]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/kmemleak.c
kmemleak: Mark the early log buffer as __initdata
[thirdparty/kernel/stable.git] / mm / kmemleak.c
CommitLineData
3c7b4e6b
CM
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
3c7b4e6b
CM
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
ae281064
JP
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
3c7b4e6b
CM
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/module.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
75#include <linux/gfp.h>
76#include <linux/fs.h>
77#include <linux/debugfs.h>
78#include <linux/seq_file.h>
79#include <linux/cpumask.h>
80#include <linux/spinlock.h>
81#include <linux/mutex.h>
82#include <linux/rcupdate.h>
83#include <linux/stacktrace.h>
84#include <linux/cache.h>
85#include <linux/percpu.h>
86#include <linux/hardirq.h>
87#include <linux/mmzone.h>
88#include <linux/slab.h>
89#include <linux/thread_info.h>
90#include <linux/err.h>
91#include <linux/uaccess.h>
92#include <linux/string.h>
93#include <linux/nodemask.h>
94#include <linux/mm.h>
95
96#include <asm/sections.h>
97#include <asm/processor.h>
98#include <asm/atomic.h>
99
100#include <linux/kmemleak.h>
101
102/*
103 * Kmemleak configuration and common defines.
104 */
105#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 106#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
107#define SECS_FIRST_SCAN 60 /* delay before the first scan */
108#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
2587362e 109#define GRAY_LIST_PASSES 25 /* maximum number of gray list scans */
af98603d 110#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
111
112#define BYTES_PER_POINTER sizeof(void *)
113
216c04b0
CM
114/* GFP bitmask for kmemleak internal allocations */
115#define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
116
3c7b4e6b
CM
117/* scanning area inside a memory block */
118struct kmemleak_scan_area {
119 struct hlist_node node;
120 unsigned long offset;
121 size_t length;
122};
123
124/*
125 * Structure holding the metadata for each allocated memory block.
126 * Modifications to such objects should be made while holding the
127 * object->lock. Insertions or deletions from object_list, gray_list or
128 * tree_node are already protected by the corresponding locks or mutex (see
129 * the notes on locking above). These objects are reference-counted
130 * (use_count) and freed using the RCU mechanism.
131 */
132struct kmemleak_object {
133 spinlock_t lock;
134 unsigned long flags; /* object status flags */
135 struct list_head object_list;
136 struct list_head gray_list;
137 struct prio_tree_node tree_node;
138 struct rcu_head rcu; /* object_list lockless traversal */
139 /* object usage count; object freed when use_count == 0 */
140 atomic_t use_count;
141 unsigned long pointer;
142 size_t size;
143 /* minimum number of a pointers found before it is considered leak */
144 int min_count;
145 /* the total number of pointers found pointing to this object */
146 int count;
147 /* memory ranges to be scanned inside an object (empty for all) */
148 struct hlist_head area_list;
149 unsigned long trace[MAX_TRACE];
150 unsigned int trace_len;
151 unsigned long jiffies; /* creation timestamp */
152 pid_t pid; /* pid of the current task */
153 char comm[TASK_COMM_LEN]; /* executable name */
154};
155
156/* flag representing the memory block allocation status */
157#define OBJECT_ALLOCATED (1 << 0)
158/* flag set after the first reporting of an unreference object */
159#define OBJECT_REPORTED (1 << 1)
160/* flag set to not scan the object */
161#define OBJECT_NO_SCAN (1 << 2)
2587362e
CM
162/* flag set on newly allocated objects */
163#define OBJECT_NEW (1 << 3)
3c7b4e6b
CM
164
165/* the list of all allocated objects */
166static LIST_HEAD(object_list);
167/* the list of gray-colored objects (see color_gray comment below) */
168static LIST_HEAD(gray_list);
169/* prio search tree for object boundaries */
170static struct prio_tree_root object_tree_root;
171/* rw_lock protecting the access to object_list and prio_tree_root */
172static DEFINE_RWLOCK(kmemleak_lock);
173
174/* allocation caches for kmemleak internal data */
175static struct kmem_cache *object_cache;
176static struct kmem_cache *scan_area_cache;
177
178/* set if tracing memory operations is enabled */
179static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
180/* set in the late_initcall if there were no errors */
181static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
182/* enables or disables early logging of the memory operations */
183static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
184/* set if a fata kmemleak error has occurred */
185static atomic_t kmemleak_error = ATOMIC_INIT(0);
186
187/* minimum and maximum address that may be valid pointers */
188static unsigned long min_addr = ULONG_MAX;
189static unsigned long max_addr;
190
3c7b4e6b 191static struct task_struct *scan_thread;
acf4968e 192/* used to avoid reporting of recently allocated objects */
3c7b4e6b 193static unsigned long jiffies_min_age;
acf4968e 194static unsigned long jiffies_last_scan;
3c7b4e6b
CM
195/* delay between automatic memory scannings */
196static signed long jiffies_scan_wait;
197/* enables or disables the task stacks scanning */
e0a2a160 198static int kmemleak_stack_scan = 1;
4698c1f2 199/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 200static DEFINE_MUTEX(scan_mutex);
3c7b4e6b 201
3c7b4e6b 202/*
2030117d 203 * Early object allocation/freeing logging. Kmemleak is initialized after the
3c7b4e6b 204 * kernel allocator. However, both the kernel allocator and kmemleak may
2030117d 205 * allocate memory blocks which need to be tracked. Kmemleak defines an
3c7b4e6b
CM
206 * arbitrary buffer to hold the allocation/freeing information before it is
207 * fully initialized.
208 */
209
210/* kmemleak operation type for early logging */
211enum {
212 KMEMLEAK_ALLOC,
213 KMEMLEAK_FREE,
53238a60 214 KMEMLEAK_FREE_PART,
3c7b4e6b
CM
215 KMEMLEAK_NOT_LEAK,
216 KMEMLEAK_IGNORE,
217 KMEMLEAK_SCAN_AREA,
218 KMEMLEAK_NO_SCAN
219};
220
221/*
222 * Structure holding the information passed to kmemleak callbacks during the
223 * early logging.
224 */
225struct early_log {
226 int op_type; /* kmemleak operation type */
227 const void *ptr; /* allocated/freed memory block */
228 size_t size; /* memory block size */
229 int min_count; /* minimum reference count */
230 unsigned long offset; /* scan area offset */
231 size_t length; /* scan area length */
232};
233
234/* early logging buffer and current position */
a6186d89
CM
235static struct early_log
236 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
237static int crt_early_log __initdata;
3c7b4e6b
CM
238
239static void kmemleak_disable(void);
240
241/*
242 * Print a warning and dump the stack trace.
