]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/kmemleak.c
Squashfs: fix handling and sanity checking of xattr_ids count
[thirdparty/kernel/stable.git] / mm / kmemleak.c
CommitLineData
45051539 1// SPDX-License-Identifier: GPL-2.0-only
3c7b4e6b
CM
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
3c7b4e6b 8 * For more information on the algorithm and kmemleak usage, please see
22901c6c 9 * Documentation/dev-tools/kmemleak.rst.
3c7b4e6b
CM
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
8c96f1bc 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
0c24e061
PW
17 * accesses to the object_tree_root (or object_phys_tree_root). The
18 * object_list is the main list holding the metadata (struct kmemleak_object)
19 * for the allocated memory blocks. The object_tree_root and object_phys_tree_root
20 * are red black trees used to look-up metadata based on a pointer to the
21 * corresponding memory block. The object_phys_tree_root is for objects
22 * allocated with physical address. The kmemleak_object structures are
23 * added to the object_list and object_tree_root (or object_phys_tree_root)
24 * in the create_object() function called from the kmemleak_alloc() (or
25 * kmemleak_alloc_phys()) callback and removed in delete_object() called from
26 * the kmemleak_free() callback
8c96f1bc
HZ
27 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
28 * Accesses to the metadata (e.g. count) are protected by this lock. Note
29 * that some members of this structure may be protected by other means
30 * (atomic or kmemleak_lock). This lock is also held when scanning the
31 * corresponding memory block to avoid the kernel freeing it via the
32 * kmemleak_free() callback. This is less heavyweight than holding a global
33 * lock like kmemleak_lock during scanning.
3c7b4e6b
CM
34 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
35 * unreferenced objects at a time. The gray_list contains the objects which
36 * are already referenced or marked as false positives and need to be
37 * scanned. This list is only modified during a scanning episode when the
38 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
39 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
40 * added to the gray_list and therefore cannot be freed. This mutex also
41 * prevents multiple users of the "kmemleak" debugfs file together with
42 * modifications to the memory scanning parameters including the scan_thread
43 * pointer
3c7b4e6b 44 *
93ada579 45 * Locks and mutexes are acquired/nested in the following order:
9d5a4c73 46 *
93ada579
CM
47 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
48 *
49 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
50 * regions.
9d5a4c73 51 *
3c7b4e6b
CM
52 * The kmemleak_object structures have a use_count incremented or decremented
53 * using the get_object()/put_object() functions. When the use_count becomes
54 * 0, this count can no longer be incremented and put_object() schedules the
55 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
56 * function must be protected by rcu_read_lock() to avoid accessing a freed
57 * structure.
58 */
59
ae281064
JP
60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
3c7b4e6b
CM
62#include <linux/init.h>
63#include <linux/kernel.h>
64#include <linux/list.h>
3f07c014 65#include <linux/sched/signal.h>
29930025 66#include <linux/sched/task.h>
68db0cf1 67#include <linux/sched/task_stack.h>
3c7b4e6b
CM
68#include <linux/jiffies.h>
69#include <linux/delay.h>
b95f1b31 70#include <linux/export.h>
3c7b4e6b 71#include <linux/kthread.h>
85d3a316 72#include <linux/rbtree.h>
3c7b4e6b
CM
73#include <linux/fs.h>
74#include <linux/debugfs.h>
75#include <linux/seq_file.h>
76#include <linux/cpumask.h>
77#include <linux/spinlock.h>
154221c3 78#include <linux/module.h>
3c7b4e6b
CM
79#include <linux/mutex.h>
80#include <linux/rcupdate.h>
81#include <linux/stacktrace.h>
56a61617 82#include <linux/stackdepot.h>
3c7b4e6b
CM
83#include <linux/cache.h>
84#include <linux/percpu.h>
57c8a661 85#include <linux/memblock.h>
9099daed 86#include <linux/pfn.h>
3c7b4e6b
CM
87#include <linux/mmzone.h>
88#include <linux/slab.h>
89#include <linux/thread_info.h>
90#include <linux/err.h>
91#include <linux/uaccess.h>
92#include <linux/string.h>
93#include <linux/nodemask.h>
94#include <linux/mm.h>
179a8100 95#include <linux/workqueue.h>
04609ccc 96#include <linux/crc32.h>
3c7b4e6b
CM
97
98#include <asm/sections.h>
99#include <asm/processor.h>
60063497 100#include <linux/atomic.h>
3c7b4e6b 101
e79ed2f1 102#include <linux/kasan.h>
95511580 103#include <linux/kfence.h>
3c7b4e6b 104#include <linux/kmemleak.h>
029aeff5 105#include <linux/memory_hotplug.h>
3c7b4e6b
CM
106
107/*
108 * Kmemleak configuration and common defines.
