2474 int isolated;
2475 unsigned long hstart, hend;
00501b53 2476 struct mem_cgroup *memcg;
2ec74c3e
SG
2477 unsigned long mmun_start; /* For mmu_notifiers */
2478 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2479 gfp_t gfp;
26234f36
XG
2480
2481 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2482
3b363692
MH
2483 /* Only allocate from the target node */
2484 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2485 __GFP_THISNODE;
2486
26234f36 2487 /* release the mmap_sem read lock. */
3b363692 2488 new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
26234f36
XG
2489 if (!new_page)
2490 return;
2491
00501b53 2492 if (unlikely(mem_cgroup_try_charge(new_page, mm,
3b363692 2493 gfp, &memcg)))
ce83d217 2494 return;
ba76149f
AA
2495
2496 /*
2497 * Prevent all access to pagetables with the exception of
2498 * gup_fast later hanlded by the ptep_clear_flush and the VM
2499 * handled by the anon_vma lock + PG_lock.
2500 */
2501 down_write(&mm->mmap_sem);
2502 if (unlikely(khugepaged_test_exit(mm)))
2503 goto out;
2504
2505 vma = find_vma(mm, address);
a8f531eb
L
2506 if (!vma)
2507 goto out;
ba76149f
AA
2508 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2509 hend = vma->vm_end & HPAGE_PMD_MASK;
2510 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2511 goto out;
fa475e51 2512 if (!hugepage_vma_check(vma))
a7d6e4ec 2513 goto out;
6219049a
BL
2514 pmd = mm_find_pmd(mm, address);
2515 if (!pmd)
ba76149f 2516 goto out;
ba76149f 2517
4fc3f1d6 2518 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2519
2520 pte = pte_offset_map(pmd, address);
c4088ebd 2521 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2522
2ec74c3e
SG
2523 mmun_start = address;
2524 mmun_end = address + HPAGE_PMD_SIZE;
2525 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2526 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2527 /*
2528 * After this gup_fast can't run anymore. This also removes
2529 * any huge TLB entry from the CPU so we won't allow
2530 * huge and small TLB entries for the same virtual address
2531 * to avoid the risk of CPU bugs in that area.
2532 */
15a25b2e 2533 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2534 spin_unlock(pmd_ptl);
2ec74c3e 2535 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2536
c4088ebd 2537 spin_lock(pte_ptl);
ba76149f 2538 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2539 spin_unlock(pte_ptl);
ba76149f
AA
2540
2541 if (unlikely(!isolated)) {
453c7192 2542 pte_unmap(pte);
c4088ebd 2543 spin_lock(pmd_ptl);
ba76149f 2544 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2545 /*
2546 * We can only use set_pmd_at when establishing
2547 * hugepmds and never for establishing regular pmds that
2548 * points to regular pagetables. Use pmd_populate for that
2549 */
2550 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2551 spin_unlock(pmd_ptl);
08b52706 2552 anon_vma_unlock_write(vma->anon_vma);
ce83d217 2553 goto out;
ba76149f
AA
2554 }
2555
2556 /*
2557 * All pages are isolated and locked so anon_vma rmap
2558 * can't run anymore.
2559 */
08b52706 2560 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2561
c4088ebd 2562 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2563 pte_unmap(pte);
ba76149f
AA
2564 __SetPageUptodate(new_page);
2565 pgtable = pmd_pgtable(_pmd);
ba76149f 2566
3122359a
KS
2567 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2568 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2569
2570 /*
2571 * spin_lock() below is not the equivalent of smp_wmb(), so
2572 * this is needed to avoid the copy_huge_page writes to become
2573 * visible after the set_pmd_at() write.