243 */
244#define kmemleak_warn(x...) do { \
245 pr_warning(x); \
246 dump_stack(); \
247} while (0)
248
249/*
250 * Macro invoked when a serious kmemleak condition occured and cannot be
2030117d 251 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
252 * tracing no longer available.
253 */
000814f4 254#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
255 kmemleak_warn(x); \
256 kmemleak_disable(); \
257} while (0)
258
259/*
260 * Object colors, encoded with count and min_count:
261 * - white - orphan object, not enough references to it (count < min_count)
262 * - gray - not orphan, not marked as false positive (min_count == 0) or
263 * sufficient references to it (count >= min_count)
264 * - black - ignore, it doesn't contain references (e.g. text section)
265 * (min_count == -1). No function defined for this color.
266 * Newly created objects don't have any color assigned (object->count == -1)
267 * before the next memory scan when they become white.
268 */
269static int color_white(const struct kmemleak_object *object)
270{
271 return object->count != -1 && object->count < object->min_count;
272}
273
274static int color_gray(const struct kmemleak_object *object)
275{
276 return object->min_count != -1 && object->count >= object->min_count;
277}
278
2587362e
CM
279static int color_black(const struct kmemleak_object *object)
280{
281 return object->min_count == -1;
282}
283
3c7b4e6b
CM
284/*
285 * Objects are considered unreferenced only if their color is white, they have
286 * not be deleted and have a minimum age to avoid false positives caused by
287 * pointers temporarily stored in CPU registers.
288 */
289static int unreferenced_object(struct kmemleak_object *object)
290{
291 return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
acf4968e
CM
292 time_before_eq(object->jiffies + jiffies_min_age,
293 jiffies_last_scan);
3c7b4e6b
CM
294}
295
296/*
bab4a34a
CM
297 * Printing of the unreferenced objects information to the seq file. The
298 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 299 */
3c7b4e6b
CM
300static void print_unreferenced(struct seq_file *seq,
301 struct kmemleak_object *object)
302{
303 int i;
304
bab4a34a
CM
305 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
306 object->pointer, object->size);
307 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n",
308 object->comm, object->pid, object->jiffies);
309 seq_printf(seq, " backtrace:\n");
3c7b4e6b
CM
310
311 for (i = 0; i < object->trace_len; i++) {
312 void *ptr = (void *)object->trace[i];
bab4a34a 313 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
3c7b4e6b
CM
314 }
315}
316
317/*
318 * Print the kmemleak_object information. This function is used mainly for
319 * debugging special cases when kmemleak operations. It must be called with
320 * the object->lock held.
321 */
322static void dump_object_info(struct kmemleak_object *object)
323{
324 struct stack_trace trace;
325
326 trace.nr_entries = object->trace_len;
327 trace.entries = object->trace;
328
ae281064 329 pr_notice("Object 0x%08lx (size %zu):\n",
3c7b4e6b
CM
330 object->tree_node.start, object->size);
331 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
332 object->comm, object->pid, object->jiffies);
333 pr_notice(" min_count = %d\n", object->min_count);
334 pr_notice(" count = %d\n", object->count);
189d84ed 335 pr_notice(" flags = 0x%lx\n", object->flags);
3c7b4e6b
CM
336 pr_notice(" backtrace:\n");
337 print_stack_trace(&trace, 4);
338}
339
340/*
341 * Look-up a memory block metadata (kmemleak_object) in the priority search
342 * tree based on a pointer value. If alias is 0, only values pointing to the
343 * beginning of the memory block are allowed. The kmemleak_lock must be held
344 * when calling this function.
345 */
346static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
347{
348 struct prio_tree_node *node;
349 struct prio_tree_iter iter;
350 struct kmemleak_object *object;
351
352 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
353 node = prio_tree_next(&iter);
354 if (node) {
355 object = prio_tree_entry(node, struct kmemleak_object,
356 tree_node);
357 if (!alias && object->pointer != ptr) {
ae281064 358 kmemleak_warn("Found object by alias");
3c7b4e6b
CM
359 object = NULL;
360 }
361 } else
362 object = NULL;
363
364 return object;
365}
366
367/*
368 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
369 * that once an object's use_count reached 0, the RCU freeing was already
370 * registered and the object should no longer be used. This function must be
371 * called under the protection of rcu_read_lock().
372 */
373static int get_object(struct kmemleak_object *object)
374{
375 return atomic_inc_not_zero(&object->use_count);
376}
377
378/*
379 * RCU callback to free a kmemleak_object.
380 */
381static void free_object_rcu(struct rcu_head *rcu)
382{
383 struct hlist_node *elem, *tmp;
384 struct kmemleak_scan_area *area;
385 struct kmemleak_object *object =
386 container_of(rcu, struct kmemleak_object, rcu);
387
388 /*
389 * Once use_count is 0 (guaranteed by put_object), there is no other
390 * code accessing this object, hence no need for locking.
391 */
392 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
393 hlist_del(elem);
394 kmem_cache_free(scan_area_cache, area);
395 }
396 kmem_cache_free(object_cache, object);
397}
398
399/*
400 * Decrement the object use_count. Once the count is 0, free the object using
401 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
402 * delete_object() path, the delayed RCU freeing ensures that there is no
403 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
404 * is also possible.
405 */
406static void put_object(struct kmemleak_object *object)
407{
408 if (!atomic_dec_and_test(&object->use_count))
409 return;
410
411 /* should only get here after delete_object was called */
412 WARN_ON(object->flags & OBJECT_ALLOCATED);
413
414 call_rcu(&object->rcu, free_object_rcu);
415}
416
417/*
418 * Look up an object in the prio search tree and increase its use_count.
419 */
420static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
421{
422 unsigned long flags;
423 struct kmemleak_object *object = NULL;
424
425 rcu_read_lock();
426 read_lock_irqsave(&kmemleak_lock, flags);
427 if (ptr >= min_addr && ptr < max_addr)
428 object = lookup_object(ptr, alias);
429 read_unlock_irqrestore(&kmemleak_lock, flags);
430
431 /* check whether the object is still available */
432 if (object && !get_object(object))
433 object = NULL;
434 rcu_read_unlock();
435
436 return object;
437}
438
439/*
440 * Create the metadata (struct kmemleak_object) corresponding to an allocated
441 * memory block and add it to the object_list and object_tree_root.