109 */
110#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 111#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
112#define SECS_FIRST_SCAN 60 /* delay before the first scan */
113#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
af98603d 114#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
115
116#define BYTES_PER_POINTER sizeof(void *)
117
216c04b0 118/* GFP bitmask for kmemleak internal allocations */
79d37050
NA
119#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
120 __GFP_NOLOCKDEP)) | \
6ae4bd1f 121 __GFP_NORETRY | __GFP_NOMEMALLOC | \
df9576de 122 __GFP_NOWARN)
216c04b0 123
3c7b4e6b
CM
124/* scanning area inside a memory block */
125struct kmemleak_scan_area {
126 struct hlist_node node;
c017b4be
CM
127 unsigned long start;
128 size_t size;
3c7b4e6b
CM
129};
130
a1084c87
LR
131#define KMEMLEAK_GREY 0
132#define KMEMLEAK_BLACK -1
133
3c7b4e6b
CM
134/*
135 * Structure holding the metadata for each allocated memory block.
136 * Modifications to such objects should be made while holding the
137 * object->lock. Insertions or deletions from object_list, gray_list or
85d3a316 138 * rb_node are already protected by the corresponding locks or mutex (see
3c7b4e6b
CM
139 * the notes on locking above). These objects are reference-counted
140 * (use_count) and freed using the RCU mechanism.
141 */
142struct kmemleak_object {
8c96f1bc 143 raw_spinlock_t lock;
f66abf09 144 unsigned int flags; /* object status flags */
3c7b4e6b
CM
145 struct list_head object_list;
146 struct list_head gray_list;
85d3a316 147 struct rb_node rb_node;
3c7b4e6b
CM
148 struct rcu_head rcu; /* object_list lockless traversal */
149 /* object usage count; object freed when use_count == 0 */
150 atomic_t use_count;
151 unsigned long pointer;
152 size_t size;
94f4a161
CM
153 /* pass surplus references to this pointer */
154 unsigned long excess_ref;
3c7b4e6b
CM
155 /* minimum number of a pointers found before it is considered leak */
156 int min_count;
157 /* the total number of pointers found pointing to this object */
158 int count;
04609ccc
CM
159 /* checksum for detecting modified objects */
160 u32 checksum;
3c7b4e6b
CM
161 /* memory ranges to be scanned inside an object (empty for all) */
162 struct hlist_head area_list;
56a61617 163 depot_stack_handle_t trace_handle;
3c7b4e6b
CM
164 unsigned long jiffies; /* creation timestamp */
165 pid_t pid; /* pid of the current task */
166 char comm[TASK_COMM_LEN]; /* executable name */
167};
168
169/* flag representing the memory block allocation status */
170#define OBJECT_ALLOCATED (1 << 0)
171/* flag set after the first reporting of an unreference object */
172#define OBJECT_REPORTED (1 << 1)
173/* flag set to not scan the object */
174#define OBJECT_NO_SCAN (1 << 2)
dba82d94
CM
175/* flag set to fully scan the object when scan_area allocation failed */
176#define OBJECT_FULL_SCAN (1 << 3)
8e0c4ab3
PW
177/* flag set for object allocated with physical address */
178#define OBJECT_PHYS (1 << 4)
3c7b4e6b 179
154221c3 180#define HEX_PREFIX " "
0494e082
SS
181/* number of bytes to print per line; must be 16 or 32 */
182#define HEX_ROW_SIZE 16
183/* number of bytes to print at a time (1, 2, 4, 8) */
184#define HEX_GROUP_SIZE 1
185/* include ASCII after the hex output */
186#define HEX_ASCII 1
187/* max number of lines to be printed */
188#define HEX_MAX_LINES 2
189
3c7b4e6b
CM
190/* the list of all allocated objects */
191static LIST_HEAD(object_list);
192/* the list of gray-colored objects (see color_gray comment below) */
193static LIST_HEAD(gray_list);
0647398a 194/* memory pool allocation */
c5665868 195static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
