]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/hugetlb_vmemmap.c
Merge branch 'for-6.2/sony' into for-linus
[thirdparty/linux.git] / mm / hugetlb_vmemmap.c
CommitLineData
f41f2ed4
MS
1// SPDX-License-Identifier: GPL-2.0
2/*
dff03381 3 * HugeTLB Vmemmap Optimization (HVO)
f41f2ed4 4 *
dff03381 5 * Copyright (c) 2020, ByteDance. All rights reserved.
f41f2ed4
MS
6 *
7 * Author: Muchun Song <songmuchun@bytedance.com>
8 *
ee65728e 9 * See Documentation/mm/vmemmap_dedup.rst
f41f2ed4 10 */
e9fdff87
MS
11#define pr_fmt(fmt) "HugeTLB: " fmt
12
998a2997
MS
13#include <linux/pgtable.h>
14#include <linux/bootmem_info.h>
15#include <asm/pgalloc.h>
16#include <asm/tlbflush.h>
f41f2ed4
MS
17#include "hugetlb_vmemmap.h"
18
998a2997
MS
19/**
20 * struct vmemmap_remap_walk - walk vmemmap page table
21 *
22 * @remap_pte: called for each lowest-level entry (PTE).
23 * @nr_walked: the number of walked pte.
24 * @reuse_page: the page which is reused for the tail vmemmap pages.
25 * @reuse_addr: the virtual address of the @reuse_page page.
26 * @vmemmap_pages: the list head of the vmemmap pages that can be freed
27 * or is mapped from.
28 */
29struct vmemmap_remap_walk {
30 void (*remap_pte)(pte_t *pte, unsigned long addr,
31 struct vmemmap_remap_walk *walk);
32 unsigned long nr_walked;
33 struct page *reuse_page;
34 unsigned long reuse_addr;
35 struct list_head *vmemmap_pages;
36};
37
998a2997
MS
38static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
39{
40 pmd_t __pmd;
41 int i;
42 unsigned long addr = start;
43 struct page *page = pmd_page(*pmd);
44 pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
45
46 if (!pgtable)
47 return -ENOMEM;
48
49 pmd_populate_kernel(&init_mm, &__pmd, pgtable);
50
e38f055d 51 for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
998a2997
MS
52 pte_t entry, *pte;
53 pgprot_t pgprot = PAGE_KERNEL;
54
55 entry = mk_pte(page + i, pgprot);
56 pte = pte_offset_kernel(&__pmd, addr);
57 set_pte_at(&init_mm, addr, pte, entry);
58 }
59
60 spin_lock(&init_mm.page_table_lock);
61 if (likely(pmd_leaf(*pmd))) {
62 /*
63 * Higher order allocations from buddy allocator must be able to
64 * be treated as indepdenent small pages (as they can be freed
65 * individually).
66 */
67 if (!PageReserved(page))
68 split_page(page, get_order(PMD_SIZE));
69
70 /* Make pte visible before pmd. See comment in pmd_install(). */
71 smp_wmb();
72 pmd_populate_kernel(&init_mm, pmd, pgtable);
73 flush_tlb_kernel_range(start, start + PMD_SIZE);
74 } else {
75 pte_free_kernel(&init_mm, pgtable);
76 }
77 spin_unlock(&init_mm.page_table_lock);
78
79 return 0;
80}
81
82static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
83{
84 int leaf;
85
86 spin_lock(&init_mm.page_table_lock);
87 leaf = pmd_leaf(*pmd);
88 spin_unlock(&init_mm.page_table_lock);
89
90 if (!leaf)
91 return 0;
92
93 return __split_vmemmap_huge_pmd(pmd, start);
94}
95
96static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
97 unsigned long end,
98 struct vmemmap_remap_walk *walk)
99{
100 pte_t *pte = pte_offset_kernel(pmd, addr);
101
102 /*
103 * The reuse_page is found 'first' in table walk before we start
104 * remapping (which is calling @walk->remap_pte).
105 */
106 if (!walk->reuse_page) {
107 walk->reuse_page = pte_page(*pte);
108 /*
109 * Because the reuse address is part of the range that we are
110 * walking, skip the reuse address range.
