]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/kmemleak.c
Merge tag 'fuse-fixes-5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/mszer...
[thirdparty/kernel/linux.git] / mm / kmemleak.c
CommitLineData
3c7b4e6b
CM
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22901c6c 22 * Documentation/dev-tools/kmemleak.rst.
3c7b4e6b
CM
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
85d3a316 32 * blocks. The object_tree_root is a red black tree used to look-up
3c7b4e6b
CM
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
3c7b4e6b 55 *
93ada579 56 * Locks and mutexes are acquired/nested in the following order:
9d5a4c73 57 *
93ada579
CM
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59 *
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61 * regions.
9d5a4c73 62 *
3c7b4e6b
CM
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
68 * structure.
69 */
70
ae281064
JP
71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
3c7b4e6b
CM
73#include <linux/init.h>
74#include <linux/kernel.h>
75#include <linux/list.h>
3f07c014 76#include <linux/sched/signal.h>
29930025 77#include <linux/sched/task.h>
68db0cf1 78#include <linux/sched/task_stack.h>
3c7b4e6b
CM
79#include <linux/jiffies.h>
80#include <linux/delay.h>
b95f1b31 81#include <linux/export.h>
3c7b4e6b 82#include <linux/kthread.h>
85d3a316 83#include <linux/rbtree.h>
3c7b4e6b
CM
84#include <linux/fs.h>
85#include <linux/debugfs.h>
86#include <linux/seq_file.h>
87#include <linux/cpumask.h>
88#include <linux/spinlock.h>
154221c3 89#include <linux/module.h>
3c7b4e6b
CM
90#include <linux/mutex.h>
91#include <linux/rcupdate.h>
92#include <linux/stacktrace.h>
93#include <linux/cache.h>
94#include <linux/percpu.h>
57c8a661 95#include <linux/memblock.h>
9099daed 96#include <linux/pfn.h>
3c7b4e6b
CM
97#include <linux/mmzone.h>
98#include <linux/slab.h>
99#include <linux/thread_info.h>
100#include <linux/err.h>
101#include <linux/uaccess.h>
102#include <linux/string.h>
103#include <linux/nodemask.h>
104#include <linux/mm.h>
179a8100 105#include <linux/workqueue.h>
04609ccc 106#include <linux/crc32.h>
3c7b4e6b
CM
107
108#include <asm/sections.h>
109#include <asm/processor.h>
60063497 110#include <linux/atomic.h>
3c7b4e6b 111
e79ed2f1 112#include <linux/kasan.h>
3c7b4e6b 113#include <linux/kmemleak.h>
029aeff5 114#include <linux/memory_hotplug.h>
3c7b4e6b
CM
115
116/*
117 * Kmemleak configuration and common defines.
118 */
119#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 120#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
121#define SECS_FIRST_SCAN 60 /* delay before the first scan */
122#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
af98603d 123#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
124
125#define BYTES_PER_POINTER sizeof(void *)
126
216c04b0 127/* GFP bitmask for kmemleak internal allocations */
20b5c303 128#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
6ae4bd1f 129 __GFP_NORETRY | __GFP_NOMEMALLOC | \
d9570ee3 130 __GFP_NOWARN | __GFP_NOFAIL)
216c04b0 131
3c7b4e6b
CM
132/* scanning area inside a memory block */
133struct kmemleak_scan_area {
134 struct hlist_node node;
c017b4be
CM
135 unsigned long start;
136 size_t size;
3c7b4e6b
CM
137};
138
a1084c87
LR
139#define KMEMLEAK_GREY 0
140#define KMEMLEAK_BLACK -1
141
3c7b4e6b
CM
142/*
143 * Structure holding the metadata for each allocated memory block.
144 * Modifications to such objects should be made while holding the
145 * object->lock. Insertions or deletions from object_list, gray_list or
85d3a316 146 * rb_node are already protected by the corresponding locks or mutex (see
3c7b4e6b
CM
147 * the notes on locking above). These objects are reference-counted
148 * (use_count) and freed using the RCU mechanism.
149 */
150struct kmemleak_object {
151 spinlock_t lock;
f66abf09 152 unsigned int flags; /* object status flags */
3c7b4e6b
CM
153 struct list_head object_list;
154 struct list_head gray_list;
85d3a316 155 struct rb_node rb_node;
3c7b4e6b
CM
156 struct rcu_head rcu; /* object_list lockless traversal */
157 /* object usage count; object freed when use_count == 0 */
158 atomic_t use_count;
159 unsigned long pointer;
160 size_t size;
94f4a161
CM
161 /* pass surplus references to this pointer */
162 unsigned long excess_ref;
3c7b4e6b
CM
163 /* minimum number of a pointers found before it is considered leak */
164 int min_count;
165 /* the total number of pointers found pointing to this object */
166 int count;
04609ccc
CM
167 /* checksum for detecting modified objects */
168 u32 checksum;
3c7b4e6b
CM
169 /* memory ranges to be scanned inside an object (empty for all) */
170 struct hlist_head area_list;
171 unsigned long trace[MAX_TRACE];
172 unsigned int trace_len;
173 unsigned long jiffies; /* creation timestamp */
174 pid_t pid; /* pid of the current task */
175 char comm[TASK_COMM_LEN]; /* executable name */
176};
177
178/* flag representing the memory block allocation status */
179#define OBJECT_ALLOCATED (1 << 0)
180/* flag set after the first reporting of an unreference object */
181#define OBJECT_REPORTED (1 << 1)
182/* flag set to not scan the object */
183#define OBJECT_NO_SCAN (1 << 2)
184
154221c3 185#define HEX_PREFIX " "
0494e082
SS
186/* number of bytes to print per line; must be 16 or 32 */
187#define HEX_ROW_SIZE 16
188/* number of bytes to print at a time (1, 2, 4, 8) */
189#define HEX_GROUP_SIZE 1
190/* include ASCII after the hex output */
191#define HEX_ASCII 1
192/* max number of lines to be printed */
193#define HEX_MAX_LINES 2
194
3c7b4e6b
CM
195/* the list of all allocated objects */
196static LIST_HEAD(object_list);
197/* the list of gray-colored objects (see color_gray comment below) */
198static LIST_HEAD(gray_list);
85d3a316
ML
199/* search tree for object boundaries */
200static struct rb_root object_tree_root = RB_ROOT;
201/* rw_lock protecting the access to object_list and object_tree_root */
3c7b4e6b
CM
202static DEFINE_RWLOCK(kmemleak_lock);
203
204/* allocation caches for kmemleak internal data */
205static struct kmem_cache *object_cache;
206static struct kmem_cache *scan_area_cache;
207
208/* set if tracing memory operations is enabled */
8910ae89 209static int kmemleak_enabled;
c5f3b1a5
CM
210/* same as above but only for the kmemleak_free() callback */
211static int kmemleak_free_enabled;
3c7b4e6b 212/* set in the late_initcall if there were no errors */
8910ae89 213static int kmemleak_initialized;
3c7b4e6b 214/* enables or disables early logging of the memory operations */
8910ae89 215static int kmemleak_early_log = 1;
5f79020c 216/* set if a kmemleak warning was issued */
8910ae89 217static int kmemleak_warning;
5f79020c 218/* set if a fatal kmemleak error has occurred */
8910ae89 219static int kmemleak_error;
3c7b4e6b
CM
220
221/* minimum and maximum address that may be valid pointers */
222static unsigned long min_addr = ULONG_MAX;
223static unsigned long max_addr;
224
3c7b4e6b 225static struct task_struct *scan_thread;
acf4968e 226/* used to avoid reporting of recently allocated objects */
3c7b4e6b 227static unsigned long jiffies_min_age;
acf4968e 228static unsigned long jiffies_last_scan;
3c7b4e6b
CM
229/* delay between automatic memory scannings */
230static signed long jiffies_scan_wait;
231/* enables or disables the task stacks scanning */
e0a2a160 232static int kmemleak_stack_scan = 1;
4698c1f2 233/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 234static DEFINE_MUTEX(scan_mutex);
ab0155a2
JB
235/* setting kmemleak=on, will set this var, skipping the disable */
236static int kmemleak_skip_disable;
dc9b3f42
LZ
237/* If there are leaks that can be reported */
238static bool kmemleak_found_leaks;
3c7b4e6b 239
154221c3
VW
240static bool kmemleak_verbose;
241module_param_named(verbose, kmemleak_verbose, bool, 0600);
242
3c7b4e6b 243/*
2030117d 244 * Early object allocation/freeing logging. Kmemleak is initialized after the
3c7b4e6b 245 * kernel allocator. However, both the kernel allocator and kmemleak may
2030117d 246 * allocate memory blocks which need to be tracked. Kmemleak defines an
3c7b4e6b
CM
247 * arbitrary buffer to hold the allocation/freeing information before it is
248 * fully initialized.
249 */
250
251/* kmemleak operation type for early logging */
252enum {
253 KMEMLEAK_ALLOC,
f528f0b8 254 KMEMLEAK_ALLOC_PERCPU,
3c7b4e6b 255 KMEMLEAK_FREE,
53238a60 256 KMEMLEAK_FREE_PART,
f528f0b8 257 KMEMLEAK_FREE_PERCPU,
3c7b4e6b
CM
258 KMEMLEAK_NOT_LEAK,
259 KMEMLEAK_IGNORE,
260 KMEMLEAK_SCAN_AREA,
94f4a161
CM
261 KMEMLEAK_NO_SCAN,
262 KMEMLEAK_SET_EXCESS_REF
3c7b4e6b
CM
263};
264
265/*
266 * Structure holding the information passed to kmemleak callbacks during the
267 * early logging.
