]> git.ipfire.org Git - people/arne_f/kernel.git/blame - mm/hugetlb.c
crypto: nx - off by one bug in nx_of_update_msc()
[people/arne_f/kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
c8721bbb 24#include <linux/page-isolation.h>
d6606683 25
63551ae0
DG
26#include <asm/page.h>
27#include <asm/pgtable.h>
24669e58 28#include <asm/tlb.h>
63551ae0 29
24669e58 30#include <linux/io.h>
63551ae0 31#include <linux/hugetlb.h>
9dd540e2 32#include <linux/hugetlb_cgroup.h>
9a305230 33#include <linux/node.h>
7835e98b 34#include "internal.h"
1da177e4
LT
35
36const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03 37unsigned long hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
53ba51d2
JT
43__initdata LIST_HEAD(huge_boot_pages);
44
e5ff2159
AK
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 48static unsigned long __initdata default_hstate_size;
e5ff2159 49
3935baa9 50/*
31caf665
NH
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
3935baa9 53 */
c3f38a38 54DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
90481622
DG
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94{
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113{
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
496ad9aa 131 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
132}
133
96822904
AW
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
84afd99b
AW
137 *
138 * The region data structures are protected by a combination of the mmap_sem
c748c262 139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
84afd99b 140 * must either hold the mmap_sem for write, or the mmap_sem for read and
c748c262 141 * the hugetlb_instantiation_mutex:
84afd99b 142 *
32f84528 143 * down_write(&mm->mmap_sem);
84afd99b 144 * or
32f84528
CF
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
147 */
148struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152};
153
154static long region_add(struct list_head *head, long f, long t)
155{
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188}
189
190static long region_chg(struct list_head *head, long f, long t)
191{
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
25985edc 227 /* We overlap with this area, if it extends further than
96822904
AW
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237}
238
239static long region_truncate(struct list_head *head, long end)
240{
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267}
268
84afd99b
AW
269static long region_count(struct list_head *head, long f, long t)
270{
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
276 long seg_from;
277 long seg_to;
84afd99b
AW
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291}
292
e7c4b0bf
AW
293/*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
a5516438
AK
297static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 299{
a5516438
AK
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
302}
303
0fe6e20b
NH
304pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306{
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308}
309
08fba699
MG
310/*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315{
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
2415cf12 323 return 1UL << huge_page_shift(hstate);
08fba699 324}
f340ca0f 325EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 326
3340289d
MG
327/*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333#ifndef vma_mmu_pagesize
334unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335{
336 return vma_kernel_pagesize(vma);
337}
338#endif
339
84afd99b
AW
340/*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345#define HPAGE_RESV_OWNER (1UL << 0)
346#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 347#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 348
a1e78772
MG
349/*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
a1e78772 367 */
e7c4b0bf
AW
368static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369{
370 return (unsigned long)vma->vm_private_data;
371}
372
373static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375{
376 vma->vm_private_data = (void *)value;
377}
378
84afd99b
AW
379struct resv_map {
380 struct kref refs;
381 struct list_head regions;
382};
383
2a4b3ded 384static struct resv_map *resv_map_alloc(void)
84afd99b
AW
385{
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
389
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
392
393 return resv_map;
394}
395
2a4b3ded 396static void resv_map_release(struct kref *ref)
84afd99b
AW
397{
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
403}
404
405static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
406{
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 408 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
2a4b3ded 411 return NULL;
a1e78772
MG
412}
413
84afd99b 414static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
415{
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 418
84afd99b
AW
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
421}
422
423static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424{
04f2cbe3 425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
427
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
429}
430
431static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432{
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
434
435 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
436}
437
04f2cbe3 438/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
439void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440{
441 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 442 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
443 vma->vm_private_data = (void *)0;
444}
445
446/* Returns true if the VMA has associated reserve pages */
af0ed73e 447static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 448{
af0ed73e
JK
449 if (vma->vm_flags & VM_NORESERVE) {
450 /*
451 * This address is already reserved by other process(chg == 0),
452 * so, we should decrement reserved count. Without decrementing,
453 * reserve count remains after releasing inode, because this
454 * allocated page will go into page cache and is regarded as
455 * coming from reserved pool in releasing step. Currently, we
456 * don't have any other solution to deal with this situation
457 * properly, so add work-around here.
458 */
459 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460 return 1;
461 else
462 return 0;
463 }
a63884e9
JK
464
465 /* Shared mappings always use reserves */
f83a275d 466 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 467 return 1;
a63884e9
JK
468
469 /*
470 * Only the process that called mmap() has reserves for
471 * private mappings.
472 */
7f09ca51
MG
473 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474 return 1;
a63884e9 475
7f09ca51 476 return 0;
a1e78772
MG
477}
478
a5516438 479static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
480{
481 int nid = page_to_nid(page);
0edaecfa 482 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
483 h->free_huge_pages++;
484 h->free_huge_pages_node[nid]++;
1da177e4
LT
485}
486
bf50bab2
NH
487static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
488{
489 struct page *page;
490
c8721bbb
NH
491 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
492 if (!is_migrate_isolate_page(page))
493 break;
494 /*
495 * if 'non-isolated free hugepage' not found on the list,
496 * the allocation fails.
497 */
498 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 499 return NULL;
0edaecfa 500 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 501 set_page_refcounted(page);
bf50bab2
NH
502 h->free_huge_pages--;
503 h->free_huge_pages_node[nid]--;
504 return page;
505}
506
86cdb465
NH
507/* Movability of hugepages depends on migration support. */
508static inline gfp_t htlb_alloc_mask(struct hstate *h)
509{
510 if (hugepages_treat_as_movable || hugepage_migration_support(h))
511 return GFP_HIGHUSER_MOVABLE;
512 else
513 return GFP_HIGHUSER;
514}
515
a5516438
AK
516static struct page *dequeue_huge_page_vma(struct hstate *h,
517 struct vm_area_struct *vma,
af0ed73e
JK
518 unsigned long address, int avoid_reserve,
519 long chg)
1da177e4 520{
b1c12cbc 521 struct page *page = NULL;
480eccf9 522 struct mempolicy *mpol;
19770b32 523 nodemask_t *nodemask;
c0ff7453 524 struct zonelist *zonelist;
dd1a239f
MG
525 struct zone *zone;
526 struct zoneref *z;
cc9a6c87 527 unsigned int cpuset_mems_cookie;
1da177e4 528
a1e78772
MG
529 /*
530 * A child process with MAP_PRIVATE mappings created by their parent
531 * have no page reserves. This check ensures that reservations are
532 * not "stolen". The child may still get SIGKILLed
533 */
af0ed73e 534 if (!vma_has_reserves(vma, chg) &&
a5516438 535 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 536 goto err;
a1e78772 537
04f2cbe3 538 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 539 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 540 goto err;
04f2cbe3 541
9966c4bb 542retry_cpuset:
29c2a881 543 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 544 zonelist = huge_zonelist(vma, address,
86cdb465 545 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 546
19770b32
MG
547 for_each_zone_zonelist_nodemask(zone, z, zonelist,
548 MAX_NR_ZONES - 1, nodemask) {
86cdb465 549 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
550 page = dequeue_huge_page_node(h, zone_to_nid(zone));
551 if (page) {
af0ed73e
JK
552 if (avoid_reserve)
553 break;
554 if (!vma_has_reserves(vma, chg))
555 break;
556
07443a85 557 SetPagePrivate(page);
af0ed73e 558 h->resv_huge_pages--;
bf50bab2
NH
559 break;
560 }
3abf7afd 561 }
1da177e4 562 }
cc9a6c87 563
52cd3b07 564 mpol_cond_put(mpol);
29c2a881 565 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 566 goto retry_cpuset;
1da177e4 567 return page;
cc9a6c87
MG
568
569err:
cc9a6c87 570 return NULL;
1da177e4
LT
571}
572
a5516438 573static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
574{
575 int i;
a5516438 576
18229df5
AW
577 VM_BUG_ON(h->order >= MAX_ORDER);
578
a5516438
AK
579 h->nr_huge_pages--;
580 h->nr_huge_pages_node[page_to_nid(page)]--;
581 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
582 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
583 1 << PG_referenced | 1 << PG_dirty |
584 1 << PG_active | 1 << PG_reserved |
585 1 << PG_private | 1 << PG_writeback);
6af2acb6 586 }
309381fe 587 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
6af2acb6
AL
588 set_compound_page_dtor(page, NULL);
589 set_page_refcounted(page);
7f2e9525 590 arch_release_hugepage(page);
a5516438 591 __free_pages(page, huge_page_order(h));
6af2acb6
AL
592}
593
e5ff2159
AK
594struct hstate *size_to_hstate(unsigned long size)
595{
596 struct hstate *h;
597
598 for_each_hstate(h) {
599 if (huge_page_size(h) == size)
600 return h;
601 }
602 return NULL;
603}
604
27a85ef1
DG
605static void free_huge_page(struct page *page)
606{
a5516438
AK
607 /*
608 * Can't pass hstate in here because it is called from the
609 * compound page destructor.
610 */
e5ff2159 611 struct hstate *h = page_hstate(page);
7893d1d5 612 int nid = page_to_nid(page);
90481622
DG
613 struct hugepage_subpool *spool =
614 (struct hugepage_subpool *)page_private(page);
07443a85 615 bool restore_reserve;
27a85ef1 616
e5df70ab 617 set_page_private(page, 0);
23be7468 618 page->mapping = NULL;
7893d1d5 619 BUG_ON(page_count(page));
0fe6e20b 620 BUG_ON(page_mapcount(page));
07443a85 621 restore_reserve = PagePrivate(page);
16c794b4 622 ClearPagePrivate(page);
27a85ef1
DG
623
624 spin_lock(&hugetlb_lock);
6d76dcf4
AK
625 hugetlb_cgroup_uncharge_page(hstate_index(h),
626 pages_per_huge_page(h), page);
07443a85
JK
627 if (restore_reserve)
628 h->resv_huge_pages++;
629
aa888a74 630 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
631 /* remove the page from active list */
632 list_del(&page->lru);
a5516438
AK
633 update_and_free_page(h, page);
634 h->surplus_huge_pages--;
635 h->surplus_huge_pages_node[nid]--;
7893d1d5 636 } else {
5d3a551c 637 arch_clear_hugepage_flags(page);
a5516438 638 enqueue_huge_page(h, page);
7893d1d5 639 }
27a85ef1 640 spin_unlock(&hugetlb_lock);
90481622 641 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
642}
643
a5516438 644static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 645{
0edaecfa 646 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
647 set_compound_page_dtor(page, free_huge_page);
648 spin_lock(&hugetlb_lock);
9dd540e2 649 set_hugetlb_cgroup(page, NULL);
a5516438
AK
650 h->nr_huge_pages++;
651 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
652 spin_unlock(&hugetlb_lock);
653 put_page(page); /* free it into the hugepage allocator */
654}
655
20a0307c
WF
656static void prep_compound_gigantic_page(struct page *page, unsigned long order)
657{
658 int i;
659 int nr_pages = 1 << order;
660 struct page *p = page + 1;
661
662 /* we rely on prep_new_huge_page to set the destructor */
663 set_compound_order(page, order);
664 __SetPageHead(page);
ef5a22be 665 __ClearPageReserved(page);
20a0307c
WF
666 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
667 __SetPageTail(p);
ef5a22be
AA
668 /*
669 * For gigantic hugepages allocated through bootmem at
670 * boot, it's safer to be consistent with the not-gigantic
671 * hugepages and clear the PG_reserved bit from all tail pages
672 * too. Otherwse drivers using get_user_pages() to access tail
673 * pages may get the reference counting wrong if they see
674 * PG_reserved set on a tail page (despite the head page not
675 * having PG_reserved set). Enforcing this consistency between
676 * head and tail pages allows drivers to optimize away a check
677 * on the head page when they need know if put_page() is needed
678 * after get_user_pages().
679 */
680 __ClearPageReserved(p);
58a84aa9 681 set_page_count(p, 0);
20a0307c
WF
682 p->first_page = page;
683 }
684}
685
7795912c
AM
686/*
687 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
688 * transparent huge pages. See the PageTransHuge() documentation for more
689 * details.
690 */
20a0307c
WF
691int PageHuge(struct page *page)
692{
20a0307c
WF
693 if (!PageCompound(page))
694 return 0;
695
696 page = compound_head(page);
758f66a2 697 return get_compound_page_dtor(page) == free_huge_page;
20a0307c 698}
43131e14
NH
699EXPORT_SYMBOL_GPL(PageHuge);
700
27c73ae7
AA
701/*
702 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
703 * normal or transparent huge pages.
704 */
705int PageHeadHuge(struct page *page_head)
706{
27c73ae7
AA
707 if (!PageHead(page_head))
708 return 0;
709
758f66a2 710 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 711}
27c73ae7 712
13d60f4b
ZY
713pgoff_t __basepage_index(struct page *page)
714{
715 struct page *page_head = compound_head(page);
716 pgoff_t index = page_index(page_head);
717 unsigned long compound_idx;
718
719 if (!PageHuge(page_head))
720 return page_index(page);
721
722 if (compound_order(page_head) >= MAX_ORDER)
723 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
724 else
725 compound_idx = page - page_head;
726
727 return (index << compound_order(page_head)) + compound_idx;
728}
729
a5516438 730static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 731{
1da177e4 732 struct page *page;
f96efd58 733
aa888a74
AK
734 if (h->order >= MAX_ORDER)
735 return NULL;
736
6484eb3e 737 page = alloc_pages_exact_node(nid,
86cdb465 738 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 739 __GFP_REPEAT|__GFP_NOWARN,
a5516438 740 huge_page_order(h));
1da177e4 741 if (page) {
7f2e9525 742 if (arch_prepare_hugepage(page)) {
caff3a2c 743 __free_pages(page, huge_page_order(h));
7b8ee84d 744 return NULL;
7f2e9525 745 }
a5516438 746 prep_new_huge_page(h, page, nid);
1da177e4 747 }
63b4613c
NA
748
749 return page;
750}
751
9a76db09 752/*
6ae11b27
LS
753 * common helper functions for hstate_next_node_to_{alloc|free}.
