]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/huge_memory.c
mm/page_idle.c: constify attribute_group structures
[thirdparty/kernel/linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
f7ccbae4 12#include <linux/sched/coredump.h>
6a3827d7 13#include <linux/sched/numa_balancing.h>
71e3aac0
AA
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
97ae1749 19#include <linux/shrinker.h>
ba76149f 20#include <linux/mm_inline.h>
e9b61f19 21#include <linux/swapops.h>
4897c765 22#include <linux/dax.h>
ba76149f 23#include <linux/khugepaged.h>
878aee7d 24#include <linux/freezer.h>
f25748e3 25#include <linux/pfn_t.h>
a664b2d8 26#include <linux/mman.h>
3565fce3 27#include <linux/memremap.h>
325adeb5 28#include <linux/pagemap.h>
49071d43 29#include <linux/debugfs.h>
4daae3b4 30#include <linux/migrate.h>
43b5fbbd 31#include <linux/hashtable.h>
6b251fc9 32#include <linux/userfaultfd_k.h>
33c3fc71 33#include <linux/page_idle.h>
baa355fd 34#include <linux/shmem_fs.h>
6b31d595 35#include <linux/oom.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
8bfa3f9a
JW
42 * By default transparent hugepage support is disabled in order that avoid
43 * to risk increase the memory footprint of applications without a guaranteed
44 * benefit. When transparent hugepage support is enabled, is for all mappings,
45 * and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
6fcb52a5 65static struct page *get_huge_zero_page(void)
97ae1749
KS
66{
67 struct page *zero_page;
68retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 70 return READ_ONCE(huge_zero_page);
97ae1749
KS
71
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 73 HPAGE_PMD_ORDER);
d8a8e1f0
KS
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 76 return NULL;
d8a8e1f0
KS
77 }
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 79 preempt_disable();
5918d10a 80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 81 preempt_enable();
5ddacbe9 82 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
83 goto retry;
84 }
85
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
4db0c3c2 89 return READ_ONCE(huge_zero_page);
4a6c1297
KS
90}
91
6fcb52a5 92static void put_huge_zero_page(void)
4a6c1297 93{
97ae1749
KS
94 /*
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
97 */
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
99}
100
6fcb52a5
AL
101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102{
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
105
106 if (!get_huge_zero_page())
107 return NULL;
108
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
111
112 return READ_ONCE(huge_zero_page);
113}
114
115void mm_put_huge_zero_page(struct mm_struct *mm)
116{
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
119}
120
48896466
GC
121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
4a6c1297 123{
48896466
GC
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126}
97ae1749 127
48896466
GC
128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
130{
97ae1749 131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
5ddacbe9 134 __free_pages(zero_page, compound_order(zero_page));
48896466 135 return HPAGE_PMD_NR;
97ae1749
KS
136 }
137
138 return 0;
4a6c1297
KS
139}
140
97ae1749 141static struct shrinker huge_zero_page_shrinker = {
48896466
GC
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
144 .seeks = DEFAULT_SEEKS,
145};
146
71e3aac0 147#ifdef CONFIG_SYSFS
71e3aac0
AA
148static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
150{
444eb2a4
MG
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
71e3aac0 157}
444eb2a4 158
71e3aac0
AA
159static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
162{
21440d7e 163 ssize_t ret = count;
ba76149f 164
21440d7e
DR
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
ba76149f
AA
179
180 if (ret > 0) {
b46e756f 181 int err = start_stop_khugepaged();
ba76149f
AA
182 if (err)
183 ret = err;
184 }
ba76149f 185 return ret;
71e3aac0
AA
186}
187static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
189
b46e756f 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
193{
e27e6151
BH
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 196}
e27e6151 197
b46e756f 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
202{
e27e6151
BH
203 unsigned long value;
204 int ret;
205
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
211
212 if (value)
71e3aac0 213 set_bit(flag, &transparent_hugepage_flags);
e27e6151 214 else
71e3aac0 215 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
216
217 return count;
218}
219
71e3aac0
AA
220static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
222{
444eb2a4 223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 232}
21440d7e 233
71e3aac0
AA
234static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
237{
21440d7e
DR
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
71e3aac0
AA
272}
273static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
275
79da5407
KS
276static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
278{
b46e756f 279 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281}
282static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
284{
b46e756f 285 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287}
288static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
290
291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
293{
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295}
296static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
298
71e3aac0
AA
299#ifdef CONFIG_DEBUG_VM
300static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302{
b46e756f 303 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305}
306static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
309{
b46e756f 310 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312}
313static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315#endif /* CONFIG_DEBUG_VM */
316
317static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
79da5407 320 &use_zero_page_attr.attr,
49920d28 321 &hpage_pmd_size_attr.attr,
e496cf3d 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
323 &shmem_enabled_attr.attr,
324#endif
71e3aac0
AA
325#ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327#endif
328 NULL,
329};
330
331static struct attribute_group hugepage_attr_group = {
332 .attrs = hugepage_attr,
ba76149f
AA
333};
334
569e5590 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 336{
71e3aac0
AA
337 int err;
338
569e5590
SL
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 341 pr_err("failed to create transparent hugepage kobject\n");
569e5590 342 return -ENOMEM;
ba76149f
AA
343 }
344
569e5590 345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 346 if (err) {
ae3a8c1c 347 pr_err("failed to register transparent hugepage group\n");
569e5590 348 goto delete_obj;
ba76149f
AA
349 }
350
569e5590 351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 352 if (err) {
ae3a8c1c 353 pr_err("failed to register transparent hugepage group\n");
569e5590 354 goto remove_hp_group;
ba76149f 355 }
569e5590
SL
356
357 return 0;
358
359remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364}
365
366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367{
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371}
372#else
373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374{
375 return 0;
376}
377
378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379{
380}
381#endif /* CONFIG_SYSFS */
382
383static int __init hugepage_init(void)
384{
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
391 }
392
ff20c2e0
KS
393 /*
394 * hugepages can't be allocated by the buddy allocator
395 */
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 /*
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
569e5590
SL
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
65ebb64f 405 goto err_sysfs;
ba76149f 406
b46e756f 407 err = khugepaged_init();
ba76149f 408 if (err)
65ebb64f 409 goto err_slab;
ba76149f 410
65ebb64f
KS
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
9a982250
KS
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
97ae1749 417
97562cd2
RR
418 /*
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
422 */
79553da2 423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 424 transparent_hugepage_flags = 0;
79553da2
KS
425 return 0;
426 }
97562cd2 427
79553da2 428 err = start_stop_khugepaged();
65ebb64f
KS
429 if (err)
430 goto err_khugepaged;
ba76149f 431
569e5590 432 return 0;
65ebb64f 433err_khugepaged:
9a982250
KS
434 unregister_shrinker(&deferred_split_shrinker);
435err_split_shrinker:
65ebb64f
KS
436 unregister_shrinker(&huge_zero_page_shrinker);
437err_hzp_shrinker:
b46e756f 438 khugepaged_destroy();
65ebb64f 439err_slab:
569e5590 440 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 441err_sysfs:
ba76149f 442 return err;
71e3aac0 443}
a64fb3cd 444subsys_initcall(hugepage_init);
71e3aac0
AA
445
446static int __init setup_transparent_hugepage(char *str)
447{
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
469 }
470out:
471 if (!ret)
ae3a8c1c 472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
473 return ret;
474}
475__setup("transparent_hugepage=", setup_transparent_hugepage);
476
b32967ff 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
478{
479 if (likely(vma->vm_flags & VM_WRITE))
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
482}
483
9a982250
KS
484static inline struct list_head *page_deferred_list(struct page *page)
485{
486 /*
487 * ->lru in the tail pages is occupied by compound_head.
488 * Let's use ->mapping + ->index in the second tail page as list_head.
489 */
490 return (struct list_head *)&page[2].mapping;
491}
492
493void prep_transhuge_page(struct page *page)
494{
495 /*
496 * we use page->mapping and page->indexlru in second tail page
497 * as list_head: assuming THP order >= 2
498 */
9a982250
KS
499
500 INIT_LIST_HEAD(page_deferred_list(page));
501 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
502}
503
74d2fad1
TK
504unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505 loff_t off, unsigned long flags, unsigned long size)
506{
507 unsigned long addr;
508 loff_t off_end = off + len;
509 loff_t off_align = round_up(off, size);
510 unsigned long len_pad;
511
512 if (off_end <= off_align || (off_end - off_align) < size)
513 return 0;
514
515 len_pad = len + size;
516 if (len_pad < len || (off + len_pad) < off)
517 return 0;
518
519 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520 off >> PAGE_SHIFT, flags);
521 if (IS_ERR_VALUE(addr))
522 return 0;
523
524 addr += (off - addr) & (size - 1);
525 return addr;
526}
527
528unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529 unsigned long len, unsigned long pgoff, unsigned long flags)
530{
531 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
532
533 if (addr)
534 goto out;
535 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536 goto out;
537
538 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539 if (addr)
540 return addr;
541
542 out:
543 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
544}
545EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
546
82b0f8c3 547static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
bae473a4 548 gfp_t gfp)
71e3aac0 549{
82b0f8c3 550 struct vm_area_struct *vma = vmf->vma;
00501b53 551 struct mem_cgroup *memcg;
71e3aac0 552 pgtable_t pgtable;
82b0f8c3 553 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
6b31d595 554 int ret = 0;
71e3aac0 555
309381fe 556 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 557
bae473a4 558 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
559 put_page(page);
560 count_vm_event(THP_FAULT_FALLBACK);
561 return VM_FAULT_FALLBACK;
562 }
00501b53 563
bae473a4 564 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 565 if (unlikely(!pgtable)) {
6b31d595
MH
566 ret = VM_FAULT_OOM;
567 goto release;
00501b53 568 }
71e3aac0
AA
569
570 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
571 /*
572 * The memory barrier inside __SetPageUptodate makes sure that
573 * clear_huge_page writes become visible before the set_pmd_at()
574 * write.