111 */
112 addr += PAGE_SIZE;
113 pte++;
114 walk->nr_walked++;
115 }
116
117 for (; addr != end; addr += PAGE_SIZE, pte++) {
118 walk->remap_pte(pte, addr, walk);
119 walk->nr_walked++;
120 }
121}
122
123static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
124 unsigned long end,
125 struct vmemmap_remap_walk *walk)
126{
127 pmd_t *pmd;
128 unsigned long next;
129
130 pmd = pmd_offset(pud, addr);
131 do {
132 int ret;
133
134 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
135 if (ret)
136 return ret;
137
138 next = pmd_addr_end(addr, end);
139 vmemmap_pte_range(pmd, addr, next, walk);
140 } while (pmd++, addr = next, addr != end);
141
142 return 0;
143}
144
145static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
146 unsigned long end,
147 struct vmemmap_remap_walk *walk)
148{
149 pud_t *pud;
150 unsigned long next;
151
152 pud = pud_offset(p4d, addr);
153 do {
154 int ret;
155
156 next = pud_addr_end(addr, end);
157 ret = vmemmap_pmd_range(pud, addr, next, walk);
158 if (ret)
159 return ret;
160 } while (pud++, addr = next, addr != end);
161
162 return 0;
163}
164
165static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
166 unsigned long end,
167 struct vmemmap_remap_walk *walk)
168{
169 p4d_t *p4d;
170 unsigned long next;
171
172 p4d = p4d_offset(pgd, addr);
173 do {
174 int ret;
175
176 next = p4d_addr_end(addr, end);
177 ret = vmemmap_pud_range(p4d, addr, next, walk);
178 if (ret)
179 return ret;
180 } while (p4d++, addr = next, addr != end);
181
182 return 0;
183}
184
185static int vmemmap_remap_range(unsigned long start, unsigned long end,
186 struct vmemmap_remap_walk *walk)
187{
188 unsigned long addr = start;
189 unsigned long next;
190 pgd_t *pgd;
191
192 VM_BUG_ON(!PAGE_ALIGNED(start));
193 VM_BUG_ON(!PAGE_ALIGNED(end));
194
195 pgd = pgd_offset_k(addr);
196 do {
197 int ret;
198
199 next = pgd_addr_end(addr, end);
200 ret = vmemmap_p4d_range(pgd, addr, next, walk);
201 if (ret)
202 return ret;
203 } while (pgd++, addr = next, addr != end);
204
205 /*
206 * We only change the mapping of the vmemmap virtual address range
207 * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
208 * belongs to the range.
209 */
210 flush_tlb_kernel_range(start + PAGE_SIZE, end);
211
212 return 0;
213}
214
215/*
216 * Free a vmemmap page. A vmemmap page can be allocated from the memblock
217 * allocator or buddy allocator. If the PG_reserved flag is set, it means
218 * that it allocated from the memblock allocator, just free it via the
219 * free_bootmem_page(). Otherwise, use __free_page().
220 */
221static inline void free_vmemmap_page(struct page *page)
222{
223 if (PageReserved(page))
224 free_bootmem_page(page);
225 else
226 __free_page(page);
227}
228
229/* Free a list of the vmemmap pages */
230static void free_vmemmap_page_list(struct list_head *list)
231{
232 struct page *page, *next;
233
234 list_for_each_entry_safe(page, next, list, lru) {
235 list_del(&page->lru);
236 free_vmemmap_page(page);
237 }
238}
239
240static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
241 struct vmemmap_remap_walk *walk)
242{
243 /*
244 * Remap the tail pages as read-only to catch illegal write operation
245 * to the tail pages.
246 */
247 pgprot_t pgprot = PAGE_KERNEL_RO;
248 pte_t entry = mk_pte(walk->reuse_page, pgprot);
249 struct page *page = pte_page(*pte);
250
251 list_add_tail(&page->lru, walk->vmemmap_pages);
252 set_pte_at(&init_mm, addr, pte, entry);
253}
254
255/*
256 * How many struct page structs need to be reset. When we reuse the head
257 * struct page, the special metadata (e.g. page->flags or page->mapping)
258 * cannot copy to the tail struct page structs. The invalid value will be
259 * checked in the free_tail_pages_check(). In order to avoid the message
260 * of "corrupted mapping in tail page". We need to reset at least 3 (one
261 * head struct page struct and two tail struct page structs) struct page
262 * structs.
263 */
264#define NR_RESET_STRUCT_PAGE 3
265
266static inline void reset_struct_pages(struct page *start)
267{
998a2997
MS
268 struct page *from = start + NR_RESET_STRUCT_PAGE;
269
33febb51
MS
270 BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
271 memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
998a2997
MS
272}
273
274static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
275 struct vmemmap_remap_walk *walk)
276{
277 pgprot_t pgprot = PAGE_KERNEL;
278 struct page *page;
279 void *to;
280
281 BUG_ON(pte_page(*pte) != walk->reuse_page);
282
283 page = list_first_entry(walk->vmemmap_pages, struct page, lru);
284 list_del(&page->lru);
285 to = page_to_virt(page);
286 copy_page(to, (void *)walk->reuse_addr);
287 reset_struct_pages(to);
288
939de63d
ML
289 /*
290 * Makes sure that preceding stores to the page contents become visible
291 * before the set_pte_at() write.
292 */
293 smp_wmb();
998a2997
MS
294 set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
295}
296
297/**
298 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
299 * to the page which @reuse is mapped to, then free vmemmap
300 * which the range are mapped to.