754 * We may have allocated or freed a huge page based on a different
755 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
756 * be outside of *nodes_allowed. Ensure that we use an allowed
757 * node for alloc or free.
9a76db09 758 */
6ae11b27 759static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 760{
6ae11b27 761 nid = next_node(nid, *nodes_allowed);
9a76db09 762 if (nid == MAX_NUMNODES)
6ae11b27 763 nid = first_node(*nodes_allowed);
9a76db09
LS
764 VM_BUG_ON(nid >= MAX_NUMNODES);
765
766 return nid;
767}
768
6ae11b27
LS
769static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
770{
771 if (!node_isset(nid, *nodes_allowed))
772 nid = next_node_allowed(nid, nodes_allowed);
773 return nid;
774}
775
5ced66c9 776/*
6ae11b27
LS
777 * returns the previously saved node ["this node"] from which to
778 * allocate a persistent huge page for the pool and advance the
779 * next node from which to allocate, handling wrap at end of node
780 * mask.
5ced66c9 781 */
6ae11b27
LS
782static int hstate_next_node_to_alloc(struct hstate *h,
783 nodemask_t *nodes_allowed)
5ced66c9 784{
6ae11b27
LS
785 int nid;
786
787 VM_BUG_ON(!nodes_allowed);
788
789 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
790 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 791
9a76db09 792 return nid;
5ced66c9
AK
793}
794
e8c5c824 795/*
6ae11b27
LS
796 * helper for free_pool_huge_page() - return the previously saved
797 * node ["this node"] from which to free a huge page. Advance the
798 * next node id whether or not we find a free huge page to free so
799 * that the next attempt to free addresses the next node.
e8c5c824 800 */
6ae11b27 801static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 802{
6ae11b27
LS
803 int nid;
804
805 VM_BUG_ON(!nodes_allowed);
806
807 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
808 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 809
9a76db09 810 return nid;
e8c5c824
LS
811}
812
b2261026
JK
813#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
814 for (nr_nodes = nodes_weight(*mask); \
815 nr_nodes > 0 && \
816 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
817 nr_nodes--)
818
819#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
820 for (nr_nodes = nodes_weight(*mask); \
821 nr_nodes > 0 && \
822 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
823 nr_nodes--)
824
825static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
826{
827 struct page *page;
828 int nr_nodes, node;
829 int ret = 0;
830
831 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
832 page = alloc_fresh_huge_page_node(h, node);
833 if (page) {
834 ret = 1;
835 break;
836 }
837 }
838
839 if (ret)
840 count_vm_event(HTLB_BUDDY_PGALLOC);
841 else
842 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
843
844 return ret;
845}
846
e8c5c824
LS
847/*
848 * Free huge page from pool from next node to free.
849 * Attempt to keep persistent huge pages more or less
850 * balanced over allowed nodes.
851 * Called with hugetlb_lock locked.
852 */
6ae11b27
LS
853static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
854 bool acct_surplus)
e8c5c824 855{
b2261026 856 int nr_nodes, node;
e8c5c824
LS
857 int ret = 0;
858
b2261026 859 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
860 /*
861 * If we're returning unused surplus pages, only examine
862 * nodes with surplus pages.
863 */
b2261026
JK
864 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
865 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 866 struct page *page =
b2261026 867 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
868 struct page, lru);
869 list_del(&page->lru);
870 h->free_huge_pages--;
b2261026 871 h->free_huge_pages_node[node]--;
685f3457
LS
872 if (acct_surplus) {
873 h->surplus_huge_pages--;
b2261026 874 h->surplus_huge_pages_node[node]--;
685f3457 875 }
e8c5c824
LS
876 update_and_free_page(h, page);
877 ret = 1;
9a76db09 878 break;
e8c5c824 879 }
b2261026 880 }
e8c5c824
LS
881
882 return ret;
883}
884
c8721bbb
NH
885/*
886 * Dissolve a given free hugepage into free buddy pages. This function does
887 * nothing for in-use (including surplus) hugepages.
888 */
889static void dissolve_free_huge_page(struct page *page)
890{
891 spin_lock(&hugetlb_lock);
892 if (PageHuge(page) && !page_count(page)) {
893 struct hstate *h = page_hstate(page);
894 int nid = page_to_nid(page);
895 list_del(&page->lru);
896 h->free_huge_pages--;
897 h->free_huge_pages_node[nid]--;
898 update_and_free_page(h, page);
899 }
900 spin_unlock(&hugetlb_lock);
901}
902
903/*
904 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
905 * make specified memory blocks removable from the system.
906 * Note that start_pfn should aligned with (minimum) hugepage size.
907 */
908void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
909{
910 unsigned int order = 8 * sizeof(void *);
911 unsigned long pfn;
912 struct hstate *h;
913
914 /* Set scan step to minimum hugepage size */
915 for_each_hstate(h)
916 if (order > huge_page_order(h))
917 order = huge_page_order(h);
918 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
919 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
920 dissolve_free_huge_page(pfn_to_page(pfn));
921}
922
bf50bab2 923static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
924{
925 struct page *page;
bf50bab2 926 unsigned int r_nid;
7893d1d5 927
aa888a74
AK
928 if (h->order >= MAX_ORDER)
929 return NULL;
930
d1c3fb1f
NA
931 /*
932 * Assume we will successfully allocate the surplus page to
933 * prevent racing processes from causing the surplus to exceed
934 * overcommit
935 *
936 * This however introduces a different race, where a process B
937 * tries to grow the static hugepage pool while alloc_pages() is
938 * called by process A. B will only examine the per-node
939 * counters in determining if surplus huge pages can be
940 * converted to normal huge pages in adjust_pool_surplus(). A
941 * won't be able to increment the per-node counter, until the
942 * lock is dropped by B, but B doesn't drop hugetlb_lock until
943 * no more huge pages can be converted from surplus to normal
944 * state (and doesn't try to convert again). Thus, we have a
945 * case where a surplus huge page exists, the pool is grown, and
946 * the surplus huge page still exists after, even though it
947 * should just have been converted to a normal huge page. This
948 * does not leak memory, though, as the hugepage will be freed
949 * once it is out of use. It also does not allow the counters to
950 * go out of whack in adjust_pool_surplus() as we don't modify
951 * the node values until we've gotten the hugepage and only the
952 * per-node value is checked there.
953 */
954 spin_lock(&hugetlb_lock);
a5516438 955 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
956 spin_unlock(&hugetlb_lock);
957 return NULL;
958 } else {
a5516438
AK
959 h->nr_huge_pages++;
960 h->surplus_huge_pages++;
d1c3fb1f
NA
961 }
962 spin_unlock(&hugetlb_lock);
963
bf50bab2 964 if (nid == NUMA_NO_NODE)
86cdb465 965 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
966 __GFP_REPEAT|__GFP_NOWARN,
967 huge_page_order(h));
968 else
969 page = alloc_pages_exact_node(nid,
86cdb465 970 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 971 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 972
caff3a2c
GS
973 if (page && arch_prepare_hugepage(page)) {
974 __free_pages(page, huge_page_order(h));
ea5768c7 975 page = NULL;
caff3a2c
GS
976 }
977
d1c3fb1f 978 spin_lock(&hugetlb_lock);
7893d1d5 979 if (page) {
0edaecfa 980 INIT_LIST_HEAD(&page->lru);
bf50bab2 981 r_nid = page_to_nid(page);
7893d1d5 982 set_compound_page_dtor(page, free_huge_page);
9dd540e2 983 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
984 /*
985 * We incremented the global counters already
986 */
bf50bab2
NH
987 h->nr_huge_pages_node[r_nid]++;
988 h->surplus_huge_pages_node[r_nid]++;
3b116300 989 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 990 } else {
a5516438
AK
991 h->nr_huge_pages--;
992 h->surplus_huge_pages--;
3b116300 993 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 994 }
d1c3fb1f 995 spin_unlock(&hugetlb_lock);
7893d1d5
AL
996
997 return page;
998}
999
bf50bab2
NH
1000/*
1001 * This allocation function is useful in the context where vma is irrelevant.
1002 * E.g. soft-offlining uses this function because it only cares physical
1003 * address of error page.
1004 */
1005struct page *alloc_huge_page_node(struct hstate *h, int nid)
1006{
4ef91848 1007 struct page *page = NULL;
bf50bab2
NH
1008
1009 spin_lock(&hugetlb_lock);
4ef91848
JK
1010 if (h->free_huge_pages - h->resv_huge_pages > 0)
1011 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1012 spin_unlock(&hugetlb_lock);
1013
94ae8ba7 1014 if (!page)
bf50bab2
NH
1015 page = alloc_buddy_huge_page(h, nid);
1016
1017 return page;
1018}
1019
e4e574b7 1020/*
25985edc 1021 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1022 * of size 'delta'.
1023 */
a5516438 1024static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1025{
1026 struct list_head surplus_list;
1027 struct page *page, *tmp;
1028 int ret, i;
1029 int needed, allocated;
28073b02 1030 bool alloc_ok = true;
e4e574b7 1031
a5516438 1032 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1033 if (needed <= 0) {
a5516438 1034 h->resv_huge_pages += delta;
e4e574b7 1035 return 0;
ac09b3a1 1036 }
e4e574b7
AL
1037
1038 allocated = 0;
1039 INIT_LIST_HEAD(&surplus_list);
1040
1041 ret = -ENOMEM;
1042retry:
1043 spin_unlock(&hugetlb_lock);
1044 for (i = 0; i < needed; i++) {
bf50bab2 1045 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1046 if (!page) {
1047 alloc_ok = false;
1048 break;
1049 }
e4e574b7
AL
1050 list_add(&page->lru, &surplus_list);
1051 }
28073b02 1052 allocated += i;
e4e574b7
AL
1053
1054 /*
1055 * After retaking hugetlb_lock, we need to recalculate 'needed'
1056 * because either resv_huge_pages or free_huge_pages may have changed.
1057 */
1058 spin_lock(&hugetlb_lock);
a5516438
AK
1059 needed = (h->resv_huge_pages + delta) -
1060 (h->free_huge_pages + allocated);
28073b02
HD
1061 if (needed > 0) {
1062 if (alloc_ok)
1063 goto retry;
1064 /*
1065 * We were not able to allocate enough pages to
1066 * satisfy the entire reservation so we free what
1067 * we've allocated so far.
1068 */
1069 goto free;
1070 }
e4e574b7
AL
1071 /*
1072 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1073 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1074 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1075 * allocator. Commit the entire reservation here to prevent another
1076 * process from stealing the pages as they are added to the pool but
1077 * before they are reserved.
e4e574b7
AL
1078 */
1079 needed += allocated;
a5516438 1080 h->resv_huge_pages += delta;
e4e574b7 1081 ret = 0;
a9869b83 1082
19fc3f0a 1083 /* Free the needed pages to the hugetlb pool */
e4e574b7 1084 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1085 if ((--needed) < 0)
1086 break;
a9869b83
NH
1087 /*
1088 * This page is now managed by the hugetlb allocator and has
1089 * no users -- drop the buddy allocator's reference.
1090 */
1091 put_page_testzero(page);
309381fe 1092 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1093 enqueue_huge_page(h, page);
19fc3f0a 1094 }
28073b02 1095free:
b0365c8d 1096 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1097
1098 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1099 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1100 put_page(page);
a9869b83 1101 spin_lock(&hugetlb_lock);
e4e574b7
AL
1102
1103 return ret;
1104}
1105
1106/*
1107 * When releasing a hugetlb pool reservation, any surplus pages that were
1108 * allocated to satisfy the reservation must be explicitly freed if they were
1109 * never used.
685f3457 1110 * Called with hugetlb_lock held.
e4e574b7 1111 */
a5516438
AK
1112static void return_unused_surplus_pages(struct hstate *h,
1113 unsigned long unused_resv_pages)
e4e574b7 1114{
e4e574b7
AL
1115 unsigned long nr_pages;
1116
ac09b3a1 1117 /* Uncommit the reservation */
a5516438 1118 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1119
aa888a74
AK
1120 /* Cannot return gigantic pages currently */
1121 if (h->order >= MAX_ORDER)
1122 return;
1123
a5516438 1124 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1125
685f3457
LS
1126 /*
1127 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1128 * evenly across all nodes with memory. Iterate across these nodes
1129 * until we can no longer free unreserved surplus pages. This occurs
1130 * when the nodes with surplus pages have no free pages.
