]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/kmemleak.c
mm: kmemleak: simple memory allocation pool for kmemleak objects
[thirdparty/kernel/stable.git] / mm / kmemleak.c
CommitLineData
45051539 1// SPDX-License-Identifier: GPL-2.0-only
3c7b4e6b
CM
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
3c7b4e6b 8 * For more information on the algorithm and kmemleak usage, please see
22901c6c 9 * Documentation/dev-tools/kmemleak.rst.
3c7b4e6b
CM
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (rwlock): protects the object_list modifications and
17 * accesses to the object_tree_root. The object_list is the main list
18 * holding the metadata (struct kmemleak_object) for the allocated memory
85d3a316 19 * blocks. The object_tree_root is a red black tree used to look-up
3c7b4e6b
CM
20 * metadata based on a pointer to the corresponding memory block. The
21 * kmemleak_object structures are added to the object_list and
22 * object_tree_root in the create_object() function called from the
23 * kmemleak_alloc() callback and removed in delete_object() called from the
24 * kmemleak_free() callback
25 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
26 * the metadata (e.g. count) are protected by this lock. Note that some
27 * members of this structure may be protected by other means (atomic or
28 * kmemleak_lock). This lock is also held when scanning the corresponding
29 * memory block to avoid the kernel freeing it via the kmemleak_free()
30 * callback. This is less heavyweight than holding a global lock like
31 * kmemleak_lock during scanning
32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33 * unreferenced objects at a time. The gray_list contains the objects which
34 * are already referenced or marked as false positives and need to be
35 * scanned. This list is only modified during a scanning episode when the
36 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
37 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
38 * added to the gray_list and therefore cannot be freed. This mutex also
39 * prevents multiple users of the "kmemleak" debugfs file together with
40 * modifications to the memory scanning parameters including the scan_thread
41 * pointer
3c7b4e6b 42 *
93ada579 43 * Locks and mutexes are acquired/nested in the following order:
9d5a4c73 44 *
93ada579
CM
45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46 *
47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48 * regions.
9d5a4c73 49 *
3c7b4e6b
CM
50 * The kmemleak_object structures have a use_count incremented or decremented
51 * using the get_object()/put_object() functions. When the use_count becomes
52 * 0, this count can no longer be incremented and put_object() schedules the
53 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54 * function must be protected by rcu_read_lock() to avoid accessing a freed
55 * structure.
56 */
57
ae281064
JP
58#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59
3c7b4e6b
CM
60#include <linux/init.h>
61#include <linux/kernel.h>
62#include <linux/list.h>
3f07c014 63#include <linux/sched/signal.h>
29930025 64#include <linux/sched/task.h>
68db0cf1 65#include <linux/sched/task_stack.h>
3c7b4e6b
CM
66#include <linux/jiffies.h>
67#include <linux/delay.h>
b95f1b31 68#include <linux/export.h>
3c7b4e6b 69#include <linux/kthread.h>
85d3a316 70#include <linux/rbtree.h>
3c7b4e6b
CM
71#include <linux/fs.h>
72#include <linux/debugfs.h>
73#include <linux/seq_file.h>
74#include <linux/cpumask.h>
75#include <linux/spinlock.h>
154221c3 76#include <linux/module.h>
3c7b4e6b
CM
77#include <linux/mutex.h>
78#include <linux/rcupdate.h>
79#include <linux/stacktrace.h>
80#include <linux/cache.h>
81#include <linux/percpu.h>
57c8a661 82#include <linux/memblock.h>
9099daed 83#include <linux/pfn.h>
3c7b4e6b
CM
84#include <linux/mmzone.h>
85#include <linux/slab.h>
86#include <linux/thread_info.h>
87#include <linux/err.h>
88#include <linux/uaccess.h>
89#include <linux/string.h>
90#include <linux/nodemask.h>
91#include <linux/mm.h>
179a8100 92#include <linux/workqueue.h>
04609ccc 93#include <linux/crc32.h>
3c7b4e6b
CM
94
95#include <asm/sections.h>
96#include <asm/processor.h>
60063497 97#include <linux/atomic.h>
3c7b4e6b 98
e79ed2f1 99#include <linux/kasan.h>
3c7b4e6b 100#include <linux/kmemleak.h>
029aeff5 101#include <linux/memory_hotplug.h>
3c7b4e6b
CM
102
103/*
104 * Kmemleak configuration and common defines.
105 */
106#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 107#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
108#define SECS_FIRST_SCAN 60 /* delay before the first scan */
109#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
af98603d 110#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
111
112#define BYTES_PER_POINTER sizeof(void *)
113
216c04b0 114/* GFP bitmask for kmemleak internal allocations */
20b5c303 115#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
6ae4bd1f 116 __GFP_NORETRY | __GFP_NOMEMALLOC | \
df9576de 117 __GFP_NOWARN)
216c04b0 118
3c7b4e6b
CM
119/* scanning area inside a memory block */
120struct kmemleak_scan_area {
121 struct hlist_node node;
c017b4be
CM
122 unsigned long start;
123 size_t size;
3c7b4e6b
CM
124};
125
a1084c87
LR
126#define KMEMLEAK_GREY 0
127#define KMEMLEAK_BLACK -1
128
3c7b4e6b
CM
129/*
130 * Structure holding the metadata for each allocated memory block.
131 * Modifications to such objects should be made while holding the
132 * object->lock. Insertions or deletions from object_list, gray_list or
85d3a316 133 * rb_node are already protected by the corresponding locks or mutex (see
3c7b4e6b
CM
134 * the notes on locking above). These objects are reference-counted
135 * (use_count) and freed using the RCU mechanism.
136 */
137struct kmemleak_object {
138 spinlock_t lock;
f66abf09 139 unsigned int flags; /* object status flags */
3c7b4e6b
CM
140 struct list_head object_list;
141 struct list_head gray_list;
85d3a316 142 struct rb_node rb_node;
3c7b4e6b
CM
143 struct rcu_head rcu; /* object_list lockless traversal */
144 /* object usage count; object freed when use_count == 0 */
145 atomic_t use_count;
146 unsigned long pointer;
147 size_t size;
94f4a161
CM
148 /* pass surplus references to this pointer */
149 unsigned long excess_ref;
3c7b4e6b
CM
150 /* minimum number of a pointers found before it is considered leak */
151 int min_count;
152 /* the total number of pointers found pointing to this object */
153 int count;
04609ccc
CM
154 /* checksum for detecting modified objects */
155 u32 checksum;
3c7b4e6b
CM
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list;
158 unsigned long trace[MAX_TRACE];
159 unsigned int trace_len;
160 unsigned long jiffies; /* creation timestamp */
161 pid_t pid; /* pid of the current task */
162 char comm[TASK_COMM_LEN]; /* executable name */
163};
164
165/* flag representing the memory block allocation status */
166#define OBJECT_ALLOCATED (1 << 0)
167/* flag set after the first reporting of an unreference object */
168#define OBJECT_REPORTED (1 << 1)
169/* flag set to not scan the object */
170#define OBJECT_NO_SCAN (1 << 2)
dba82d94
CM
171/* flag set to fully scan the object when scan_area allocation failed */
172#define OBJECT_FULL_SCAN (1 << 3)
3c7b4e6b 173
154221c3 174#define HEX_PREFIX " "
0494e082
SS
175/* number of bytes to print per line; must be 16 or 32 */
176#define HEX_ROW_SIZE 16
177/* number of bytes to print at a time (1, 2, 4, 8) */
178#define HEX_GROUP_SIZE 1
179/* include ASCII after the hex output */
180#define HEX_ASCII 1
181/* max number of lines to be printed */
182#define HEX_MAX_LINES 2
0647398a
CM
183/* memory pool size */
184#define MEM_POOL_SIZE 16000
0494e082 185
3c7b4e6b
CM
186/* the list of all allocated objects */
187static LIST_HEAD(object_list);
188/* the list of gray-colored objects (see color_gray comment below) */
189static LIST_HEAD(gray_list);
0647398a
CM
190/* memory pool allocation */
191static struct kmemleak_object mem_pool[MEM_POOL_SIZE];
192static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
193static LIST_HEAD(mem_pool_free_list);
85d3a316
ML
194/* search tree for object boundaries */
195static struct rb_root object_tree_root = RB_ROOT;
196/* rw_lock protecting the access to object_list and object_tree_root */
3c7b4e6b
CM
197static DEFINE_RWLOCK(kmemleak_lock);
198
199/* allocation caches for kmemleak internal data */
200static struct kmem_cache *object_cache;
201static struct kmem_cache *scan_area_cache;
202
203/* set if tracing memory operations is enabled */
8910ae89 204static int kmemleak_enabled;
c5f3b1a5
CM
205/* same as above but only for the kmemleak_free() callback */
206static int kmemleak_free_enabled;
3c7b4e6b 207/* set in the late_initcall if there were no errors */
8910ae89 208static int kmemleak_initialized;
3c7b4e6b 209/* enables or disables early logging of the memory operations */
8910ae89 210static int kmemleak_early_log = 1;
5f79020c 211/* set if a kmemleak warning was issued */
8910ae89 212static int kmemleak_warning;
5f79020c 213/* set if a fatal kmemleak error has occurred */
8910ae89 214static int kmemleak_error;
3c7b4e6b
CM
215
216/* minimum and maximum address that may be valid pointers */
217static unsigned long min_addr = ULONG_MAX;
218static unsigned long max_addr;
219
3c7b4e6b 220static struct task_struct *scan_thread;
acf4968e 221/* used to avoid reporting of recently allocated objects */
3c7b4e6b 222static unsigned long jiffies_min_age;
acf4968e 223static unsigned long jiffies_last_scan;
3c7b4e6b
CM
224/* delay between automatic memory scannings */
225static signed long jiffies_scan_wait;
226/* enables or disables the task stacks scanning */
e0a2a160 227static int kmemleak_stack_scan = 1;
4698c1f2 228/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 229static DEFINE_MUTEX(scan_mutex);
ab0155a2
JB
230/* setting kmemleak=on, will set this var, skipping the disable */
231static int kmemleak_skip_disable;
dc9b3f42
LZ
232/* If there are leaks that can be reported */
233static bool kmemleak_found_leaks;
3c7b4e6b 234
154221c3
VW
235static bool kmemleak_verbose;
236module_param_named(verbose, kmemleak_verbose, bool, 0600);
237
3c7b4e6b 238/*
2030117d 239 * Early object allocation/freeing logging. Kmemleak is initialized after the
3c7b4e6b 240 * kernel allocator. However, both the kernel allocator and kmemleak may
2030117d 241 * allocate memory blocks which need to be tracked. Kmemleak defines an
3c7b4e6b
CM
242 * arbitrary buffer to hold the allocation/freeing information before it is
243 * fully initialized.