575 */
71e3aac0
AA
576 __SetPageUptodate(page);
577
82b0f8c3
JK
578 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
579 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 580 goto unlock_release;
71e3aac0
AA
581 } else {
582 pmd_t entry;
6b251fc9 583
6b31d595
MH
584 ret = check_stable_address_space(vma->vm_mm);
585 if (ret)
586 goto unlock_release;
587
6b251fc9
AA
588 /* Deliver the page fault to userland */
589 if (userfaultfd_missing(vma)) {
590 int ret;
591
82b0f8c3 592 spin_unlock(vmf->ptl);
f627c2f5 593 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 594 put_page(page);
bae473a4 595 pte_free(vma->vm_mm, pgtable);
82b0f8c3 596 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
597 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
598 return ret;
599 }
600
3122359a
KS
601 entry = mk_huge_pmd(page, vma->vm_page_prot);
602 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 603 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 604 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 605 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
606 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
607 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4
KS
608 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
609 atomic_long_inc(&vma->vm_mm->nr_ptes);
82b0f8c3 610 spin_unlock(vmf->ptl);
6b251fc9 611 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
612 }
613
aa2e878e 614 return 0;
6b31d595
MH
615unlock_release:
616 spin_unlock(vmf->ptl);
617release:
618 if (pgtable)
619 pte_free(vma->vm_mm, pgtable);
620 mem_cgroup_cancel_charge(page, memcg, true);
621 put_page(page);
622 return ret;
623
71e3aac0
AA
624}
625
444eb2a4 626/*
21440d7e
DR
627 * always: directly stall for all thp allocations
628 * defer: wake kswapd and fail if not immediately available
629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
630 * fail if not immediately available
631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
632 * available
633 * never: never stall for any thp allocation
444eb2a4
MG
634 */
635static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
636{
21440d7e 637 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 638
21440d7e 639 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
25160354 640 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
21440d7e
DR
641 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
642 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
644 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645 __GFP_KSWAPD_RECLAIM);
646 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
647 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
648 0);
25160354 649 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
650}
651
c4088ebd 652/* Caller must hold page table lock. */
d295e341 653static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 654 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 655 struct page *zero_page)
fc9fe822
KS
656{
657 pmd_t entry;
7c414164
AM
658 if (!pmd_none(*pmd))
659 return false;
5918d10a 660 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 661 entry = pmd_mkhuge(entry);
12c9d70b
MW
662 if (pgtable)
663 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 664 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 665 atomic_long_inc(&mm->nr_ptes);
7c414164 666 return true;
fc9fe822
KS
667}
668
82b0f8c3 669int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 670{
82b0f8c3 671 struct vm_area_struct *vma = vmf->vma;
077fcf11 672 gfp_t gfp;
71e3aac0 673 struct page *page;
82b0f8c3 674 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 675
128ec037 676 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 677 return VM_FAULT_FALLBACK;
128ec037
KS
678 if (unlikely(anon_vma_prepare(vma)))
679 return VM_FAULT_OOM;
6d50e60c 680 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 681 return VM_FAULT_OOM;
82b0f8c3 682 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 683 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
684 transparent_hugepage_use_zero_page()) {
685 pgtable_t pgtable;
686 struct page *zero_page;
687 bool set;
6b251fc9 688 int ret;
bae473a4 689 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 690 if (unlikely(!pgtable))
ba76149f 691 return VM_FAULT_OOM;
6fcb52a5 692 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 693 if (unlikely(!zero_page)) {
bae473a4 694 pte_free(vma->vm_mm, pgtable);
81ab4201 695 count_vm_event(THP_FAULT_FALLBACK);
c0292554 696 return VM_FAULT_FALLBACK;
b9bbfbe3 697 }
82b0f8c3 698 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
699 ret = 0;
700 set = false;
82b0f8c3 701 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
702 ret = check_stable_address_space(vma->vm_mm);
703 if (ret) {
704 spin_unlock(vmf->ptl);
705 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
706 spin_unlock(vmf->ptl);
707 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
708 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
709 } else {
bae473a4 710 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
711 haddr, vmf->pmd, zero_page);
712 spin_unlock(vmf->ptl);
6b251fc9
AA
713 set = true;
714 }
715 } else
82b0f8c3 716 spin_unlock(vmf->ptl);
6fcb52a5 717 if (!set)
bae473a4 718 pte_free(vma->vm_mm, pgtable);
6b251fc9 719 return ret;
71e3aac0 720 }
444eb2a4 721 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 722 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
723 if (unlikely(!page)) {
724 count_vm_event(THP_FAULT_FALLBACK);
c0292554 725 return VM_FAULT_FALLBACK;
128ec037 726 }
9a982250 727 prep_transhuge_page(page);
82b0f8c3 728 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
729}
730
ae18d6dc 731static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
732 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
733 pgtable_t pgtable)
5cad465d
MW
734{
735 struct mm_struct *mm = vma->vm_mm;
736 pmd_t entry;
737 spinlock_t *ptl;
738
739 ptl = pmd_lock(mm, pmd);
f25748e3
DW
740 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
741 if (pfn_t_devmap(pfn))
742 entry = pmd_mkdevmap(entry);
01871e59
RZ
743 if (write) {
744 entry = pmd_mkyoung(pmd_mkdirty(entry));
745 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 746 }
3b6521f5
OH
747
748 if (pgtable) {
749 pgtable_trans_huge_deposit(mm, pmd, pgtable);
750 atomic_long_inc(&mm->nr_ptes);
751 }
752
01871e59
RZ
753 set_pmd_at(mm, addr, pmd, entry);
754 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 755 spin_unlock(ptl);
5cad465d
MW
756}
757
758int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 759 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
760{
761 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 762 pgtable_t pgtable = NULL;
5cad465d
MW
763 /*
764 * If we had pmd_special, we could avoid all these restrictions,
765 * but we need to be consistent with PTEs and architectures that
766 * can't support a 'special' bit.
767 */
768 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
769 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
770 (VM_PFNMAP|VM_MIXEDMAP));
771 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 772 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
773
774 if (addr < vma->vm_start || addr >= vma->vm_end)
775 return VM_FAULT_SIGBUS;
308a047c 776
3b6521f5
OH
777 if (arch_needs_pgtable_deposit()) {
778 pgtable = pte_alloc_one(vma->vm_mm, addr);
779 if (!pgtable)
780 return VM_FAULT_OOM;
781 }
782
308a047c
BP
783 track_pfn_insert(vma, &pgprot, pfn);
784
3b6521f5 785 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
ae18d6dc 786 return VM_FAULT_NOPAGE;
5cad465d 787}
dee41079 788EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 789
a00cc7d9
MW
790#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
791static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
792{
793 if (likely(vma->vm_flags & VM_WRITE))
794 pud = pud_mkwrite(pud);
795 return pud;
796}
797
798static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
799 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
800{
801 struct mm_struct *mm = vma->vm_mm;
802 pud_t entry;
803 spinlock_t *ptl;
804
805 ptl = pud_lock(mm, pud);
806 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
807 if (pfn_t_devmap(pfn))
808 entry = pud_mkdevmap(entry);
809 if (write) {
810 entry = pud_mkyoung(pud_mkdirty(entry));
811 entry = maybe_pud_mkwrite(entry, vma);
812 }
813 set_pud_at(mm, addr, pud, entry);
814 update_mmu_cache_pud(vma, addr, pud);
815 spin_unlock(ptl);
816}
817
818int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
819 pud_t *pud, pfn_t pfn, bool write)
820{
821 pgprot_t pgprot = vma->vm_page_prot;
822 /*
823 * If we had pud_special, we could avoid all these restrictions,
824 * but we need to be consistent with PTEs and architectures that
825 * can't support a 'special' bit.
826 */
827 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
828 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
829 (VM_PFNMAP|VM_MIXEDMAP));
830 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
831 BUG_ON(!pfn_t_devmap(pfn));
832
833 if (addr < vma->vm_start || addr >= vma->vm_end)
834 return VM_FAULT_SIGBUS;
835
836 track_pfn_insert(vma, &pgprot, pfn);
837
838 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
839 return VM_FAULT_NOPAGE;
840}
841EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
842#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
843
3565fce3
DW
844static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
845 pmd_t *pmd)
846{
847 pmd_t _pmd;
848
849 /*
850 * We should set the dirty bit only for FOLL_WRITE but for now
851 * the dirty bit in the pmd is meaningless. And if the dirty
852 * bit will become meaningful and we'll only set it with
853 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
854 * set the young bit, instead of the current set_pmd_at.
855 */
856 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
857 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
858 pmd, _pmd, 1))
859 update_mmu_cache_pmd(vma, addr, pmd);
860}
861
862struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
863 pmd_t *pmd, int flags)
864{
865 unsigned long pfn = pmd_pfn(*pmd);
866 struct mm_struct *mm = vma->vm_mm;
867 struct dev_pagemap *pgmap;
868 struct page *page;
869
870 assert_spin_locked(pmd_lockptr(mm, pmd));
871
8310d48b
KF
872 /*
873 * When we COW a devmap PMD entry, we split it into PTEs, so we should
874 * not be in this function with `flags & FOLL_COW` set.
875 */
876 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
877
3565fce3
DW
878 if (flags & FOLL_WRITE && !pmd_write(*pmd))
879 return NULL;
880
881 if (pmd_present(*pmd) && pmd_devmap(*pmd))
882 /* pass */;
883 else
884 return NULL;
885
886 if (flags & FOLL_TOUCH)
887 touch_pmd(vma, addr, pmd);
888
889 /*
890 * device mapped pages can only be returned if the
891 * caller will manage the page reference count.
