]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/hugetlb.c
Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/kernel/linux.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
97ad1087 18#include <linux/memblock.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
63489f8e 21#include <linux/mmdebug.h>
174cd4b1 22#include <linux/sched/signal.h>
0fe6e20b 23#include <linux/rmap.h>
c6247f72 24#include <linux/string_helpers.h>
fd6a03ed
NH
25#include <linux/swap.h>
26#include <linux/swapops.h>
8382d914 27#include <linux/jhash.h>
98fa15f3 28#include <linux/numa.h>
d6606683 29
63551ae0
DG
30#include <asm/page.h>
31#include <asm/pgtable.h>
24669e58 32#include <asm/tlb.h>
63551ae0 33
24669e58 34#include <linux/io.h>
63551ae0 35#include <linux/hugetlb.h>
9dd540e2 36#include <linux/hugetlb_cgroup.h>
9a305230 37#include <linux/node.h>
1a1aad8a 38#include <linux/userfaultfd_k.h>
ab5ac90a 39#include <linux/page_owner.h>
7835e98b 40#include "internal.h"
1da177e4 41
c3f38a38 42int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
43unsigned int default_hstate_idx;
44struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
45/*
46 * Minimum page order among possible hugepage sizes, set to a proper value
47 * at boot time.
48 */
49static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 50
53ba51d2
JT
51__initdata LIST_HEAD(huge_boot_pages);
52
e5ff2159
AK
53/* for command line parsing */
54static struct hstate * __initdata parsed_hstate;
55static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 56static unsigned long __initdata default_hstate_size;
9fee021d 57static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 58
3935baa9 59/*
31caf665
NH
60 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61 * free_huge_pages, and surplus_huge_pages.
3935baa9 62 */
c3f38a38 63DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 64
8382d914
DB
65/*
66 * Serializes faults on the same logical page. This is used to
67 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 */
69static int num_fault_mutexes;
c672c7f2 70struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 71
7ca02d0a
MK
72/* Forward declaration */
73static int hugetlb_acct_memory(struct hstate *h, long delta);
74
90481622
DG
75static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76{
77 bool free = (spool->count == 0) && (spool->used_hpages == 0);
78
79 spin_unlock(&spool->lock);
80
81 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
82 * remain, give up any reservations mased on minimum size and
83 * free the subpool */
84 if (free) {
85 if (spool->min_hpages != -1)
86 hugetlb_acct_memory(spool->hstate,
87 -spool->min_hpages);
90481622 88 kfree(spool);
7ca02d0a 89 }
90481622
DG
90}
91
7ca02d0a
MK
92struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93 long min_hpages)
90481622
DG
94{
95 struct hugepage_subpool *spool;
96
c6a91820 97 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
98 if (!spool)
99 return NULL;
100
101 spin_lock_init(&spool->lock);
102 spool->count = 1;
7ca02d0a
MK
103 spool->max_hpages = max_hpages;
104 spool->hstate = h;
105 spool->min_hpages = min_hpages;
106
107 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108 kfree(spool);
109 return NULL;
110 }
111 spool->rsv_hpages = min_hpages;
90481622
DG
112
113 return spool;
114}
115
116void hugepage_put_subpool(struct hugepage_subpool *spool)
117{
118 spin_lock(&spool->lock);
119 BUG_ON(!spool->count);
120 spool->count--;
121 unlock_or_release_subpool(spool);
122}
123
1c5ecae3
MK
124/*
125 * Subpool accounting for allocating and reserving pages.
126 * Return -ENOMEM if there are not enough resources to satisfy the
127 * the request. Otherwise, return the number of pages by which the
128 * global pools must be adjusted (upward). The returned value may
129 * only be different than the passed value (delta) in the case where
130 * a subpool minimum size must be manitained.
131 */
132static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
133 long delta)
134{
1c5ecae3 135 long ret = delta;
90481622
DG
136
137 if (!spool)
1c5ecae3 138 return ret;
90481622
DG
139
140 spin_lock(&spool->lock);
1c5ecae3
MK
141
142 if (spool->max_hpages != -1) { /* maximum size accounting */
143 if ((spool->used_hpages + delta) <= spool->max_hpages)
144 spool->used_hpages += delta;
145 else {
146 ret = -ENOMEM;
147 goto unlock_ret;
148 }
90481622 149 }
90481622 150
09a95e29
MK
151 /* minimum size accounting */
152 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
153 if (delta > spool->rsv_hpages) {
154 /*
155 * Asking for more reserves than those already taken on
156 * behalf of subpool. Return difference.
157 */
158 ret = delta - spool->rsv_hpages;
159 spool->rsv_hpages = 0;
160 } else {
161 ret = 0; /* reserves already accounted for */
162 spool->rsv_hpages -= delta;
163 }
164 }
165
166unlock_ret:
167 spin_unlock(&spool->lock);
90481622
DG
168 return ret;
169}
170
1c5ecae3
MK
171/*
172 * Subpool accounting for freeing and unreserving pages.
173 * Return the number of global page reservations that must be dropped.
174 * The return value may only be different than the passed value (delta)
175 * in the case where a subpool minimum size must be maintained.
176 */
177static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
178 long delta)
179{
1c5ecae3
MK
180 long ret = delta;
181
90481622 182 if (!spool)
1c5ecae3 183 return delta;
90481622
DG
184
185 spin_lock(&spool->lock);
1c5ecae3
MK
186
187 if (spool->max_hpages != -1) /* maximum size accounting */
188 spool->used_hpages -= delta;
189
09a95e29
MK
190 /* minimum size accounting */
191 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
192 if (spool->rsv_hpages + delta <= spool->min_hpages)
193 ret = 0;
194 else
195 ret = spool->rsv_hpages + delta - spool->min_hpages;
196
197 spool->rsv_hpages += delta;
198 if (spool->rsv_hpages > spool->min_hpages)
199 spool->rsv_hpages = spool->min_hpages;
200 }
201
202 /*
203 * If hugetlbfs_put_super couldn't free spool due to an outstanding
204 * quota reference, free it now.
205 */
90481622 206 unlock_or_release_subpool(spool);
1c5ecae3
MK
207
208 return ret;
90481622
DG
209}
210
211static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212{
213 return HUGETLBFS_SB(inode->i_sb)->spool;
214}
215
216static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217{
496ad9aa 218 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
219}
220
96822904
AW
221/*
222 * Region tracking -- allows tracking of reservations and instantiated pages
223 * across the pages in a mapping.
84afd99b 224 *
1dd308a7
MK
225 * The region data structures are embedded into a resv_map and protected
226 * by a resv_map's lock. The set of regions within the resv_map represent
227 * reservations for huge pages, or huge pages that have already been
228 * instantiated within the map. The from and to elements are huge page
229 * indicies into the associated mapping. from indicates the starting index
230 * of the region. to represents the first index past the end of the region.
231 *
232 * For example, a file region structure with from == 0 and to == 4 represents
233 * four huge pages in a mapping. It is important to note that the to element
234 * represents the first element past the end of the region. This is used in
235 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 *
237 * Interval notation of the form [from, to) will be used to indicate that
238 * the endpoint from is inclusive and to is exclusive.
96822904
AW
239 */
240struct file_region {
241 struct list_head link;
242 long from;
243 long to;
244};
245
1dd308a7
MK
246/*
247 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
248 * map. In the normal case, existing regions will be expanded
249 * to accommodate the specified range. Sufficient regions should
250 * exist for expansion due to the previous call to region_chg
251 * with the same range. However, it is possible that region_del
252 * could have been called after region_chg and modifed the map
253 * in such a way that no region exists to be expanded. In this
254 * case, pull a region descriptor from the cache associated with
255 * the map and use that for the new range.
cf3ad20b
MK
256 *
257 * Return the number of new huge pages added to the map. This
258 * number is greater than or equal to zero.
1dd308a7 259 */
1406ec9b 260static long region_add(struct resv_map *resv, long f, long t)
96822904 261{
1406ec9b 262 struct list_head *head = &resv->regions;
96822904 263 struct file_region *rg, *nrg, *trg;
cf3ad20b 264 long add = 0;
96822904 265
7b24d861 266 spin_lock(&resv->lock);
96822904
AW
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (f <= rg->to)
270 break;
271
5e911373
MK
272 /*
273 * If no region exists which can be expanded to include the
274 * specified range, the list must have been modified by an
275 * interleving call to region_del(). Pull a region descriptor
276 * from the cache and use it for this range.
277 */
278 if (&rg->link == head || t < rg->from) {
279 VM_BUG_ON(resv->region_cache_count <= 0);
280
281 resv->region_cache_count--;
282 nrg = list_first_entry(&resv->region_cache, struct file_region,
283 link);
284 list_del(&nrg->link);
285
286 nrg->from = f;
287 nrg->to = t;
288 list_add(&nrg->link, rg->link.prev);
289
290 add += t - f;
291 goto out_locked;
292 }
293
96822904
AW
294 /* Round our left edge to the current segment if it encloses us. */
295 if (f > rg->from)
296 f = rg->from;
297
298 /* Check for and consume any regions we now overlap with. */
299 nrg = rg;
300 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301 if (&rg->link == head)
302 break;
303 if (rg->from > t)
304 break;
305
306 /* If this area reaches higher then extend our area to
307 * include it completely. If this is not the first area
308 * which we intend to reuse, free it. */
309 if (rg->to > t)
310 t = rg->to;
311 if (rg != nrg) {
cf3ad20b
MK
312 /* Decrement return value by the deleted range.
313 * Another range will span this area so that by
314 * end of routine add will be >= zero
315 */
316 add -= (rg->to - rg->from);
96822904
AW
317 list_del(&rg->link);
318 kfree(rg);
319 }
320 }
cf3ad20b
MK
321
322 add += (nrg->from - f); /* Added to beginning of region */
96822904 323 nrg->from = f;
cf3ad20b 324 add += t - nrg->to; /* Added to end of region */
96822904 325 nrg->to = t;
cf3ad20b 326
5e911373
MK
327out_locked:
328 resv->adds_in_progress--;
7b24d861 329 spin_unlock(&resv->lock);
cf3ad20b
MK
330 VM_BUG_ON(add < 0);
331 return add;
96822904
AW
332}
333
1dd308a7
MK
334/*
335 * Examine the existing reserve map and determine how many
336 * huge pages in the specified range [f, t) are NOT currently
337 * represented. This routine is called before a subsequent
338 * call to region_add that will actually modify the reserve
339 * map to add the specified range [f, t). region_chg does
340 * not change the number of huge pages represented by the
341 * map. However, if the existing regions in the map can not
342 * be expanded to represent the new range, a new file_region
343 * structure is added to the map as a placeholder. This is
344 * so that the subsequent region_add call will have all the
345 * regions it needs and will not fail.
346 *
5e911373
MK
347 * Upon entry, region_chg will also examine the cache of region descriptors
348 * associated with the map. If there are not enough descriptors cached, one
349 * will be allocated for the in progress add operation.
350 *
351 * Returns the number of huge pages that need to be added to the existing
352 * reservation map for the range [f, t). This number is greater or equal to
353 * zero. -ENOMEM is returned if a new file_region structure or cache entry
354 * is needed and can not be allocated.
1dd308a7 355 */
1406ec9b 356static long region_chg(struct resv_map *resv, long f, long t)
96822904 357{
1406ec9b 358 struct list_head *head = &resv->regions;
7b24d861 359 struct file_region *rg, *nrg = NULL;
96822904
AW
360 long chg = 0;
361
7b24d861
DB
362retry:
363 spin_lock(&resv->lock);
5e911373
MK
364retry_locked:
365 resv->adds_in_progress++;
366
367 /*
368 * Check for sufficient descriptors in the cache to accommodate
369 * the number of in progress add operations.
370 */
371 if (resv->adds_in_progress > resv->region_cache_count) {
372 struct file_region *trg;
373
374 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375 /* Must drop lock to allocate a new descriptor. */
376 resv->adds_in_progress--;
377 spin_unlock(&resv->lock);
378
379 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
380 if (!trg) {
381 kfree(nrg);
5e911373 382 return -ENOMEM;
dbe409e4 383 }
5e911373
MK
384
385 spin_lock(&resv->lock);
386 list_add(&trg->link, &resv->region_cache);
387 resv->region_cache_count++;
388 goto retry_locked;
389 }
390
96822904
AW
391 /* Locate the region we are before or in. */
392 list_for_each_entry(rg, head, link)
393 if (f <= rg->to)
394 break;
395
396 /* If we are below the current region then a new region is required.
397 * Subtle, allocate a new region at the position but make it zero
398 * size such that we can guarantee to record the reservation. */
399 if (&rg->link == head || t < rg->from) {
7b24d861 400 if (!nrg) {
5e911373 401 resv->adds_in_progress--;
7b24d861
DB
402 spin_unlock(&resv->lock);
403 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404 if (!nrg)
405 return -ENOMEM;
406
407 nrg->from = f;
408 nrg->to = f;
409 INIT_LIST_HEAD(&nrg->link);
410 goto retry;
411 }
96822904 412
7b24d861
DB
413 list_add(&nrg->link, rg->link.prev);
414 chg = t - f;
415 goto out_nrg;
96822904
AW
416 }
417
418 /* Round our left edge to the current segment if it encloses us. */
419 if (f > rg->from)
420 f = rg->from;
421 chg = t - f;
422
423 /* Check for and consume any regions we now overlap with. */
424 list_for_each_entry(rg, rg->link.prev, link) {
425 if (&rg->link == head)
426 break;
427 if (rg->from > t)
7b24d861 428 goto out;
96822904 429
25985edc 430 /* We overlap with this area, if it extends further than
96822904
AW
431 * us then we must extend ourselves. Account for its
432 * existing reservation. */
433 if (rg->to > t) {
434 chg += rg->to - t;
435 t = rg->to;
436 }
437 chg -= rg->to - rg->from;
438 }
7b24d861
DB
439
440out:
441 spin_unlock(&resv->lock);
442 /* We already know we raced and no longer need the new region */
443 kfree(nrg);
444 return chg;
445out_nrg:
446 spin_unlock(&resv->lock);
96822904
AW
447 return chg;
448}
449
5e911373
MK
450/*
451 * Abort the in progress add operation. The adds_in_progress field
452 * of the resv_map keeps track of the operations in progress between
453 * calls to region_chg and region_add. Operations are sometimes
454 * aborted after the call to region_chg. In such cases, region_abort
455 * is called to decrement the adds_in_progress counter.
456 *
457 * NOTE: The range arguments [f, t) are not needed or used in this
458 * routine. They are kept to make reading the calling code easier as
459 * arguments will match the associated region_chg call.
460 */
461static void region_abort(struct resv_map *resv, long f, long t)
462{
463 spin_lock(&resv->lock);
464 VM_BUG_ON(!resv->region_cache_count);
465 resv->adds_in_progress--;
466 spin_unlock(&resv->lock);
467}
468
1dd308a7 469/*
feba16e2
MK
470 * Delete the specified range [f, t) from the reserve map. If the
471 * t parameter is LONG_MAX, this indicates that ALL regions after f
472 * should be deleted. Locate the regions which intersect [f, t)
473 * and either trim, delete or split the existing regions.
474 *
475 * Returns the number of huge pages deleted from the reserve map.
476 * In the normal case, the return value is zero or more. In the
477 * case where a region must be split, a new region descriptor must
478 * be allocated. If the allocation fails, -ENOMEM will be returned.
479 * NOTE: If the parameter t == LONG_MAX, then we will never split
480 * a region and possibly return -ENOMEM. Callers specifying
481 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 482 */
feba16e2 483static long region_del(struct resv_map *resv, long f, long t)
96822904 484{
1406ec9b 485 struct list_head *head = &resv->regions;
96822904 486 struct file_region *rg, *trg;
feba16e2
MK
487 struct file_region *nrg = NULL;
488 long del = 0;
96822904 489
feba16e2 490retry:
7b24d861 491 spin_lock(&resv->lock);
feba16e2 492 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
493 /*
494 * Skip regions before the range to be deleted. file_region
495 * ranges are normally of the form [from, to). However, there
496 * may be a "placeholder" entry in the map which is of the form
497 * (from, to) with from == to. Check for placeholder entries
498 * at the beginning of the range to be deleted.
499 */
500 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 501 continue;
dbe409e4 502
feba16e2 503 if (rg->from >= t)
96822904 504 break;
96822904 505
feba16e2
MK
506 if (f > rg->from && t < rg->to) { /* Must split region */
507 /*
508 * Check for an entry in the cache before dropping
509 * lock and attempting allocation.
510 */
511 if (!nrg &&
512 resv->region_cache_count > resv->adds_in_progress) {
513 nrg = list_first_entry(&resv->region_cache,
514 struct file_region,
515 link);
516 list_del(&nrg->link);
517 resv->region_cache_count--;
518 }
96822904 519
feba16e2
MK
520 if (!nrg) {
521 spin_unlock(&resv->lock);
522 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523 if (!nrg)
524 return -ENOMEM;
525 goto retry;
526 }
527
528 del += t - f;
529
530 /* New entry for end of split region */
531 nrg->from = t;
532 nrg->to = rg->to;
533 INIT_LIST_HEAD(&nrg->link);
534
535 /* Original entry is trimmed */
536 rg->to = f;
537
538 list_add(&nrg->link, &rg->link);
539 nrg = NULL;
96822904 540 break;
feba16e2
MK
541 }
542
543 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544 del += rg->to - rg->from;
545 list_del(&rg->link);
546 kfree(rg);
547 continue;
548 }
549
550 if (f <= rg->from) { /* Trim beginning of region */
551 del += t - rg->from;
552 rg->from = t;
553 } else { /* Trim end of region */
554 del += rg->to - f;
555 rg->to = f;
556 }
96822904 557 }
7b24d861 558
7b24d861 559 spin_unlock(&resv->lock);
feba16e2
MK
560 kfree(nrg);
561 return del;
96822904
AW
562}
563
b5cec28d
MK
564/*
565 * A rare out of memory error was encountered which prevented removal of
566 * the reserve map region for a page. The huge page itself was free'ed
567 * and removed from the page cache. This routine will adjust the subpool
568 * usage count, and the global reserve count if needed. By incrementing
569 * these counts, the reserve map entry which could not be deleted will
570 * appear as a "reserved" entry instead of simply dangling with incorrect
571 * counts.
572 */
72e2936c 573void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
574{
575 struct hugepage_subpool *spool = subpool_inode(inode);
576 long rsv_adjust;
577
578 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 579 if (rsv_adjust) {
b5cec28d
MK
580 struct hstate *h = hstate_inode(inode);
581
582 hugetlb_acct_memory(h, 1);
583 }
584}
585
1dd308a7
MK
586/*
587 * Count and return the number of huge pages in the reserve map
588 * that intersect with the range [f, t).
589 */
1406ec9b 590static long region_count(struct resv_map *resv, long f, long t)
84afd99b 591{
1406ec9b 592 struct list_head *head = &resv->regions;
84afd99b
AW
593 struct file_region *rg;
594 long chg = 0;
595
7b24d861 596 spin_lock(&resv->lock);
84afd99b
AW
597 /* Locate each segment we overlap with, and count that overlap. */
598 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
599 long seg_from;
600 long seg_to;
84afd99b
AW
601
602 if (rg->to <= f)
603 continue;
604 if (rg->from >= t)
605 break;
606
607 seg_from = max(rg->from, f);
608 seg_to = min(rg->to, t);
609
610 chg += seg_to - seg_from;
611 }
7b24d861 612 spin_unlock(&resv->lock);
84afd99b
AW
613
614 return chg;
615}
616
e7c4b0bf
AW
617/*
618 * Convert the address within this vma to the page offset within
619 * the mapping, in pagecache page units; huge pages here.
620 */
a5516438
AK
621static pgoff_t vma_hugecache_offset(struct hstate *h,
622 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 623{
a5516438
AK
624 return ((address - vma->vm_start) >> huge_page_shift(h)) +
625 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
626}
627
0fe6e20b
NH
628pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629 unsigned long address)
630{
631 return vma_hugecache_offset(hstate_vma(vma), vma, address);
632}
dee41079 633EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 634
08fba699
MG
635/*
636 * Return the size of the pages allocated when backing a VMA. In the majority
637 * cases this will be same size as used by the page table entries.