244 */
245
246/* kmemleak operation type for early logging */
247enum {
248 KMEMLEAK_ALLOC,
f528f0b8 249 KMEMLEAK_ALLOC_PERCPU,
3c7b4e6b 250 KMEMLEAK_FREE,
53238a60 251 KMEMLEAK_FREE_PART,
f528f0b8 252 KMEMLEAK_FREE_PERCPU,
3c7b4e6b
CM
253 KMEMLEAK_NOT_LEAK,
254 KMEMLEAK_IGNORE,
255 KMEMLEAK_SCAN_AREA,
94f4a161
CM
256 KMEMLEAK_NO_SCAN,
257 KMEMLEAK_SET_EXCESS_REF
3c7b4e6b
CM
258};
259
260/*
261 * Structure holding the information passed to kmemleak callbacks during the
262 * early logging.
263 */
264struct early_log {
265 int op_type; /* kmemleak operation type */
f66abf09 266 int min_count; /* minimum reference count */
3c7b4e6b 267 const void *ptr; /* allocated/freed memory block */
94f4a161
CM
268 union {
269 size_t size; /* memory block size */
270 unsigned long excess_ref; /* surplus reference passing */
271 };
fd678967
CM
272 unsigned long trace[MAX_TRACE]; /* stack trace */
273 unsigned int trace_len; /* stack trace length */
3c7b4e6b
CM
274};
275
276/* early logging buffer and current position */
a6186d89
CM
277static struct early_log
278 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
279static int crt_early_log __initdata;
3c7b4e6b
CM
280
281static void kmemleak_disable(void);
282
283/*
284 * Print a warning and dump the stack trace.
285 */
5f79020c 286#define kmemleak_warn(x...) do { \
598d8091 287 pr_warn(x); \
5f79020c 288 dump_stack(); \
8910ae89 289 kmemleak_warning = 1; \
3c7b4e6b
CM
290} while (0)
291
292/*
25985edc 293 * Macro invoked when a serious kmemleak condition occurred and cannot be
2030117d 294 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
295 * tracing no longer available.
296 */
000814f4 297#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
298 kmemleak_warn(x); \
299 kmemleak_disable(); \
300} while (0)
301
154221c3
VW
302#define warn_or_seq_printf(seq, fmt, ...) do { \
303 if (seq) \
304 seq_printf(seq, fmt, ##__VA_ARGS__); \
305 else \
306 pr_warn(fmt, ##__VA_ARGS__); \
307} while (0)
308
309static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
310 int rowsize, int groupsize, const void *buf,
311 size_t len, bool ascii)
312{
313 if (seq)
314 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
315 buf, len, ascii);
316 else
317 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
318 rowsize, groupsize, buf, len, ascii);
319}
320
0494e082
SS
321/*
322 * Printing of the objects hex dump to the seq file. The number of lines to be
323 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
324 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
325 * with the object->lock held.
326 */
327static void hex_dump_object(struct seq_file *seq,
328 struct kmemleak_object *object)
329{
330 const u8 *ptr = (const u8 *)object->pointer;
6fc37c49 331 size_t len;
0494e082
SS
332
333 /* limit the number of lines to HEX_MAX_LINES */
6fc37c49 334 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
0494e082 335
154221c3 336 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
5c335fe0 337 kasan_disable_current();
154221c3
VW
338 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
339 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
5c335fe0 340 kasan_enable_current();
0494e082
SS
341}
342
3c7b4e6b
CM
343/*
344 * Object colors, encoded with count and min_count:
345 * - white - orphan object, not enough references to it (count < min_count)
346 * - gray - not orphan, not marked as false positive (min_count == 0) or
347 * sufficient references to it (count >= min_count)
348 * - black - ignore, it doesn't contain references (e.g. text section)
349 * (min_count == -1). No function defined for this color.
350 * Newly created objects don't have any color assigned (object->count == -1)
351 * before the next memory scan when they become white.
352 */
4a558dd6 353static bool color_white(const struct kmemleak_object *object)
3c7b4e6b 354{
a1084c87
LR
355 return object->count != KMEMLEAK_BLACK &&
356 object->count < object->min_count;
3c7b4e6b
CM
357}
358
4a558dd6 359static bool color_gray(const struct kmemleak_object *object)
3c7b4e6b 360{
a1084c87
LR
361 return object->min_count != KMEMLEAK_BLACK &&
362 object->count >= object->min_count;
3c7b4e6b
CM
363}
364
3c7b4e6b
CM
365/*
366 * Objects are considered unreferenced only if their color is white, they have
367 * not be deleted and have a minimum age to avoid false positives caused by
368 * pointers temporarily stored in CPU registers.
369 */
4a558dd6 370static bool unreferenced_object(struct kmemleak_object *object)
3c7b4e6b 371{
04609ccc 372 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
acf4968e
CM
373 time_before_eq(object->jiffies + jiffies_min_age,
374 jiffies_last_scan);
3c7b4e6b
CM
375}
376
377/*
bab4a34a
CM
378 * Printing of the unreferenced objects information to the seq file. The
379 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 380 */
3c7b4e6b
CM
381static void print_unreferenced(struct seq_file *seq,
382 struct kmemleak_object *object)
383{
384 int i;
fefdd336 385 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
3c7b4e6b 386
154221c3 387 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
bab4a34a 388 object->pointer, object->size);
154221c3 389 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
fefdd336
CM
390 object->comm, object->pid, object->jiffies,
391 msecs_age / 1000, msecs_age % 1000);
0494e082 392 hex_dump_object(seq, object);
154221c3 393 warn_or_seq_printf(seq, " backtrace:\n");
3c7b4e6b
CM
394
395 for (i = 0; i < object->trace_len; i++) {
396 void *ptr = (void *)object->trace[i];
154221c3 397 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
3c7b4e6b
CM
398 }
399}
400
401/*
402 * Print the kmemleak_object information. This function is used mainly for
403 * debugging special cases when kmemleak operations. It must be called with
404 * the object->lock held.
405 */
406static void dump_object_info(struct kmemleak_object *object)
407{
ae281064 408 pr_notice("Object 0x%08lx (size %zu):\n",
85d3a316 409 object->pointer, object->size);
3c7b4e6b
CM
410 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
411 object->comm, object->pid, object->jiffies);
412 pr_notice(" min_count = %d\n", object->min_count);
413 pr_notice(" count = %d\n", object->count);
f66abf09 414 pr_notice(" flags = 0x%x\n", object->flags);
aae0ad7a 415 pr_notice(" checksum = %u\n", object->checksum);
3c7b4e6b 416 pr_notice(" backtrace:\n");
07984aad 417 stack_trace_print(object->trace, object->trace_len, 4);
3c7b4e6b
CM
418}
419
420/*
85d3a316 421 * Look-up a memory block metadata (kmemleak_object) in the object search
3c7b4e6b
CM
422 * tree based on a pointer value. If alias is 0, only values pointing to the
423 * beginning of the memory block are allowed. The kmemleak_lock must be held
424 * when calling this function.
425 */
426static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
427{
85d3a316
ML
428 struct rb_node *rb = object_tree_root.rb_node;
429
430 while (rb) {
431 struct kmemleak_object *object =
432 rb_entry(rb, struct kmemleak_object, rb_node);
433 if (ptr < object->pointer)
434 rb = object->rb_node.rb_left;
435 else if (object->pointer + object->size <= ptr)
436 rb = object->rb_node.rb_right;
437 else if (object->pointer == ptr || alias)
438 return object;
439 else {
5f79020c
CM
440 kmemleak_warn("Found object by alias at 0x%08lx\n",
441 ptr);
a7686a45 442 dump_object_info(object);
85d3a316 443 break;
3c7b4e6b 444 }
85d3a316
ML
445 }
446 return NULL;
3c7b4e6b
CM
447}
448
449/*
450 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
451 * that once an object's use_count reached 0, the RCU freeing was already
452 * registered and the object should no longer be used. This function must be
453 * called under the protection of rcu_read_lock().
454 */
455static int get_object(struct kmemleak_object *object)
456{
457 return atomic_inc_not_zero(&object->use_count);
458}
459
0647398a
CM
460/*
461 * Memory pool allocation and freeing. kmemleak_lock must not be held.
462 */
463static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
464{
465 unsigned long flags;
466 struct kmemleak_object *object;
467
468 /* try the slab allocator first */
469 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
470 if (object)
471 return object;
472
473 /* slab allocation failed, try the memory pool */
474 write_lock_irqsave(&kmemleak_lock, flags);
475 object = list_first_entry_or_null(&mem_pool_free_list,
476 typeof(*object), object_list);
477 if (object)
478 list_del(&object->object_list);
479 else if (mem_pool_free_count)
480 object = &mem_pool[--mem_pool_free_count];
481 write_unlock_irqrestore(&kmemleak_lock, flags);
482
483 return object;
484}
485
486/*
487 * Return the object to either the slab allocator or the memory pool.
488 */
489static void mem_pool_free(struct kmemleak_object *object)
490{
491 unsigned long flags;
492
493 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
494 kmem_cache_free(object_cache, object);
495 return;
496 }
497
498 /* add the object to the memory pool free list */
499 write_lock_irqsave(&kmemleak_lock, flags);
500 list_add(&object->object_list, &mem_pool_free_list);
501 write_unlock_irqrestore(&kmemleak_lock, flags);
502}
503
3c7b4e6b
CM
504/*
505 * RCU callback to free a kmemleak_object.