2574 */
2575 smp_wmb();
2576
c4088ebd 2577 spin_lock(pmd_ptl);
ba76149f
AA
2578 BUG_ON(!pmd_none(*pmd));
2579 page_add_new_anon_rmap(new_page, vma, address);
00501b53
JW
2580 mem_cgroup_commit_charge(new_page, memcg, false);
2581 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2582 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2583 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2584 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2585 spin_unlock(pmd_ptl);
ba76149f
AA
2586
2587 *hpage = NULL;
420256ef 2588
ba76149f 2589 khugepaged_pages_collapsed++;
ce83d217 2590out_up_write:
ba76149f 2591 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2592 return;
2593
ce83d217 2594out:
00501b53 2595 mem_cgroup_cancel_charge(new_page, memcg);
ce83d217 2596 goto out_up_write;
ba76149f
AA
2597}
2598
2599static int khugepaged_scan_pmd(struct mm_struct *mm,
2600 struct vm_area_struct *vma,
2601 unsigned long address,
2602 struct page **hpage)
2603{
ba76149f
AA
2604 pmd_t *pmd;
2605 pte_t *pte, *_pte;
ca0984ca 2606 int ret = 0, none_or_zero = 0;
ba76149f
AA
2607 struct page *page;
2608 unsigned long _address;
2609 spinlock_t *ptl;
00ef2d2f 2610 int node = NUMA_NO_NODE;
10359213 2611 bool writable = false, referenced = false;
ba76149f
AA
2612
2613 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2614
6219049a
BL
2615 pmd = mm_find_pmd(mm, address);
2616 if (!pmd)
ba76149f 2617 goto out;
ba76149f 2618
9f1b868a 2619 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2620 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2621 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2622 _pte++, _address += PAGE_SIZE) {
2623 pte_t pteval = *_pte;
ca0984ca 2624 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05
AA
2625 if (!userfaultfd_armed(vma) &&
2626 ++none_or_zero <= khugepaged_max_ptes_none)
ba76149f
AA
2627 continue;
2628 else
2629 goto out_unmap;
2630 }
10359213 2631 if (!pte_present(pteval))
ba76149f 2632 goto out_unmap;
10359213
EA
2633 if (pte_write(pteval))
2634 writable = true;
2635
ba76149f
AA
2636 page = vm_normal_page(vma, _address, pteval);
2637 if (unlikely(!page))
2638 goto out_unmap;
5c4b4be3 2639 /*
9f1b868a
BL
2640 * Record which node the original page is from and save this
2641 * information to khugepaged_node_load[].
2642 * Khupaged will allocate hugepage from the node has the max
2643 * hit record.
5c4b4be3 2644 */
9f1b868a 2645 node = page_to_nid(page);
14a4e214
DR
2646 if (khugepaged_scan_abort(node))
2647 goto out_unmap;
9f1b868a 2648 khugepaged_node_load[node]++;
309381fe 2649 VM_BUG_ON_PAGE(PageCompound(page), page);
ba76149f
AA
2650 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2651 goto out_unmap;
10359213
EA
2652 /*
2653 * cannot use mapcount: can't collapse if there's a gup pin.
2654 * The page must only be referenced by the scanned process
2655 * and page swap cache.
2656 */
2657 if (page_count(page) != 1 + !!PageSwapCache(page))
ba76149f 2658 goto out_unmap;
8ee53820
AA
2659 if (pte_young(pteval) || PageReferenced(page) ||
2660 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2661 referenced = true;
ba76149f 2662 }
10359213 2663 if (referenced && writable)
ba76149f
AA
2664 ret = 1;
2665out_unmap:
2666 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2667 if (ret) {
2668 node = khugepaged_find_target_node();
ce83d217 2669 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2670 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2671 }
ba76149f
AA
2672out:
2673 return ret;
2674}
2675
2676static void collect_mm_slot(struct mm_slot *mm_slot)
2677{
2678 struct mm_struct *mm = mm_slot->mm;
2679
b9980cdc 2680 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2681
2682 if (khugepaged_test_exit(mm)) {
2683 /* free mm_slot */
43b5fbbd 2684 hash_del(&mm_slot->hash);
ba76149f
AA
2685 list_del(&mm_slot->mm_node);
2686
2687 /*
2688 * Not strictly needed because the mm exited already.
