]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/kmemleak.c
Merge tag 'arc-6.7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[thirdparty/linux.git] / mm / kmemleak.c
CommitLineData
45051539 1// SPDX-License-Identifier: GPL-2.0-only
3c7b4e6b
CM
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
3c7b4e6b 8 * For more information on the algorithm and kmemleak usage, please see
22901c6c 9 * Documentation/dev-tools/kmemleak.rst.
3c7b4e6b
CM
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
782e4179
WL
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17 * del_state modifications and accesses to the object_tree_root (or
18 * object_phys_tree_root). The object_list is the main list holding the
19 * metadata (struct kmemleak_object) for the allocated memory blocks.
20 * The object_tree_root and object_phys_tree_root are red
21 * black trees used to look-up metadata based on a pointer to the
0c24e061
PW
22 * corresponding memory block. The object_phys_tree_root is for objects
23 * allocated with physical address. The kmemleak_object structures are
24 * added to the object_list and object_tree_root (or object_phys_tree_root)
25 * in the create_object() function called from the kmemleak_alloc() (or
26 * kmemleak_alloc_phys()) callback and removed in delete_object() called from
27 * the kmemleak_free() callback
8c96f1bc
HZ
28 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
29 * Accesses to the metadata (e.g. count) are protected by this lock. Note
30 * that some members of this structure may be protected by other means
31 * (atomic or kmemleak_lock). This lock is also held when scanning the
32 * corresponding memory block to avoid the kernel freeing it via the
33 * kmemleak_free() callback. This is less heavyweight than holding a global
34 * lock like kmemleak_lock during scanning.
3c7b4e6b
CM
35 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
36 * unreferenced objects at a time. The gray_list contains the objects which
37 * are already referenced or marked as false positives and need to be
38 * scanned. This list is only modified during a scanning episode when the
39 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
40 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
41 * added to the gray_list and therefore cannot be freed. This mutex also
42 * prevents multiple users of the "kmemleak" debugfs file together with
43 * modifications to the memory scanning parameters including the scan_thread
44 * pointer
3c7b4e6b 45 *
93ada579 46 * Locks and mutexes are acquired/nested in the following order:
9d5a4c73 47 *
93ada579
CM
48 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
49 *
50 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
51 * regions.
9d5a4c73 52 *
3c7b4e6b
CM
53 * The kmemleak_object structures have a use_count incremented or decremented
54 * using the get_object()/put_object() functions. When the use_count becomes
55 * 0, this count can no longer be incremented and put_object() schedules the
56 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
57 * function must be protected by rcu_read_lock() to avoid accessing a freed
58 * structure.
59 */
60
ae281064
JP
61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
3c7b4e6b
CM
63#include <linux/init.h>
64#include <linux/kernel.h>
65#include <linux/list.h>
3f07c014 66#include <linux/sched/signal.h>
29930025 67#include <linux/sched/task.h>
68db0cf1 68#include <linux/sched/task_stack.h>
3c7b4e6b
CM
69#include <linux/jiffies.h>
70#include <linux/delay.h>
b95f1b31 71#include <linux/export.h>
3c7b4e6b 72#include <linux/kthread.h>
85d3a316 73#include <linux/rbtree.h>
3c7b4e6b
CM
74#include <linux/fs.h>
75#include <linux/debugfs.h>
76#include <linux/seq_file.h>
77#include <linux/cpumask.h>
78#include <linux/spinlock.h>
154221c3 79#include <linux/module.h>
3c7b4e6b
CM
80#include <linux/mutex.h>
81#include <linux/rcupdate.h>
82#include <linux/stacktrace.h>
56a61617 83#include <linux/stackdepot.h>
3c7b4e6b
CM
84#include <linux/cache.h>
85#include <linux/percpu.h>
57c8a661 86#include <linux/memblock.h>
9099daed 87#include <linux/pfn.h>
3c7b4e6b
CM
88#include <linux/mmzone.h>
89#include <linux/slab.h>
90#include <linux/thread_info.h>
91#include <linux/err.h>
92#include <linux/uaccess.h>
93#include <linux/string.h>
94#include <linux/nodemask.h>
95#include <linux/mm.h>
179a8100 96#include <linux/workqueue.h>
04609ccc 97#include <linux/crc32.h>
3c7b4e6b
CM
98
99#include <asm/sections.h>
100#include <asm/processor.h>
60063497 101#include <linux/atomic.h>
3c7b4e6b 102
e79ed2f1 103#include <linux/kasan.h>
95511580 104#include <linux/kfence.h>
3c7b4e6b 105#include <linux/kmemleak.h>
029aeff5 106#include <linux/memory_hotplug.h>
3c7b4e6b
CM
107
108/*
109 * Kmemleak configuration and common defines.
110 */
111#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 112#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
113#define SECS_FIRST_SCAN 60 /* delay before the first scan */
114#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
af98603d 115#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
116
117#define BYTES_PER_POINTER sizeof(void *)
118
216c04b0 119/* GFP bitmask for kmemleak internal allocations */
79d37050
NA
120#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
121 __GFP_NOLOCKDEP)) | \
6ae4bd1f 122 __GFP_NORETRY | __GFP_NOMEMALLOC | \
df9576de 123 __GFP_NOWARN)
216c04b0 124
3c7b4e6b
CM
125/* scanning area inside a memory block */
126struct kmemleak_scan_area {
127 struct hlist_node node;
c017b4be
CM
128 unsigned long start;
129 size_t size;
3c7b4e6b
CM
130};
131
a1084c87
LR
132#define KMEMLEAK_GREY 0
133#define KMEMLEAK_BLACK -1
134
3c7b4e6b
CM
135/*
136 * Structure holding the metadata for each allocated memory block.
137 * Modifications to such objects should be made while holding the
138 * object->lock. Insertions or deletions from object_list, gray_list or
85d3a316 139 * rb_node are already protected by the corresponding locks or mutex (see
3c7b4e6b
CM
140 * the notes on locking above). These objects are reference-counted
141 * (use_count) and freed using the RCU mechanism.
142 */
143struct kmemleak_object {
8c96f1bc 144 raw_spinlock_t lock;
f66abf09 145 unsigned int flags; /* object status flags */
3c7b4e6b
CM
146 struct list_head object_list;
147 struct list_head gray_list;
85d3a316 148 struct rb_node rb_node;
3c7b4e6b
CM
149 struct rcu_head rcu; /* object_list lockless traversal */
150 /* object usage count; object freed when use_count == 0 */
151 atomic_t use_count;
782e4179 152 unsigned int del_state; /* deletion state */
3c7b4e6b
CM
153 unsigned long pointer;
154 size_t size;
94f4a161
CM
155 /* pass surplus references to this pointer */
156 unsigned long excess_ref;
3c7b4e6b
CM
157 /* minimum number of a pointers found before it is considered leak */
158 int min_count;
159 /* the total number of pointers found pointing to this object */
160 int count;
04609ccc
CM
161 /* checksum for detecting modified objects */
162 u32 checksum;
3c7b4e6b
CM
163 /* memory ranges to be scanned inside an object (empty for all) */
164 struct hlist_head area_list;
56a61617 165 depot_stack_handle_t trace_handle;
3c7b4e6b
CM
166 unsigned long jiffies; /* creation timestamp */
167 pid_t pid; /* pid of the current task */
168 char comm[TASK_COMM_LEN]; /* executable name */
169};
170
171/* flag representing the memory block allocation status */
172#define OBJECT_ALLOCATED (1 << 0)
173/* flag set after the first reporting of an unreference object */
174#define OBJECT_REPORTED (1 << 1)
175/* flag set to not scan the object */
176#define OBJECT_NO_SCAN (1 << 2)
dba82d94
CM
177/* flag set to fully scan the object when scan_area allocation failed */
178#define OBJECT_FULL_SCAN (1 << 3)
8e0c4ab3
PW
179/* flag set for object allocated with physical address */
180#define OBJECT_PHYS (1 << 4)
3c7b4e6b 181
782e4179
WL
182/* set when __remove_object() called */
183#define DELSTATE_REMOVED (1 << 0)
184/* set to temporarily prevent deletion from object_list */
185#define DELSTATE_NO_DELETE (1 << 1)
186
154221c3 187#define HEX_PREFIX " "
0494e082
SS
188/* number of bytes to print per line; must be 16 or 32 */
189#define HEX_ROW_SIZE 16
190/* number of bytes to print at a time (1, 2, 4, 8) */
191#define HEX_GROUP_SIZE 1
192/* include ASCII after the hex output */
193#define HEX_ASCII 1
194/* max number of lines to be printed */
195#define HEX_MAX_LINES 2
196
3c7b4e6b
CM
197/* the list of all allocated objects */
198static LIST_HEAD(object_list);
199/* the list of gray-colored objects (see color_gray comment below) */
200static LIST_HEAD(gray_list);
0647398a 201/* memory pool allocation */
c5665868 202static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
0647398a
CM
203static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204static LIST_HEAD(mem_pool_free_list);
85d3a316
ML
205/* search tree for object boundaries */
206static struct rb_root object_tree_root = RB_ROOT;
0c24e061
PW
207/* search tree for object (with OBJECT_PHYS flag) boundaries */
208static struct rb_root object_phys_tree_root = RB_ROOT;
209/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
8c96f1bc 210static DEFINE_RAW_SPINLOCK(kmemleak_lock);
3c7b4e6b
CM
211
212/* allocation caches for kmemleak internal data */
213static struct kmem_cache *object_cache;
214static struct kmem_cache *scan_area_cache;
215
216/* set if tracing memory operations is enabled */
c5665868 217static int kmemleak_enabled = 1;
c5f3b1a5 218/* same as above but only for the kmemleak_free() callback */
c5665868 219static int kmemleak_free_enabled = 1;
3c7b4e6b 220/* set in the late_initcall if there were no errors */
d160ef71 221static int kmemleak_late_initialized;
5f79020c 222/* set if a kmemleak warning was issued */
8910ae89 223static int kmemleak_warning;
5f79020c 224/* set if a fatal kmemleak error has occurred */
8910ae89 225static int kmemleak_error;
3c7b4e6b
CM
226
227/* minimum and maximum address that may be valid pointers */
228static unsigned long min_addr = ULONG_MAX;
229static unsigned long max_addr;
230
3c7b4e6b 231static struct task_struct *scan_thread;
acf4968e 232/* used to avoid reporting of recently allocated objects */
3c7b4e6b 233static unsigned long jiffies_min_age;
acf4968e 234static unsigned long jiffies_last_scan;
3c7b4e6b 235/* delay between automatic memory scannings */
54dd200c 236static unsigned long jiffies_scan_wait;
3c7b4e6b 237/* enables or disables the task stacks scanning */
e0a2a160 238static int kmemleak_stack_scan = 1;
4698c1f2 239/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 240static DEFINE_MUTEX(scan_mutex);
ab0155a2
JB
241/* setting kmemleak=on, will set this var, skipping the disable */
242static int kmemleak_skip_disable;
dc9b3f42
LZ
243/* If there are leaks that can be reported */
244static bool kmemleak_found_leaks;
3c7b4e6b 245
154221c3
VW
246static bool kmemleak_verbose;
247module_param_named(verbose, kmemleak_verbose, bool, 0600);
248
3c7b4e6b
CM
249static void kmemleak_disable(void);
250
251/*
252 * Print a warning and dump the stack trace.