892 */
893 if (!(flags & FOLL_GET))
894 return ERR_PTR(-EEXIST);
895
896 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
897 pgmap = get_dev_pagemap(pfn, NULL);
898 if (!pgmap)
899 return ERR_PTR(-EFAULT);
900 page = pfn_to_page(pfn);
901 get_page(page);
902 put_dev_pagemap(pgmap);
903
904 return page;
905}
906
71e3aac0
AA
907int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
908 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
909 struct vm_area_struct *vma)
910{
c4088ebd 911 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
912 struct page *src_page;
913 pmd_t pmd;
12c9d70b 914 pgtable_t pgtable = NULL;
628d47ce 915 int ret = -ENOMEM;
71e3aac0 916
628d47ce
KS
917 /* Skip if can be re-fill on fault */
918 if (!vma_is_anonymous(vma))
919 return 0;
920
921 pgtable = pte_alloc_one(dst_mm, addr);
922 if (unlikely(!pgtable))
923 goto out;
71e3aac0 924
c4088ebd
KS
925 dst_ptl = pmd_lock(dst_mm, dst_pmd);
926 src_ptl = pmd_lockptr(src_mm, src_pmd);
927 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
928
929 ret = -EAGAIN;
930 pmd = *src_pmd;
628d47ce 931 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
932 pte_free(dst_mm, pgtable);
933 goto out_unlock;
934 }
fc9fe822 935 /*
c4088ebd 936 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
937 * under splitting since we don't split the page itself, only pmd to
938 * a page table.
939 */
940 if (is_huge_zero_pmd(pmd)) {
5918d10a 941 struct page *zero_page;
97ae1749
KS
942 /*
943 * get_huge_zero_page() will never allocate a new page here,
944 * since we already have a zero page to copy. It just takes a
945 * reference.
946 */
6fcb52a5 947 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 948 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 949 zero_page);
fc9fe822
KS
950 ret = 0;
951 goto out_unlock;
952 }
de466bd6 953
628d47ce
KS
954 src_page = pmd_page(pmd);
955 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
956 get_page(src_page);
957 page_dup_rmap(src_page, true);
958 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
959 atomic_long_inc(&dst_mm->nr_ptes);
960 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
961
962 pmdp_set_wrprotect(src_mm, addr, src_pmd);
963 pmd = pmd_mkold(pmd_wrprotect(pmd));
964 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
965
966 ret = 0;
967out_unlock:
c4088ebd
KS
968 spin_unlock(src_ptl);
969 spin_unlock(dst_ptl);
71e3aac0
AA
970out:
971 return ret;
972}
973
a00cc7d9
MW
974#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
975static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
976 pud_t *pud)
977{
978 pud_t _pud;
979
980 /*
981 * We should set the dirty bit only for FOLL_WRITE but for now
982 * the dirty bit in the pud is meaningless. And if the dirty
983 * bit will become meaningful and we'll only set it with
984 * FOLL_WRITE, an atomic set_bit will be required on the pud to
985 * set the young bit, instead of the current set_pud_at.
986 */
987 _pud = pud_mkyoung(pud_mkdirty(*pud));
988 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
989 pud, _pud, 1))
990 update_mmu_cache_pud(vma, addr, pud);
991}
992
993struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
994 pud_t *pud, int flags)
995{
996 unsigned long pfn = pud_pfn(*pud);
997 struct mm_struct *mm = vma->vm_mm;
998 struct dev_pagemap *pgmap;
999 struct page *page;
1000
1001 assert_spin_locked(pud_lockptr(mm, pud));
1002
1003 if (flags & FOLL_WRITE && !pud_write(*pud))
1004 return NULL;
1005
1006 if (pud_present(*pud) && pud_devmap(*pud))
1007 /* pass */;
1008 else
1009 return NULL;
1010
1011 if (flags & FOLL_TOUCH)
1012 touch_pud(vma, addr, pud);
1013
1014 /*
1015 * device mapped pages can only be returned if the
1016 * caller will manage the page reference count.
1017 */
1018 if (!(flags & FOLL_GET))
1019 return ERR_PTR(-EEXIST);
1020
1021 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1022 pgmap = get_dev_pagemap(pfn, NULL);
1023 if (!pgmap)
1024 return ERR_PTR(-EFAULT);
1025 page = pfn_to_page(pfn);
1026 get_page(page);
1027 put_dev_pagemap(pgmap);
1028
1029 return page;
1030}
1031
1032int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1034 struct vm_area_struct *vma)
1035{
1036 spinlock_t *dst_ptl, *src_ptl;
1037 pud_t pud;
1038 int ret;
1039
1040 dst_ptl = pud_lock(dst_mm, dst_pud);
1041 src_ptl = pud_lockptr(src_mm, src_pud);
1042 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1043
1044 ret = -EAGAIN;
1045 pud = *src_pud;
1046 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1047 goto out_unlock;
1048
1049 /*
1050 * When page table lock is held, the huge zero pud should not be
1051 * under splitting since we don't split the page itself, only pud to
1052 * a page table.
1053 */
1054 if (is_huge_zero_pud(pud)) {
1055 /* No huge zero pud yet */
1056 }
1057
1058 pudp_set_wrprotect(src_mm, addr, src_pud);
1059 pud = pud_mkold(pud_wrprotect(pud));
1060 set_pud_at(dst_mm, addr, dst_pud, pud);
1061
1062 ret = 0;
1063out_unlock:
1064 spin_unlock(src_ptl);
1065 spin_unlock(dst_ptl);
1066 return ret;
1067}
1068
1069void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1070{
1071 pud_t entry;
1072 unsigned long haddr;
1073 bool write = vmf->flags & FAULT_FLAG_WRITE;
1074
1075 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1076 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1077 goto unlock;
1078
1079 entry = pud_mkyoung(orig_pud);
1080 if (write)
1081 entry = pud_mkdirty(entry);
1082 haddr = vmf->address & HPAGE_PUD_MASK;
1083 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1084 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1085
1086unlock:
1087 spin_unlock(vmf->ptl);
1088}
1089#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1090
82b0f8c3 1091void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1092{
1093 pmd_t entry;
1094 unsigned long haddr;
20f664aa 1095 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1096
82b0f8c3
JK
1097 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1098 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1099 goto unlock;
1100
1101 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1102 if (write)
1103 entry = pmd_mkdirty(entry);
82b0f8c3 1104 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1105 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1106 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1107
1108unlock:
82b0f8c3 1109 spin_unlock(vmf->ptl);
a1dd450b
WD
1110}
1111
82b0f8c3 1112static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
bae473a4 1113 struct page *page)
71e3aac0 1114{
82b0f8c3
JK
1115 struct vm_area_struct *vma = vmf->vma;
1116 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1117 struct mem_cgroup *memcg;
71e3aac0
AA
1118 pgtable_t pgtable;
1119 pmd_t _pmd;
1120 int ret = 0, i;
1121 struct page **pages;
2ec74c3e
SG
1122 unsigned long mmun_start; /* For mmu_notifiers */
1123 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1124
1125 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1126 GFP_KERNEL);
1127 if (unlikely(!pages)) {
1128 ret |= VM_FAULT_OOM;
1129 goto out;
1130 }
1131
1132 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1133 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1134 vmf->address, page_to_nid(page));
b9bbfbe3 1135 if (unlikely(!pages[i] ||
bae473a4
KS
1136 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1137 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1138 if (pages[i])
71e3aac0 1139 put_page(pages[i]);
b9bbfbe3 1140 while (--i >= 0) {
00501b53
JW
1141 memcg = (void *)page_private(pages[i]);
1142 set_page_private(pages[i], 0);
f627c2f5
KS
1143 mem_cgroup_cancel_charge(pages[i], memcg,
1144 false);
b9bbfbe3
AA
1145 put_page(pages[i]);
1146 }
71e3aac0
AA
1147 kfree(pages);
1148 ret |= VM_FAULT_OOM;
1149 goto out;
1150 }
00501b53 1151 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1152 }
1153
1154 for (i = 0; i < HPAGE_PMD_NR; i++) {
1155 copy_user_highpage(pages[i], page + i,
0089e485 1156 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1157 __SetPageUptodate(pages[i]);
1158 cond_resched();
1159 }
1160
2ec74c3e
SG
1161 mmun_start = haddr;
1162 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1163 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1164
82b0f8c3
JK
1165 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1166 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1167 goto out_free_pages;
309381fe 1168 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1169
82b0f8c3 1170 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0
AA
1171 /* leave pmd empty until pte is filled */
1172
82b0f8c3 1173 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1174 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1175
1176 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1177 pte_t entry;
71e3aac0
AA
1178 entry = mk_pte(pages[i], vma->vm_page_prot);
1179 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1180 memcg = (void *)page_private(pages[i]);
1181 set_page_private(pages[i], 0);
82b0f8c3 1182 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1183 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1184 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1185 vmf->pte = pte_offset_map(&_pmd, haddr);
1186 VM_BUG_ON(!pte_none(*vmf->pte));
1187 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1188 pte_unmap(vmf->pte);
71e3aac0
AA
1189 }
1190 kfree(pages);
1191
71e3aac0 1192 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1193 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1194 page_remove_rmap(page, true);
82b0f8c3 1195 spin_unlock(vmf->ptl);
71e3aac0 1196
bae473a4 1197 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1198
71e3aac0
AA
1199 ret |= VM_FAULT_WRITE;
1200 put_page(page);
1201
1202out:
1203 return ret;
1204
1205out_free_pages:
82b0f8c3 1206 spin_unlock(vmf->ptl);
bae473a4 1207 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 1208 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1209 memcg = (void *)page_private(pages[i]);
1210 set_page_private(pages[i], 0);
f627c2f5 1211 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1212 put_page(pages[i]);
b9bbfbe3 1213 }
71e3aac0
AA
1214 kfree(pages);
1215 goto out;
1216}
1217
82b0f8c3 1218int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1219{
82b0f8c3 1220 struct vm_area_struct *vma = vmf->vma;
93b4796d 1221 struct page *page = NULL, *new_page;
00501b53 1222 struct mem_cgroup *memcg;
82b0f8c3 1223 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1224 unsigned long mmun_start; /* For mmu_notifiers */
1225 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1226 gfp_t huge_gfp; /* for allocation and charge */
bae473a4 1227 int ret = 0;
71e3aac0 1228
82b0f8c3 1229 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1230 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1231 if (is_huge_zero_pmd(orig_pmd))
1232 goto alloc;
82b0f8c3
JK
1233 spin_lock(vmf->ptl);
1234 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1235 goto out_unlock;
1236
1237 page = pmd_page(orig_pmd);
309381fe 1238 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1239 /*
1240 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1241 * part.