442 */
443static void create_object(unsigned long ptr, size_t size, int min_count,
444 gfp_t gfp)
445{
446 unsigned long flags;
447 struct kmemleak_object *object;
448 struct prio_tree_node *node;
449 struct stack_trace trace;
450
216c04b0 451 object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
3c7b4e6b 452 if (!object) {
ae281064 453 kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
3c7b4e6b
CM
454 return;
455 }
456
457 INIT_LIST_HEAD(&object->object_list);
458 INIT_LIST_HEAD(&object->gray_list);
459 INIT_HLIST_HEAD(&object->area_list);
460 spin_lock_init(&object->lock);
461 atomic_set(&object->use_count, 1);
2587362e 462 object->flags = OBJECT_ALLOCATED | OBJECT_NEW;
3c7b4e6b
CM
463 object->pointer = ptr;
464 object->size = size;
465 object->min_count = min_count;
466 object->count = -1; /* no color initially */
467 object->jiffies = jiffies;
468
469 /* task information */
470 if (in_irq()) {
471 object->pid = 0;
472 strncpy(object->comm, "hardirq", sizeof(object->comm));
473 } else if (in_softirq()) {
474 object->pid = 0;
475 strncpy(object->comm, "softirq", sizeof(object->comm));
476 } else {
477 object->pid = current->pid;
478 /*
479 * There is a small chance of a race with set_task_comm(),
480 * however using get_task_comm() here may cause locking
481 * dependency issues with current->alloc_lock. In the worst
482 * case, the command line is not correct.
483 */
484 strncpy(object->comm, current->comm, sizeof(object->comm));
485 }
486
487 /* kernel backtrace */
488 trace.max_entries = MAX_TRACE;
489 trace.nr_entries = 0;
490 trace.entries = object->trace;
491 trace.skip = 1;
492 save_stack_trace(&trace);
493 object->trace_len = trace.nr_entries;
494
495 INIT_PRIO_TREE_NODE(&object->tree_node);
496 object->tree_node.start = ptr;
497 object->tree_node.last = ptr + size - 1;
498
499 write_lock_irqsave(&kmemleak_lock, flags);
500 min_addr = min(min_addr, ptr);
501 max_addr = max(max_addr, ptr + size);
502 node = prio_tree_insert(&object_tree_root, &object->tree_node);
503 /*
504 * The code calling the kernel does not yet have the pointer to the
505 * memory block to be able to free it. However, we still hold the
506 * kmemleak_lock here in case parts of the kernel started freeing
507 * random memory blocks.
508 */
509 if (node != &object->tree_node) {
510 unsigned long flags;
511
ae281064
JP
512 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
513 "(already existing)\n", ptr);
3c7b4e6b
CM
514 object = lookup_object(ptr, 1);
515 spin_lock_irqsave(&object->lock, flags);
516 dump_object_info(object);
517 spin_unlock_irqrestore(&object->lock, flags);
518
519 goto out;
520 }
521 list_add_tail_rcu(&object->object_list, &object_list);
522out:
523 write_unlock_irqrestore(&kmemleak_lock, flags);
524}
525
526/*
527 * Remove the metadata (struct kmemleak_object) for a memory block from the
528 * object_list and object_tree_root and decrement its use_count.
529 */
53238a60 530static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
531{
532 unsigned long flags;
3c7b4e6b
CM
533
534 write_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b
CM
535 prio_tree_remove(&object_tree_root, &object->tree_node);
536 list_del_rcu(&object->object_list);
537 write_unlock_irqrestore(&kmemleak_lock, flags);
538
539 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
53238a60 540 WARN_ON(atomic_read(&object->use_count) < 2);
3c7b4e6b
CM
541
542 /*
543 * Locking here also ensures that the corresponding memory block
544 * cannot be freed when it is being scanned.
545 */
546 spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
547 object->flags &= ~OBJECT_ALLOCATED;
548 spin_unlock_irqrestore(&object->lock, flags);
549 put_object(object);
550}
551
53238a60
CM
552/*
553 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
554 * delete it.
555 */
556static void delete_object_full(unsigned long ptr)
557{
558 struct kmemleak_object *object;
559
560 object = find_and_get_object(ptr, 0);
561 if (!object) {
562#ifdef DEBUG
563 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
564 ptr);
565#endif
566 return;
567 }
568 __delete_object(object);
569 put_object(object);
570}
571
572/*
573 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
574 * delete it. If the memory block is partially freed, the function may create
575 * additional metadata for the remaining parts of the block.
576 */
577static void delete_object_part(unsigned long ptr, size_t size)
578{
579 struct kmemleak_object *object;
580 unsigned long start, end;
581
582 object = find_and_get_object(ptr, 1);
583 if (!object) {
584#ifdef DEBUG
585 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
586 "(size %zu)\n", ptr, size);
587#endif
588 return;
589 }
590 __delete_object(object);
591
592 /*
593 * Create one or two objects that may result from the memory block
594 * split. Note that partial freeing is only done by free_bootmem() and
595 * this happens before kmemleak_init() is called. The path below is
596 * only executed during early log recording in kmemleak_init(), so
597 * GFP_KERNEL is enough.
598 */
599 start = object->pointer;
600 end = object->pointer + object->size;
601 if (ptr > start)
602 create_object(start, ptr - start, object->min_count,
603 GFP_KERNEL);
604 if (ptr + size < end)
605 create_object(ptr + size, end - ptr - size, object->min_count,
606 GFP_KERNEL);
607
608 put_object(object);
609}
3c7b4e6b
CM
610/*
611 * Make a object permanently as gray-colored so that it can no longer be
612 * reported as a leak. This is used in general to mark a false positive.
613 */
614static void make_gray_object(unsigned long ptr)
615{
616 unsigned long flags;
617 struct kmemleak_object *object;
618
619 object = find_and_get_object(ptr, 0);
620 if (!object) {
ae281064 621 kmemleak_warn("Graying unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
622 return;
623 }
624
625 spin_lock_irqsave(&object->lock, flags);
626 object->min_count = 0;
627 spin_unlock_irqrestore(&object->lock, flags);
628 put_object(object);
629}
630
631/*
632 * Mark the object as black-colored so that it is ignored from scans and
633 * reporting.