506 */
507static void free_object_rcu(struct rcu_head *rcu)
508{
b67bfe0d 509 struct hlist_node *tmp;
3c7b4e6b
CM
510 struct kmemleak_scan_area *area;
511 struct kmemleak_object *object =
512 container_of(rcu, struct kmemleak_object, rcu);
513
514 /*
515 * Once use_count is 0 (guaranteed by put_object), there is no other
516 * code accessing this object, hence no need for locking.
517 */
b67bfe0d
SL
518 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
519 hlist_del(&area->node);
3c7b4e6b
CM
520 kmem_cache_free(scan_area_cache, area);
521 }
0647398a 522 mem_pool_free(object);
3c7b4e6b
CM
523}
524
525/*
526 * Decrement the object use_count. Once the count is 0, free the object using
527 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
528 * delete_object() path, the delayed RCU freeing ensures that there is no
529 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
530 * is also possible.
531 */
532static void put_object(struct kmemleak_object *object)
533{
534 if (!atomic_dec_and_test(&object->use_count))
535 return;
536
537 /* should only get here after delete_object was called */
538 WARN_ON(object->flags & OBJECT_ALLOCATED);
539
540 call_rcu(&object->rcu, free_object_rcu);
541}
542
543/*
85d3a316 544 * Look up an object in the object search tree and increase its use_count.
3c7b4e6b
CM
545 */
546static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
547{
548 unsigned long flags;
9fbed254 549 struct kmemleak_object *object;
3c7b4e6b
CM
550
551 rcu_read_lock();
552 read_lock_irqsave(&kmemleak_lock, flags);
93ada579 553 object = lookup_object(ptr, alias);
3c7b4e6b
CM
554 read_unlock_irqrestore(&kmemleak_lock, flags);
555
556 /* check whether the object is still available */
557 if (object && !get_object(object))
558 object = NULL;
559 rcu_read_unlock();
560
561 return object;
562}
563
e781a9ab
CM
564/*
565 * Look up an object in the object search tree and remove it from both
566 * object_tree_root and object_list. The returned object's use_count should be
567 * at least 1, as initially set by create_object().
568 */
569static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
570{
571 unsigned long flags;
572 struct kmemleak_object *object;
573
574 write_lock_irqsave(&kmemleak_lock, flags);
575 object = lookup_object(ptr, alias);
576 if (object) {
577 rb_erase(&object->rb_node, &object_tree_root);
578 list_del_rcu(&object->object_list);
579 }
580 write_unlock_irqrestore(&kmemleak_lock, flags);
581
582 return object;
583}
584
fd678967
CM
585/*
586 * Save stack trace to the given array of MAX_TRACE size.
587 */
588static int __save_stack_trace(unsigned long *trace)
589{
07984aad 590 return stack_trace_save(trace, MAX_TRACE, 2);
fd678967
CM
591}
592
3c7b4e6b
CM
593/*
594 * Create the metadata (struct kmemleak_object) corresponding to an allocated
595 * memory block and add it to the object_list and object_tree_root.
596 */
fd678967
CM
597static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
598 int min_count, gfp_t gfp)
3c7b4e6b
CM
599{
600 unsigned long flags;
85d3a316
ML
601 struct kmemleak_object *object, *parent;
602 struct rb_node **link, *rb_parent;
a2f77575 603 unsigned long untagged_ptr;
3c7b4e6b 604
0647398a 605 object = mem_pool_alloc(gfp);
3c7b4e6b 606 if (!object) {
598d8091 607 pr_warn("Cannot allocate a kmemleak_object structure\n");
6ae4bd1f 608 kmemleak_disable();
fd678967 609 return NULL;
3c7b4e6b
CM
610 }
611
612 INIT_LIST_HEAD(&object->object_list);
613 INIT_LIST_HEAD(&object->gray_list);
614 INIT_HLIST_HEAD(&object->area_list);
615 spin_lock_init(&object->lock);
616 atomic_set(&object->use_count, 1);
04609ccc 617 object->flags = OBJECT_ALLOCATED;
3c7b4e6b
CM
618 object->pointer = ptr;
619 object->size = size;
94f4a161 620 object->excess_ref = 0;
3c7b4e6b 621 object->min_count = min_count;
04609ccc 622 object->count = 0; /* white color initially */
3c7b4e6b 623 object->jiffies = jiffies;
04609ccc 624 object->checksum = 0;
3c7b4e6b
CM
625
626 /* task information */
627 if (in_irq()) {
628 object->pid = 0;
629 strncpy(object->comm, "hardirq", sizeof(object->comm));
6ef90569 630 } else if (in_serving_softirq()) {
3c7b4e6b
CM
631 object->pid = 0;
632 strncpy(object->comm, "softirq", sizeof(object->comm));
633 } else {
634 object->pid = current->pid;
635 /*
636 * There is a small chance of a race with set_task_comm(),
637 * however using get_task_comm() here may cause locking
638 * dependency issues with current->alloc_lock. In the worst
639 * case, the command line is not correct.
640 */
641 strncpy(object->comm, current->comm, sizeof(object->comm));
642 }
643
644 /* kernel backtrace */
fd678967 645 object->trace_len = __save_stack_trace(object->trace);
3c7b4e6b 646
3c7b4e6b 647 write_lock_irqsave(&kmemleak_lock, flags);
0580a181 648
a2f77575
AK
649 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
650 min_addr = min(min_addr, untagged_ptr);
651 max_addr = max(max_addr, untagged_ptr + size);
85d3a316
ML
652 link = &object_tree_root.rb_node;
653 rb_parent = NULL;
654 while (*link) {
655 rb_parent = *link;
656 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
657 if (ptr + size <= parent->pointer)
658 link = &parent->rb_node.rb_left;
659 else if (parent->pointer + parent->size <= ptr)
660 link = &parent->rb_node.rb_right;
661 else {
756a025f 662 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
85d3a316 663 ptr);
9d5a4c73
CM
664 /*
665 * No need for parent->lock here since "parent" cannot
666 * be freed while the kmemleak_lock is held.
667 */
668 dump_object_info(parent);
85d3a316 669 kmem_cache_free(object_cache, object);
9d5a4c73 670 object = NULL;
85d3a316
ML
671 goto out;
672 }
3c7b4e6b 673 }
85d3a316
ML
674 rb_link_node(&object->rb_node, rb_parent, link);
675 rb_insert_color(&object->rb_node, &object_tree_root);
676
3c7b4e6b
CM
677 list_add_tail_rcu(&object->object_list, &object_list);
678out:
679 write_unlock_irqrestore(&kmemleak_lock, flags);
fd678967 680 return object;
3c7b4e6b
CM
681}
682
683/*
e781a9ab 684 * Mark the object as not allocated and schedule RCU freeing via put_object().
3c7b4e6b 685 */
53238a60 686static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
687{
688 unsigned long flags;
3c7b4e6b 689
3c7b4e6b 690 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
e781a9ab 691 WARN_ON(atomic_read(&object->use_count) < 1);
3c7b4e6b
CM
692
693 /*
694 * Locking here also ensures that the corresponding memory block
695 * cannot be freed when it is being scanned.
696 */
697 spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
698 object->flags &= ~OBJECT_ALLOCATED;
699 spin_unlock_irqrestore(&object->lock, flags);
700 put_object(object);
701}
702
53238a60
CM
703/*
704 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
705 * delete it.
706 */
707static void delete_object_full(unsigned long ptr)
708{
709 struct kmemleak_object *object;
710
e781a9ab 711 object = find_and_remove_object(ptr, 0);
53238a60
CM
712 if (!object) {
713#ifdef DEBUG
714 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
715 ptr);
716#endif
717 return;
718 }
719 __delete_object(object);
53238a60
CM
720}
721
722/*
723 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
724 * delete it. If the memory block is partially freed, the function may create
725 * additional metadata for the remaining parts of the block.
726 */
727static void delete_object_part(unsigned long ptr, size_t size)
728{
729 struct kmemleak_object *object;
730 unsigned long start, end;
731
e781a9ab 732 object = find_and_remove_object(ptr, 1);
53238a60
CM
733 if (!object) {
734#ifdef DEBUG
756a025f
JP
735 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
736 ptr, size);
53238a60
CM
737#endif
738 return;
739 }
53238a60
CM
740
741 /*
742 * Create one or two objects that may result from the memory block
743 * split. Note that partial freeing is only done by free_bootmem() and
744 * this happens before kmemleak_init() is called. The path below is
745 * only executed during early log recording in kmemleak_init(), so
746 * GFP_KERNEL is enough.
747 */
748 start = object->pointer;
749 end = object->pointer + object->size;
750 if (ptr > start)
751 create_object(start, ptr - start, object->min_count,
752 GFP_KERNEL);
753 if (ptr + size < end)
754 create_object(ptr + size, end - ptr - size, object->min_count,
755 GFP_KERNEL);
756
e781a9ab 757 __delete_object(object);
53238a60 758}
a1084c87
LR
759
760static void __paint_it(struct kmemleak_object *object, int color)
761{
762 object->min_count = color;
763 if (color == KMEMLEAK_BLACK)
764 object->flags |= OBJECT_NO_SCAN;
765}
766
767static void paint_it(struct kmemleak_object *object, int color)
3c7b4e6b
CM
768{
769 unsigned long flags;
a1084c87
LR
770
771 spin_lock_irqsave(&object->lock, flags);
772 __paint_it(object, color);
773 spin_unlock_irqrestore(&object->lock, flags);
774}
775
776static void paint_ptr(unsigned long ptr, int color)
777{
3c7b4e6b
CM
778 struct kmemleak_object *object;
779
780 object = find_and_get_object(ptr, 0);
781 if (!object) {
756a025f
JP
782 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
783 ptr,
a1084c87
LR
784 (color == KMEMLEAK_GREY) ? "Grey" :
785 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
3c7b4e6b
CM
786 return;
787 }
a1084c87 788 paint_it(object, color);
3c7b4e6b
CM
789 put_object(object);
790}
791
a1084c87 792/*
145b64b9 793 * Mark an object permanently as gray-colored so that it can no longer be
a1084c87
LR
794 * reported as a leak. This is used in general to mark a false positive.