268 */
269struct early_log {
270 int op_type; /* kmemleak operation type */
f66abf09 271 int min_count; /* minimum reference count */
3c7b4e6b 272 const void *ptr; /* allocated/freed memory block */
94f4a161
CM
273 union {
274 size_t size; /* memory block size */
275 unsigned long excess_ref; /* surplus reference passing */
276 };
fd678967
CM
277 unsigned long trace[MAX_TRACE]; /* stack trace */
278 unsigned int trace_len; /* stack trace length */
3c7b4e6b
CM
279};
280
281/* early logging buffer and current position */
a6186d89
CM
282static struct early_log
283 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
284static int crt_early_log __initdata;
3c7b4e6b
CM
285
286static void kmemleak_disable(void);
287
288/*
289 * Print a warning and dump the stack trace.
290 */
5f79020c 291#define kmemleak_warn(x...) do { \
598d8091 292 pr_warn(x); \
5f79020c 293 dump_stack(); \
8910ae89 294 kmemleak_warning = 1; \
3c7b4e6b
CM
295} while (0)
296
297/*
25985edc 298 * Macro invoked when a serious kmemleak condition occurred and cannot be
2030117d 299 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
300 * tracing no longer available.
301 */
000814f4 302#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
303 kmemleak_warn(x); \
304 kmemleak_disable(); \
305} while (0)
306
154221c3
VW
307#define warn_or_seq_printf(seq, fmt, ...) do { \
308 if (seq) \
309 seq_printf(seq, fmt, ##__VA_ARGS__); \
310 else \
311 pr_warn(fmt, ##__VA_ARGS__); \
312} while (0)
313
314static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
315 int rowsize, int groupsize, const void *buf,
316 size_t len, bool ascii)
317{
318 if (seq)
319 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
320 buf, len, ascii);
321 else
322 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
323 rowsize, groupsize, buf, len, ascii);
324}
325
0494e082
SS
326/*
327 * Printing of the objects hex dump to the seq file. The number of lines to be
328 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
329 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
330 * with the object->lock held.
331 */
332static void hex_dump_object(struct seq_file *seq,
333 struct kmemleak_object *object)
334{
335 const u8 *ptr = (const u8 *)object->pointer;
6fc37c49 336 size_t len;
0494e082
SS
337
338 /* limit the number of lines to HEX_MAX_LINES */
6fc37c49 339 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
0494e082 340
154221c3 341 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
5c335fe0 342 kasan_disable_current();
154221c3
VW
343 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
344 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
5c335fe0 345 kasan_enable_current();
0494e082
SS
346}
347
3c7b4e6b
CM
348/*
349 * Object colors, encoded with count and min_count:
350 * - white - orphan object, not enough references to it (count < min_count)
351 * - gray - not orphan, not marked as false positive (min_count == 0) or
352 * sufficient references to it (count >= min_count)
353 * - black - ignore, it doesn't contain references (e.g. text section)
354 * (min_count == -1). No function defined for this color.
355 * Newly created objects don't have any color assigned (object->count == -1)
356 * before the next memory scan when they become white.
357 */
4a558dd6 358static bool color_white(const struct kmemleak_object *object)
3c7b4e6b 359{
a1084c87
LR
360 return object->count != KMEMLEAK_BLACK &&
361 object->count < object->min_count;
3c7b4e6b
CM
362}
363
4a558dd6 364static bool color_gray(const struct kmemleak_object *object)
3c7b4e6b 365{
a1084c87
LR
366 return object->min_count != KMEMLEAK_BLACK &&
367 object->count >= object->min_count;
3c7b4e6b
CM
368}
369
3c7b4e6b
CM
370/*
371 * Objects are considered unreferenced only if their color is white, they have
372 * not be deleted and have a minimum age to avoid false positives caused by
373 * pointers temporarily stored in CPU registers.
374 */
4a558dd6 375static bool unreferenced_object(struct kmemleak_object *object)
3c7b4e6b 376{
04609ccc 377 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
acf4968e
CM
378 time_before_eq(object->jiffies + jiffies_min_age,
379 jiffies_last_scan);
3c7b4e6b
CM
380}
381
382/*
bab4a34a
CM
383 * Printing of the unreferenced objects information to the seq file. The
384 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 385 */
3c7b4e6b
CM
386static void print_unreferenced(struct seq_file *seq,
387 struct kmemleak_object *object)
388{
389 int i;
fefdd336 390 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
3c7b4e6b 391
154221c3 392 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
bab4a34a 393 object->pointer, object->size);
154221c3 394 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
fefdd336
CM
395 object->comm, object->pid, object->jiffies,
396 msecs_age / 1000, msecs_age % 1000);
0494e082 397 hex_dump_object(seq, object);
154221c3 398 warn_or_seq_printf(seq, " backtrace:\n");
3c7b4e6b
CM
399
400 for (i = 0; i < object->trace_len; i++) {
401 void *ptr = (void *)object->trace[i];
154221c3 402 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
3c7b4e6b
CM
403 }
404}
405
406/*
407 * Print the kmemleak_object information. This function is used mainly for
408 * debugging special cases when kmemleak operations. It must be called with
409 * the object->lock held.
410 */
411static void dump_object_info(struct kmemleak_object *object)
412{
ae281064 413 pr_notice("Object 0x%08lx (size %zu):\n",
85d3a316 414 object->pointer, object->size);
3c7b4e6b
CM
415 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
416 object->comm, object->pid, object->jiffies);
417 pr_notice(" min_count = %d\n", object->min_count);
418 pr_notice(" count = %d\n", object->count);
f66abf09 419 pr_notice(" flags = 0x%x\n", object->flags);
aae0ad7a 420 pr_notice(" checksum = %u\n", object->checksum);
3c7b4e6b 421 pr_notice(" backtrace:\n");
07984aad 422 stack_trace_print(object->trace, object->trace_len, 4);
3c7b4e6b
CM
423}
424
425/*
85d3a316 426 * Look-up a memory block metadata (kmemleak_object) in the object search
3c7b4e6b
CM
427 * tree based on a pointer value. If alias is 0, only values pointing to the
428 * beginning of the memory block are allowed. The kmemleak_lock must be held
429 * when calling this function.
430 */
431static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
432{
85d3a316
ML
433 struct rb_node *rb = object_tree_root.rb_node;
434
435 while (rb) {
436 struct kmemleak_object *object =
437 rb_entry(rb, struct kmemleak_object, rb_node);
438 if (ptr < object->pointer)
439 rb = object->rb_node.rb_left;
440 else if (object->pointer + object->size <= ptr)
441 rb = object->rb_node.rb_right;
442 else if (object->pointer == ptr || alias)
443 return object;
444 else {
5f79020c
CM
445 kmemleak_warn("Found object by alias at 0x%08lx\n",
446 ptr);
a7686a45 447 dump_object_info(object);
85d3a316 448 break;
3c7b4e6b 449 }
85d3a316
ML
450 }
451 return NULL;
3c7b4e6b
CM
452}
453
454/*
455 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
456 * that once an object's use_count reached 0, the RCU freeing was already
457 * registered and the object should no longer be used. This function must be
458 * called under the protection of rcu_read_lock().
459 */
460static int get_object(struct kmemleak_object *object)
461{
462 return atomic_inc_not_zero(&object->use_count);
463}
464
465/*
466 * RCU callback to free a kmemleak_object.
467 */
468static void free_object_rcu(struct rcu_head *rcu)
469{
b67bfe0d 470 struct hlist_node *tmp;
3c7b4e6b
CM
471 struct kmemleak_scan_area *area;
472 struct kmemleak_object *object =
473 container_of(rcu, struct kmemleak_object, rcu);
474
475 /*
476 * Once use_count is 0 (guaranteed by put_object), there is no other
477 * code accessing this object, hence no need for locking.
478 */
b67bfe0d
SL
479 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
480 hlist_del(&area->node);
3c7b4e6b
CM
481 kmem_cache_free(scan_area_cache, area);
482 }
483 kmem_cache_free(object_cache, object);
484}
485
486/*
487 * Decrement the object use_count. Once the count is 0, free the object using
488 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
489 * delete_object() path, the delayed RCU freeing ensures that there is no
490 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
491 * is also possible.
492 */
493static void put_object(struct kmemleak_object *object)
494{
495 if (!atomic_dec_and_test(&object->use_count))
496 return;
497
498 /* should only get here after delete_object was called */
499 WARN_ON(object->flags & OBJECT_ALLOCATED);
500
501 call_rcu(&object->rcu, free_object_rcu);
502}
503
504/*
85d3a316 505 * Look up an object in the object search tree and increase its use_count.
3c7b4e6b
CM
506 */
507static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
508{
509 unsigned long flags;
9fbed254 510 struct kmemleak_object *object;
3c7b4e6b
CM
511
512 rcu_read_lock();
513 read_lock_irqsave(&kmemleak_lock, flags);
93ada579 514 object = lookup_object(ptr, alias);
3c7b4e6b
CM
515 read_unlock_irqrestore(&kmemleak_lock, flags);
516
517 /* check whether the object is still available */
518 if (object && !get_object(object))
519 object = NULL;
520 rcu_read_unlock();
521
522 return object;
523}
524
e781a9ab
CM
525/*
526 * Look up an object in the object search tree and remove it from both
527 * object_tree_root and object_list. The returned object's use_count should be
528 * at least 1, as initially set by create_object().
529 */
530static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
531{
532 unsigned long flags;
533 struct kmemleak_object *object;
534
535 write_lock_irqsave(&kmemleak_lock, flags);
536 object = lookup_object(ptr, alias);
537 if (object) {
538 rb_erase(&object->rb_node, &object_tree_root);
539 list_del_rcu(&object->object_list);
540 }
541 write_unlock_irqrestore(&kmemleak_lock, flags);
542
543 return object;
544}
545
fd678967
CM
546/*
547 * Save stack trace to the given array of MAX_TRACE size.