0647398a
CM
196static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
197static LIST_HEAD(mem_pool_free_list);
85d3a316
ML
198/* search tree for object boundaries */
199static struct rb_root object_tree_root = RB_ROOT;
0c24e061
PW
200/* search tree for object (with OBJECT_PHYS flag) boundaries */
201static struct rb_root object_phys_tree_root = RB_ROOT;
202/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
8c96f1bc 203static DEFINE_RAW_SPINLOCK(kmemleak_lock);
3c7b4e6b
CM
204
205/* allocation caches for kmemleak internal data */
206static struct kmem_cache *object_cache;
207static struct kmem_cache *scan_area_cache;
208
209/* set if tracing memory operations is enabled */
c5665868 210static int kmemleak_enabled = 1;
c5f3b1a5 211/* same as above but only for the kmemleak_free() callback */
c5665868 212static int kmemleak_free_enabled = 1;
3c7b4e6b 213/* set in the late_initcall if there were no errors */
8910ae89 214static int kmemleak_initialized;
5f79020c 215/* set if a kmemleak warning was issued */
8910ae89 216static int kmemleak_warning;
5f79020c 217/* set if a fatal kmemleak error has occurred */
8910ae89 218static int kmemleak_error;
3c7b4e6b
CM
219
220/* minimum and maximum address that may be valid pointers */
221static unsigned long min_addr = ULONG_MAX;
222static unsigned long max_addr;
223
3c7b4e6b 224static struct task_struct *scan_thread;
acf4968e 225/* used to avoid reporting of recently allocated objects */
3c7b4e6b 226static unsigned long jiffies_min_age;
acf4968e 227static unsigned long jiffies_last_scan;
3c7b4e6b 228/* delay between automatic memory scannings */
54dd200c 229static unsigned long jiffies_scan_wait;
3c7b4e6b 230/* enables or disables the task stacks scanning */
e0a2a160 231static int kmemleak_stack_scan = 1;
4698c1f2 232/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 233static DEFINE_MUTEX(scan_mutex);
ab0155a2
JB
234/* setting kmemleak=on, will set this var, skipping the disable */
235static int kmemleak_skip_disable;
dc9b3f42
LZ
236/* If there are leaks that can be reported */
237static bool kmemleak_found_leaks;
3c7b4e6b 238
154221c3
VW
239static bool kmemleak_verbose;
240module_param_named(verbose, kmemleak_verbose, bool, 0600);
241
3c7b4e6b
CM
242static void kmemleak_disable(void);
243
244/*
245 * Print a warning and dump the stack trace.
246 */
5f79020c 247#define kmemleak_warn(x...) do { \
598d8091 248 pr_warn(x); \
5f79020c 249 dump_stack(); \
8910ae89 250 kmemleak_warning = 1; \
3c7b4e6b
CM
251} while (0)
252
253/*
25985edc 254 * Macro invoked when a serious kmemleak condition occurred and cannot be
2030117d 255 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
256 * tracing no longer available.
257 */
000814f4 258#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
259 kmemleak_warn(x); \
260 kmemleak_disable(); \
261} while (0)
262
154221c3
VW
263#define warn_or_seq_printf(seq, fmt, ...) do { \
264 if (seq) \
265 seq_printf(seq, fmt, ##__VA_ARGS__); \
266 else \
267 pr_warn(fmt, ##__VA_ARGS__); \
268} while (0)
269
270static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
271 int rowsize, int groupsize, const void *buf,
272 size_t len, bool ascii)
273{
274 if (seq)
275 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
276 buf, len, ascii);
277 else
278 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
279 rowsize, groupsize, buf, len, ascii);
280}
281
0494e082
SS
282/*
283 * Printing of the objects hex dump to the seq file. The number of lines to be
284 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
285 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
286 * with the object->lock held.