253 */
5f79020c 254#define kmemleak_warn(x...) do { \
598d8091 255 pr_warn(x); \
5f79020c 256 dump_stack(); \
8910ae89 257 kmemleak_warning = 1; \
3c7b4e6b
CM
258} while (0)
259
260/*
25985edc 261 * Macro invoked when a serious kmemleak condition occurred and cannot be
2030117d 262 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
263 * tracing no longer available.
264 */
000814f4 265#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
266 kmemleak_warn(x); \
267 kmemleak_disable(); \
268} while (0)
269
154221c3
VW
270#define warn_or_seq_printf(seq, fmt, ...) do { \
271 if (seq) \
272 seq_printf(seq, fmt, ##__VA_ARGS__); \
273 else \
274 pr_warn(fmt, ##__VA_ARGS__); \
275} while (0)
276
277static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278 int rowsize, int groupsize, const void *buf,
279 size_t len, bool ascii)
280{
281 if (seq)
282 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283 buf, len, ascii);
284 else
285 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286 rowsize, groupsize, buf, len, ascii);
287}
288
0494e082
SS
289/*
290 * Printing of the objects hex dump to the seq file. The number of lines to be
291 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293 * with the object->lock held.
294 */
295static void hex_dump_object(struct seq_file *seq,
296 struct kmemleak_object *object)
297{
298 const u8 *ptr = (const u8 *)object->pointer;
6fc37c49 299 size_t len;
0494e082 300
0c24e061
PW
301 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302 return;
303
0494e082 304 /* limit the number of lines to HEX_MAX_LINES */
6fc37c49 305 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
0494e082 306
154221c3 307 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
5c335fe0 308 kasan_disable_current();
154221c3 309 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
6c7a00b8 310 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
5c335fe0 311 kasan_enable_current();
0494e082
SS
312}
313
3c7b4e6b
CM
314/*
315 * Object colors, encoded with count and min_count:
316 * - white - orphan object, not enough references to it (count < min_count)
317 * - gray - not orphan, not marked as false positive (min_count == 0) or
318 * sufficient references to it (count >= min_count)
319 * - black - ignore, it doesn't contain references (e.g. text section)
320 * (min_count == -1). No function defined for this color.
321 * Newly created objects don't have any color assigned (object->count == -1)
322 * before the next memory scan when they become white.
323 */
4a558dd6 324static bool color_white(const struct kmemleak_object *object)
3c7b4e6b 325{
a1084c87
LR
326 return object->count != KMEMLEAK_BLACK &&
327 object->count < object->min_count;
3c7b4e6b
CM
328}
329
4a558dd6 330static bool color_gray(const struct kmemleak_object *object)
3c7b4e6b 331{
a1084c87
LR
332 return object->min_count != KMEMLEAK_BLACK &&
333 object->count >= object->min_count;
3c7b4e6b
CM
334}
335
3c7b4e6b
CM
336/*
337 * Objects are considered unreferenced only if their color is white, they have
338 * not be deleted and have a minimum age to avoid false positives caused by
339 * pointers temporarily stored in CPU registers.
340 */
4a558dd6 341static bool unreferenced_object(struct kmemleak_object *object)
3c7b4e6b 342{
04609ccc 343 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
acf4968e
CM
344 time_before_eq(object->jiffies + jiffies_min_age,
345 jiffies_last_scan);
3c7b4e6b
CM
346}
347
348/*
bab4a34a
CM
349 * Printing of the unreferenced objects information to the seq file. The
350 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 351 */
3c7b4e6b
CM
352static void print_unreferenced(struct seq_file *seq,
353 struct kmemleak_object *object)
354{
355 int i;
56a61617
ZH
356 unsigned long *entries;
357 unsigned int nr_entries;
fefdd336 358 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
3c7b4e6b 359
56a61617 360 nr_entries = stack_depot_fetch(object->trace_handle, &entries);
154221c3 361 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
56a61617 362 object->pointer, object->size);
154221c3 363 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
56a61617
ZH
364 object->comm, object->pid, object->jiffies,
365 msecs_age / 1000, msecs_age % 1000);
0494e082 366 hex_dump_object(seq, object);
154221c3 367 warn_or_seq_printf(seq, " backtrace:\n");
3c7b4e6b 368
56a61617
ZH
369 for (i = 0; i < nr_entries; i++) {
370 void *ptr = (void *)entries[i];
3a6f33d8 371 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr);
3c7b4e6b
CM
372 }
373}
374
375/*
376 * Print the kmemleak_object information. This function is used mainly for
377 * debugging special cases when kmemleak operations. It must be called with
378 * the object->lock held.
379 */
380static void dump_object_info(struct kmemleak_object *object)
381{
ae281064 382 pr_notice("Object 0x%08lx (size %zu):\n",
56a61617 383 object->pointer, object->size);
3c7b4e6b 384 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
56a61617 385 object->comm, object->pid, object->jiffies);
3c7b4e6b
CM
386 pr_notice(" min_count = %d\n", object->min_count);
387 pr_notice(" count = %d\n", object->count);
f66abf09 388 pr_notice(" flags = 0x%x\n", object->flags);
aae0ad7a 389 pr_notice(" checksum = %u\n", object->checksum);
3c7b4e6b 390 pr_notice(" backtrace:\n");
56a61617
ZH
391 if (object->trace_handle)
392 stack_depot_print(object->trace_handle);
3c7b4e6b
CM
393}
394
395/*
85d3a316 396 * Look-up a memory block metadata (kmemleak_object) in the object search
3c7b4e6b
CM
397 * tree based on a pointer value. If alias is 0, only values pointing to the
398 * beginning of the memory block are allowed. The kmemleak_lock must be held
399 * when calling this function.
400 */
0c24e061
PW
401static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
402 bool is_phys)
3c7b4e6b 403{
0c24e061
PW
404 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
405 object_tree_root.rb_node;
ad1a3e15 406 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
85d3a316
ML
407
408 while (rb) {
ad1a3e15
KYL
409 struct kmemleak_object *object;
410 unsigned long untagged_objp;
411
412 object = rb_entry(rb, struct kmemleak_object, rb_node);
413 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
414
415 if (untagged_ptr < untagged_objp)
85d3a316 416 rb = object->rb_node.rb_left;
ad1a3e15 417 else if (untagged_objp + object->size <= untagged_ptr)
85d3a316 418 rb = object->rb_node.rb_right;
ad1a3e15 419 else if (untagged_objp == untagged_ptr || alias)
85d3a316
ML
420 return object;
421 else {
5f79020c
CM
422 kmemleak_warn("Found object by alias at 0x%08lx\n",
423 ptr);
a7686a45 424 dump_object_info(object);
85d3a316 425 break;
3c7b4e6b 426 }
85d3a316
ML
427 }
428 return NULL;
3c7b4e6b
CM
429}
430
0c24e061
PW
431/* Look-up a kmemleak object which allocated with virtual address. */
432static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
433{
434 return __lookup_object(ptr, alias, false);
435}
436
3c7b4e6b
CM
437/*
438 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
439 * that once an object's use_count reached 0, the RCU freeing was already
440 * registered and the object should no longer be used. This function must be
441 * called under the protection of rcu_read_lock().
442 */
443static int get_object(struct kmemleak_object *object)
444{
445 return atomic_inc_not_zero(&object->use_count);
446}
447
0647398a
CM
448/*
449 * Memory pool allocation and freeing. kmemleak_lock must not be held.
450 */
451static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
452{
453 unsigned long flags;
454 struct kmemleak_object *object;
455
456 /* try the slab allocator first */
c5665868
CM
457 if (object_cache) {
458 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
459 if (object)
460 return object;
461 }
0647398a
CM
462
463 /* slab allocation failed, try the memory pool */
8c96f1bc 464 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0647398a
CM
465 object = list_first_entry_or_null(&mem_pool_free_list,
466 typeof(*object), object_list);
467 if (object)
468 list_del(&object->object_list);
469 else if (mem_pool_free_count)
470 object = &mem_pool[--mem_pool_free_count];
c5665868
CM
471 else
472 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
8c96f1bc 473 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
0647398a
CM
474
475 return object;
476}
477
478/*
479 * Return the object to either the slab allocator or the memory pool.
480 */
481static void mem_pool_free(struct kmemleak_object *object)
482{
483 unsigned long flags;
484
485 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
486 kmem_cache_free(object_cache, object);
487 return;
488 }
489
490 /* add the object to the memory pool free list */
8c96f1bc 491 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0647398a 492 list_add(&object->object_list, &mem_pool_free_list);
8c96f1bc 493 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
0647398a
CM
494}
495
3c7b4e6b
CM
496/*
497 * RCU callback to free a kmemleak_object.
498 */
499static void free_object_rcu(struct rcu_head *rcu)
500{
b67bfe0d 501 struct hlist_node *tmp;
3c7b4e6b
CM
502 struct kmemleak_scan_area *area;
503 struct kmemleak_object *object =
504 container_of(rcu, struct kmemleak_object, rcu);
505
506 /*
507 * Once use_count is 0 (guaranteed by put_object), there is no other
508 * code accessing this object, hence no need for locking.
509 */
b67bfe0d
SL
510 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
511 hlist_del(&area->node);
3c7b4e6b
CM
512 kmem_cache_free(scan_area_cache, area);
513 }
0647398a 514 mem_pool_free(object);
3c7b4e6b
CM
515}
516
517/*
518 * Decrement the object use_count. Once the count is 0, free the object using
519 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
520 * delete_object() path, the delayed RCU freeing ensures that there is no
521 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
522 * is also possible.