1f25fe20 1242 */
6d0a07ed 1243 if (page_trans_huge_mapcount(page, NULL) == 1) {
71e3aac0
AA
1244 pmd_t entry;
1245 entry = pmd_mkyoung(orig_pmd);
1246 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1247 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1248 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0
AA
1249 ret |= VM_FAULT_WRITE;
1250 goto out_unlock;
1251 }
ddc58f27 1252 get_page(page);
82b0f8c3 1253 spin_unlock(vmf->ptl);
93b4796d 1254alloc:
71e3aac0 1255 if (transparent_hugepage_enabled(vma) &&
077fcf11 1256 !transparent_hugepage_debug_cow()) {
444eb2a4 1257 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1258 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1259 } else
71e3aac0
AA
1260 new_page = NULL;
1261
9a982250
KS
1262 if (likely(new_page)) {
1263 prep_transhuge_page(new_page);
1264 } else {
eecc1e42 1265 if (!page) {
82b0f8c3 1266 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1267 ret |= VM_FAULT_FALLBACK;
93b4796d 1268 } else {
82b0f8c3 1269 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1270 if (ret & VM_FAULT_OOM) {
82b0f8c3 1271 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1272 ret |= VM_FAULT_FALLBACK;
1273 }
ddc58f27 1274 put_page(page);
93b4796d 1275 }
17766dde 1276 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1277 goto out;
1278 }
1279
bae473a4
KS
1280 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1281 huge_gfp, &memcg, true))) {
b9bbfbe3 1282 put_page(new_page);
82b0f8c3 1283 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1284 if (page)
ddc58f27 1285 put_page(page);
9845cbbd 1286 ret |= VM_FAULT_FALLBACK;
17766dde 1287 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1288 goto out;
1289 }
1290
17766dde
DR
1291 count_vm_event(THP_FAULT_ALLOC);
1292
eecc1e42 1293 if (!page)
93b4796d
KS
1294 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1295 else
1296 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1297 __SetPageUptodate(new_page);
1298
2ec74c3e
SG
1299 mmun_start = haddr;
1300 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1301 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1302
82b0f8c3 1303 spin_lock(vmf->ptl);
93b4796d 1304 if (page)
ddc58f27 1305 put_page(page);
82b0f8c3
JK
1306 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1307 spin_unlock(vmf->ptl);
f627c2f5 1308 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1309 put_page(new_page);
2ec74c3e 1310 goto out_mn;
b9bbfbe3 1311 } else {
71e3aac0 1312 pmd_t entry;
3122359a
KS
1313 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1314 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1315 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1316 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1317 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1318 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1319 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1320 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1321 if (!page) {
bae473a4 1322 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1323 } else {
309381fe 1324 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1325 page_remove_rmap(page, true);
93b4796d
KS
1326 put_page(page);
1327 }
71e3aac0
AA
1328 ret |= VM_FAULT_WRITE;
1329 }
82b0f8c3 1330 spin_unlock(vmf->ptl);
2ec74c3e 1331out_mn:
bae473a4 1332 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
71e3aac0
AA
1333out:
1334 return ret;
2ec74c3e 1335out_unlock:
82b0f8c3 1336 spin_unlock(vmf->ptl);
2ec74c3e 1337 return ret;
71e3aac0
AA
1338}
1339
8310d48b
KF
1340/*
1341 * FOLL_FORCE can write to even unwritable pmd's, but only
1342 * after we've gone through a COW cycle and they are dirty.
1343 */
1344static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1345{
1346 return pmd_write(pmd) ||
1347 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1348}
1349
b676b293 1350struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1351 unsigned long addr,
1352 pmd_t *pmd,
1353 unsigned int flags)
1354{
b676b293 1355 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1356 struct page *page = NULL;
1357
c4088ebd 1358 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1359
8310d48b 1360 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1361 goto out;
1362
85facf25
KS
1363 /* Avoid dumping huge zero page */
1364 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1365 return ERR_PTR(-EFAULT);
1366
2b4847e7 1367 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1368 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1369 goto out;
1370
71e3aac0 1371 page = pmd_page(*pmd);
ca120cf6 1372 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3
DW
1373 if (flags & FOLL_TOUCH)
1374 touch_pmd(vma, addr, pmd);
de60f5f1 1375 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1376 /*
1377 * We don't mlock() pte-mapped THPs. This way we can avoid
1378 * leaking mlocked pages into non-VM_LOCKED VMAs.
1379 *
9a73f61b
KS
1380 * For anon THP:
1381 *
e90309c9
KS
1382 * In most cases the pmd is the only mapping of the page as we
1383 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1384 * writable private mappings in populate_vma_page_range().
1385 *
1386 * The only scenario when we have the page shared here is if we
1387 * mlocking read-only mapping shared over fork(). We skip
1388 * mlocking such pages.
9a73f61b
KS
1389 *
1390 * For file THP:
1391 *
1392 * We can expect PageDoubleMap() to be stable under page lock:
1393 * for file pages we set it in page_add_file_rmap(), which
1394 * requires page to be locked.
e90309c9 1395 */
9a73f61b
KS
1396
1397 if (PageAnon(page) && compound_mapcount(page) != 1)
1398 goto skip_mlock;
1399 if (PageDoubleMap(page) || !page->mapping)
1400 goto skip_mlock;
1401 if (!trylock_page(page))
1402 goto skip_mlock;
1403 lru_add_drain();
1404 if (page->mapping && !PageDoubleMap(page))
1405 mlock_vma_page(page);
1406 unlock_page(page);
b676b293 1407 }
9a73f61b 1408skip_mlock:
71e3aac0 1409 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1410 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1411 if (flags & FOLL_GET)
ddc58f27 1412 get_page(page);
71e3aac0
AA
1413
1414out:
1415 return page;
1416}
1417
d10e63f2 1418/* NUMA hinting page fault entry point for trans huge pmds */
82b0f8c3 1419int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1420{
82b0f8c3 1421 struct vm_area_struct *vma = vmf->vma;
b8916634 1422 struct anon_vma *anon_vma = NULL;
b32967ff 1423 struct page *page;
82b0f8c3 1424 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
8191acbd 1425 int page_nid = -1, this_nid = numa_node_id();
90572890 1426 int target_nid, last_cpupid = -1;
8191acbd
MG
1427 bool page_locked;
1428 bool migrated = false;
b191f9b1 1429 bool was_writable;
6688cc05 1430 int flags = 0;
d10e63f2 1431
82b0f8c3
JK
1432 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1433 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1434 goto out_unlock;
1435
de466bd6
MG
1436 /*
1437 * If there are potential migrations, wait for completion and retry
1438 * without disrupting NUMA hinting information. Do not relock and
1439 * check_same as the page may no longer be mapped.
1440 */
82b0f8c3
JK
1441 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1442 page = pmd_page(*vmf->pmd);
3c226c63
MR
1443 if (!get_page_unless_zero(page))
1444 goto out_unlock;
82b0f8c3 1445 spin_unlock(vmf->ptl);
5d833062 1446 wait_on_page_locked(page);
3c226c63 1447 put_page(page);
de466bd6
MG
1448 goto out;
1449 }
1450
d10e63f2 1451 page = pmd_page(pmd);
a1a46184 1452 BUG_ON(is_huge_zero_page(page));
8191acbd 1453 page_nid = page_to_nid(page);
90572890 1454 last_cpupid = page_cpupid_last(page);
03c5a6e1 1455 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1456 if (page_nid == this_nid) {
03c5a6e1 1457 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1458 flags |= TNF_FAULT_LOCAL;
1459 }
4daae3b4 1460
bea66fbd 1461 /* See similar comment in do_numa_page for explanation */
288bc549 1462 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1463 flags |= TNF_NO_GROUP;
1464
ff9042b1
MG
1465 /*
1466 * Acquire the page lock to serialise THP migrations but avoid dropping
1467 * page_table_lock if at all possible
1468 */
b8916634
MG
1469 page_locked = trylock_page(page);
1470 target_nid = mpol_misplaced(page, vma, haddr);
1471 if (target_nid == -1) {
1472 /* If the page was locked, there are no parallel migrations */
a54a407f 1473 if (page_locked)
b8916634 1474 goto clear_pmdnuma;
2b4847e7 1475 }
4daae3b4 1476
de466bd6 1477 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1478 if (!page_locked) {
3c226c63
MR
1479 page_nid = -1;
1480 if (!get_page_unless_zero(page))
1481 goto out_unlock;
82b0f8c3 1482 spin_unlock(vmf->ptl);
b8916634 1483 wait_on_page_locked(page);
3c226c63 1484 put_page(page);
b8916634
MG
1485 goto out;
1486 }
1487
2b4847e7
MG
1488 /*
1489 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1490 * to serialises splits
1491 */
b8916634 1492 get_page(page);
82b0f8c3 1493 spin_unlock(vmf->ptl);
b8916634 1494 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1495
c69307d5 1496 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1497 spin_lock(vmf->ptl);
1498 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1499 unlock_page(page);
1500 put_page(page);
a54a407f 1501 page_nid = -1;
4daae3b4 1502 goto out_unlock;
b32967ff 1503 }
ff9042b1 1504
c3a489ca
MG
1505 /* Bail if we fail to protect against THP splits for any reason */
1506 if (unlikely(!anon_vma)) {
1507 put_page(page);
1508 page_nid = -1;
1509 goto clear_pmdnuma;
1510 }
1511
8b1b436d
PZ
1512 /*
1513 * Since we took the NUMA fault, we must have observed the !accessible
1514 * bit. Make sure all other CPUs agree with that, to avoid them
1515 * modifying the page we're about to migrate.