287 */
288static void hex_dump_object(struct seq_file *seq,
289 struct kmemleak_object *object)
290{
291 const u8 *ptr = (const u8 *)object->pointer;
6fc37c49 292 size_t len;
0494e082 293
0c24e061
PW
294 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
295 return;
296
0494e082 297 /* limit the number of lines to HEX_MAX_LINES */
6fc37c49 298 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
0494e082 299
154221c3 300 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
5c335fe0 301 kasan_disable_current();
154221c3 302 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
6c7a00b8 303 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
5c335fe0 304 kasan_enable_current();
0494e082
SS
305}
306
3c7b4e6b
CM
307/*
308 * Object colors, encoded with count and min_count:
309 * - white - orphan object, not enough references to it (count < min_count)
310 * - gray - not orphan, not marked as false positive (min_count == 0) or
311 * sufficient references to it (count >= min_count)
312 * - black - ignore, it doesn't contain references (e.g. text section)
313 * (min_count == -1). No function defined for this color.
314 * Newly created objects don't have any color assigned (object->count == -1)
315 * before the next memory scan when they become white.
316 */
4a558dd6 317static bool color_white(const struct kmemleak_object *object)
3c7b4e6b 318{
a1084c87
LR
319 return object->count != KMEMLEAK_BLACK &&
320 object->count < object->min_count;
3c7b4e6b
CM
321}
322
4a558dd6 323static bool color_gray(const struct kmemleak_object *object)
3c7b4e6b 324{
a1084c87
LR
325 return object->min_count != KMEMLEAK_BLACK &&
326 object->count >= object->min_count;
3c7b4e6b
CM
327}
328
3c7b4e6b
CM
329/*
330 * Objects are considered unreferenced only if their color is white, they have
331 * not be deleted and have a minimum age to avoid false positives caused by
332 * pointers temporarily stored in CPU registers.
333 */
4a558dd6 334static bool unreferenced_object(struct kmemleak_object *object)
3c7b4e6b 335{
04609ccc 336 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
acf4968e
CM
337 time_before_eq(object->jiffies + jiffies_min_age,
338 jiffies_last_scan);
3c7b4e6b
CM
339}
340
341/*
bab4a34a
CM
342 * Printing of the unreferenced objects information to the seq file. The
343 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 344 */
3c7b4e6b
CM
345static void print_unreferenced(struct seq_file *seq,
346 struct kmemleak_object *object)
347{
348 int i;
56a61617
ZH
349 unsigned long *entries;
350 unsigned int nr_entries;
fefdd336 351 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
3c7b4e6b 352
56a61617 353 nr_entries = stack_depot_fetch(object->trace_handle, &entries);
154221c3 354 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
56a61617 355 object->pointer, object->size);
154221c3 356 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
56a61617
ZH
357 object->comm, object->pid, object->jiffies,
358 msecs_age / 1000, msecs_age % 1000);
0494e082 359 hex_dump_object(seq, object);
154221c3 360 warn_or_seq_printf(seq, " backtrace:\n");
3c7b4e6b 361
56a61617
ZH
362 for (i = 0; i < nr_entries; i++) {
363 void *ptr = (void *)entries[i];
3a6f33d8 364 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr);
3c7b4e6b
CM
365 }
366}
367
368/*
369 * Print the kmemleak_object information. This function is used mainly for
370 * debugging special cases when kmemleak operations. It must be called with
371 * the object->lock held.
372 */
373static void dump_object_info(struct kmemleak_object *object)
374{
ae281064 375 pr_notice("Object 0x%08lx (size %zu):\n",
56a61617 376 object->pointer, object->size);
3c7b4e6b 377 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
56a61617 378 object->comm, object->pid, object->jiffies);
3c7b4e6b
CM
379 pr_notice(" min_count = %d\n", object->min_count);
380 pr_notice(" count = %d\n", object->count);
f66abf09 381 pr_notice(" flags = 0x%x\n", object->flags);
aae0ad7a 382 pr_notice(" checksum = %u\n", object->checksum);
3c7b4e6b 383 pr_notice(" backtrace:\n");
56a61617
ZH
384 if (object->trace_handle)
385 stack_depot_print(object->trace_handle);
3c7b4e6b
CM
386}
387
388/*
85d3a316 389 * Look-up a memory block metadata (kmemleak_object) in the object search
3c7b4e6b
CM
390 * tree based on a pointer value. If alias is 0, only values pointing to the
391 * beginning of the memory block are allowed. The kmemleak_lock must be held
392 * when calling this function.