795 */
796static void make_gray_object(unsigned long ptr)
797{
798 paint_ptr(ptr, KMEMLEAK_GREY);
799}
800
3c7b4e6b
CM
801/*
802 * Mark the object as black-colored so that it is ignored from scans and
803 * reporting.
804 */
805static void make_black_object(unsigned long ptr)
806{
a1084c87 807 paint_ptr(ptr, KMEMLEAK_BLACK);
3c7b4e6b
CM
808}
809
810/*
811 * Add a scanning area to the object. If at least one such area is added,
812 * kmemleak will only scan these ranges rather than the whole memory block.
813 */
c017b4be 814static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
815{
816 unsigned long flags;
817 struct kmemleak_object *object;
818 struct kmemleak_scan_area *area;
819
c017b4be 820 object = find_and_get_object(ptr, 1);
3c7b4e6b 821 if (!object) {
ae281064
JP
822 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
823 ptr);
3c7b4e6b
CM
824 return;
825 }
826
6ae4bd1f 827 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b
CM
828
829 spin_lock_irqsave(&object->lock, flags);
dba82d94
CM
830 if (!area) {
831 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
832 /* mark the object for full scan to avoid false positives */
833 object->flags |= OBJECT_FULL_SCAN;
834 goto out_unlock;
835 }
7f88f88f
CM
836 if (size == SIZE_MAX) {
837 size = object->pointer + object->size - ptr;
838 } else if (ptr + size > object->pointer + object->size) {
ae281064 839 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
840 dump_object_info(object);
841 kmem_cache_free(scan_area_cache, area);
842 goto out_unlock;
843 }
844
845 INIT_HLIST_NODE(&area->node);
c017b4be
CM
846 area->start = ptr;
847 area->size = size;
3c7b4e6b
CM
848
849 hlist_add_head(&area->node, &object->area_list);
850out_unlock:
851 spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
852 put_object(object);
853}
854
94f4a161
CM
855/*
856 * Any surplus references (object already gray) to 'ptr' are passed to
857 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
858 * vm_struct may be used as an alternative reference to the vmalloc'ed object
859 * (see free_thread_stack()).
860 */
861static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
862{
863 unsigned long flags;
864 struct kmemleak_object *object;
865
866 object = find_and_get_object(ptr, 0);
867 if (!object) {
868 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
869 ptr);
870 return;
871 }
872
873 spin_lock_irqsave(&object->lock, flags);
874 object->excess_ref = excess_ref;
875 spin_unlock_irqrestore(&object->lock, flags);
876 put_object(object);
877}
878
3c7b4e6b
CM
879/*
880 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
881 * pointer. Such object will not be scanned by kmemleak but references to it
882 * are searched.
883 */
884static void object_no_scan(unsigned long ptr)
885{
886 unsigned long flags;
887 struct kmemleak_object *object;
888
889 object = find_and_get_object(ptr, 0);
890 if (!object) {
ae281064 891 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
892 return;
893 }
894
895 spin_lock_irqsave(&object->lock, flags);
896 object->flags |= OBJECT_NO_SCAN;
897 spin_unlock_irqrestore(&object->lock, flags);
898 put_object(object);
899}
900
901/*
902 * Log an early kmemleak_* call to the early_log buffer. These calls will be
903 * processed later once kmemleak is fully initialized.
904 */
a6186d89 905static void __init log_early(int op_type, const void *ptr, size_t size,
c017b4be 906 int min_count)
3c7b4e6b
CM
907{
908 unsigned long flags;
909 struct early_log *log;
910
8910ae89 911 if (kmemleak_error) {
b6693005
CM
912 /* kmemleak stopped recording, just count the requests */
913 crt_early_log++;
914 return;
915 }
916
3c7b4e6b 917 if (crt_early_log >= ARRAY_SIZE(early_log)) {
21cd3a60 918 crt_early_log++;
a9d9058a 919 kmemleak_disable();
3c7b4e6b
CM
920 return;
921 }
922
923 /*
924 * There is no need for locking since the kernel is still in UP mode
925 * at this stage. Disabling the IRQs is enough.
926 */
927 local_irq_save(flags);
928 log = &early_log[crt_early_log];
929 log->op_type = op_type;
930 log->ptr = ptr;
931 log->size = size;
932 log->min_count = min_count;
5f79020c 933 log->trace_len = __save_stack_trace(log->trace);
3c7b4e6b
CM
934 crt_early_log++;
935 local_irq_restore(flags);
936}
937
fd678967
CM
938/*
939 * Log an early allocated block and populate the stack trace.
940 */
941static void early_alloc(struct early_log *log)
942{
943 struct kmemleak_object *object;
944 unsigned long flags;
945 int i;
946
8910ae89 947 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
fd678967
CM
948 return;
949
950 /*
951 * RCU locking needed to ensure object is not freed via put_object().
952 */
953 rcu_read_lock();
954 object = create_object((unsigned long)log->ptr, log->size,
c1bcd6b3 955 log->min_count, GFP_ATOMIC);
0d5d1aad
CM
956 if (!object)
957 goto out;
fd678967
CM
958 spin_lock_irqsave(&object->lock, flags);
959 for (i = 0; i < log->trace_len; i++)
960 object->trace[i] = log->trace[i];
961 object->trace_len = log->trace_len;
962 spin_unlock_irqrestore(&object->lock, flags);
0d5d1aad 963out:
fd678967
CM
964 rcu_read_unlock();
965}
966
f528f0b8
CM
967/*
968 * Log an early allocated block and populate the stack trace.
969 */
970static void early_alloc_percpu(struct early_log *log)
971{
972 unsigned int cpu;
973 const void __percpu *ptr = log->ptr;
974
975 for_each_possible_cpu(cpu) {
976 log->ptr = per_cpu_ptr(ptr, cpu);
977 early_alloc(log);
978 }
979}
980
a2b6bf63
CM
981/**
982 * kmemleak_alloc - register a newly allocated object
983 * @ptr: pointer to beginning of the object
984 * @size: size of the object
985 * @min_count: minimum number of references to this object. If during memory
986 * scanning a number of references less than @min_count is found,
987 * the object is reported as a memory leak. If @min_count is 0,
988 * the object is never reported as a leak. If @min_count is -1,
989 * the object is ignored (not scanned and not reported as a leak)
990 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
991 *
992 * This function is called from the kernel allocators when a new object
94f4a161 993 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
3c7b4e6b 994 */
a6186d89
CM
995void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
996 gfp_t gfp)
3c7b4e6b
CM
997{
998 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
999
8910ae89 1000 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1001 create_object((unsigned long)ptr, size, min_count, gfp);
8910ae89 1002 else if (kmemleak_early_log)
c017b4be 1003 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
3c7b4e6b
CM
1004}
1005EXPORT_SYMBOL_GPL(kmemleak_alloc);
1006
f528f0b8
CM
1007/**
1008 * kmemleak_alloc_percpu - register a newly allocated __percpu object
1009 * @ptr: __percpu pointer to beginning of the object
1010 * @size: size of the object
8a8c35fa 1011 * @gfp: flags used for kmemleak internal memory allocations
f528f0b8
CM
1012 *
1013 * This function is called from the kernel percpu allocator when a new object
8a8c35fa 1014 * (memory block) is allocated (alloc_percpu).
f528f0b8 1015 */
8a8c35fa
LF
1016void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1017 gfp_t gfp)
f528f0b8
CM
1018{
1019 unsigned int cpu;
1020
1021 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
1022
1023 /*
1024 * Percpu allocations are only scanned and not reported as leaks
1025 * (min_count is set to 0).
1026 */
8910ae89 1027 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1028 for_each_possible_cpu(cpu)
1029 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
8a8c35fa 1030 size, 0, gfp);
8910ae89 1031 else if (kmemleak_early_log)
f528f0b8
CM
1032 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
1033}
1034EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1035
94f4a161
CM
1036/**
1037 * kmemleak_vmalloc - register a newly vmalloc'ed object
1038 * @area: pointer to vm_struct
1039 * @size: size of the object
1040 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1041 *
1042 * This function is called from the vmalloc() kernel allocator when a new
1043 * object (memory block) is allocated.
1044 */
1045void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1046{
1047 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1048
1049 /*
1050 * A min_count = 2 is needed because vm_struct contains a reference to
1051 * the virtual address of the vmalloc'ed block.
1052 */
1053 if (kmemleak_enabled) {
1054 create_object((unsigned long)area->addr, size, 2, gfp);
1055 object_set_excess_ref((unsigned long)area,
1056 (unsigned long)area->addr);
1057 } else if (kmemleak_early_log) {
1058 log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1059 /* reusing early_log.size for storing area->addr */
1060 log_early(KMEMLEAK_SET_EXCESS_REF,
1061 area, (unsigned long)area->addr, 0);
1062 }
1063}
1064EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1065
a2b6bf63
CM
1066/**
1067 * kmemleak_free - unregister a previously registered object
1068 * @ptr: pointer to beginning of the object
1069 *
1070 * This function is called from the kernel allocators when an object (memory
1071 * block) is freed (kmem_cache_free, kfree, vfree etc.).
3c7b4e6b 1072 */
a6186d89 1073void __ref kmemleak_free(const void *ptr)
3c7b4e6b
CM
1074{
1075 pr_debug("%s(0x%p)\n", __func__, ptr);
1076
c5f3b1a5 1077 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
53238a60 1078 delete_object_full((unsigned long)ptr);
8910ae89 1079 else if (kmemleak_early_log)
c017b4be 1080 log_early(KMEMLEAK_FREE, ptr, 0, 0);
3c7b4e6b
CM
1081}
1082EXPORT_SYMBOL_GPL(kmemleak_free);
1083
a2b6bf63
CM
1084/**
1085 * kmemleak_free_part - partially unregister a previously registered object
1086 * @ptr: pointer to the beginning or inside the object. This also
1087 * represents the start of the range to be freed
1088 * @size: size to be unregistered
1089 *
1090 * This function is called when only a part of a memory block is freed
1091 * (usually from the bootmem allocator).