548 */
549static int __save_stack_trace(unsigned long *trace)
550{
07984aad 551 return stack_trace_save(trace, MAX_TRACE, 2);
fd678967
CM
552}
553
3c7b4e6b
CM
554/*
555 * Create the metadata (struct kmemleak_object) corresponding to an allocated
556 * memory block and add it to the object_list and object_tree_root.
557 */
fd678967
CM
558static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
559 int min_count, gfp_t gfp)
3c7b4e6b
CM
560{
561 unsigned long flags;
85d3a316
ML
562 struct kmemleak_object *object, *parent;
563 struct rb_node **link, *rb_parent;
a2f77575 564 unsigned long untagged_ptr;
3c7b4e6b 565
6ae4bd1f 566 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 567 if (!object) {
598d8091 568 pr_warn("Cannot allocate a kmemleak_object structure\n");
6ae4bd1f 569 kmemleak_disable();
fd678967 570 return NULL;
3c7b4e6b
CM
571 }
572
573 INIT_LIST_HEAD(&object->object_list);
574 INIT_LIST_HEAD(&object->gray_list);
575 INIT_HLIST_HEAD(&object->area_list);
576 spin_lock_init(&object->lock);
577 atomic_set(&object->use_count, 1);
04609ccc 578 object->flags = OBJECT_ALLOCATED;
3c7b4e6b
CM
579 object->pointer = ptr;
580 object->size = size;
94f4a161 581 object->excess_ref = 0;
3c7b4e6b 582 object->min_count = min_count;
04609ccc 583 object->count = 0; /* white color initially */
3c7b4e6b 584 object->jiffies = jiffies;
04609ccc 585 object->checksum = 0;
3c7b4e6b
CM
586
587 /* task information */
588 if (in_irq()) {
589 object->pid = 0;
590 strncpy(object->comm, "hardirq", sizeof(object->comm));
591 } else if (in_softirq()) {
592 object->pid = 0;
593 strncpy(object->comm, "softirq", sizeof(object->comm));
594 } else {
595 object->pid = current->pid;
596 /*
597 * There is a small chance of a race with set_task_comm(),
598 * however using get_task_comm() here may cause locking
599 * dependency issues with current->alloc_lock. In the worst
600 * case, the command line is not correct.
601 */
602 strncpy(object->comm, current->comm, sizeof(object->comm));
603 }
604
605 /* kernel backtrace */
fd678967 606 object->trace_len = __save_stack_trace(object->trace);
3c7b4e6b 607
3c7b4e6b 608 write_lock_irqsave(&kmemleak_lock, flags);
0580a181 609
a2f77575
AK
610 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
611 min_addr = min(min_addr, untagged_ptr);
612 max_addr = max(max_addr, untagged_ptr + size);
85d3a316
ML
613 link = &object_tree_root.rb_node;
614 rb_parent = NULL;
615 while (*link) {
616 rb_parent = *link;
617 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
618 if (ptr + size <= parent->pointer)
619 link = &parent->rb_node.rb_left;
620 else if (parent->pointer + parent->size <= ptr)
621 link = &parent->rb_node.rb_right;
622 else {
756a025f 623 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
85d3a316 624 ptr);
9d5a4c73
CM
625 /*
626 * No need for parent->lock here since "parent" cannot
627 * be freed while the kmemleak_lock is held.
628 */
629 dump_object_info(parent);
85d3a316 630 kmem_cache_free(object_cache, object);
9d5a4c73 631 object = NULL;
85d3a316
ML
632 goto out;
633 }
3c7b4e6b 634 }
85d3a316
ML
635 rb_link_node(&object->rb_node, rb_parent, link);
636 rb_insert_color(&object->rb_node, &object_tree_root);
637
3c7b4e6b
CM
638 list_add_tail_rcu(&object->object_list, &object_list);
639out:
640 write_unlock_irqrestore(&kmemleak_lock, flags);
fd678967 641 return object;
3c7b4e6b
CM
642}
643
644/*
e781a9ab 645 * Mark the object as not allocated and schedule RCU freeing via put_object().
3c7b4e6b 646 */
53238a60 647static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
648{
649 unsigned long flags;
3c7b4e6b 650
3c7b4e6b 651 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
e781a9ab 652 WARN_ON(atomic_read(&object->use_count) < 1);
3c7b4e6b
CM
653
654 /*
655 * Locking here also ensures that the corresponding memory block
656 * cannot be freed when it is being scanned.
657 */
658 spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
659 object->flags &= ~OBJECT_ALLOCATED;
660 spin_unlock_irqrestore(&object->lock, flags);
661 put_object(object);
662}
663
53238a60
CM
664/*
665 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
666 * delete it.
667 */
668static void delete_object_full(unsigned long ptr)
669{
670 struct kmemleak_object *object;
671
e781a9ab 672 object = find_and_remove_object(ptr, 0);
53238a60
CM
673 if (!object) {
674#ifdef DEBUG
675 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
676 ptr);
677#endif
678 return;
679 }
680 __delete_object(object);
53238a60
CM
681}
682
683/*
684 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
685 * delete it. If the memory block is partially freed, the function may create
686 * additional metadata for the remaining parts of the block.
687 */
688static void delete_object_part(unsigned long ptr, size_t size)
689{
690 struct kmemleak_object *object;
691 unsigned long start, end;
692
e781a9ab 693 object = find_and_remove_object(ptr, 1);
53238a60
CM
694 if (!object) {
695#ifdef DEBUG
756a025f
JP
696 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
697 ptr, size);
53238a60
CM
698#endif
699 return;
700 }
53238a60
CM
701
702 /*
703 * Create one or two objects that may result from the memory block
704 * split. Note that partial freeing is only done by free_bootmem() and
705 * this happens before kmemleak_init() is called. The path below is
706 * only executed during early log recording in kmemleak_init(), so
707 * GFP_KERNEL is enough.
708 */
709 start = object->pointer;
710 end = object->pointer + object->size;
711 if (ptr > start)
712 create_object(start, ptr - start, object->min_count,
713 GFP_KERNEL);
714 if (ptr + size < end)
715 create_object(ptr + size, end - ptr - size, object->min_count,
716 GFP_KERNEL);
717
e781a9ab 718 __delete_object(object);
53238a60 719}
a1084c87
LR
720
721static void __paint_it(struct kmemleak_object *object, int color)
722{
723 object->min_count = color;
724 if (color == KMEMLEAK_BLACK)
725 object->flags |= OBJECT_NO_SCAN;
726}
727
728static void paint_it(struct kmemleak_object *object, int color)
3c7b4e6b
CM
729{
730 unsigned long flags;
a1084c87
LR
731
732 spin_lock_irqsave(&object->lock, flags);
733 __paint_it(object, color);
734 spin_unlock_irqrestore(&object->lock, flags);
735}
736
737static void paint_ptr(unsigned long ptr, int color)
738{
3c7b4e6b
CM
739 struct kmemleak_object *object;
740
741 object = find_and_get_object(ptr, 0);
742 if (!object) {
756a025f
JP
743 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
744 ptr,
a1084c87
LR
745 (color == KMEMLEAK_GREY) ? "Grey" :
746 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
3c7b4e6b
CM
747 return;
748 }
a1084c87 749 paint_it(object, color);
3c7b4e6b
CM
750 put_object(object);
751}
752
a1084c87 753/*
145b64b9 754 * Mark an object permanently as gray-colored so that it can no longer be
a1084c87
LR
755 * reported as a leak. This is used in general to mark a false positive.
756 */
757static void make_gray_object(unsigned long ptr)
758{
759 paint_ptr(ptr, KMEMLEAK_GREY);
760}
761
3c7b4e6b
CM
762/*
763 * Mark the object as black-colored so that it is ignored from scans and
764 * reporting.
765 */
766static void make_black_object(unsigned long ptr)
767{
a1084c87 768 paint_ptr(ptr, KMEMLEAK_BLACK);
3c7b4e6b
CM
769}
770
771/*
772 * Add a scanning area to the object. If at least one such area is added,
773 * kmemleak will only scan these ranges rather than the whole memory block.
774 */
c017b4be 775static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
776{
777 unsigned long flags;
778 struct kmemleak_object *object;
779 struct kmemleak_scan_area *area;
780
c017b4be 781 object = find_and_get_object(ptr, 1);
3c7b4e6b 782 if (!object) {
ae281064
JP
783 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
784 ptr);
3c7b4e6b
CM
785 return;
786 }
787
6ae4bd1f 788 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 789 if (!area) {
598d8091 790 pr_warn("Cannot allocate a scan area\n");
3c7b4e6b
CM
791 goto out;
792 }
793
794 spin_lock_irqsave(&object->lock, flags);
7f88f88f
CM
795 if (size == SIZE_MAX) {
796 size = object->pointer + object->size - ptr;
797 } else if (ptr + size > object->pointer + object->size) {
ae281064 798 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
799 dump_object_info(object);
800 kmem_cache_free(scan_area_cache, area);
801 goto out_unlock;
802 }
803
804 INIT_HLIST_NODE(&area->node);
c017b4be
CM
805 area->start = ptr;
806 area->size = size;
3c7b4e6b
CM
807
808 hlist_add_head(&area->node, &object->area_list);
809out_unlock:
810 spin_unlock_irqrestore(&object->lock, flags);
811out:
812 put_object(object);
813}
814
94f4a161
CM
815/*
816 * Any surplus references (object already gray) to 'ptr' are passed to
817 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
818 * vm_struct may be used as an alternative reference to the vmalloc'ed object
819 * (see free_thread_stack()).