393 */
0c24e061
PW
394static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
395 bool is_phys)
3c7b4e6b 396{
0c24e061
PW
397 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
398 object_tree_root.rb_node;
ad1a3e15 399 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
85d3a316
ML
400
401 while (rb) {
ad1a3e15
KYL
402 struct kmemleak_object *object;
403 unsigned long untagged_objp;
404
405 object = rb_entry(rb, struct kmemleak_object, rb_node);
406 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
407
408 if (untagged_ptr < untagged_objp)
85d3a316 409 rb = object->rb_node.rb_left;
ad1a3e15 410 else if (untagged_objp + object->size <= untagged_ptr)
85d3a316 411 rb = object->rb_node.rb_right;
ad1a3e15 412 else if (untagged_objp == untagged_ptr || alias)
85d3a316
ML
413 return object;
414 else {
5f79020c
CM
415 kmemleak_warn("Found object by alias at 0x%08lx\n",
416 ptr);
a7686a45 417 dump_object_info(object);
85d3a316 418 break;
3c7b4e6b 419 }
85d3a316
ML
420 }
421 return NULL;
3c7b4e6b
CM
422}
423
0c24e061
PW
424/* Look-up a kmemleak object which allocated with virtual address. */
425static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
426{
427 return __lookup_object(ptr, alias, false);
428}
429
3c7b4e6b
CM
430/*
431 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
432 * that once an object's use_count reached 0, the RCU freeing was already
433 * registered and the object should no longer be used. This function must be
434 * called under the protection of rcu_read_lock().
435 */
436static int get_object(struct kmemleak_object *object)
437{
438 return atomic_inc_not_zero(&object->use_count);
439}
440
0647398a
CM
441/*
442 * Memory pool allocation and freeing. kmemleak_lock must not be held.
443 */
444static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
445{
446 unsigned long flags;
447 struct kmemleak_object *object;
448
449 /* try the slab allocator first */
c5665868
CM
450 if (object_cache) {
451 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
452 if (object)
453 return object;
454 }
0647398a
CM
455
456 /* slab allocation failed, try the memory pool */
8c96f1bc 457 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0647398a
CM
458 object = list_first_entry_or_null(&mem_pool_free_list,
459 typeof(*object), object_list);
460 if (object)
461 list_del(&object->object_list);
462 else if (mem_pool_free_count)
463 object = &mem_pool[--mem_pool_free_count];
c5665868
CM
464 else
465 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
8c96f1bc 466 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
0647398a
CM
467
468 return object;
469}
470
471/*
472 * Return the object to either the slab allocator or the memory pool.
473 */
474static void mem_pool_free(struct kmemleak_object *object)
475{
476 unsigned long flags;
477
478 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
479 kmem_cache_free(object_cache, object);
480 return;
481 }
482
483 /* add the object to the memory pool free list */
8c96f1bc 484 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0647398a 485 list_add(&object->object_list, &mem_pool_free_list);
8c96f1bc 486 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
0647398a
CM
487}
488
3c7b4e6b
CM
489/*
490 * RCU callback to free a kmemleak_object.
491 */
492static void free_object_rcu(struct rcu_head *rcu)
493{
b67bfe0d 494 struct hlist_node *tmp;
3c7b4e6b
CM
495 struct kmemleak_scan_area *area;
496 struct kmemleak_object *object =
497 container_of(rcu, struct kmemleak_object, rcu);
498
499 /*
500 * Once use_count is 0 (guaranteed by put_object), there is no other
501 * code accessing this object, hence no need for locking.
502 */
b67bfe0d
SL
503 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
504 hlist_del(&area->node);
3c7b4e6b
CM
505 kmem_cache_free(scan_area_cache, area);
506 }
0647398a 507 mem_pool_free(object);
3c7b4e6b
CM
508}
509
510/*
511 * Decrement the object use_count. Once the count is 0, free the object using
512 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
513 * delete_object() path, the delayed RCU freeing ensures that there is no
514 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
515 * is also possible.