2689 *
2690 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2691 */
2692
2693 /* khugepaged_mm_lock actually not necessary for the below */
2694 free_mm_slot(mm_slot);
2695 mmdrop(mm);
2696 }
2697}
2698
2699static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2700 struct page **hpage)
2f1da642
HS
2701 __releases(&khugepaged_mm_lock)
2702 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2703{
2704 struct mm_slot *mm_slot;
2705 struct mm_struct *mm;
2706 struct vm_area_struct *vma;
2707 int progress = 0;
2708
2709 VM_BUG_ON(!pages);
b9980cdc 2710 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2711
2712 if (khugepaged_scan.mm_slot)
2713 mm_slot = khugepaged_scan.mm_slot;
2714 else {
2715 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2716 struct mm_slot, mm_node);
2717 khugepaged_scan.address = 0;
2718 khugepaged_scan.mm_slot = mm_slot;
2719 }
2720 spin_unlock(&khugepaged_mm_lock);
2721
2722 mm = mm_slot->mm;
2723 down_read(&mm->mmap_sem);
2724 if (unlikely(khugepaged_test_exit(mm)))
2725 vma = NULL;
2726 else
2727 vma = find_vma(mm, khugepaged_scan.address);
2728
2729 progress++;
2730 for (; vma; vma = vma->vm_next) {
2731 unsigned long hstart, hend;
2732
2733 cond_resched();
2734 if (unlikely(khugepaged_test_exit(mm))) {
2735 progress++;
2736 break;
2737 }
fa475e51
BL
2738 if (!hugepage_vma_check(vma)) {
2739skip:
ba76149f
AA
2740 progress++;
2741 continue;
2742 }
ba76149f
AA
2743 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2744 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2745 if (hstart >= hend)
2746 goto skip;
2747 if (khugepaged_scan.address > hend)
2748 goto skip;
ba76149f
AA
2749 if (khugepaged_scan.address < hstart)
2750 khugepaged_scan.address = hstart;
a7d6e4ec 2751 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2752
2753 while (khugepaged_scan.address < hend) {
2754 int ret;
2755 cond_resched();
2756 if (unlikely(khugepaged_test_exit(mm)))
2757 goto breakouterloop;
2758
2759 VM_BUG_ON(khugepaged_scan.address < hstart ||
2760 khugepaged_scan.address + HPAGE_PMD_SIZE >
2761 hend);
2762 ret = khugepaged_scan_pmd(mm, vma,
2763 khugepaged_scan.address,
2764 hpage);
2765 /* move to next address */
2766 khugepaged_scan.address += HPAGE_PMD_SIZE;
2767 progress += HPAGE_PMD_NR;
2768 if (ret)
2769 /* we released mmap_sem so break loop */
2770 goto breakouterloop_mmap_sem;
2771 if (progress >= pages)
2772 goto breakouterloop;
2773 }
2774 }
2775breakouterloop:
2776 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2777breakouterloop_mmap_sem:
2778
2779 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2780 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2781 /*
2782 * Release the current mm_slot if this mm is about to die, or
2783 * if we scanned all vmas of this mm.
2784 */
2785 if (khugepaged_test_exit(mm) || !vma) {
2786 /*
2787 * Make sure that if mm_users is reaching zero while
2788 * khugepaged runs here, khugepaged_exit will find
2789 * mm_slot not pointing to the exiting mm.