634 */
635static void make_black_object(unsigned long ptr)
636{
637 unsigned long flags;
638 struct kmemleak_object *object;
639
640 object = find_and_get_object(ptr, 0);
641 if (!object) {
ae281064 642 kmemleak_warn("Blacking unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
643 return;
644 }
645
646 spin_lock_irqsave(&object->lock, flags);
647 object->min_count = -1;
af98603d 648 object->flags |= OBJECT_NO_SCAN;
3c7b4e6b
CM
649 spin_unlock_irqrestore(&object->lock, flags);
650 put_object(object);
651}
652
653/*
654 * Add a scanning area to the object. If at least one such area is added,
655 * kmemleak will only scan these ranges rather than the whole memory block.
656 */
657static void add_scan_area(unsigned long ptr, unsigned long offset,
658 size_t length, gfp_t gfp)
659{
660 unsigned long flags;
661 struct kmemleak_object *object;
662 struct kmemleak_scan_area *area;
663
664 object = find_and_get_object(ptr, 0);
665 if (!object) {
ae281064
JP
666 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
667 ptr);
3c7b4e6b
CM
668 return;
669 }
670
216c04b0 671 area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
3c7b4e6b 672 if (!area) {
ae281064 673 kmemleak_warn("Cannot allocate a scan area\n");
3c7b4e6b
CM
674 goto out;
675 }
676
677 spin_lock_irqsave(&object->lock, flags);
678 if (offset + length > object->size) {
ae281064 679 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
680 dump_object_info(object);
681 kmem_cache_free(scan_area_cache, area);
682 goto out_unlock;
683 }
684
685 INIT_HLIST_NODE(&area->node);
686 area->offset = offset;
687 area->length = length;
688
689 hlist_add_head(&area->node, &object->area_list);
690out_unlock:
691 spin_unlock_irqrestore(&object->lock, flags);
692out:
693 put_object(object);
694}
695
696/*
697 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
698 * pointer. Such object will not be scanned by kmemleak but references to it
699 * are searched.
700 */
701static void object_no_scan(unsigned long ptr)
702{
703 unsigned long flags;
704 struct kmemleak_object *object;
705
706 object = find_and_get_object(ptr, 0);
707 if (!object) {
ae281064 708 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
709 return;
710 }
711
712 spin_lock_irqsave(&object->lock, flags);
713 object->flags |= OBJECT_NO_SCAN;
714 spin_unlock_irqrestore(&object->lock, flags);
715 put_object(object);
716}
717
718/*
719 * Log an early kmemleak_* call to the early_log buffer. These calls will be
720 * processed later once kmemleak is fully initialized.
721 */
a6186d89
CM
722static void __init log_early(int op_type, const void *ptr, size_t size,
723 int min_count, unsigned long offset, size_t length)
3c7b4e6b
CM
724{
725 unsigned long flags;
726 struct early_log *log;
727
728 if (crt_early_log >= ARRAY_SIZE(early_log)) {
a9d9058a
CM
729 pr_warning("Early log buffer exceeded\n");
730 kmemleak_disable();
3c7b4e6b
CM
731 return;
732 }
733
734 /*
735 * There is no need for locking since the kernel is still in UP mode
736 * at this stage. Disabling the IRQs is enough.
737 */
738 local_irq_save(flags);
739 log = &early_log[crt_early_log];
740 log->op_type = op_type;
741 log->ptr = ptr;
742 log->size = size;
743 log->min_count = min_count;
744 log->offset = offset;
745 log->length = length;
746 crt_early_log++;
747 local_irq_restore(flags);
748}
749
750/*
751 * Memory allocation function callback. This function is called from the
752 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
753 * vmalloc etc.).
754 */
a6186d89
CM
755void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
756 gfp_t gfp)
3c7b4e6b
CM
757{
758 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
759
760 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
761 create_object((unsigned long)ptr, size, min_count, gfp);
762 else if (atomic_read(&kmemleak_early_log))
763 log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
764}
765EXPORT_SYMBOL_GPL(kmemleak_alloc);
766
767/*
768 * Memory freeing function callback. This function is called from the kernel
769 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
770 */
a6186d89 771void __ref kmemleak_free(const void *ptr)
3c7b4e6b
CM
772{
773 pr_debug("%s(0x%p)\n", __func__, ptr);
774
775 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
53238a60 776 delete_object_full((unsigned long)ptr);
3c7b4e6b
CM
777 else if (atomic_read(&kmemleak_early_log))
778 log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
779}
780EXPORT_SYMBOL_GPL(kmemleak_free);
781
53238a60
CM
782/*
783 * Partial memory freeing function callback. This function is usually called
784 * from bootmem allocator when (part of) a memory block is freed.
785 */
a6186d89 786void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60
CM
787{
788 pr_debug("%s(0x%p)\n", __func__, ptr);
789
790 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
791 delete_object_part((unsigned long)ptr, size);
792 else if (atomic_read(&kmemleak_early_log))
793 log_early(KMEMLEAK_FREE_PART, ptr, size, 0, 0, 0);
794}
795EXPORT_SYMBOL_GPL(kmemleak_free_part);
796
3c7b4e6b
CM
797/*
798 * Mark an already allocated memory block as a false positive. This will cause
799 * the block to no longer be reported as leak and always be scanned.
800 */
a6186d89 801void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b
CM
802{
803 pr_debug("%s(0x%p)\n", __func__, ptr);
804
805 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
806 make_gray_object((unsigned long)ptr);
807 else if (atomic_read(&kmemleak_early_log))
808 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
809}
810EXPORT_SYMBOL(kmemleak_not_leak);
811
812/*
813 * Ignore a memory block. This is usually done when it is known that the
814 * corresponding block is not a leak and does not contain any references to
815 * other allocated memory blocks.
816 */
a6186d89 817void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b
CM
818{
819 pr_debug("%s(0x%p)\n", __func__, ptr);
820
821 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
822 make_black_object((unsigned long)ptr);
823 else if (atomic_read(&kmemleak_early_log))
824 log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
825}
826EXPORT_SYMBOL(kmemleak_ignore);
827
828/*
829 * Limit the range to be scanned in an allocated memory block.