638 */
639unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640{
05ea8860
DW
641 if (vma->vm_ops && vma->vm_ops->pagesize)
642 return vma->vm_ops->pagesize(vma);
643 return PAGE_SIZE;
08fba699 644}
f340ca0f 645EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 646
3340289d
MG
647/*
648 * Return the page size being used by the MMU to back a VMA. In the majority
649 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
650 * architectures where it differs, an architecture-specific 'strong'
651 * version of this symbol is required.
3340289d 652 */
09135cc5 653__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
654{
655 return vma_kernel_pagesize(vma);
656}
3340289d 657
84afd99b
AW
658/*
659 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
660 * bits of the reservation map pointer, which are always clear due to
661 * alignment.
662 */
663#define HPAGE_RESV_OWNER (1UL << 0)
664#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 665#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 666
a1e78772
MG
667/*
668 * These helpers are used to track how many pages are reserved for
669 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670 * is guaranteed to have their future faults succeed.
671 *
672 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673 * the reserve counters are updated with the hugetlb_lock held. It is safe
674 * to reset the VMA at fork() time as it is not in use yet and there is no
675 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
676 *
677 * The private mapping reservation is represented in a subtly different
678 * manner to a shared mapping. A shared mapping has a region map associated
679 * with the underlying file, this region map represents the backing file
680 * pages which have ever had a reservation assigned which this persists even
681 * after the page is instantiated. A private mapping has a region map
682 * associated with the original mmap which is attached to all VMAs which
683 * reference it, this region map represents those offsets which have consumed
684 * reservation ie. where pages have been instantiated.
a1e78772 685 */
e7c4b0bf
AW
686static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687{
688 return (unsigned long)vma->vm_private_data;
689}
690
691static void set_vma_private_data(struct vm_area_struct *vma,
692 unsigned long value)
693{
694 vma->vm_private_data = (void *)value;
695}
696
9119a41e 697struct resv_map *resv_map_alloc(void)
84afd99b
AW
698{
699 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
700 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701
702 if (!resv_map || !rg) {
703 kfree(resv_map);
704 kfree(rg);
84afd99b 705 return NULL;
5e911373 706 }
84afd99b
AW
707
708 kref_init(&resv_map->refs);
7b24d861 709 spin_lock_init(&resv_map->lock);
84afd99b
AW
710 INIT_LIST_HEAD(&resv_map->regions);
711
5e911373
MK
712 resv_map->adds_in_progress = 0;
713
714 INIT_LIST_HEAD(&resv_map->region_cache);
715 list_add(&rg->link, &resv_map->region_cache);
716 resv_map->region_cache_count = 1;
717
84afd99b
AW
718 return resv_map;
719}
720
9119a41e 721void resv_map_release(struct kref *ref)
84afd99b
AW
722{
723 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
724 struct list_head *head = &resv_map->region_cache;
725 struct file_region *rg, *trg;
84afd99b
AW
726
727 /* Clear out any active regions before we release the map. */
feba16e2 728 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
729
730 /* ... and any entries left in the cache */
731 list_for_each_entry_safe(rg, trg, head, link) {
732 list_del(&rg->link);
733 kfree(rg);
734 }
735
736 VM_BUG_ON(resv_map->adds_in_progress);
737
84afd99b
AW
738 kfree(resv_map);
739}
740
4e35f483
JK
741static inline struct resv_map *inode_resv_map(struct inode *inode)
742{
743 return inode->i_mapping->private_data;
744}
745
84afd99b 746static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 747{
81d1b09c 748 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
749 if (vma->vm_flags & VM_MAYSHARE) {
750 struct address_space *mapping = vma->vm_file->f_mapping;
751 struct inode *inode = mapping->host;
752
753 return inode_resv_map(inode);
754
755 } else {
84afd99b
AW
756 return (struct resv_map *)(get_vma_private_data(vma) &
757 ~HPAGE_RESV_MASK);
4e35f483 758 }
a1e78772
MG
759}
760
84afd99b 761static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 762{
81d1b09c
SL
763 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 765
84afd99b
AW
766 set_vma_private_data(vma, (get_vma_private_data(vma) &
767 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
768}
769
770static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771{
81d1b09c
SL
772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
774
775 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
776}
777
778static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779{
81d1b09c 780 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
781
782 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
783}
784
04f2cbe3 785/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
786void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787{
81d1b09c 788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 789 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
790 vma->vm_private_data = (void *)0;
791}
792
793/* Returns true if the VMA has associated reserve pages */
559ec2f8 794static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 795{
af0ed73e
JK
796 if (vma->vm_flags & VM_NORESERVE) {
797 /*
798 * This address is already reserved by other process(chg == 0),
799 * so, we should decrement reserved count. Without decrementing,
800 * reserve count remains after releasing inode, because this
801 * allocated page will go into page cache and is regarded as
802 * coming from reserved pool in releasing step. Currently, we
803 * don't have any other solution to deal with this situation
804 * properly, so add work-around here.
805 */
806 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 807 return true;
af0ed73e 808 else
559ec2f8 809 return false;
af0ed73e 810 }
a63884e9
JK
811
812 /* Shared mappings always use reserves */
1fb1b0e9
MK
813 if (vma->vm_flags & VM_MAYSHARE) {
814 /*
815 * We know VM_NORESERVE is not set. Therefore, there SHOULD
816 * be a region map for all pages. The only situation where
817 * there is no region map is if a hole was punched via
818 * fallocate. In this case, there really are no reverves to
819 * use. This situation is indicated if chg != 0.
820 */
821 if (chg)
822 return false;
823 else
824 return true;
825 }
a63884e9
JK
826
827 /*
828 * Only the process that called mmap() has reserves for
829 * private mappings.
830 */
67961f9d
MK
831 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
832 /*
833 * Like the shared case above, a hole punch or truncate
834 * could have been performed on the private mapping.
835 * Examine the value of chg to determine if reserves
836 * actually exist or were previously consumed.
837 * Very Subtle - The value of chg comes from a previous
838 * call to vma_needs_reserves(). The reserve map for
839 * private mappings has different (opposite) semantics
840 * than that of shared mappings. vma_needs_reserves()
841 * has already taken this difference in semantics into
842 * account. Therefore, the meaning of chg is the same
843 * as in the shared case above. Code could easily be
844 * combined, but keeping it separate draws attention to
845 * subtle differences.
846 */
847 if (chg)
848 return false;
849 else
850 return true;
851 }
a63884e9 852
559ec2f8 853 return false;
a1e78772
MG
854}
855
a5516438 856static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
857{
858 int nid = page_to_nid(page);
0edaecfa 859 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
860 h->free_huge_pages++;
861 h->free_huge_pages_node[nid]++;
1da177e4
LT
862}
863
94310cbc 864static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
865{
866 struct page *page;
867
c8721bbb 868 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 869 if (!PageHWPoison(page))
c8721bbb
NH
870 break;
871 /*
872 * if 'non-isolated free hugepage' not found on the list,
873 * the allocation fails.
874 */
875 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 876 return NULL;
0edaecfa 877 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 878 set_page_refcounted(page);
bf50bab2
NH
879 h->free_huge_pages--;
880 h->free_huge_pages_node[nid]--;
881 return page;
882}
883
3e59fcb0
MH
884static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
885 nodemask_t *nmask)
94310cbc 886{
3e59fcb0
MH
887 unsigned int cpuset_mems_cookie;
888 struct zonelist *zonelist;
889 struct zone *zone;
890 struct zoneref *z;
98fa15f3 891 int node = NUMA_NO_NODE;
94310cbc 892
3e59fcb0
MH
893 zonelist = node_zonelist(nid, gfp_mask);
894
895retry_cpuset:
896 cpuset_mems_cookie = read_mems_allowed_begin();
897 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
898 struct page *page;
899
900 if (!cpuset_zone_allowed(zone, gfp_mask))
901 continue;
902 /*
903 * no need to ask again on the same node. Pool is node rather than
904 * zone aware
905 */
906 if (zone_to_nid(zone) == node)
907 continue;
908 node = zone_to_nid(zone);
94310cbc 909
94310cbc
AK
910 page = dequeue_huge_page_node_exact(h, node);
911 if (page)
912 return page;
913 }
3e59fcb0
MH
914 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
915 goto retry_cpuset;
916
94310cbc
AK
917 return NULL;
918}
919
86cdb465
NH
920/* Movability of hugepages depends on migration support. */
921static inline gfp_t htlb_alloc_mask(struct hstate *h)
922{
7ed2c31d 923 if (hugepage_movable_supported(h))
86cdb465
NH
924 return GFP_HIGHUSER_MOVABLE;
925 else
926 return GFP_HIGHUSER;
927}
928
a5516438
AK
929static struct page *dequeue_huge_page_vma(struct hstate *h,
930 struct vm_area_struct *vma,
af0ed73e
JK
931 unsigned long address, int avoid_reserve,
932 long chg)
1da177e4 933{
3e59fcb0 934 struct page *page;
480eccf9 935 struct mempolicy *mpol;
04ec6264 936 gfp_t gfp_mask;
3e59fcb0 937 nodemask_t *nodemask;
04ec6264 938 int nid;
1da177e4 939
a1e78772
MG
940 /*
941 * A child process with MAP_PRIVATE mappings created by their parent
942 * have no page reserves. This check ensures that reservations are
943 * not "stolen". The child may still get SIGKILLed
944 */
af0ed73e 945 if (!vma_has_reserves(vma, chg) &&
a5516438 946 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 947 goto err;
a1e78772 948
04f2cbe3 949 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 950 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 951 goto err;
04f2cbe3 952
04ec6264
VB
953 gfp_mask = htlb_alloc_mask(h);
954 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
955 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
956 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
957 SetPagePrivate(page);
958 h->resv_huge_pages--;
1da177e4 959 }
cc9a6c87 960
52cd3b07 961 mpol_cond_put(mpol);
1da177e4 962 return page;
cc9a6c87
MG
963
964err:
cc9a6c87 965 return NULL;
1da177e4
LT
966}
967
1cac6f2c
LC
968/*
969 * common helper functions for hstate_next_node_to_{alloc|free}.
970 * We may have allocated or freed a huge page based on a different
971 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
972 * be outside of *nodes_allowed. Ensure that we use an allowed
973 * node for alloc or free.
974 */
975static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
976{
0edaf86c 977 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
978 VM_BUG_ON(nid >= MAX_NUMNODES);
979
980 return nid;
981}
982
983static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
984{
985 if (!node_isset(nid, *nodes_allowed))
986 nid = next_node_allowed(nid, nodes_allowed);
987 return nid;
988}
989
990/*
991 * returns the previously saved node ["this node"] from which to
992 * allocate a persistent huge page for the pool and advance the
993 * next node from which to allocate, handling wrap at end of node
994 * mask.
995 */
996static int hstate_next_node_to_alloc(struct hstate *h,
997 nodemask_t *nodes_allowed)
998{
999 int nid;
1000
1001 VM_BUG_ON(!nodes_allowed);
1002
1003 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1004 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1005
1006 return nid;
1007}
1008
1009/*
1010 * helper for free_pool_huge_page() - return the previously saved
1011 * node ["this node"] from which to free a huge page. Advance the
1012 * next node id whether or not we find a free huge page to free so
1013 * that the next attempt to free addresses the next node.
1014 */
1015static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1016{
1017 int nid;
1018
1019 VM_BUG_ON(!nodes_allowed);
1020
1021 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1022 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1023
1024 return nid;
1025}
1026
1027#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1028 for (nr_nodes = nodes_weight(*mask); \
1029 nr_nodes > 0 && \
1030 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1031 nr_nodes--)
1032
1033#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1034 for (nr_nodes = nodes_weight(*mask); \
1035 nr_nodes > 0 && \
1036 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1037 nr_nodes--)
1038
e1073d1e 1039#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1040static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1041 unsigned int order)
944d9fec
LC
1042{
1043 int i;
1044 int nr_pages = 1 << order;
1045 struct page *p = page + 1;
1046
c8cc708a 1047 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1048 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1049 clear_compound_head(p);
944d9fec 1050 set_page_refcounted(p);
944d9fec
LC
1051 }
1052
1053 set_compound_order(page, 0);
1054 __ClearPageHead(page);
1055}
1056
d00181b9 1057static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1058{
1059 free_contig_range(page_to_pfn(page), 1 << order);
1060}
1061
1062static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1063 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1064{
1065 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1066 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1067 gfp_mask);
944d9fec
LC
1068}
1069
f44b2dda
JK
1070static bool pfn_range_valid_gigantic(struct zone *z,
1071 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1072{
1073 unsigned long i, end_pfn = start_pfn + nr_pages;
1074 struct page *page;
1075
1076 for (i = start_pfn; i < end_pfn; i++) {
1077 if (!pfn_valid(i))
1078 return false;
1079
1080 page = pfn_to_page(i);
1081
f44b2dda
JK
1082 if (page_zone(page) != z)
1083 return false;
1084
944d9fec
LC
1085 if (PageReserved(page))
1086 return false;
1087
1088 if (page_count(page) > 0)
1089 return false;
1090
1091 if (PageHuge(page))
1092 return false;
1093 }
1094
1095 return true;
1096}
1097
1098static bool zone_spans_last_pfn(const struct zone *zone,
1099 unsigned long start_pfn, unsigned long nr_pages)
1100{
1101 unsigned long last_pfn = start_pfn + nr_pages - 1;
1102 return zone_spans_pfn(zone, last_pfn);
1103}
1104
d9cc948f
MH
1105static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1106 int nid, nodemask_t *nodemask)
944d9fec 1107{
79b63f12 1108 unsigned int order = huge_page_order(h);
944d9fec
LC
1109 unsigned long nr_pages = 1 << order;
1110 unsigned long ret, pfn, flags;
79b63f12
MH
1111 struct zonelist *zonelist;
1112 struct zone *zone;
1113 struct zoneref *z;
944d9fec 1114
79b63f12 1115 zonelist = node_zonelist(nid, gfp_mask);
d9cc948f 1116 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
79b63f12 1117 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1118
79b63f12
MH
1119 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1120 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1121 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1122 /*
1123 * We release the zone lock here because
1124 * alloc_contig_range() will also lock the zone
1125 * at some point. If there's an allocation
1126 * spinning on this lock, it may win the race
1127 * and cause alloc_contig_range() to fail...
1128 */
79b63f12
MH
1129 spin_unlock_irqrestore(&zone->lock, flags);
1130 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1131 if (!ret)
1132 return pfn_to_page(pfn);
79b63f12 1133 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1134 }
1135 pfn += nr_pages;
1136 }
1137
79b63f12 1138 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1139 }
1140
1141 return NULL;
1142}
1143
1144static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1145static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec 1146
e1073d1e 1147#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1148static inline bool gigantic_page_supported(void) { return false; }
d9cc948f
MH
1149static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1150 int nid, nodemask_t *nodemask) { return NULL; }
d00181b9 1151static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1152static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1153 unsigned int order) { }
944d9fec
LC
1154#endif
1155
a5516438 1156static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1157{
1158 int i;
a5516438 1159
944d9fec
LC
1160 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1161 return;
18229df5 1162
a5516438
AK
1163 h->nr_huge_pages--;
1164 h->nr_huge_pages_node[page_to_nid(page)]--;
1165 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1166 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1167 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1168 1 << PG_active | 1 << PG_private |
1169 1 << PG_writeback);
6af2acb6 1170 }
309381fe 1171 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1172 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1173 set_page_refcounted(page);
944d9fec
LC
1174 if (hstate_is_gigantic(h)) {
1175 destroy_compound_gigantic_page(page, huge_page_order(h));
1176 free_gigantic_page(page, huge_page_order(h));
1177 } else {
944d9fec
LC
1178 __free_pages(page, huge_page_order(h));
1179 }
6af2acb6
AL
1180}
1181
e5ff2159
AK
1182struct hstate *size_to_hstate(unsigned long size)
1183{
1184 struct hstate *h;
1185
1186 for_each_hstate(h) {
1187 if (huge_page_size(h) == size)
1188 return h;
1189 }
1190 return NULL;
1191}
1192
bcc54222
NH
1193/*
1194 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1195 * to hstate->hugepage_activelist.)
1196 *
1197 * This function can be called for tail pages, but never returns true for them.
1198 */
1199bool page_huge_active(struct page *page)
1200{
1201 VM_BUG_ON_PAGE(!PageHuge(page), page);
1202 return PageHead(page) && PagePrivate(&page[1]);
1203}
1204
1205/* never called for tail page */
1206static void set_page_huge_active(struct page *page)
1207{
1208 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1209 SetPagePrivate(&page[1]);
1210}
1211
1212static void clear_page_huge_active(struct page *page)
1213{
1214 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1215 ClearPagePrivate(&page[1]);
1216}
1217
ab5ac90a
MH
1218/*
1219 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1220 * code
1221 */
1222static inline bool PageHugeTemporary(struct page *page)
1223{
1224 if (!PageHuge(page))
1225 return false;
1226
1227 return (unsigned long)page[2].mapping == -1U;
1228}
1229
1230static inline void SetPageHugeTemporary(struct page *page)
1231{
1232 page[2].mapping = (void *)-1U;
1233}
1234
1235static inline void ClearPageHugeTemporary(struct page *page)
1236{
1237 page[2].mapping = NULL;
1238}
1239
8f1d26d0 1240void free_huge_page(struct page *page)
27a85ef1 1241{
a5516438
AK
1242 /*
1243 * Can't pass hstate in here because it is called from the
1244 * compound page destructor.
1245 */
e5ff2159 1246 struct hstate *h = page_hstate(page);
7893d1d5 1247 int nid = page_to_nid(page);
90481622
DG
1248 struct hugepage_subpool *spool =
1249 (struct hugepage_subpool *)page_private(page);
07443a85 1250 bool restore_reserve;
27a85ef1 1251
b4330afb
MK
1252 VM_BUG_ON_PAGE(page_count(page), page);
1253 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1254
1255 set_page_private(page, 0);
1256 page->mapping = NULL;
07443a85 1257 restore_reserve = PagePrivate(page);
16c794b4 1258 ClearPagePrivate(page);
27a85ef1 1259
1c5ecae3
MK
1260 /*
1261 * A return code of zero implies that the subpool will be under its
1262 * minimum size if the reservation is not restored after page is free.
1263 * Therefore, force restore_reserve operation.
1264 */
1265 if (hugepage_subpool_put_pages(spool, 1) == 0)
1266 restore_reserve = true;
1267
27a85ef1 1268 spin_lock(&hugetlb_lock);
bcc54222 1269 clear_page_huge_active(page);
6d76dcf4
AK
1270 hugetlb_cgroup_uncharge_page(hstate_index(h),
1271 pages_per_huge_page(h), page);
07443a85
JK
1272 if (restore_reserve)
1273 h->resv_huge_pages++;
1274
ab5ac90a
MH
1275 if (PageHugeTemporary(page)) {
1276 list_del(&page->lru);
1277 ClearPageHugeTemporary(page);
1278 update_and_free_page(h, page);
1279 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1280 /* remove the page from active list */
1281 list_del(&page->lru);
a5516438
AK
1282 update_and_free_page(h, page);
1283 h->surplus_huge_pages--;
1284 h->surplus_huge_pages_node[nid]--;
7893d1d5 1285 } else {
5d3a551c 1286 arch_clear_hugepage_flags(page);
a5516438 1287 enqueue_huge_page(h, page);
7893d1d5 1288 }
27a85ef1
DG
1289 spin_unlock(&hugetlb_lock);
1290}
1291
a5516438 1292static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1293{
0edaecfa 1294 INIT_LIST_HEAD(&page->lru);
f1e61557 1295 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1296 spin_lock(&hugetlb_lock);
9dd540e2 1297 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1298 h->nr_huge_pages++;
1299 h->nr_huge_pages_node[nid]++;
b7ba30c6 1300 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1301}
1302
d00181b9 1303static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1304{
1305 int i;
1306 int nr_pages = 1 << order;
1307 struct page *p = page + 1;
1308
1309 /* we rely on prep_new_huge_page to set the destructor */
1310 set_compound_order(page, order);
ef5a22be 1311 __ClearPageReserved(page);
de09d31d 1312 __SetPageHead(page);
20a0307c 1313 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1314 /*
1315 * For gigantic hugepages allocated through bootmem at
1316 * boot, it's safer to be consistent with the not-gigantic
1317 * hugepages and clear the PG_reserved bit from all tail pages
1318 * too. Otherwse drivers using get_user_pages() to access tail
1319 * pages may get the reference counting wrong if they see
1320 * PG_reserved set on a tail page (despite the head page not
1321 * having PG_reserved set). Enforcing this consistency between
1322 * head and tail pages allows drivers to optimize away a check
1323 * on the head page when they need know if put_page() is needed
1324 * after get_user_pages().