1516 *
1517 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1518 * inc_tlb_flush_pending().
1519 *
1520 * We are not sure a pending tlb flush here is for a huge page
1521 * mapping or not. Hence use the tlb range variant
8b1b436d
PZ
1522 */
1523 if (mm_tlb_flush_pending(vma->vm_mm))
ccde85ba 1524 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
8b1b436d 1525
a54a407f
MG
1526 /*
1527 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1528 * and access rights restored.
a54a407f 1529 */
82b0f8c3 1530 spin_unlock(vmf->ptl);
8b1b436d 1531
bae473a4 1532 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1533 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1534 if (migrated) {
1535 flags |= TNF_MIGRATED;
8191acbd 1536 page_nid = target_nid;
074c2381
MG
1537 } else
1538 flags |= TNF_MIGRATE_FAIL;
b32967ff 1539
8191acbd 1540 goto out;
b32967ff 1541clear_pmdnuma:
a54a407f 1542 BUG_ON(!PageLocked(page));
288bc549 1543 was_writable = pmd_savedwrite(pmd);
4d942466 1544 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1545 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1546 if (was_writable)
1547 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1548 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1549 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1550 unlock_page(page);
d10e63f2 1551out_unlock:
82b0f8c3 1552 spin_unlock(vmf->ptl);
b8916634
MG
1553
1554out:
1555 if (anon_vma)
1556 page_unlock_anon_vma_read(anon_vma);
1557
8191acbd 1558 if (page_nid != -1)
82b0f8c3 1559 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1560 flags);
8191acbd 1561
d10e63f2
MG
1562 return 0;
1563}
1564
319904ad
HY
1565/*
1566 * Return true if we do MADV_FREE successfully on entire pmd page.
1567 * Otherwise, return false.
1568 */
1569bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1570 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1571{
1572 spinlock_t *ptl;
1573 pmd_t orig_pmd;
1574 struct page *page;
1575 struct mm_struct *mm = tlb->mm;
319904ad 1576 bool ret = false;
b8d3c4c3 1577
07e32661
AK
1578 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1579
b6ec57f4
KS
1580 ptl = pmd_trans_huge_lock(pmd, vma);
1581 if (!ptl)
25eedabe 1582 goto out_unlocked;
b8d3c4c3
MK
1583
1584 orig_pmd = *pmd;
319904ad 1585 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1586 goto out;
b8d3c4c3
MK
1587
1588 page = pmd_page(orig_pmd);
1589 /*
1590 * If other processes are mapping this page, we couldn't discard
1591 * the page unless they all do MADV_FREE so let's skip the page.
1592 */
1593 if (page_mapcount(page) != 1)
1594 goto out;
1595
1596 if (!trylock_page(page))
1597 goto out;
1598
1599 /*
1600 * If user want to discard part-pages of THP, split it so MADV_FREE
1601 * will deactivate only them.
1602 */
1603 if (next - addr != HPAGE_PMD_SIZE) {
1604 get_page(page);
1605 spin_unlock(ptl);
9818b8cd 1606 split_huge_page(page);
b8d3c4c3 1607 unlock_page(page);
bbf29ffc 1608 put_page(page);
b8d3c4c3
MK
1609 goto out_unlocked;
1610 }
1611
1612 if (PageDirty(page))
1613 ClearPageDirty(page);
1614 unlock_page(page);
1615
b8d3c4c3 1616 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1617 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1618 orig_pmd = pmd_mkold(orig_pmd);
1619 orig_pmd = pmd_mkclean(orig_pmd);
1620
1621 set_pmd_at(mm, addr, pmd, orig_pmd);
1622 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1623 }
802a3a92
SL
1624
1625 mark_page_lazyfree(page);
319904ad 1626 ret = true;
b8d3c4c3
MK
1627out:
1628 spin_unlock(ptl);
1629out_unlocked:
1630 return ret;
1631}
1632
953c66c2
AK
1633static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1634{
1635 pgtable_t pgtable;
1636
1637 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1638 pte_free(mm, pgtable);
1639 atomic_long_dec(&mm->nr_ptes);
1640}
1641
71e3aac0 1642int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1643 pmd_t *pmd, unsigned long addr)
71e3aac0 1644{
da146769 1645 pmd_t orig_pmd;
bf929152 1646 spinlock_t *ptl;
71e3aac0 1647
07e32661
AK
1648 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1649
b6ec57f4
KS
1650 ptl = __pmd_trans_huge_lock(pmd, vma);
1651 if (!ptl)
da146769
KS
1652 return 0;
1653 /*
1654 * For architectures like ppc64 we look at deposited pgtable
1655 * when calling pmdp_huge_get_and_clear. So do the
1656 * pgtable_trans_huge_withdraw after finishing pmdp related
1657 * operations.
1658 */
1659 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1660 tlb->fullmm);
1661 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1662 if (vma_is_dax(vma)) {
3b6521f5
OH
1663 if (arch_needs_pgtable_deposit())
1664 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1665 spin_unlock(ptl);
1666 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1667 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1668 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1669 zap_deposited_table(tlb->mm, pmd);
da146769 1670 spin_unlock(ptl);
c0f2e176 1671 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769
KS
1672 } else {
1673 struct page *page = pmd_page(orig_pmd);
d281ee61 1674 page_remove_rmap(page, true);
da146769 1675 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
da146769 1676 VM_BUG_ON_PAGE(!PageHead(page), page);
b5072380 1677 if (PageAnon(page)) {
c14a6eb4 1678 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1679 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1680 } else {
953c66c2
AK
1681 if (arch_needs_pgtable_deposit())
1682 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1683 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1684 }
da146769 1685 spin_unlock(ptl);
e77b0852 1686 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1687 }
da146769 1688 return 1;
71e3aac0
AA
1689}
1690
1dd38b6c
AK
1691#ifndef pmd_move_must_withdraw
1692static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1693 spinlock_t *old_pmd_ptl,
1694 struct vm_area_struct *vma)
1695{
1696 /*
1697 * With split pmd lock we also need to move preallocated
1698 * PTE page table if new_pmd is on different PMD page table.
1699 *
1700 * We also don't deposit and withdraw tables for file pages.
1701 */
1702 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1703}
1704#endif
1705
bf8616d5 1706bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1707 unsigned long new_addr, unsigned long old_end,
5d190420 1708 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
37a1c49a 1709{
bf929152 1710 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1711 pmd_t pmd;
37a1c49a 1712 struct mm_struct *mm = vma->vm_mm;
5d190420 1713 bool force_flush = false;
37a1c49a
AA
1714
1715 if ((old_addr & ~HPAGE_PMD_MASK) ||
1716 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1717 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1718 return false;
37a1c49a
AA
1719
1720 /*
1721 * The destination pmd shouldn't be established, free_pgtables()
1722 * should have release it.
1723 */
1724 if (WARN_ON(!pmd_none(*new_pmd))) {
1725 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1726 return false;
37a1c49a
AA
1727 }
1728
bf929152
KS
1729 /*
1730 * We don't have to worry about the ordering of src and dst
1731 * ptlocks because exclusive mmap_sem prevents deadlock.
1732 */
b6ec57f4
KS
1733 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1734 if (old_ptl) {
bf929152
KS
1735 new_ptl = pmd_lockptr(mm, new_pmd);
1736 if (new_ptl != old_ptl)
1737 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1738 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
a2ce2666
AL
1739 if (pmd_present(pmd) && pmd_dirty(pmd))
1740 force_flush = true;
025c5b24 1741 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1742
1dd38b6c 1743 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1744 pgtable_t pgtable;
3592806c
KS
1745 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1746 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1747 }
b3084f4d
AK
1748 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1749 if (new_ptl != old_ptl)
1750 spin_unlock(new_ptl);
5d190420
AL
1751 if (force_flush)
1752 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1753 else
1754 *need_flush = true;
bf929152 1755 spin_unlock(old_ptl);
4b471e88 1756 return true;
37a1c49a 1757 }
4b471e88 1758 return false;
37a1c49a
AA
1759}
1760
f123d74a
MG
1761/*
1762 * Returns
1763 * - 0 if PMD could not be locked
1764 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1765 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1766 */
cd7548ab 1767int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1768 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1769{
1770 struct mm_struct *mm = vma->vm_mm;
bf929152 1771 spinlock_t *ptl;
0a85e51d
KS
1772 pmd_t entry;
1773 bool preserve_write;
1774 int ret;
cd7548ab 1775
b6ec57f4 1776 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1777 if (!ptl)
1778 return 0;
e944fd67 1779
0a85e51d
KS
1780 preserve_write = prot_numa && pmd_write(*pmd);
1781 ret = 1;
e944fd67 1782
0a85e51d
KS
1783 /*
1784 * Avoid trapping faults against the zero page. The read-only
1785 * data is likely to be read-cached on the local CPU and
1786 * local/remote hits to the zero page are not interesting.
1787 */
1788 if (prot_numa && is_huge_zero_pmd(*pmd))
1789 goto unlock;
025c5b24 1790
0a85e51d
KS
1791 if (prot_numa && pmd_protnone(*pmd))
1792 goto unlock;
1793
ced10803
KS
1794 /*
1795 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1796 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1797 * which is also under down_read(mmap_sem):
1798 *
1799 * CPU0: CPU1:
1800 * change_huge_pmd(prot_numa=1)
1801 * pmdp_huge_get_and_clear_notify()
1802 * madvise_dontneed()
1803 * zap_pmd_range()
1804 * pmd_trans_huge(*pmd) == 0 (without ptl)
1805 * // skip the pmd
1806 * set_pmd_at();
1807 * // pmd is re-established
1808 *
1809 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1810 * which may break userspace.
1811 *
1812 * pmdp_invalidate() is required to make sure we don't miss
1813 * dirty/young flags set by hardware.
1814 */
1815 entry = *pmd;
1816 pmdp_invalidate(vma, addr, pmd);
1817
1818 /*
1819 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1820 * corrupt them.