516 */
517static void put_object(struct kmemleak_object *object)
518{
519 if (!atomic_dec_and_test(&object->use_count))
520 return;
521
522 /* should only get here after delete_object was called */
523 WARN_ON(object->flags & OBJECT_ALLOCATED);
524
c5665868
CM
525 /*
526 * It may be too early for the RCU callbacks, however, there is no
527 * concurrent object_list traversal when !object_cache and all objects
528 * came from the memory pool. Free the object directly.
529 */
530 if (object_cache)
531 call_rcu(&object->rcu, free_object_rcu);
532 else
533 free_object_rcu(&object->rcu);
3c7b4e6b
CM
534}
535
536/*
85d3a316 537 * Look up an object in the object search tree and increase its use_count.
3c7b4e6b 538 */
0c24e061
PW
539static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
540 bool is_phys)
3c7b4e6b
CM
541{
542 unsigned long flags;
9fbed254 543 struct kmemleak_object *object;
3c7b4e6b
CM
544
545 rcu_read_lock();
8c96f1bc 546 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0c24e061 547 object = __lookup_object(ptr, alias, is_phys);
8c96f1bc 548 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
3c7b4e6b
CM
549
550 /* check whether the object is still available */
551 if (object && !get_object(object))
552 object = NULL;
553 rcu_read_unlock();
554
555 return object;
556}
557
0c24e061
PW
558/* Look up and get an object which allocated with virtual address. */
559static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
560{
561 return __find_and_get_object(ptr, alias, false);
562}
563
2abd839a 564/*
0c24e061
PW
565 * Remove an object from the object_tree_root (or object_phys_tree_root)
566 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
567 * is still enabled.
2abd839a
CM
568 */
569static void __remove_object(struct kmemleak_object *object)
570{
0c24e061
PW
571 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
572 &object_phys_tree_root :
573 &object_tree_root);
2abd839a
CM
574 list_del_rcu(&object->object_list);
575}
576
e781a9ab
CM
577/*
578 * Look up an object in the object search tree and remove it from both
0c24e061
PW
579 * object_tree_root (or object_phys_tree_root) and object_list. The
580 * returned object's use_count should be at least 1, as initially set
581 * by create_object().
e781a9ab 582 */
0c24e061
PW
583static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
584 bool is_phys)
e781a9ab
CM
585{
586 unsigned long flags;
587 struct kmemleak_object *object;
588
8c96f1bc 589 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0c24e061 590 object = __lookup_object(ptr, alias, is_phys);
2abd839a
CM
591 if (object)
592 __remove_object(object);
8c96f1bc 593 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
e781a9ab
CM
594
595 return object;
596}
597
56a61617 598static noinline depot_stack_handle_t set_track_prepare(void)
fd678967 599{
56a61617
ZH
600 depot_stack_handle_t trace_handle;
601 unsigned long entries[MAX_TRACE];
602 unsigned int nr_entries;
603
604 if (!kmemleak_initialized)
605 return 0;
606 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
607 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
608
609 return trace_handle;
fd678967
CM
610}
611
3c7b4e6b
CM
612/*
613 * Create the metadata (struct kmemleak_object) corresponding to an allocated
0c24e061
PW
614 * memory block and add it to the object_list and object_tree_root (or
615 * object_phys_tree_root).