1325 */
1326 __ClearPageReserved(p);
58a84aa9 1327 set_page_count(p, 0);
1d798ca3 1328 set_compound_head(p, page);
20a0307c 1329 }
b4330afb 1330 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1331}
1332
7795912c
AM
1333/*
1334 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1335 * transparent huge pages. See the PageTransHuge() documentation for more
1336 * details.
1337 */
20a0307c
WF
1338int PageHuge(struct page *page)
1339{
20a0307c
WF
1340 if (!PageCompound(page))
1341 return 0;
1342
1343 page = compound_head(page);
f1e61557 1344 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1345}
43131e14
NH
1346EXPORT_SYMBOL_GPL(PageHuge);
1347
27c73ae7
AA
1348/*
1349 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1350 * normal or transparent huge pages.
1351 */
1352int PageHeadHuge(struct page *page_head)
1353{
27c73ae7
AA
1354 if (!PageHead(page_head))
1355 return 0;
1356
758f66a2 1357 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1358}
27c73ae7 1359
13d60f4b
ZY
1360pgoff_t __basepage_index(struct page *page)
1361{
1362 struct page *page_head = compound_head(page);
1363 pgoff_t index = page_index(page_head);
1364 unsigned long compound_idx;
1365
1366 if (!PageHuge(page_head))
1367 return page_index(page);
1368
1369 if (compound_order(page_head) >= MAX_ORDER)
1370 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1371 else
1372 compound_idx = page - page_head;
1373
1374 return (index << compound_order(page_head)) + compound_idx;
1375}
1376
0c397dae 1377static struct page *alloc_buddy_huge_page(struct hstate *h,
af0fb9df 1378 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1da177e4 1379{
af0fb9df 1380 int order = huge_page_order(h);
1da177e4 1381 struct page *page;
f96efd58 1382
af0fb9df
MH
1383 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1384 if (nid == NUMA_NO_NODE)
1385 nid = numa_mem_id();
1386 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1387 if (page)
1388 __count_vm_event(HTLB_BUDDY_PGALLOC);
1389 else
1390 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c
NA
1391
1392 return page;
1393}
1394
0c397dae
MH
1395/*
1396 * Common helper to allocate a fresh hugetlb page. All specific allocators
1397 * should use this function to get new hugetlb pages
1398 */
1399static struct page *alloc_fresh_huge_page(struct hstate *h,
1400 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1401{
1402 struct page *page;
1403
1404 if (hstate_is_gigantic(h))
1405 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1406 else
1407 page = alloc_buddy_huge_page(h, gfp_mask,
1408 nid, nmask);
1409 if (!page)
1410 return NULL;
1411
1412 if (hstate_is_gigantic(h))
1413 prep_compound_gigantic_page(page, huge_page_order(h));
1414 prep_new_huge_page(h, page, page_to_nid(page));
1415
1416 return page;
1417}
1418
af0fb9df
MH
1419/*
1420 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1421 * manner.
1422 */
0c397dae 1423static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
b2261026
JK
1424{
1425 struct page *page;
1426 int nr_nodes, node;
af0fb9df 1427 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1428
1429 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
0c397dae 1430 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
af0fb9df 1431 if (page)
b2261026 1432 break;
b2261026
JK
1433 }
1434
af0fb9df
MH
1435 if (!page)
1436 return 0;
b2261026 1437
af0fb9df
MH
1438 put_page(page); /* free it into the hugepage allocator */
1439
1440 return 1;
b2261026
JK
1441}
1442
e8c5c824
LS
1443/*
1444 * Free huge page from pool from next node to free.
1445 * Attempt to keep persistent huge pages more or less
1446 * balanced over allowed nodes.
1447 * Called with hugetlb_lock locked.
1448 */
6ae11b27
LS
1449static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1450 bool acct_surplus)
e8c5c824 1451{
b2261026 1452 int nr_nodes, node;
e8c5c824
LS
1453 int ret = 0;
1454
b2261026 1455 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1456 /*
1457 * If we're returning unused surplus pages, only examine
1458 * nodes with surplus pages.
1459 */
b2261026
JK
1460 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1461 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1462 struct page *page =
b2261026 1463 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1464 struct page, lru);
1465 list_del(&page->lru);
1466 h->free_huge_pages--;
b2261026 1467 h->free_huge_pages_node[node]--;
685f3457
LS
1468 if (acct_surplus) {
1469 h->surplus_huge_pages--;
b2261026 1470 h->surplus_huge_pages_node[node]--;
685f3457 1471 }
e8c5c824
LS
1472 update_and_free_page(h, page);
1473 ret = 1;
9a76db09 1474 break;
e8c5c824 1475 }
b2261026 1476 }
e8c5c824
LS
1477
1478 return ret;
1479}
1480
c8721bbb
NH
1481/*
1482 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b 1483 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
6bc9b564
NH
1484 * dissolution fails because a give page is not a free hugepage, or because
1485 * free hugepages are fully reserved.
c8721bbb 1486 */
c3114a84 1487int dissolve_free_huge_page(struct page *page)
c8721bbb 1488{
6bc9b564 1489 int rc = -EBUSY;
082d5b6b 1490
c8721bbb
NH
1491 spin_lock(&hugetlb_lock);
1492 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1493 struct page *head = compound_head(page);
1494 struct hstate *h = page_hstate(head);
1495 int nid = page_to_nid(head);
6bc9b564 1496 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1497 goto out;
c3114a84
AK
1498 /*
1499 * Move PageHWPoison flag from head page to the raw error page,
1500 * which makes any subpages rather than the error page reusable.
1501 */
1502 if (PageHWPoison(head) && page != head) {
1503 SetPageHWPoison(page);
1504 ClearPageHWPoison(head);
1505 }
2247bb33 1506 list_del(&head->lru);
c8721bbb
NH
1507 h->free_huge_pages--;
1508 h->free_huge_pages_node[nid]--;
c1470b33 1509 h->max_huge_pages--;
2247bb33 1510 update_and_free_page(h, head);
6bc9b564 1511 rc = 0;
c8721bbb 1512 }
082d5b6b 1513out:
c8721bbb 1514 spin_unlock(&hugetlb_lock);
082d5b6b 1515 return rc;
c8721bbb
NH
1516}
1517
1518/*
1519 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1520 * make specified memory blocks removable from the system.
2247bb33
GS
1521 * Note that this will dissolve a free gigantic hugepage completely, if any
1522 * part of it lies within the given range.
082d5b6b
GS
1523 * Also note that if dissolve_free_huge_page() returns with an error, all
1524 * free hugepages that were dissolved before that error are lost.
c8721bbb 1525 */
082d5b6b 1526int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1527{
c8721bbb 1528 unsigned long pfn;
eb03aa00 1529 struct page *page;
082d5b6b 1530 int rc = 0;
c8721bbb 1531
d0177639 1532 if (!hugepages_supported())
082d5b6b 1533 return rc;
d0177639 1534
eb03aa00
GS
1535 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1536 page = pfn_to_page(pfn);
1537 if (PageHuge(page) && !page_count(page)) {
1538 rc = dissolve_free_huge_page(page);
1539 if (rc)
1540 break;
1541 }
1542 }
082d5b6b
GS
1543
1544 return rc;
c8721bbb
NH
1545}
1546
ab5ac90a
MH
1547/*
1548 * Allocates a fresh surplus page from the page allocator.
1549 */
0c397dae 1550static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1551 int nid, nodemask_t *nmask)
7893d1d5 1552{
9980d744 1553 struct page *page = NULL;
7893d1d5 1554
bae7f4ae 1555 if (hstate_is_gigantic(h))
aa888a74
AK
1556 return NULL;
1557
d1c3fb1f 1558 spin_lock(&hugetlb_lock);
9980d744
MH
1559 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1560 goto out_unlock;
d1c3fb1f
NA
1561 spin_unlock(&hugetlb_lock);
1562
0c397dae 1563 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
9980d744 1564 if (!page)
0c397dae 1565 return NULL;
d1c3fb1f
NA
1566
1567 spin_lock(&hugetlb_lock);
9980d744
MH
1568 /*
1569 * We could have raced with the pool size change.
1570 * Double check that and simply deallocate the new page
1571 * if we would end up overcommiting the surpluses. Abuse
1572 * temporary page to workaround the nasty free_huge_page
1573 * codeflow
1574 */
1575 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1576 SetPageHugeTemporary(page);
1577 put_page(page);
1578 page = NULL;
1579 } else {
9980d744 1580 h->surplus_huge_pages++;
4704dea3 1581 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1582 }
9980d744
MH
1583
1584out_unlock:
d1c3fb1f 1585 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1586
1587 return page;
1588}
1589
9a4e9f3b
AK
1590struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1591 int nid, nodemask_t *nmask)
ab5ac90a
MH
1592{
1593 struct page *page;
1594
1595 if (hstate_is_gigantic(h))
1596 return NULL;
1597
0c397dae 1598 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
ab5ac90a
MH
1599 if (!page)
1600 return NULL;
1601
1602 /*
1603 * We do not account these pages as surplus because they are only
1604 * temporary and will be released properly on the last reference
1605 */
ab5ac90a
MH
1606 SetPageHugeTemporary(page);
1607
1608 return page;
1609}
1610
099730d6
DH
1611/*
1612 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1613 */
e0ec90ee 1614static
0c397dae 1615struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1616 struct vm_area_struct *vma, unsigned long addr)
1617{
aaf14e40
MH
1618 struct page *page;
1619 struct mempolicy *mpol;
1620 gfp_t gfp_mask = htlb_alloc_mask(h);
1621 int nid;
1622 nodemask_t *nodemask;
1623
1624 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1625 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1626 mpol_cond_put(mpol);
1627
1628 return page;
099730d6
DH
1629}
1630
ab5ac90a 1631/* page migration callback function */
bf50bab2
NH
1632struct page *alloc_huge_page_node(struct hstate *h, int nid)
1633{
aaf14e40 1634 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1635 struct page *page = NULL;
bf50bab2 1636
aaf14e40
MH
1637 if (nid != NUMA_NO_NODE)
1638 gfp_mask |= __GFP_THISNODE;
1639
bf50bab2 1640 spin_lock(&hugetlb_lock);
4ef91848 1641 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1642 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1643 spin_unlock(&hugetlb_lock);
1644
94ae8ba7 1645 if (!page)
0c397dae 1646 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1647
1648 return page;
1649}
1650
ab5ac90a 1651/* page migration callback function */
3e59fcb0
MH
1652struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1653 nodemask_t *nmask)
4db9b2ef 1654{
aaf14e40 1655 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1656
1657 spin_lock(&hugetlb_lock);
1658 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1659 struct page *page;
1660
1661 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1662 if (page) {
1663 spin_unlock(&hugetlb_lock);
1664 return page;
4db9b2ef
MH
1665 }
1666 }
1667 spin_unlock(&hugetlb_lock);
4db9b2ef 1668
0c397dae 1669 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1670}
1671
ebd63723 1672/* mempolicy aware migration callback */
389c8178
MH
1673struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1674 unsigned long address)
ebd63723
MH
1675{
1676 struct mempolicy *mpol;
1677 nodemask_t *nodemask;
1678 struct page *page;
ebd63723
MH
1679 gfp_t gfp_mask;
1680 int node;
1681
ebd63723
MH
1682 gfp_mask = htlb_alloc_mask(h);
1683 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1684 page = alloc_huge_page_nodemask(h, node, nodemask);
1685 mpol_cond_put(mpol);
1686
1687 return page;
1688}
1689
e4e574b7 1690/*
25985edc 1691 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1692 * of size 'delta'.
1693 */
a5516438 1694static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1695{
1696 struct list_head surplus_list;
1697 struct page *page, *tmp;
1698 int ret, i;
1699 int needed, allocated;
28073b02 1700 bool alloc_ok = true;
e4e574b7 1701
a5516438 1702 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1703 if (needed <= 0) {
a5516438 1704 h->resv_huge_pages += delta;
e4e574b7 1705 return 0;
ac09b3a1 1706 }
e4e574b7
AL
1707
1708 allocated = 0;
1709 INIT_LIST_HEAD(&surplus_list);
1710
1711 ret = -ENOMEM;
1712retry:
1713 spin_unlock(&hugetlb_lock);
1714 for (i = 0; i < needed; i++) {
0c397dae 1715 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1716 NUMA_NO_NODE, NULL);
28073b02
HD
1717 if (!page) {
1718 alloc_ok = false;
1719 break;
1720 }
e4e574b7 1721 list_add(&page->lru, &surplus_list);
69ed779a 1722 cond_resched();
e4e574b7 1723 }
28073b02 1724 allocated += i;
e4e574b7
AL
1725
1726 /*
1727 * After retaking hugetlb_lock, we need to recalculate 'needed'
1728 * because either resv_huge_pages or free_huge_pages may have changed.
1729 */
1730 spin_lock(&hugetlb_lock);
a5516438
AK
1731 needed = (h->resv_huge_pages + delta) -
1732 (h->free_huge_pages + allocated);
28073b02
HD
1733 if (needed > 0) {
1734 if (alloc_ok)
1735 goto retry;
1736 /*
1737 * We were not able to allocate enough pages to
1738 * satisfy the entire reservation so we free what
1739 * we've allocated so far.
1740 */
1741 goto free;
1742 }
e4e574b7
AL
1743 /*
1744 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1745 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1746 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1747 * allocator. Commit the entire reservation here to prevent another
1748 * process from stealing the pages as they are added to the pool but
1749 * before they are reserved.
e4e574b7
AL
1750 */
1751 needed += allocated;
a5516438 1752 h->resv_huge_pages += delta;
e4e574b7 1753 ret = 0;
a9869b83 1754
19fc3f0a 1755 /* Free the needed pages to the hugetlb pool */
e4e574b7 1756 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1757 if ((--needed) < 0)
1758 break;
a9869b83
NH
1759 /*
1760 * This page is now managed by the hugetlb allocator and has
1761 * no users -- drop the buddy allocator's reference.
1762 */
1763 put_page_testzero(page);
309381fe 1764 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1765 enqueue_huge_page(h, page);
19fc3f0a 1766 }
28073b02 1767free:
b0365c8d 1768 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1769
1770 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1771 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1772 put_page(page);
a9869b83 1773 spin_lock(&hugetlb_lock);
e4e574b7
AL
1774
1775 return ret;
1776}
1777
1778/*
e5bbc8a6
MK
1779 * This routine has two main purposes:
1780 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1781 * in unused_resv_pages. This corresponds to the prior adjustments made
1782 * to the associated reservation map.
1783 * 2) Free any unused surplus pages that may have been allocated to satisfy
1784 * the reservation. As many as unused_resv_pages may be freed.
1785 *
1786 * Called with hugetlb_lock held. However, the lock could be dropped (and
1787 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1788 * we must make sure nobody else can claim pages we are in the process of
1789 * freeing. Do this by ensuring resv_huge_page always is greater than the
1790 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1791 */
a5516438
AK
1792static void return_unused_surplus_pages(struct hstate *h,
1793 unsigned long unused_resv_pages)
e4e574b7 1794{
e4e574b7
AL
1795 unsigned long nr_pages;
1796
aa888a74 1797 /* Cannot return gigantic pages currently */
bae7f4ae 1798 if (hstate_is_gigantic(h))
e5bbc8a6 1799 goto out;
aa888a74 1800
e5bbc8a6
MK
1801 /*
1802 * Part (or even all) of the reservation could have been backed
1803 * by pre-allocated pages. Only free surplus pages.
1804 */
a5516438 1805 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1806
685f3457
LS
1807 /*
1808 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1809 * evenly across all nodes with memory. Iterate across these nodes
1810 * until we can no longer free unreserved surplus pages. This occurs
1811 * when the nodes with surplus pages have no free pages.
1812 * free_pool_huge_page() will balance the the freed pages across the
1813 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1814 *
1815 * Note that we decrement resv_huge_pages as we free the pages. If
1816 * we drop the lock, resv_huge_pages will still be sufficiently large
1817 * to cover subsequent pages we may free.
685f3457
LS
1818 */
1819 while (nr_pages--) {
e5bbc8a6
MK
1820 h->resv_huge_pages--;
1821 unused_resv_pages--;
8cebfcd0 1822 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1823 goto out;
7848a4bf 1824 cond_resched_lock(&hugetlb_lock);
e4e574b7 1825 }
e5bbc8a6
MK
1826
1827out:
1828 /* Fully uncommit the reservation */
1829 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1830}
1831
5e911373 1832
c37f9fb1 1833/*
feba16e2 1834 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1835 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1836 *
1837 * vma_needs_reservation is called to determine if the huge page at addr
1838 * within the vma has an associated reservation. If a reservation is
1839 * needed, the value 1 is returned. The caller is then responsible for
1840 * managing the global reservation and subpool usage counts. After
1841 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1842 * to add the page to the reservation map. If the page allocation fails,
1843 * the reservation must be ended instead of committed. vma_end_reservation
1844 * is called in such cases.
cf3ad20b
MK
1845 *
1846 * In the normal case, vma_commit_reservation returns the same value
1847 * as the preceding vma_needs_reservation call. The only time this
1848 * is not the case is if a reserve map was changed between calls. It
1849 * is the responsibility of the caller to notice the difference and
1850 * take appropriate action.
96b96a96
MK
1851 *
1852 * vma_add_reservation is used in error paths where a reservation must
1853 * be restored when a newly allocated huge page must be freed. It is
1854 * to be called after calling vma_needs_reservation to determine if a
1855 * reservation exists.
c37f9fb1 1856 */
5e911373
MK
1857enum vma_resv_mode {
1858 VMA_NEEDS_RESV,
1859 VMA_COMMIT_RESV,
feba16e2 1860 VMA_END_RESV,
96b96a96 1861 VMA_ADD_RESV,
5e911373 1862};
cf3ad20b
MK
1863static long __vma_reservation_common(struct hstate *h,
1864 struct vm_area_struct *vma, unsigned long addr,
5e911373 1865 enum vma_resv_mode mode)
c37f9fb1 1866{
4e35f483
JK
1867 struct resv_map *resv;
1868 pgoff_t idx;
cf3ad20b 1869 long ret;
c37f9fb1 1870
4e35f483
JK
1871 resv = vma_resv_map(vma);
1872 if (!resv)
84afd99b 1873 return 1;
c37f9fb1 1874
4e35f483 1875 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1876 switch (mode) {
1877 case VMA_NEEDS_RESV:
cf3ad20b 1878 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1879 break;
1880 case VMA_COMMIT_RESV:
1881 ret = region_add(resv, idx, idx + 1);
1882 break;
feba16e2 1883 case VMA_END_RESV:
5e911373
MK
1884 region_abort(resv, idx, idx + 1);
1885 ret = 0;
1886 break;
96b96a96
MK
1887 case VMA_ADD_RESV:
1888 if (vma->vm_flags & VM_MAYSHARE)
1889 ret = region_add(resv, idx, idx + 1);
1890 else {
1891 region_abort(resv, idx, idx + 1);
1892 ret = region_del(resv, idx, idx + 1);
1893 }
1894 break;
5e911373
MK
1895 default:
1896 BUG();
1897 }
84afd99b 1898
4e35f483 1899 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1900 return ret;
67961f9d
MK
1901 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1902 /*
1903 * In most cases, reserves always exist for private mappings.