1821 */
1822 if (pmd_dirty(*pmd))
1823 entry = pmd_mkdirty(entry);
1824 if (pmd_young(*pmd))
1825 entry = pmd_mkyoung(entry);
1826
0a85e51d
KS
1827 entry = pmd_modify(entry, newprot);
1828 if (preserve_write)
1829 entry = pmd_mk_savedwrite(entry);
1830 ret = HPAGE_PMD_NR;
1831 set_pmd_at(mm, addr, pmd, entry);
1832 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1833unlock:
1834 spin_unlock(ptl);
025c5b24
NH
1835 return ret;
1836}
1837
1838/*
8f19b0c0 1839 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1840 *
8f19b0c0
HY
1841 * Note that if it returns page table lock pointer, this routine returns without
1842 * unlocking page table lock. So callers must unlock it.
025c5b24 1843 */
b6ec57f4 1844spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1845{
b6ec57f4
KS
1846 spinlock_t *ptl;
1847 ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1848 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
b6ec57f4
KS
1849 return ptl;
1850 spin_unlock(ptl);
1851 return NULL;
cd7548ab
JW
1852}
1853
a00cc7d9
MW
1854/*
1855 * Returns true if a given pud maps a thp, false otherwise.
1856 *
1857 * Note that if it returns true, this routine returns without unlocking page
1858 * table lock. So callers must unlock it.
1859 */
1860spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1861{
1862 spinlock_t *ptl;
1863
1864 ptl = pud_lock(vma->vm_mm, pud);
1865 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1866 return ptl;
1867 spin_unlock(ptl);
1868 return NULL;
1869}
1870
1871#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1872int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1873 pud_t *pud, unsigned long addr)
1874{
1875 pud_t orig_pud;
1876 spinlock_t *ptl;
1877
1878 ptl = __pud_trans_huge_lock(pud, vma);
1879 if (!ptl)
1880 return 0;
1881 /*
1882 * For architectures like ppc64 we look at deposited pgtable
1883 * when calling pudp_huge_get_and_clear. So do the
1884 * pgtable_trans_huge_withdraw after finishing pudp related
1885 * operations.
1886 */
1887 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1888 tlb->fullmm);
1889 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1890 if (vma_is_dax(vma)) {
1891 spin_unlock(ptl);
1892 /* No zero page support yet */
1893 } else {
1894 /* No support for anonymous PUD pages yet */
1895 BUG();
1896 }
1897 return 1;
1898}
1899
1900static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1901 unsigned long haddr)
1902{
1903 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1904 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1905 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1906 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1907
ce9311cf 1908 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1909
1910 pudp_huge_clear_flush_notify(vma, haddr, pud);
1911}
1912
1913void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1914 unsigned long address)
1915{
1916 spinlock_t *ptl;
1917 struct mm_struct *mm = vma->vm_mm;
1918 unsigned long haddr = address & HPAGE_PUD_MASK;
1919
1920 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
1921 ptl = pud_lock(mm, pud);
1922 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1923 goto out;
1924 __split_huge_pud_locked(vma, pud, haddr);
1925
1926out:
1927 spin_unlock(ptl);
1928 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
1929}
1930#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1931
eef1b3ba
KS
1932static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1933 unsigned long haddr, pmd_t *pmd)
1934{
1935 struct mm_struct *mm = vma->vm_mm;
1936 pgtable_t pgtable;
1937 pmd_t _pmd;
1938 int i;
1939
1940 /* leave pmd empty until pte is filled */
1941 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1942
1943 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1944 pmd_populate(mm, &_pmd, pgtable);
1945
1946 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1947 pte_t *pte, entry;
1948 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1949 entry = pte_mkspecial(entry);
1950 pte = pte_offset_map(&_pmd, haddr);
1951 VM_BUG_ON(!pte_none(*pte));
1952 set_pte_at(mm, haddr, pte, entry);
1953 pte_unmap(pte);
1954 }
1955 smp_wmb(); /* make pte visible before pmd */
1956 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
1957}
1958
1959static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 1960 unsigned long haddr, bool freeze)
eef1b3ba
KS
1961{
1962 struct mm_struct *mm = vma->vm_mm;
1963 struct page *page;
1964 pgtable_t pgtable;
1965 pmd_t _pmd;
804dd150 1966 bool young, write, dirty, soft_dirty;
2ac015e2 1967 unsigned long addr;
eef1b3ba
KS
1968 int i;
1969
1970 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1971 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1972 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 1973 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
1974
1975 count_vm_event(THP_SPLIT_PMD);
1976
d21b9e57
KS
1977 if (!vma_is_anonymous(vma)) {
1978 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
1979 /*
1980 * We are going to unmap this huge page. So
1981 * just go ahead and zap it
1982 */
1983 if (arch_needs_pgtable_deposit())
1984 zap_deposited_table(mm, pmd);
d21b9e57
KS
1985 if (vma_is_dax(vma))
1986 return;
1987 page = pmd_page(_pmd);
1988 if (!PageReferenced(page) && pmd_young(_pmd))
1989 SetPageReferenced(page);
1990 page_remove_rmap(page, true);
1991 put_page(page);
1992 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
eef1b3ba
KS
1993 return;
1994 } else if (is_huge_zero_pmd(*pmd)) {
1995 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1996 }
1997
1998 page = pmd_page(*pmd);
1999 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2000 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
2001 write = pmd_write(*pmd);
2002 young = pmd_young(*pmd);
b8d3c4c3 2003 dirty = pmd_dirty(*pmd);
804dd150 2004 soft_dirty = pmd_soft_dirty(*pmd);
eef1b3ba 2005
c777e2a8 2006 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
2007 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2008 pmd_populate(mm, &_pmd, pgtable);
2009
2ac015e2 2010 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2011 pte_t entry, *pte;
2012 /*
2013 * Note that NUMA hinting access restrictions are not
2014 * transferred to avoid any possibility of altering
2015 * permissions across VMAs.
2016 */
ba988280
KS
2017 if (freeze) {
2018 swp_entry_t swp_entry;
2019 swp_entry = make_migration_entry(page + i, write);
2020 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2021 if (soft_dirty)
2022 entry = pte_swp_mksoft_dirty(entry);
ba988280 2023 } else {
6d2329f8 2024 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2025 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2026 if (!write)
2027 entry = pte_wrprotect(entry);
2028 if (!young)
2029 entry = pte_mkold(entry);
804dd150
AA
2030 if (soft_dirty)
2031 entry = pte_mksoft_dirty(entry);
ba988280 2032 }
b8d3c4c3
MK
2033 if (dirty)
2034 SetPageDirty(page + i);
2ac015e2 2035 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2036 BUG_ON(!pte_none(*pte));
2ac015e2 2037 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2038 atomic_inc(&page[i]._mapcount);
2039 pte_unmap(pte);
2040 }
2041
2042 /*
2043 * Set PG_double_map before dropping compound_mapcount to avoid
2044 * false-negative page_mapped().
2045 */
2046 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2047 for (i = 0; i < HPAGE_PMD_NR; i++)
2048 atomic_inc(&page[i]._mapcount);
2049 }
2050
2051 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2052 /* Last compound_mapcount is gone. */
11fb9989 2053 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2054 if (TestClearPageDoubleMap(page)) {
2055 /* No need in mapcount reference anymore */
2056 for (i = 0; i < HPAGE_PMD_NR; i++)
2057 atomic_dec(&page[i]._mapcount);
2058 }
2059 }
2060
2061 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
2062 /*
2063 * Up to this point the pmd is present and huge and userland has the
2064 * whole access to the hugepage during the split (which happens in
2065 * place). If we overwrite the pmd with the not-huge version pointing
2066 * to the pte here (which of course we could if all CPUs were bug
2067 * free), userland could trigger a small page size TLB miss on the
2068 * small sized TLB while the hugepage TLB entry is still established in
2069 * the huge TLB. Some CPU doesn't like that.
2070 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2071 * 383 on page 93. Intel should be safe but is also warns that it's
2072 * only safe if the permission and cache attributes of the two entries
2073 * loaded in the two TLB is identical (which should be the case here).
2074 * But it is generally safer to never allow small and huge TLB entries
2075 * for the same virtual address to be loaded simultaneously. So instead
2076 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2077 * current pmd notpresent (atomically because here the pmd_trans_huge
2078 * and pmd_trans_splitting must remain set at all times on the pmd
2079 * until the split is complete for this pmd), then we flush the SMP TLB
2080 * and finally we write the non-huge version of the pmd entry with
2081 * pmd_populate.
2082 */
2083 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 2084 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2085
2086 if (freeze) {
2ac015e2 2087 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2088 page_remove_rmap(page + i, false);
2089 put_page(page + i);
2090 }
2091 }
eef1b3ba
KS
2092}
2093
2094void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2095 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2096{
2097 spinlock_t *ptl;
2098 struct mm_struct *mm = vma->vm_mm;
2099 unsigned long haddr = address & HPAGE_PMD_MASK;
2100
2101 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2102 ptl = pmd_lock(mm, pmd);
33f4751e
NH
2103
2104 /*
2105 * If caller asks to setup a migration entries, we need a page to check
2106 * pmd against. Otherwise we can end up replacing wrong page.