53238a60 1092 */
a6186d89 1093void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60
CM
1094{
1095 pr_debug("%s(0x%p)\n", __func__, ptr);
1096
8910ae89 1097 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
53238a60 1098 delete_object_part((unsigned long)ptr, size);
8910ae89 1099 else if (kmemleak_early_log)
c017b4be 1100 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
53238a60
CM
1101}
1102EXPORT_SYMBOL_GPL(kmemleak_free_part);
1103
f528f0b8
CM
1104/**
1105 * kmemleak_free_percpu - unregister a previously registered __percpu object
1106 * @ptr: __percpu pointer to beginning of the object
1107 *
1108 * This function is called from the kernel percpu allocator when an object
1109 * (memory block) is freed (free_percpu).
1110 */
1111void __ref kmemleak_free_percpu(const void __percpu *ptr)
1112{
1113 unsigned int cpu;
1114
1115 pr_debug("%s(0x%p)\n", __func__, ptr);
1116
c5f3b1a5 1117 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1118 for_each_possible_cpu(cpu)
1119 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1120 cpu));
8910ae89 1121 else if (kmemleak_early_log)
f528f0b8
CM
1122 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1123}
1124EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1125
ffe2c748
CM
1126/**
1127 * kmemleak_update_trace - update object allocation stack trace
1128 * @ptr: pointer to beginning of the object
1129 *
1130 * Override the object allocation stack trace for cases where the actual
1131 * allocation place is not always useful.
1132 */
1133void __ref kmemleak_update_trace(const void *ptr)
1134{
1135 struct kmemleak_object *object;
1136 unsigned long flags;
1137
1138 pr_debug("%s(0x%p)\n", __func__, ptr);
1139
1140 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1141 return;
1142
1143 object = find_and_get_object((unsigned long)ptr, 1);
1144 if (!object) {
1145#ifdef DEBUG
1146 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1147 ptr);
1148#endif
1149 return;
1150 }
1151
1152 spin_lock_irqsave(&object->lock, flags);
1153 object->trace_len = __save_stack_trace(object->trace);
1154 spin_unlock_irqrestore(&object->lock, flags);
1155
1156 put_object(object);
1157}
1158EXPORT_SYMBOL(kmemleak_update_trace);
1159
a2b6bf63
CM
1160/**
1161 * kmemleak_not_leak - mark an allocated object as false positive
1162 * @ptr: pointer to beginning of the object
1163 *
1164 * Calling this function on an object will cause the memory block to no longer
1165 * be reported as leak and always be scanned.
3c7b4e6b 1166 */
a6186d89 1167void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b
CM
1168{
1169 pr_debug("%s(0x%p)\n", __func__, ptr);
1170
8910ae89 1171 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1172 make_gray_object((unsigned long)ptr);
8910ae89 1173 else if (kmemleak_early_log)
c017b4be 1174 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
3c7b4e6b
CM
1175}
1176EXPORT_SYMBOL(kmemleak_not_leak);
1177
a2b6bf63
CM
1178/**
1179 * kmemleak_ignore - ignore an allocated object
1180 * @ptr: pointer to beginning of the object
1181 *
1182 * Calling this function on an object will cause the memory block to be
1183 * ignored (not scanned and not reported as a leak). This is usually done when
1184 * it is known that the corresponding block is not a leak and does not contain
1185 * any references to other allocated memory blocks.
3c7b4e6b 1186 */
a6186d89 1187void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b
CM
1188{
1189 pr_debug("%s(0x%p)\n", __func__, ptr);
1190
8910ae89 1191 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1192 make_black_object((unsigned long)ptr);
8910ae89 1193 else if (kmemleak_early_log)
c017b4be 1194 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
3c7b4e6b
CM
1195}
1196EXPORT_SYMBOL(kmemleak_ignore);
1197
a2b6bf63
CM
1198/**
1199 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1200 * @ptr: pointer to beginning or inside the object. This also
1201 * represents the start of the scan area
1202 * @size: size of the scan area
1203 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1204 *
1205 * This function is used when it is known that only certain parts of an object
1206 * contain references to other objects. Kmemleak will only scan these areas
1207 * reducing the number false negatives.
3c7b4e6b 1208 */
c017b4be 1209void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
1210{
1211 pr_debug("%s(0x%p)\n", __func__, ptr);
1212
8910ae89 1213 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
c017b4be 1214 add_scan_area((unsigned long)ptr, size, gfp);
8910ae89 1215 else if (kmemleak_early_log)
c017b4be 1216 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
3c7b4e6b
CM
1217}
1218EXPORT_SYMBOL(kmemleak_scan_area);
1219
a2b6bf63
CM
1220/**
1221 * kmemleak_no_scan - do not scan an allocated object
1222 * @ptr: pointer to beginning of the object
1223 *
1224 * This function notifies kmemleak not to scan the given memory block. Useful
1225 * in situations where it is known that the given object does not contain any
1226 * references to other objects. Kmemleak will not scan such objects reducing
1227 * the number of false negatives.
3c7b4e6b 1228 */
a6186d89 1229void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b
CM
1230{
1231 pr_debug("%s(0x%p)\n", __func__, ptr);
1232
8910ae89 1233 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1234 object_no_scan((unsigned long)ptr);
8910ae89 1235 else if (kmemleak_early_log)
c017b4be 1236 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
3c7b4e6b
CM
1237}
1238EXPORT_SYMBOL(kmemleak_no_scan);
1239
9099daed
CM
1240/**
1241 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1242 * address argument
e8b098fc
MR
1243 * @phys: physical address of the object
1244 * @size: size of the object
1245 * @min_count: minimum number of references to this object.
1246 * See kmemleak_alloc()
1247 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
9099daed
CM
1248 */
1249void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1250 gfp_t gfp)
1251{
1252 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1253 kmemleak_alloc(__va(phys), size, min_count, gfp);
1254}
1255EXPORT_SYMBOL(kmemleak_alloc_phys);
1256
1257/**
1258 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1259 * physical address argument
e8b098fc
MR
1260 * @phys: physical address if the beginning or inside an object. This
1261 * also represents the start of the range to be freed
1262 * @size: size to be unregistered
9099daed
CM
1263 */
1264void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1265{
1266 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1267 kmemleak_free_part(__va(phys), size);
1268}
1269EXPORT_SYMBOL(kmemleak_free_part_phys);
1270
1271/**
1272 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1273 * address argument
e8b098fc 1274 * @phys: physical address of the object
9099daed
CM
1275 */
1276void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1277{
1278 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1279 kmemleak_not_leak(__va(phys));
1280}
1281EXPORT_SYMBOL(kmemleak_not_leak_phys);
1282
1283/**
1284 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1285 * address argument
e8b098fc 1286 * @phys: physical address of the object
9099daed
CM
1287 */
1288void __ref kmemleak_ignore_phys(phys_addr_t phys)
1289{
1290 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1291 kmemleak_ignore(__va(phys));
1292}
1293EXPORT_SYMBOL(kmemleak_ignore_phys);
1294
04609ccc
CM
1295/*
1296 * Update an object's checksum and return true if it was modified.
1297 */
1298static bool update_checksum(struct kmemleak_object *object)
1299{
1300 u32 old_csum = object->checksum;
1301
e79ed2f1 1302 kasan_disable_current();
04609ccc 1303 object->checksum = crc32(0, (void *)object->pointer, object->size);
e79ed2f1
AR
1304 kasan_enable_current();
1305
04609ccc
CM
1306 return object->checksum != old_csum;
1307}
1308
04f70d13
CM
1309/*
1310 * Update an object's references. object->lock must be held by the caller.
1311 */
1312static void update_refs(struct kmemleak_object *object)
1313{
1314 if (!color_white(object)) {
1315 /* non-orphan, ignored or new */
1316 return;
1317 }
1318
1319 /*
1320 * Increase the object's reference count (number of pointers to the
1321 * memory block). If this count reaches the required minimum, the
1322 * object's color will become gray and it will be added to the
1323 * gray_list.
1324 */
1325 object->count++;
1326 if (color_gray(object)) {
1327 /* put_object() called when removing from gray_list */
1328 WARN_ON(!get_object(object));
1329 list_add_tail(&object->gray_list, &gray_list);
1330 }
1331}
1332
3c7b4e6b
CM
1333/*
1334 * Memory scanning is a long process and it needs to be interruptable. This
25985edc 1335 * function checks whether such interrupt condition occurred.
3c7b4e6b
CM
1336 */
1337static int scan_should_stop(void)
1338{
8910ae89 1339 if (!kmemleak_enabled)
3c7b4e6b
CM
1340 return 1;
1341
1342 /*
1343 * This function may be called from either process or kthread context,
1344 * hence the need to check for both stop conditions.
1345 */
1346 if (current->mm)
1347 return signal_pending(current);
1348 else
1349 return kthread_should_stop();
1350
1351 return 0;
1352}
1353
1354/*
1355 * Scan a memory block (exclusive range) for valid pointers and add those
1356 * found to the gray list.
1357 */
1358static void scan_block(void *_start, void *_end,
93ada579 1359 struct kmemleak_object *scanned)
3c7b4e6b
CM
1360{
1361 unsigned long *ptr;
1362 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1363 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
93ada579 1364 unsigned long flags;
a2f77575 1365 unsigned long untagged_ptr;
3c7b4e6b 1366
93ada579 1367 read_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b 1368 for (ptr = start; ptr < end; ptr++) {
3c7b4e6b 1369 struct kmemleak_object *object;
8e019366 1370 unsigned long pointer;
94f4a161 1371 unsigned long excess_ref;
3c7b4e6b
CM
1372
1373 if (scan_should_stop())
1374 break;
1375
e79ed2f1 1376 kasan_disable_current();
8e019366 1377 pointer = *ptr;
e79ed2f1 1378 kasan_enable_current();
8e019366 1379
a2f77575
AK
1380 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1381 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
93ada579
CM
1382 continue;
1383
1384 /*
1385 * No need for get_object() here since we hold kmemleak_lock.