3c7b4e6b 616 */
b955aa70
LS
617static void __create_object(unsigned long ptr, size_t size,
618 int min_count, gfp_t gfp, bool is_phys)
3c7b4e6b
CM
619{
620 unsigned long flags;
85d3a316
ML
621 struct kmemleak_object *object, *parent;
622 struct rb_node **link, *rb_parent;
a2f77575 623 unsigned long untagged_ptr;
ad1a3e15 624 unsigned long untagged_objp;
3c7b4e6b 625
0647398a 626 object = mem_pool_alloc(gfp);
3c7b4e6b 627 if (!object) {
598d8091 628 pr_warn("Cannot allocate a kmemleak_object structure\n");
6ae4bd1f 629 kmemleak_disable();
b955aa70 630 return;
3c7b4e6b
CM
631 }
632
633 INIT_LIST_HEAD(&object->object_list);
634 INIT_LIST_HEAD(&object->gray_list);
635 INIT_HLIST_HEAD(&object->area_list);
8c96f1bc 636 raw_spin_lock_init(&object->lock);
3c7b4e6b 637 atomic_set(&object->use_count, 1);
8e0c4ab3 638 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
3c7b4e6b 639 object->pointer = ptr;
95511580 640 object->size = kfence_ksize((void *)ptr) ?: size;
94f4a161 641 object->excess_ref = 0;
3c7b4e6b 642 object->min_count = min_count;
04609ccc 643 object->count = 0; /* white color initially */
3c7b4e6b 644 object->jiffies = jiffies;
04609ccc 645 object->checksum = 0;
3c7b4e6b
CM
646
647 /* task information */
ea0eafea 648 if (in_hardirq()) {
3c7b4e6b
CM
649 object->pid = 0;
650 strncpy(object->comm, "hardirq", sizeof(object->comm));
6ef90569 651 } else if (in_serving_softirq()) {
3c7b4e6b
CM
652 object->pid = 0;
653 strncpy(object->comm, "softirq", sizeof(object->comm));
654 } else {
655 object->pid = current->pid;
656 /*
657 * There is a small chance of a race with set_task_comm(),
658 * however using get_task_comm() here may cause locking
659 * dependency issues with current->alloc_lock. In the worst
660 * case, the command line is not correct.
661 */
662 strncpy(object->comm, current->comm, sizeof(object->comm));
663 }
664
665 /* kernel backtrace */
56a61617 666 object->trace_handle = set_track_prepare();
3c7b4e6b 667
8c96f1bc 668 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0580a181 669
a2f77575 670 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
0c24e061
PW
671 /*
672 * Only update min_addr and max_addr with object
673 * storing virtual address.
674 */
675 if (!is_phys) {
676 min_addr = min(min_addr, untagged_ptr);
677 max_addr = max(max_addr, untagged_ptr + size);
678 }
679 link = is_phys ? &object_phys_tree_root.rb_node :
680 &object_tree_root.rb_node;
85d3a316
ML
681 rb_parent = NULL;
682 while (*link) {
683 rb_parent = *link;
684 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
ad1a3e15
KYL
685 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
686 if (untagged_ptr + size <= untagged_objp)
85d3a316 687 link = &parent->rb_node.rb_left;
ad1a3e15 688 else if (untagged_objp + parent->size <= untagged_ptr)
85d3a316
ML
689 link = &parent->rb_node.rb_right;
690 else {
756a025f 691 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
85d3a316 692 ptr);
9d5a4c73
CM
693 /*
694 * No need for parent->lock here since "parent" cannot
695 * be freed while the kmemleak_lock is held.
696 */
697 dump_object_info(parent);
85d3a316 698 kmem_cache_free(object_cache, object);
85d3a316
ML
699 goto out;
700 }
3c7b4e6b 701 }
85d3a316 702 rb_link_node(&object->rb_node, rb_parent, link);
0c24e061
PW
703 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
704 &object_tree_root);
3c7b4e6b
CM
705 list_add_tail_rcu(&object->object_list, &object_list);
706out:
8c96f1bc 707 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
3c7b4e6b
CM
708}
709
8e0c4ab3 710/* Create kmemleak object which allocated with virtual address. */
b955aa70
LS
711static void create_object(unsigned long ptr, size_t size,
712 int min_count, gfp_t gfp)
8e0c4ab3 713{
b955aa70 714 __create_object(ptr, size, min_count, gfp, false);
8e0c4ab3
PW
715}
716
717/* Create kmemleak object which allocated with physical address. */
b955aa70
LS
718static void create_object_phys(unsigned long ptr, size_t size,
719 int min_count, gfp_t gfp)
8e0c4ab3 720{
b955aa70 721 __create_object(ptr, size, min_count, gfp, true);
8e0c4ab3
PW
722}
723
3c7b4e6b 724/*
e781a9ab 725 * Mark the object as not allocated and schedule RCU freeing via put_object().
3c7b4e6b 726 */
53238a60 727static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
728{
729 unsigned long flags;
3c7b4e6b 730
3c7b4e6b 731 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
e781a9ab 732 WARN_ON(atomic_read(&object->use_count) < 1);
3c7b4e6b
CM
733
734 /*
735 * Locking here also ensures that the corresponding memory block
736 * cannot be freed when it is being scanned.