820 */
821static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
822{
823 unsigned long flags;
824 struct kmemleak_object *object;
825
826 object = find_and_get_object(ptr, 0);
827 if (!object) {
828 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
829 ptr);
830 return;
831 }
832
833 spin_lock_irqsave(&object->lock, flags);
834 object->excess_ref = excess_ref;
835 spin_unlock_irqrestore(&object->lock, flags);
836 put_object(object);
837}
838
3c7b4e6b
CM
839/*
840 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
841 * pointer. Such object will not be scanned by kmemleak but references to it
842 * are searched.
843 */
844static void object_no_scan(unsigned long ptr)
845{
846 unsigned long flags;
847 struct kmemleak_object *object;
848
849 object = find_and_get_object(ptr, 0);
850 if (!object) {
ae281064 851 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
852 return;
853 }
854
855 spin_lock_irqsave(&object->lock, flags);
856 object->flags |= OBJECT_NO_SCAN;
857 spin_unlock_irqrestore(&object->lock, flags);
858 put_object(object);
859}
860
861/*
862 * Log an early kmemleak_* call to the early_log buffer. These calls will be
863 * processed later once kmemleak is fully initialized.
864 */
a6186d89 865static void __init log_early(int op_type, const void *ptr, size_t size,
c017b4be 866 int min_count)
3c7b4e6b
CM
867{
868 unsigned long flags;
869 struct early_log *log;
870
8910ae89 871 if (kmemleak_error) {
b6693005
CM
872 /* kmemleak stopped recording, just count the requests */
873 crt_early_log++;
874 return;
875 }
876
3c7b4e6b 877 if (crt_early_log >= ARRAY_SIZE(early_log)) {
21cd3a60 878 crt_early_log++;
a9d9058a 879 kmemleak_disable();
3c7b4e6b
CM
880 return;
881 }
882
883 /*
884 * There is no need for locking since the kernel is still in UP mode
885 * at this stage. Disabling the IRQs is enough.
886 */
887 local_irq_save(flags);
888 log = &early_log[crt_early_log];
889 log->op_type = op_type;
890 log->ptr = ptr;
891 log->size = size;
892 log->min_count = min_count;
5f79020c 893 log->trace_len = __save_stack_trace(log->trace);
3c7b4e6b
CM
894 crt_early_log++;
895 local_irq_restore(flags);
896}
897
fd678967
CM
898/*
899 * Log an early allocated block and populate the stack trace.
900 */
901static void early_alloc(struct early_log *log)
902{
903 struct kmemleak_object *object;
904 unsigned long flags;
905 int i;
906
8910ae89 907 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
fd678967
CM
908 return;
909
910 /*
911 * RCU locking needed to ensure object is not freed via put_object().
912 */
913 rcu_read_lock();
914 object = create_object((unsigned long)log->ptr, log->size,
c1bcd6b3 915 log->min_count, GFP_ATOMIC);
0d5d1aad
CM
916 if (!object)
917 goto out;
fd678967
CM
918 spin_lock_irqsave(&object->lock, flags);
919 for (i = 0; i < log->trace_len; i++)
920 object->trace[i] = log->trace[i];
921 object->trace_len = log->trace_len;
922 spin_unlock_irqrestore(&object->lock, flags);
0d5d1aad 923out:
fd678967
CM
924 rcu_read_unlock();
925}
926
f528f0b8
CM
927/*
928 * Log an early allocated block and populate the stack trace.
929 */
930static void early_alloc_percpu(struct early_log *log)
931{
932 unsigned int cpu;
933 const void __percpu *ptr = log->ptr;
934
935 for_each_possible_cpu(cpu) {
936 log->ptr = per_cpu_ptr(ptr, cpu);
937 early_alloc(log);
938 }
939}
940
a2b6bf63
CM
941/**
942 * kmemleak_alloc - register a newly allocated object
943 * @ptr: pointer to beginning of the object
944 * @size: size of the object
945 * @min_count: minimum number of references to this object. If during memory
946 * scanning a number of references less than @min_count is found,
947 * the object is reported as a memory leak. If @min_count is 0,
948 * the object is never reported as a leak. If @min_count is -1,
949 * the object is ignored (not scanned and not reported as a leak)
950 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
951 *
952 * This function is called from the kernel allocators when a new object
94f4a161 953 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
3c7b4e6b 954 */
a6186d89
CM
955void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
956 gfp_t gfp)
3c7b4e6b
CM
957{
958 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
959
8910ae89 960 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 961 create_object((unsigned long)ptr, size, min_count, gfp);
8910ae89 962 else if (kmemleak_early_log)
c017b4be 963 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
3c7b4e6b
CM
964}
965EXPORT_SYMBOL_GPL(kmemleak_alloc);
966
f528f0b8
CM
967/**
968 * kmemleak_alloc_percpu - register a newly allocated __percpu object
969 * @ptr: __percpu pointer to beginning of the object
970 * @size: size of the object
8a8c35fa 971 * @gfp: flags used for kmemleak internal memory allocations
f528f0b8
CM
972 *
973 * This function is called from the kernel percpu allocator when a new object
8a8c35fa 974 * (memory block) is allocated (alloc_percpu).
f528f0b8 975 */
8a8c35fa
LF
976void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
977 gfp_t gfp)
f528f0b8
CM
978{
979 unsigned int cpu;
980
981 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
982
983 /*
984 * Percpu allocations are only scanned and not reported as leaks
985 * (min_count is set to 0).
986 */
8910ae89 987 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
988 for_each_possible_cpu(cpu)
989 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
8a8c35fa 990 size, 0, gfp);
8910ae89 991 else if (kmemleak_early_log)
f528f0b8
CM
992 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
993}
994EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
995
94f4a161
CM
996/**
997 * kmemleak_vmalloc - register a newly vmalloc'ed object
998 * @area: pointer to vm_struct
999 * @size: size of the object
1000 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1001 *
1002 * This function is called from the vmalloc() kernel allocator when a new
1003 * object (memory block) is allocated.
1004 */
1005void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1006{
1007 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1008
1009 /*
1010 * A min_count = 2 is needed because vm_struct contains a reference to
1011 * the virtual address of the vmalloc'ed block.
1012 */
1013 if (kmemleak_enabled) {
1014 create_object((unsigned long)area->addr, size, 2, gfp);
1015 object_set_excess_ref((unsigned long)area,
1016 (unsigned long)area->addr);
1017 } else if (kmemleak_early_log) {
1018 log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1019 /* reusing early_log.size for storing area->addr */
1020 log_early(KMEMLEAK_SET_EXCESS_REF,
1021 area, (unsigned long)area->addr, 0);
1022 }
1023}
1024EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1025
a2b6bf63
CM
1026/**
1027 * kmemleak_free - unregister a previously registered object
1028 * @ptr: pointer to beginning of the object
1029 *
1030 * This function is called from the kernel allocators when an object (memory
1031 * block) is freed (kmem_cache_free, kfree, vfree etc.).
3c7b4e6b 1032 */
a6186d89 1033void __ref kmemleak_free(const void *ptr)
3c7b4e6b
CM
1034{
1035 pr_debug("%s(0x%p)\n", __func__, ptr);
1036
c5f3b1a5 1037 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
53238a60 1038 delete_object_full((unsigned long)ptr);
8910ae89 1039 else if (kmemleak_early_log)
c017b4be 1040 log_early(KMEMLEAK_FREE, ptr, 0, 0);
3c7b4e6b
CM
1041}
1042EXPORT_SYMBOL_GPL(kmemleak_free);
1043
a2b6bf63
CM
1044/**
1045 * kmemleak_free_part - partially unregister a previously registered object
1046 * @ptr: pointer to the beginning or inside the object. This also
1047 * represents the start of the range to be freed
1048 * @size: size to be unregistered
1049 *
1050 * This function is called when only a part of a memory block is freed
1051 * (usually from the bootmem allocator).
53238a60 1052 */
a6186d89 1053void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60
CM
1054{
1055 pr_debug("%s(0x%p)\n", __func__, ptr);
1056
8910ae89 1057 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
53238a60 1058 delete_object_part((unsigned long)ptr, size);
8910ae89 1059 else if (kmemleak_early_log)
c017b4be 1060 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
53238a60
CM
1061}
1062EXPORT_SYMBOL_GPL(kmemleak_free_part);
1063
f528f0b8
CM
1064/**
1065 * kmemleak_free_percpu - unregister a previously registered __percpu object
1066 * @ptr: __percpu pointer to beginning of the object
1067 *
1068 * This function is called from the kernel percpu allocator when an object
1069 * (memory block) is freed (free_percpu).
1070 */
1071void __ref kmemleak_free_percpu(const void __percpu *ptr)
1072{
1073 unsigned int cpu;
1074
1075 pr_debug("%s(0x%p)\n", __func__, ptr);
1076
c5f3b1a5 1077 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1078 for_each_possible_cpu(cpu)
1079 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1080 cpu));
8910ae89 1081 else if (kmemleak_early_log)
f528f0b8
CM
1082 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1083}
1084EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1085
ffe2c748
CM
1086/**
1087 * kmemleak_update_trace - update object allocation stack trace
1088 * @ptr: pointer to beginning of the object
1089 *
1090 * Override the object allocation stack trace for cases where the actual
1091 * allocation place is not always useful.