1904 * However, a file associated with mapping could have been
1905 * hole punched or truncated after reserves were consumed.
1906 * As subsequent fault on such a range will not use reserves.
1907 * Subtle - The reserve map for private mappings has the
1908 * opposite meaning than that of shared mappings. If NO
1909 * entry is in the reserve map, it means a reservation exists.
1910 * If an entry exists in the reserve map, it means the
1911 * reservation has already been consumed. As a result, the
1912 * return value of this routine is the opposite of the
1913 * value returned from reserve map manipulation routines above.
1914 */
1915 if (ret)
1916 return 0;
1917 else
1918 return 1;
1919 }
4e35f483 1920 else
cf3ad20b 1921 return ret < 0 ? ret : 0;
c37f9fb1 1922}
cf3ad20b
MK
1923
1924static long vma_needs_reservation(struct hstate *h,
a5516438 1925 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1926{
5e911373 1927 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1928}
84afd99b 1929
cf3ad20b
MK
1930static long vma_commit_reservation(struct hstate *h,
1931 struct vm_area_struct *vma, unsigned long addr)
1932{
5e911373
MK
1933 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1934}
1935
feba16e2 1936static void vma_end_reservation(struct hstate *h,
5e911373
MK
1937 struct vm_area_struct *vma, unsigned long addr)
1938{
feba16e2 1939 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1940}
1941
96b96a96
MK
1942static long vma_add_reservation(struct hstate *h,
1943 struct vm_area_struct *vma, unsigned long addr)
1944{
1945 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1946}
1947
1948/*
1949 * This routine is called to restore a reservation on error paths. In the
1950 * specific error paths, a huge page was allocated (via alloc_huge_page)
1951 * and is about to be freed. If a reservation for the page existed,
1952 * alloc_huge_page would have consumed the reservation and set PagePrivate
1953 * in the newly allocated page. When the page is freed via free_huge_page,
1954 * the global reservation count will be incremented if PagePrivate is set.
1955 * However, free_huge_page can not adjust the reserve map. Adjust the
1956 * reserve map here to be consistent with global reserve count adjustments
1957 * to be made by free_huge_page.
1958 */
1959static void restore_reserve_on_error(struct hstate *h,
1960 struct vm_area_struct *vma, unsigned long address,
1961 struct page *page)
1962{
1963 if (unlikely(PagePrivate(page))) {
1964 long rc = vma_needs_reservation(h, vma, address);
1965
1966 if (unlikely(rc < 0)) {
1967 /*
1968 * Rare out of memory condition in reserve map
1969 * manipulation. Clear PagePrivate so that
1970 * global reserve count will not be incremented
1971 * by free_huge_page. This will make it appear
1972 * as though the reservation for this page was
1973 * consumed. This may prevent the task from
1974 * faulting in the page at a later time. This
1975 * is better than inconsistent global huge page
1976 * accounting of reserve counts.
1977 */
1978 ClearPagePrivate(page);
1979 } else if (rc) {
1980 rc = vma_add_reservation(h, vma, address);
1981 if (unlikely(rc < 0))
1982 /*
1983 * See above comment about rare out of
1984 * memory condition.
1985 */
1986 ClearPagePrivate(page);
1987 } else
1988 vma_end_reservation(h, vma, address);
1989 }
1990}
1991
70c3547e 1992struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1993 unsigned long addr, int avoid_reserve)
1da177e4 1994{
90481622 1995 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1996 struct hstate *h = hstate_vma(vma);
348ea204 1997 struct page *page;
d85f69b0
MK
1998 long map_chg, map_commit;
1999 long gbl_chg;
6d76dcf4
AK
2000 int ret, idx;
2001 struct hugetlb_cgroup *h_cg;
a1e78772 2002
6d76dcf4 2003 idx = hstate_index(h);
a1e78772 2004 /*
d85f69b0
MK
2005 * Examine the region/reserve map to determine if the process
2006 * has a reservation for the page to be allocated. A return
2007 * code of zero indicates a reservation exists (no change).
a1e78772 2008 */
d85f69b0
MK
2009 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2010 if (map_chg < 0)
76dcee75 2011 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2012
2013 /*
2014 * Processes that did not create the mapping will have no
2015 * reserves as indicated by the region/reserve map. Check
2016 * that the allocation will not exceed the subpool limit.
2017 * Allocations for MAP_NORESERVE mappings also need to be
2018 * checked against any subpool limit.
2019 */
2020 if (map_chg || avoid_reserve) {
2021 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2022 if (gbl_chg < 0) {
feba16e2 2023 vma_end_reservation(h, vma, addr);
76dcee75 2024 return ERR_PTR(-ENOSPC);
5e911373 2025 }
1da177e4 2026
d85f69b0
MK
2027 /*
2028 * Even though there was no reservation in the region/reserve
2029 * map, there could be reservations associated with the
2030 * subpool that can be used. This would be indicated if the
2031 * return value of hugepage_subpool_get_pages() is zero.
2032 * However, if avoid_reserve is specified we still avoid even
2033 * the subpool reservations.
2034 */
2035 if (avoid_reserve)
2036 gbl_chg = 1;
2037 }
2038
6d76dcf4 2039 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2040 if (ret)
2041 goto out_subpool_put;
2042
1da177e4 2043 spin_lock(&hugetlb_lock);
d85f69b0
MK
2044 /*
2045 * glb_chg is passed to indicate whether or not a page must be taken
2046 * from the global free pool (global change). gbl_chg == 0 indicates
2047 * a reservation exists for the allocation.
2048 */
2049 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2050 if (!page) {
94ae8ba7 2051 spin_unlock(&hugetlb_lock);
0c397dae 2052 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2053 if (!page)
2054 goto out_uncharge_cgroup;
a88c7695
NH
2055 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2056 SetPagePrivate(page);
2057 h->resv_huge_pages--;
2058 }
79dbb236
AK
2059 spin_lock(&hugetlb_lock);
2060 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2061 /* Fall through */
68842c9b 2062 }
81a6fcae
JK
2063 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2064 spin_unlock(&hugetlb_lock);
348ea204 2065
90481622 2066 set_page_private(page, (unsigned long)spool);
90d8b7e6 2067
d85f69b0
MK
2068 map_commit = vma_commit_reservation(h, vma, addr);
2069 if (unlikely(map_chg > map_commit)) {
33039678
MK
2070 /*
2071 * The page was added to the reservation map between
2072 * vma_needs_reservation and vma_commit_reservation.
2073 * This indicates a race with hugetlb_reserve_pages.
2074 * Adjust for the subpool count incremented above AND
2075 * in hugetlb_reserve_pages for the same page. Also,
2076 * the reservation count added in hugetlb_reserve_pages
2077 * no longer applies.
2078 */
2079 long rsv_adjust;
2080
2081 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2082 hugetlb_acct_memory(h, -rsv_adjust);
2083 }
90d8b7e6 2084 return page;
8f34af6f
JZ
2085
2086out_uncharge_cgroup:
2087 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2088out_subpool_put:
d85f69b0 2089 if (map_chg || avoid_reserve)
8f34af6f 2090 hugepage_subpool_put_pages(spool, 1);
feba16e2 2091 vma_end_reservation(h, vma, addr);
8f34af6f 2092 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2093}
2094
e24a1307
AK
2095int alloc_bootmem_huge_page(struct hstate *h)
2096 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2097int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2098{
2099 struct huge_bootmem_page *m;
b2261026 2100 int nr_nodes, node;
aa888a74 2101
b2261026 2102 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2103 void *addr;
2104
eb31d559 2105 addr = memblock_alloc_try_nid_raw(
8b89a116 2106 huge_page_size(h), huge_page_size(h),
97ad1087 2107 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2108 if (addr) {
2109 /*
2110 * Use the beginning of the huge page to store the
2111 * huge_bootmem_page struct (until gather_bootmem
2112 * puts them into the mem_map).
2113 */
2114 m = addr;
91f47662 2115 goto found;
aa888a74 2116 }
aa888a74
AK
2117 }
2118 return 0;
2119
2120found:
df994ead 2121 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2122 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2123 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2124 list_add(&m->list, &huge_boot_pages);
2125 m->hstate = h;
2126 return 1;
2127}
2128
d00181b9
KS
2129static void __init prep_compound_huge_page(struct page *page,
2130 unsigned int order)
18229df5
AW
2131{
2132 if (unlikely(order > (MAX_ORDER - 1)))
2133 prep_compound_gigantic_page(page, order);
2134 else
2135 prep_compound_page(page, order);
2136}
2137
aa888a74
AK
2138/* Put bootmem huge pages into the standard lists after mem_map is up */
2139static void __init gather_bootmem_prealloc(void)
2140{
2141 struct huge_bootmem_page *m;
2142
2143 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2144 struct page *page = virt_to_page(m);
aa888a74 2145 struct hstate *h = m->hstate;
ee8f248d 2146
aa888a74 2147 WARN_ON(page_count(page) != 1);
18229df5 2148 prep_compound_huge_page(page, h->order);
ef5a22be 2149 WARN_ON(PageReserved(page));
aa888a74 2150 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2151 put_page(page); /* free it into the hugepage allocator */
2152
b0320c7b
RA
2153 /*
2154 * If we had gigantic hugepages allocated at boot time, we need
2155 * to restore the 'stolen' pages to totalram_pages in order to
2156 * fix confusing memory reports from free(1) and another
2157 * side-effects, like CommitLimit going negative.
2158 */
bae7f4ae 2159 if (hstate_is_gigantic(h))
3dcc0571 2160 adjust_managed_page_count(page, 1 << h->order);
520495fe 2161 cond_resched();
aa888a74
AK
2162 }
2163}
2164
8faa8b07 2165static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2166{
2167 unsigned long i;
a5516438 2168
e5ff2159 2169 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2170 if (hstate_is_gigantic(h)) {
aa888a74
AK
2171 if (!alloc_bootmem_huge_page(h))
2172 break;
0c397dae 2173 } else if (!alloc_pool_huge_page(h,
8cebfcd0 2174 &node_states[N_MEMORY]))
1da177e4 2175 break;
69ed779a 2176 cond_resched();
1da177e4 2177 }
d715cf80
LH
2178 if (i < h->max_huge_pages) {
2179 char buf[32];
2180
c6247f72 2181 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2182 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2183 h->max_huge_pages, buf, i);
2184 h->max_huge_pages = i;
2185 }
e5ff2159
AK
2186}
2187
2188static void __init hugetlb_init_hstates(void)
2189{
2190 struct hstate *h;
2191
2192 for_each_hstate(h) {
641844f5
NH
2193 if (minimum_order > huge_page_order(h))
2194 minimum_order = huge_page_order(h);
2195
8faa8b07 2196 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2197 if (!hstate_is_gigantic(h))
8faa8b07 2198 hugetlb_hstate_alloc_pages(h);
e5ff2159 2199 }
641844f5 2200 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2201}
2202
2203static void __init report_hugepages(void)
2204{
2205 struct hstate *h;
2206
2207 for_each_hstate(h) {
4abd32db 2208 char buf[32];
c6247f72
MW
2209
2210 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2211 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2212 buf, h->free_huge_pages);
e5ff2159
AK
2213 }
2214}
2215
1da177e4 2216#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2217static void try_to_free_low(struct hstate *h, unsigned long count,
2218 nodemask_t *nodes_allowed)
1da177e4 2219{
4415cc8d
CL
2220 int i;
2221
bae7f4ae 2222 if (hstate_is_gigantic(h))
aa888a74
AK
2223 return;
2224
6ae11b27 2225 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2226 struct page *page, *next;
a5516438
AK
2227 struct list_head *freel = &h->hugepage_freelists[i];
2228 list_for_each_entry_safe(page, next, freel, lru) {
2229 if (count >= h->nr_huge_pages)
6b0c880d 2230 return;
1da177e4
LT
2231 if (PageHighMem(page))
2232 continue;
2233 list_del(&page->lru);
e5ff2159 2234 update_and_free_page(h, page);
a5516438
AK
2235 h->free_huge_pages--;
2236 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2237 }
2238 }
2239}
2240#else
6ae11b27
LS
2241static inline void try_to_free_low(struct hstate *h, unsigned long count,
2242 nodemask_t *nodes_allowed)
1da177e4
LT
2243{
2244}
2245#endif
2246
20a0307c
WF
2247/*
2248 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2249 * balanced by operating on them in a round-robin fashion.
2250 * Returns 1 if an adjustment was made.
2251 */
6ae11b27
LS
2252static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2253 int delta)
20a0307c 2254{
b2261026 2255 int nr_nodes, node;
20a0307c
WF
2256
2257 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2258
b2261026
JK
2259 if (delta < 0) {
2260 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2261 if (h->surplus_huge_pages_node[node])
2262 goto found;
e8c5c824 2263 }
b2261026
JK
2264 } else {
2265 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2266 if (h->surplus_huge_pages_node[node] <
2267 h->nr_huge_pages_node[node])
2268 goto found;
e8c5c824 2269 }
b2261026
JK
2270 }
2271 return 0;
20a0307c 2272
b2261026
JK
2273found:
2274 h->surplus_huge_pages += delta;
2275 h->surplus_huge_pages_node[node] += delta;
2276 return 1;
20a0307c
WF
2277}
2278
a5516438 2279#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2280static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2281 nodemask_t *nodes_allowed)
1da177e4 2282{
7893d1d5 2283 unsigned long min_count, ret;
1da177e4 2284
944d9fec 2285 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2286 return h->max_huge_pages;
2287
7893d1d5
AL
2288 /*
2289 * Increase the pool size
2290 * First take pages out of surplus state. Then make up the
2291 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2292 *
0c397dae 2293 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2294 * to convert a surplus huge page to a normal huge page. That is
2295 * not critical, though, it just means the overall size of the
2296 * pool might be one hugepage larger than it needs to be, but
2297 * within all the constraints specified by the sysctls.
7893d1d5 2298 */
1da177e4 2299 spin_lock(&hugetlb_lock);
a5516438 2300 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2301 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2302 break;
2303 }
2304
a5516438 2305 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2306 /*
2307 * If this allocation races such that we no longer need the
2308 * page, free_huge_page will handle it by freeing the page
2309 * and reducing the surplus.
2310 */
2311 spin_unlock(&hugetlb_lock);
649920c6
JH
2312
2313 /* yield cpu to avoid soft lockup */
2314 cond_resched();
2315
0c397dae 2316 ret = alloc_pool_huge_page(h, nodes_allowed);
7893d1d5
AL
2317 spin_lock(&hugetlb_lock);
2318 if (!ret)
2319 goto out;
2320
536240f2
MG
2321 /* Bail for signals. Probably ctrl-c from user */
2322 if (signal_pending(current))
2323 goto out;
7893d1d5 2324 }
7893d1d5
AL
2325
2326 /*
2327 * Decrease the pool size
2328 * First return free pages to the buddy allocator (being careful
2329 * to keep enough around to satisfy reservations). Then place
2330 * pages into surplus state as needed so the pool will shrink
2331 * to the desired size as pages become free.
d1c3fb1f
NA
2332 *
2333 * By placing pages into the surplus state independent of the
2334 * overcommit value, we are allowing the surplus pool size to
2335 * exceed overcommit. There are few sane options here. Since
0c397dae 2336 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2337 * though, we'll note that we're not allowed to exceed surplus
2338 * and won't grow the pool anywhere else. Not until one of the
2339 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2340 */
a5516438 2341 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2342 min_count = max(count, min_count);
6ae11b27 2343 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2344 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2345 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2346 break;
55f67141 2347 cond_resched_lock(&hugetlb_lock);
1da177e4 2348 }
a5516438 2349 while (count < persistent_huge_pages(h)) {
6ae11b27 2350 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2351 break;
2352 }
2353out:
a5516438 2354 ret = persistent_huge_pages(h);
1da177e4 2355 spin_unlock(&hugetlb_lock);
7893d1d5 2356 return ret;
1da177e4
LT
2357}
2358
a3437870
NA
2359#define HSTATE_ATTR_RO(_name) \
2360 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2361
2362#define HSTATE_ATTR(_name) \
2363 static struct kobj_attribute _name##_attr = \
2364 __ATTR(_name, 0644, _name##_show, _name##_store)
2365
2366static struct kobject *hugepages_kobj;
2367static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2368
9a305230
LS
2369static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2370
2371static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2372{
2373 int i;
9a305230 2374
a3437870 2375 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2376 if (hstate_kobjs[i] == kobj) {
2377 if (nidp)
2378 *nidp = NUMA_NO_NODE;
a3437870 2379 return &hstates[i];
9a305230
LS
2380 }
2381
2382 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2383}
2384
06808b08 2385static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2386 struct kobj_attribute *attr, char *buf)
2387{
9a305230
LS
2388 struct hstate *h;
2389 unsigned long nr_huge_pages;
2390 int nid;
2391
2392 h = kobj_to_hstate(kobj, &nid);
2393 if (nid == NUMA_NO_NODE)
2394 nr_huge_pages = h->nr_huge_pages;
2395 else
2396 nr_huge_pages = h->nr_huge_pages_node[nid];
2397
2398 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2399}
adbe8726 2400
238d3c13
DR
2401static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2402 struct hstate *h, int nid,
2403 unsigned long count, size_t len)
a3437870
NA
2404{
2405 int err;
bad44b5b 2406 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2407
944d9fec 2408 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2409 err = -EINVAL;
2410 goto out;
2411 }
2412
9a305230
LS
2413 if (nid == NUMA_NO_NODE) {
2414 /*
2415 * global hstate attribute
2416 */
2417 if (!(obey_mempolicy &&
2418 init_nodemask_of_mempolicy(nodes_allowed))) {
2419 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2420 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2421 }
2422 } else if (nodes_allowed) {
2423 /*
2424 * per node hstate attribute: adjust count to global,
2425 * but restrict alloc/free to the specified node.
2426 */
2427 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2428 init_nodemask_of_node(nodes_allowed, nid);
2429 } else
8cebfcd0 2430 nodes_allowed = &node_states[N_MEMORY];
9a305230 2431
06808b08 2432 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2433
8cebfcd0 2434 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2435 NODEMASK_FREE(nodes_allowed);
2436
2437 return len;
adbe8726
EM
2438out:
2439 NODEMASK_FREE(nodes_allowed);
2440 return err;
06808b08
LS
2441}
2442
238d3c13
DR
2443static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2444 struct kobject *kobj, const char *buf,
2445 size_t len)
2446{
2447 struct hstate *h;
2448 unsigned long count;
2449 int nid;
2450 int err;
2451
2452 err = kstrtoul(buf, 10, &count);
2453 if (err)
2454 return err;
2455
2456 h = kobj_to_hstate(kobj, &nid);
2457 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2458}
2459
06808b08
LS
2460static ssize_t nr_hugepages_show(struct kobject *kobj,
2461 struct kobj_attribute *attr, char *buf)
2462{
2463 return nr_hugepages_show_common(kobj, attr, buf);
2464}
2465
2466static ssize_t nr_hugepages_store(struct kobject *kobj,
2467 struct kobj_attribute *attr, const char *buf, size_t len)
2468{
238d3c13 2469 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2470}
2471HSTATE_ATTR(nr_hugepages);
2472
06808b08
LS
2473#ifdef CONFIG_NUMA
2474
2475/*
2476 * hstate attribute for optionally mempolicy-based constraint on persistent
2477 * huge page alloc/free.