301 * @start: start address of the vmemmap virtual address range that we want
302 * to remap.
303 * @end: end address of the vmemmap virtual address range that we want to
304 * remap.
305 * @reuse: reuse address.
306 *
307 * Return: %0 on success, negative error code otherwise.
308 */
309static int vmemmap_remap_free(unsigned long start, unsigned long end,
310 unsigned long reuse)
311{
312 int ret;
313 LIST_HEAD(vmemmap_pages);
314 struct vmemmap_remap_walk walk = {
315 .remap_pte = vmemmap_remap_pte,
316 .reuse_addr = reuse,
317 .vmemmap_pages = &vmemmap_pages,
318 };
319
320 /*
321 * In order to make remapping routine most efficient for the huge pages,
322 * the routine of vmemmap page table walking has the following rules
323 * (see more details from the vmemmap_pte_range()):
324 *
325 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
326 * should be continuous.
327 * - The @reuse address is part of the range [@reuse, @end) that we are
328 * walking which is passed to vmemmap_remap_range().
329 * - The @reuse address is the first in the complete range.
330 *
331 * So we need to make sure that @start and @reuse meet the above rules.
332 */
333 BUG_ON(start - reuse != PAGE_SIZE);
334
335 mmap_read_lock(&init_mm);
336 ret = vmemmap_remap_range(reuse, end, &walk);
337 if (ret && walk.nr_walked) {
338 end = reuse + walk.nr_walked * PAGE_SIZE;
339 /*
340 * vmemmap_pages contains pages from the previous
341 * vmemmap_remap_range call which failed. These
342 * are pages which were removed from the vmemmap.
343 * They will be restored in the following call.
344 */
345 walk = (struct vmemmap_remap_walk) {
346 .remap_pte = vmemmap_restore_pte,
347 .reuse_addr = reuse,
348 .vmemmap_pages = &vmemmap_pages,
349 };
350
351 vmemmap_remap_range(reuse, end, &walk);
352 }
353 mmap_read_unlock(&init_mm);
354
355 free_vmemmap_page_list(&vmemmap_pages);
356
357 return ret;
358}
359
360static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
361 gfp_t gfp_mask, struct list_head *list)
362{
363 unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
364 int nid = page_to_nid((struct page *)start);
365 struct page *page, *next;
366
367 while (nr_pages--) {
368 page = alloc_pages_node(nid, gfp_mask, 0);
369 if (!page)
370 goto out;
371 list_add_tail(&page->lru, list);
372 }
373
374 return 0;
375out:
376 list_for_each_entry_safe(page, next, list, lru)
377 __free_pages(page, 0);
378 return -ENOMEM;
379}
380
381/**
382 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
383 * to the page which is from the @vmemmap_pages
384 * respectively.
385 * @start: start address of the vmemmap virtual address range that we want
386 * to remap.
387 * @end: end address of the vmemmap virtual address range that we want to
388 * remap.
389 * @reuse: reuse address.
390 * @gfp_mask: GFP flag for allocating vmemmap pages.
391 *
392 * Return: %0 on success, negative error code otherwise.
393 */
394static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
395 unsigned long reuse, gfp_t gfp_mask)
396{
397 LIST_HEAD(vmemmap_pages);
398 struct vmemmap_remap_walk walk = {
399 .remap_pte = vmemmap_restore_pte,
400 .reuse_addr = reuse,
401 .vmemmap_pages = &vmemmap_pages,
402 };
403
404 /* See the comment in the vmemmap_remap_free(). */
405 BUG_ON(start - reuse != PAGE_SIZE);
406
407 if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
408 return -ENOMEM;
409
410 mmap_read_lock(&init_mm);
411 vmemmap_remap_range(reuse, end, &walk);
412 mmap_read_unlock(&init_mm);
413
414 return 0;
415}
416
cf5472e5 417DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
f10f1442 418EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
e9fdff87 419
30152245
MS
420static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
421core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
f41f2ed4 422
6213834c
MS
423/**
424 * hugetlb_vmemmap_restore - restore previously optimized (by
425 * hugetlb_vmemmap_optimize()) vmemmap pages which
426 * will be reallocated and remapped.
427 * @h: struct hstate.
428 * @head: the head page whose vmemmap pages will be restored.
429 *
430 * Return: %0 if @head's vmemmap pages have been reallocated and remapped,
431 * negative error code otherwise.
ad2fa371 432 */
6213834c 433int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
ad2fa371
MS
434{
435 int ret;
6213834c
MS
436 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
437 unsigned long vmemmap_reuse;
ad2fa371
MS
438
439 if (!HPageVmemmapOptimized(head))
440 return 0;
441
6213834c
MS
442 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
443 vmemmap_reuse = vmemmap_start;
444 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
5981611d 445
ad2fa371 446 /*
6213834c 447 * The pages which the vmemmap virtual address range [@vmemmap_start,
ad2fa371
MS
448 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
449 * the range is mapped to the page which @vmemmap_reuse is mapped to.