1131 * free_pool_huge_page() will balance the the freed pages across the
1132 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1133 */
1134 while (nr_pages--) {
8cebfcd0 1135 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1136 break;
d568de4b 1137 cond_resched_lock(&hugetlb_lock);
e4e574b7
AL
1138 }
1139}
1140
c37f9fb1
AW
1141/*
1142 * Determine if the huge page at addr within the vma has an associated
1143 * reservation. Where it does not we will need to logically increase
90481622
DG
1144 * reservation and actually increase subpool usage before an allocation
1145 * can occur. Where any new reservation would be required the
1146 * reservation change is prepared, but not committed. Once the page
1147 * has been allocated from the subpool and instantiated the change should
1148 * be committed via vma_commit_reservation. No action is required on
1149 * failure.
c37f9fb1 1150 */
e2f17d94 1151static long vma_needs_reservation(struct hstate *h,
a5516438 1152 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1153{
1154 struct address_space *mapping = vma->vm_file->f_mapping;
1155 struct inode *inode = mapping->host;
1156
f83a275d 1157 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1158 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1159 return region_chg(&inode->i_mapping->private_list,
1160 idx, idx + 1);
1161
84afd99b
AW
1162 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1163 return 1;
c37f9fb1 1164
84afd99b 1165 } else {
e2f17d94 1166 long err;
a5516438 1167 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
f522c3ac 1168 struct resv_map *resv = vma_resv_map(vma);
84afd99b 1169
f522c3ac 1170 err = region_chg(&resv->regions, idx, idx + 1);
84afd99b
AW
1171 if (err < 0)
1172 return err;
1173 return 0;
1174 }
c37f9fb1 1175}
a5516438
AK
1176static void vma_commit_reservation(struct hstate *h,
1177 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1178{
1179 struct address_space *mapping = vma->vm_file->f_mapping;
1180 struct inode *inode = mapping->host;
1181
f83a275d 1182 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1183 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1184 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1185
1186 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1187 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
f522c3ac 1188 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
1189
1190 /* Mark this page used in the map. */
f522c3ac 1191 region_add(&resv->regions, idx, idx + 1);
c37f9fb1
AW
1192 }
1193}
1194
a1e78772 1195static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1196 unsigned long addr, int avoid_reserve)
1da177e4 1197{
90481622 1198 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1199 struct hstate *h = hstate_vma(vma);
348ea204 1200 struct page *page;
e2f17d94 1201 long chg;
6d76dcf4
AK
1202 int ret, idx;
1203 struct hugetlb_cgroup *h_cg;
a1e78772 1204
6d76dcf4 1205 idx = hstate_index(h);
a1e78772 1206 /*
90481622
DG
1207 * Processes that did not create the mapping will have no
1208 * reserves and will not have accounted against subpool
1209 * limit. Check that the subpool limit can be made before
1210 * satisfying the allocation MAP_NORESERVE mappings may also
1211 * need pages and subpool limit allocated allocated if no reserve
1212 * mapping overlaps.
a1e78772 1213 */
a5516438 1214 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1215 if (chg < 0)
76dcee75 1216 return ERR_PTR(-ENOMEM);
8bb3f12e
JK
1217 if (chg || avoid_reserve)
1218 if (hugepage_subpool_get_pages(spool, 1))
76dcee75 1219 return ERR_PTR(-ENOSPC);
1da177e4 1220
6d76dcf4
AK
1221 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1222 if (ret) {
8bb3f12e
JK
1223 if (chg || avoid_reserve)
1224 hugepage_subpool_put_pages(spool, 1);
6d76dcf4
AK
1225 return ERR_PTR(-ENOSPC);
1226 }
1da177e4 1227 spin_lock(&hugetlb_lock);
af0ed73e 1228 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1229 if (!page) {
94ae8ba7 1230 spin_unlock(&hugetlb_lock);
bf50bab2 1231 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1232 if (!page) {
6d76dcf4
AK
1233 hugetlb_cgroup_uncharge_cgroup(idx,
1234 pages_per_huge_page(h),
1235 h_cg);
8bb3f12e
JK
1236 if (chg || avoid_reserve)
1237 hugepage_subpool_put_pages(spool, 1);
76dcee75 1238 return ERR_PTR(-ENOSPC);
68842c9b 1239 }
79dbb236
AK
1240 spin_lock(&hugetlb_lock);
1241 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1242 /* Fall through */
68842c9b 1243 }
81a6fcae
JK
1244 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1245 spin_unlock(&hugetlb_lock);
348ea204 1246
90481622 1247 set_page_private(page, (unsigned long)spool);
90d8b7e6 1248
a5516438 1249 vma_commit_reservation(h, vma, addr);
90d8b7e6 1250 return page;
b45b5bd6
DG
1251}
1252
74060e4d
NH
1253/*
1254 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1255 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1256 * where no ERR_VALUE is expected to be returned.
1257 */
1258struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1259 unsigned long addr, int avoid_reserve)
1260{
1261 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1262 if (IS_ERR(page))
1263 page = NULL;
1264 return page;
1265}
1266
91f47662 1267int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1268{
1269 struct huge_bootmem_page *m;
b2261026 1270 int nr_nodes, node;
aa888a74 1271
b2261026 1272 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1273 void *addr;
1274
8b89a116
GS
1275 addr = memblock_virt_alloc_try_nid_nopanic(
1276 huge_page_size(h), huge_page_size(h),
1277 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1278 if (addr) {
1279 /*
1280 * Use the beginning of the huge page to store the
1281 * huge_bootmem_page struct (until gather_bootmem
1282 * puts them into the mem_map).
1283 */
1284 m = addr;
91f47662 1285 goto found;
aa888a74 1286 }
aa888a74
AK
1287 }
1288 return 0;
1289
1290found:
1291 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1292 /* Put them into a private list first because mem_map is not up yet */
1293 list_add(&m->list, &huge_boot_pages);
1294 m->hstate = h;
1295 return 1;
1296}
1297
18229df5
AW
1298static void prep_compound_huge_page(struct page *page, int order)
1299{
1300 if (unlikely(order > (MAX_ORDER - 1)))
1301 prep_compound_gigantic_page(page, order);
1302 else
1303 prep_compound_page(page, order);
1304}
1305
aa888a74
AK
1306/* Put bootmem huge pages into the standard lists after mem_map is up */
1307static void __init gather_bootmem_prealloc(void)
1308{
1309 struct huge_bootmem_page *m;
1310
1311 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1312 struct hstate *h = m->hstate;
ee8f248d
BB
1313 struct page *page;
1314
1315#ifdef CONFIG_HIGHMEM
1316 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1317 memblock_free_late(__pa(m),
1318 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1319#else
1320 page = virt_to_page(m);
1321#endif
aa888a74 1322 WARN_ON(page_count(page) != 1);
18229df5 1323 prep_compound_huge_page(page, h->order);
ef5a22be 1324 WARN_ON(PageReserved(page));
aa888a74 1325 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1326 /*
1327 * If we had gigantic hugepages allocated at boot time, we need
1328 * to restore the 'stolen' pages to totalram_pages in order to
1329 * fix confusing memory reports from free(1) and another
1330 * side-effects, like CommitLimit going negative.
1331 */
1332 if (h->order > (MAX_ORDER - 1))
3dcc0571 1333 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1334 }
1335}
1336
8faa8b07 1337static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1338{
1339 unsigned long i;
a5516438 1340
e5ff2159 1341 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1342 if (h->order >= MAX_ORDER) {
1343 if (!alloc_bootmem_huge_page(h))
1344 break;
9b5e5d0f 1345 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1346 &node_states[N_MEMORY]))
1da177e4 1347 break;
1da177e4 1348 }
8faa8b07 1349 h->max_huge_pages = i;
e5ff2159
AK
1350}
1351
1352static void __init hugetlb_init_hstates(void)
1353{
1354 struct hstate *h;
1355
1356 for_each_hstate(h) {
8faa8b07
AK
1357 /* oversize hugepages were init'ed in early boot */
1358 if (h->order < MAX_ORDER)
1359 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1360 }
1361}
1362
4abd32db
AK
1363static char * __init memfmt(char *buf, unsigned long n)
1364{
1365 if (n >= (1UL << 30))
1366 sprintf(buf, "%lu GB", n >> 30);
1367 else if (n >= (1UL << 20))
1368 sprintf(buf, "%lu MB", n >> 20);
1369 else
1370 sprintf(buf, "%lu KB", n >> 10);
1371 return buf;
1372}
1373
e5ff2159
AK
1374static void __init report_hugepages(void)
1375{
1376 struct hstate *h;
1377
1378 for_each_hstate(h) {
4abd32db 1379 char buf[32];
ffb22af5 1380 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1381 memfmt(buf, huge_page_size(h)),
1382 h->free_huge_pages);
e5ff2159
AK
1383 }
1384}
1385
1da177e4 1386#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1387static void try_to_free_low(struct hstate *h, unsigned long count,
1388 nodemask_t *nodes_allowed)
1da177e4 1389{
4415cc8d
CL
1390 int i;
1391
aa888a74
AK
1392 if (h->order >= MAX_ORDER)
1393 return;
1394
6ae11b27 1395 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1396 struct page *page, *next;
a5516438
AK
1397 struct list_head *freel = &h->hugepage_freelists[i];
1398 list_for_each_entry_safe(page, next, freel, lru) {
1399 if (count >= h->nr_huge_pages)
6b0c880d 1400 return;
1da177e4
LT
1401 if (PageHighMem(page))
1402 continue;
1403 list_del(&page->lru);
e5ff2159 1404 update_and_free_page(h, page);
a5516438
AK
1405 h->free_huge_pages--;
1406 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1407 }
1408 }
1409}
1410#else
6ae11b27
LS
1411static inline void try_to_free_low(struct hstate *h, unsigned long count,
1412 nodemask_t *nodes_allowed)
1da177e4
LT
1413{
1414}
1415#endif
1416
20a0307c
WF
1417/*
1418 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1419 * balanced by operating on them in a round-robin fashion.
1420 * Returns 1 if an adjustment was made.
1421 */
6ae11b27
LS
1422static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1423 int delta)
20a0307c 1424{
b2261026 1425 int nr_nodes, node;
20a0307c
WF
1426
1427 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1428
b2261026
JK
1429 if (delta < 0) {
1430 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1431 if (h->surplus_huge_pages_node[node])
1432 goto found;
e8c5c824 1433 }
b2261026
JK
1434 } else {
1435 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1436 if (h->surplus_huge_pages_node[node] <
1437 h->nr_huge_pages_node[node])
1438 goto found;
e8c5c824 1439 }
b2261026
JK
1440 }
1441 return 0;
20a0307c 1442
b2261026
JK
1443found:
1444 h->surplus_huge_pages += delta;
1445 h->surplus_huge_pages_node[node] += delta;
1446 return 1;
20a0307c
WF
1447}
1448
a5516438 1449#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1450static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1451 nodemask_t *nodes_allowed)
1da177e4 1452{
7893d1d5 1453 unsigned long min_count, ret;
1da177e4 1454
aa888a74
AK
1455 if (h->order >= MAX_ORDER)
1456 return h->max_huge_pages;
1457
7893d1d5
AL
1458 /*
1459 * Increase the pool size
1460 * First take pages out of surplus state. Then make up the
1461 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1462 *
1463 * We might race with alloc_buddy_huge_page() here and be unable
1464 * to convert a surplus huge page to a normal huge page. That is
1465 * not critical, though, it just means the overall size of the
1466 * pool might be one hugepage larger than it needs to be, but
1467 * within all the constraints specified by the sysctls.
7893d1d5 1468 */
1da177e4 1469 spin_lock(&hugetlb_lock);
a5516438 1470 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1471 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1472 break;
1473 }
1474
a5516438 1475 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1476 /*
1477 * If this allocation races such that we no longer need the
1478 * page, free_huge_page will handle it by freeing the page
1479 * and reducing the surplus.
1480 */
1481 spin_unlock(&hugetlb_lock);
6ae11b27 1482 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1483 spin_lock(&hugetlb_lock);
1484 if (!ret)
1485 goto out;
1486
536240f2
MG
1487 /* Bail for signals. Probably ctrl-c from user */
1488 if (signal_pending(current))
1489 goto out;
7893d1d5 1490 }
7893d1d5
AL
1491
1492 /*
1493 * Decrease the pool size
1494 * First return free pages to the buddy allocator (being careful
1495 * to keep enough around to satisfy reservations). Then place
1496 * pages into surplus state as needed so the pool will shrink
1497 * to the desired size as pages become free.
d1c3fb1f
NA
1498 *
1499 * By placing pages into the surplus state independent of the
1500 * overcommit value, we are allowing the surplus pool size to
1501 * exceed overcommit. There are few sane options here. Since
1502 * alloc_buddy_huge_page() is checking the global counter,
1503 * though, we'll note that we're not allowed to exceed surplus
1504 * and won't grow the pool anywhere else. Not until one of the
1505 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1506 */
a5516438 1507 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1508 min_count = max(count, min_count);
6ae11b27 1509 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1510 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1511 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1512 break;
05b36270 1513 cond_resched_lock(&hugetlb_lock);
1da177e4 1514 }
a5516438 1515 while (count < persistent_huge_pages(h)) {
6ae11b27 1516 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1517 break;
1518 }
1519out:
a5516438 1520 ret = persistent_huge_pages(h);
1da177e4 1521 spin_unlock(&hugetlb_lock);
7893d1d5 1522 return ret;
1da177e4
LT
1523}
1524
a3437870
NA
1525#define HSTATE_ATTR_RO(_name) \
1526 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1527
1528#define HSTATE_ATTR(_name) \
1529 static struct kobj_attribute _name##_attr = \
1530 __ATTR(_name, 0644, _name##_show, _name##_store)
1531
1532static struct kobject *hugepages_kobj;
1533static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1534
9a305230
LS
1535static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1536
1537static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1538{
1539 int i;
9a305230 1540
a3437870 1541 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1542 if (hstate_kobjs[i] == kobj) {
1543 if (nidp)
1544 *nidp = NUMA_NO_NODE;
a3437870 1545 return &hstates[i];
9a305230
LS
1546 }
1547
1548 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1549}
1550
06808b08 1551static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1552 struct kobj_attribute *attr, char *buf)
1553{
9a305230
LS
1554 struct hstate *h;
1555 unsigned long nr_huge_pages;
1556 int nid;
1557
1558 h = kobj_to_hstate(kobj, &nid);
1559 if (nid == NUMA_NO_NODE)
1560 nr_huge_pages = h->nr_huge_pages;
1561 else
1562 nr_huge_pages = h->nr_huge_pages_node[nid];
1563
1564 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1565}
adbe8726 1566
06808b08
LS
1567static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1568 struct kobject *kobj, struct kobj_attribute *attr,
1569 const char *buf, size_t len)
a3437870
NA
1570{
1571 int err;
9a305230 1572 int nid;
06808b08 1573 unsigned long count;
9a305230 1574 struct hstate *h;
bad44b5b 1575 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1576
3dbb95f7 1577 err = kstrtoul(buf, 10, &count);
73ae31e5 1578 if (err)
adbe8726 1579 goto out;
a3437870 1580
9a305230 1581 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1582 if (h->order >= MAX_ORDER) {
1583 err = -EINVAL;
1584 goto out;
1585 }
1586
9a305230
LS
1587 if (nid == NUMA_NO_NODE) {
1588 /*
1589 * global hstate attribute
1590 */
1591 if (!(obey_mempolicy &&
1592 init_nodemask_of_mempolicy(nodes_allowed))) {
1593 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1594 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1595 }
1596 } else if (nodes_allowed) {
1597 /*
1598 * per node hstate attribute: adjust count to global,
1599 * but restrict alloc/free to the specified node.