2107 */
2108 VM_BUG_ON(freeze && !page);
2109 if (page && page != pmd_page(*pmd))
2110 goto out;
2111
5c7fb56e 2112 if (pmd_trans_huge(*pmd)) {
33f4751e 2113 page = pmd_page(*pmd);
5c7fb56e 2114 if (PageMlocked(page))
5f737714 2115 clear_page_mlock(page);
5c7fb56e 2116 } else if (!pmd_devmap(*pmd))
e90309c9 2117 goto out;
fec89c10 2118 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 2119out:
eef1b3ba
KS
2120 spin_unlock(ptl);
2121 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2122}
2123
fec89c10
KS
2124void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2125 bool freeze, struct page *page)
94fcc585 2126{
f72e7dcd 2127 pgd_t *pgd;
c2febafc 2128 p4d_t *p4d;
f72e7dcd 2129 pud_t *pud;
94fcc585
AA
2130 pmd_t *pmd;
2131
78ddc534 2132 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2133 if (!pgd_present(*pgd))
2134 return;
2135
c2febafc
KS
2136 p4d = p4d_offset(pgd, address);
2137 if (!p4d_present(*p4d))
2138 return;
2139
2140 pud = pud_offset(p4d, address);
f72e7dcd
HD
2141 if (!pud_present(*pud))
2142 return;
2143
2144 pmd = pmd_offset(pud, address);
fec89c10 2145
33f4751e 2146 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2147}
2148
e1b9996b 2149void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2150 unsigned long start,
2151 unsigned long end,
2152 long adjust_next)
2153{
2154 /*
2155 * If the new start address isn't hpage aligned and it could
2156 * previously contain an hugepage: check if we need to split
2157 * an huge pmd.
2158 */
2159 if (start & ~HPAGE_PMD_MASK &&
2160 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2161 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2162 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2163
2164 /*
2165 * If the new end address isn't hpage aligned and it could
2166 * previously contain an hugepage: check if we need to split
2167 * an huge pmd.
2168 */
2169 if (end & ~HPAGE_PMD_MASK &&
2170 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2171 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2172 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2173
2174 /*
2175 * If we're also updating the vma->vm_next->vm_start, if the new
2176 * vm_next->vm_start isn't page aligned and it could previously
2177 * contain an hugepage: check if we need to split an huge pmd.
2178 */
2179 if (adjust_next > 0) {
2180 struct vm_area_struct *next = vma->vm_next;
2181 unsigned long nstart = next->vm_start;
2182 nstart += adjust_next << PAGE_SHIFT;
2183 if (nstart & ~HPAGE_PMD_MASK &&
2184 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2185 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2186 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2187 }
2188}
e9b61f19 2189
fec89c10 2190static void freeze_page(struct page *page)
e9b61f19 2191{
baa355fd 2192 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2193 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2194 bool unmap_success;
e9b61f19
KS
2195
2196 VM_BUG_ON_PAGE(!PageHead(page), page);
2197
baa355fd
KS
2198 if (PageAnon(page))
2199 ttu_flags |= TTU_MIGRATION;
2200
666e5a40
MK
2201 unmap_success = try_to_unmap(page, ttu_flags);
2202 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2203}
2204
fec89c10 2205static void unfreeze_page(struct page *page)
e9b61f19 2206{
fec89c10 2207 int i;
ace71a19
KS
2208 if (PageTransHuge(page)) {
2209 remove_migration_ptes(page, page, true);
2210 } else {
2211 for (i = 0; i < HPAGE_PMD_NR; i++)
2212 remove_migration_ptes(page + i, page + i, true);
2213 }
e9b61f19
KS
2214}
2215
8df651c7 2216static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2217 struct lruvec *lruvec, struct list_head *list)
2218{
e9b61f19
KS
2219 struct page *page_tail = head + tail;
2220
8df651c7 2221 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 2222 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
2223
2224 /*
0139aa7b 2225 * tail_page->_refcount is zero and not changing from under us. But
e9b61f19 2226 * get_page_unless_zero() may be running from under us on the
baa355fd
KS
2227 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2228 * atomic_add(), we would then run atomic_set() concurrently with
e9b61f19
KS
2229 * get_page_unless_zero(), and atomic_set() is implemented in C not
2230 * using locked ops. spin_unlock on x86 sometime uses locked ops
2231 * because of PPro errata 66, 92, so unless somebody can guarantee
2232 * atomic_set() here would be safe on all archs (and not only on x86),
baa355fd 2233 * it's safer to use atomic_inc()/atomic_add().
e9b61f19 2234 */
38d8b4e6 2235 if (PageAnon(head) && !PageSwapCache(head)) {
baa355fd
KS
2236 page_ref_inc(page_tail);
2237 } else {
2238 /* Additional pin to radix tree */
2239 page_ref_add(page_tail, 2);
2240 }
e9b61f19
KS
2241
2242 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2243 page_tail->flags |= (head->flags &
2244 ((1L << PG_referenced) |
2245 (1L << PG_swapbacked) |
38d8b4e6 2246 (1L << PG_swapcache) |
e9b61f19
KS
2247 (1L << PG_mlocked) |
2248 (1L << PG_uptodate) |
2249 (1L << PG_active) |
2250 (1L << PG_locked) |
b8d3c4c3
MK
2251 (1L << PG_unevictable) |
2252 (1L << PG_dirty)));
e9b61f19
KS
2253
2254 /*
2255 * After clearing PageTail the gup refcount can be released.
2256 * Page flags also must be visible before we make the page non-compound.
2257 */
2258 smp_wmb();
2259
2260 clear_compound_head(page_tail);
2261
2262 if (page_is_young(head))
2263 set_page_young(page_tail);
2264 if (page_is_idle(head))
2265 set_page_idle(page_tail);
2266
2267 /* ->mapping in first tail page is compound_mapcount */
9a982250 2268 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
2269 page_tail);
2270 page_tail->mapping = head->mapping;
2271
2272 page_tail->index = head->index + tail;
2273 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2274 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2275}
2276
baa355fd
KS
2277static void __split_huge_page(struct page *page, struct list_head *list,
2278 unsigned long flags)
e9b61f19
KS
2279{
2280 struct page *head = compound_head(page);
2281 struct zone *zone = page_zone(head);
2282 struct lruvec *lruvec;
baa355fd 2283 pgoff_t end = -1;
8df651c7 2284 int i;
e9b61f19 2285
599d0c95 2286 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
2287
2288 /* complete memcg works before add pages to LRU */
2289 mem_cgroup_split_huge_fixup(head);
2290
baa355fd
KS
2291 if (!PageAnon(page))
2292 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2293
2294 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2295 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2296 /* Some pages can be beyond i_size: drop them from page cache */
2297 if (head[i].index >= end) {
2298 __ClearPageDirty(head + i);
2299 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2300 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2301 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2302 put_page(head + i);
2303 }
2304 }
e9b61f19
KS
2305
2306 ClearPageCompound(head);
baa355fd
KS
2307 /* See comment in __split_huge_page_tail() */
2308 if (PageAnon(head)) {
38d8b4e6
HY
2309 /* Additional pin to radix tree of swap cache */
2310 if (PageSwapCache(head))
2311 page_ref_add(head, 2);
2312 else
2313 page_ref_inc(head);
baa355fd
KS
2314 } else {
2315 /* Additional pin to radix tree */
2316 page_ref_add(head, 2);
2317 spin_unlock(&head->mapping->tree_lock);
2318 }
2319
a52633d8 2320 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 2321
fec89c10 2322 unfreeze_page(head);
e9b61f19
KS
2323
2324 for (i = 0; i < HPAGE_PMD_NR; i++) {
2325 struct page *subpage = head + i;
2326 if (subpage == page)
2327 continue;
2328 unlock_page(subpage);
2329
2330 /*
2331 * Subpages may be freed if there wasn't any mapping
2332 * like if add_to_swap() is running on a lru page that
2333 * had its mapping zapped. And freeing these pages
2334 * requires taking the lru_lock so we do the put_page
2335 * of the tail pages after the split is complete.
2336 */
2337 put_page(subpage);
2338 }
2339}
2340
b20ce5e0
KS
2341int total_mapcount(struct page *page)
2342{
dd78fedd 2343 int i, compound, ret;
b20ce5e0
KS
2344
2345 VM_BUG_ON_PAGE(PageTail(page), page);
2346
2347 if (likely(!PageCompound(page)))
2348 return atomic_read(&page->_mapcount) + 1;
2349
dd78fedd 2350 compound = compound_mapcount(page);
b20ce5e0 2351 if (PageHuge(page))
dd78fedd
KS
2352 return compound;
2353 ret = compound;
b20ce5e0
KS
2354 for (i = 0; i < HPAGE_PMD_NR; i++)
2355 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2356 /* File pages has compound_mapcount included in _mapcount */
2357 if (!PageAnon(page))
2358 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2359 if (PageDoubleMap(page))
2360 ret -= HPAGE_PMD_NR;
2361 return ret;
2362}
2363
6d0a07ed
AA
2364/*
2365 * This calculates accurately how many mappings a transparent hugepage
2366 * has (unlike page_mapcount() which isn't fully accurate). This full
2367 * accuracy is primarily needed to know if copy-on-write faults can
2368 * reuse the page and change the mapping to read-write instead of
2369 * copying them. At the same time this returns the total_mapcount too.
2370 *
2371 * The function returns the highest mapcount any one of the subpages
2372 * has. If the return value is one, even if different processes are
2373 * mapping different subpages of the transparent hugepage, they can
2374 * all reuse it, because each process is reusing a different subpage.
2375 *
2376 * The total_mapcount is instead counting all virtual mappings of the
2377 * subpages. If the total_mapcount is equal to "one", it tells the
2378 * caller all mappings belong to the same "mm" and in turn the
2379 * anon_vma of the transparent hugepage can become the vma->anon_vma
2380 * local one as no other process may be mapping any of the subpages.
2381 *
2382 * It would be more accurate to replace page_mapcount() with
2383 * page_trans_huge_mapcount(), however we only use
2384 * page_trans_huge_mapcount() in the copy-on-write faults where we
2385 * need full accuracy to avoid breaking page pinning, because
2386 * page_trans_huge_mapcount() is slower than page_mapcount().