523 */
524static void put_object(struct kmemleak_object *object)
525{
526 if (!atomic_dec_and_test(&object->use_count))
527 return;
528
529 /* should only get here after delete_object was called */
530 WARN_ON(object->flags & OBJECT_ALLOCATED);
531
c5665868
CM
532 /*
533 * It may be too early for the RCU callbacks, however, there is no
534 * concurrent object_list traversal when !object_cache and all objects
535 * came from the memory pool. Free the object directly.
536 */
537 if (object_cache)
538 call_rcu(&object->rcu, free_object_rcu);
539 else
540 free_object_rcu(&object->rcu);
3c7b4e6b
CM
541}
542
543/*
85d3a316 544 * Look up an object in the object search tree and increase its use_count.
3c7b4e6b 545 */
0c24e061
PW
546static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
547 bool is_phys)
3c7b4e6b
CM
548{
549 unsigned long flags;
9fbed254 550 struct kmemleak_object *object;
3c7b4e6b
CM
551
552 rcu_read_lock();
8c96f1bc 553 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0c24e061 554 object = __lookup_object(ptr, alias, is_phys);
8c96f1bc 555 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
3c7b4e6b
CM
556
557 /* check whether the object is still available */
558 if (object && !get_object(object))
559 object = NULL;
560 rcu_read_unlock();
561
562 return object;
563}
564
0c24e061
PW
565/* Look up and get an object which allocated with virtual address. */
566static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
567{
568 return __find_and_get_object(ptr, alias, false);
569}
570
2abd839a 571/*
0c24e061
PW
572 * Remove an object from the object_tree_root (or object_phys_tree_root)
573 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
574 * is still enabled.
2abd839a
CM
575 */
576static void __remove_object(struct kmemleak_object *object)
577{
0c24e061
PW
578 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
579 &object_phys_tree_root :
580 &object_tree_root);
782e4179
WL
581 if (!(object->del_state & DELSTATE_NO_DELETE))
582 list_del_rcu(&object->object_list);
583 object->del_state |= DELSTATE_REMOVED;
2abd839a
CM
584}
585
858a195b
LS
586static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
587 int alias,
588 bool is_phys)
589{
590 struct kmemleak_object *object;
591
592 object = __lookup_object(ptr, alias, is_phys);
593 if (object)
594 __remove_object(object);
595
596 return object;
597}
598
e781a9ab
CM
599/*
600 * Look up an object in the object search tree and remove it from both
0c24e061
PW
601 * object_tree_root (or object_phys_tree_root) and object_list. The
602 * returned object's use_count should be at least 1, as initially set
603 * by create_object().
e781a9ab 604 */
0c24e061
PW
605static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
606 bool is_phys)
e781a9ab
CM
607{
608 unsigned long flags;
609 struct kmemleak_object *object;
610
8c96f1bc 611 raw_spin_lock_irqsave(&kmemleak_lock, flags);
858a195b 612 object = __find_and_remove_object(ptr, alias, is_phys);
8c96f1bc 613 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
e781a9ab
CM
614
615 return object;
616}
617
56a61617 618static noinline depot_stack_handle_t set_track_prepare(void)
fd678967 619{
56a61617
ZH
620 depot_stack_handle_t trace_handle;
621 unsigned long entries[MAX_TRACE];
622 unsigned int nr_entries;
623
835bc157
XW
624 /*
625 * Use object_cache to determine whether kmemleak_init() has
626 * been invoked. stack_depot_early_init() is called before
627 * kmemleak_init() in mm_core_init().
628 */
629 if (!object_cache)
56a61617
ZH
630 return 0;
631 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
632 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
633
634 return trace_handle;
fd678967
CM
635}
636
0edd7b58 637static struct kmemleak_object *__alloc_object(gfp_t gfp)
3c7b4e6b 638{
0edd7b58 639 struct kmemleak_object *object;
3c7b4e6b 640
0647398a 641 object = mem_pool_alloc(gfp);
3c7b4e6b 642 if (!object) {
598d8091 643 pr_warn("Cannot allocate a kmemleak_object structure\n");
6ae4bd1f 644 kmemleak_disable();
4eff7d62 645 return NULL;
3c7b4e6b
CM
646 }
647
648 INIT_LIST_HEAD(&object->object_list);
649 INIT_LIST_HEAD(&object->gray_list);
650 INIT_HLIST_HEAD(&object->area_list);
8c96f1bc 651 raw_spin_lock_init(&object->lock);
3c7b4e6b 652 atomic_set(&object->use_count, 1);
94f4a161 653 object->excess_ref = 0;
04609ccc 654 object->count = 0; /* white color initially */
04609ccc 655 object->checksum = 0;
782e4179 656 object->del_state = 0;
3c7b4e6b
CM
657
658 /* task information */
ea0eafea 659 if (in_hardirq()) {
3c7b4e6b
CM
660 object->pid = 0;
661 strncpy(object->comm, "hardirq", sizeof(object->comm));
6ef90569 662 } else if (in_serving_softirq()) {
3c7b4e6b
CM
663 object->pid = 0;
664 strncpy(object->comm, "softirq", sizeof(object->comm));
665 } else {
666 object->pid = current->pid;
667 /*
668 * There is a small chance of a race with set_task_comm(),
669 * however using get_task_comm() here may cause locking
670 * dependency issues with current->alloc_lock. In the worst
671 * case, the command line is not correct.
672 */
673 strncpy(object->comm, current->comm, sizeof(object->comm));
674 }
675
676 /* kernel backtrace */
56a61617 677 object->trace_handle = set_track_prepare();
3c7b4e6b 678
4eff7d62
LS
679 return object;
680}
681
682static int __link_object(struct kmemleak_object *object, unsigned long ptr,
683 size_t size, int min_count, bool is_phys)
684{
685
686 struct kmemleak_object *parent;
687 struct rb_node **link, *rb_parent;
688 unsigned long untagged_ptr;
689 unsigned long untagged_objp;
690
691 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
692 object->pointer = ptr;
693 object->size = kfence_ksize((void *)ptr) ?: size;
694 object->min_count = min_count;
695 object->jiffies = jiffies;
696
a2f77575 697 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
0c24e061
PW
698 /*
699 * Only update min_addr and max_addr with object
700 * storing virtual address.
701 */
702 if (!is_phys) {
703 min_addr = min(min_addr, untagged_ptr);
704 max_addr = max(max_addr, untagged_ptr + size);
705 }
706 link = is_phys ? &object_phys_tree_root.rb_node :
707 &object_tree_root.rb_node;
85d3a316
ML
708 rb_parent = NULL;
709 while (*link) {
710 rb_parent = *link;
711 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
ad1a3e15
KYL
712 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
713 if (untagged_ptr + size <= untagged_objp)
85d3a316 714 link = &parent->rb_node.rb_left;
ad1a3e15 715 else if (untagged_objp + parent->size <= untagged_ptr)
85d3a316
ML
716 link = &parent->rb_node.rb_right;
717 else {
756a025f 718 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
85d3a316 719 ptr);
9d5a4c73
CM
720 /*
721 * No need for parent->lock here since "parent" cannot
722 * be freed while the kmemleak_lock is held.
723 */
724 dump_object_info(parent);
2e1d4738 725 return -EEXIST;
85d3a316 726 }
3c7b4e6b 727 }
85d3a316 728 rb_link_node(&object->rb_node, rb_parent, link);
0c24e061
PW
729 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
730 &object_tree_root);
3c7b4e6b 731 list_add_tail_rcu(&object->object_list, &object_list);
2e1d4738
LS
732
733 return 0;
0edd7b58
LS
734}
735
736/*
737 * Create the metadata (struct kmemleak_object) corresponding to an allocated
738 * memory block and add it to the object_list and object_tree_root (or
739 * object_phys_tree_root).
740 */
741static void __create_object(unsigned long ptr, size_t size,
742 int min_count, gfp_t gfp, bool is_phys)
743{
744 struct kmemleak_object *object;
745 unsigned long flags;
2e1d4738 746 int ret;
0edd7b58
LS
747
748 object = __alloc_object(gfp);
749 if (!object)
750 return;
751
752 raw_spin_lock_irqsave(&kmemleak_lock, flags);
2e1d4738 753 ret = __link_object(object, ptr, size, min_count, is_phys);
8c96f1bc 754 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
2e1d4738
LS
755 if (ret)
756 mem_pool_free(object);
3c7b4e6b
CM
757}
758
8e0c4ab3 759/* Create kmemleak object which allocated with virtual address. */
b955aa70
LS
760static void create_object(unsigned long ptr, size_t size,
761 int min_count, gfp_t gfp)
8e0c4ab3 762{
b955aa70 763 __create_object(ptr, size, min_count, gfp, false);
8e0c4ab3
PW
764}
765
766/* Create kmemleak object which allocated with physical address. */
b955aa70
LS
767static void create_object_phys(unsigned long ptr, size_t size,
768 int min_count, gfp_t gfp)
8e0c4ab3 769{
b955aa70 770 __create_object(ptr, size, min_count, gfp, true);
8e0c4ab3
PW
771}
772
3c7b4e6b 773/*
e781a9ab 774 * Mark the object as not allocated and schedule RCU freeing via put_object().
3c7b4e6b 775 */
53238a60 776static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
777{
778 unsigned long flags;
3c7b4e6b 779
3c7b4e6b 780 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
e781a9ab 781 WARN_ON(atomic_read(&object->use_count) < 1);
3c7b4e6b
CM
782
783 /*
784 * Locking here also ensures that the corresponding memory block
785 * cannot be freed when it is being scanned.
786 */
8c96f1bc 787 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b 788 object->flags &= ~OBJECT_ALLOCATED;
8c96f1bc 789 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
790 put_object(object);
791}
792
53238a60
CM
793/*
794 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
795 * delete it.
796 */
797static void delete_object_full(unsigned long ptr)
798{
799 struct kmemleak_object *object;
800
0c24e061 801 object = find_and_remove_object(ptr, 0, false);
53238a60
CM
802 if (!object) {
803#ifdef DEBUG
804 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
805 ptr);
806#endif
807 return;
808 }
809 __delete_object(object);
53238a60
CM
810}
811
812/*
813 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
814 * delete it. If the memory block is partially freed, the function may create
815 * additional metadata for the remaining parts of the block.