1386 * object->use_count cannot be dropped to 0 while the object
1387 * is still present in object_tree_root and object_list
1388 * (with updates protected by kmemleak_lock).
1389 */
1390 object = lookup_object(pointer, 1);
3c7b4e6b
CM
1391 if (!object)
1392 continue;
93ada579 1393 if (object == scanned)
3c7b4e6b 1394 /* self referenced, ignore */
3c7b4e6b 1395 continue;
3c7b4e6b
CM
1396
1397 /*
1398 * Avoid the lockdep recursive warning on object->lock being
1399 * previously acquired in scan_object(). These locks are
1400 * enclosed by scan_mutex.
1401 */
93ada579 1402 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161
CM
1403 /* only pass surplus references (object already gray) */
1404 if (color_gray(object)) {
1405 excess_ref = object->excess_ref;
1406 /* no need for update_refs() if object already gray */
1407 } else {
1408 excess_ref = 0;
1409 update_refs(object);
1410 }
93ada579 1411 spin_unlock(&object->lock);
94f4a161
CM
1412
1413 if (excess_ref) {
1414 object = lookup_object(excess_ref, 0);
1415 if (!object)
1416 continue;
1417 if (object == scanned)
1418 /* circular reference, ignore */
1419 continue;
1420 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1421 update_refs(object);
1422 spin_unlock(&object->lock);
1423 }
93ada579
CM
1424 }
1425 read_unlock_irqrestore(&kmemleak_lock, flags);
1426}
0587da40 1427
93ada579
CM
1428/*
1429 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1430 */
dce5b0bd 1431#ifdef CONFIG_SMP
93ada579
CM
1432static void scan_large_block(void *start, void *end)
1433{
1434 void *next;
1435
1436 while (start < end) {
1437 next = min(start + MAX_SCAN_SIZE, end);
1438 scan_block(start, next, NULL);
1439 start = next;
1440 cond_resched();
3c7b4e6b
CM
1441 }
1442}
dce5b0bd 1443#endif
3c7b4e6b
CM
1444
1445/*
1446 * Scan a memory block corresponding to a kmemleak_object. A condition is
1447 * that object->use_count >= 1.
1448 */
1449static void scan_object(struct kmemleak_object *object)
1450{
1451 struct kmemleak_scan_area *area;
3c7b4e6b
CM
1452 unsigned long flags;
1453
1454 /*
21ae2956
UKK
1455 * Once the object->lock is acquired, the corresponding memory block
1456 * cannot be freed (the same lock is acquired in delete_object).
3c7b4e6b
CM
1457 */
1458 spin_lock_irqsave(&object->lock, flags);
1459 if (object->flags & OBJECT_NO_SCAN)
1460 goto out;
1461 if (!(object->flags & OBJECT_ALLOCATED))
1462 /* already freed object */
1463 goto out;
dba82d94
CM
1464 if (hlist_empty(&object->area_list) ||
1465 object->flags & OBJECT_FULL_SCAN) {
af98603d
CM
1466 void *start = (void *)object->pointer;
1467 void *end = (void *)(object->pointer + object->size);
93ada579
CM
1468 void *next;
1469
1470 do {
1471 next = min(start + MAX_SCAN_SIZE, end);
1472 scan_block(start, next, object);
af98603d 1473
93ada579
CM
1474 start = next;
1475 if (start >= end)
1476 break;
af98603d
CM
1477
1478 spin_unlock_irqrestore(&object->lock, flags);
1479 cond_resched();
1480 spin_lock_irqsave(&object->lock, flags);
93ada579 1481 } while (object->flags & OBJECT_ALLOCATED);
af98603d 1482 } else
b67bfe0d 1483 hlist_for_each_entry(area, &object->area_list, node)
c017b4be
CM
1484 scan_block((void *)area->start,
1485 (void *)(area->start + area->size),
93ada579 1486 object);
3c7b4e6b
CM
1487out:
1488 spin_unlock_irqrestore(&object->lock, flags);
1489}
1490
04609ccc
CM
1491/*
1492 * Scan the objects already referenced (gray objects). More objects will be
1493 * referenced and, if there are no memory leaks, all the objects are scanned.
1494 */
1495static void scan_gray_list(void)
1496{
1497 struct kmemleak_object *object, *tmp;
1498
1499 /*
1500 * The list traversal is safe for both tail additions and removals
1501 * from inside the loop. The kmemleak objects cannot be freed from
1502 * outside the loop because their use_count was incremented.
1503 */
1504 object = list_entry(gray_list.next, typeof(*object), gray_list);
1505 while (&object->gray_list != &gray_list) {
1506 cond_resched();
1507
1508 /* may add new objects to the list */
1509 if (!scan_should_stop())
1510 scan_object(object);
1511
1512 tmp = list_entry(object->gray_list.next, typeof(*object),
1513 gray_list);
1514
1515 /* remove the object from the list and release it */
1516 list_del(&object->gray_list);
1517 put_object(object);
1518
1519 object = tmp;
1520 }
1521 WARN_ON(!list_empty(&gray_list));
1522}
1523
3c7b4e6b
CM
1524/*
1525 * Scan data sections and all the referenced memory blocks allocated via the
1526 * kernel's standard allocators. This function must be called with the
1527 * scan_mutex held.
1528 */
1529static void kmemleak_scan(void)
1530{
1531 unsigned long flags;
04609ccc 1532 struct kmemleak_object *object;
3c7b4e6b 1533 int i;
4698c1f2 1534 int new_leaks = 0;
3c7b4e6b 1535
acf4968e
CM
1536 jiffies_last_scan = jiffies;
1537
3c7b4e6b
CM
1538 /* prepare the kmemleak_object's */
1539 rcu_read_lock();
1540 list_for_each_entry_rcu(object, &object_list, object_list) {
1541 spin_lock_irqsave(&object->lock, flags);
1542#ifdef DEBUG
1543 /*
1544 * With a few exceptions there should be a maximum of
1545 * 1 reference to any object at this point.
1546 */
1547 if (atomic_read(&object->use_count) > 1) {
ae281064 1548 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1549 atomic_read(&object->use_count));
1550 dump_object_info(object);
1551 }
1552#endif
1553 /* reset the reference count (whiten the object) */
1554 object->count = 0;
1555 if (color_gray(object) && get_object(object))
1556 list_add_tail(&object->gray_list, &gray_list);
1557
1558 spin_unlock_irqrestore(&object->lock, flags);
1559 }
1560 rcu_read_unlock();
1561
3c7b4e6b
CM
1562#ifdef CONFIG_SMP
1563 /* per-cpu sections scanning */
1564 for_each_possible_cpu(i)
93ada579
CM
1565 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1566 __per_cpu_end + per_cpu_offset(i));
3c7b4e6b
CM
1567#endif
1568
1569 /*
029aeff5 1570 * Struct page scanning for each node.
3c7b4e6b 1571 */
bfc8c901 1572 get_online_mems();
3c7b4e6b 1573 for_each_online_node(i) {
108bcc96
CS
1574 unsigned long start_pfn = node_start_pfn(i);
1575 unsigned long end_pfn = node_end_pfn(i);
3c7b4e6b
CM
1576 unsigned long pfn;
1577
1578 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
9f1eb38e 1579 struct page *page = pfn_to_online_page(pfn);
3c7b4e6b 1580
9f1eb38e
OS
1581 if (!page)
1582 continue;
1583
1584 /* only scan pages belonging to this node */
1585 if (page_to_nid(page) != i)
3c7b4e6b 1586 continue;
3c7b4e6b
CM
1587 /* only scan if page is in use */
1588 if (page_count(page) == 0)
1589 continue;
93ada579 1590 scan_block(page, page + 1, NULL);
13ab183d 1591 if (!(pfn & 63))
bde5f6bc 1592 cond_resched();
3c7b4e6b
CM
1593 }
1594 }
bfc8c901 1595 put_online_mems();
3c7b4e6b
CM
1596
1597 /*
43ed5d6e 1598 * Scanning the task stacks (may introduce false negatives).
3c7b4e6b
CM
1599 */
1600 if (kmemleak_stack_scan) {
43ed5d6e
CM
1601 struct task_struct *p, *g;
1602
3c7b4e6b 1603 read_lock(&tasklist_lock);
43ed5d6e 1604 do_each_thread(g, p) {
37df49f4
CM
1605 void *stack = try_get_task_stack(p);
1606 if (stack) {
1607 scan_block(stack, stack + THREAD_SIZE, NULL);
1608 put_task_stack(p);
1609 }
43ed5d6e 1610 } while_each_thread(g, p);
3c7b4e6b
CM
1611 read_unlock(&tasklist_lock);
1612 }
1613
1614 /*
1615 * Scan the objects already referenced from the sections scanned
04609ccc 1616 * above.
3c7b4e6b 1617 */
04609ccc 1618 scan_gray_list();
2587362e
CM
1619
1620 /*
04609ccc
CM
1621 * Check for new or unreferenced objects modified since the previous
1622 * scan and color them gray until the next scan.
2587362e
CM
1623 */
1624 rcu_read_lock();
1625 list_for_each_entry_rcu(object, &object_list, object_list) {
1626 spin_lock_irqsave(&object->lock, flags);
04609ccc
CM
1627 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1628 && update_checksum(object) && get_object(object)) {
1629 /* color it gray temporarily */
1630 object->count = object->min_count;
2587362e
CM
1631 list_add_tail(&object->gray_list, &gray_list);
1632 }
1633 spin_unlock_irqrestore(&object->lock, flags);
1634 }
1635 rcu_read_unlock();
1636
04609ccc
CM
1637 /*
1638 * Re-scan the gray list for modified unreferenced objects.
1639 */
1640 scan_gray_list();
4698c1f2 1641
17bb9e0d 1642 /*
04609ccc 1643 * If scanning was stopped do not report any new unreferenced objects.
17bb9e0d 1644 */
04609ccc 1645 if (scan_should_stop())
17bb9e0d
CM
1646 return;
1647
4698c1f2
CM
1648 /*
1649 * Scanning result reporting.