2478 */
2479static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2480 struct kobj_attribute *attr, char *buf)
2481{
2482 return nr_hugepages_show_common(kobj, attr, buf);
2483}
2484
2485static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2486 struct kobj_attribute *attr, const char *buf, size_t len)
2487{
238d3c13 2488 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2489}
2490HSTATE_ATTR(nr_hugepages_mempolicy);
2491#endif
2492
2493
a3437870
NA
2494static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2495 struct kobj_attribute *attr, char *buf)
2496{
9a305230 2497 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2498 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2499}
adbe8726 2500
a3437870
NA
2501static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2502 struct kobj_attribute *attr, const char *buf, size_t count)
2503{
2504 int err;
2505 unsigned long input;
9a305230 2506 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2507
bae7f4ae 2508 if (hstate_is_gigantic(h))
adbe8726
EM
2509 return -EINVAL;
2510
3dbb95f7 2511 err = kstrtoul(buf, 10, &input);
a3437870 2512 if (err)
73ae31e5 2513 return err;
a3437870
NA
2514
2515 spin_lock(&hugetlb_lock);
2516 h->nr_overcommit_huge_pages = input;
2517 spin_unlock(&hugetlb_lock);
2518
2519 return count;
2520}
2521HSTATE_ATTR(nr_overcommit_hugepages);
2522
2523static ssize_t free_hugepages_show(struct kobject *kobj,
2524 struct kobj_attribute *attr, char *buf)
2525{
9a305230
LS
2526 struct hstate *h;
2527 unsigned long free_huge_pages;
2528 int nid;
2529
2530 h = kobj_to_hstate(kobj, &nid);
2531 if (nid == NUMA_NO_NODE)
2532 free_huge_pages = h->free_huge_pages;
2533 else
2534 free_huge_pages = h->free_huge_pages_node[nid];
2535
2536 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2537}
2538HSTATE_ATTR_RO(free_hugepages);
2539
2540static ssize_t resv_hugepages_show(struct kobject *kobj,
2541 struct kobj_attribute *attr, char *buf)
2542{
9a305230 2543 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2544 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2545}
2546HSTATE_ATTR_RO(resv_hugepages);
2547
2548static ssize_t surplus_hugepages_show(struct kobject *kobj,
2549 struct kobj_attribute *attr, char *buf)
2550{
9a305230
LS
2551 struct hstate *h;
2552 unsigned long surplus_huge_pages;
2553 int nid;
2554
2555 h = kobj_to_hstate(kobj, &nid);
2556 if (nid == NUMA_NO_NODE)
2557 surplus_huge_pages = h->surplus_huge_pages;
2558 else
2559 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2560
2561 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2562}
2563HSTATE_ATTR_RO(surplus_hugepages);
2564
2565static struct attribute *hstate_attrs[] = {
2566 &nr_hugepages_attr.attr,
2567 &nr_overcommit_hugepages_attr.attr,
2568 &free_hugepages_attr.attr,
2569 &resv_hugepages_attr.attr,
2570 &surplus_hugepages_attr.attr,
06808b08
LS
2571#ifdef CONFIG_NUMA
2572 &nr_hugepages_mempolicy_attr.attr,
2573#endif
a3437870
NA
2574 NULL,
2575};
2576
67e5ed96 2577static const struct attribute_group hstate_attr_group = {
a3437870
NA
2578 .attrs = hstate_attrs,
2579};
2580
094e9539
JM
2581static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2582 struct kobject **hstate_kobjs,
67e5ed96 2583 const struct attribute_group *hstate_attr_group)
a3437870
NA
2584{
2585 int retval;
972dc4de 2586 int hi = hstate_index(h);
a3437870 2587
9a305230
LS
2588 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2589 if (!hstate_kobjs[hi])
a3437870
NA
2590 return -ENOMEM;
2591
9a305230 2592 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2593 if (retval)
9a305230 2594 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2595
2596 return retval;
2597}
2598
2599static void __init hugetlb_sysfs_init(void)
2600{
2601 struct hstate *h;
2602 int err;
2603
2604 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2605 if (!hugepages_kobj)
2606 return;
2607
2608 for_each_hstate(h) {
9a305230
LS
2609 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2610 hstate_kobjs, &hstate_attr_group);
a3437870 2611 if (err)
ffb22af5 2612 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2613 }
2614}
2615
9a305230
LS
2616#ifdef CONFIG_NUMA
2617
2618/*
2619 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2620 * with node devices in node_devices[] using a parallel array. The array
2621 * index of a node device or _hstate == node id.
2622 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2623 * the base kernel, on the hugetlb module.
2624 */
2625struct node_hstate {
2626 struct kobject *hugepages_kobj;
2627 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2628};
b4e289a6 2629static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2630
2631/*
10fbcf4c 2632 * A subset of global hstate attributes for node devices
9a305230
LS
2633 */
2634static struct attribute *per_node_hstate_attrs[] = {
2635 &nr_hugepages_attr.attr,
2636 &free_hugepages_attr.attr,
2637 &surplus_hugepages_attr.attr,
2638 NULL,
2639};
2640
67e5ed96 2641static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2642 .attrs = per_node_hstate_attrs,
2643};
2644
2645/*
10fbcf4c 2646 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2647 * Returns node id via non-NULL nidp.
2648 */
2649static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2650{
2651 int nid;
2652
2653 for (nid = 0; nid < nr_node_ids; nid++) {
2654 struct node_hstate *nhs = &node_hstates[nid];
2655 int i;
2656 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2657 if (nhs->hstate_kobjs[i] == kobj) {
2658 if (nidp)
2659 *nidp = nid;
2660 return &hstates[i];
2661 }
2662 }
2663
2664 BUG();
2665 return NULL;
2666}
2667
2668/*
10fbcf4c 2669 * Unregister hstate attributes from a single node device.
9a305230
LS
2670 * No-op if no hstate attributes attached.
2671 */
3cd8b44f 2672static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2673{
2674 struct hstate *h;
10fbcf4c 2675 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2676
2677 if (!nhs->hugepages_kobj)
9b5e5d0f 2678 return; /* no hstate attributes */
9a305230 2679
972dc4de
AK
2680 for_each_hstate(h) {
2681 int idx = hstate_index(h);
2682 if (nhs->hstate_kobjs[idx]) {
2683 kobject_put(nhs->hstate_kobjs[idx]);
2684 nhs->hstate_kobjs[idx] = NULL;
9a305230 2685 }
972dc4de 2686 }
9a305230
LS
2687
2688 kobject_put(nhs->hugepages_kobj);
2689 nhs->hugepages_kobj = NULL;
2690}
2691
9a305230
LS
2692
2693/*
10fbcf4c 2694 * Register hstate attributes for a single node device.
9a305230
LS
2695 * No-op if attributes already registered.
2696 */
3cd8b44f 2697static void hugetlb_register_node(struct node *node)
9a305230
LS
2698{
2699 struct hstate *h;
10fbcf4c 2700 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2701 int err;
2702
2703 if (nhs->hugepages_kobj)
2704 return; /* already allocated */
2705
2706 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2707 &node->dev.kobj);
9a305230
LS
2708 if (!nhs->hugepages_kobj)
2709 return;
2710
2711 for_each_hstate(h) {
2712 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2713 nhs->hstate_kobjs,
2714 &per_node_hstate_attr_group);
2715 if (err) {
ffb22af5
AM
2716 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2717 h->name, node->dev.id);
9a305230
LS
2718 hugetlb_unregister_node(node);
2719 break;
2720 }
2721 }
2722}
2723
2724/*
9b5e5d0f 2725 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2726 * devices of nodes that have memory. All on-line nodes should have
2727 * registered their associated device by this time.
9a305230 2728 */
7d9ca000 2729static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2730{
2731 int nid;
2732
8cebfcd0 2733 for_each_node_state(nid, N_MEMORY) {
8732794b 2734 struct node *node = node_devices[nid];
10fbcf4c 2735 if (node->dev.id == nid)
9a305230
LS
2736 hugetlb_register_node(node);
2737 }
2738
2739 /*
10fbcf4c 2740 * Let the node device driver know we're here so it can
9a305230
LS
2741 * [un]register hstate attributes on node hotplug.
2742 */
2743 register_hugetlbfs_with_node(hugetlb_register_node,
2744 hugetlb_unregister_node);
2745}
2746#else /* !CONFIG_NUMA */
2747
2748static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2749{
2750 BUG();
2751 if (nidp)
2752 *nidp = -1;
2753 return NULL;
2754}
2755
9a305230
LS
2756static void hugetlb_register_all_nodes(void) { }
2757
2758#endif
2759
a3437870
NA
2760static int __init hugetlb_init(void)
2761{
8382d914
DB
2762 int i;
2763
457c1b27 2764 if (!hugepages_supported())
0ef89d25 2765 return 0;
a3437870 2766
e11bfbfc 2767 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2768 if (default_hstate_size != 0) {
2769 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2770 default_hstate_size, HPAGE_SIZE);
2771 }
2772
e11bfbfc
NP
2773 default_hstate_size = HPAGE_SIZE;
2774 if (!size_to_hstate(default_hstate_size))
2775 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2776 }
972dc4de 2777 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2778 if (default_hstate_max_huge_pages) {
2779 if (!default_hstate.max_huge_pages)
2780 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2781 }
a3437870
NA
2782
2783 hugetlb_init_hstates();
aa888a74 2784 gather_bootmem_prealloc();
a3437870
NA
2785 report_hugepages();
2786
2787 hugetlb_sysfs_init();
9a305230 2788 hugetlb_register_all_nodes();
7179e7bf 2789 hugetlb_cgroup_file_init();
9a305230 2790
8382d914
DB
2791#ifdef CONFIG_SMP
2792 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2793#else
2794 num_fault_mutexes = 1;
2795#endif
c672c7f2 2796 hugetlb_fault_mutex_table =
6da2ec56
KC
2797 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2798 GFP_KERNEL);
c672c7f2 2799 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2800
2801 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2802 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2803 return 0;
2804}
3e89e1c5 2805subsys_initcall(hugetlb_init);
a3437870
NA
2806
2807/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2808void __init hugetlb_bad_size(void)
2809{
2810 parsed_valid_hugepagesz = false;
2811}
2812
d00181b9 2813void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2814{
2815 struct hstate *h;
8faa8b07
AK
2816 unsigned long i;
2817
a3437870 2818 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2819 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2820 return;
2821 }
47d38344 2822 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2823 BUG_ON(order == 0);
47d38344 2824 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2825 h->order = order;
2826 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2827 h->nr_huge_pages = 0;
2828 h->free_huge_pages = 0;
2829 for (i = 0; i < MAX_NUMNODES; ++i)
2830 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2831 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2832 h->next_nid_to_alloc = first_memory_node;
2833 h->next_nid_to_free = first_memory_node;
a3437870
NA
2834 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2835 huge_page_size(h)/1024);
8faa8b07 2836
a3437870
NA
2837 parsed_hstate = h;
2838}
2839
e11bfbfc 2840static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2841{
2842 unsigned long *mhp;
8faa8b07 2843 static unsigned long *last_mhp;
a3437870 2844
9fee021d
VT
2845 if (!parsed_valid_hugepagesz) {
2846 pr_warn("hugepages = %s preceded by "
2847 "an unsupported hugepagesz, ignoring\n", s);
2848 parsed_valid_hugepagesz = true;
2849 return 1;
2850 }
a3437870 2851 /*
47d38344 2852 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2853 * so this hugepages= parameter goes to the "default hstate".
2854 */
9fee021d 2855 else if (!hugetlb_max_hstate)
a3437870
NA
2856 mhp = &default_hstate_max_huge_pages;
2857 else
2858 mhp = &parsed_hstate->max_huge_pages;
2859
8faa8b07 2860 if (mhp == last_mhp) {
598d8091 2861 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2862 return 1;
2863 }
2864
a3437870
NA
2865 if (sscanf(s, "%lu", mhp) <= 0)
2866 *mhp = 0;
2867
8faa8b07
AK
2868 /*
2869 * Global state is always initialized later in hugetlb_init.
2870 * But we need to allocate >= MAX_ORDER hstates here early to still
2871 * use the bootmem allocator.
2872 */
47d38344 2873 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2874 hugetlb_hstate_alloc_pages(parsed_hstate);
2875
2876 last_mhp = mhp;
2877
a3437870
NA
2878 return 1;
2879}
e11bfbfc
NP
2880__setup("hugepages=", hugetlb_nrpages_setup);
2881
2882static int __init hugetlb_default_setup(char *s)
2883{
2884 default_hstate_size = memparse(s, &s);
2885 return 1;
2886}
2887__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2888
8a213460
NA
2889static unsigned int cpuset_mems_nr(unsigned int *array)
2890{
2891 int node;
2892 unsigned int nr = 0;
2893
2894 for_each_node_mask(node, cpuset_current_mems_allowed)
2895 nr += array[node];
2896
2897 return nr;
2898}
2899
2900#ifdef CONFIG_SYSCTL
06808b08
LS
2901static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2902 struct ctl_table *table, int write,
2903 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2904{
e5ff2159 2905 struct hstate *h = &default_hstate;
238d3c13 2906 unsigned long tmp = h->max_huge_pages;
08d4a246 2907 int ret;
e5ff2159 2908
457c1b27 2909 if (!hugepages_supported())
86613628 2910 return -EOPNOTSUPP;
457c1b27 2911
e5ff2159
AK
2912 table->data = &tmp;
2913 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2914 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2915 if (ret)
2916 goto out;
e5ff2159 2917
238d3c13
DR
2918 if (write)
2919 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2920 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2921out:
2922 return ret;
1da177e4 2923}
396faf03 2924
06808b08
LS
2925int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2926 void __user *buffer, size_t *length, loff_t *ppos)
2927{
2928
2929 return hugetlb_sysctl_handler_common(false, table, write,
2930 buffer, length, ppos);
2931}
2932
2933#ifdef CONFIG_NUMA
2934int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2935 void __user *buffer, size_t *length, loff_t *ppos)
2936{
2937 return hugetlb_sysctl_handler_common(true, table, write,
2938 buffer, length, ppos);
2939}
2940#endif /* CONFIG_NUMA */
2941
a3d0c6aa 2942int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2943 void __user *buffer,
a3d0c6aa
NA
2944 size_t *length, loff_t *ppos)
2945{
a5516438 2946 struct hstate *h = &default_hstate;
e5ff2159 2947 unsigned long tmp;
08d4a246 2948 int ret;
e5ff2159 2949
457c1b27 2950 if (!hugepages_supported())
86613628 2951 return -EOPNOTSUPP;
457c1b27 2952
c033a93c 2953 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2954
bae7f4ae 2955 if (write && hstate_is_gigantic(h))
adbe8726
EM
2956 return -EINVAL;
2957
e5ff2159
AK
2958 table->data = &tmp;
2959 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2960 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2961 if (ret)
2962 goto out;
e5ff2159
AK
2963
2964 if (write) {
2965 spin_lock(&hugetlb_lock);
2966 h->nr_overcommit_huge_pages = tmp;
2967 spin_unlock(&hugetlb_lock);
2968 }
08d4a246
MH
2969out:
2970 return ret;
a3d0c6aa
NA
2971}
2972
1da177e4
LT
2973#endif /* CONFIG_SYSCTL */
2974
e1759c21 2975void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2976{
fcb2b0c5
RG
2977 struct hstate *h;
2978 unsigned long total = 0;
2979
457c1b27
NA
2980 if (!hugepages_supported())
2981 return;
fcb2b0c5
RG
2982
2983 for_each_hstate(h) {
2984 unsigned long count = h->nr_huge_pages;
2985
2986 total += (PAGE_SIZE << huge_page_order(h)) * count;
2987
2988 if (h == &default_hstate)
2989 seq_printf(m,
2990 "HugePages_Total: %5lu\n"
2991 "HugePages_Free: %5lu\n"
2992 "HugePages_Rsvd: %5lu\n"
2993 "HugePages_Surp: %5lu\n"
2994 "Hugepagesize: %8lu kB\n",
2995 count,
2996 h->free_huge_pages,
2997 h->resv_huge_pages,
2998 h->surplus_huge_pages,
2999 (PAGE_SIZE << huge_page_order(h)) / 1024);
3000 }
3001
3002 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3003}
3004
3005int hugetlb_report_node_meminfo(int nid, char *buf)
3006{
a5516438 3007 struct hstate *h = &default_hstate;
457c1b27
NA
3008 if (!hugepages_supported())
3009 return 0;
1da177e4
LT
3010 return sprintf(buf,
3011 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3012 "Node %d HugePages_Free: %5u\n"
3013 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3014 nid, h->nr_huge_pages_node[nid],
3015 nid, h->free_huge_pages_node[nid],
3016 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3017}
3018
949f7ec5
DR
3019void hugetlb_show_meminfo(void)
3020{
3021 struct hstate *h;
3022 int nid;
3023
457c1b27
NA
3024 if (!hugepages_supported())
3025 return;
3026
949f7ec5
DR
3027 for_each_node_state(nid, N_MEMORY)
3028 for_each_hstate(h)
3029 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3030 nid,
3031 h->nr_huge_pages_node[nid],
3032 h->free_huge_pages_node[nid],
3033 h->surplus_huge_pages_node[nid],
3034 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3035}
3036
5d317b2b
NH
3037void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3038{
3039 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3040 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3041}
3042
1da177e4
LT
3043/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3044unsigned long hugetlb_total_pages(void)
3045{
d0028588
WL
3046 struct hstate *h;
3047 unsigned long nr_total_pages = 0;
3048
3049 for_each_hstate(h)
3050 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3051 return nr_total_pages;
1da177e4 3052}
1da177e4 3053
a5516438 3054static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3055{
3056 int ret = -ENOMEM;
3057
3058 spin_lock(&hugetlb_lock);
3059 /*
3060 * When cpuset is configured, it breaks the strict hugetlb page
3061 * reservation as the accounting is done on a global variable. Such
3062 * reservation is completely rubbish in the presence of cpuset because
3063 * the reservation is not checked against page availability for the
3064 * current cpuset. Application can still potentially OOM'ed by kernel
3065 * with lack of free htlb page in cpuset that the task is in.
3066 * Attempt to enforce strict accounting with cpuset is almost
3067 * impossible (or too ugly) because cpuset is too fluid that
3068 * task or memory node can be dynamically moved between cpusets.
3069 *
3070 * The change of semantics for shared hugetlb mapping with cpuset is
3071 * undesirable. However, in order to preserve some of the semantics,
3072 * we fall back to check against current free page availability as
3073 * a best attempt and hopefully to minimize the impact of changing
3074 * semantics that cpuset has.
3075 */
3076 if (delta > 0) {
a5516438 3077 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3078 goto out;
3079
a5516438
AK
3080 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3081 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3082 goto out;
3083 }
3084 }
3085
3086 ret = 0;
3087 if (delta < 0)
a5516438 3088 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3089
3090out:
3091 spin_unlock(&hugetlb_lock);
3092 return ret;
3093}
3094
84afd99b
AW
3095static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3096{
f522c3ac 3097 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3098
3099 /*
3100 * This new VMA should share its siblings reservation map if present.
3101 * The VMA will only ever have a valid reservation map pointer where
3102 * it is being copied for another still existing VMA. As that VMA
25985edc 3103 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3104 * after this open call completes. It is therefore safe to take a
3105 * new reference here without additional locking.
3106 */
4e35f483 3107 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3108 kref_get(&resv->refs);
84afd99b
AW
3109}
3110
a1e78772
MG
3111static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3112{
a5516438 3113 struct hstate *h = hstate_vma(vma);
f522c3ac 3114 struct resv_map *resv = vma_resv_map(vma);
90481622 3115 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3116 unsigned long reserve, start, end;
1c5ecae3 3117 long gbl_reserve;
84afd99b 3118
4e35f483
JK
3119 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3120 return;
84afd99b 3121
4e35f483
JK
3122 start = vma_hugecache_offset(h, vma, vma->vm_start);
3123 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3124
4e35f483 3125 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3126
4e35f483
JK
3127 kref_put(&resv->refs, resv_map_release);
3128
3129 if (reserve) {
1c5ecae3
MK
3130 /*
3131 * Decrement reserve counts. The global reserve count may be
3132 * adjusted if the subpool has a minimum size.
3133 */
3134 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3135 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3136 }
a1e78772
MG
3137}
3138
31383c68
DW
3139static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3140{
3141 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3142 return -EINVAL;
3143 return 0;
3144}
3145
05ea8860
DW
3146static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3147{
3148 struct hstate *hstate = hstate_vma(vma);
3149
3150 return 1UL << huge_page_shift(hstate);
3151}
3152
1da177e4
LT
3153/*
3154 * We cannot handle pagefaults against hugetlb pages at all. They cause
3155 * handle_mm_fault() to try to instantiate regular-sized pages in the
3156 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3157 * this far.