830 */
a6186d89
CM
831void __ref kmemleak_scan_area(const void *ptr, unsigned long offset,
832 size_t length, gfp_t gfp)
3c7b4e6b
CM
833{
834 pr_debug("%s(0x%p)\n", __func__, ptr);
835
836 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
837 add_scan_area((unsigned long)ptr, offset, length, gfp);
838 else if (atomic_read(&kmemleak_early_log))
839 log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
840}
841EXPORT_SYMBOL(kmemleak_scan_area);
842
843/*
844 * Inform kmemleak not to scan the given memory block.
845 */
a6186d89 846void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b
CM
847{
848 pr_debug("%s(0x%p)\n", __func__, ptr);
849
850 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
851 object_no_scan((unsigned long)ptr);
852 else if (atomic_read(&kmemleak_early_log))
853 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
854}
855EXPORT_SYMBOL(kmemleak_no_scan);
856
3c7b4e6b
CM
857/*
858 * Memory scanning is a long process and it needs to be interruptable. This
859 * function checks whether such interrupt condition occured.
860 */
861static int scan_should_stop(void)
862{
863 if (!atomic_read(&kmemleak_enabled))
864 return 1;
865
866 /*
867 * This function may be called from either process or kthread context,
868 * hence the need to check for both stop conditions.
869 */
870 if (current->mm)
871 return signal_pending(current);
872 else
873 return kthread_should_stop();
874
875 return 0;
876}
877
878/*
879 * Scan a memory block (exclusive range) for valid pointers and add those
880 * found to the gray list.
881 */
882static void scan_block(void *_start, void *_end,
4b8a9674 883 struct kmemleak_object *scanned, int allow_resched)
3c7b4e6b
CM
884{
885 unsigned long *ptr;
886 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
887 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
888
889 for (ptr = start; ptr < end; ptr++) {
890 unsigned long flags;
891 unsigned long pointer = *ptr;
892 struct kmemleak_object *object;
893
4b8a9674
CM
894 if (allow_resched)
895 cond_resched();
3c7b4e6b
CM
896 if (scan_should_stop())
897 break;
898
3c7b4e6b
CM
899 object = find_and_get_object(pointer, 1);
900 if (!object)
901 continue;
902 if (object == scanned) {
903 /* self referenced, ignore */
904 put_object(object);
905 continue;
906 }
907
908 /*
909 * Avoid the lockdep recursive warning on object->lock being
910 * previously acquired in scan_object(). These locks are
911 * enclosed by scan_mutex.
912 */
913 spin_lock_irqsave_nested(&object->lock, flags,
914 SINGLE_DEPTH_NESTING);
915 if (!color_white(object)) {
916 /* non-orphan, ignored or new */
917 spin_unlock_irqrestore(&object->lock, flags);
918 put_object(object);
919 continue;
920 }
921
922 /*
923 * Increase the object's reference count (number of pointers
924 * to the memory block). If this count reaches the required
925 * minimum, the object's color will become gray and it will be
926 * added to the gray_list.
927 */
928 object->count++;
929 if (color_gray(object))
930 list_add_tail(&object->gray_list, &gray_list);
931 else
932 put_object(object);
933 spin_unlock_irqrestore(&object->lock, flags);
934 }
935}
936
937/*
938 * Scan a memory block corresponding to a kmemleak_object. A condition is
939 * that object->use_count >= 1.
940 */
941static void scan_object(struct kmemleak_object *object)
942{
943 struct kmemleak_scan_area *area;
944 struct hlist_node *elem;
945 unsigned long flags;
946
947 /*
948 * Once the object->lock is aquired, the corresponding memory block
949 * cannot be freed (the same lock is aquired in delete_object).
950 */
951 spin_lock_irqsave(&object->lock, flags);
952 if (object->flags & OBJECT_NO_SCAN)
953 goto out;
954 if (!(object->flags & OBJECT_ALLOCATED))
955 /* already freed object */
956 goto out;
af98603d
CM
957 if (hlist_empty(&object->area_list)) {
958 void *start = (void *)object->pointer;
959 void *end = (void *)(object->pointer + object->size);
960
961 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
962 !(object->flags & OBJECT_NO_SCAN)) {
963 scan_block(start, min(start + MAX_SCAN_SIZE, end),
964 object, 0);
965 start += MAX_SCAN_SIZE;
966
967 spin_unlock_irqrestore(&object->lock, flags);
968 cond_resched();
969 spin_lock_irqsave(&object->lock, flags);
970 }
971 } else
3c7b4e6b
CM
972 hlist_for_each_entry(area, elem, &object->area_list, node)
973 scan_block((void *)(object->pointer + area->offset),
974 (void *)(object->pointer + area->offset
4b8a9674 975 + area->length), object, 0);
3c7b4e6b
CM
976out:
977 spin_unlock_irqrestore(&object->lock, flags);
978}
979
980/*
981 * Scan data sections and all the referenced memory blocks allocated via the
982 * kernel's standard allocators. This function must be called with the
983 * scan_mutex held.
984 */
985static void kmemleak_scan(void)
986{
987 unsigned long flags;
988 struct kmemleak_object *object, *tmp;
989 struct task_struct *task;
990 int i;
4698c1f2 991 int new_leaks = 0;
2587362e 992 int gray_list_pass = 0;
3c7b4e6b 993
acf4968e
CM
994 jiffies_last_scan = jiffies;
995
3c7b4e6b
CM
996 /* prepare the kmemleak_object's */
997 rcu_read_lock();
998 list_for_each_entry_rcu(object, &object_list, object_list) {
999 spin_lock_irqsave(&object->lock, flags);
1000#ifdef DEBUG
1001 /*
1002 * With a few exceptions there should be a maximum of
1003 * 1 reference to any object at this point.
1004 */
1005 if (atomic_read(&object->use_count) > 1) {
ae281064 1006 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1007 atomic_read(&object->use_count));
1008 dump_object_info(object);
1009 }
1010#endif
1011 /* reset the reference count (whiten the object) */
1012 object->count = 0;
2587362e 1013 object->flags &= ~OBJECT_NEW;
3c7b4e6b
CM
1014 if (color_gray(object) && get_object(object))
1015 list_add_tail(&object->gray_list, &gray_list);
1016
1017 spin_unlock_irqrestore(&object->lock, flags);
1018 }
1019 rcu_read_unlock();
1020
1021 /* data/bss scanning */
4b8a9674
CM
1022 scan_block(_sdata, _edata, NULL, 1);
1023 scan_block(__bss_start, __bss_stop, NULL, 1);
3c7b4e6b
CM
1024
1025#ifdef CONFIG_SMP
1026 /* per-cpu sections scanning */
1027 for_each_possible_cpu(i)
1028 scan_block(__per_cpu_start + per_cpu_offset(i),
4b8a9674 1029 __per_cpu_end + per_cpu_offset(i), NULL, 1);
3c7b4e6b
CM
1030#endif
1031
1032 /*
1033 * Struct page scanning for each node. The code below is not yet safe
1034 * with MEMORY_HOTPLUG.