450 * When a HugeTLB page is freed to the buddy allocator, previously
451 * discarded vmemmap pages must be allocated and remapping.
452 */
6213834c 453 ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse,
ad2fa371 454 GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
78f39084 455 if (!ret) {
ad2fa371 456 ClearHPageVmemmapOptimized(head);
78f39084
MS
457 static_branch_dec(&hugetlb_optimize_vmemmap_key);
458 }
ad2fa371
MS
459
460 return ret;
461}
462
6213834c
MS
463/* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
464static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head)
66361095 465{
cf5472e5 466 if (!READ_ONCE(vmemmap_optimize_enabled))
6213834c
MS
467 return false;
468
469 if (!hugetlb_vmemmap_optimizable(h))
470 return false;
66361095
MS
471
472 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
473 pmd_t *pmdp, pmd;
474 struct page *vmemmap_page;
475 unsigned long vaddr = (unsigned long)head;
476
477 /*
478 * Only the vmemmap page's vmemmap page can be self-hosted.
479 * Walking the page tables to find the backing page of the
480 * vmemmap page.
481 */
482 pmdp = pmd_off_k(vaddr);
483 /*
484 * The READ_ONCE() is used to stabilize *pmdp in a register or
485 * on the stack so that it will stop changing under the code.
486 * The only concurrent operation where it can be changed is
487 * split_vmemmap_huge_pmd() (*pmdp will be stable after this
488 * operation).
489 */
490 pmd = READ_ONCE(*pmdp);
491 if (pmd_leaf(pmd))
492 vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
493 else
494 vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
495 /*
496 * Due to HugeTLB alignment requirements and the vmemmap pages
497 * being at the start of the hotplugged memory region in
498 * memory_hotplug.memmap_on_memory case. Checking any vmemmap
499 * page's vmemmap page if it is marked as VmemmapSelfHosted is
500 * sufficient.
501 *
502 * [ hotplugged memory ]
503 * [ section ][...][ section ]
504 * [ vmemmap ][ usable memory ]
505 * ^ | | |
506 * +---+ | |
507 * ^ | |
508 * +-------+ |
509 * ^ |
510 * +-------------------------------------------+
511 */
512 if (PageVmemmapSelfHosted(vmemmap_page))
6213834c 513 return false;
66361095
MS
514 }
515
6213834c 516 return true;
66361095
MS
517}
518
6213834c
MS
519/**
520 * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages.
521 * @h: struct hstate.
522 * @head: the head page whose vmemmap pages will be optimized.
523 *
524 * This function only tries to optimize @head's vmemmap pages and does not
525 * guarantee that the optimization will succeed after it returns. The caller
526 * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages
527 * have been optimized.
528 */
529void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head)
f41f2ed4 530{
6213834c
MS
531 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
532 unsigned long vmemmap_reuse;
f41f2ed4 533
6213834c 534 if (!vmemmap_should_optimize(h, head))
f41f2ed4
MS
535 return;
536
78f39084
MS
537 static_branch_inc(&hugetlb_optimize_vmemmap_key);
538
6213834c
MS
539 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
540 vmemmap_reuse = vmemmap_start;
541 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
f41f2ed4
MS
542
543 /*
6213834c 544 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
f41f2ed4 545 * to the page which @vmemmap_reuse is mapped to, then free the pages
6213834c 546 * which the range [@vmemmap_start, @vmemmap_end] is mapped to.
f41f2ed4 547 */
6213834c 548 if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse))
78f39084
MS
549 static_branch_dec(&hugetlb_optimize_vmemmap_key);
550 else
3bc2b6a7 551 SetHPageVmemmapOptimized(head);
f41f2ed4 552}
77490587 553
78f39084
MS
554static struct ctl_table hugetlb_vmemmap_sysctls[] = {
555 {
556 .procname = "hugetlb_optimize_vmemmap",
cf5472e5
MS
557 .data = &vmemmap_optimize_enabled,
558 .maxlen = sizeof(int),
78f39084 559 .mode = 0644,
cf5472e5 560 .proc_handler = proc_dobool,
78f39084
MS
561 },
562 { }
563};
564
6213834c 565static int __init hugetlb_vmemmap_init(void)
78f39084 566{
6213834c
MS
567 /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
568 BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE);
569
570 if (IS_ENABLED(CONFIG_PROC_SYSCTL)) {
571 const struct hstate *h;
572
573 for_each_hstate(h) {
574 if (hugetlb_vmemmap_optimizable(h)) {
575 register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
576 break;
577 }
578 }
579 }
78f39084
MS
580 return 0;
581}
6213834c 582late_initcall(hugetlb_vmemmap_init);