1092 */
1093void __ref kmemleak_update_trace(const void *ptr)
1094{
1095 struct kmemleak_object *object;
1096 unsigned long flags;
1097
1098 pr_debug("%s(0x%p)\n", __func__, ptr);
1099
1100 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1101 return;
1102
1103 object = find_and_get_object((unsigned long)ptr, 1);
1104 if (!object) {
1105#ifdef DEBUG
1106 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1107 ptr);
1108#endif
1109 return;
1110 }
1111
1112 spin_lock_irqsave(&object->lock, flags);
1113 object->trace_len = __save_stack_trace(object->trace);
1114 spin_unlock_irqrestore(&object->lock, flags);
1115
1116 put_object(object);
1117}
1118EXPORT_SYMBOL(kmemleak_update_trace);
1119
a2b6bf63
CM
1120/**
1121 * kmemleak_not_leak - mark an allocated object as false positive
1122 * @ptr: pointer to beginning of the object
1123 *
1124 * Calling this function on an object will cause the memory block to no longer
1125 * be reported as leak and always be scanned.
3c7b4e6b 1126 */
a6186d89 1127void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b
CM
1128{
1129 pr_debug("%s(0x%p)\n", __func__, ptr);
1130
8910ae89 1131 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1132 make_gray_object((unsigned long)ptr);
8910ae89 1133 else if (kmemleak_early_log)
c017b4be 1134 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
3c7b4e6b
CM
1135}
1136EXPORT_SYMBOL(kmemleak_not_leak);
1137
a2b6bf63
CM
1138/**
1139 * kmemleak_ignore - ignore an allocated object
1140 * @ptr: pointer to beginning of the object
1141 *
1142 * Calling this function on an object will cause the memory block to be
1143 * ignored (not scanned and not reported as a leak). This is usually done when
1144 * it is known that the corresponding block is not a leak and does not contain
1145 * any references to other allocated memory blocks.
3c7b4e6b 1146 */
a6186d89 1147void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b
CM
1148{
1149 pr_debug("%s(0x%p)\n", __func__, ptr);
1150
8910ae89 1151 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1152 make_black_object((unsigned long)ptr);
8910ae89 1153 else if (kmemleak_early_log)
c017b4be 1154 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
3c7b4e6b
CM
1155}
1156EXPORT_SYMBOL(kmemleak_ignore);
1157
a2b6bf63
CM
1158/**
1159 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1160 * @ptr: pointer to beginning or inside the object. This also
1161 * represents the start of the scan area
1162 * @size: size of the scan area
1163 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1164 *
1165 * This function is used when it is known that only certain parts of an object
1166 * contain references to other objects. Kmemleak will only scan these areas
1167 * reducing the number false negatives.
3c7b4e6b 1168 */
c017b4be 1169void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
1170{
1171 pr_debug("%s(0x%p)\n", __func__, ptr);
1172
8910ae89 1173 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
c017b4be 1174 add_scan_area((unsigned long)ptr, size, gfp);
8910ae89 1175 else if (kmemleak_early_log)
c017b4be 1176 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
3c7b4e6b
CM
1177}
1178EXPORT_SYMBOL(kmemleak_scan_area);
1179
a2b6bf63
CM
1180/**
1181 * kmemleak_no_scan - do not scan an allocated object
1182 * @ptr: pointer to beginning of the object
1183 *
1184 * This function notifies kmemleak not to scan the given memory block. Useful
1185 * in situations where it is known that the given object does not contain any
1186 * references to other objects. Kmemleak will not scan such objects reducing
1187 * the number of false negatives.
3c7b4e6b 1188 */
a6186d89 1189void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b
CM
1190{
1191 pr_debug("%s(0x%p)\n", __func__, ptr);
1192
8910ae89 1193 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1194 object_no_scan((unsigned long)ptr);
8910ae89 1195 else if (kmemleak_early_log)
c017b4be 1196 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
3c7b4e6b
CM
1197}
1198EXPORT_SYMBOL(kmemleak_no_scan);
1199
9099daed
CM
1200/**
1201 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1202 * address argument
e8b098fc
MR
1203 * @phys: physical address of the object
1204 * @size: size of the object
1205 * @min_count: minimum number of references to this object.
1206 * See kmemleak_alloc()
1207 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
9099daed
CM
1208 */
1209void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1210 gfp_t gfp)
1211{
1212 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1213 kmemleak_alloc(__va(phys), size, min_count, gfp);
1214}
1215EXPORT_SYMBOL(kmemleak_alloc_phys);
1216
1217/**
1218 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1219 * physical address argument
e8b098fc
MR
1220 * @phys: physical address if the beginning or inside an object. This
1221 * also represents the start of the range to be freed
1222 * @size: size to be unregistered
9099daed
CM
1223 */
1224void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1225{
1226 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1227 kmemleak_free_part(__va(phys), size);
1228}
1229EXPORT_SYMBOL(kmemleak_free_part_phys);
1230
1231/**
1232 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1233 * address argument
e8b098fc 1234 * @phys: physical address of the object
9099daed
CM
1235 */
1236void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1237{
1238 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1239 kmemleak_not_leak(__va(phys));
1240}
1241EXPORT_SYMBOL(kmemleak_not_leak_phys);
1242
1243/**
1244 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1245 * address argument
e8b098fc 1246 * @phys: physical address of the object
9099daed
CM
1247 */
1248void __ref kmemleak_ignore_phys(phys_addr_t phys)
1249{
1250 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1251 kmemleak_ignore(__va(phys));
1252}
1253EXPORT_SYMBOL(kmemleak_ignore_phys);
1254
04609ccc
CM
1255/*
1256 * Update an object's checksum and return true if it was modified.
1257 */
1258static bool update_checksum(struct kmemleak_object *object)
1259{
1260 u32 old_csum = object->checksum;
1261
e79ed2f1 1262 kasan_disable_current();
04609ccc 1263 object->checksum = crc32(0, (void *)object->pointer, object->size);
e79ed2f1
AR
1264 kasan_enable_current();
1265
04609ccc
CM
1266 return object->checksum != old_csum;
1267}
1268
04f70d13
CM
1269/*
1270 * Update an object's references. object->lock must be held by the caller.
1271 */
1272static void update_refs(struct kmemleak_object *object)
1273{
1274 if (!color_white(object)) {
1275 /* non-orphan, ignored or new */
1276 return;
1277 }
1278
1279 /*
1280 * Increase the object's reference count (number of pointers to the
1281 * memory block). If this count reaches the required minimum, the
1282 * object's color will become gray and it will be added to the
1283 * gray_list.
1284 */
1285 object->count++;
1286 if (color_gray(object)) {
1287 /* put_object() called when removing from gray_list */
1288 WARN_ON(!get_object(object));
1289 list_add_tail(&object->gray_list, &gray_list);
1290 }
1291}
1292
3c7b4e6b
CM
1293/*
1294 * Memory scanning is a long process and it needs to be interruptable. This
25985edc 1295 * function checks whether such interrupt condition occurred.
3c7b4e6b
CM
1296 */
1297static int scan_should_stop(void)
1298{
8910ae89 1299 if (!kmemleak_enabled)
3c7b4e6b
CM
1300 return 1;
1301
1302 /*
1303 * This function may be called from either process or kthread context,
1304 * hence the need to check for both stop conditions.
1305 */
1306 if (current->mm)
1307 return signal_pending(current);
1308 else
1309 return kthread_should_stop();
1310
1311 return 0;
1312}
1313
1314/*
1315 * Scan a memory block (exclusive range) for valid pointers and add those
1316 * found to the gray list.
1317 */
1318static void scan_block(void *_start, void *_end,
93ada579 1319 struct kmemleak_object *scanned)
3c7b4e6b
CM
1320{
1321 unsigned long *ptr;
1322 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1323 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
93ada579 1324 unsigned long flags;
a2f77575 1325 unsigned long untagged_ptr;
3c7b4e6b 1326
93ada579 1327 read_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b 1328 for (ptr = start; ptr < end; ptr++) {
3c7b4e6b 1329 struct kmemleak_object *object;
8e019366 1330 unsigned long pointer;
94f4a161 1331 unsigned long excess_ref;
3c7b4e6b
CM
1332
1333 if (scan_should_stop())
1334 break;
1335
e79ed2f1 1336 kasan_disable_current();
8e019366 1337 pointer = *ptr;
e79ed2f1 1338 kasan_enable_current();
8e019366 1339
a2f77575
AK
1340 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1341 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
93ada579
CM
1342 continue;
1343
1344 /*
1345 * No need for get_object() here since we hold kmemleak_lock.
1346 * object->use_count cannot be dropped to 0 while the object
1347 * is still present in object_tree_root and object_list
1348 * (with updates protected by kmemleak_lock).
1349 */
1350 object = lookup_object(pointer, 1);
3c7b4e6b
CM
1351 if (!object)
1352 continue;
93ada579 1353 if (object == scanned)
3c7b4e6b 1354 /* self referenced, ignore */
3c7b4e6b 1355 continue;
3c7b4e6b
CM
1356
1357 /*
1358 * Avoid the lockdep recursive warning on object->lock being
1359 * previously acquired in scan_object(). These locks are
1360 * enclosed by scan_mutex.