1600 */
1601 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1602 init_nodemask_of_node(nodes_allowed, nid);
1603 } else
8cebfcd0 1604 nodes_allowed = &node_states[N_MEMORY];
9a305230 1605
06808b08 1606 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1607
8cebfcd0 1608 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1609 NODEMASK_FREE(nodes_allowed);
1610
1611 return len;
adbe8726
EM
1612out:
1613 NODEMASK_FREE(nodes_allowed);
1614 return err;
06808b08
LS
1615}
1616
1617static ssize_t nr_hugepages_show(struct kobject *kobj,
1618 struct kobj_attribute *attr, char *buf)
1619{
1620 return nr_hugepages_show_common(kobj, attr, buf);
1621}
1622
1623static ssize_t nr_hugepages_store(struct kobject *kobj,
1624 struct kobj_attribute *attr, const char *buf, size_t len)
1625{
1626 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1627}
1628HSTATE_ATTR(nr_hugepages);
1629
06808b08
LS
1630#ifdef CONFIG_NUMA
1631
1632/*
1633 * hstate attribute for optionally mempolicy-based constraint on persistent
1634 * huge page alloc/free.
1635 */
1636static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1637 struct kobj_attribute *attr, char *buf)
1638{
1639 return nr_hugepages_show_common(kobj, attr, buf);
1640}
1641
1642static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1643 struct kobj_attribute *attr, const char *buf, size_t len)
1644{
1645 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1646}
1647HSTATE_ATTR(nr_hugepages_mempolicy);
1648#endif
1649
1650
a3437870
NA
1651static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1652 struct kobj_attribute *attr, char *buf)
1653{
9a305230 1654 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1655 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1656}
adbe8726 1657
a3437870
NA
1658static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1659 struct kobj_attribute *attr, const char *buf, size_t count)
1660{
1661 int err;
1662 unsigned long input;
9a305230 1663 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1664
adbe8726
EM
1665 if (h->order >= MAX_ORDER)
1666 return -EINVAL;
1667
3dbb95f7 1668 err = kstrtoul(buf, 10, &input);
a3437870 1669 if (err)
73ae31e5 1670 return err;
a3437870
NA
1671
1672 spin_lock(&hugetlb_lock);
1673 h->nr_overcommit_huge_pages = input;
1674 spin_unlock(&hugetlb_lock);
1675
1676 return count;
1677}
1678HSTATE_ATTR(nr_overcommit_hugepages);
1679
1680static ssize_t free_hugepages_show(struct kobject *kobj,
1681 struct kobj_attribute *attr, char *buf)
1682{
9a305230
LS
1683 struct hstate *h;
1684 unsigned long free_huge_pages;
1685 int nid;
1686
1687 h = kobj_to_hstate(kobj, &nid);
1688 if (nid == NUMA_NO_NODE)
1689 free_huge_pages = h->free_huge_pages;
1690 else
1691 free_huge_pages = h->free_huge_pages_node[nid];
1692
1693 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1694}
1695HSTATE_ATTR_RO(free_hugepages);
1696
1697static ssize_t resv_hugepages_show(struct kobject *kobj,
1698 struct kobj_attribute *attr, char *buf)
1699{
9a305230 1700 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1701 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1702}
1703HSTATE_ATTR_RO(resv_hugepages);
1704
1705static ssize_t surplus_hugepages_show(struct kobject *kobj,
1706 struct kobj_attribute *attr, char *buf)
1707{
9a305230
LS
1708 struct hstate *h;
1709 unsigned long surplus_huge_pages;
1710 int nid;
1711
1712 h = kobj_to_hstate(kobj, &nid);
1713 if (nid == NUMA_NO_NODE)
1714 surplus_huge_pages = h->surplus_huge_pages;
1715 else
1716 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1717
1718 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1719}
1720HSTATE_ATTR_RO(surplus_hugepages);
1721
1722static struct attribute *hstate_attrs[] = {
1723 &nr_hugepages_attr.attr,
1724 &nr_overcommit_hugepages_attr.attr,
1725 &free_hugepages_attr.attr,
1726 &resv_hugepages_attr.attr,
1727 &surplus_hugepages_attr.attr,
06808b08
LS
1728#ifdef CONFIG_NUMA
1729 &nr_hugepages_mempolicy_attr.attr,
1730#endif
a3437870
NA
1731 NULL,
1732};
1733
1734static struct attribute_group hstate_attr_group = {
1735 .attrs = hstate_attrs,
1736};
1737
094e9539
JM
1738static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1739 struct kobject **hstate_kobjs,
1740 struct attribute_group *hstate_attr_group)
a3437870
NA
1741{
1742 int retval;
972dc4de 1743 int hi = hstate_index(h);
a3437870 1744
9a305230
LS
1745 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1746 if (!hstate_kobjs[hi])
a3437870
NA
1747 return -ENOMEM;
1748
9a305230 1749 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1750 if (retval)
9a305230 1751 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1752
1753 return retval;
1754}
1755
1756static void __init hugetlb_sysfs_init(void)
1757{
1758 struct hstate *h;
1759 int err;
1760
1761 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1762 if (!hugepages_kobj)
1763 return;
1764
1765 for_each_hstate(h) {
9a305230
LS
1766 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1767 hstate_kobjs, &hstate_attr_group);
a3437870 1768 if (err)
ffb22af5 1769 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1770 }
1771}
1772
9a305230
LS
1773#ifdef CONFIG_NUMA
1774
1775/*
1776 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1777 * with node devices in node_devices[] using a parallel array. The array
1778 * index of a node device or _hstate == node id.
1779 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1780 * the base kernel, on the hugetlb module.
1781 */
1782struct node_hstate {
1783 struct kobject *hugepages_kobj;
1784 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1785};
1786struct node_hstate node_hstates[MAX_NUMNODES];
1787
1788/*
10fbcf4c 1789 * A subset of global hstate attributes for node devices
9a305230
LS
1790 */
1791static struct attribute *per_node_hstate_attrs[] = {
1792 &nr_hugepages_attr.attr,
1793 &free_hugepages_attr.attr,
1794 &surplus_hugepages_attr.attr,
1795 NULL,
1796};
1797
1798static struct attribute_group per_node_hstate_attr_group = {
1799 .attrs = per_node_hstate_attrs,
1800};
1801
1802/*
10fbcf4c 1803 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1804 * Returns node id via non-NULL nidp.
1805 */
1806static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1807{
1808 int nid;
1809
1810 for (nid = 0; nid < nr_node_ids; nid++) {
1811 struct node_hstate *nhs = &node_hstates[nid];
1812 int i;
1813 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1814 if (nhs->hstate_kobjs[i] == kobj) {
1815 if (nidp)
1816 *nidp = nid;
1817 return &hstates[i];
1818 }
1819 }
1820
1821 BUG();
1822 return NULL;
1823}
1824
1825/*
10fbcf4c 1826 * Unregister hstate attributes from a single node device.
9a305230
LS
1827 * No-op if no hstate attributes attached.
1828 */
3cd8b44f 1829static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1830{
1831 struct hstate *h;
10fbcf4c 1832 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1833
1834 if (!nhs->hugepages_kobj)
9b5e5d0f 1835 return; /* no hstate attributes */
9a305230 1836
972dc4de
AK
1837 for_each_hstate(h) {
1838 int idx = hstate_index(h);
1839 if (nhs->hstate_kobjs[idx]) {
1840 kobject_put(nhs->hstate_kobjs[idx]);
1841 nhs->hstate_kobjs[idx] = NULL;
9a305230 1842 }
972dc4de 1843 }
9a305230
LS
1844
1845 kobject_put(nhs->hugepages_kobj);
1846 nhs->hugepages_kobj = NULL;
1847}
1848
1849/*
10fbcf4c 1850 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1851 * that have them.
1852 */
1853static void hugetlb_unregister_all_nodes(void)
1854{
1855 int nid;
1856
1857 /*
10fbcf4c 1858 * disable node device registrations.
9a305230
LS
1859 */
1860 register_hugetlbfs_with_node(NULL, NULL);
1861
1862 /*
1863 * remove hstate attributes from any nodes that have them.
1864 */
1865 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1866 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1867}
1868
1869/*
10fbcf4c 1870 * Register hstate attributes for a single node device.
9a305230
LS
1871 * No-op if attributes already registered.
1872 */
3cd8b44f 1873static void hugetlb_register_node(struct node *node)
9a305230
LS
1874{
1875 struct hstate *h;
10fbcf4c 1876 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1877 int err;
1878
1879 if (nhs->hugepages_kobj)
1880 return; /* already allocated */
1881
1882 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1883 &node->dev.kobj);
9a305230
LS
1884 if (!nhs->hugepages_kobj)
1885 return;
1886
1887 for_each_hstate(h) {
1888 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1889 nhs->hstate_kobjs,
1890 &per_node_hstate_attr_group);
1891 if (err) {
ffb22af5
AM
1892 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1893 h->name, node->dev.id);
9a305230
LS
1894 hugetlb_unregister_node(node);
1895 break;
1896 }
1897 }
1898}
1899
1900/*
9b5e5d0f 1901 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1902 * devices of nodes that have memory. All on-line nodes should have
1903 * registered their associated device by this time.
9a305230
LS
1904 */
1905static void hugetlb_register_all_nodes(void)
1906{
1907 int nid;
1908
8cebfcd0 1909 for_each_node_state(nid, N_MEMORY) {
8732794b 1910 struct node *node = node_devices[nid];
10fbcf4c 1911 if (node->dev.id == nid)
9a305230
LS
1912 hugetlb_register_node(node);
1913 }
1914
1915 /*
10fbcf4c 1916 * Let the node device driver know we're here so it can
9a305230
LS
1917 * [un]register hstate attributes on node hotplug.
1918 */
1919 register_hugetlbfs_with_node(hugetlb_register_node,
1920 hugetlb_unregister_node);
1921}
1922#else /* !CONFIG_NUMA */
1923
1924static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1925{
1926 BUG();
1927 if (nidp)
1928 *nidp = -1;
1929 return NULL;
1930}
1931
1932static void hugetlb_unregister_all_nodes(void) { }
1933
1934static void hugetlb_register_all_nodes(void) { }
1935
1936#endif
1937
a3437870
NA
1938static void __exit hugetlb_exit(void)
1939{
1940 struct hstate *h;
1941
9a305230
LS
1942 hugetlb_unregister_all_nodes();
1943
a3437870 1944 for_each_hstate(h) {
972dc4de 1945 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1946 }
1947
1948 kobject_put(hugepages_kobj);
1949}
1950module_exit(hugetlb_exit);
1951
1952static int __init hugetlb_init(void)
1953{
0ef89d25
BH
1954 /* Some platform decide whether they support huge pages at boot
1955 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1956 * there is no such support
1957 */
1958 if (HPAGE_SHIFT == 0)
1959 return 0;
a3437870 1960
e11bfbfc
NP
1961 if (!size_to_hstate(default_hstate_size)) {
1962 default_hstate_size = HPAGE_SIZE;
1963 if (!size_to_hstate(default_hstate_size))
1964 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1965 }
972dc4de 1966 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1967 if (default_hstate_max_huge_pages)
1968 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1969
1970 hugetlb_init_hstates();
aa888a74 1971 gather_bootmem_prealloc();
a3437870
NA
1972 report_hugepages();
1973
1974 hugetlb_sysfs_init();
9a305230 1975 hugetlb_register_all_nodes();
7179e7bf 1976 hugetlb_cgroup_file_init();
9a305230 1977
a3437870
NA
1978 return 0;
1979}
1980module_init(hugetlb_init);
1981
1982/* Should be called on processing a hugepagesz=... option */
1983void __init hugetlb_add_hstate(unsigned order)
1984{
1985 struct hstate *h;
8faa8b07
AK
1986 unsigned long i;
1987
a3437870 1988 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 1989 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
1990 return;
1991 }
47d38344 1992 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1993 BUG_ON(order == 0);
47d38344 1994 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1995 h->order = order;
1996 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1997 h->nr_huge_pages = 0;
1998 h->free_huge_pages = 0;
1999 for (i = 0; i < MAX_NUMNODES; ++i)
2000 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2001 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2002 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2003 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2004 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2005 huge_page_size(h)/1024);
8faa8b07 2006
a3437870
NA
2007 parsed_hstate = h;
2008}
2009
e11bfbfc 2010static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2011{
2012 unsigned long *mhp;
8faa8b07 2013 static unsigned long *last_mhp;
a3437870
NA
2014
2015 /*
47d38344 2016 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2017 * so this hugepages= parameter goes to the "default hstate".