3158 */
b3ec9f33 3159static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3160{
3161 BUG();
d0217ac0 3162 return 0;
1da177e4
LT
3163}
3164
eec3636a
JC
3165/*
3166 * When a new function is introduced to vm_operations_struct and added
3167 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3168 * This is because under System V memory model, mappings created via
3169 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3170 * their original vm_ops are overwritten with shm_vm_ops.
3171 */
f0f37e2f 3172const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3173 .fault = hugetlb_vm_op_fault,
84afd99b 3174 .open = hugetlb_vm_op_open,
a1e78772 3175 .close = hugetlb_vm_op_close,
31383c68 3176 .split = hugetlb_vm_op_split,
05ea8860 3177 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3178};
3179
1e8f889b
DG
3180static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3181 int writable)
63551ae0
DG
3182{
3183 pte_t entry;
3184
1e8f889b 3185 if (writable) {
106c992a
GS
3186 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3187 vma->vm_page_prot)));
63551ae0 3188 } else {
106c992a
GS
3189 entry = huge_pte_wrprotect(mk_huge_pte(page,
3190 vma->vm_page_prot));
63551ae0
DG
3191 }
3192 entry = pte_mkyoung(entry);
3193 entry = pte_mkhuge(entry);
d9ed9faa 3194 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3195
3196 return entry;
3197}
3198
1e8f889b
DG
3199static void set_huge_ptep_writable(struct vm_area_struct *vma,
3200 unsigned long address, pte_t *ptep)
3201{
3202 pte_t entry;
3203
106c992a 3204 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3205 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3206 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3207}
3208
d5ed7444 3209bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3210{
3211 swp_entry_t swp;
3212
3213 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3214 return false;
4a705fef
NH
3215 swp = pte_to_swp_entry(pte);
3216 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3217 return true;
4a705fef 3218 else
d5ed7444 3219 return false;
4a705fef
NH
3220}
3221
3222static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3223{
3224 swp_entry_t swp;
3225
3226 if (huge_pte_none(pte) || pte_present(pte))
3227 return 0;
3228 swp = pte_to_swp_entry(pte);
3229 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3230 return 1;
3231 else
3232 return 0;
3233}
1e8f889b 3234
63551ae0
DG
3235int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3236 struct vm_area_struct *vma)
3237{
5e41540c 3238 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3239 struct page *ptepage;
1c59827d 3240 unsigned long addr;
1e8f889b 3241 int cow;
a5516438
AK
3242 struct hstate *h = hstate_vma(vma);
3243 unsigned long sz = huge_page_size(h);
ac46d4f3 3244 struct mmu_notifier_range range;
e8569dd2 3245 int ret = 0;
1e8f889b
DG
3246
3247 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3248
ac46d4f3
JG
3249 if (cow) {
3250 mmu_notifier_range_init(&range, src, vma->vm_start,
3251 vma->vm_end);
3252 mmu_notifier_invalidate_range_start(&range);
3253 }
e8569dd2 3254
a5516438 3255 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3256 spinlock_t *src_ptl, *dst_ptl;
7868a208 3257 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3258 if (!src_pte)
3259 continue;
a5516438 3260 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3261 if (!dst_pte) {
3262 ret = -ENOMEM;
3263 break;
3264 }
c5c99429 3265
5e41540c
MK
3266 /*
3267 * If the pagetables are shared don't copy or take references.
3268 * dst_pte == src_pte is the common case of src/dest sharing.
3269 *
3270 * However, src could have 'unshared' and dst shares with
3271 * another vma. If dst_pte !none, this implies sharing.
3272 * Check here before taking page table lock, and once again
3273 * after taking the lock below.
3274 */
3275 dst_entry = huge_ptep_get(dst_pte);
3276 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3277 continue;
3278
cb900f41
KS
3279 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3280 src_ptl = huge_pte_lockptr(h, src, src_pte);
3281 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3282 entry = huge_ptep_get(src_pte);
5e41540c
MK
3283 dst_entry = huge_ptep_get(dst_pte);
3284 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3285 /*
3286 * Skip if src entry none. Also, skip in the
3287 * unlikely case dst entry !none as this implies
3288 * sharing with another vma.
3289 */
4a705fef
NH
3290 ;
3291 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3292 is_hugetlb_entry_hwpoisoned(entry))) {
3293 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3294
3295 if (is_write_migration_entry(swp_entry) && cow) {
3296 /*
3297 * COW mappings require pages in both
3298 * parent and child to be set to read.
3299 */
3300 make_migration_entry_read(&swp_entry);
3301 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3302 set_huge_swap_pte_at(src, addr, src_pte,
3303 entry, sz);
4a705fef 3304 }
e5251fd4 3305 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3306 } else {
34ee645e 3307 if (cow) {
0f10851e
JG
3308 /*
3309 * No need to notify as we are downgrading page
3310 * table protection not changing it to point
3311 * to a new page.
3312 *
ad56b738 3313 * See Documentation/vm/mmu_notifier.rst
0f10851e 3314 */
7f2e9525 3315 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3316 }
0253d634 3317 entry = huge_ptep_get(src_pte);
1c59827d
HD
3318 ptepage = pte_page(entry);
3319 get_page(ptepage);
53f9263b 3320 page_dup_rmap(ptepage, true);
1c59827d 3321 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3322 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3323 }
cb900f41
KS
3324 spin_unlock(src_ptl);
3325 spin_unlock(dst_ptl);
63551ae0 3326 }
63551ae0 3327
e8569dd2 3328 if (cow)
ac46d4f3 3329 mmu_notifier_invalidate_range_end(&range);
e8569dd2
AS
3330
3331 return ret;
63551ae0
DG
3332}
3333
24669e58
AK
3334void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3335 unsigned long start, unsigned long end,
3336 struct page *ref_page)
63551ae0
DG
3337{
3338 struct mm_struct *mm = vma->vm_mm;
3339 unsigned long address;
c7546f8f 3340 pte_t *ptep;
63551ae0 3341 pte_t pte;
cb900f41 3342 spinlock_t *ptl;
63551ae0 3343 struct page *page;
a5516438
AK
3344 struct hstate *h = hstate_vma(vma);
3345 unsigned long sz = huge_page_size(h);
ac46d4f3 3346 struct mmu_notifier_range range;
a5516438 3347
63551ae0 3348 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3349 BUG_ON(start & ~huge_page_mask(h));
3350 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3351
07e32661
AK
3352 /*
3353 * This is a hugetlb vma, all the pte entries should point
3354 * to huge page.
3355 */
3356 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3357 tlb_start_vma(tlb, vma);
dff11abe
MK
3358
3359 /*
3360 * If sharing possible, alert mmu notifiers of worst case.
3361 */
ac46d4f3
JG
3362 mmu_notifier_range_init(&range, mm, start, end);
3363 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3364 mmu_notifier_invalidate_range_start(&range);
569f48b8 3365 address = start;
569f48b8 3366 for (; address < end; address += sz) {
7868a208 3367 ptep = huge_pte_offset(mm, address, sz);
4c887265 3368 if (!ptep)
c7546f8f
DG
3369 continue;
3370
cb900f41 3371 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3372 if (huge_pmd_unshare(mm, &address, ptep)) {
3373 spin_unlock(ptl);
dff11abe
MK
3374 /*
3375 * We just unmapped a page of PMDs by clearing a PUD.
3376 * The caller's TLB flush range should cover this area.
3377 */
31d49da5
AK
3378 continue;
3379 }
39dde65c 3380
6629326b 3381 pte = huge_ptep_get(ptep);
31d49da5
AK
3382 if (huge_pte_none(pte)) {
3383 spin_unlock(ptl);
3384 continue;
3385 }
6629326b
HD
3386
3387 /*
9fbc1f63
NH
3388 * Migrating hugepage or HWPoisoned hugepage is already
3389 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3390 */
9fbc1f63 3391 if (unlikely(!pte_present(pte))) {
9386fac3 3392 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3393 spin_unlock(ptl);
3394 continue;
8c4894c6 3395 }
6629326b
HD
3396
3397 page = pte_page(pte);
04f2cbe3
MG
3398 /*
3399 * If a reference page is supplied, it is because a specific
3400 * page is being unmapped, not a range. Ensure the page we
3401 * are about to unmap is the actual page of interest.
3402 */
3403 if (ref_page) {
31d49da5
AK
3404 if (page != ref_page) {
3405 spin_unlock(ptl);
3406 continue;
3407 }
04f2cbe3
MG
3408 /*
3409 * Mark the VMA as having unmapped its page so that
3410 * future faults in this VMA will fail rather than
3411 * looking like data was lost
3412 */
3413 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3414 }
3415
c7546f8f 3416 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3417 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3418 if (huge_pte_dirty(pte))
6649a386 3419 set_page_dirty(page);
9e81130b 3420
5d317b2b 3421 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3422 page_remove_rmap(page, true);
31d49da5 3423
cb900f41 3424 spin_unlock(ptl);
e77b0852 3425 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3426 /*
3427 * Bail out after unmapping reference page if supplied
3428 */
3429 if (ref_page)
3430 break;
fe1668ae 3431 }
ac46d4f3 3432 mmu_notifier_invalidate_range_end(&range);
24669e58 3433 tlb_end_vma(tlb, vma);
1da177e4 3434}
63551ae0 3435
d833352a
MG
3436void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3437 struct vm_area_struct *vma, unsigned long start,
3438 unsigned long end, struct page *ref_page)
3439{
3440 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3441
3442 /*
3443 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3444 * test will fail on a vma being torn down, and not grab a page table
3445 * on its way out. We're lucky that the flag has such an appropriate
3446 * name, and can in fact be safely cleared here. We could clear it
3447 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3448 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3449 * because in the context this is called, the VMA is about to be
c8c06efa 3450 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3451 */
3452 vma->vm_flags &= ~VM_MAYSHARE;
3453}
3454
502717f4 3455void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3456 unsigned long end, struct page *ref_page)
502717f4 3457{
24669e58
AK
3458 struct mm_struct *mm;
3459 struct mmu_gather tlb;
dff11abe
MK
3460 unsigned long tlb_start = start;
3461 unsigned long tlb_end = end;
3462
3463 /*
3464 * If shared PMDs were possibly used within this vma range, adjust
3465 * start/end for worst case tlb flushing.
3466 * Note that we can not be sure if PMDs are shared until we try to
3467 * unmap pages. However, we want to make sure TLB flushing covers
3468 * the largest possible range.
3469 */
3470 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
24669e58
AK
3471
3472 mm = vma->vm_mm;
3473
dff11abe 3474 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
24669e58 3475 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
dff11abe 3476 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
502717f4
KC
3477}
3478
04f2cbe3
MG
3479/*
3480 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3481 * mappping it owns the reserve page for. The intention is to unmap the page
3482 * from other VMAs and let the children be SIGKILLed if they are faulting the
3483 * same region.
3484 */
2f4612af
DB
3485static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3486 struct page *page, unsigned long address)
04f2cbe3 3487{
7526674d 3488 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3489 struct vm_area_struct *iter_vma;
3490 struct address_space *mapping;
04f2cbe3
MG
3491 pgoff_t pgoff;
3492
3493 /*
3494 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3495 * from page cache lookup which is in HPAGE_SIZE units.
3496 */
7526674d 3497 address = address & huge_page_mask(h);
36e4f20a
MH
3498 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3499 vma->vm_pgoff;
93c76a3d 3500 mapping = vma->vm_file->f_mapping;
04f2cbe3 3501
4eb2b1dc
MG
3502 /*
3503 * Take the mapping lock for the duration of the table walk. As
3504 * this mapping should be shared between all the VMAs,
3505 * __unmap_hugepage_range() is called as the lock is already held
3506 */
83cde9e8 3507 i_mmap_lock_write(mapping);
6b2dbba8 3508 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3509 /* Do not unmap the current VMA */
3510 if (iter_vma == vma)
3511 continue;
3512
2f84a899
MG
3513 /*
3514 * Shared VMAs have their own reserves and do not affect
3515 * MAP_PRIVATE accounting but it is possible that a shared
3516 * VMA is using the same page so check and skip such VMAs.
3517 */
3518 if (iter_vma->vm_flags & VM_MAYSHARE)
3519 continue;
3520
04f2cbe3
MG
3521 /*
3522 * Unmap the page from other VMAs without their own reserves.
3523 * They get marked to be SIGKILLed if they fault in these
3524 * areas. This is because a future no-page fault on this VMA
3525 * could insert a zeroed page instead of the data existing
3526 * from the time of fork. This would look like data corruption
3527 */
3528 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3529 unmap_hugepage_range(iter_vma, address,
3530 address + huge_page_size(h), page);
04f2cbe3 3531 }
83cde9e8 3532 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3533}
3534
0fe6e20b
NH
3535/*
3536 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3537 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3538 * cannot race with other handlers or page migration.
3539 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3540 */
2b740303 3541static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 3542 unsigned long address, pte_t *ptep,
3999f52e 3543 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3544{
3999f52e 3545 pte_t pte;
a5516438 3546 struct hstate *h = hstate_vma(vma);
1e8f889b 3547 struct page *old_page, *new_page;
2b740303
SJ
3548 int outside_reserve = 0;
3549 vm_fault_t ret = 0;
974e6d66 3550 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 3551 struct mmu_notifier_range range;
1e8f889b 3552
3999f52e 3553 pte = huge_ptep_get(ptep);
1e8f889b
DG
3554 old_page = pte_page(pte);
3555
04f2cbe3 3556retry_avoidcopy:
1e8f889b
DG
3557 /* If no-one else is actually using this page, avoid the copy
3558 * and just make the page writable */
37a2140d 3559 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3560 page_move_anon_rmap(old_page, vma);
5b7a1d40 3561 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 3562 return 0;
1e8f889b
DG
3563 }
3564
04f2cbe3
MG
3565 /*
3566 * If the process that created a MAP_PRIVATE mapping is about to
3567 * perform a COW due to a shared page count, attempt to satisfy
3568 * the allocation without using the existing reserves. The pagecache
3569 * page is used to determine if the reserve at this address was
3570 * consumed or not. If reserves were used, a partial faulted mapping
3571 * at the time of fork() could consume its reserves on COW instead
3572 * of the full address range.
3573 */
5944d011 3574 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3575 old_page != pagecache_page)
3576 outside_reserve = 1;
3577
09cbfeaf 3578 get_page(old_page);
b76c8cfb 3579
ad4404a2
DB
3580 /*
3581 * Drop page table lock as buddy allocator may be called. It will
3582 * be acquired again before returning to the caller, as expected.
3583 */
cb900f41 3584 spin_unlock(ptl);
5b7a1d40 3585 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 3586
2fc39cec 3587 if (IS_ERR(new_page)) {
04f2cbe3
MG
3588 /*
3589 * If a process owning a MAP_PRIVATE mapping fails to COW,
3590 * it is due to references held by a child and an insufficient
3591 * huge page pool. To guarantee the original mappers
3592 * reliability, unmap the page from child processes. The child
3593 * may get SIGKILLed if it later faults.
3594 */
3595 if (outside_reserve) {
09cbfeaf 3596 put_page(old_page);
04f2cbe3 3597 BUG_ON(huge_pte_none(pte));
5b7a1d40 3598 unmap_ref_private(mm, vma, old_page, haddr);
2f4612af
DB
3599 BUG_ON(huge_pte_none(pte));
3600 spin_lock(ptl);
5b7a1d40 3601 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
3602 if (likely(ptep &&
3603 pte_same(huge_ptep_get(ptep), pte)))
3604 goto retry_avoidcopy;
3605 /*
3606 * race occurs while re-acquiring page table
3607 * lock, and our job is done.
3608 */
3609 return 0;
04f2cbe3
MG
3610 }
3611
2b740303 3612 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 3613 goto out_release_old;
1e8f889b
DG
3614 }
3615
0fe6e20b
NH
3616 /*
3617 * When the original hugepage is shared one, it does not have
3618 * anon_vma prepared.
3619 */
44e2aa93 3620 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3621 ret = VM_FAULT_OOM;
3622 goto out_release_all;
44e2aa93 3623 }
0fe6e20b 3624
974e6d66 3625 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 3626 pages_per_huge_page(h));
0ed361de 3627 __SetPageUptodate(new_page);
1e8f889b 3628
ac46d4f3
JG
3629 mmu_notifier_range_init(&range, mm, haddr, haddr + huge_page_size(h));
3630 mmu_notifier_invalidate_range_start(&range);
ad4404a2 3631
b76c8cfb 3632 /*
cb900f41 3633 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3634 * before the page tables are altered
3635 */
cb900f41 3636 spin_lock(ptl);
5b7a1d40 3637 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 3638 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3639 ClearPagePrivate(new_page);
3640
1e8f889b 3641 /* Break COW */
5b7a1d40 3642 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 3643 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 3644 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 3645 make_huge_pte(vma, new_page, 1));
d281ee61 3646 page_remove_rmap(old_page, true);
5b7a1d40 3647 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 3648 set_page_huge_active(new_page);
1e8f889b
DG
3649 /* Make the old page be freed below */
3650 new_page = old_page;
3651 }
cb900f41 3652 spin_unlock(ptl);
ac46d4f3 3653 mmu_notifier_invalidate_range_end(&range);
ad4404a2 3654out_release_all:
5b7a1d40 3655 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 3656 put_page(new_page);
ad4404a2 3657out_release_old:
09cbfeaf 3658 put_page(old_page);
8312034f 3659
ad4404a2
DB
3660 spin_lock(ptl); /* Caller expects lock to be held */
3661 return ret;
1e8f889b
DG
3662}
3663
04f2cbe3 3664/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3665static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3666 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3667{
3668 struct address_space *mapping;
e7c4b0bf 3669 pgoff_t idx;
04f2cbe3
MG
3670
3671 mapping = vma->vm_file->f_mapping;
a5516438 3672 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3673
3674 return find_lock_page(mapping, idx);
3675}
3676
3ae77f43
HD
3677/*
3678 * Return whether there is a pagecache page to back given address within VMA.
3679 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3680 */
3681static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3682 struct vm_area_struct *vma, unsigned long address)
3683{
3684 struct address_space *mapping;
3685 pgoff_t idx;
3686 struct page *page;
3687
3688 mapping = vma->vm_file->f_mapping;
3689 idx = vma_hugecache_offset(h, vma, address);
3690
3691 page = find_get_page(mapping, idx);
3692 if (page)
3693 put_page(page);
3694 return page != NULL;
3695}
3696
ab76ad54
MK
3697int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3698 pgoff_t idx)
3699{
3700 struct inode *inode = mapping->host;
3701 struct hstate *h = hstate_inode(inode);
3702 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3703
3704 if (err)
3705 return err;
3706 ClearPagePrivate(page);
3707
22146c3c
MK
3708 /*
3709 * set page dirty so that it will not be removed from cache/file
3710 * by non-hugetlbfs specific code paths.
3711 */
3712 set_page_dirty(page);
3713
ab76ad54
MK
3714 spin_lock(&inode->i_lock);
3715 inode->i_blocks += blocks_per_huge_page(h);
3716 spin_unlock(&inode->i_lock);
3717 return 0;
3718}
3719
2b740303
SJ
3720static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3721 struct vm_area_struct *vma,
3722 struct address_space *mapping, pgoff_t idx,
3723 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3724{
a5516438 3725 struct hstate *h = hstate_vma(vma);
2b740303 3726 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 3727 int anon_rmap = 0;
4c887265 3728 unsigned long size;
4c887265 3729 struct page *page;
1e8f889b 3730 pte_t new_pte;
cb900f41 3731 spinlock_t *ptl;
285b8dca 3732 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 3733 bool new_page = false;
4c887265 3734
04f2cbe3
MG
3735 /*
3736 * Currently, we are forced to kill the process in the event the
3737 * original mapper has unmapped pages from the child due to a failed
25985edc 3738 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3739 */
3740 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3741 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3742 current->pid);
04f2cbe3
MG
3743 return ret;
3744 }
3745
4c887265 3746 /*
e7c58097
MK
3747 * Use page lock to guard against racing truncation
3748 * before we get page_table_lock.