816 */
0c24e061 817static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
53238a60 818{
5e4fc577
LS
819 struct kmemleak_object *object, *object_l, *object_r;
820 unsigned long start, end, flags;
821
822 object_l = __alloc_object(GFP_KERNEL);
823 if (!object_l)
824 return;
53238a60 825
5e4fc577
LS
826 object_r = __alloc_object(GFP_KERNEL);
827 if (!object_r)
828 goto out;
829
830 raw_spin_lock_irqsave(&kmemleak_lock, flags);
831 object = __find_and_remove_object(ptr, 1, is_phys);
53238a60
CM
832 if (!object) {
833#ifdef DEBUG
756a025f
JP
834 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
835 ptr, size);
53238a60 836#endif
5e4fc577 837 goto unlock;
53238a60 838 }
53238a60
CM
839
840 /*
841 * Create one or two objects that may result from the memory block
842 * split. Note that partial freeing is only done by free_bootmem() and
c5665868 843 * this happens before kmemleak_init() is called.
53238a60
CM
844 */
845 start = object->pointer;
846 end = object->pointer + object->size;
5e4fc577
LS
847 if ((ptr > start) &&
848 !__link_object(object_l, start, ptr - start,
849 object->min_count, is_phys))
850 object_l = NULL;
851 if ((ptr + size < end) &&
852 !__link_object(object_r, ptr + size, end - ptr - size,
853 object->min_count, is_phys))
854 object_r = NULL;
855
856unlock:
857 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
858 if (object)
859 __delete_object(object);
53238a60 860
5e4fc577
LS
861out:
862 if (object_l)
863 mem_pool_free(object_l);
864 if (object_r)
865 mem_pool_free(object_r);
53238a60 866}
a1084c87
LR
867
868static void __paint_it(struct kmemleak_object *object, int color)
869{
870 object->min_count = color;
871 if (color == KMEMLEAK_BLACK)
872 object->flags |= OBJECT_NO_SCAN;
873}
874
875static void paint_it(struct kmemleak_object *object, int color)
3c7b4e6b
CM
876{
877 unsigned long flags;
a1084c87 878
8c96f1bc 879 raw_spin_lock_irqsave(&object->lock, flags);
a1084c87 880 __paint_it(object, color);
8c96f1bc 881 raw_spin_unlock_irqrestore(&object->lock, flags);
a1084c87
LR
882}
883
0c24e061 884static void paint_ptr(unsigned long ptr, int color, bool is_phys)
a1084c87 885{
3c7b4e6b
CM
886 struct kmemleak_object *object;
887
0c24e061 888 object = __find_and_get_object(ptr, 0, is_phys);
3c7b4e6b 889 if (!object) {
756a025f
JP
890 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
891 ptr,
a1084c87
LR
892 (color == KMEMLEAK_GREY) ? "Grey" :
893 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
3c7b4e6b
CM
894 return;
895 }
a1084c87 896 paint_it(object, color);
3c7b4e6b
CM
897 put_object(object);
898}
899
a1084c87 900/*
145b64b9 901 * Mark an object permanently as gray-colored so that it can no longer be
a1084c87
LR
902 * reported as a leak. This is used in general to mark a false positive.
903 */
904static void make_gray_object(unsigned long ptr)
905{
0c24e061 906 paint_ptr(ptr, KMEMLEAK_GREY, false);
a1084c87
LR
907}
908
3c7b4e6b
CM
909/*
910 * Mark the object as black-colored so that it is ignored from scans and
911 * reporting.
912 */
0c24e061 913static void make_black_object(unsigned long ptr, bool is_phys)
3c7b4e6b 914{
0c24e061 915 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
3c7b4e6b
CM
916}
917
918/*
919 * Add a scanning area to the object. If at least one such area is added,
920 * kmemleak will only scan these ranges rather than the whole memory block.
921 */
c017b4be 922static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
923{
924 unsigned long flags;
925 struct kmemleak_object *object;
c5665868 926 struct kmemleak_scan_area *area = NULL;
bfc8089f
KYL
927 unsigned long untagged_ptr;
928 unsigned long untagged_objp;
3c7b4e6b 929
c017b4be 930 object = find_and_get_object(ptr, 1);
3c7b4e6b 931 if (!object) {
ae281064
JP
932 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
933 ptr);
3c7b4e6b
CM
934 return;
935 }
936
bfc8089f
KYL
937 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
938 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
939
c5665868
CM
940 if (scan_area_cache)
941 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 942
8c96f1bc 943 raw_spin_lock_irqsave(&object->lock, flags);
dba82d94
CM
944 if (!area) {
945 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
946 /* mark the object for full scan to avoid false positives */
947 object->flags |= OBJECT_FULL_SCAN;
948 goto out_unlock;
949 }
7f88f88f 950 if (size == SIZE_MAX) {
bfc8089f
KYL
951 size = untagged_objp + object->size - untagged_ptr;
952 } else if (untagged_ptr + size > untagged_objp + object->size) {
ae281064 953 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
954 dump_object_info(object);
955 kmem_cache_free(scan_area_cache, area);
956 goto out_unlock;
957 }
958
959 INIT_HLIST_NODE(&area->node);
c017b4be
CM
960 area->start = ptr;
961 area->size = size;
3c7b4e6b
CM
962
963 hlist_add_head(&area->node, &object->area_list);
964out_unlock:
8c96f1bc 965 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
966 put_object(object);
967}
968
94f4a161
CM
969/*
970 * Any surplus references (object already gray) to 'ptr' are passed to
971 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
972 * vm_struct may be used as an alternative reference to the vmalloc'ed object
973 * (see free_thread_stack()).
974 */
975static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
976{
977 unsigned long flags;
978 struct kmemleak_object *object;
979
980 object = find_and_get_object(ptr, 0);
981 if (!object) {
982 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
983 ptr);
984 return;
985 }
986
8c96f1bc 987 raw_spin_lock_irqsave(&object->lock, flags);
94f4a161 988 object->excess_ref = excess_ref;
8c96f1bc 989 raw_spin_unlock_irqrestore(&object->lock, flags);
94f4a161
CM
990 put_object(object);
991}
992
3c7b4e6b
CM
993/*
994 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
995 * pointer. Such object will not be scanned by kmemleak but references to it
996 * are searched.
997 */
998static void object_no_scan(unsigned long ptr)
999{
1000 unsigned long flags;
1001 struct kmemleak_object *object;
1002
1003 object = find_and_get_object(ptr, 0);
1004 if (!object) {
ae281064 1005 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
1006 return;
1007 }
1008
8c96f1bc 1009 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b 1010 object->flags |= OBJECT_NO_SCAN;
8c96f1bc 1011 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
1012 put_object(object);
1013}
1014
a2b6bf63
CM
1015/**
1016 * kmemleak_alloc - register a newly allocated object
1017 * @ptr: pointer to beginning of the object
1018 * @size: size of the object
1019 * @min_count: minimum number of references to this object. If during memory
1020 * scanning a number of references less than @min_count is found,
1021 * the object is reported as a memory leak. If @min_count is 0,
1022 * the object is never reported as a leak. If @min_count is -1,
1023 * the object is ignored (not scanned and not reported as a leak)
1024 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1025 *
1026 * This function is called from the kernel allocators when a new object
94f4a161 1027 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
3c7b4e6b 1028 */
a6186d89
CM
1029void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1030 gfp_t gfp)
3c7b4e6b 1031{
62047e0f 1032 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
3c7b4e6b 1033
8910ae89 1034 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1035 create_object((unsigned long)ptr, size, min_count, gfp);
3c7b4e6b
CM
1036}
1037EXPORT_SYMBOL_GPL(kmemleak_alloc);
1038
f528f0b8
CM
1039/**
1040 * kmemleak_alloc_percpu - register a newly allocated __percpu object
1041 * @ptr: __percpu pointer to beginning of the object
1042 * @size: size of the object
8a8c35fa 1043 * @gfp: flags used for kmemleak internal memory allocations
f528f0b8
CM
1044 *
1045 * This function is called from the kernel percpu allocator when a new object
8a8c35fa 1046 * (memory block) is allocated (alloc_percpu).
f528f0b8 1047 */
8a8c35fa
LF
1048void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1049 gfp_t gfp)
f528f0b8
CM
1050{
1051 unsigned int cpu;
1052
62047e0f 1053 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
f528f0b8
CM
1054
1055 /*
1056 * Percpu allocations are only scanned and not reported as leaks
1057 * (min_count is set to 0).
1058 */
8910ae89 1059 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1060 for_each_possible_cpu(cpu)
1061 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
8a8c35fa 1062 size, 0, gfp);
f528f0b8
CM
1063}
1064EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1065
94f4a161
CM
1066/**
1067 * kmemleak_vmalloc - register a newly vmalloc'ed object
1068 * @area: pointer to vm_struct
1069 * @size: size of the object
1070 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1071 *
1072 * This function is called from the vmalloc() kernel allocator when a new
1073 * object (memory block) is allocated.
1074 */
1075void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1076{
62047e0f 1077 pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
94f4a161
CM
1078
1079 /*
1080 * A min_count = 2 is needed because vm_struct contains a reference to
1081 * the virtual address of the vmalloc'ed block.
1082 */
1083 if (kmemleak_enabled) {
1084 create_object((unsigned long)area->addr, size, 2, gfp);
1085 object_set_excess_ref((unsigned long)area,
1086 (unsigned long)area->addr);
94f4a161
CM
1087 }
1088}
1089EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1090
a2b6bf63
CM
1091/**
1092 * kmemleak_free - unregister a previously registered object
1093 * @ptr: pointer to beginning of the object
1094 *
1095 * This function is called from the kernel allocators when an object (memory
1096 * block) is freed (kmem_cache_free, kfree, vfree etc.).
3c7b4e6b 1097 */
a6186d89 1098void __ref kmemleak_free(const void *ptr)
3c7b4e6b 1099{
62047e0f 1100 pr_debug("%s(0x%px)\n", __func__, ptr);
3c7b4e6b 1101
c5f3b1a5 1102 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
53238a60 1103 delete_object_full((unsigned long)ptr);
3c7b4e6b
CM
1104}
1105EXPORT_SYMBOL_GPL(kmemleak_free);
1106
a2b6bf63
CM
1107/**
1108 * kmemleak_free_part - partially unregister a previously registered object
1109 * @ptr: pointer to the beginning or inside the object. This also
1110 * represents the start of the range to be freed
1111 * @size: size to be unregistered
1112 *
1113 * This function is called when only a part of a memory block is freed
1114 * (usually from the bootmem allocator).