2018 */
47d38344 2019 if (!hugetlb_max_hstate)
a3437870
NA
2020 mhp = &default_hstate_max_huge_pages;
2021 else
2022 mhp = &parsed_hstate->max_huge_pages;
2023
8faa8b07 2024 if (mhp == last_mhp) {
ffb22af5
AM
2025 pr_warning("hugepages= specified twice without "
2026 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2027 return 1;
2028 }
2029
a3437870
NA
2030 if (sscanf(s, "%lu", mhp) <= 0)
2031 *mhp = 0;
2032
8faa8b07
AK
2033 /*
2034 * Global state is always initialized later in hugetlb_init.
2035 * But we need to allocate >= MAX_ORDER hstates here early to still
2036 * use the bootmem allocator.
2037 */
47d38344 2038 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2039 hugetlb_hstate_alloc_pages(parsed_hstate);
2040
2041 last_mhp = mhp;
2042
a3437870
NA
2043 return 1;
2044}
e11bfbfc
NP
2045__setup("hugepages=", hugetlb_nrpages_setup);
2046
2047static int __init hugetlb_default_setup(char *s)
2048{
2049 default_hstate_size = memparse(s, &s);
2050 return 1;
2051}
2052__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2053
8a213460
NA
2054static unsigned int cpuset_mems_nr(unsigned int *array)
2055{
2056 int node;
2057 unsigned int nr = 0;
2058
2059 for_each_node_mask(node, cpuset_current_mems_allowed)
2060 nr += array[node];
2061
2062 return nr;
2063}
2064
2065#ifdef CONFIG_SYSCTL
06808b08
LS
2066static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2067 struct ctl_table *table, int write,
2068 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2069{
e5ff2159
AK
2070 struct hstate *h = &default_hstate;
2071 unsigned long tmp;
08d4a246 2072 int ret;
e5ff2159 2073
de1fc405
NA
2074 if (!hugepages_supported())
2075 return -ENOTSUPP;
2076
c033a93c 2077 tmp = h->max_huge_pages;
e5ff2159 2078
adbe8726
EM
2079 if (write && h->order >= MAX_ORDER)
2080 return -EINVAL;
2081
e5ff2159
AK
2082 table->data = &tmp;
2083 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2084 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2085 if (ret)
2086 goto out;
e5ff2159 2087
06808b08 2088 if (write) {
bad44b5b
DR
2089 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2090 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2091 if (!(obey_mempolicy &&
2092 init_nodemask_of_mempolicy(nodes_allowed))) {
2093 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2094 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2095 }
2096 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2097
8cebfcd0 2098 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2099 NODEMASK_FREE(nodes_allowed);
2100 }
08d4a246
MH
2101out:
2102 return ret;
1da177e4 2103}
396faf03 2104
06808b08
LS
2105int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2106 void __user *buffer, size_t *length, loff_t *ppos)
2107{
2108
2109 return hugetlb_sysctl_handler_common(false, table, write,
2110 buffer, length, ppos);
2111}
2112
2113#ifdef CONFIG_NUMA
2114int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2115 void __user *buffer, size_t *length, loff_t *ppos)
2116{
2117 return hugetlb_sysctl_handler_common(true, table, write,
2118 buffer, length, ppos);
2119}
2120#endif /* CONFIG_NUMA */
2121
a3d0c6aa 2122int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2123 void __user *buffer,
a3d0c6aa
NA
2124 size_t *length, loff_t *ppos)
2125{
a5516438 2126 struct hstate *h = &default_hstate;
e5ff2159 2127 unsigned long tmp;
08d4a246 2128 int ret;
e5ff2159 2129
de1fc405
NA
2130 if (!hugepages_supported())
2131 return -ENOTSUPP;
2132
c033a93c 2133 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2134
adbe8726
EM
2135 if (write && h->order >= MAX_ORDER)
2136 return -EINVAL;
2137
e5ff2159
AK
2138 table->data = &tmp;
2139 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2140 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2141 if (ret)
2142 goto out;
e5ff2159
AK
2143
2144 if (write) {
2145 spin_lock(&hugetlb_lock);
2146 h->nr_overcommit_huge_pages = tmp;
2147 spin_unlock(&hugetlb_lock);
2148 }
08d4a246
MH
2149out:
2150 return ret;
a3d0c6aa
NA
2151}
2152
1da177e4
LT
2153#endif /* CONFIG_SYSCTL */
2154
e1759c21 2155void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2156{
a5516438 2157 struct hstate *h = &default_hstate;
de1fc405
NA
2158 if (!hugepages_supported())
2159 return;
e1759c21 2160 seq_printf(m,
4f98a2fe
RR
2161 "HugePages_Total: %5lu\n"
2162 "HugePages_Free: %5lu\n"
2163 "HugePages_Rsvd: %5lu\n"
2164 "HugePages_Surp: %5lu\n"
2165 "Hugepagesize: %8lu kB\n",
a5516438
AK
2166 h->nr_huge_pages,
2167 h->free_huge_pages,
2168 h->resv_huge_pages,
2169 h->surplus_huge_pages,
2170 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2171}
2172
2173int hugetlb_report_node_meminfo(int nid, char *buf)
2174{
a5516438 2175 struct hstate *h = &default_hstate;
de1fc405
NA
2176 if (!hugepages_supported())
2177 return 0;
1da177e4
LT
2178 return sprintf(buf,
2179 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2180 "Node %d HugePages_Free: %5u\n"
2181 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2182 nid, h->nr_huge_pages_node[nid],
2183 nid, h->free_huge_pages_node[nid],
2184 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2185}
2186
949f7ec5
DR
2187void hugetlb_show_meminfo(void)
2188{
2189 struct hstate *h;
2190 int nid;
2191
de1fc405
NA
2192 if (!hugepages_supported())
2193 return;
2194
949f7ec5
DR
2195 for_each_node_state(nid, N_MEMORY)
2196 for_each_hstate(h)
2197 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2198 nid,
2199 h->nr_huge_pages_node[nid],
2200 h->free_huge_pages_node[nid],
2201 h->surplus_huge_pages_node[nid],
2202 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2203}
2204
1da177e4
LT
2205/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2206unsigned long hugetlb_total_pages(void)
2207{
d0028588
WL
2208 struct hstate *h;
2209 unsigned long nr_total_pages = 0;
2210
2211 for_each_hstate(h)
2212 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2213 return nr_total_pages;
1da177e4 2214}
1da177e4 2215
a5516438 2216static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2217{
2218 int ret = -ENOMEM;
2219
2220 spin_lock(&hugetlb_lock);
2221 /*
2222 * When cpuset is configured, it breaks the strict hugetlb page
2223 * reservation as the accounting is done on a global variable. Such
2224 * reservation is completely rubbish in the presence of cpuset because
2225 * the reservation is not checked against page availability for the
2226 * current cpuset. Application can still potentially OOM'ed by kernel
2227 * with lack of free htlb page in cpuset that the task is in.
2228 * Attempt to enforce strict accounting with cpuset is almost
2229 * impossible (or too ugly) because cpuset is too fluid that
2230 * task or memory node can be dynamically moved between cpusets.
2231 *
2232 * The change of semantics for shared hugetlb mapping with cpuset is
2233 * undesirable. However, in order to preserve some of the semantics,
2234 * we fall back to check against current free page availability as
2235 * a best attempt and hopefully to minimize the impact of changing
2236 * semantics that cpuset has.
2237 */
2238 if (delta > 0) {
a5516438 2239 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2240 goto out;
2241
a5516438
AK
2242 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2243 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2244 goto out;
2245 }
2246 }
2247
2248 ret = 0;
2249 if (delta < 0)
a5516438 2250 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2251
2252out:
2253 spin_unlock(&hugetlb_lock);
2254 return ret;
2255}
2256
84afd99b
AW
2257static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2258{
f522c3ac 2259 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2260
2261 /*
2262 * This new VMA should share its siblings reservation map if present.
2263 * The VMA will only ever have a valid reservation map pointer where
2264 * it is being copied for another still existing VMA. As that VMA
25985edc 2265 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2266 * after this open call completes. It is therefore safe to take a
2267 * new reference here without additional locking.
2268 */
f522c3ac
JK
2269 if (resv)
2270 kref_get(&resv->refs);
84afd99b
AW
2271}
2272
c50ac050
DH
2273static void resv_map_put(struct vm_area_struct *vma)
2274{
f522c3ac 2275 struct resv_map *resv = vma_resv_map(vma);
c50ac050 2276
f522c3ac 2277 if (!resv)
c50ac050 2278 return;
f522c3ac 2279 kref_put(&resv->refs, resv_map_release);
c50ac050
DH
2280}
2281
a1e78772
MG
2282static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2283{
a5516438 2284 struct hstate *h = hstate_vma(vma);
f522c3ac 2285 struct resv_map *resv = vma_resv_map(vma);
90481622 2286 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2287 unsigned long reserve;
2288 unsigned long start;
2289 unsigned long end;
2290
f522c3ac 2291 if (resv) {
a5516438
AK
2292 start = vma_hugecache_offset(h, vma, vma->vm_start);
2293 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2294
2295 reserve = (end - start) -
f522c3ac 2296 region_count(&resv->regions, start, end);
84afd99b 2297
c50ac050 2298 resv_map_put(vma);
84afd99b 2299
7251ff78 2300 if (reserve) {
a5516438 2301 hugetlb_acct_memory(h, -reserve);
90481622 2302 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2303 }
84afd99b 2304 }
a1e78772
MG
2305}
2306
1da177e4
LT
2307/*
2308 * We cannot handle pagefaults against hugetlb pages at all. They cause
2309 * handle_mm_fault() to try to instantiate regular-sized pages in the
2310 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2311 * this far.
2312 */
d0217ac0 2313static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2314{
2315 BUG();
d0217ac0 2316 return 0;
1da177e4
LT
2317}
2318
f0f37e2f 2319const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2320 .fault = hugetlb_vm_op_fault,
84afd99b 2321 .open = hugetlb_vm_op_open,
a1e78772 2322 .close = hugetlb_vm_op_close,
1da177e4
LT
2323};
2324
1e8f889b
DG
2325static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2326 int writable)
63551ae0
DG
2327{
2328 pte_t entry;
2329
1e8f889b 2330 if (writable) {
106c992a
GS
2331 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2332 vma->vm_page_prot)));
63551ae0 2333 } else {
106c992a
GS
2334 entry = huge_pte_wrprotect(mk_huge_pte(page,
2335 vma->vm_page_prot));
63551ae0
DG
2336 }
2337 entry = pte_mkyoung(entry);
2338 entry = pte_mkhuge(entry);
d9ed9faa 2339 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2340
2341 return entry;
2342}
2343
1e8f889b
DG
2344static void set_huge_ptep_writable(struct vm_area_struct *vma,
2345 unsigned long address, pte_t *ptep)
2346{
2347 pte_t entry;
2348
106c992a 2349 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2350 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2351 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2352}
2353
1725aa78
NH
2354static int is_hugetlb_entry_migration(pte_t pte)
2355{
2356 swp_entry_t swp;
2357
2358 if (huge_pte_none(pte) || pte_present(pte))
2359 return 0;
2360 swp = pte_to_swp_entry(pte);
2361 if (non_swap_entry(swp) && is_migration_entry(swp))
2362 return 1;
2363 else
2364 return 0;
2365}
2366
2367static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2368{
2369 swp_entry_t swp;
2370
2371 if (huge_pte_none(pte) || pte_present(pte))
2372 return 0;
2373 swp = pte_to_swp_entry(pte);
2374 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2375 return 1;
2376 else
2377 return 0;
2378}
1e8f889b 2379
63551ae0
DG
2380int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2381 struct vm_area_struct *vma)
2382{
2383 pte_t *src_pte, *dst_pte, entry;
2384 struct page *ptepage;
1c59827d 2385 unsigned long addr;
1e8f889b 2386 int cow;
a5516438
AK
2387 struct hstate *h = hstate_vma(vma);
2388 unsigned long sz = huge_page_size(h);
e8569dd2
AS
2389 unsigned long mmun_start; /* For mmu_notifiers */
2390 unsigned long mmun_end; /* For mmu_notifiers */
2391 int ret = 0;
1e8f889b
DG
2392
2393 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2394
e8569dd2
AS
2395 mmun_start = vma->vm_start;
2396 mmun_end = vma->vm_end;
2397 if (cow)
2398 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2399
a5516438 2400 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2401 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2402 src_pte = huge_pte_offset(src, addr);
2403 if (!src_pte)
2404 continue;
a5516438 2405 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
2406 if (!dst_pte) {
2407 ret = -ENOMEM;
2408 break;
2409 }
c5c99429
LW
2410
2411 /* If the pagetables are shared don't copy or take references */
2412 if (dst_pte == src_pte)
2413 continue;
2414
cb900f41
KS
2415 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2416 src_ptl = huge_pte_lockptr(h, src, src_pte);
2417 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1725aa78
NH
2418 entry = huge_ptep_get(src_pte);
2419 if (huge_pte_none(entry)) { /* skip none entry */
2420 ;
2421 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2422 is_hugetlb_entry_hwpoisoned(entry))) {
2423 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2424
2425 if (is_write_migration_entry(swp_entry) && cow) {
2426 /*
2427 * COW mappings require pages in both
2428 * parent and child to be set to read.