1650 */
1651 rcu_read_lock();
1652 list_for_each_entry_rcu(object, &object_list, object_list) {
1653 spin_lock_irqsave(&object->lock, flags);
1654 if (unreferenced_object(object) &&
1655 !(object->flags & OBJECT_REPORTED)) {
1656 object->flags |= OBJECT_REPORTED;
154221c3
VW
1657
1658 if (kmemleak_verbose)
1659 print_unreferenced(NULL, object);
1660
4698c1f2
CM
1661 new_leaks++;
1662 }
1663 spin_unlock_irqrestore(&object->lock, flags);
1664 }
1665 rcu_read_unlock();
1666
dc9b3f42
LZ
1667 if (new_leaks) {
1668 kmemleak_found_leaks = true;
1669
756a025f
JP
1670 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1671 new_leaks);
dc9b3f42 1672 }
4698c1f2 1673
3c7b4e6b
CM
1674}
1675
1676/*
1677 * Thread function performing automatic memory scanning. Unreferenced objects
1678 * at the end of a memory scan are reported but only the first time.
1679 */
1680static int kmemleak_scan_thread(void *arg)
1681{
d53ce042 1682 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
3c7b4e6b 1683
ae281064 1684 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1685 set_user_nice(current, 10);
3c7b4e6b
CM
1686
1687 /*
1688 * Wait before the first scan to allow the system to fully initialize.
1689 */
1690 if (first_run) {
98c42d94 1691 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
3c7b4e6b 1692 first_run = 0;
98c42d94
VN
1693 while (timeout && !kthread_should_stop())
1694 timeout = schedule_timeout_interruptible(timeout);
3c7b4e6b
CM
1695 }
1696
1697 while (!kthread_should_stop()) {
3c7b4e6b
CM
1698 signed long timeout = jiffies_scan_wait;
1699
1700 mutex_lock(&scan_mutex);
3c7b4e6b 1701 kmemleak_scan();
3c7b4e6b 1702 mutex_unlock(&scan_mutex);
4698c1f2 1703
3c7b4e6b
CM
1704 /* wait before the next scan */
1705 while (timeout && !kthread_should_stop())
1706 timeout = schedule_timeout_interruptible(timeout);
1707 }
1708
ae281064 1709 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1710
1711 return 0;
1712}
1713
1714/*
1715 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1716 * with the scan_mutex held.
3c7b4e6b 1717 */
7eb0d5e5 1718static void start_scan_thread(void)
3c7b4e6b
CM
1719{
1720 if (scan_thread)
1721 return;
1722 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1723 if (IS_ERR(scan_thread)) {
598d8091 1724 pr_warn("Failed to create the scan thread\n");
3c7b4e6b
CM
1725 scan_thread = NULL;
1726 }
1727}
1728
1729/*
914b6dff 1730 * Stop the automatic memory scanning thread.
3c7b4e6b 1731 */
7eb0d5e5 1732static void stop_scan_thread(void)
3c7b4e6b
CM
1733{
1734 if (scan_thread) {
1735 kthread_stop(scan_thread);
1736 scan_thread = NULL;
1737 }
1738}
1739
1740/*
1741 * Iterate over the object_list and return the first valid object at or after
1742 * the required position with its use_count incremented. The function triggers
1743 * a memory scanning when the pos argument points to the first position.
1744 */
1745static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1746{
1747 struct kmemleak_object *object;
1748 loff_t n = *pos;
b87324d0
CM
1749 int err;
1750
1751 err = mutex_lock_interruptible(&scan_mutex);
1752 if (err < 0)
1753 return ERR_PTR(err);
3c7b4e6b 1754
3c7b4e6b
CM
1755 rcu_read_lock();
1756 list_for_each_entry_rcu(object, &object_list, object_list) {
1757 if (n-- > 0)
1758 continue;
1759 if (get_object(object))
1760 goto out;
1761 }
1762 object = NULL;
1763out:
3c7b4e6b
CM
1764 return object;
1765}
1766
1767/*
1768 * Return the next object in the object_list. The function decrements the
1769 * use_count of the previous object and increases that of the next one.
1770 */
1771static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1772{
1773 struct kmemleak_object *prev_obj = v;
1774 struct kmemleak_object *next_obj = NULL;
58fac095 1775 struct kmemleak_object *obj = prev_obj;
3c7b4e6b
CM
1776
1777 ++(*pos);
3c7b4e6b 1778
58fac095 1779 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
52c3ce4e
CM
1780 if (get_object(obj)) {
1781 next_obj = obj;
3c7b4e6b 1782 break;
52c3ce4e 1783 }
3c7b4e6b 1784 }
288c857d 1785
3c7b4e6b
CM
1786 put_object(prev_obj);
1787 return next_obj;
1788}
1789
1790/*
1791 * Decrement the use_count of the last object required, if any.
1792 */
1793static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1794{
b87324d0
CM
1795 if (!IS_ERR(v)) {
1796 /*
1797 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1798 * waiting was interrupted, so only release it if !IS_ERR.
1799 */
f5886c7f 1800 rcu_read_unlock();
b87324d0
CM
1801 mutex_unlock(&scan_mutex);
1802 if (v)
1803 put_object(v);
1804 }
3c7b4e6b
CM
1805}
1806
1807/*
1808 * Print the information for an unreferenced object to the seq file.
1809 */
1810static int kmemleak_seq_show(struct seq_file *seq, void *v)
1811{
1812 struct kmemleak_object *object = v;
1813 unsigned long flags;
1814
1815 spin_lock_irqsave(&object->lock, flags);
288c857d 1816 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1817 print_unreferenced(seq, object);
3c7b4e6b
CM
1818 spin_unlock_irqrestore(&object->lock, flags);
1819 return 0;
1820}
1821
1822static const struct seq_operations kmemleak_seq_ops = {
1823 .start = kmemleak_seq_start,
1824 .next = kmemleak_seq_next,
1825 .stop = kmemleak_seq_stop,
1826 .show = kmemleak_seq_show,
1827};
1828
1829static int kmemleak_open(struct inode *inode, struct file *file)
1830{
b87324d0 1831 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1832}
1833
189d84ed
CM
1834static int dump_str_object_info(const char *str)
1835{
1836 unsigned long flags;
1837 struct kmemleak_object *object;
1838 unsigned long addr;
1839
dc053733
AP
1840 if (kstrtoul(str, 0, &addr))
1841 return -EINVAL;
189d84ed
CM
1842 object = find_and_get_object(addr, 0);
1843 if (!object) {
1844 pr_info("Unknown object at 0x%08lx\n", addr);
1845 return -EINVAL;
1846 }
1847
1848 spin_lock_irqsave(&object->lock, flags);
1849 dump_object_info(object);
1850 spin_unlock_irqrestore(&object->lock, flags);
1851
1852 put_object(object);
1853 return 0;
1854}
1855
30b37101
LR
1856/*
1857 * We use grey instead of black to ensure we can do future scans on the same
1858 * objects. If we did not do future scans these black objects could
1859 * potentially contain references to newly allocated objects in the future and
1860 * we'd end up with false positives.
1861 */
1862static void kmemleak_clear(void)
1863{
1864 struct kmemleak_object *object;
1865 unsigned long flags;
1866
1867 rcu_read_lock();
1868 list_for_each_entry_rcu(object, &object_list, object_list) {
1869 spin_lock_irqsave(&object->lock, flags);
1870 if ((object->flags & OBJECT_REPORTED) &&
1871 unreferenced_object(object))
a1084c87 1872 __paint_it(object, KMEMLEAK_GREY);
30b37101
LR
1873 spin_unlock_irqrestore(&object->lock, flags);
1874 }
1875 rcu_read_unlock();
dc9b3f42
LZ
1876
1877 kmemleak_found_leaks = false;
30b37101
LR
1878}
1879
c89da70c
LZ
1880static void __kmemleak_do_cleanup(void);
1881
3c7b4e6b
CM
1882/*
1883 * File write operation to configure kmemleak at run-time. The following
1884 * commands can be written to the /sys/kernel/debug/kmemleak file:
1885 * off - disable kmemleak (irreversible)
1886 * stack=on - enable the task stacks scanning
1887 * stack=off - disable the tasks stacks scanning
1888 * scan=on - start the automatic memory scanning thread
1889 * scan=off - stop the automatic memory scanning thread
1890 * scan=... - set the automatic memory scanning period in seconds (0 to
1891 * disable it)
4698c1f2 1892 * scan - trigger a memory scan
30b37101 1893 * clear - mark all current reported unreferenced kmemleak objects as
c89da70c
LZ
1894 * grey to ignore printing them, or free all kmemleak objects
1895 * if kmemleak has been disabled.