2387 */
2388int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2389{
2390 int i, ret, _total_mapcount, mapcount;
2391
2392 /* hugetlbfs shouldn't call it */
2393 VM_BUG_ON_PAGE(PageHuge(page), page);
2394
2395 if (likely(!PageTransCompound(page))) {
2396 mapcount = atomic_read(&page->_mapcount) + 1;
2397 if (total_mapcount)
2398 *total_mapcount = mapcount;
2399 return mapcount;
2400 }
2401
2402 page = compound_head(page);
2403
2404 _total_mapcount = ret = 0;
2405 for (i = 0; i < HPAGE_PMD_NR; i++) {
2406 mapcount = atomic_read(&page[i]._mapcount) + 1;
2407 ret = max(ret, mapcount);
2408 _total_mapcount += mapcount;
2409 }
2410 if (PageDoubleMap(page)) {
2411 ret -= 1;
2412 _total_mapcount -= HPAGE_PMD_NR;
2413 }
2414 mapcount = compound_mapcount(page);
2415 ret += mapcount;
2416 _total_mapcount += mapcount;
2417 if (total_mapcount)
2418 *total_mapcount = _total_mapcount;
2419 return ret;
2420}
2421
b8f593cd
HY
2422/* Racy check whether the huge page can be split */
2423bool can_split_huge_page(struct page *page, int *pextra_pins)
2424{
2425 int extra_pins;
2426
2427 /* Additional pins from radix tree */
2428 if (PageAnon(page))
2429 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2430 else
2431 extra_pins = HPAGE_PMD_NR;
2432 if (pextra_pins)
2433 *pextra_pins = extra_pins;
2434 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2435}
2436
e9b61f19
KS
2437/*
2438 * This function splits huge page into normal pages. @page can point to any
2439 * subpage of huge page to split. Split doesn't change the position of @page.
2440 *
2441 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2442 * The huge page must be locked.
2443 *
2444 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2445 *
2446 * Both head page and tail pages will inherit mapping, flags, and so on from
2447 * the hugepage.
2448 *
2449 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2450 * they are not mapped.
2451 *
2452 * Returns 0 if the hugepage is split successfully.
2453 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2454 * us.
2455 */
2456int split_huge_page_to_list(struct page *page, struct list_head *list)
2457{
2458 struct page *head = compound_head(page);
a3d0a918 2459 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2460 struct anon_vma *anon_vma = NULL;
2461 struct address_space *mapping = NULL;
2462 int count, mapcount, extra_pins, ret;
d9654322 2463 bool mlocked;
0b9b6fff 2464 unsigned long flags;
e9b61f19
KS
2465
2466 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2467 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2468 VM_BUG_ON_PAGE(!PageCompound(page), page);
2469
baa355fd
KS
2470 if (PageAnon(head)) {
2471 /*
2472 * The caller does not necessarily hold an mmap_sem that would
2473 * prevent the anon_vma disappearing so we first we take a
2474 * reference to it and then lock the anon_vma for write. This
2475 * is similar to page_lock_anon_vma_read except the write lock
2476 * is taken to serialise against parallel split or collapse
2477 * operations.
2478 */
2479 anon_vma = page_get_anon_vma(head);
2480 if (!anon_vma) {
2481 ret = -EBUSY;
2482 goto out;
2483 }
baa355fd
KS
2484 mapping = NULL;
2485 anon_vma_lock_write(anon_vma);
2486 } else {
2487 mapping = head->mapping;
2488
2489 /* Truncated ? */
2490 if (!mapping) {
2491 ret = -EBUSY;
2492 goto out;
2493 }
2494
baa355fd
KS
2495 anon_vma = NULL;
2496 i_mmap_lock_read(mapping);
e9b61f19 2497 }
e9b61f19
KS
2498
2499 /*
2500 * Racy check if we can split the page, before freeze_page() will
2501 * split PMDs
2502 */
b8f593cd 2503 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2504 ret = -EBUSY;
2505 goto out_unlock;
2506 }
2507
d9654322 2508 mlocked = PageMlocked(page);
fec89c10 2509 freeze_page(head);
e9b61f19
KS
2510 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2511
d9654322
KS
2512 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2513 if (mlocked)
2514 lru_add_drain();
2515
baa355fd 2516 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2517 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2518
2519 if (mapping) {
2520 void **pslot;
2521
2522 spin_lock(&mapping->tree_lock);
2523 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2524 page_index(head));
2525 /*
2526 * Check if the head page is present in radix tree.
2527 * We assume all tail are present too, if head is there.
2528 */
2529 if (radix_tree_deref_slot_protected(pslot,
2530 &mapping->tree_lock) != head)
2531 goto fail;
2532 }
2533
0139aa7b 2534 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2535 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2536 count = page_count(head);
2537 mapcount = total_mapcount(head);
baa355fd 2538 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2539 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2540 pgdata->split_queue_len--;
9a982250
KS
2541 list_del(page_deferred_list(head));
2542 }
65c45377 2543 if (mapping)
11fb9989 2544 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd
KS
2545 spin_unlock(&pgdata->split_queue_lock);
2546 __split_huge_page(page, list, flags);
e9b61f19 2547 ret = 0;
e9b61f19 2548 } else {
baa355fd
KS
2549 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2550 pr_alert("total_mapcount: %u, page_count(): %u\n",
2551 mapcount, count);
2552 if (PageTail(page))
2553 dump_page(head, NULL);
2554 dump_page(page, "total_mapcount(head) > 0");
2555 BUG();
2556 }
2557 spin_unlock(&pgdata->split_queue_lock);
2558fail: if (mapping)
2559 spin_unlock(&mapping->tree_lock);
a52633d8 2560 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
fec89c10 2561 unfreeze_page(head);
e9b61f19
KS
2562 ret = -EBUSY;
2563 }
2564
2565out_unlock:
baa355fd
KS
2566 if (anon_vma) {
2567 anon_vma_unlock_write(anon_vma);
2568 put_anon_vma(anon_vma);
2569 }
2570 if (mapping)
2571 i_mmap_unlock_read(mapping);
e9b61f19
KS
2572out:
2573 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2574 return ret;
2575}
9a982250
KS
2576
2577void free_transhuge_page(struct page *page)
2578{
a3d0a918 2579 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2580 unsigned long flags;
2581
a3d0a918 2582 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2583 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2584 pgdata->split_queue_len--;
9a982250
KS
2585 list_del(page_deferred_list(page));
2586 }
a3d0a918 2587 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2588 free_compound_page(page);
2589}
2590
2591void deferred_split_huge_page(struct page *page)
2592{
a3d0a918 2593 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2594 unsigned long flags;
2595
2596 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2597
a3d0a918 2598 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2599 if (list_empty(page_deferred_list(page))) {
f9719a03 2600 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2601 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2602 pgdata->split_queue_len++;
9a982250 2603 }
a3d0a918 2604 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2605}
2606
2607static unsigned long deferred_split_count(struct shrinker *shrink,
2608 struct shrink_control *sc)
2609{
a3d0a918 2610 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 2611 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
2612}
2613
2614static unsigned long deferred_split_scan(struct shrinker *shrink,
2615 struct shrink_control *sc)
2616{
a3d0a918 2617 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2618 unsigned long flags;
2619 LIST_HEAD(list), *pos, *next;
2620 struct page *page;
2621 int split = 0;
2622
a3d0a918 2623 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2624 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2625 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2626 page = list_entry((void *)pos, struct page, mapping);
2627 page = compound_head(page);
e3ae1953
KS
2628 if (get_page_unless_zero(page)) {
2629 list_move(page_deferred_list(page), &list);
2630 } else {
2631 /* We lost race with put_compound_page() */
9a982250 2632 list_del_init(page_deferred_list(page));
a3d0a918 2633 pgdata->split_queue_len--;
9a982250 2634 }
e3ae1953
KS
2635 if (!--sc->nr_to_scan)
2636 break;
9a982250 2637 }
a3d0a918 2638 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2639
2640 list_for_each_safe(pos, next, &list) {
2641 page = list_entry((void *)pos, struct page, mapping);
2642 lock_page(page);
2643 /* split_huge_page() removes page from list on success */
2644 if (!split_huge_page(page))
2645 split++;
2646 unlock_page(page);
2647 put_page(page);
2648 }
2649
a3d0a918
KS
2650 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2651 list_splice_tail(&list, &pgdata->split_queue);
2652 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2653
cb8d68ec
KS
2654 /*
2655 * Stop shrinker if we didn't split any page, but the queue is empty.
2656 * This can happen if pages were freed under us.
2657 */
2658 if (!split && list_empty(&pgdata->split_queue))
2659 return SHRINK_STOP;
2660 return split;
9a982250
KS
2661}
2662
2663static struct shrinker deferred_split_shrinker = {
2664 .count_objects = deferred_split_count,
2665 .scan_objects = deferred_split_scan,
2666 .seeks = DEFAULT_SEEKS,
a3d0a918 2667 .flags = SHRINKER_NUMA_AWARE,
9a982250 2668};
49071d43
KS
2669
2670#ifdef CONFIG_DEBUG_FS
2671static int split_huge_pages_set(void *data, u64 val)
2672{
2673 struct zone *zone;
2674 struct page *page;
2675 unsigned long pfn, max_zone_pfn;
2676 unsigned long total = 0, split = 0;
2677
2678 if (val != 1)
2679 return -EINVAL;
2680
2681 for_each_populated_zone(zone) {
2682 max_zone_pfn = zone_end_pfn(zone);
2683 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2684 if (!pfn_valid(pfn))
2685 continue;
2686
2687 page = pfn_to_page(pfn);
2688 if (!get_page_unless_zero(page))
2689 continue;
2690
2691 if (zone != page_zone(page))
2692 goto next;
2693
baa355fd 2694 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2695 goto next;
2696
2697 total++;
2698 lock_page(page);
2699 if (!split_huge_page(page))
2700 split++;
2701 unlock_page(page);
2702next:
2703 put_page(page);
2704 }
2705 }
2706
145bdaa1 2707 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2708
2709 return 0;
2710}
2711DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2712 "%llu\n");
2713
2714static int __init split_huge_pages_debugfs(void)
2715{
2716 void *ret;
2717
145bdaa1 2718 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2719 &split_huge_pages_fops);
2720 if (!ret)
2721 pr_warn("Failed to create split_huge_pages in debugfs");
2722 return 0;
2723}
2724late_initcall(split_huge_pages_debugfs);
2725#endif