2429 */
2430 make_migration_entry_read(&swp_entry);
2431 entry = swp_entry_to_pte(swp_entry);
2432 set_huge_pte_at(src, addr, src_pte, entry);
2433 }
2434 set_huge_pte_at(dst, addr, dst_pte, entry);
2435 } else {
1e8f889b 2436 if (cow)
7f2e9525 2437 huge_ptep_set_wrprotect(src, addr, src_pte);
6d623a69 2438 entry = huge_ptep_get(src_pte);
1c59827d
HD
2439 ptepage = pte_page(entry);
2440 get_page(ptepage);
0fe6e20b 2441 page_dup_rmap(ptepage);
1c59827d
HD
2442 set_huge_pte_at(dst, addr, dst_pte, entry);
2443 }
cb900f41
KS
2444 spin_unlock(src_ptl);
2445 spin_unlock(dst_ptl);
63551ae0 2446 }
63551ae0 2447
e8569dd2
AS
2448 if (cow)
2449 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2450
2451 return ret;
63551ae0
DG
2452}
2453
24669e58
AK
2454void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2455 unsigned long start, unsigned long end,
2456 struct page *ref_page)
63551ae0 2457{
24669e58 2458 int force_flush = 0;
63551ae0
DG
2459 struct mm_struct *mm = vma->vm_mm;
2460 unsigned long address;
c7546f8f 2461 pte_t *ptep;
63551ae0 2462 pte_t pte;
cb900f41 2463 spinlock_t *ptl;
63551ae0 2464 struct page *page;
a5516438
AK
2465 struct hstate *h = hstate_vma(vma);
2466 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2467 const unsigned long mmun_start = start; /* For mmu_notifiers */
2468 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2469
63551ae0 2470 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2471 BUG_ON(start & ~huge_page_mask(h));
2472 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2473
24669e58 2474 tlb_start_vma(tlb, vma);
2ec74c3e 2475 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2476again:
a5516438 2477 for (address = start; address < end; address += sz) {
c7546f8f 2478 ptep = huge_pte_offset(mm, address);
4c887265 2479 if (!ptep)
c7546f8f
DG
2480 continue;
2481
cb900f41 2482 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 2483 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 2484 goto unlock;
39dde65c 2485
6629326b
HD
2486 pte = huge_ptep_get(ptep);
2487 if (huge_pte_none(pte))
cb900f41 2488 goto unlock;
6629326b
HD
2489
2490 /*
99537c23
NH
2491 * Migrating hugepage or HWPoisoned hugepage is already
2492 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 2493 */
99537c23 2494 if (unlikely(!pte_present(pte))) {
106c992a 2495 huge_pte_clear(mm, address, ptep);
cb900f41 2496 goto unlock;
8c4894c6 2497 }
6629326b
HD
2498
2499 page = pte_page(pte);
04f2cbe3
MG
2500 /*
2501 * If a reference page is supplied, it is because a specific
2502 * page is being unmapped, not a range. Ensure the page we
2503 * are about to unmap is the actual page of interest.
2504 */
2505 if (ref_page) {
04f2cbe3 2506 if (page != ref_page)
cb900f41 2507 goto unlock;
04f2cbe3
MG
2508
2509 /*
2510 * Mark the VMA as having unmapped its page so that
2511 * future faults in this VMA will fail rather than
2512 * looking like data was lost
2513 */
2514 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2515 }
2516
c7546f8f 2517 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2518 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2519 if (huge_pte_dirty(pte))
6649a386 2520 set_page_dirty(page);
9e81130b 2521
24669e58
AK
2522 page_remove_rmap(page);
2523 force_flush = !__tlb_remove_page(tlb, page);
cb900f41
KS
2524 if (force_flush) {
2525 spin_unlock(ptl);
24669e58 2526 break;
cb900f41 2527 }
9e81130b 2528 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
2529 if (ref_page) {
2530 spin_unlock(ptl);
9e81130b 2531 break;
cb900f41
KS
2532 }
2533unlock:
2534 spin_unlock(ptl);
63551ae0 2535 }
24669e58
AK
2536 /*
2537 * mmu_gather ran out of room to batch pages, we break out of
2538 * the PTE lock to avoid doing the potential expensive TLB invalidate
2539 * and page-free while holding it.
2540 */
2541 if (force_flush) {
2542 force_flush = 0;
2543 tlb_flush_mmu(tlb);
2544 if (address < end && !ref_page)
2545 goto again;
fe1668ae 2546 }
2ec74c3e 2547 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2548 tlb_end_vma(tlb, vma);
1da177e4 2549}
63551ae0 2550
d833352a
MG
2551void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2552 struct vm_area_struct *vma, unsigned long start,
2553 unsigned long end, struct page *ref_page)
2554{
2555 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2556
2557 /*
2558 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2559 * test will fail on a vma being torn down, and not grab a page table
2560 * on its way out. We're lucky that the flag has such an appropriate
2561 * name, and can in fact be safely cleared here. We could clear it
2562 * before the __unmap_hugepage_range above, but all that's necessary
2563 * is to clear it before releasing the i_mmap_mutex. This works
2564 * because in the context this is called, the VMA is about to be
2565 * destroyed and the i_mmap_mutex is held.
2566 */
2567 vma->vm_flags &= ~VM_MAYSHARE;
2568}
2569
502717f4 2570void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2571 unsigned long end, struct page *ref_page)
502717f4 2572{
24669e58
AK
2573 struct mm_struct *mm;
2574 struct mmu_gather tlb;
2575
2576 mm = vma->vm_mm;
2577
2b047252 2578 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2579 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2580 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2581}
2582
04f2cbe3
MG
2583/*
2584 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2585 * mappping it owns the reserve page for. The intention is to unmap the page
2586 * from other VMAs and let the children be SIGKILLed if they are faulting the
2587 * same region.
2588 */
2a4b3ded
HH
2589static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2590 struct page *page, unsigned long address)
04f2cbe3 2591{
7526674d 2592 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2593 struct vm_area_struct *iter_vma;
2594 struct address_space *mapping;
04f2cbe3
MG
2595 pgoff_t pgoff;
2596
2597 /*
2598 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2599 * from page cache lookup which is in HPAGE_SIZE units.
2600 */
7526674d 2601 address = address & huge_page_mask(h);
36e4f20a
MH
2602 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2603 vma->vm_pgoff;
496ad9aa 2604 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2605
4eb2b1dc
MG
2606 /*
2607 * Take the mapping lock for the duration of the table walk. As
2608 * this mapping should be shared between all the VMAs,
2609 * __unmap_hugepage_range() is called as the lock is already held
2610 */
3d48ae45 2611 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2612 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2613 /* Do not unmap the current VMA */
2614 if (iter_vma == vma)
2615 continue;
2616
8bee9e81
MG
2617 /*
2618 * Shared VMAs have their own reserves and do not affect
2619 * MAP_PRIVATE accounting but it is possible that a shared
2620 * VMA is using the same page so check and skip such VMAs.
2621 */
2622 if (iter_vma->vm_flags & VM_MAYSHARE)
2623 continue;
2624
04f2cbe3
MG
2625 /*
2626 * Unmap the page from other VMAs without their own reserves.
2627 * They get marked to be SIGKILLed if they fault in these
2628 * areas. This is because a future no-page fault on this VMA
2629 * could insert a zeroed page instead of the data existing
2630 * from the time of fork. This would look like data corruption
2631 */
2632 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2633 unmap_hugepage_range(iter_vma, address,
2634 address + huge_page_size(h), page);
04f2cbe3 2635 }
3d48ae45 2636 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2637
2638 return 1;
2639}
2640
0fe6e20b
NH
2641/*
2642 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2643 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2644 * cannot race with other handlers or page migration.
2645 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2646 */
1e8f889b 2647static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 2648 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 2649 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 2650{
a5516438 2651 struct hstate *h = hstate_vma(vma);
1e8f889b 2652 struct page *old_page, *new_page;
04f2cbe3 2653 int outside_reserve = 0;
2ec74c3e
SG
2654 unsigned long mmun_start; /* For mmu_notifiers */
2655 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2656
2657 old_page = pte_page(pte);
2658
04f2cbe3 2659retry_avoidcopy:
1e8f889b
DG
2660 /* If no-one else is actually using this page, avoid the copy
2661 * and just make the page writable */
37a2140d
JK
2662 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2663 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2664 set_huge_ptep_writable(vma, address, ptep);
83c54070 2665 return 0;
1e8f889b
DG
2666 }
2667
04f2cbe3
MG
2668 /*
2669 * If the process that created a MAP_PRIVATE mapping is about to
2670 * perform a COW due to a shared page count, attempt to satisfy
2671 * the allocation without using the existing reserves. The pagecache
2672 * page is used to determine if the reserve at this address was
2673 * consumed or not. If reserves were used, a partial faulted mapping
2674 * at the time of fork() could consume its reserves on COW instead
2675 * of the full address range.
2676 */
5944d011 2677 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2678 old_page != pagecache_page)
2679 outside_reserve = 1;
2680
1e8f889b 2681 page_cache_get(old_page);
b76c8cfb 2682
cb900f41
KS
2683 /* Drop page table lock as buddy allocator may be called */
2684 spin_unlock(ptl);
04f2cbe3 2685 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2686
2fc39cec 2687 if (IS_ERR(new_page)) {
76dcee75 2688 long err = PTR_ERR(new_page);
1e8f889b 2689 page_cache_release(old_page);
04f2cbe3
MG
2690
2691 /*
2692 * If a process owning a MAP_PRIVATE mapping fails to COW,
2693 * it is due to references held by a child and an insufficient
2694 * huge page pool. To guarantee the original mappers
2695 * reliability, unmap the page from child processes. The child
2696 * may get SIGKILLed if it later faults.
2697 */
2698 if (outside_reserve) {
2699 BUG_ON(huge_pte_none(pte));
2700 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2701 BUG_ON(huge_pte_none(pte));
cb900f41 2702 spin_lock(ptl);
a734bcc8
HD
2703 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2704 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2705 goto retry_avoidcopy;
2706 /*
cb900f41
KS
2707 * race occurs while re-acquiring page table
2708 * lock, and our job is done.
a734bcc8
HD
2709 */
2710 return 0;
04f2cbe3
MG
2711 }
2712 WARN_ON_ONCE(1);
2713 }
2714
b76c8cfb 2715 /* Caller expects lock to be held */
cb900f41 2716 spin_lock(ptl);
76dcee75
AK
2717 if (err == -ENOMEM)
2718 return VM_FAULT_OOM;
2719 else
2720 return VM_FAULT_SIGBUS;
1e8f889b
DG
2721 }
2722
0fe6e20b
NH
2723 /*
2724 * When the original hugepage is shared one, it does not have
2725 * anon_vma prepared.
2726 */
44e2aa93 2727 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2728 page_cache_release(new_page);
2729 page_cache_release(old_page);
44e2aa93 2730 /* Caller expects lock to be held */
cb900f41 2731 spin_lock(ptl);
0fe6e20b 2732 return VM_FAULT_OOM;
44e2aa93 2733 }
0fe6e20b 2734
47ad8475
AA
2735 copy_user_huge_page(new_page, old_page, address, vma,
2736 pages_per_huge_page(h));
0ed361de 2737 __SetPageUptodate(new_page);
1e8f889b 2738
2ec74c3e
SG
2739 mmun_start = address & huge_page_mask(h);
2740 mmun_end = mmun_start + huge_page_size(h);
2741 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb 2742 /*
cb900f41 2743 * Retake the page table lock to check for racing updates
b76c8cfb
LW
2744 * before the page tables are altered
2745 */
cb900f41 2746 spin_lock(ptl);
a5516438 2747 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2748 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
2749 ClearPagePrivate(new_page);
2750
1e8f889b 2751 /* Break COW */
8fe627ec 2752 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2753 set_huge_pte_at(mm, address, ptep,
2754 make_huge_pte(vma, new_page, 1));
0fe6e20b 2755 page_remove_rmap(old_page);
cd67f0d2 2756 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2757 /* Make the old page be freed below */
2758 new_page = old_page;
2759 }
cb900f41 2760 spin_unlock(ptl);
2ec74c3e 2761 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1e8f889b
DG
2762 page_cache_release(new_page);
2763 page_cache_release(old_page);
8312034f
JK
2764
2765 /* Caller expects lock to be held */
cb900f41 2766 spin_lock(ptl);
83c54070 2767 return 0;
1e8f889b
DG
2768}
2769
04f2cbe3 2770/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2771static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2772 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2773{
2774 struct address_space *mapping;
e7c4b0bf 2775 pgoff_t idx;
04f2cbe3
MG
2776
2777 mapping = vma->vm_file->f_mapping;
a5516438 2778 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2779
2780 return find_lock_page(mapping, idx);
2781}
2782
3ae77f43
HD
2783/*
2784 * Return whether there is a pagecache page to back given address within VMA.