53238a60 1115 */
a6186d89 1116void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60 1117{
62047e0f 1118 pr_debug("%s(0x%px)\n", __func__, ptr);
53238a60 1119
8910ae89 1120 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
0c24e061 1121 delete_object_part((unsigned long)ptr, size, false);
53238a60
CM
1122}
1123EXPORT_SYMBOL_GPL(kmemleak_free_part);
1124
f528f0b8
CM
1125/**
1126 * kmemleak_free_percpu - unregister a previously registered __percpu object
1127 * @ptr: __percpu pointer to beginning of the object
1128 *
1129 * This function is called from the kernel percpu allocator when an object
1130 * (memory block) is freed (free_percpu).
1131 */
1132void __ref kmemleak_free_percpu(const void __percpu *ptr)
1133{
1134 unsigned int cpu;
1135
62047e0f 1136 pr_debug("%s(0x%px)\n", __func__, ptr);
f528f0b8 1137
c5f3b1a5 1138 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1139 for_each_possible_cpu(cpu)
1140 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1141 cpu));
f528f0b8
CM
1142}
1143EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1144
ffe2c748
CM
1145/**
1146 * kmemleak_update_trace - update object allocation stack trace
1147 * @ptr: pointer to beginning of the object
1148 *
1149 * Override the object allocation stack trace for cases where the actual
1150 * allocation place is not always useful.
1151 */
1152void __ref kmemleak_update_trace(const void *ptr)
1153{
1154 struct kmemleak_object *object;
d63385a7 1155 depot_stack_handle_t trace_handle;
ffe2c748
CM
1156 unsigned long flags;
1157
62047e0f 1158 pr_debug("%s(0x%px)\n", __func__, ptr);
ffe2c748
CM
1159
1160 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1161 return;
1162
1163 object = find_and_get_object((unsigned long)ptr, 1);
1164 if (!object) {
1165#ifdef DEBUG
1166 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1167 ptr);
1168#endif
1169 return;
1170 }
1171
d63385a7 1172 trace_handle = set_track_prepare();
8c96f1bc 1173 raw_spin_lock_irqsave(&object->lock, flags);
d63385a7 1174 object->trace_handle = trace_handle;
8c96f1bc 1175 raw_spin_unlock_irqrestore(&object->lock, flags);
ffe2c748
CM
1176
1177 put_object(object);
1178}
1179EXPORT_SYMBOL(kmemleak_update_trace);
1180
a2b6bf63
CM
1181/**
1182 * kmemleak_not_leak - mark an allocated object as false positive
1183 * @ptr: pointer to beginning of the object
1184 *
1185 * Calling this function on an object will cause the memory block to no longer
1186 * be reported as leak and always be scanned.
3c7b4e6b 1187 */
a6186d89 1188void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b 1189{
62047e0f 1190 pr_debug("%s(0x%px)\n", __func__, ptr);
3c7b4e6b 1191
8910ae89 1192 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1193 make_gray_object((unsigned long)ptr);
3c7b4e6b
CM
1194}
1195EXPORT_SYMBOL(kmemleak_not_leak);
1196
a2b6bf63
CM
1197/**
1198 * kmemleak_ignore - ignore an allocated object
1199 * @ptr: pointer to beginning of the object
1200 *
1201 * Calling this function on an object will cause the memory block to be
1202 * ignored (not scanned and not reported as a leak). This is usually done when
1203 * it is known that the corresponding block is not a leak and does not contain
1204 * any references to other allocated memory blocks.
3c7b4e6b 1205 */
a6186d89 1206void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b 1207{
62047e0f 1208 pr_debug("%s(0x%px)\n", __func__, ptr);
3c7b4e6b 1209
8910ae89 1210 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
0c24e061 1211 make_black_object((unsigned long)ptr, false);
3c7b4e6b
CM
1212}
1213EXPORT_SYMBOL(kmemleak_ignore);
1214
a2b6bf63
CM
1215/**
1216 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1217 * @ptr: pointer to beginning or inside the object. This also
1218 * represents the start of the scan area
1219 * @size: size of the scan area
1220 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1221 *
1222 * This function is used when it is known that only certain parts of an object
1223 * contain references to other objects. Kmemleak will only scan these areas
1224 * reducing the number false negatives.
3c7b4e6b 1225 */
c017b4be 1226void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
3c7b4e6b 1227{
62047e0f 1228 pr_debug("%s(0x%px)\n", __func__, ptr);
3c7b4e6b 1229
8910ae89 1230 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
c017b4be 1231 add_scan_area((unsigned long)ptr, size, gfp);
3c7b4e6b
CM
1232}
1233EXPORT_SYMBOL(kmemleak_scan_area);
1234
a2b6bf63
CM
1235/**
1236 * kmemleak_no_scan - do not scan an allocated object
1237 * @ptr: pointer to beginning of the object
1238 *
1239 * This function notifies kmemleak not to scan the given memory block. Useful
1240 * in situations where it is known that the given object does not contain any
1241 * references to other objects. Kmemleak will not scan such objects reducing
1242 * the number of false negatives.
3c7b4e6b 1243 */
a6186d89 1244void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b 1245{
62047e0f 1246 pr_debug("%s(0x%px)\n", __func__, ptr);
3c7b4e6b 1247
8910ae89 1248 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1249 object_no_scan((unsigned long)ptr);
3c7b4e6b
CM
1250}
1251EXPORT_SYMBOL(kmemleak_no_scan);
1252
9099daed
CM
1253/**
1254 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1255 * address argument
e8b098fc
MR
1256 * @phys: physical address of the object
1257 * @size: size of the object
e8b098fc 1258 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
9099daed 1259 */
c200d900 1260void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
9099daed 1261{
62047e0f 1262 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
8e0c4ab3 1263
84c32629 1264 if (kmemleak_enabled)
8e0c4ab3
PW
1265 /*
1266 * Create object with OBJECT_PHYS flag and
1267 * assume min_count 0.
1268 */
0c24e061 1269 create_object_phys((unsigned long)phys, size, 0, gfp);
9099daed
CM
1270}
1271EXPORT_SYMBOL(kmemleak_alloc_phys);
1272
1273/**
1274 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1275 * physical address argument
e8b098fc
MR
1276 * @phys: physical address if the beginning or inside an object. This
1277 * also represents the start of the range to be freed
1278 * @size: size to be unregistered
9099daed
CM
1279 */
1280void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1281{
62047e0f 1282 pr_debug("%s(0x%px)\n", __func__, &phys);
0c24e061 1283
84c32629 1284 if (kmemleak_enabled)
0c24e061 1285 delete_object_part((unsigned long)phys, size, true);
9099daed
CM
1286}
1287EXPORT_SYMBOL(kmemleak_free_part_phys);
1288
9099daed
CM
1289/**
1290 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1291 * address argument
e8b098fc 1292 * @phys: physical address of the object
9099daed
CM
1293 */
1294void __ref kmemleak_ignore_phys(phys_addr_t phys)
1295{
62047e0f 1296 pr_debug("%s(0x%px)\n", __func__, &phys);
0c24e061 1297
84c32629 1298 if (kmemleak_enabled)
0c24e061 1299 make_black_object((unsigned long)phys, true);
9099daed
CM
1300}
1301EXPORT_SYMBOL(kmemleak_ignore_phys);
1302
04609ccc
CM
1303/*
1304 * Update an object's checksum and return true if it was modified.
1305 */
1306static bool update_checksum(struct kmemleak_object *object)
1307{
1308 u32 old_csum = object->checksum;
1309
0c24e061
PW
1310 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1311 return false;
1312
e79ed2f1 1313 kasan_disable_current();
69d0b54d 1314 kcsan_disable_current();
6c7a00b8 1315 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
e79ed2f1 1316 kasan_enable_current();
69d0b54d 1317 kcsan_enable_current();
e79ed2f1 1318
04609ccc
CM
1319 return object->checksum != old_csum;
1320}
1321
04f70d13
CM
1322/*
1323 * Update an object's references. object->lock must be held by the caller.
1324 */
1325static void update_refs(struct kmemleak_object *object)
1326{
1327 if (!color_white(object)) {
1328 /* non-orphan, ignored or new */
1329 return;
1330 }
1331
1332 /*
1333 * Increase the object's reference count (number of pointers to the
1334 * memory block). If this count reaches the required minimum, the
1335 * object's color will become gray and it will be added to the
1336 * gray_list.
1337 */
1338 object->count++;
1339 if (color_gray(object)) {
1340 /* put_object() called when removing from gray_list */
1341 WARN_ON(!get_object(object));
1342 list_add_tail(&object->gray_list, &gray_list);
1343 }
1344}
1345
3c7b4e6b 1346/*
0b5121ef 1347 * Memory scanning is a long process and it needs to be interruptible. This
25985edc 1348 * function checks whether such interrupt condition occurred.
3c7b4e6b
CM
1349 */
1350static int scan_should_stop(void)
1351{
8910ae89 1352 if (!kmemleak_enabled)
3c7b4e6b
CM
1353 return 1;
1354
1355 /*
1356 * This function may be called from either process or kthread context,
1357 * hence the need to check for both stop conditions.
1358 */
1359 if (current->mm)
1360 return signal_pending(current);
1361 else
1362 return kthread_should_stop();
1363
1364 return 0;
1365}
1366
1367/*
1368 * Scan a memory block (exclusive range) for valid pointers and add those
1369 * found to the gray list.
1370 */
1371static void scan_block(void *_start, void *_end,
93ada579 1372 struct kmemleak_object *scanned)
3c7b4e6b
CM
1373{
1374 unsigned long *ptr;
1375 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1376 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
93ada579 1377 unsigned long flags;
a2f77575 1378 unsigned long untagged_ptr;
3c7b4e6b 1379
8c96f1bc 1380 raw_spin_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b 1381 for (ptr = start; ptr < end; ptr++) {
3c7b4e6b 1382 struct kmemleak_object *object;
8e019366 1383 unsigned long pointer;
94f4a161 1384 unsigned long excess_ref;
3c7b4e6b
CM
1385
1386 if (scan_should_stop())
1387 break;
1388
e79ed2f1 1389 kasan_disable_current();
6c7a00b8 1390 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
e79ed2f1 1391 kasan_enable_current();
8e019366 1392
a2f77575
AK
1393 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1394 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
93ada579
CM
1395 continue;
1396
1397 /*
1398 * No need for get_object() here since we hold kmemleak_lock.