189d84ed 1896 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1897 */
1898static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1899 size_t size, loff_t *ppos)
1900{
1901 char buf[64];
1902 int buf_size;
b87324d0 1903 int ret;
3c7b4e6b
CM
1904
1905 buf_size = min(size, (sizeof(buf) - 1));
1906 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1907 return -EFAULT;
1908 buf[buf_size] = 0;
1909
b87324d0
CM
1910 ret = mutex_lock_interruptible(&scan_mutex);
1911 if (ret < 0)
1912 return ret;
1913
c89da70c 1914 if (strncmp(buf, "clear", 5) == 0) {
8910ae89 1915 if (kmemleak_enabled)
c89da70c
LZ
1916 kmemleak_clear();
1917 else
1918 __kmemleak_do_cleanup();
1919 goto out;
1920 }
1921
8910ae89 1922 if (!kmemleak_enabled) {
4e4dfce2 1923 ret = -EPERM;
c89da70c
LZ
1924 goto out;
1925 }
1926
3c7b4e6b
CM
1927 if (strncmp(buf, "off", 3) == 0)
1928 kmemleak_disable();
1929 else if (strncmp(buf, "stack=on", 8) == 0)
1930 kmemleak_stack_scan = 1;
1931 else if (strncmp(buf, "stack=off", 9) == 0)
1932 kmemleak_stack_scan = 0;
1933 else if (strncmp(buf, "scan=on", 7) == 0)
1934 start_scan_thread();
1935 else if (strncmp(buf, "scan=off", 8) == 0)
1936 stop_scan_thread();
1937 else if (strncmp(buf, "scan=", 5) == 0) {
1938 unsigned long secs;
3c7b4e6b 1939
3dbb95f7 1940 ret = kstrtoul(buf + 5, 0, &secs);
b87324d0
CM
1941 if (ret < 0)
1942 goto out;
3c7b4e6b
CM
1943 stop_scan_thread();
1944 if (secs) {
1945 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1946 start_scan_thread();
1947 }
4698c1f2
CM
1948 } else if (strncmp(buf, "scan", 4) == 0)
1949 kmemleak_scan();
189d84ed
CM
1950 else if (strncmp(buf, "dump=", 5) == 0)
1951 ret = dump_str_object_info(buf + 5);
4698c1f2 1952 else
b87324d0
CM
1953 ret = -EINVAL;
1954
1955out:
1956 mutex_unlock(&scan_mutex);
1957 if (ret < 0)
1958 return ret;
3c7b4e6b
CM
1959
1960 /* ignore the rest of the buffer, only one command at a time */
1961 *ppos += size;
1962 return size;
1963}
1964
1965static const struct file_operations kmemleak_fops = {
1966 .owner = THIS_MODULE,
1967 .open = kmemleak_open,
1968 .read = seq_read,
1969 .write = kmemleak_write,
1970 .llseek = seq_lseek,
5f3bf19a 1971 .release = seq_release,
3c7b4e6b
CM
1972};
1973
c89da70c
LZ
1974static void __kmemleak_do_cleanup(void)
1975{
1976 struct kmemleak_object *object;
1977
1978 rcu_read_lock();
1979 list_for_each_entry_rcu(object, &object_list, object_list)
1980 delete_object_full(object->pointer);
1981 rcu_read_unlock();
1982}
1983
3c7b4e6b 1984/*
74341703
CM
1985 * Stop the memory scanning thread and free the kmemleak internal objects if
1986 * no previous scan thread (otherwise, kmemleak may still have some useful
1987 * information on memory leaks).
3c7b4e6b 1988 */
179a8100 1989static void kmemleak_do_cleanup(struct work_struct *work)
3c7b4e6b 1990{
3c7b4e6b 1991 stop_scan_thread();
3c7b4e6b 1992
914b6dff 1993 mutex_lock(&scan_mutex);
c5f3b1a5 1994 /*
914b6dff
VM
1995 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1996 * longer track object freeing. Ordering of the scan thread stopping and
1997 * the memory accesses below is guaranteed by the kthread_stop()
1998 * function.
c5f3b1a5
CM
1999 */
2000 kmemleak_free_enabled = 0;
914b6dff 2001 mutex_unlock(&scan_mutex);
c5f3b1a5 2002
c89da70c
LZ
2003 if (!kmemleak_found_leaks)
2004 __kmemleak_do_cleanup();
2005 else
756a025f 2006 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
3c7b4e6b
CM
2007}
2008
179a8100 2009static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
3c7b4e6b
CM
2010
2011/*
2012 * Disable kmemleak. No memory allocation/freeing will be traced once this
2013 * function is called. Disabling kmemleak is an irreversible operation.
2014 */
2015static void kmemleak_disable(void)
2016{
2017 /* atomically check whether it was already invoked */
8910ae89 2018 if (cmpxchg(&kmemleak_error, 0, 1))
3c7b4e6b
CM
2019 return;
2020
2021 /* stop any memory operation tracing */
8910ae89 2022 kmemleak_enabled = 0;
fcf3a5b6 2023 kmemleak_early_log = 0;
3c7b4e6b
CM
2024
2025 /* check whether it is too early for a kernel thread */
8910ae89 2026 if (kmemleak_initialized)
179a8100 2027 schedule_work(&cleanup_work);
c5f3b1a5
CM
2028 else
2029 kmemleak_free_enabled = 0;
3c7b4e6b
CM
2030
2031 pr_info("Kernel memory leak detector disabled\n");
2032}
2033
2034/*
2035 * Allow boot-time kmemleak disabling (enabled by default).
2036 */
8bd30c10 2037static int __init kmemleak_boot_config(char *str)
3c7b4e6b
CM
2038{
2039 if (!str)
2040 return -EINVAL;
2041 if (strcmp(str, "off") == 0)
2042 kmemleak_disable();
ab0155a2
JB
2043 else if (strcmp(str, "on") == 0)
2044 kmemleak_skip_disable = 1;
2045 else
3c7b4e6b
CM
2046 return -EINVAL;
2047 return 0;
2048}
2049early_param("kmemleak", kmemleak_boot_config);
2050
5f79020c
CM
2051static void __init print_log_trace(struct early_log *log)
2052{
5f79020c 2053 pr_notice("Early log backtrace:\n");
07984aad 2054 stack_trace_print(log->trace, log->trace_len, 2);
5f79020c
CM
2055}
2056
3c7b4e6b 2057/*
2030117d 2058 * Kmemleak initialization.
3c7b4e6b
CM
2059 */
2060void __init kmemleak_init(void)
2061{
2062 int i;
2063 unsigned long flags;
2064
ab0155a2
JB
2065#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2066 if (!kmemleak_skip_disable) {
2067 kmemleak_disable();
2068 return;
2069 }
2070#endif
2071
3c7b4e6b
CM
2072 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2073 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2074
2075 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2076 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
3c7b4e6b 2077
21cd3a60 2078 if (crt_early_log > ARRAY_SIZE(early_log))
598d8091
JP
2079 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2080 crt_early_log);
b6693005 2081
3c7b4e6b
CM
2082 /* the kernel is still in UP mode, so disabling the IRQs is enough */
2083 local_irq_save(flags);
3551a928 2084 kmemleak_early_log = 0;
8910ae89 2085 if (kmemleak_error) {
b6693005
CM
2086 local_irq_restore(flags);
2087 return;
c5f3b1a5 2088 } else {
8910ae89 2089 kmemleak_enabled = 1;
c5f3b1a5
CM
2090 kmemleak_free_enabled = 1;
2091 }
3c7b4e6b
CM
2092 local_irq_restore(flags);
2093
298a32b1
CM
2094 /* register the data/bss sections */
2095 create_object((unsigned long)_sdata, _edata - _sdata,
2096 KMEMLEAK_GREY, GFP_ATOMIC);
2097 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2098 KMEMLEAK_GREY, GFP_ATOMIC);
2099 /* only register .data..ro_after_init if not within .data */
2100 if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
2101 create_object((unsigned long)__start_ro_after_init,
2102 __end_ro_after_init - __start_ro_after_init,
2103 KMEMLEAK_GREY, GFP_ATOMIC);
2104
3c7b4e6b
CM
2105 /*
2106 * This is the point where tracking allocations is safe. Automatic
2107 * scanning is started during the late initcall. Add the early logged
2108 * callbacks to the kmemleak infrastructure.
2109 */
2110 for (i = 0; i < crt_early_log; i++) {
2111 struct early_log *log = &early_log[i];
2112
2113 switch (log->op_type) {
2114 case KMEMLEAK_ALLOC:
fd678967 2115 early_alloc(log);
3c7b4e6b 2116 break;
f528f0b8
CM
2117 case KMEMLEAK_ALLOC_PERCPU:
2118 early_alloc_percpu(log);
2119 break;
3c7b4e6b
CM
2120 case KMEMLEAK_FREE:
2121 kmemleak_free(log->ptr);
2122 break;
53238a60
CM
2123 case KMEMLEAK_FREE_PART:
2124 kmemleak_free_part(log->ptr, log->size);
2125 break;
f528f0b8
CM
2126 case KMEMLEAK_FREE_PERCPU:
2127 kmemleak_free_percpu(log->ptr);
2128 break;
3c7b4e6b
CM
2129 case KMEMLEAK_NOT_LEAK:
2130 kmemleak_not_leak(log->ptr);
2131 break;
2132 case KMEMLEAK_IGNORE:
2133 kmemleak_ignore(log->ptr);
2134 break;
2135 case KMEMLEAK_SCAN_AREA:
c017b4be 2136 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
3c7b4e6b
CM
2137 break;
2138 case KMEMLEAK_NO_SCAN:
2139 kmemleak_no_scan(log->ptr);
2140 break;
94f4a161
CM
2141 case KMEMLEAK_SET_EXCESS_REF:
2142 object_set_excess_ref((unsigned long)log->ptr,
2143 log->excess_ref);
2144 break;
3c7b4e6b 2145 default:
5f79020c
CM
2146 kmemleak_warn("Unknown early log operation: %d\n",
2147 log->op_type);
2148 }
2149
8910ae89 2150 if (kmemleak_warning) {
5f79020c 2151 print_log_trace(log);
8910ae89 2152 kmemleak_warning = 0;
3c7b4e6b
CM
2153 }
2154 }
2155}
2156
2157/*
2158 * Late initialization function.
2159 */
2160static int __init kmemleak_late_init(void)
2161{
8910ae89 2162 kmemleak_initialized = 1;
3c7b4e6b 2163
282401df 2164 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
b353756b 2165
8910ae89 2166 if (kmemleak_error) {
3c7b4e6b 2167 /*
25985edc 2168 * Some error occurred and kmemleak was disabled. There is a
3c7b4e6b
CM
2169 * small chance that kmemleak_disable() was called immediately
2170 * after setting kmemleak_initialized and we may end up with
2171 * two clean-up threads but serialized by scan_mutex.
2172 */
179a8100 2173 schedule_work(&cleanup_work);
3c7b4e6b
CM
2174 return -ENOMEM;
2175 }
2176
d53ce042
SK
2177 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2178 mutex_lock(&scan_mutex);
2179 start_scan_thread();
2180 mutex_unlock(&scan_mutex);
2181 }
3c7b4e6b
CM
2182
2183 pr_info("Kernel memory leak detector initialized\n");
2184
2185 return 0;
2186}
2187late_initcall(kmemleak_late_init);