4c887265 3749 */
6bda666a
CL
3750retry:
3751 page = find_lock_page(mapping, idx);
3752 if (!page) {
e7c58097
MK
3753 size = i_size_read(mapping->host) >> huge_page_shift(h);
3754 if (idx >= size)
3755 goto out;
3756
1a1aad8a
MK
3757 /*
3758 * Check for page in userfault range
3759 */
3760 if (userfaultfd_missing(vma)) {
3761 u32 hash;
3762 struct vm_fault vmf = {
3763 .vma = vma,
285b8dca 3764 .address = haddr,
1a1aad8a
MK
3765 .flags = flags,
3766 /*
3767 * Hard to debug if it ends up being
3768 * used by a callee that assumes
3769 * something about the other
3770 * uninitialized fields... same as in
3771 * memory.c
3772 */
3773 };
3774
3775 /*
ddeaab32
MK
3776 * hugetlb_fault_mutex must be dropped before
3777 * handling userfault. Reacquire after handling
3778 * fault to make calling code simpler.
1a1aad8a
MK
3779 */
3780 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
285b8dca 3781 idx, haddr);
1a1aad8a
MK
3782 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3783 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3784 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3785 goto out;
3786 }
3787
285b8dca 3788 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 3789 if (IS_ERR(page)) {
2b740303 3790 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
3791 goto out;
3792 }
47ad8475 3793 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3794 __SetPageUptodate(page);
cb6acd01 3795 new_page = true;
ac9b9c66 3796
f83a275d 3797 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3798 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3799 if (err) {
3800 put_page(page);
6bda666a
CL
3801 if (err == -EEXIST)
3802 goto retry;
3803 goto out;
3804 }
23be7468 3805 } else {
6bda666a 3806 lock_page(page);
0fe6e20b
NH
3807 if (unlikely(anon_vma_prepare(vma))) {
3808 ret = VM_FAULT_OOM;
3809 goto backout_unlocked;
3810 }
409eb8c2 3811 anon_rmap = 1;
23be7468 3812 }
0fe6e20b 3813 } else {
998b4382
NH
3814 /*
3815 * If memory error occurs between mmap() and fault, some process
3816 * don't have hwpoisoned swap entry for errored virtual address.
3817 * So we need to block hugepage fault by PG_hwpoison bit check.
3818 */
3819 if (unlikely(PageHWPoison(page))) {
32f84528 3820 ret = VM_FAULT_HWPOISON |
972dc4de 3821 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3822 goto backout_unlocked;
3823 }
6bda666a 3824 }
1e8f889b 3825
57303d80
AW
3826 /*
3827 * If we are going to COW a private mapping later, we examine the
3828 * pending reservations for this page now. This will ensure that
3829 * any allocations necessary to record that reservation occur outside
3830 * the spinlock.
3831 */
5e911373 3832 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 3833 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
3834 ret = VM_FAULT_OOM;
3835 goto backout_unlocked;
3836 }
5e911373 3837 /* Just decrements count, does not deallocate */
285b8dca 3838 vma_end_reservation(h, vma, haddr);
5e911373 3839 }
57303d80 3840
8bea8052 3841 ptl = huge_pte_lock(h, mm, ptep);
e7c58097
MK
3842 size = i_size_read(mapping->host) >> huge_page_shift(h);
3843 if (idx >= size)
3844 goto backout;
4c887265 3845
83c54070 3846 ret = 0;
7f2e9525 3847 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3848 goto backout;
3849
07443a85
JK
3850 if (anon_rmap) {
3851 ClearPagePrivate(page);
285b8dca 3852 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 3853 } else
53f9263b 3854 page_dup_rmap(page, true);
1e8f889b
DG
3855 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3856 && (vma->vm_flags & VM_SHARED)));
285b8dca 3857 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 3858
5d317b2b 3859 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3860 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3861 /* Optimization, do the COW without a second fault */
974e6d66 3862 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3863 }
3864
cb900f41 3865 spin_unlock(ptl);
cb6acd01
MK
3866
3867 /*
3868 * Only make newly allocated pages active. Existing pages found
3869 * in the pagecache could be !page_huge_active() if they have been
3870 * isolated for migration.
3871 */
3872 if (new_page)
3873 set_page_huge_active(page);
3874
4c887265
AL
3875 unlock_page(page);
3876out:
ac9b9c66 3877 return ret;
4c887265
AL
3878
3879backout:
cb900f41 3880 spin_unlock(ptl);
2b26736c 3881backout_unlocked:
4c887265 3882 unlock_page(page);
285b8dca 3883 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
3884 put_page(page);
3885 goto out;
ac9b9c66
HD
3886}
3887
8382d914 3888#ifdef CONFIG_SMP
c672c7f2 3889u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3890 struct vm_area_struct *vma,
3891 struct address_space *mapping,
3892 pgoff_t idx, unsigned long address)
3893{
3894 unsigned long key[2];
3895 u32 hash;
3896
3897 if (vma->vm_flags & VM_SHARED) {
3898 key[0] = (unsigned long) mapping;
3899 key[1] = idx;
3900 } else {
3901 key[0] = (unsigned long) mm;
3902 key[1] = address >> huge_page_shift(h);
3903 }
3904
3905 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3906
3907 return hash & (num_fault_mutexes - 1);
3908}
3909#else
3910/*
3911 * For uniprocesor systems we always use a single mutex, so just
3912 * return 0 and avoid the hashing overhead.
3913 */
c672c7f2 3914u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3915 struct vm_area_struct *vma,
3916 struct address_space *mapping,
3917 pgoff_t idx, unsigned long address)
3918{
3919 return 0;
3920}
3921#endif
3922
2b740303 3923vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3924 unsigned long address, unsigned int flags)
86e5216f 3925{
8382d914 3926 pte_t *ptep, entry;
cb900f41 3927 spinlock_t *ptl;
2b740303 3928 vm_fault_t ret;
8382d914
DB
3929 u32 hash;
3930 pgoff_t idx;
0fe6e20b 3931 struct page *page = NULL;
57303d80 3932 struct page *pagecache_page = NULL;
a5516438 3933 struct hstate *h = hstate_vma(vma);
8382d914 3934 struct address_space *mapping;
0f792cf9 3935 int need_wait_lock = 0;
285b8dca 3936 unsigned long haddr = address & huge_page_mask(h);
86e5216f 3937
285b8dca 3938 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed
NH
3939 if (ptep) {
3940 entry = huge_ptep_get(ptep);
290408d4 3941 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3942 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3943 return 0;
3944 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3945 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3946 VM_FAULT_SET_HINDEX(hstate_index(h));
ddeaab32
MK
3947 } else {
3948 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3949 if (!ptep)
3950 return VM_FAULT_OOM;
fd6a03ed
NH
3951 }
3952
8382d914 3953 mapping = vma->vm_file->f_mapping;
ddeaab32 3954 idx = vma_hugecache_offset(h, vma, haddr);
8382d914 3955
3935baa9
DG
3956 /*
3957 * Serialize hugepage allocation and instantiation, so that we don't
3958 * get spurious allocation failures if two CPUs race to instantiate
3959 * the same page in the page cache.
3960 */
285b8dca 3961 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
c672c7f2 3962 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3963
7f2e9525
GS
3964 entry = huge_ptep_get(ptep);
3965 if (huge_pte_none(entry)) {
8382d914 3966 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3967 goto out_mutex;
3935baa9 3968 }
86e5216f 3969
83c54070 3970 ret = 0;
1e8f889b 3971
0f792cf9
NH
3972 /*
3973 * entry could be a migration/hwpoison entry at this point, so this
3974 * check prevents the kernel from going below assuming that we have
3975 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3976 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3977 * handle it.
3978 */
3979 if (!pte_present(entry))
3980 goto out_mutex;
3981
57303d80
AW
3982 /*
3983 * If we are going to COW the mapping later, we examine the pending
3984 * reservations for this page now. This will ensure that any
3985 * allocations necessary to record that reservation occur outside the
3986 * spinlock. For private mappings, we also lookup the pagecache
3987 * page now as it is used to determine if a reservation has been
3988 * consumed.
3989 */
106c992a 3990 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 3991 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 3992 ret = VM_FAULT_OOM;
b4d1d99f 3993 goto out_mutex;
2b26736c 3994 }
5e911373 3995 /* Just decrements count, does not deallocate */
285b8dca 3996 vma_end_reservation(h, vma, haddr);
57303d80 3997
f83a275d 3998 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 3999 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4000 vma, haddr);
57303d80
AW
4001 }
4002
0f792cf9
NH
4003 ptl = huge_pte_lock(h, mm, ptep);
4004
4005 /* Check for a racing update before calling hugetlb_cow */
4006 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4007 goto out_ptl;
4008
56c9cfb1
NH
4009 /*
4010 * hugetlb_cow() requires page locks of pte_page(entry) and
4011 * pagecache_page, so here we need take the former one
4012 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4013 */
4014 page = pte_page(entry);
4015 if (page != pagecache_page)
0f792cf9
NH
4016 if (!trylock_page(page)) {
4017 need_wait_lock = 1;
4018 goto out_ptl;
4019 }
b4d1d99f 4020
0f792cf9 4021 get_page(page);
b4d1d99f 4022
788c7df4 4023 if (flags & FAULT_FLAG_WRITE) {
106c992a 4024 if (!huge_pte_write(entry)) {
974e6d66 4025 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4026 pagecache_page, ptl);
0f792cf9 4027 goto out_put_page;
b4d1d99f 4028 }
106c992a 4029 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4030 }
4031 entry = pte_mkyoung(entry);
285b8dca 4032 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4033 flags & FAULT_FLAG_WRITE))
285b8dca 4034 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4035out_put_page:
4036 if (page != pagecache_page)
4037 unlock_page(page);
4038 put_page(page);
cb900f41
KS
4039out_ptl:
4040 spin_unlock(ptl);
57303d80
AW
4041
4042 if (pagecache_page) {
4043 unlock_page(pagecache_page);
4044 put_page(pagecache_page);
4045 }
b4d1d99f 4046out_mutex:
c672c7f2 4047 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
4048 /*
4049 * Generally it's safe to hold refcount during waiting page lock. But
4050 * here we just wait to defer the next page fault to avoid busy loop and
4051 * the page is not used after unlocked before returning from the current
4052 * page fault. So we are safe from accessing freed page, even if we wait
4053 * here without taking refcount.
4054 */
4055 if (need_wait_lock)
4056 wait_on_page_locked(page);
1e8f889b 4057 return ret;
86e5216f
AL
4058}
4059
8fb5debc
MK
4060/*
4061 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4062 * modifications for huge pages.
4063 */
4064int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4065 pte_t *dst_pte,
4066 struct vm_area_struct *dst_vma,
4067 unsigned long dst_addr,
4068 unsigned long src_addr,
4069 struct page **pagep)
4070{
1e392147
AA
4071 struct address_space *mapping;
4072 pgoff_t idx;
4073 unsigned long size;
1c9e8def 4074 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4075 struct hstate *h = hstate_vma(dst_vma);
4076 pte_t _dst_pte;
4077 spinlock_t *ptl;
4078 int ret;
4079 struct page *page;
4080
4081 if (!*pagep) {
4082 ret = -ENOMEM;
4083 page = alloc_huge_page(dst_vma, dst_addr, 0);
4084 if (IS_ERR(page))
4085 goto out;
4086
4087 ret = copy_huge_page_from_user(page,
4088 (const void __user *) src_addr,
810a56b9 4089 pages_per_huge_page(h), false);
8fb5debc
MK
4090
4091 /* fallback to copy_from_user outside mmap_sem */
4092 if (unlikely(ret)) {
9e368259 4093 ret = -ENOENT;
8fb5debc
MK
4094 *pagep = page;
4095 /* don't free the page */
4096 goto out;
4097 }
4098 } else {
4099 page = *pagep;
4100 *pagep = NULL;
4101 }
4102
4103 /*
4104 * The memory barrier inside __SetPageUptodate makes sure that
4105 * preceding stores to the page contents become visible before
4106 * the set_pte_at() write.
4107 */
4108 __SetPageUptodate(page);
8fb5debc 4109
1e392147
AA
4110 mapping = dst_vma->vm_file->f_mapping;
4111 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4112
1c9e8def
MK
4113 /*
4114 * If shared, add to page cache
4115 */
4116 if (vm_shared) {
1e392147
AA
4117 size = i_size_read(mapping->host) >> huge_page_shift(h);
4118 ret = -EFAULT;
4119 if (idx >= size)
4120 goto out_release_nounlock;
1c9e8def 4121
1e392147
AA
4122 /*
4123 * Serialization between remove_inode_hugepages() and
4124 * huge_add_to_page_cache() below happens through the
4125 * hugetlb_fault_mutex_table that here must be hold by
4126 * the caller.
4127 */
1c9e8def
MK
4128 ret = huge_add_to_page_cache(page, mapping, idx);
4129 if (ret)
4130 goto out_release_nounlock;
4131 }
4132
8fb5debc
MK
4133 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4134 spin_lock(ptl);
4135
1e392147
AA
4136 /*
4137 * Recheck the i_size after holding PT lock to make sure not
4138 * to leave any page mapped (as page_mapped()) beyond the end
4139 * of the i_size (remove_inode_hugepages() is strict about
4140 * enforcing that). If we bail out here, we'll also leave a
4141 * page in the radix tree in the vm_shared case beyond the end
4142 * of the i_size, but remove_inode_hugepages() will take care
4143 * of it as soon as we drop the hugetlb_fault_mutex_table.
4144 */
4145 size = i_size_read(mapping->host) >> huge_page_shift(h);
4146 ret = -EFAULT;
4147 if (idx >= size)
4148 goto out_release_unlock;
4149
8fb5debc
MK
4150 ret = -EEXIST;
4151 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4152 goto out_release_unlock;
4153
1c9e8def
MK
4154 if (vm_shared) {
4155 page_dup_rmap(page, true);
4156 } else {
4157 ClearPagePrivate(page);
4158 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4159 }
8fb5debc
MK
4160
4161 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4162 if (dst_vma->vm_flags & VM_WRITE)
4163 _dst_pte = huge_pte_mkdirty(_dst_pte);
4164 _dst_pte = pte_mkyoung(_dst_pte);
4165
4166 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4167
4168 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4169 dst_vma->vm_flags & VM_WRITE);
4170 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4171
4172 /* No need to invalidate - it was non-present before */
4173 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4174
4175 spin_unlock(ptl);
cb6acd01 4176 set_page_huge_active(page);
1c9e8def
MK
4177 if (vm_shared)
4178 unlock_page(page);
8fb5debc
MK
4179 ret = 0;
4180out:
4181 return ret;
4182out_release_unlock:
4183 spin_unlock(ptl);
1c9e8def
MK
4184 if (vm_shared)
4185 unlock_page(page);
5af10dfd 4186out_release_nounlock:
8fb5debc
MK
4187 put_page(page);
4188 goto out;
4189}
4190
28a35716
ML
4191long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4192 struct page **pages, struct vm_area_struct **vmas,
4193 unsigned long *position, unsigned long *nr_pages,
87ffc118 4194 long i, unsigned int flags, int *nonblocking)
63551ae0 4195{
d5d4b0aa
KC
4196 unsigned long pfn_offset;
4197 unsigned long vaddr = *position;
28a35716 4198 unsigned long remainder = *nr_pages;
a5516438 4199 struct hstate *h = hstate_vma(vma);
2be7cfed 4200 int err = -EFAULT;
63551ae0 4201
63551ae0 4202 while (vaddr < vma->vm_end && remainder) {
4c887265 4203 pte_t *pte;
cb900f41 4204 spinlock_t *ptl = NULL;
2a15efc9 4205 int absent;
4c887265 4206 struct page *page;
63551ae0 4207
02057967
DR
4208 /*
4209 * If we have a pending SIGKILL, don't keep faulting pages and
4210 * potentially allocating memory.
4211 */
fa45f116 4212 if (fatal_signal_pending(current)) {
02057967
DR
4213 remainder = 0;
4214 break;
4215 }
4216
4c887265
AL
4217 /*
4218 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4219 * each hugepage. We have to make sure we get the
4c887265 4220 * first, for the page indexing below to work.
cb900f41
KS
4221 *
4222 * Note that page table lock is not held when pte is null.
4c887265 4223 */
7868a208
PA
4224 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4225 huge_page_size(h));
cb900f41
KS
4226 if (pte)
4227 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4228 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4229
4230 /*
4231 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4232 * an error where there's an empty slot with no huge pagecache
4233 * to back it. This way, we avoid allocating a hugepage, and
4234 * the sparse dumpfile avoids allocating disk blocks, but its
4235 * huge holes still show up with zeroes where they need to be.
2a15efc9 4236 */
3ae77f43
HD
4237 if (absent && (flags & FOLL_DUMP) &&
4238 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4239 if (pte)
4240 spin_unlock(ptl);
2a15efc9
HD
4241 remainder = 0;
4242 break;
4243 }
63551ae0 4244
9cc3a5bd
NH
4245 /*
4246 * We need call hugetlb_fault for both hugepages under migration
4247 * (in which case hugetlb_fault waits for the migration,) and
4248 * hwpoisoned hugepages (in which case we need to prevent the
4249 * caller from accessing to them.) In order to do this, we use
4250 * here is_swap_pte instead of is_hugetlb_entry_migration and
4251 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4252 * both cases, and because we can't follow correct pages
4253 * directly from any kind of swap entries.
4254 */
4255 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4256 ((flags & FOLL_WRITE) &&
4257 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4258 vm_fault_t ret;
87ffc118 4259 unsigned int fault_flags = 0;
63551ae0 4260
cb900f41
KS
4261 if (pte)
4262 spin_unlock(ptl);
87ffc118
AA
4263 if (flags & FOLL_WRITE)
4264 fault_flags |= FAULT_FLAG_WRITE;
4265 if (nonblocking)
4266 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4267 if (flags & FOLL_NOWAIT)
4268 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4269 FAULT_FLAG_RETRY_NOWAIT;
4270 if (flags & FOLL_TRIED) {
4271 VM_WARN_ON_ONCE(fault_flags &
4272 FAULT_FLAG_ALLOW_RETRY);
4273 fault_flags |= FAULT_FLAG_TRIED;
4274 }
4275 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4276 if (ret & VM_FAULT_ERROR) {
2be7cfed 4277 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4278 remainder = 0;
4279 break;
4280 }
4281 if (ret & VM_FAULT_RETRY) {
1ac25013
AA
4282 if (nonblocking &&
4283 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
87ffc118
AA
4284 *nonblocking = 0;
4285 *nr_pages = 0;
4286 /*
4287 * VM_FAULT_RETRY must not return an
4288 * error, it will return zero
4289 * instead.
4290 *
4291 * No need to update "position" as the
4292 * caller will not check it after
4293 * *nr_pages is set to 0.
4294 */
4295 return i;
4296 }
4297 continue;
4c887265
AL
4298 }
4299
a5516438 4300 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4301 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4302same_page:
d6692183 4303 if (pages) {
2a15efc9 4304 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4305 get_page(pages[i]);
d6692183 4306 }
63551ae0
DG
4307
4308 if (vmas)
4309 vmas[i] = vma;
4310
4311 vaddr += PAGE_SIZE;
d5d4b0aa 4312 ++pfn_offset;
63551ae0
DG
4313 --remainder;
4314 ++i;
d5d4b0aa 4315 if (vaddr < vma->vm_end && remainder &&
a5516438 4316 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4317 /*
4318 * We use pfn_offset to avoid touching the pageframes
4319 * of this compound page.
4320 */
4321 goto same_page;
4322 }
cb900f41 4323 spin_unlock(ptl);
63551ae0 4324 }
28a35716 4325 *nr_pages = remainder;
87ffc118
AA
4326 /*
4327 * setting position is actually required only if remainder is
4328 * not zero but it's faster not to add a "if (remainder)"
4329 * branch.
4330 */
63551ae0
DG
4331 *position = vaddr;
4332
2be7cfed 4333 return i ? i : err;
63551ae0 4334}
8f860591 4335
5491ae7b
AK
4336#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4337/*
4338 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4339 * implement this.