1399 * object->use_count cannot be dropped to 0 while the object
1400 * is still present in object_tree_root and object_list
1401 * (with updates protected by kmemleak_lock).
1402 */
1403 object = lookup_object(pointer, 1);
3c7b4e6b
CM
1404 if (!object)
1405 continue;
93ada579 1406 if (object == scanned)
3c7b4e6b 1407 /* self referenced, ignore */
3c7b4e6b 1408 continue;
3c7b4e6b
CM
1409
1410 /*
1411 * Avoid the lockdep recursive warning on object->lock being
1412 * previously acquired in scan_object(). These locks are
1413 * enclosed by scan_mutex.
1414 */
8c96f1bc 1415 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161
CM
1416 /* only pass surplus references (object already gray) */
1417 if (color_gray(object)) {
1418 excess_ref = object->excess_ref;
1419 /* no need for update_refs() if object already gray */
1420 } else {
1421 excess_ref = 0;
1422 update_refs(object);
1423 }
8c96f1bc 1424 raw_spin_unlock(&object->lock);
94f4a161
CM
1425
1426 if (excess_ref) {
1427 object = lookup_object(excess_ref, 0);
1428 if (!object)
1429 continue;
1430 if (object == scanned)
1431 /* circular reference, ignore */
1432 continue;
8c96f1bc 1433 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161 1434 update_refs(object);
8c96f1bc 1435 raw_spin_unlock(&object->lock);
94f4a161 1436 }
93ada579 1437 }
8c96f1bc 1438 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
93ada579 1439}
0587da40 1440
93ada579
CM
1441/*
1442 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1443 */
dce5b0bd 1444#ifdef CONFIG_SMP
93ada579
CM
1445static void scan_large_block(void *start, void *end)
1446{
1447 void *next;
1448
1449 while (start < end) {
1450 next = min(start + MAX_SCAN_SIZE, end);
1451 scan_block(start, next, NULL);
1452 start = next;
1453 cond_resched();
3c7b4e6b
CM
1454 }
1455}
dce5b0bd 1456#endif
3c7b4e6b
CM
1457
1458/*
1459 * Scan a memory block corresponding to a kmemleak_object. A condition is
1460 * that object->use_count >= 1.
1461 */
1462static void scan_object(struct kmemleak_object *object)
1463{
1464 struct kmemleak_scan_area *area;
3c7b4e6b 1465 unsigned long flags;
0c24e061 1466 void *obj_ptr;
3c7b4e6b
CM
1467
1468 /*
21ae2956
UKK
1469 * Once the object->lock is acquired, the corresponding memory block
1470 * cannot be freed (the same lock is acquired in delete_object).
3c7b4e6b 1471 */
8c96f1bc 1472 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
1473 if (object->flags & OBJECT_NO_SCAN)
1474 goto out;
1475 if (!(object->flags & OBJECT_ALLOCATED))
1476 /* already freed object */
1477 goto out;
0c24e061
PW
1478
1479 obj_ptr = object->flags & OBJECT_PHYS ?
1480 __va((phys_addr_t)object->pointer) :
1481 (void *)object->pointer;
1482
dba82d94
CM
1483 if (hlist_empty(&object->area_list) ||
1484 object->flags & OBJECT_FULL_SCAN) {
0c24e061
PW
1485 void *start = obj_ptr;
1486 void *end = obj_ptr + object->size;
93ada579
CM
1487 void *next;
1488
1489 do {
1490 next = min(start + MAX_SCAN_SIZE, end);
1491 scan_block(start, next, object);
af98603d 1492
93ada579
CM
1493 start = next;
1494 if (start >= end)
1495 break;
af98603d 1496
8c96f1bc 1497 raw_spin_unlock_irqrestore(&object->lock, flags);
af98603d 1498 cond_resched();
8c96f1bc 1499 raw_spin_lock_irqsave(&object->lock, flags);
93ada579 1500 } while (object->flags & OBJECT_ALLOCATED);
af98603d 1501 } else
b67bfe0d 1502 hlist_for_each_entry(area, &object->area_list, node)
c017b4be
CM
1503 scan_block((void *)area->start,
1504 (void *)(area->start + area->size),
93ada579 1505 object);
3c7b4e6b 1506out:
8c96f1bc 1507 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
1508}
1509
04609ccc
CM
1510/*
1511 * Scan the objects already referenced (gray objects). More objects will be
1512 * referenced and, if there are no memory leaks, all the objects are scanned.
1513 */
1514static void scan_gray_list(void)
1515{
1516 struct kmemleak_object *object, *tmp;
1517
1518 /*
1519 * The list traversal is safe for both tail additions and removals
1520 * from inside the loop. The kmemleak objects cannot be freed from
1521 * outside the loop because their use_count was incremented.
1522 */
1523 object = list_entry(gray_list.next, typeof(*object), gray_list);
1524 while (&object->gray_list != &gray_list) {
1525 cond_resched();
1526
1527 /* may add new objects to the list */
1528 if (!scan_should_stop())
1529 scan_object(object);
1530
1531 tmp = list_entry(object->gray_list.next, typeof(*object),
1532 gray_list);
1533
1534 /* remove the object from the list and release it */
1535 list_del(&object->gray_list);
1536 put_object(object);
1537
1538 object = tmp;
1539 }
1540 WARN_ON(!list_empty(&gray_list));
1541}
1542
984a6083 1543/*
25e9fa22 1544 * Conditionally call resched() in an object iteration loop while making sure
984a6083 1545 * that the given object won't go away without RCU read lock by performing a
6061e740 1546 * get_object() if necessaary.
984a6083 1547 */
6061e740 1548static void kmemleak_cond_resched(struct kmemleak_object *object)
984a6083 1549{
6061e740
WL
1550 if (!get_object(object))
1551 return; /* Try next object */
984a6083 1552
782e4179
WL
1553 raw_spin_lock_irq(&kmemleak_lock);
1554 if (object->del_state & DELSTATE_REMOVED)
1555 goto unlock_put; /* Object removed */
1556 object->del_state |= DELSTATE_NO_DELETE;
1557 raw_spin_unlock_irq(&kmemleak_lock);
1558
984a6083
WL
1559 rcu_read_unlock();
1560 cond_resched();
1561 rcu_read_lock();
782e4179
WL
1562
1563 raw_spin_lock_irq(&kmemleak_lock);
1564 if (object->del_state & DELSTATE_REMOVED)
1565 list_del_rcu(&object->object_list);
1566 object->del_state &= ~DELSTATE_NO_DELETE;
1567unlock_put:
1568 raw_spin_unlock_irq(&kmemleak_lock);
6061e740 1569 put_object(object);
984a6083
WL
1570}
1571
3c7b4e6b
CM
1572/*
1573 * Scan data sections and all the referenced memory blocks allocated via the
1574 * kernel's standard allocators. This function must be called with the
1575 * scan_mutex held.
1576 */
1577static void kmemleak_scan(void)
1578{
04609ccc 1579 struct kmemleak_object *object;
c10a0f87
LY
1580 struct zone *zone;
1581 int __maybe_unused i;
4698c1f2 1582 int new_leaks = 0;
3c7b4e6b 1583
acf4968e
CM
1584 jiffies_last_scan = jiffies;
1585
3c7b4e6b
CM
1586 /* prepare the kmemleak_object's */
1587 rcu_read_lock();
1588 list_for_each_entry_rcu(object, &object_list, object_list) {
00c15506 1589 raw_spin_lock_irq(&object->lock);
3c7b4e6b
CM
1590#ifdef DEBUG
1591 /*
1592 * With a few exceptions there should be a maximum of
1593 * 1 reference to any object at this point.
1594 */
1595 if (atomic_read(&object->use_count) > 1) {
ae281064 1596 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1597 atomic_read(&object->use_count));
1598 dump_object_info(object);
1599 }
1600#endif
84c32629
PW
1601
1602 /* ignore objects outside lowmem (paint them black) */
1603 if ((object->flags & OBJECT_PHYS) &&
1604 !(object->flags & OBJECT_NO_SCAN)) {
1605 unsigned long phys = object->pointer;
1606
1607 if (PHYS_PFN(phys) < min_low_pfn ||
1608 PHYS_PFN(phys + object->size) >= max_low_pfn)
1609 __paint_it(object, KMEMLEAK_BLACK);
1610 }
1611
3c7b4e6b
CM
1612 /* reset the reference count (whiten the object) */
1613 object->count = 0;
6061e740 1614 if (color_gray(object) && get_object(object))
3c7b4e6b
CM
1615 list_add_tail(&object->gray_list, &gray_list);
1616
00c15506 1617 raw_spin_unlock_irq(&object->lock);
6edda04c 1618
6061e740
WL
1619 if (need_resched())
1620 kmemleak_cond_resched(object);
3c7b4e6b
CM
1621 }
1622 rcu_read_unlock();
1623
3c7b4e6b
CM
1624#ifdef CONFIG_SMP
1625 /* per-cpu sections scanning */
1626 for_each_possible_cpu(i)
93ada579
CM
1627 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1628 __per_cpu_end + per_cpu_offset(i));
3c7b4e6b
CM
1629#endif
1630
1631 /*
029aeff5 1632 * Struct page scanning for each node.
3c7b4e6b 1633 */
bfc8c901 1634 get_online_mems();
c10a0f87
LY
1635 for_each_populated_zone(zone) {
1636 unsigned long start_pfn = zone->zone_start_pfn;
1637 unsigned long end_pfn = zone_end_pfn(zone);
3c7b4e6b
CM
1638 unsigned long pfn;
1639
1640 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
9f1eb38e 1641 struct page *page = pfn_to_online_page(pfn);
3c7b4e6b 1642
e68d343d
WL
1643 if (!(pfn & 63))
1644 cond_resched();
1645
9f1eb38e
OS
1646 if (!page)
1647 continue;
1648
c10a0f87
LY
1649 /* only scan pages belonging to this zone */
1650 if (page_zone(page) != zone)
3c7b4e6b 1651 continue;
3c7b4e6b
CM
1652 /* only scan if page is in use */
1653 if (page_count(page) == 0)
1654 continue;
93ada579 1655 scan_block(page, page + 1, NULL);
3c7b4e6b
CM
1656 }
1657 }
bfc8c901 1658 put_online_mems();
3c7b4e6b
CM
1659
1660 /*
43ed5d6e 1661 * Scanning the task stacks (may introduce false negatives).