2785 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2786 */
2787static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2788 struct vm_area_struct *vma, unsigned long address)
2789{
2790 struct address_space *mapping;
2791 pgoff_t idx;
2792 struct page *page;
2793
2794 mapping = vma->vm_file->f_mapping;
2795 idx = vma_hugecache_offset(h, vma, address);
2796
2797 page = find_get_page(mapping, idx);
2798 if (page)
2799 put_page(page);
2800 return page != NULL;
2801}
2802
a1ed3dda 2803static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2804 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2805{
a5516438 2806 struct hstate *h = hstate_vma(vma);
ac9b9c66 2807 int ret = VM_FAULT_SIGBUS;
409eb8c2 2808 int anon_rmap = 0;
e7c4b0bf 2809 pgoff_t idx;
4c887265 2810 unsigned long size;
4c887265
AL
2811 struct page *page;
2812 struct address_space *mapping;
1e8f889b 2813 pte_t new_pte;
cb900f41 2814 spinlock_t *ptl;
4c887265 2815
04f2cbe3
MG
2816 /*
2817 * Currently, we are forced to kill the process in the event the
2818 * original mapper has unmapped pages from the child due to a failed
25985edc 2819 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2820 */
2821 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2822 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2823 current->pid);
04f2cbe3
MG
2824 return ret;
2825 }
2826
4c887265 2827 mapping = vma->vm_file->f_mapping;
a5516438 2828 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2829
2830 /*
2831 * Use page lock to guard against racing truncation
2832 * before we get page_table_lock.
2833 */
6bda666a
CL
2834retry:
2835 page = find_lock_page(mapping, idx);
2836 if (!page) {
a5516438 2837 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2838 if (idx >= size)
2839 goto out;
04f2cbe3 2840 page = alloc_huge_page(vma, address, 0);
2fc39cec 2841 if (IS_ERR(page)) {
76dcee75
AK
2842 ret = PTR_ERR(page);
2843 if (ret == -ENOMEM)
2844 ret = VM_FAULT_OOM;
2845 else
2846 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2847 goto out;
2848 }
47ad8475 2849 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2850 __SetPageUptodate(page);
ac9b9c66 2851
f83a275d 2852 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2853 int err;
45c682a6 2854 struct inode *inode = mapping->host;
6bda666a
CL
2855
2856 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2857 if (err) {
2858 put_page(page);
6bda666a
CL
2859 if (err == -EEXIST)
2860 goto retry;
2861 goto out;
2862 }
07443a85 2863 ClearPagePrivate(page);
45c682a6
KC
2864
2865 spin_lock(&inode->i_lock);
a5516438 2866 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2867 spin_unlock(&inode->i_lock);
23be7468 2868 } else {
6bda666a 2869 lock_page(page);
0fe6e20b
NH
2870 if (unlikely(anon_vma_prepare(vma))) {
2871 ret = VM_FAULT_OOM;
2872 goto backout_unlocked;
2873 }
409eb8c2 2874 anon_rmap = 1;
23be7468 2875 }
0fe6e20b 2876 } else {
998b4382
NH
2877 /*
2878 * If memory error occurs between mmap() and fault, some process
2879 * don't have hwpoisoned swap entry for errored virtual address.
2880 * So we need to block hugepage fault by PG_hwpoison bit check.
2881 */
2882 if (unlikely(PageHWPoison(page))) {
32f84528 2883 ret = VM_FAULT_HWPOISON |
972dc4de 2884 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2885 goto backout_unlocked;
2886 }
6bda666a 2887 }
1e8f889b 2888
57303d80
AW
2889 /*
2890 * If we are going to COW a private mapping later, we examine the
2891 * pending reservations for this page now. This will ensure that
2892 * any allocations necessary to record that reservation occur outside
2893 * the spinlock.
2894 */
788c7df4 2895 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2896 if (vma_needs_reservation(h, vma, address) < 0) {
2897 ret = VM_FAULT_OOM;
2898 goto backout_unlocked;
2899 }
57303d80 2900
cb900f41
KS
2901 ptl = huge_pte_lockptr(h, mm, ptep);
2902 spin_lock(ptl);
a5516438 2903 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2904 if (idx >= size)
2905 goto backout;
2906
83c54070 2907 ret = 0;
7f2e9525 2908 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2909 goto backout;
2910
07443a85
JK
2911 if (anon_rmap) {
2912 ClearPagePrivate(page);
409eb8c2 2913 hugepage_add_new_anon_rmap(page, vma, address);
07443a85 2914 }
409eb8c2
HD
2915 else
2916 page_dup_rmap(page);
1e8f889b
DG
2917 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2918 && (vma->vm_flags & VM_SHARED)));
2919 set_huge_pte_at(mm, address, ptep, new_pte);
2920
788c7df4 2921 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2922 /* Optimization, do the COW without a second fault */
cb900f41 2923 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
2924 }
2925
cb900f41 2926 spin_unlock(ptl);
4c887265
AL
2927 unlock_page(page);
2928out:
ac9b9c66 2929 return ret;
4c887265
AL
2930
2931backout:
cb900f41 2932 spin_unlock(ptl);
2b26736c 2933backout_unlocked:
4c887265
AL
2934 unlock_page(page);
2935 put_page(page);
2936 goto out;
ac9b9c66
HD
2937}
2938
86e5216f 2939int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2940 unsigned long address, unsigned int flags)
86e5216f
AL
2941{
2942 pte_t *ptep;
2943 pte_t entry;
cb900f41 2944 spinlock_t *ptl;
1e8f889b 2945 int ret;
0fe6e20b 2946 struct page *page = NULL;
57303d80 2947 struct page *pagecache_page = NULL;
3935baa9 2948 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2949 struct hstate *h = hstate_vma(vma);
86e5216f 2950
1e16a539
KH
2951 address &= huge_page_mask(h);
2952
fd6a03ed
NH
2953 ptep = huge_pte_offset(mm, address);
2954 if (ptep) {
2955 entry = huge_ptep_get(ptep);
290408d4 2956 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 2957 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
2958 return 0;
2959 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2960 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2961 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2962 }
2963
a5516438 2964 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2965 if (!ptep)
2966 return VM_FAULT_OOM;
2967
3935baa9
DG
2968 /*
2969 * Serialize hugepage allocation and instantiation, so that we don't
2970 * get spurious allocation failures if two CPUs race to instantiate
2971 * the same page in the page cache.
2972 */
2973 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2974 entry = huge_ptep_get(ptep);
2975 if (huge_pte_none(entry)) {
788c7df4 2976 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2977 goto out_mutex;
3935baa9 2978 }
86e5216f 2979
83c54070 2980 ret = 0;
1e8f889b 2981
57303d80
AW
2982 /*
2983 * If we are going to COW the mapping later, we examine the pending
2984 * reservations for this page now. This will ensure that any
2985 * allocations necessary to record that reservation occur outside the
2986 * spinlock. For private mappings, we also lookup the pagecache
2987 * page now as it is used to determine if a reservation has been
2988 * consumed.
2989 */
106c992a 2990 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
2991 if (vma_needs_reservation(h, vma, address) < 0) {
2992 ret = VM_FAULT_OOM;
b4d1d99f 2993 goto out_mutex;
2b26736c 2994 }
57303d80 2995
f83a275d 2996 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2997 pagecache_page = hugetlbfs_pagecache_page(h,
2998 vma, address);
2999 }
3000
56c9cfb1
NH
3001 /*
3002 * hugetlb_cow() requires page locks of pte_page(entry) and
3003 * pagecache_page, so here we need take the former one
3004 * when page != pagecache_page or !pagecache_page.
3005 * Note that locking order is always pagecache_page -> page,
3006 * so no worry about deadlock.
3007 */
3008 page = pte_page(entry);
66aebce7 3009 get_page(page);
56c9cfb1 3010 if (page != pagecache_page)
0fe6e20b 3011 lock_page(page);
0fe6e20b 3012
cb900f41
KS
3013 ptl = huge_pte_lockptr(h, mm, ptep);
3014 spin_lock(ptl);
1e8f889b 3015 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f 3016 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
cb900f41 3017 goto out_ptl;
b4d1d99f
DG
3018
3019
788c7df4 3020 if (flags & FAULT_FLAG_WRITE) {
106c992a 3021 if (!huge_pte_write(entry)) {
57303d80 3022 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41
KS
3023 pagecache_page, ptl);
3024 goto out_ptl;
b4d1d99f 3025 }
106c992a 3026 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3027 }
3028 entry = pte_mkyoung(entry);
788c7df4
HD
3029 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3030 flags & FAULT_FLAG_WRITE))
4b3073e1 3031 update_mmu_cache(vma, address, ptep);
b4d1d99f 3032
cb900f41
KS
3033out_ptl:
3034 spin_unlock(ptl);
57303d80
AW
3035
3036 if (pagecache_page) {
3037 unlock_page(pagecache_page);
3038 put_page(pagecache_page);
3039 }
1f64d69c
DN
3040 if (page != pagecache_page)
3041 unlock_page(page);
66aebce7 3042 put_page(page);
57303d80 3043
b4d1d99f 3044out_mutex:
3935baa9 3045 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
3046
3047 return ret;
86e5216f
AL
3048}
3049
28a35716
ML
3050long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3051 struct page **pages, struct vm_area_struct **vmas,
3052 unsigned long *position, unsigned long *nr_pages,
3053 long i, unsigned int flags)
63551ae0 3054{
d5d4b0aa
CK
3055 unsigned long pfn_offset;
3056 unsigned long vaddr = *position;
28a35716 3057 unsigned long remainder = *nr_pages;
a5516438 3058 struct hstate *h = hstate_vma(vma);
63551ae0 3059
63551ae0 3060 while (vaddr < vma->vm_end && remainder) {
4c887265 3061 pte_t *pte;
cb900f41 3062 spinlock_t *ptl = NULL;
2a15efc9 3063 int absent;
4c887265 3064 struct page *page;
63551ae0 3065
4c887265
AL
3066 /*
3067 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3068 * each hugepage. We have to make sure we get the
4c887265 3069 * first, for the page indexing below to work.
cb900f41
KS
3070 *
3071 * Note that page table lock is not held when pte is null.
4c887265 3072 */
a5516438 3073 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3074 if (pte)
3075 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3076 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3077
3078 /*
3079 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3080 * an error where there's an empty slot with no huge pagecache
3081 * to back it. This way, we avoid allocating a hugepage, and
3082 * the sparse dumpfile avoids allocating disk blocks, but its
3083 * huge holes still show up with zeroes where they need to be.
2a15efc9 3084 */
3ae77f43
HD
3085 if (absent && (flags & FOLL_DUMP) &&
3086 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3087 if (pte)
3088 spin_unlock(ptl);
2a15efc9
HD
3089 remainder = 0;
3090 break;
3091 }
63551ae0 3092
9cc3a5bd
NH
3093 /*
3094 * We need call hugetlb_fault for both hugepages under migration
3095 * (in which case hugetlb_fault waits for the migration,) and
3096 * hwpoisoned hugepages (in which case we need to prevent the
3097 * caller from accessing to them.) In order to do this, we use
3098 * here is_swap_pte instead of is_hugetlb_entry_migration and
3099 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3100 * both cases, and because we can't follow correct pages
3101 * directly from any kind of swap entries.
3102 */
3103 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3104 ((flags & FOLL_WRITE) &&
3105 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3106 int ret;
63551ae0 3107
cb900f41
KS
3108 if (pte)
3109 spin_unlock(ptl);
2a15efc9
HD
3110 ret = hugetlb_fault(mm, vma, vaddr,
3111 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3112 if (!(ret & VM_FAULT_ERROR))
4c887265 3113 continue;
63551ae0 3114
4c887265 3115 remainder = 0;
4c887265
AL
3116 break;
3117 }
3118
a5516438 3119 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3120 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3121same_page:
d6692183 3122 if (pages) {
2a15efc9 3123 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3124 get_page_foll(pages[i]);
d6692183 3125 }
63551ae0
DG
3126
3127 if (vmas)
3128 vmas[i] = vma;
3129
3130 vaddr += PAGE_SIZE;
d5d4b0aa 3131 ++pfn_offset;
63551ae0
DG
3132 --remainder;
3133 ++i;
d5d4b0aa 3134 if (vaddr < vma->vm_end && remainder &&
a5516438 3135 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3136 /*
3137 * We use pfn_offset to avoid touching the pageframes
3138 * of this compound page.
3139 */
3140 goto same_page;
3141 }
cb900f41 3142 spin_unlock(ptl);
63551ae0 3143 }
28a35716 3144 *nr_pages = remainder;
63551ae0
DG
3145 *position = vaddr;
3146
2a15efc9 3147 return i ? i : -EFAULT;
63551ae0 3148}
8f860591 3149
7da4d641 3150unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3151 unsigned long address, unsigned long end, pgprot_t newprot)
3152{
3153 struct mm_struct *mm = vma->vm_mm;
3154 unsigned long start = address;
3155 pte_t *ptep;
3156 pte_t pte;
a5516438 3157 struct hstate *h = hstate_vma(vma);
7da4d641 3158 unsigned long pages = 0;
8f860591
ZY
3159
3160 BUG_ON(address >= end);
3161 flush_cache_range(vma, address, end);
3162
3d48ae45 3163 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
a5516438 3164 for (; address < end; address += huge_page_size(h)) {
cb900f41 3165 spinlock_t *ptl;
8f860591
ZY
3166 ptep = huge_pte_offset(mm, address);
3167 if (!ptep)
3168 continue;
cb900f41 3169 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3170 if (huge_pmd_unshare(mm, &address, ptep)) {
3171 pages++;
cb900f41 3172 spin_unlock(ptl);
39dde65c 3173 continue;
7da4d641 3174 }
d0fc2ca5
NH
3175 pte = huge_ptep_get(ptep);
3176 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3177 spin_unlock(ptl);
3178 continue;
3179 }
3180 if (unlikely(is_hugetlb_entry_migration(pte))) {
3181 swp_entry_t entry = pte_to_swp_entry(pte);
3182
3183 if (is_write_migration_entry(entry)) {
3184 pte_t newpte;
3185
3186 make_migration_entry_read(&entry);
3187 newpte = swp_entry_to_pte(entry);
3188 set_huge_pte_at(mm, address, ptep, newpte);
3189 pages++;
3190 }
3191 spin_unlock(ptl);
3192 continue;
3193 }
3194 if (!huge_pte_none(pte)) {
8f860591 3195 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3196 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3197 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3198 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3199 pages++;
8f860591 3200 }
cb900f41 3201 spin_unlock(ptl);
8f860591 3202 }
d833352a
MG
3203 /*
3204 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3205 * may have cleared our pud entry and done put_page on the page table:
3206 * once we release i_mmap_mutex, another task can do the final put_page
3207 * and that page table be reused and filled with junk.