1361 */
93ada579 1362 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161
CM
1363 /* only pass surplus references (object already gray) */
1364 if (color_gray(object)) {
1365 excess_ref = object->excess_ref;
1366 /* no need for update_refs() if object already gray */
1367 } else {
1368 excess_ref = 0;
1369 update_refs(object);
1370 }
93ada579 1371 spin_unlock(&object->lock);
94f4a161
CM
1372
1373 if (excess_ref) {
1374 object = lookup_object(excess_ref, 0);
1375 if (!object)
1376 continue;
1377 if (object == scanned)
1378 /* circular reference, ignore */
1379 continue;
1380 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1381 update_refs(object);
1382 spin_unlock(&object->lock);
1383 }
93ada579
CM
1384 }
1385 read_unlock_irqrestore(&kmemleak_lock, flags);
1386}
0587da40 1387
93ada579
CM
1388/*
1389 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1390 */
dce5b0bd 1391#ifdef CONFIG_SMP
93ada579
CM
1392static void scan_large_block(void *start, void *end)
1393{
1394 void *next;
1395
1396 while (start < end) {
1397 next = min(start + MAX_SCAN_SIZE, end);
1398 scan_block(start, next, NULL);
1399 start = next;
1400 cond_resched();
3c7b4e6b
CM
1401 }
1402}
dce5b0bd 1403#endif
3c7b4e6b
CM
1404
1405/*
1406 * Scan a memory block corresponding to a kmemleak_object. A condition is
1407 * that object->use_count >= 1.
1408 */
1409static void scan_object(struct kmemleak_object *object)
1410{
1411 struct kmemleak_scan_area *area;
3c7b4e6b
CM
1412 unsigned long flags;
1413
1414 /*
21ae2956
UKK
1415 * Once the object->lock is acquired, the corresponding memory block
1416 * cannot be freed (the same lock is acquired in delete_object).
3c7b4e6b
CM
1417 */
1418 spin_lock_irqsave(&object->lock, flags);
1419 if (object->flags & OBJECT_NO_SCAN)
1420 goto out;
1421 if (!(object->flags & OBJECT_ALLOCATED))
1422 /* already freed object */
1423 goto out;
af98603d
CM
1424 if (hlist_empty(&object->area_list)) {
1425 void *start = (void *)object->pointer;
1426 void *end = (void *)(object->pointer + object->size);
93ada579
CM
1427 void *next;
1428
1429 do {
1430 next = min(start + MAX_SCAN_SIZE, end);
1431 scan_block(start, next, object);
af98603d 1432
93ada579
CM
1433 start = next;
1434 if (start >= end)
1435 break;
af98603d
CM
1436
1437 spin_unlock_irqrestore(&object->lock, flags);
1438 cond_resched();
1439 spin_lock_irqsave(&object->lock, flags);
93ada579 1440 } while (object->flags & OBJECT_ALLOCATED);
af98603d 1441 } else
b67bfe0d 1442 hlist_for_each_entry(area, &object->area_list, node)
c017b4be
CM
1443 scan_block((void *)area->start,
1444 (void *)(area->start + area->size),
93ada579 1445 object);
3c7b4e6b
CM
1446out:
1447 spin_unlock_irqrestore(&object->lock, flags);
1448}
1449
04609ccc
CM
1450/*
1451 * Scan the objects already referenced (gray objects). More objects will be
1452 * referenced and, if there are no memory leaks, all the objects are scanned.
1453 */
1454static void scan_gray_list(void)
1455{
1456 struct kmemleak_object *object, *tmp;
1457
1458 /*
1459 * The list traversal is safe for both tail additions and removals
1460 * from inside the loop. The kmemleak objects cannot be freed from
1461 * outside the loop because their use_count was incremented.
1462 */
1463 object = list_entry(gray_list.next, typeof(*object), gray_list);
1464 while (&object->gray_list != &gray_list) {
1465 cond_resched();
1466
1467 /* may add new objects to the list */
1468 if (!scan_should_stop())
1469 scan_object(object);
1470
1471 tmp = list_entry(object->gray_list.next, typeof(*object),
1472 gray_list);
1473
1474 /* remove the object from the list and release it */
1475 list_del(&object->gray_list);
1476 put_object(object);
1477
1478 object = tmp;
1479 }
1480 WARN_ON(!list_empty(&gray_list));
1481}
1482
3c7b4e6b
CM
1483/*
1484 * Scan data sections and all the referenced memory blocks allocated via the
1485 * kernel's standard allocators. This function must be called with the
1486 * scan_mutex held.
1487 */
1488static void kmemleak_scan(void)
1489{
1490 unsigned long flags;
04609ccc 1491 struct kmemleak_object *object;
3c7b4e6b 1492 int i;
4698c1f2 1493 int new_leaks = 0;
3c7b4e6b 1494
acf4968e
CM
1495 jiffies_last_scan = jiffies;
1496
3c7b4e6b
CM
1497 /* prepare the kmemleak_object's */
1498 rcu_read_lock();
1499 list_for_each_entry_rcu(object, &object_list, object_list) {
1500 spin_lock_irqsave(&object->lock, flags);
1501#ifdef DEBUG
1502 /*
1503 * With a few exceptions there should be a maximum of
1504 * 1 reference to any object at this point.
1505 */
1506 if (atomic_read(&object->use_count) > 1) {
ae281064 1507 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1508 atomic_read(&object->use_count));
1509 dump_object_info(object);
1510 }
1511#endif
1512 /* reset the reference count (whiten the object) */
1513 object->count = 0;
1514 if (color_gray(object) && get_object(object))
1515 list_add_tail(&object->gray_list, &gray_list);
1516
1517 spin_unlock_irqrestore(&object->lock, flags);
1518 }
1519 rcu_read_unlock();
1520
3c7b4e6b
CM
1521#ifdef CONFIG_SMP
1522 /* per-cpu sections scanning */
1523 for_each_possible_cpu(i)
93ada579
CM
1524 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1525 __per_cpu_end + per_cpu_offset(i));
3c7b4e6b
CM
1526#endif
1527
1528 /*
029aeff5 1529 * Struct page scanning for each node.
3c7b4e6b 1530 */
bfc8c901 1531 get_online_mems();
3c7b4e6b 1532 for_each_online_node(i) {
108bcc96
CS
1533 unsigned long start_pfn = node_start_pfn(i);
1534 unsigned long end_pfn = node_end_pfn(i);
3c7b4e6b
CM
1535 unsigned long pfn;
1536
1537 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
9f1eb38e 1538 struct page *page = pfn_to_online_page(pfn);
3c7b4e6b 1539
9f1eb38e
OS
1540 if (!page)
1541 continue;
1542
1543 /* only scan pages belonging to this node */
1544 if (page_to_nid(page) != i)
3c7b4e6b 1545 continue;
3c7b4e6b
CM
1546 /* only scan if page is in use */
1547 if (page_count(page) == 0)
1548 continue;
93ada579 1549 scan_block(page, page + 1, NULL);
13ab183d 1550 if (!(pfn & 63))
bde5f6bc 1551 cond_resched();
3c7b4e6b
CM
1552 }
1553 }
bfc8c901 1554 put_online_mems();
3c7b4e6b
CM
1555
1556 /*
43ed5d6e 1557 * Scanning the task stacks (may introduce false negatives).
3c7b4e6b
CM
1558 */
1559 if (kmemleak_stack_scan) {
43ed5d6e
CM
1560 struct task_struct *p, *g;
1561
3c7b4e6b 1562 read_lock(&tasklist_lock);
43ed5d6e 1563 do_each_thread(g, p) {
37df49f4
CM
1564 void *stack = try_get_task_stack(p);
1565 if (stack) {
1566 scan_block(stack, stack + THREAD_SIZE, NULL);
1567 put_task_stack(p);
1568 }
43ed5d6e 1569 } while_each_thread(g, p);
3c7b4e6b
CM
1570 read_unlock(&tasklist_lock);
1571 }
1572
1573 /*
1574 * Scan the objects already referenced from the sections scanned
04609ccc 1575 * above.
3c7b4e6b 1576 */
04609ccc 1577 scan_gray_list();
2587362e
CM
1578
1579 /*
04609ccc
CM
1580 * Check for new or unreferenced objects modified since the previous
1581 * scan and color them gray until the next scan.
2587362e
CM
1582 */
1583 rcu_read_lock();
1584 list_for_each_entry_rcu(object, &object_list, object_list) {
1585 spin_lock_irqsave(&object->lock, flags);
04609ccc
CM
1586 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1587 && update_checksum(object) && get_object(object)) {
1588 /* color it gray temporarily */
1589 object->count = object->min_count;
2587362e
CM
1590 list_add_tail(&object->gray_list, &gray_list);
1591 }
1592 spin_unlock_irqrestore(&object->lock, flags);
1593 }
1594 rcu_read_unlock();
1595
04609ccc
CM
1596 /*
1597 * Re-scan the gray list for modified unreferenced objects.
1598 */
1599 scan_gray_list();
4698c1f2 1600
17bb9e0d 1601 /*
04609ccc 1602 * If scanning was stopped do not report any new unreferenced objects.
17bb9e0d 1603 */
04609ccc 1604 if (scan_should_stop())
17bb9e0d
CM
1605 return;
1606
4698c1f2
CM
1607 /*
1608 * Scanning result reporting.
1609 */
1610 rcu_read_lock();
1611 list_for_each_entry_rcu(object, &object_list, object_list) {
1612 spin_lock_irqsave(&object->lock, flags);
1613 if (unreferenced_object(object) &&
1614 !(object->flags & OBJECT_REPORTED)) {
1615 object->flags |= OBJECT_REPORTED;
154221c3
VW
1616
1617 if (kmemleak_verbose)
1618 print_unreferenced(NULL, object);
1619
4698c1f2
CM
1620 new_leaks++;
1621 }
1622 spin_unlock_irqrestore(&object->lock, flags);
1623 }
1624 rcu_read_unlock();
1625
dc9b3f42
LZ
1626 if (new_leaks) {
1627 kmemleak_found_leaks = true;
1628
756a025f
JP
1629 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1630 new_leaks);
dc9b3f42 1631 }
4698c1f2 1632
3c7b4e6b
CM
1633}
1634
1635/*
1636 * Thread function performing automatic memory scanning. Unreferenced objects
1637 * at the end of a memory scan are reported but only the first time.