1035 */
1036 for_each_online_node(i) {
1037 pg_data_t *pgdat = NODE_DATA(i);
1038 unsigned long start_pfn = pgdat->node_start_pfn;
1039 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1040 unsigned long pfn;
1041
1042 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1043 struct page *page;
1044
1045 if (!pfn_valid(pfn))
1046 continue;
1047 page = pfn_to_page(pfn);
1048 /* only scan if page is in use */
1049 if (page_count(page) == 0)
1050 continue;
4b8a9674 1051 scan_block(page, page + 1, NULL, 1);
3c7b4e6b
CM
1052 }
1053 }
1054
1055 /*
1056 * Scanning the task stacks may introduce false negatives and it is
1057 * not enabled by default.
1058 */
1059 if (kmemleak_stack_scan) {
1060 read_lock(&tasklist_lock);
1061 for_each_process(task)
1062 scan_block(task_stack_page(task),
4b8a9674
CM
1063 task_stack_page(task) + THREAD_SIZE,
1064 NULL, 0);
3c7b4e6b
CM
1065 read_unlock(&tasklist_lock);
1066 }
1067
1068 /*
1069 * Scan the objects already referenced from the sections scanned
1070 * above. More objects will be referenced and, if there are no memory
1071 * leaks, all the objects will be scanned. The list traversal is safe
1072 * for both tail additions and removals from inside the loop. The
1073 * kmemleak objects cannot be freed from outside the loop because their
1074 * use_count was increased.
1075 */
2587362e 1076repeat:
3c7b4e6b
CM
1077 object = list_entry(gray_list.next, typeof(*object), gray_list);
1078 while (&object->gray_list != &gray_list) {
57d81f6f 1079 cond_resched();
3c7b4e6b
CM
1080
1081 /* may add new objects to the list */
1082 if (!scan_should_stop())
1083 scan_object(object);
1084
1085 tmp = list_entry(object->gray_list.next, typeof(*object),
1086 gray_list);
1087
1088 /* remove the object from the list and release it */
1089 list_del(&object->gray_list);
1090 put_object(object);
1091
1092 object = tmp;
1093 }
2587362e
CM
1094
1095 if (scan_should_stop() || ++gray_list_pass >= GRAY_LIST_PASSES)
1096 goto scan_end;
1097
1098 /*
1099 * Check for new objects allocated during this scanning and add them
1100 * to the gray list.
1101 */
1102 rcu_read_lock();
1103 list_for_each_entry_rcu(object, &object_list, object_list) {
1104 spin_lock_irqsave(&object->lock, flags);
1105 if ((object->flags & OBJECT_NEW) && !color_black(object) &&
1106 get_object(object)) {
1107 object->flags &= ~OBJECT_NEW;
1108 list_add_tail(&object->gray_list, &gray_list);
1109 }
1110 spin_unlock_irqrestore(&object->lock, flags);
1111 }
1112 rcu_read_unlock();
1113
1114 if (!list_empty(&gray_list))
1115 goto repeat;
1116
1117scan_end:
3c7b4e6b 1118 WARN_ON(!list_empty(&gray_list));
4698c1f2 1119
17bb9e0d 1120 /*
2587362e
CM
1121 * If scanning was stopped or new objects were being allocated at a
1122 * higher rate than gray list scanning, do not report any new
1123 * unreferenced objects.
17bb9e0d 1124 */
2587362e 1125 if (scan_should_stop() || gray_list_pass >= GRAY_LIST_PASSES)
17bb9e0d
CM
1126 return;
1127
4698c1f2
CM
1128 /*
1129 * Scanning result reporting.
1130 */
1131 rcu_read_lock();
1132 list_for_each_entry_rcu(object, &object_list, object_list) {
1133 spin_lock_irqsave(&object->lock, flags);
1134 if (unreferenced_object(object) &&
1135 !(object->flags & OBJECT_REPORTED)) {
1136 object->flags |= OBJECT_REPORTED;
1137 new_leaks++;
1138 }
1139 spin_unlock_irqrestore(&object->lock, flags);
1140 }
1141 rcu_read_unlock();
1142
1143 if (new_leaks)
1144 pr_info("%d new suspected memory leaks (see "
1145 "/sys/kernel/debug/kmemleak)\n", new_leaks);
1146
3c7b4e6b
CM
1147}
1148
1149/*
1150 * Thread function performing automatic memory scanning. Unreferenced objects
1151 * at the end of a memory scan are reported but only the first time.
1152 */
1153static int kmemleak_scan_thread(void *arg)
1154{
1155 static int first_run = 1;
1156
ae281064 1157 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1158 set_user_nice(current, 10);
3c7b4e6b
CM
1159
1160 /*
1161 * Wait before the first scan to allow the system to fully initialize.
1162 */
1163 if (first_run) {
1164 first_run = 0;
1165 ssleep(SECS_FIRST_SCAN);
1166 }
1167
1168 while (!kthread_should_stop()) {
3c7b4e6b
CM
1169 signed long timeout = jiffies_scan_wait;
1170
1171 mutex_lock(&scan_mutex);
3c7b4e6b 1172 kmemleak_scan();
3c7b4e6b 1173 mutex_unlock(&scan_mutex);
4698c1f2 1174
3c7b4e6b
CM
1175 /* wait before the next scan */
1176 while (timeout && !kthread_should_stop())
1177 timeout = schedule_timeout_interruptible(timeout);
1178 }
1179
ae281064 1180 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1181
1182 return 0;
1183}
1184
1185/*
1186 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1187 * with the scan_mutex held.
3c7b4e6b
CM
1188 */
1189void start_scan_thread(void)
1190{
1191 if (scan_thread)
1192 return;
1193 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1194 if (IS_ERR(scan_thread)) {
ae281064 1195 pr_warning("Failed to create the scan thread\n");
3c7b4e6b
CM
1196 scan_thread = NULL;
1197 }
1198}
1199
1200/*
1201 * Stop the automatic memory scanning thread. This function must be called
4698c1f2 1202 * with the scan_mutex held.