3c7b4e6b
CM
1662 */
1663 if (kmemleak_stack_scan) {
43ed5d6e
CM
1664 struct task_struct *p, *g;
1665
c4b28963
DB
1666 rcu_read_lock();
1667 for_each_process_thread(g, p) {
37df49f4
CM
1668 void *stack = try_get_task_stack(p);
1669 if (stack) {
1670 scan_block(stack, stack + THREAD_SIZE, NULL);
1671 put_task_stack(p);
1672 }
c4b28963
DB
1673 }
1674 rcu_read_unlock();
3c7b4e6b
CM
1675 }
1676
1677 /*
1678 * Scan the objects already referenced from the sections scanned
04609ccc 1679 * above.
3c7b4e6b 1680 */
04609ccc 1681 scan_gray_list();
2587362e
CM
1682
1683 /*
04609ccc
CM
1684 * Check for new or unreferenced objects modified since the previous
1685 * scan and color them gray until the next scan.
2587362e
CM
1686 */
1687 rcu_read_lock();
1688 list_for_each_entry_rcu(object, &object_list, object_list) {
6061e740
WL
1689 if (need_resched())
1690 kmemleak_cond_resched(object);
984a6083 1691
64977918
WL
1692 /*
1693 * This is racy but we can save the overhead of lock/unlock
1694 * calls. The missed objects, if any, should be caught in
1695 * the next scan.
1696 */
1697 if (!color_white(object))
1698 continue;
00c15506 1699 raw_spin_lock_irq(&object->lock);
04609ccc
CM
1700 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1701 && update_checksum(object) && get_object(object)) {
1702 /* color it gray temporarily */
1703 object->count = object->min_count;
2587362e
CM
1704 list_add_tail(&object->gray_list, &gray_list);
1705 }
00c15506 1706 raw_spin_unlock_irq(&object->lock);
2587362e
CM
1707 }
1708 rcu_read_unlock();
1709
04609ccc
CM
1710 /*
1711 * Re-scan the gray list for modified unreferenced objects.
1712 */
1713 scan_gray_list();
4698c1f2 1714
17bb9e0d 1715 /*
04609ccc 1716 * If scanning was stopped do not report any new unreferenced objects.
17bb9e0d 1717 */
04609ccc 1718 if (scan_should_stop())
17bb9e0d
CM
1719 return;
1720
4698c1f2
CM
1721 /*
1722 * Scanning result reporting.
1723 */
1724 rcu_read_lock();
1725 list_for_each_entry_rcu(object, &object_list, object_list) {
6061e740
WL
1726 if (need_resched())
1727 kmemleak_cond_resched(object);
984a6083 1728
64977918
WL
1729 /*
1730 * This is racy but we can save the overhead of lock/unlock
1731 * calls. The missed objects, if any, should be caught in
1732 * the next scan.
1733 */
1734 if (!color_white(object))
1735 continue;
00c15506 1736 raw_spin_lock_irq(&object->lock);
4698c1f2
CM
1737 if (unreferenced_object(object) &&
1738 !(object->flags & OBJECT_REPORTED)) {
1739 object->flags |= OBJECT_REPORTED;
154221c3
VW
1740
1741 if (kmemleak_verbose)
1742 print_unreferenced(NULL, object);
1743
4698c1f2
CM
1744 new_leaks++;
1745 }
00c15506 1746 raw_spin_unlock_irq(&object->lock);
4698c1f2
CM
1747 }
1748 rcu_read_unlock();
1749
dc9b3f42
LZ
1750 if (new_leaks) {
1751 kmemleak_found_leaks = true;
1752
756a025f
JP
1753 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1754 new_leaks);
dc9b3f42 1755 }
4698c1f2 1756
3c7b4e6b
CM
1757}
1758
1759/*
1760 * Thread function performing automatic memory scanning. Unreferenced objects
1761 * at the end of a memory scan are reported but only the first time.
1762 */
1763static int kmemleak_scan_thread(void *arg)
1764{
d53ce042 1765 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
3c7b4e6b 1766
ae281064 1767 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1768 set_user_nice(current, 10);
3c7b4e6b
CM
1769
1770 /*
1771 * Wait before the first scan to allow the system to fully initialize.
1772 */
1773 if (first_run) {
98c42d94 1774 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
3c7b4e6b 1775 first_run = 0;
98c42d94
VN
1776 while (timeout && !kthread_should_stop())
1777 timeout = schedule_timeout_interruptible(timeout);
3c7b4e6b
CM
1778 }
1779
1780 while (!kthread_should_stop()) {
54dd200c 1781 signed long timeout = READ_ONCE(jiffies_scan_wait);
3c7b4e6b
CM
1782
1783 mutex_lock(&scan_mutex);
3c7b4e6b 1784 kmemleak_scan();
3c7b4e6b 1785 mutex_unlock(&scan_mutex);
4698c1f2 1786
3c7b4e6b
CM
1787 /* wait before the next scan */
1788 while (timeout && !kthread_should_stop())
1789 timeout = schedule_timeout_interruptible(timeout);
1790 }
1791
ae281064 1792 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1793
1794 return 0;
1795}
1796
1797/*
1798 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1799 * with the scan_mutex held.
3c7b4e6b 1800 */
7eb0d5e5 1801static void start_scan_thread(void)
3c7b4e6b
CM
1802{
1803 if (scan_thread)
1804 return;
1805 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1806 if (IS_ERR(scan_thread)) {
598d8091 1807 pr_warn("Failed to create the scan thread\n");
3c7b4e6b
CM
1808 scan_thread = NULL;
1809 }
1810}
1811
1812/*
914b6dff 1813 * Stop the automatic memory scanning thread.
3c7b4e6b 1814 */
7eb0d5e5 1815static void stop_scan_thread(void)
3c7b4e6b
CM
1816{
1817 if (scan_thread) {
1818 kthread_stop(scan_thread);
1819 scan_thread = NULL;
1820 }
1821}
1822
1823/*
1824 * Iterate over the object_list and return the first valid object at or after
1825 * the required position with its use_count incremented. The function triggers
1826 * a memory scanning when the pos argument points to the first position.
1827 */
1828static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1829{
1830 struct kmemleak_object *object;
1831 loff_t n = *pos;
b87324d0
CM
1832 int err;
1833
1834 err = mutex_lock_interruptible(&scan_mutex);
1835 if (err < 0)
1836 return ERR_PTR(err);
3c7b4e6b 1837
3c7b4e6b
CM
1838 rcu_read_lock();
1839 list_for_each_entry_rcu(object, &object_list, object_list) {
1840 if (n-- > 0)
1841 continue;
1842 if (get_object(object))
1843 goto out;
1844 }
1845 object = NULL;
1846out:
3c7b4e6b
CM
1847 return object;
1848}
1849
1850/*
1851 * Return the next object in the object_list. The function decrements the
1852 * use_count of the previous object and increases that of the next one.
1853 */
1854static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1855{
1856 struct kmemleak_object *prev_obj = v;
1857 struct kmemleak_object *next_obj = NULL;
58fac095 1858 struct kmemleak_object *obj = prev_obj;
3c7b4e6b
CM
1859
1860 ++(*pos);
3c7b4e6b 1861
58fac095 1862 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
52c3ce4e
CM
1863 if (get_object(obj)) {
1864 next_obj = obj;
3c7b4e6b 1865 break;
52c3ce4e 1866 }
3c7b4e6b 1867 }
288c857d 1868
3c7b4e6b
CM
1869 put_object(prev_obj);
1870 return next_obj;
1871}
1872
1873/*
1874 * Decrement the use_count of the last object required, if any.
1875 */
1876static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1877{
b87324d0
CM
1878 if (!IS_ERR(v)) {
1879 /*
1880 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1881 * waiting was interrupted, so only release it if !IS_ERR.
1882 */
f5886c7f 1883 rcu_read_unlock();
b87324d0
CM
1884 mutex_unlock(&scan_mutex);
1885 if (v)
1886 put_object(v);
1887 }
3c7b4e6b
CM
1888}
1889
1890/*
1891 * Print the information for an unreferenced object to the seq file.
1892 */
1893static int kmemleak_seq_show(struct seq_file *seq, void *v)
1894{
1895 struct kmemleak_object *object = v;
1896 unsigned long flags;
1897
8c96f1bc 1898 raw_spin_lock_irqsave(&object->lock, flags);
288c857d 1899 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1900 print_unreferenced(seq, object);
8c96f1bc 1901 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
1902 return 0;
1903}
1904
1905static const struct seq_operations kmemleak_seq_ops = {
1906 .start = kmemleak_seq_start,
1907 .next = kmemleak_seq_next,
1908 .stop = kmemleak_seq_stop,
1909 .show = kmemleak_seq_show,
1910};
1911
1912static int kmemleak_open(struct inode *inode, struct file *file)
1913{
b87324d0 1914 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1915}
1916
189d84ed
CM
1917static int dump_str_object_info(const char *str)
1918{
1919 unsigned long flags;
1920 struct kmemleak_object *object;
1921 unsigned long addr;
1922
dc053733
AP
1923 if (kstrtoul(str, 0, &addr))
1924 return -EINVAL;
189d84ed
CM
1925 object = find_and_get_object(addr, 0);
1926 if (!object) {
1927 pr_info("Unknown object at 0x%08lx\n", addr);
1928 return -EINVAL;
1929 }
1930
8c96f1bc 1931 raw_spin_lock_irqsave(&object->lock, flags);
189d84ed 1932 dump_object_info(object);
8c96f1bc 1933 raw_spin_unlock_irqrestore(&object->lock, flags);
189d84ed
CM
1934
1935 put_object(object);
1936 return 0;
1937}
1938
30b37101
LR
1939/*
1940 * We use grey instead of black to ensure we can do future scans on the same
1941 * objects. If we did not do future scans these black objects could
1942 * potentially contain references to newly allocated objects in the future and
1943 * we'd end up with false positives.