1638 */
1639static int kmemleak_scan_thread(void *arg)
1640{
d53ce042 1641 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
3c7b4e6b 1642
ae281064 1643 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1644 set_user_nice(current, 10);
3c7b4e6b
CM
1645
1646 /*
1647 * Wait before the first scan to allow the system to fully initialize.
1648 */
1649 if (first_run) {
98c42d94 1650 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
3c7b4e6b 1651 first_run = 0;
98c42d94
VN
1652 while (timeout && !kthread_should_stop())
1653 timeout = schedule_timeout_interruptible(timeout);
3c7b4e6b
CM
1654 }
1655
1656 while (!kthread_should_stop()) {
3c7b4e6b
CM
1657 signed long timeout = jiffies_scan_wait;
1658
1659 mutex_lock(&scan_mutex);
3c7b4e6b 1660 kmemleak_scan();
3c7b4e6b 1661 mutex_unlock(&scan_mutex);
4698c1f2 1662
3c7b4e6b
CM
1663 /* wait before the next scan */
1664 while (timeout && !kthread_should_stop())
1665 timeout = schedule_timeout_interruptible(timeout);
1666 }
1667
ae281064 1668 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1669
1670 return 0;
1671}
1672
1673/*
1674 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1675 * with the scan_mutex held.
3c7b4e6b 1676 */
7eb0d5e5 1677static void start_scan_thread(void)
3c7b4e6b
CM
1678{
1679 if (scan_thread)
1680 return;
1681 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1682 if (IS_ERR(scan_thread)) {
598d8091 1683 pr_warn("Failed to create the scan thread\n");
3c7b4e6b
CM
1684 scan_thread = NULL;
1685 }
1686}
1687
1688/*
914b6dff 1689 * Stop the automatic memory scanning thread.
3c7b4e6b 1690 */
7eb0d5e5 1691static void stop_scan_thread(void)
3c7b4e6b
CM
1692{
1693 if (scan_thread) {
1694 kthread_stop(scan_thread);
1695 scan_thread = NULL;
1696 }
1697}
1698
1699/*
1700 * Iterate over the object_list and return the first valid object at or after
1701 * the required position with its use_count incremented. The function triggers
1702 * a memory scanning when the pos argument points to the first position.
1703 */
1704static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1705{
1706 struct kmemleak_object *object;
1707 loff_t n = *pos;
b87324d0
CM
1708 int err;
1709
1710 err = mutex_lock_interruptible(&scan_mutex);
1711 if (err < 0)
1712 return ERR_PTR(err);
3c7b4e6b 1713
3c7b4e6b
CM
1714 rcu_read_lock();
1715 list_for_each_entry_rcu(object, &object_list, object_list) {
1716 if (n-- > 0)
1717 continue;
1718 if (get_object(object))
1719 goto out;
1720 }
1721 object = NULL;
1722out:
3c7b4e6b
CM
1723 return object;
1724}
1725
1726/*
1727 * Return the next object in the object_list. The function decrements the
1728 * use_count of the previous object and increases that of the next one.
1729 */
1730static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1731{
1732 struct kmemleak_object *prev_obj = v;
1733 struct kmemleak_object *next_obj = NULL;
58fac095 1734 struct kmemleak_object *obj = prev_obj;
3c7b4e6b
CM
1735
1736 ++(*pos);
3c7b4e6b 1737
58fac095 1738 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
52c3ce4e
CM
1739 if (get_object(obj)) {
1740 next_obj = obj;
3c7b4e6b 1741 break;
52c3ce4e 1742 }
3c7b4e6b 1743 }
288c857d 1744
3c7b4e6b
CM
1745 put_object(prev_obj);
1746 return next_obj;
1747}
1748
1749/*
1750 * Decrement the use_count of the last object required, if any.
1751 */
1752static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1753{
b87324d0
CM
1754 if (!IS_ERR(v)) {
1755 /*
1756 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1757 * waiting was interrupted, so only release it if !IS_ERR.
1758 */
f5886c7f 1759 rcu_read_unlock();
b87324d0
CM
1760 mutex_unlock(&scan_mutex);
1761 if (v)
1762 put_object(v);
1763 }
3c7b4e6b
CM
1764}
1765
1766/*
1767 * Print the information for an unreferenced object to the seq file.
1768 */
1769static int kmemleak_seq_show(struct seq_file *seq, void *v)
1770{
1771 struct kmemleak_object *object = v;
1772 unsigned long flags;
1773
1774 spin_lock_irqsave(&object->lock, flags);
288c857d 1775 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1776 print_unreferenced(seq, object);
3c7b4e6b
CM
1777 spin_unlock_irqrestore(&object->lock, flags);
1778 return 0;
1779}
1780
1781static const struct seq_operations kmemleak_seq_ops = {
1782 .start = kmemleak_seq_start,
1783 .next = kmemleak_seq_next,
1784 .stop = kmemleak_seq_stop,
1785 .show = kmemleak_seq_show,
1786};
1787
1788static int kmemleak_open(struct inode *inode, struct file *file)
1789{
b87324d0 1790 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1791}
1792
189d84ed
CM
1793static int dump_str_object_info(const char *str)
1794{
1795 unsigned long flags;
1796 struct kmemleak_object *object;
1797 unsigned long addr;
1798
dc053733
AP
1799 if (kstrtoul(str, 0, &addr))
1800 return -EINVAL;
189d84ed
CM
1801 object = find_and_get_object(addr, 0);
1802 if (!object) {
1803 pr_info("Unknown object at 0x%08lx\n", addr);
1804 return -EINVAL;
1805 }
1806
1807 spin_lock_irqsave(&object->lock, flags);
1808 dump_object_info(object);
1809 spin_unlock_irqrestore(&object->lock, flags);
1810
1811 put_object(object);
1812 return 0;
1813}
1814
30b37101
LR
1815/*
1816 * We use grey instead of black to ensure we can do future scans on the same
1817 * objects. If we did not do future scans these black objects could
1818 * potentially contain references to newly allocated objects in the future and
1819 * we'd end up with false positives.
1820 */
1821static void kmemleak_clear(void)
1822{
1823 struct kmemleak_object *object;
1824 unsigned long flags;
1825
1826 rcu_read_lock();
1827 list_for_each_entry_rcu(object, &object_list, object_list) {
1828 spin_lock_irqsave(&object->lock, flags);
1829 if ((object->flags & OBJECT_REPORTED) &&
1830 unreferenced_object(object))
a1084c87 1831 __paint_it(object, KMEMLEAK_GREY);
30b37101
LR
1832 spin_unlock_irqrestore(&object->lock, flags);
1833 }
1834 rcu_read_unlock();
dc9b3f42
LZ
1835
1836 kmemleak_found_leaks = false;
30b37101
LR
1837}
1838
c89da70c
LZ
1839static void __kmemleak_do_cleanup(void);
1840
3c7b4e6b
CM
1841/*
1842 * File write operation to configure kmemleak at run-time. The following
1843 * commands can be written to the /sys/kernel/debug/kmemleak file:
1844 * off - disable kmemleak (irreversible)
1845 * stack=on - enable the task stacks scanning
1846 * stack=off - disable the tasks stacks scanning
1847 * scan=on - start the automatic memory scanning thread
1848 * scan=off - stop the automatic memory scanning thread
1849 * scan=... - set the automatic memory scanning period in seconds (0 to
1850 * disable it)
4698c1f2 1851 * scan - trigger a memory scan
30b37101 1852 * clear - mark all current reported unreferenced kmemleak objects as
c89da70c
LZ
1853 * grey to ignore printing them, or free all kmemleak objects
1854 * if kmemleak has been disabled.
189d84ed 1855 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1856 */
1857static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1858 size_t size, loff_t *ppos)
1859{
1860 char buf[64];
1861 int buf_size;
b87324d0 1862 int ret;
3c7b4e6b
CM
1863
1864 buf_size = min(size, (sizeof(buf) - 1));
1865 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1866 return -EFAULT;
1867 buf[buf_size] = 0;
1868
b87324d0
CM
1869 ret = mutex_lock_interruptible(&scan_mutex);
1870 if (ret < 0)
1871 return ret;
1872
c89da70c 1873 if (strncmp(buf, "clear", 5) == 0) {
8910ae89 1874 if (kmemleak_enabled)
c89da70c
LZ
1875 kmemleak_clear();
1876 else
1877 __kmemleak_do_cleanup();
1878 goto out;
1879 }
1880
8910ae89 1881 if (!kmemleak_enabled) {
c89da70c
LZ
1882 ret = -EBUSY;
1883 goto out;
1884 }
1885
3c7b4e6b
CM
1886 if (strncmp(buf, "off", 3) == 0)
1887 kmemleak_disable();
1888 else if (strncmp(buf, "stack=on", 8) == 0)
1889 kmemleak_stack_scan = 1;
1890 else if (strncmp(buf, "stack=off", 9) == 0)
1891 kmemleak_stack_scan = 0;
1892 else if (strncmp(buf, "scan=on", 7) == 0)
1893 start_scan_thread();
1894 else if (strncmp(buf, "scan=off", 8) == 0)
1895 stop_scan_thread();
1896 else if (strncmp(buf, "scan=", 5) == 0) {
1897 unsigned long secs;
3c7b4e6b 1898
3dbb95f7 1899 ret = kstrtoul(buf + 5, 0, &secs);
b87324d0
CM
1900 if (ret < 0)
1901 goto out;
3c7b4e6b
CM
1902 stop_scan_thread();
1903 if (secs) {
1904 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1905 start_scan_thread();
1906 }
4698c1f2
CM
1907 } else if (strncmp(buf, "scan", 4) == 0)
1908 kmemleak_scan();
189d84ed
CM
1909 else if (strncmp(buf, "dump=", 5) == 0)
1910 ret = dump_str_object_info(buf + 5);
4698c1f2 1911 else
b87324d0
CM
1912 ret = -EINVAL;
1913
1914out:
1915 mutex_unlock(&scan_mutex);
1916 if (ret < 0)
1917 return ret;
3c7b4e6b
CM
1918
1919 /* ignore the rest of the buffer, only one command at a time */
1920 *ppos += size;
1921 return size;
1922}
1923
1924static const struct file_operations kmemleak_fops = {
1925 .owner = THIS_MODULE,
1926 .open = kmemleak_open,
1927 .read = seq_read,
1928 .write = kmemleak_write,
1929 .llseek = seq_lseek,
5f3bf19a 1930 .release = seq_release,
3c7b4e6b
CM
1931};
1932
c89da70c
LZ
1933static void __kmemleak_do_cleanup(void)
1934{
1935 struct kmemleak_object *object;
1936
1937 rcu_read_lock();
1938 list_for_each_entry_rcu(object, &object_list, object_list)
1939 delete_object_full(object->pointer);
1940 rcu_read_unlock();
1941}
1942
3c7b4e6b 1943/*
74341703
CM
1944 * Stop the memory scanning thread and free the kmemleak internal objects if
1945 * no previous scan thread (otherwise, kmemleak may still have some useful
1946 * information on memory leaks).