2790 */
2791 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2792 khugepaged_scan.mm_slot = list_entry(
2793 mm_slot->mm_node.next,
2794 struct mm_slot, mm_node);
2795 khugepaged_scan.address = 0;
2796 } else {
2797 khugepaged_scan.mm_slot = NULL;
2798 khugepaged_full_scans++;
2799 }
2800
2801 collect_mm_slot(mm_slot);
2802 }
2803
2804 return progress;
2805}
2806
2807static int khugepaged_has_work(void)
2808{
2809 return !list_empty(&khugepaged_scan.mm_head) &&
2810 khugepaged_enabled();
2811}
2812
2813static int khugepaged_wait_event(void)
2814{
2815 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2816 kthread_should_stop();
ba76149f
AA
2817}
2818
d516904b 2819static void khugepaged_do_scan(void)
ba76149f 2820{
d516904b 2821 struct page *hpage = NULL;
ba76149f
AA
2822 unsigned int progress = 0, pass_through_head = 0;
2823 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2824 bool wait = true;
ba76149f
AA
2825
2826 barrier(); /* write khugepaged_pages_to_scan to local stack */
2827
2828 while (progress < pages) {
26234f36 2829 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2830 break;
26234f36 2831
420256ef 2832 cond_resched();
ba76149f 2833
cd092411 2834 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2835 break;
2836
ba76149f
AA
2837 spin_lock(&khugepaged_mm_lock);
2838 if (!khugepaged_scan.mm_slot)
2839 pass_through_head++;
2840 if (khugepaged_has_work() &&
2841 pass_through_head < 2)
2842 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2843 &hpage);
ba76149f
AA
2844 else
2845 progress = pages;
2846 spin_unlock(&khugepaged_mm_lock);
2847 }
ba76149f 2848
d516904b
XG
2849 if (!IS_ERR_OR_NULL(hpage))
2850 put_page(hpage);
0bbbc0b3
AA
2851}
2852
2017c0bf
XG
2853static void khugepaged_wait_work(void)
2854{
2017c0bf
XG
2855 if (khugepaged_has_work()) {
2856 if (!khugepaged_scan_sleep_millisecs)
2857 return;
2858
2859 wait_event_freezable_timeout(khugepaged_wait,
2860 kthread_should_stop(),
2861 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2862 return;
2863 }
2864
2865 if (khugepaged_enabled())
2866 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2867}
2868
ba76149f
AA
2869static int khugepaged(void *none)
2870{
2871 struct mm_slot *mm_slot;
2872
878aee7d 2873 set_freezable();
8698a745 2874 set_user_nice(current, MAX_NICE);
ba76149f 2875
b7231789
XG
2876 while (!kthread_should_stop()) {
2877 khugepaged_do_scan();
2878 khugepaged_wait_work();
2879 }
ba76149f
AA
2880
2881 spin_lock(&khugepaged_mm_lock);
2882 mm_slot = khugepaged_scan.mm_slot;
2883 khugepaged_scan.mm_slot = NULL;
2884 if (mm_slot)
2885 collect_mm_slot(mm_slot);
2886 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2887 return 0;
2888}
2889
c5a647d0
KS
2890static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2891 unsigned long haddr, pmd_t *pmd)
2892{
2893 struct mm_struct *mm = vma->vm_mm;
2894 pgtable_t pgtable;
2895 pmd_t _pmd;
2896 int i;
2897
8809aa2d 2898 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
c5a647d0
KS
2899 /* leave pmd empty until pte is filled */
2900
6b0b50b0 2901 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
c5a647d0
KS
2902 pmd_populate(mm, &_pmd, pgtable);
2903
2904 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2905 pte_t *pte, entry;
2906 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2907 entry = pte_mkspecial(entry);
2908 pte = pte_offset_map(&_pmd, haddr);
2909 VM_BUG_ON(!pte_none(*pte));
2910 set_pte_at(mm, haddr, pte, entry);
2911 pte_unmap(pte);
2912 }
2913 smp_wmb(); /* make pte visible before pmd */
2914 pmd_populate(mm, pmd, pgtable);
97ae1749 2915 put_huge_zero_page();
c5a647d0
KS
2916}
2917
e180377f
KS
2918void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2919 pmd_t *pmd)
71e3aac0 2920{
c4088ebd 2921 spinlock_t *ptl;
4897c765 2922 struct page *page = NULL;
e180377f 2923 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