3c7b4e6b
CM
1203 */
1204void stop_scan_thread(void)
1205{
1206 if (scan_thread) {
1207 kthread_stop(scan_thread);
1208 scan_thread = NULL;
1209 }
1210}
1211
1212/*
1213 * Iterate over the object_list and return the first valid object at or after
1214 * the required position with its use_count incremented. The function triggers
1215 * a memory scanning when the pos argument points to the first position.
1216 */
1217static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1218{
1219 struct kmemleak_object *object;
1220 loff_t n = *pos;
b87324d0
CM
1221 int err;
1222
1223 err = mutex_lock_interruptible(&scan_mutex);
1224 if (err < 0)
1225 return ERR_PTR(err);
3c7b4e6b 1226
3c7b4e6b
CM
1227 rcu_read_lock();
1228 list_for_each_entry_rcu(object, &object_list, object_list) {
1229 if (n-- > 0)
1230 continue;
1231 if (get_object(object))
1232 goto out;
1233 }
1234 object = NULL;
1235out:
3c7b4e6b
CM
1236 return object;
1237}
1238
1239/*
1240 * Return the next object in the object_list. The function decrements the
1241 * use_count of the previous object and increases that of the next one.
1242 */
1243static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1244{
1245 struct kmemleak_object *prev_obj = v;
1246 struct kmemleak_object *next_obj = NULL;
1247 struct list_head *n = &prev_obj->object_list;
1248
1249 ++(*pos);
3c7b4e6b 1250
3c7b4e6b
CM
1251 list_for_each_continue_rcu(n, &object_list) {
1252 next_obj = list_entry(n, struct kmemleak_object, object_list);
1253 if (get_object(next_obj))
1254 break;
1255 }
288c857d 1256
3c7b4e6b
CM
1257 put_object(prev_obj);
1258 return next_obj;
1259}
1260
1261/*
1262 * Decrement the use_count of the last object required, if any.
1263 */
1264static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1265{
b87324d0
CM
1266 if (!IS_ERR(v)) {
1267 /*
1268 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1269 * waiting was interrupted, so only release it if !IS_ERR.
1270 */
f5886c7f 1271 rcu_read_unlock();
b87324d0
CM
1272 mutex_unlock(&scan_mutex);
1273 if (v)
1274 put_object(v);
1275 }
3c7b4e6b
CM
1276}
1277
1278/*
1279 * Print the information for an unreferenced object to the seq file.
1280 */
1281static int kmemleak_seq_show(struct seq_file *seq, void *v)
1282{
1283 struct kmemleak_object *object = v;
1284 unsigned long flags;
1285
1286 spin_lock_irqsave(&object->lock, flags);
288c857d 1287 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1288 print_unreferenced(seq, object);
3c7b4e6b
CM
1289 spin_unlock_irqrestore(&object->lock, flags);
1290 return 0;
1291}
1292
1293static const struct seq_operations kmemleak_seq_ops = {
1294 .start = kmemleak_seq_start,
1295 .next = kmemleak_seq_next,
1296 .stop = kmemleak_seq_stop,
1297 .show = kmemleak_seq_show,
1298};
1299
1300static int kmemleak_open(struct inode *inode, struct file *file)
1301{
3c7b4e6b
CM
1302 if (!atomic_read(&kmemleak_enabled))
1303 return -EBUSY;
1304
b87324d0 1305 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1306}
1307
1308static int kmemleak_release(struct inode *inode, struct file *file)
1309{
b87324d0 1310 return seq_release(inode, file);
3c7b4e6b
CM
1311}
1312
189d84ed
CM
1313static int dump_str_object_info(const char *str)
1314{
1315 unsigned long flags;
1316 struct kmemleak_object *object;
1317 unsigned long addr;
1318
1319 addr= simple_strtoul(str, NULL, 0);
1320 object = find_and_get_object(addr, 0);
1321 if (!object) {
1322 pr_info("Unknown object at 0x%08lx\n", addr);
1323 return -EINVAL;
1324 }
1325
1326 spin_lock_irqsave(&object->lock, flags);
1327 dump_object_info(object);
1328 spin_unlock_irqrestore(&object->lock, flags);
1329
1330 put_object(object);
1331 return 0;
1332}
1333
3c7b4e6b
CM
1334/*
1335 * File write operation to configure kmemleak at run-time. The following
1336 * commands can be written to the /sys/kernel/debug/kmemleak file:
1337 * off - disable kmemleak (irreversible)
1338 * stack=on - enable the task stacks scanning
1339 * stack=off - disable the tasks stacks scanning
1340 * scan=on - start the automatic memory scanning thread
1341 * scan=off - stop the automatic memory scanning thread
1342 * scan=... - set the automatic memory scanning period in seconds (0 to
1343 * disable it)
4698c1f2 1344 * scan - trigger a memory scan
189d84ed 1345 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1346 */
1347static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1348 size_t size, loff_t *ppos)
1349{
1350 char buf[64];
1351 int buf_size;
b87324d0 1352 int ret;
3c7b4e6b
CM
1353
1354 buf_size = min(size, (sizeof(buf) - 1));
1355 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1356 return -EFAULT;
1357 buf[buf_size] = 0;
1358
b87324d0
CM
1359 ret = mutex_lock_interruptible(&scan_mutex);
1360 if (ret < 0)
1361 return ret;
1362
3c7b4e6b
CM
1363 if (strncmp(buf, "off", 3) == 0)
1364 kmemleak_disable();
1365 else if (strncmp(buf, "stack=on", 8) == 0)
1366 kmemleak_stack_scan = 1;
1367 else if (strncmp(buf, "stack=off", 9) == 0)
1368 kmemleak_stack_scan = 0;
1369 else if (strncmp(buf, "scan=on", 7) == 0)
1370 start_scan_thread();
1371 else if (strncmp(buf, "scan=off", 8) == 0)
1372 stop_scan_thread();
1373 else if (strncmp(buf, "scan=", 5) == 0) {
1374 unsigned long secs;
3c7b4e6b 1375
b87324d0
CM
1376 ret = strict_strtoul(buf + 5, 0, &secs);
1377 if (ret < 0)
1378 goto out;
3c7b4e6b
CM
1379 stop_scan_thread();
1380 if (secs) {
1381 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1382 start_scan_thread();
1383 }
4698c1f2
CM
1384 } else if (strncmp(buf, "scan", 4) == 0)
1385 kmemleak_scan();
189d84ed
CM
1386 else if (strncmp(buf, "dump=", 5) == 0)
1387 ret = dump_str_object_info(buf + 5);
4698c1f2 1388 else
b87324d0
CM
1389 ret = -EINVAL;
1390
1391out:
1392 mutex_unlock(&scan_mutex);
1393 if (ret < 0)
1394 return ret;
3c7b4e6b
CM
1395
1396 /* ignore the rest of the buffer, only one command at a time */
1397 *ppos += size;
1398 return size;
1399}
1400
1401static const struct file_operations kmemleak_fops = {
1402 .owner = THIS_MODULE,
1403 .open = kmemleak_open,
1404 .read = seq_read,
1405 .write = kmemleak_write,
1406 .llseek = seq_lseek,
1407 .release = kmemleak_release,
1408};
1409
1410/*
1411 * Perform the freeing of the kmemleak internal objects after waiting for any
1412 * current memory scan to complete.