3c7b4e6b 1947 */
179a8100 1948static void kmemleak_do_cleanup(struct work_struct *work)
3c7b4e6b 1949{
3c7b4e6b 1950 stop_scan_thread();
3c7b4e6b 1951
914b6dff 1952 mutex_lock(&scan_mutex);
c5f3b1a5 1953 /*
914b6dff
VM
1954 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1955 * longer track object freeing. Ordering of the scan thread stopping and
1956 * the memory accesses below is guaranteed by the kthread_stop()
1957 * function.
c5f3b1a5
CM
1958 */
1959 kmemleak_free_enabled = 0;
914b6dff 1960 mutex_unlock(&scan_mutex);
c5f3b1a5 1961
c89da70c
LZ
1962 if (!kmemleak_found_leaks)
1963 __kmemleak_do_cleanup();
1964 else
756a025f 1965 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
3c7b4e6b
CM
1966}
1967
179a8100 1968static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
3c7b4e6b
CM
1969
1970/*
1971 * Disable kmemleak. No memory allocation/freeing will be traced once this
1972 * function is called. Disabling kmemleak is an irreversible operation.
1973 */
1974static void kmemleak_disable(void)
1975{
1976 /* atomically check whether it was already invoked */
8910ae89 1977 if (cmpxchg(&kmemleak_error, 0, 1))
3c7b4e6b
CM
1978 return;
1979
1980 /* stop any memory operation tracing */
8910ae89 1981 kmemleak_enabled = 0;
3c7b4e6b
CM
1982
1983 /* check whether it is too early for a kernel thread */
8910ae89 1984 if (kmemleak_initialized)
179a8100 1985 schedule_work(&cleanup_work);
c5f3b1a5
CM
1986 else
1987 kmemleak_free_enabled = 0;
3c7b4e6b
CM
1988
1989 pr_info("Kernel memory leak detector disabled\n");
1990}
1991
1992/*
1993 * Allow boot-time kmemleak disabling (enabled by default).
1994 */
8bd30c10 1995static int __init kmemleak_boot_config(char *str)
3c7b4e6b
CM
1996{
1997 if (!str)
1998 return -EINVAL;
1999 if (strcmp(str, "off") == 0)
2000 kmemleak_disable();
ab0155a2
JB
2001 else if (strcmp(str, "on") == 0)
2002 kmemleak_skip_disable = 1;
2003 else
3c7b4e6b
CM
2004 return -EINVAL;
2005 return 0;
2006}
2007early_param("kmemleak", kmemleak_boot_config);
2008
5f79020c
CM
2009static void __init print_log_trace(struct early_log *log)
2010{
5f79020c 2011 pr_notice("Early log backtrace:\n");
07984aad 2012 stack_trace_print(log->trace, log->trace_len, 2);
5f79020c
CM
2013}
2014
3c7b4e6b 2015/*
2030117d 2016 * Kmemleak initialization.
3c7b4e6b
CM
2017 */
2018void __init kmemleak_init(void)
2019{
2020 int i;
2021 unsigned long flags;
2022
ab0155a2
JB
2023#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2024 if (!kmemleak_skip_disable) {
3551a928 2025 kmemleak_early_log = 0;
ab0155a2
JB
2026 kmemleak_disable();
2027 return;
2028 }
2029#endif
2030
3c7b4e6b
CM
2031 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2032 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2033
2034 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2035 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
3c7b4e6b 2036
21cd3a60 2037 if (crt_early_log > ARRAY_SIZE(early_log))
598d8091
JP
2038 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2039 crt_early_log);
b6693005 2040
3c7b4e6b
CM
2041 /* the kernel is still in UP mode, so disabling the IRQs is enough */
2042 local_irq_save(flags);
3551a928 2043 kmemleak_early_log = 0;
8910ae89 2044 if (kmemleak_error) {
b6693005
CM
2045 local_irq_restore(flags);
2046 return;
c5f3b1a5 2047 } else {
8910ae89 2048 kmemleak_enabled = 1;
c5f3b1a5
CM
2049 kmemleak_free_enabled = 1;
2050 }
3c7b4e6b
CM
2051 local_irq_restore(flags);
2052
298a32b1
CM
2053 /* register the data/bss sections */
2054 create_object((unsigned long)_sdata, _edata - _sdata,
2055 KMEMLEAK_GREY, GFP_ATOMIC);
2056 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2057 KMEMLEAK_GREY, GFP_ATOMIC);
2058 /* only register .data..ro_after_init if not within .data */
2059 if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
2060 create_object((unsigned long)__start_ro_after_init,
2061 __end_ro_after_init - __start_ro_after_init,
2062 KMEMLEAK_GREY, GFP_ATOMIC);
2063
3c7b4e6b
CM
2064 /*
2065 * This is the point where tracking allocations is safe. Automatic
2066 * scanning is started during the late initcall. Add the early logged
2067 * callbacks to the kmemleak infrastructure.
2068 */
2069 for (i = 0; i < crt_early_log; i++) {
2070 struct early_log *log = &early_log[i];
2071
2072 switch (log->op_type) {
2073 case KMEMLEAK_ALLOC:
fd678967 2074 early_alloc(log);
3c7b4e6b 2075 break;
f528f0b8
CM
2076 case KMEMLEAK_ALLOC_PERCPU:
2077 early_alloc_percpu(log);
2078 break;
3c7b4e6b
CM
2079 case KMEMLEAK_FREE:
2080 kmemleak_free(log->ptr);
2081 break;
53238a60
CM
2082 case KMEMLEAK_FREE_PART:
2083 kmemleak_free_part(log->ptr, log->size);
2084 break;
f528f0b8
CM
2085 case KMEMLEAK_FREE_PERCPU:
2086 kmemleak_free_percpu(log->ptr);
2087 break;
3c7b4e6b
CM
2088 case KMEMLEAK_NOT_LEAK:
2089 kmemleak_not_leak(log->ptr);
2090 break;
2091 case KMEMLEAK_IGNORE:
2092 kmemleak_ignore(log->ptr);
2093 break;
2094 case KMEMLEAK_SCAN_AREA:
c017b4be 2095 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
3c7b4e6b
CM
2096 break;
2097 case KMEMLEAK_NO_SCAN:
2098 kmemleak_no_scan(log->ptr);
2099 break;
94f4a161
CM
2100 case KMEMLEAK_SET_EXCESS_REF:
2101 object_set_excess_ref((unsigned long)log->ptr,
2102 log->excess_ref);
2103 break;
3c7b4e6b 2104 default:
5f79020c
CM
2105 kmemleak_warn("Unknown early log operation: %d\n",
2106 log->op_type);
2107 }
2108
8910ae89 2109 if (kmemleak_warning) {
5f79020c 2110 print_log_trace(log);
8910ae89 2111 kmemleak_warning = 0;
3c7b4e6b
CM
2112 }
2113 }
2114}
2115
2116/*
2117 * Late initialization function.
2118 */
2119static int __init kmemleak_late_init(void)
2120{
2121 struct dentry *dentry;
2122
8910ae89 2123 kmemleak_initialized = 1;
3c7b4e6b 2124
b353756b
VW
2125 dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2126 &kmemleak_fops);
2127 if (!dentry)
2128 pr_warn("Failed to create the debugfs kmemleak file\n");
2129
8910ae89 2130 if (kmemleak_error) {
3c7b4e6b 2131 /*
25985edc 2132 * Some error occurred and kmemleak was disabled. There is a
3c7b4e6b
CM
2133 * small chance that kmemleak_disable() was called immediately
2134 * after setting kmemleak_initialized and we may end up with
2135 * two clean-up threads but serialized by scan_mutex.
2136 */
179a8100 2137 schedule_work(&cleanup_work);
3c7b4e6b
CM
2138 return -ENOMEM;
2139 }
2140
d53ce042
SK
2141 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2142 mutex_lock(&scan_mutex);
2143 start_scan_thread();
2144 mutex_unlock(&scan_mutex);
2145 }
3c7b4e6b
CM
2146
2147 pr_info("Kernel memory leak detector initialized\n");
2148
2149 return 0;
2150}
2151late_initcall(kmemleak_late_init);