2924 unsigned long haddr = address & HPAGE_PMD_MASK;
2925 unsigned long mmun_start; /* For mmu_notifiers */
2926 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
2927
2928 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 2929
c5a647d0
KS
2930 mmun_start = haddr;
2931 mmun_end = haddr + HPAGE_PMD_SIZE;
750e8165 2932again:
c5a647d0 2933 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2934 ptl = pmd_lock(mm, pmd);
4897c765
MW
2935 if (unlikely(!pmd_trans_huge(*pmd)))
2936 goto unlock;
2937 if (vma_is_dax(vma)) {
2938 pmdp_huge_clear_flush(vma, haddr, pmd);
2939 } else if (is_huge_zero_pmd(*pmd)) {
c5a647d0 2940 __split_huge_zero_page_pmd(vma, haddr, pmd);
4897c765
MW
2941 } else {
2942 page = pmd_page(*pmd);
2943 VM_BUG_ON_PAGE(!page_count(page), page);
2944 get_page(page);
71e3aac0 2945 }
4897c765 2946 unlock:
c4088ebd 2947 spin_unlock(ptl);
c5a647d0 2948 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0 2949
4897c765
MW
2950 if (!page)
2951 return;
71e3aac0 2952
4897c765 2953 split_huge_page(page);
71e3aac0 2954 put_page(page);
750e8165
HD
2955
2956 /*
2957 * We don't always have down_write of mmap_sem here: a racing
2958 * do_huge_pmd_wp_page() might have copied-on-write to another
2959 * huge page before our split_huge_page() got the anon_vma lock.
2960 */
2961 if (unlikely(pmd_trans_huge(*pmd)))
2962 goto again;
71e3aac0 2963}
94fcc585 2964
e180377f
KS
2965void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2966 pmd_t *pmd)
2967{
2968 struct vm_area_struct *vma;
2969
2970 vma = find_vma(mm, address);
2971 BUG_ON(vma == NULL);
2972 split_huge_page_pmd(vma, address, pmd);
2973}
2974
94fcc585
AA
2975static void split_huge_page_address(struct mm_struct *mm,
2976 unsigned long address)
2977{
f72e7dcd
HD
2978 pgd_t *pgd;
2979 pud_t *pud;
94fcc585
AA
2980 pmd_t *pmd;
2981
2982 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2983
f72e7dcd
HD
2984 pgd = pgd_offset(mm, address);
2985 if (!pgd_present(*pgd))
2986 return;
2987
2988 pud = pud_offset(pgd, address);
2989 if (!pud_present(*pud))
2990 return;
2991
2992 pmd = pmd_offset(pud, address);
2993 if (!pmd_present(*pmd))
94fcc585
AA
2994 return;
2995 /*
2996 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2997 * materialize from under us.
2998 */
e180377f 2999 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
3000}
3001
e1b9996b 3002void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
3003 unsigned long start,
3004 unsigned long end,
3005 long adjust_next)
3006{
3007 /*
3008 * If the new start address isn't hpage aligned and it could
3009 * previously contain an hugepage: check if we need to split
3010 * an huge pmd.
3011 */
3012 if (start & ~HPAGE_PMD_MASK &&
3013 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3014 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3015 split_huge_page_address(vma->vm_mm, start);
3016
3017 /*
3018 * If the new end address isn't hpage aligned and it could
3019 * previously contain an hugepage: check if we need to split
3020 * an huge pmd.
3021 */
3022 if (end & ~HPAGE_PMD_MASK &&
3023 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3024 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3025 split_huge_page_address(vma->vm_mm, end);
3026
3027 /*
3028 * If we're also updating the vma->vm_next->vm_start, if the new
3029 * vm_next->vm_start isn't page aligned and it could previously
3030 * contain an hugepage: check if we need to split an huge pmd.
3031 */
3032 if (adjust_next > 0) {
3033 struct vm_area_struct *next = vma->vm_next;
3034 unsigned long nstart = next->vm_start;
3035 nstart += adjust_next << PAGE_SHIFT;
3036 if (nstart & ~HPAGE_PMD_MASK &&
3037 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3038 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3039 split_huge_page_address(next->vm_mm, nstart);
3040 }
3041}