1413 */
1414static int kmemleak_cleanup_thread(void *arg)
1415{
1416 struct kmemleak_object *object;
1417
4698c1f2 1418 mutex_lock(&scan_mutex);
3c7b4e6b 1419 stop_scan_thread();
3c7b4e6b 1420
3c7b4e6b
CM
1421 rcu_read_lock();
1422 list_for_each_entry_rcu(object, &object_list, object_list)
53238a60 1423 delete_object_full(object->pointer);
3c7b4e6b
CM
1424 rcu_read_unlock();
1425 mutex_unlock(&scan_mutex);
1426
1427 return 0;
1428}
1429
1430/*
1431 * Start the clean-up thread.
1432 */
1433static void kmemleak_cleanup(void)
1434{
1435 struct task_struct *cleanup_thread;
1436
1437 cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
1438 "kmemleak-clean");
1439 if (IS_ERR(cleanup_thread))
ae281064 1440 pr_warning("Failed to create the clean-up thread\n");
3c7b4e6b
CM
1441}
1442
1443/*
1444 * Disable kmemleak. No memory allocation/freeing will be traced once this
1445 * function is called. Disabling kmemleak is an irreversible operation.
1446 */
1447static void kmemleak_disable(void)
1448{
1449 /* atomically check whether it was already invoked */
1450 if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1451 return;
1452
1453 /* stop any memory operation tracing */
1454 atomic_set(&kmemleak_early_log, 0);
1455 atomic_set(&kmemleak_enabled, 0);
1456
1457 /* check whether it is too early for a kernel thread */
1458 if (atomic_read(&kmemleak_initialized))
1459 kmemleak_cleanup();
1460
1461 pr_info("Kernel memory leak detector disabled\n");
1462}
1463
1464/*
1465 * Allow boot-time kmemleak disabling (enabled by default).
1466 */
1467static int kmemleak_boot_config(char *str)
1468{
1469 if (!str)
1470 return -EINVAL;
1471 if (strcmp(str, "off") == 0)
1472 kmemleak_disable();
1473 else if (strcmp(str, "on") != 0)
1474 return -EINVAL;
1475 return 0;
1476}
1477early_param("kmemleak", kmemleak_boot_config);
1478
1479/*
2030117d 1480 * Kmemleak initialization.
3c7b4e6b
CM
1481 */
1482void __init kmemleak_init(void)
1483{
1484 int i;
1485 unsigned long flags;
1486
3c7b4e6b
CM
1487 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1488 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1489
1490 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1491 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1492 INIT_PRIO_TREE_ROOT(&object_tree_root);
1493
1494 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1495 local_irq_save(flags);
1496 if (!atomic_read(&kmemleak_error)) {
1497 atomic_set(&kmemleak_enabled, 1);
1498 atomic_set(&kmemleak_early_log, 0);
1499 }
1500 local_irq_restore(flags);
1501
1502 /*
1503 * This is the point where tracking allocations is safe. Automatic
1504 * scanning is started during the late initcall. Add the early logged
1505 * callbacks to the kmemleak infrastructure.
1506 */
1507 for (i = 0; i < crt_early_log; i++) {
1508 struct early_log *log = &early_log[i];
1509
1510 switch (log->op_type) {
1511 case KMEMLEAK_ALLOC:
1512 kmemleak_alloc(log->ptr, log->size, log->min_count,
1513 GFP_KERNEL);
1514 break;
1515 case KMEMLEAK_FREE:
1516 kmemleak_free(log->ptr);
1517 break;
53238a60
CM
1518 case KMEMLEAK_FREE_PART:
1519 kmemleak_free_part(log->ptr, log->size);
1520 break;
3c7b4e6b
CM
1521 case KMEMLEAK_NOT_LEAK:
1522 kmemleak_not_leak(log->ptr);
1523 break;
1524 case KMEMLEAK_IGNORE:
1525 kmemleak_ignore(log->ptr);
1526 break;
1527 case KMEMLEAK_SCAN_AREA:
1528 kmemleak_scan_area(log->ptr, log->offset, log->length,
1529 GFP_KERNEL);
1530 break;
1531 case KMEMLEAK_NO_SCAN:
1532 kmemleak_no_scan(log->ptr);
1533 break;
1534 default:
1535 WARN_ON(1);
1536 }
1537 }
1538}
1539
1540/*
1541 * Late initialization function.
1542 */
1543static int __init kmemleak_late_init(void)
1544{
1545 struct dentry *dentry;
1546
1547 atomic_set(&kmemleak_initialized, 1);
1548
1549 if (atomic_read(&kmemleak_error)) {
1550 /*
1551 * Some error occured and kmemleak was disabled. There is a
1552 * small chance that kmemleak_disable() was called immediately
1553 * after setting kmemleak_initialized and we may end up with
1554 * two clean-up threads but serialized by scan_mutex.
1555 */
1556 kmemleak_cleanup();
1557 return -ENOMEM;
1558 }
1559
1560 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1561 &kmemleak_fops);
1562 if (!dentry)
ae281064 1563 pr_warning("Failed to create the debugfs kmemleak file\n");
4698c1f2 1564 mutex_lock(&scan_mutex);
3c7b4e6b 1565 start_scan_thread();
4698c1f2 1566 mutex_unlock(&scan_mutex);
3c7b4e6b
CM
1567
1568 pr_info("Kernel memory leak detector initialized\n");
1569
1570 return 0;
1571}
1572late_initcall(kmemleak_late_init);