3208 */
8f860591 3209 flush_tlb_range(vma, start, end);
d833352a 3210 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3211
3212 return pages << h->order;
8f860591
ZY
3213}
3214
a1e78772
MG
3215int hugetlb_reserve_pages(struct inode *inode,
3216 long from, long to,
5a6fe125 3217 struct vm_area_struct *vma,
ca16d140 3218 vm_flags_t vm_flags)
e4e574b7 3219{
17c9d12e 3220 long ret, chg;
a5516438 3221 struct hstate *h = hstate_inode(inode);
90481622 3222 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 3223
17c9d12e
MG
3224 /*
3225 * Only apply hugepage reservation if asked. At fault time, an
3226 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3227 * without using reserves
17c9d12e 3228 */
ca16d140 3229 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3230 return 0;
3231
a1e78772
MG
3232 /*
3233 * Shared mappings base their reservation on the number of pages that
3234 * are already allocated on behalf of the file. Private mappings need
3235 * to reserve the full area even if read-only as mprotect() may be
3236 * called to make the mapping read-write. Assume !vma is a shm mapping
3237 */
f83a275d 3238 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3239 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3240 else {
3241 struct resv_map *resv_map = resv_map_alloc();
3242 if (!resv_map)
3243 return -ENOMEM;
3244
a1e78772 3245 chg = to - from;
84afd99b 3246
17c9d12e
MG
3247 set_vma_resv_map(vma, resv_map);
3248 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3249 }
3250
c50ac050
DH
3251 if (chg < 0) {
3252 ret = chg;
3253 goto out_err;
3254 }
8a630112 3255
90481622 3256 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3257 if (hugepage_subpool_get_pages(spool, chg)) {
3258 ret = -ENOSPC;
3259 goto out_err;
3260 }
5a6fe125
MG
3261
3262 /*
17c9d12e 3263 * Check enough hugepages are available for the reservation.
90481622 3264 * Hand the pages back to the subpool if there are not
5a6fe125 3265 */
a5516438 3266 ret = hugetlb_acct_memory(h, chg);
68842c9b 3267 if (ret < 0) {
90481622 3268 hugepage_subpool_put_pages(spool, chg);
c50ac050 3269 goto out_err;
68842c9b 3270 }
17c9d12e
MG
3271
3272 /*
3273 * Account for the reservations made. Shared mappings record regions
3274 * that have reservations as they are shared by multiple VMAs.
3275 * When the last VMA disappears, the region map says how much
3276 * the reservation was and the page cache tells how much of
3277 * the reservation was consumed. Private mappings are per-VMA and
3278 * only the consumed reservations are tracked. When the VMA
3279 * disappears, the original reservation is the VMA size and the
3280 * consumed reservations are stored in the map. Hence, nothing
3281 * else has to be done for private mappings here
3282 */
f83a275d 3283 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3284 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3285 return 0;
c50ac050 3286out_err:
4523e145
DH
3287 if (vma)
3288 resv_map_put(vma);
c50ac050 3289 return ret;
a43a8c39
CK
3290}
3291
3292void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3293{
a5516438 3294 struct hstate *h = hstate_inode(inode);
a43a8c39 3295 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3296 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3297
3298 spin_lock(&inode->i_lock);
e4c6f8be 3299 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3300 spin_unlock(&inode->i_lock);
3301
90481622 3302 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3303 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3304}
93f70f90 3305
3212b535
SC
3306#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3307static unsigned long page_table_shareable(struct vm_area_struct *svma,
3308 struct vm_area_struct *vma,
3309 unsigned long addr, pgoff_t idx)
3310{
3311 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3312 svma->vm_start;
3313 unsigned long sbase = saddr & PUD_MASK;
3314 unsigned long s_end = sbase + PUD_SIZE;
3315
3316 /* Allow segments to share if only one is marked locked */
3317 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3318 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3319
3320 /*
3321 * match the virtual addresses, permission and the alignment of the
3322 * page table page.
3323 */
3324 if (pmd_index(addr) != pmd_index(saddr) ||
3325 vm_flags != svm_flags ||
3326 sbase < svma->vm_start || svma->vm_end < s_end)
3327 return 0;
3328
3329 return saddr;
3330}
3331
3332static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3333{
3334 unsigned long base = addr & PUD_MASK;
3335 unsigned long end = base + PUD_SIZE;
3336
3337 /*
3338 * check on proper vm_flags and page table alignment
3339 */
3340 if (vma->vm_flags & VM_MAYSHARE &&
3341 vma->vm_start <= base && end <= vma->vm_end)
3342 return 1;
3343 return 0;
3344}
3345
3346/*
3347 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3348 * and returns the corresponding pte. While this is not necessary for the
3349 * !shared pmd case because we can allocate the pmd later as well, it makes the
3350 * code much cleaner. pmd allocation is essential for the shared case because
3351 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3352 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3353 * bad pmd for sharing.
3354 */
3355pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3356{
3357 struct vm_area_struct *vma = find_vma(mm, addr);
3358 struct address_space *mapping = vma->vm_file->f_mapping;
3359 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3360 vma->vm_pgoff;
3361 struct vm_area_struct *svma;
3362 unsigned long saddr;
3363 pte_t *spte = NULL;
3364 pte_t *pte;
cb900f41 3365 spinlock_t *ptl;
3212b535
SC
3366
3367 if (!vma_shareable(vma, addr))
3368 return (pte_t *)pmd_alloc(mm, pud, addr);
3369
3370 mutex_lock(&mapping->i_mmap_mutex);
3371 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3372 if (svma == vma)
3373 continue;
3374
3375 saddr = page_table_shareable(svma, vma, addr, idx);
3376 if (saddr) {
3377 spte = huge_pte_offset(svma->vm_mm, saddr);
3378 if (spte) {
3379 get_page(virt_to_page(spte));
3380 break;
3381 }
3382 }
3383 }
3384
3385 if (!spte)
3386 goto out;
3387
cb900f41
KS
3388 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3389 spin_lock(ptl);
3212b535
SC
3390 if (pud_none(*pud))
3391 pud_populate(mm, pud,
3392 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3393 else
3394 put_page(virt_to_page(spte));
cb900f41 3395 spin_unlock(ptl);
3212b535
SC
3396out:
3397 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3398 mutex_unlock(&mapping->i_mmap_mutex);
3399 return pte;
3400}
3401
3402/*
3403 * unmap huge page backed by shared pte.
3404 *
3405 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3406 * indicated by page_count > 1, unmap is achieved by clearing pud and
3407 * decrementing the ref count. If count == 1, the pte page is not shared.
3408 *
cb900f41 3409 * called with page table lock held.
3212b535
SC
3410 *
3411 * returns: 1 successfully unmapped a shared pte page
3412 * 0 the underlying pte page is not shared, or it is the last user
3413 */
3414int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3415{
3416 pgd_t *pgd = pgd_offset(mm, *addr);
3417 pud_t *pud = pud_offset(pgd, *addr);
3418
3419 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3420 if (page_count(virt_to_page(ptep)) == 1)
3421 return 0;
3422
3423 pud_clear(pud);
3424 put_page(virt_to_page(ptep));
3425 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3426 return 1;
3427}
9e5fc74c
SC
3428#define want_pmd_share() (1)
3429#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3430pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3431{
3432 return NULL;
3433}
3434#define want_pmd_share() (0)
3212b535
SC
3435#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3436
9e5fc74c
SC
3437#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3438pte_t *huge_pte_alloc(struct mm_struct *mm,
3439 unsigned long addr, unsigned long sz)
3440{
3441 pgd_t *pgd;
3442 pud_t *pud;
3443 pte_t *pte = NULL;
3444
3445 pgd = pgd_offset(mm, addr);
3446 pud = pud_alloc(mm, pgd, addr);
3447 if (pud) {
3448 if (sz == PUD_SIZE) {
3449 pte = (pte_t *)pud;
3450 } else {
3451 BUG_ON(sz != PMD_SIZE);
3452 if (want_pmd_share() && pud_none(*pud))
3453 pte = huge_pmd_share(mm, addr, pud);
3454 else
3455 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3456 }
3457 }
3458 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3459
3460 return pte;
3461}
3462
3463pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3464{
3465 pgd_t *pgd;
3466 pud_t *pud;
3467 pmd_t *pmd = NULL;
3468
3469 pgd = pgd_offset(mm, addr);
3470 if (pgd_present(*pgd)) {
3471 pud = pud_offset(pgd, addr);
3472 if (pud_present(*pud)) {
3473 if (pud_huge(*pud))
3474 return (pte_t *)pud;
3475 pmd = pmd_offset(pud, addr);
3476 }
3477 }
3478 return (pte_t *) pmd;
3479}
3480
3481struct page *
3482follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3483 pmd_t *pmd, int write)
3484{
3485 struct page *page;
3486
9a3a249a
NH
3487 if (!pmd_present(*pmd))
3488 return NULL;
9e5fc74c
SC
3489 page = pte_page(*(pte_t *)pmd);
3490 if (page)
3491 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3492 return page;
3493}
3494
3495struct page *
3496follow_huge_pud(struct mm_struct *mm, unsigned long address,
3497 pud_t *pud, int write)
3498{
3499 struct page *page;
3500
3501 page = pte_page(*(pte_t *)pud);
3502 if (page)
3503 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3504 return page;
3505}
3506
3507#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3508
3509/* Can be overriden by architectures */
3510__attribute__((weak)) struct page *
3511follow_huge_pud(struct mm_struct *mm, unsigned long address,
3512 pud_t *pud, int write)
3513{
3514 BUG();
3515 return NULL;
3516}
3517
3518#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3519
d5bd9106
AK
3520#ifdef CONFIG_MEMORY_FAILURE
3521
6de2b1aa
NH
3522/* Should be called in hugetlb_lock */
3523static int is_hugepage_on_freelist(struct page *hpage)
3524{
3525 struct page *page;
3526 struct page *tmp;
3527 struct hstate *h = page_hstate(hpage);
3528 int nid = page_to_nid(hpage);
3529
3530 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3531 if (page == hpage)
3532 return 1;
3533 return 0;
3534}
3535
93f70f90
NH
3536/*
3537 * This function is called from memory failure code.
3538 * Assume the caller holds page lock of the head page.
3539 */
6de2b1aa 3540int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3541{
3542 struct hstate *h = page_hstate(hpage);
3543 int nid = page_to_nid(hpage);
6de2b1aa 3544 int ret = -EBUSY;
93f70f90
NH
3545
3546 spin_lock(&hugetlb_lock);
6de2b1aa 3547 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3548 /*
3549 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3550 * but dangling hpage->lru can trigger list-debug warnings
3551 * (this happens when we call unpoison_memory() on it),
3552 * so let it point to itself with list_del_init().
3553 */
3554 list_del_init(&hpage->lru);
8c6c2ecb 3555 set_page_refcounted(hpage);
6de2b1aa
NH
3556 h->free_huge_pages--;
3557 h->free_huge_pages_node[nid]--;
3558 ret = 0;
3559 }
93f70f90 3560 spin_unlock(&hugetlb_lock);
6de2b1aa 3561 return ret;
93f70f90 3562}
6de2b1aa 3563#endif
31caf665
NH
3564
3565bool isolate_huge_page(struct page *page, struct list_head *list)
3566{
309381fe 3567 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3568 if (!get_page_unless_zero(page))
3569 return false;
3570 spin_lock(&hugetlb_lock);
3571 list_move_tail(&page->lru, list);
3572 spin_unlock(&hugetlb_lock);
3573 return true;
3574}
3575
3576void putback_active_hugepage(struct page *page)
3577{
309381fe 3578 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3579 spin_lock(&hugetlb_lock);
3580 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3581 spin_unlock(&hugetlb_lock);
3582 put_page(page);
3583}
c8721bbb
NH
3584
3585bool is_hugepage_active(struct page *page)
3586{
309381fe 3587 VM_BUG_ON_PAGE(!PageHuge(page), page);
c8721bbb
NH
3588 /*
3589 * This function can be called for a tail page because the caller,
3590 * scan_movable_pages, scans through a given pfn-range which typically
3591 * covers one memory block. In systems using gigantic hugepage (1GB
3592 * for x86_64,) a hugepage is larger than a memory block, and we don't
3593 * support migrating such large hugepages for now, so return false
3594 * when called for tail pages.
3595 */
3596 if (PageTail(page))
3597 return false;
3598 /*
3599 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3600 * so we should return false for them.
3601 */
3602 if (unlikely(PageHWPoison(page)))
3603 return false;
3604 return page_count(page) > 0;
3605}