4340 */
4341#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4342#endif
4343
7da4d641 4344unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4345 unsigned long address, unsigned long end, pgprot_t newprot)
4346{
4347 struct mm_struct *mm = vma->vm_mm;
4348 unsigned long start = address;
4349 pte_t *ptep;
4350 pte_t pte;
a5516438 4351 struct hstate *h = hstate_vma(vma);
7da4d641 4352 unsigned long pages = 0;
dff11abe 4353 bool shared_pmd = false;
ac46d4f3 4354 struct mmu_notifier_range range;
dff11abe
MK
4355
4356 /*
4357 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 4358 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
4359 * range if PMD sharing is possible.
4360 */
ac46d4f3
JG
4361 mmu_notifier_range_init(&range, mm, start, end);
4362 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
4363
4364 BUG_ON(address >= end);
ac46d4f3 4365 flush_cache_range(vma, range.start, range.end);
8f860591 4366
ac46d4f3 4367 mmu_notifier_invalidate_range_start(&range);
83cde9e8 4368 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4369 for (; address < end; address += huge_page_size(h)) {
cb900f41 4370 spinlock_t *ptl;
7868a208 4371 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4372 if (!ptep)
4373 continue;
cb900f41 4374 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4375 if (huge_pmd_unshare(mm, &address, ptep)) {
4376 pages++;
cb900f41 4377 spin_unlock(ptl);
dff11abe 4378 shared_pmd = true;
39dde65c 4379 continue;
7da4d641 4380 }
a8bda28d
NH
4381 pte = huge_ptep_get(ptep);
4382 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4383 spin_unlock(ptl);
4384 continue;
4385 }
4386 if (unlikely(is_hugetlb_entry_migration(pte))) {
4387 swp_entry_t entry = pte_to_swp_entry(pte);
4388
4389 if (is_write_migration_entry(entry)) {
4390 pte_t newpte;
4391
4392 make_migration_entry_read(&entry);
4393 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4394 set_huge_swap_pte_at(mm, address, ptep,
4395 newpte, huge_page_size(h));
a8bda28d
NH
4396 pages++;
4397 }
4398 spin_unlock(ptl);
4399 continue;
4400 }
4401 if (!huge_pte_none(pte)) {
023bdd00
AK
4402 pte_t old_pte;
4403
4404 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4405 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 4406 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 4407 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 4408 pages++;
8f860591 4409 }
cb900f41 4410 spin_unlock(ptl);
8f860591 4411 }
d833352a 4412 /*
c8c06efa 4413 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4414 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4415 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
4416 * and that page table be reused and filled with junk. If we actually
4417 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 4418 */
dff11abe 4419 if (shared_pmd)
ac46d4f3 4420 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
4421 else
4422 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4423 /*
4424 * No need to call mmu_notifier_invalidate_range() we are downgrading
4425 * page table protection not changing it to point to a new page.
4426 *
ad56b738 4427 * See Documentation/vm/mmu_notifier.rst
0f10851e 4428 */
83cde9e8 4429 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 4430 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
4431
4432 return pages << h->order;
8f860591
ZY
4433}
4434
a1e78772
MG
4435int hugetlb_reserve_pages(struct inode *inode,
4436 long from, long to,
5a6fe125 4437 struct vm_area_struct *vma,
ca16d140 4438 vm_flags_t vm_flags)
e4e574b7 4439{
17c9d12e 4440 long ret, chg;
a5516438 4441 struct hstate *h = hstate_inode(inode);
90481622 4442 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4443 struct resv_map *resv_map;
1c5ecae3 4444 long gbl_reserve;
e4e574b7 4445
63489f8e
MK
4446 /* This should never happen */
4447 if (from > to) {
4448 VM_WARN(1, "%s called with a negative range\n", __func__);
4449 return -EINVAL;
4450 }
4451
17c9d12e
MG
4452 /*
4453 * Only apply hugepage reservation if asked. At fault time, an
4454 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4455 * without using reserves
17c9d12e 4456 */
ca16d140 4457 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4458 return 0;
4459
a1e78772
MG
4460 /*
4461 * Shared mappings base their reservation on the number of pages that
4462 * are already allocated on behalf of the file. Private mappings need
4463 * to reserve the full area even if read-only as mprotect() may be
4464 * called to make the mapping read-write. Assume !vma is a shm mapping
4465 */
9119a41e 4466 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4467 resv_map = inode_resv_map(inode);
9119a41e 4468
1406ec9b 4469 chg = region_chg(resv_map, from, to);
9119a41e
JK
4470
4471 } else {
4472 resv_map = resv_map_alloc();
17c9d12e
MG
4473 if (!resv_map)
4474 return -ENOMEM;
4475
a1e78772 4476 chg = to - from;
84afd99b 4477
17c9d12e
MG
4478 set_vma_resv_map(vma, resv_map);
4479 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4480 }
4481
c50ac050
DH
4482 if (chg < 0) {
4483 ret = chg;
4484 goto out_err;
4485 }
8a630112 4486
1c5ecae3
MK
4487 /*
4488 * There must be enough pages in the subpool for the mapping. If
4489 * the subpool has a minimum size, there may be some global
4490 * reservations already in place (gbl_reserve).
4491 */
4492 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4493 if (gbl_reserve < 0) {
c50ac050
DH
4494 ret = -ENOSPC;
4495 goto out_err;
4496 }
5a6fe125
MG
4497
4498 /*
17c9d12e 4499 * Check enough hugepages are available for the reservation.
90481622 4500 * Hand the pages back to the subpool if there are not
5a6fe125 4501 */
1c5ecae3 4502 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4503 if (ret < 0) {
1c5ecae3
MK
4504 /* put back original number of pages, chg */
4505 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4506 goto out_err;
68842c9b 4507 }
17c9d12e
MG
4508
4509 /*
4510 * Account for the reservations made. Shared mappings record regions
4511 * that have reservations as they are shared by multiple VMAs.
4512 * When the last VMA disappears, the region map says how much
4513 * the reservation was and the page cache tells how much of
4514 * the reservation was consumed. Private mappings are per-VMA and
4515 * only the consumed reservations are tracked. When the VMA
4516 * disappears, the original reservation is the VMA size and the
4517 * consumed reservations are stored in the map. Hence, nothing
4518 * else has to be done for private mappings here
4519 */
33039678
MK
4520 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4521 long add = region_add(resv_map, from, to);
4522
4523 if (unlikely(chg > add)) {
4524 /*
4525 * pages in this range were added to the reserve
4526 * map between region_chg and region_add. This
4527 * indicates a race with alloc_huge_page. Adjust
4528 * the subpool and reserve counts modified above
4529 * based on the difference.
4530 */
4531 long rsv_adjust;
4532
4533 rsv_adjust = hugepage_subpool_put_pages(spool,
4534 chg - add);
4535 hugetlb_acct_memory(h, -rsv_adjust);
4536 }
4537 }
a43a8c39 4538 return 0;
c50ac050 4539out_err:
5e911373 4540 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4541 /* Don't call region_abort if region_chg failed */
4542 if (chg >= 0)
4543 region_abort(resv_map, from, to);
f031dd27
JK
4544 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4545 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4546 return ret;
a43a8c39
KC
4547}
4548
b5cec28d
MK
4549long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4550 long freed)
a43a8c39 4551{
a5516438 4552 struct hstate *h = hstate_inode(inode);
4e35f483 4553 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4554 long chg = 0;
90481622 4555 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4556 long gbl_reserve;
45c682a6 4557
b5cec28d
MK
4558 if (resv_map) {
4559 chg = region_del(resv_map, start, end);
4560 /*
4561 * region_del() can fail in the rare case where a region
4562 * must be split and another region descriptor can not be
4563 * allocated. If end == LONG_MAX, it will not fail.
4564 */
4565 if (chg < 0)
4566 return chg;
4567 }
4568
45c682a6 4569 spin_lock(&inode->i_lock);
e4c6f8be 4570 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4571 spin_unlock(&inode->i_lock);
4572
1c5ecae3
MK
4573 /*
4574 * If the subpool has a minimum size, the number of global
4575 * reservations to be released may be adjusted.
4576 */
4577 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4578 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4579
4580 return 0;
a43a8c39 4581}
93f70f90 4582
3212b535
SC
4583#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4584static unsigned long page_table_shareable(struct vm_area_struct *svma,
4585 struct vm_area_struct *vma,
4586 unsigned long addr, pgoff_t idx)
4587{
4588 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4589 svma->vm_start;
4590 unsigned long sbase = saddr & PUD_MASK;
4591 unsigned long s_end = sbase + PUD_SIZE;
4592
4593 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4594 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4595 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4596
4597 /*
4598 * match the virtual addresses, permission and the alignment of the
4599 * page table page.
4600 */
4601 if (pmd_index(addr) != pmd_index(saddr) ||
4602 vm_flags != svm_flags ||
4603 sbase < svma->vm_start || svma->vm_end < s_end)
4604 return 0;
4605
4606 return saddr;
4607}
4608
31aafb45 4609static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4610{
4611 unsigned long base = addr & PUD_MASK;
4612 unsigned long end = base + PUD_SIZE;
4613
4614 /*
4615 * check on proper vm_flags and page table alignment
4616 */
017b1660 4617 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
4618 return true;
4619 return false;
3212b535
SC
4620}
4621
017b1660
MK
4622/*
4623 * Determine if start,end range within vma could be mapped by shared pmd.
4624 * If yes, adjust start and end to cover range associated with possible
4625 * shared pmd mappings.
4626 */
4627void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4628 unsigned long *start, unsigned long *end)
4629{
4630 unsigned long check_addr = *start;
4631
4632 if (!(vma->vm_flags & VM_MAYSHARE))
4633 return;
4634
4635 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4636 unsigned long a_start = check_addr & PUD_MASK;
4637 unsigned long a_end = a_start + PUD_SIZE;
4638
4639 /*
4640 * If sharing is possible, adjust start/end if necessary.
4641 */
4642 if (range_in_vma(vma, a_start, a_end)) {
4643 if (a_start < *start)
4644 *start = a_start;
4645 if (a_end > *end)
4646 *end = a_end;
4647 }
4648 }
4649}
4650
3212b535
SC
4651/*
4652 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4653 * and returns the corresponding pte. While this is not necessary for the
4654 * !shared pmd case because we can allocate the pmd later as well, it makes the
ddeaab32
MK
4655 * code much cleaner. pmd allocation is essential for the shared case because
4656 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4657 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4658 * bad pmd for sharing.
3212b535
SC
4659 */
4660pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4661{
4662 struct vm_area_struct *vma = find_vma(mm, addr);
4663 struct address_space *mapping = vma->vm_file->f_mapping;
4664 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4665 vma->vm_pgoff;
4666 struct vm_area_struct *svma;
4667 unsigned long saddr;
4668 pte_t *spte = NULL;
4669 pte_t *pte;
cb900f41 4670 spinlock_t *ptl;
3212b535
SC
4671
4672 if (!vma_shareable(vma, addr))
4673 return (pte_t *)pmd_alloc(mm, pud, addr);
4674
ddeaab32 4675 i_mmap_lock_write(mapping);
3212b535
SC
4676 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4677 if (svma == vma)
4678 continue;
4679
4680 saddr = page_table_shareable(svma, vma, addr, idx);
4681 if (saddr) {
7868a208
PA
4682 spte = huge_pte_offset(svma->vm_mm, saddr,
4683 vma_mmu_pagesize(svma));
3212b535
SC
4684 if (spte) {
4685 get_page(virt_to_page(spte));
4686 break;
4687 }
4688 }
4689 }
4690
4691 if (!spte)
4692 goto out;
4693
8bea8052 4694 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4695 if (pud_none(*pud)) {
3212b535
SC
4696 pud_populate(mm, pud,
4697 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4698 mm_inc_nr_pmds(mm);
dc6c9a35 4699 } else {
3212b535 4700 put_page(virt_to_page(spte));
dc6c9a35 4701 }
cb900f41 4702 spin_unlock(ptl);
3212b535
SC
4703out:
4704 pte = (pte_t *)pmd_alloc(mm, pud, addr);
ddeaab32 4705 i_mmap_unlock_write(mapping);
3212b535
SC
4706 return pte;
4707}
4708
4709/*
4710 * unmap huge page backed by shared pte.
4711 *
4712 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4713 * indicated by page_count > 1, unmap is achieved by clearing pud and
4714 * decrementing the ref count. If count == 1, the pte page is not shared.
4715 *
ddeaab32 4716 * called with page table lock held.
3212b535
SC
4717 *
4718 * returns: 1 successfully unmapped a shared pte page
4719 * 0 the underlying pte page is not shared, or it is the last user
4720 */
4721int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4722{
4723 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4724 p4d_t *p4d = p4d_offset(pgd, *addr);
4725 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4726
4727 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4728 if (page_count(virt_to_page(ptep)) == 1)
4729 return 0;
4730
4731 pud_clear(pud);
4732 put_page(virt_to_page(ptep));
dc6c9a35 4733 mm_dec_nr_pmds(mm);
3212b535
SC
4734 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4735 return 1;
4736}
9e5fc74c
SC
4737#define want_pmd_share() (1)
4738#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4739pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4740{
4741 return NULL;
4742}
e81f2d22
ZZ
4743
4744int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4745{
4746 return 0;
4747}
017b1660
MK
4748
4749void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4750 unsigned long *start, unsigned long *end)
4751{
4752}
9e5fc74c 4753#define want_pmd_share() (0)
3212b535
SC
4754#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4755
9e5fc74c
SC
4756#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4757pte_t *huge_pte_alloc(struct mm_struct *mm,
4758 unsigned long addr, unsigned long sz)
4759{
4760 pgd_t *pgd;
c2febafc 4761 p4d_t *p4d;
9e5fc74c
SC
4762 pud_t *pud;
4763 pte_t *pte = NULL;
4764
4765 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4766 p4d = p4d_alloc(mm, pgd, addr);
4767 if (!p4d)
4768 return NULL;
c2febafc 4769 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4770 if (pud) {
4771 if (sz == PUD_SIZE) {
4772 pte = (pte_t *)pud;
4773 } else {
4774 BUG_ON(sz != PMD_SIZE);
4775 if (want_pmd_share() && pud_none(*pud))
4776 pte = huge_pmd_share(mm, addr, pud);
4777 else
4778 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4779 }
4780 }
4e666314 4781 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4782
4783 return pte;
4784}
4785
9b19df29
PA
4786/*
4787 * huge_pte_offset() - Walk the page table to resolve the hugepage
4788 * entry at address @addr
4789 *
4790 * Return: Pointer to page table or swap entry (PUD or PMD) for
4791 * address @addr, or NULL if a p*d_none() entry is encountered and the
4792 * size @sz doesn't match the hugepage size at this level of the page
4793 * table.
4794 */
7868a208
PA
4795pte_t *huge_pte_offset(struct mm_struct *mm,
4796 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4797{
4798 pgd_t *pgd;
c2febafc 4799 p4d_t *p4d;
9e5fc74c 4800 pud_t *pud;
c2febafc 4801 pmd_t *pmd;
9e5fc74c
SC
4802
4803 pgd = pgd_offset(mm, addr);
c2febafc
KS
4804 if (!pgd_present(*pgd))
4805 return NULL;
4806 p4d = p4d_offset(pgd, addr);
4807 if (!p4d_present(*p4d))
4808 return NULL;
9b19df29 4809
c2febafc 4810 pud = pud_offset(p4d, addr);
9b19df29 4811 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4812 return NULL;
9b19df29
PA
4813 /* hugepage or swap? */
4814 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4815 return (pte_t *)pud;
9b19df29 4816
c2febafc 4817 pmd = pmd_offset(pud, addr);
9b19df29
PA
4818 if (sz != PMD_SIZE && pmd_none(*pmd))
4819 return NULL;
4820 /* hugepage or swap? */
4821 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4822 return (pte_t *)pmd;
4823
4824 return NULL;
9e5fc74c
SC
4825}
4826
61f77eda
NH
4827#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4828
4829/*
4830 * These functions are overwritable if your architecture needs its own
4831 * behavior.
4832 */
4833struct page * __weak
4834follow_huge_addr(struct mm_struct *mm, unsigned long address,
4835 int write)
4836{
4837 return ERR_PTR(-EINVAL);
4838}
4839
4dc71451
AK
4840struct page * __weak
4841follow_huge_pd(struct vm_area_struct *vma,
4842 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4843{
4844 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4845 return NULL;
4846}
4847
61f77eda 4848struct page * __weak
9e5fc74c 4849follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4850 pmd_t *pmd, int flags)
9e5fc74c 4851{
e66f17ff
NH
4852 struct page *page = NULL;
4853 spinlock_t *ptl;
c9d398fa 4854 pte_t pte;
e66f17ff
NH
4855retry:
4856 ptl = pmd_lockptr(mm, pmd);
4857 spin_lock(ptl);
4858 /*
4859 * make sure that the address range covered by this pmd is not
4860 * unmapped from other threads.
4861 */
4862 if (!pmd_huge(*pmd))
4863 goto out;
c9d398fa
NH
4864 pte = huge_ptep_get((pte_t *)pmd);
4865 if (pte_present(pte)) {
97534127 4866 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4867 if (flags & FOLL_GET)
4868 get_page(page);
4869 } else {
c9d398fa 4870 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4871 spin_unlock(ptl);
4872 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4873 goto retry;
4874 }
4875 /*
4876 * hwpoisoned entry is treated as no_page_table in
4877 * follow_page_mask().
4878 */
4879 }
4880out:
4881 spin_unlock(ptl);
9e5fc74c
SC
4882 return page;
4883}
4884
61f77eda 4885struct page * __weak
9e5fc74c 4886follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4887 pud_t *pud, int flags)
9e5fc74c 4888{
e66f17ff
NH
4889 if (flags & FOLL_GET)
4890 return NULL;
9e5fc74c 4891
e66f17ff 4892 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4893}
4894
faaa5b62
AK
4895struct page * __weak
4896follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4897{
4898 if (flags & FOLL_GET)
4899 return NULL;
4900
4901 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4902}
4903
31caf665
NH
4904bool isolate_huge_page(struct page *page, struct list_head *list)
4905{
bcc54222
NH
4906 bool ret = true;
4907
309381fe 4908 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4909 spin_lock(&hugetlb_lock);
bcc54222
NH
4910 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4911 ret = false;
4912 goto unlock;
4913 }
4914 clear_page_huge_active(page);
31caf665 4915 list_move_tail(&page->lru, list);
bcc54222 4916unlock:
31caf665 4917 spin_unlock(&hugetlb_lock);
bcc54222 4918 return ret;
31caf665
NH
4919}
4920
4921void putback_active_hugepage(struct page *page)
4922{
309381fe 4923 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4924 spin_lock(&hugetlb_lock);
bcc54222 4925 set_page_huge_active(page);
31caf665
NH
4926 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4927 spin_unlock(&hugetlb_lock);
4928 put_page(page);
4929}
ab5ac90a
MH
4930
4931void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4932{
4933 struct hstate *h = page_hstate(oldpage);
4934
4935 hugetlb_cgroup_migrate(oldpage, newpage);
4936 set_page_owner_migrate_reason(newpage, reason);
4937
4938 /*
4939 * transfer temporary state of the new huge page. This is
4940 * reverse to other transitions because the newpage is going to
4941 * be final while the old one will be freed so it takes over
4942 * the temporary status.
4943 *
4944 * Also note that we have to transfer the per-node surplus state
4945 * here as well otherwise the global surplus count will not match
4946 * the per-node's.
4947 */
4948 if (PageHugeTemporary(newpage)) {
4949 int old_nid = page_to_nid(oldpage);
4950 int new_nid = page_to_nid(newpage);
4951
4952 SetPageHugeTemporary(oldpage);
4953 ClearPageHugeTemporary(newpage);
4954
4955 spin_lock(&hugetlb_lock);
4956 if (h->surplus_huge_pages_node[old_nid]) {
4957 h->surplus_huge_pages_node[old_nid]--;
4958 h->surplus_huge_pages_node[new_nid]++;
4959 }
4960 spin_unlock(&hugetlb_lock);
4961 }
4962}