1944 */
1945static void kmemleak_clear(void)
1946{
1947 struct kmemleak_object *object;
30b37101
LR
1948
1949 rcu_read_lock();
1950 list_for_each_entry_rcu(object, &object_list, object_list) {
00c15506 1951 raw_spin_lock_irq(&object->lock);
30b37101
LR
1952 if ((object->flags & OBJECT_REPORTED) &&
1953 unreferenced_object(object))
a1084c87 1954 __paint_it(object, KMEMLEAK_GREY);
00c15506 1955 raw_spin_unlock_irq(&object->lock);
30b37101
LR
1956 }
1957 rcu_read_unlock();
dc9b3f42
LZ
1958
1959 kmemleak_found_leaks = false;
30b37101
LR
1960}
1961
c89da70c
LZ
1962static void __kmemleak_do_cleanup(void);
1963
3c7b4e6b
CM
1964/*
1965 * File write operation to configure kmemleak at run-time. The following
1966 * commands can be written to the /sys/kernel/debug/kmemleak file:
1967 * off - disable kmemleak (irreversible)
1968 * stack=on - enable the task stacks scanning
1969 * stack=off - disable the tasks stacks scanning
1970 * scan=on - start the automatic memory scanning thread
1971 * scan=off - stop the automatic memory scanning thread
1972 * scan=... - set the automatic memory scanning period in seconds (0 to
1973 * disable it)
4698c1f2 1974 * scan - trigger a memory scan
30b37101 1975 * clear - mark all current reported unreferenced kmemleak objects as
c89da70c
LZ
1976 * grey to ignore printing them, or free all kmemleak objects
1977 * if kmemleak has been disabled.
189d84ed 1978 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1979 */
1980static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1981 size_t size, loff_t *ppos)
1982{
1983 char buf[64];
1984 int buf_size;
b87324d0 1985 int ret;
3c7b4e6b
CM
1986
1987 buf_size = min(size, (sizeof(buf) - 1));
1988 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1989 return -EFAULT;
1990 buf[buf_size] = 0;
1991
b87324d0
CM
1992 ret = mutex_lock_interruptible(&scan_mutex);
1993 if (ret < 0)
1994 return ret;
1995
c89da70c 1996 if (strncmp(buf, "clear", 5) == 0) {
8910ae89 1997 if (kmemleak_enabled)
c89da70c
LZ
1998 kmemleak_clear();
1999 else
2000 __kmemleak_do_cleanup();
2001 goto out;
2002 }
2003
8910ae89 2004 if (!kmemleak_enabled) {
4e4dfce2 2005 ret = -EPERM;
c89da70c
LZ
2006 goto out;
2007 }
2008
3c7b4e6b
CM
2009 if (strncmp(buf, "off", 3) == 0)
2010 kmemleak_disable();
2011 else if (strncmp(buf, "stack=on", 8) == 0)
2012 kmemleak_stack_scan = 1;
2013 else if (strncmp(buf, "stack=off", 9) == 0)
2014 kmemleak_stack_scan = 0;
2015 else if (strncmp(buf, "scan=on", 7) == 0)
2016 start_scan_thread();
2017 else if (strncmp(buf, "scan=off", 8) == 0)
2018 stop_scan_thread();
2019 else if (strncmp(buf, "scan=", 5) == 0) {
54dd200c
YX
2020 unsigned secs;
2021 unsigned long msecs;
3c7b4e6b 2022
54dd200c 2023 ret = kstrtouint(buf + 5, 0, &secs);
b87324d0
CM
2024 if (ret < 0)
2025 goto out;
54dd200c
YX
2026
2027 msecs = secs * MSEC_PER_SEC;
2028 if (msecs > UINT_MAX)
2029 msecs = UINT_MAX;
2030
3c7b4e6b 2031 stop_scan_thread();
54dd200c
YX
2032 if (msecs) {
2033 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
3c7b4e6b
CM
2034 start_scan_thread();
2035 }
4698c1f2
CM
2036 } else if (strncmp(buf, "scan", 4) == 0)
2037 kmemleak_scan();
189d84ed
CM
2038 else if (strncmp(buf, "dump=", 5) == 0)
2039 ret = dump_str_object_info(buf + 5);
4698c1f2 2040 else
b87324d0
CM
2041 ret = -EINVAL;
2042
2043out:
2044 mutex_unlock(&scan_mutex);
2045 if (ret < 0)
2046 return ret;
3c7b4e6b
CM
2047
2048 /* ignore the rest of the buffer, only one command at a time */
2049 *ppos += size;
2050 return size;
2051}
2052
2053static const struct file_operations kmemleak_fops = {
2054 .owner = THIS_MODULE,
2055 .open = kmemleak_open,
2056 .read = seq_read,
2057 .write = kmemleak_write,
2058 .llseek = seq_lseek,
5f3bf19a 2059 .release = seq_release,
3c7b4e6b
CM
2060};
2061
c89da70c
LZ
2062static void __kmemleak_do_cleanup(void)
2063{
2abd839a 2064 struct kmemleak_object *object, *tmp;
c89da70c 2065
2abd839a
CM
2066 /*
2067 * Kmemleak has already been disabled, no need for RCU list traversal
2068 * or kmemleak_lock held.
2069 */
2070 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2071 __remove_object(object);
2072 __delete_object(object);
2073 }
c89da70c
LZ
2074}
2075
3c7b4e6b 2076/*
74341703
CM
2077 * Stop the memory scanning thread and free the kmemleak internal objects if
2078 * no previous scan thread (otherwise, kmemleak may still have some useful
2079 * information on memory leaks).
3c7b4e6b 2080 */
179a8100 2081static void kmemleak_do_cleanup(struct work_struct *work)
3c7b4e6b 2082{
3c7b4e6b 2083 stop_scan_thread();
3c7b4e6b 2084
914b6dff 2085 mutex_lock(&scan_mutex);
c5f3b1a5 2086 /*
914b6dff
VM
2087 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2088 * longer track object freeing. Ordering of the scan thread stopping and
2089 * the memory accesses below is guaranteed by the kthread_stop()
2090 * function.
c5f3b1a5
CM
2091 */
2092 kmemleak_free_enabled = 0;
914b6dff 2093 mutex_unlock(&scan_mutex);
c5f3b1a5 2094
c89da70c
LZ
2095 if (!kmemleak_found_leaks)
2096 __kmemleak_do_cleanup();
2097 else
756a025f 2098 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
3c7b4e6b
CM
2099}
2100
179a8100 2101static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
3c7b4e6b
CM
2102
2103/*
2104 * Disable kmemleak. No memory allocation/freeing will be traced once this
2105 * function is called. Disabling kmemleak is an irreversible operation.
2106 */
2107static void kmemleak_disable(void)
2108{
2109 /* atomically check whether it was already invoked */
8910ae89 2110 if (cmpxchg(&kmemleak_error, 0, 1))
3c7b4e6b
CM
2111 return;
2112
2113 /* stop any memory operation tracing */
8910ae89 2114 kmemleak_enabled = 0;
3c7b4e6b
CM
2115
2116 /* check whether it is too early for a kernel thread */
d160ef71 2117 if (kmemleak_late_initialized)
179a8100 2118 schedule_work(&cleanup_work);
c5f3b1a5
CM
2119 else
2120 kmemleak_free_enabled = 0;
3c7b4e6b
CM
2121
2122 pr_info("Kernel memory leak detector disabled\n");
2123}
2124
2125/*
2126 * Allow boot-time kmemleak disabling (enabled by default).
2127 */
8bd30c10 2128static int __init kmemleak_boot_config(char *str)
3c7b4e6b
CM
2129{
2130 if (!str)
2131 return -EINVAL;
2132 if (strcmp(str, "off") == 0)
2133 kmemleak_disable();
993f57e0 2134 else if (strcmp(str, "on") == 0) {
ab0155a2 2135 kmemleak_skip_disable = 1;
1c0310ad 2136 stack_depot_request_early_init();
993f57e0 2137 }
ab0155a2 2138 else
3c7b4e6b
CM
2139 return -EINVAL;
2140 return 0;
2141}
2142early_param("kmemleak", kmemleak_boot_config);
2143
2144/*
2030117d 2145 * Kmemleak initialization.
3c7b4e6b
CM
2146 */
2147void __init kmemleak_init(void)
2148{
ab0155a2
JB
2149#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2150 if (!kmemleak_skip_disable) {
2151 kmemleak_disable();
2152 return;
2153 }
2154#endif
2155
c5665868
CM
2156 if (kmemleak_error)
2157 return;
2158
3c7b4e6b
CM
2159 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2160 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2161
2162 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2163 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
3c7b4e6b 2164
298a32b1
CM
2165 /* register the data/bss sections */
2166 create_object((unsigned long)_sdata, _edata - _sdata,
2167 KMEMLEAK_GREY, GFP_ATOMIC);
2168 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2169 KMEMLEAK_GREY, GFP_ATOMIC);
2170 /* only register .data..ro_after_init if not within .data */
b0d14fc4 2171 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
298a32b1
CM
2172 create_object((unsigned long)__start_ro_after_init,
2173 __end_ro_after_init - __start_ro_after_init,
2174 KMEMLEAK_GREY, GFP_ATOMIC);
3c7b4e6b
CM
2175}
2176
2177/*
2178 * Late initialization function.
2179 */
2180static int __init kmemleak_late_init(void)
2181{
d160ef71 2182 kmemleak_late_initialized = 1;
3c7b4e6b 2183
282401df 2184 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
b353756b 2185
8910ae89 2186 if (kmemleak_error) {
3c7b4e6b 2187 /*
25985edc 2188 * Some error occurred and kmemleak was disabled. There is a
3c7b4e6b 2189 * small chance that kmemleak_disable() was called immediately
d160ef71 2190 * after setting kmemleak_late_initialized and we may end up with
3c7b4e6b
CM
2191 * two clean-up threads but serialized by scan_mutex.
2192 */
179a8100 2193 schedule_work(&cleanup_work);
3c7b4e6b
CM
2194 return -ENOMEM;
2195 }
2196
d53ce042
SK
2197 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2198 mutex_lock(&scan_mutex);
2199 start_scan_thread();
2200 mutex_unlock(&scan_mutex);
2201 }
3c7b4e6b 2202
0e965a6b
QC
2203 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2204 mem_pool_free_count);
3c7b4e6b
CM
2205
2206 return 0;
2207}
2208late_initcall(kmemleak_late_init);