737 */
8c96f1bc 738 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b 739 object->flags &= ~OBJECT_ALLOCATED;
8c96f1bc 740 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
741 put_object(object);
742}
743
53238a60
CM
744/*
745 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
746 * delete it.
747 */
748static void delete_object_full(unsigned long ptr)
749{
750 struct kmemleak_object *object;
751
0c24e061 752 object = find_and_remove_object(ptr, 0, false);
53238a60
CM
753 if (!object) {
754#ifdef DEBUG
755 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
756 ptr);
757#endif
758 return;
759 }
760 __delete_object(object);
53238a60
CM
761}
762
763/*
764 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
765 * delete it. If the memory block is partially freed, the function may create
766 * additional metadata for the remaining parts of the block.
767 */
0c24e061 768static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
53238a60
CM
769{
770 struct kmemleak_object *object;
771 unsigned long start, end;
772
0c24e061 773 object = find_and_remove_object(ptr, 1, is_phys);
53238a60
CM
774 if (!object) {
775#ifdef DEBUG
756a025f
JP
776 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
777 ptr, size);
53238a60
CM
778#endif
779 return;
780 }
53238a60
CM
781
782 /*
783 * Create one or two objects that may result from the memory block
784 * split. Note that partial freeing is only done by free_bootmem() and
c5665868 785 * this happens before kmemleak_init() is called.
53238a60
CM
786 */
787 start = object->pointer;
788 end = object->pointer + object->size;
789 if (ptr > start)
8e0c4ab3 790 __create_object(start, ptr - start, object->min_count,
0c24e061 791 GFP_KERNEL, is_phys);
53238a60 792 if (ptr + size < end)
8e0c4ab3 793 __create_object(ptr + size, end - ptr - size, object->min_count,
0c24e061 794 GFP_KERNEL, is_phys);
53238a60 795
e781a9ab 796 __delete_object(object);
53238a60 797}
a1084c87
LR
798
799static void __paint_it(struct kmemleak_object *object, int color)
800{
801 object->min_count = color;
802 if (color == KMEMLEAK_BLACK)
803 object->flags |= OBJECT_NO_SCAN;
804}
805
806static void paint_it(struct kmemleak_object *object, int color)
3c7b4e6b
CM
807{
808 unsigned long flags;
a1084c87 809
8c96f1bc 810 raw_spin_lock_irqsave(&object->lock, flags);
a1084c87 811 __paint_it(object, color);
8c96f1bc 812 raw_spin_unlock_irqrestore(&object->lock, flags);
a1084c87
LR
813}
814
0c24e061 815static void paint_ptr(unsigned long ptr, int color, bool is_phys)
a1084c87 816{
3c7b4e6b
CM
817 struct kmemleak_object *object;
818
0c24e061 819 object = __find_and_get_object(ptr, 0, is_phys);
3c7b4e6b 820 if (!object) {
756a025f
JP
821 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
822 ptr,
a1084c87
LR
823 (color == KMEMLEAK_GREY) ? "Grey" :
824 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
3c7b4e6b
CM
825 return;
826 }
a1084c87 827 paint_it(object, color);
3c7b4e6b
CM
828 put_object(object);
829}
830
a1084c87 831/*
145b64b9 832 * Mark an object permanently as gray-colored so that it can no longer be
a1084c87
LR
833 * reported as a leak. This is used in general to mark a false positive.
834 */
835static void make_gray_object(unsigned long ptr)
836{
0c24e061 837 paint_ptr(ptr, KMEMLEAK_GREY, false);
a1084c87
LR
838}
839
3c7b4e6b
CM
840/*
841 * Mark the object as black-colored so that it is ignored from scans and
842 * reporting.
843 */
0c24e061 844static void make_black_object(unsigned long ptr, bool is_phys)
3c7b4e6b 845{
0c24e061 846 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
3c7b4e6b
CM
847}
848
849/*
850 * Add a scanning area to the object. If at least one such area is added,
851 * kmemleak will only scan these ranges rather than the whole memory block.
852 */
c017b4be 853static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
854{
855 unsigned long flags;
856 struct kmemleak_object *object;
c5665868 857 struct kmemleak_scan_area *area = NULL;
bfc8089f
KYL
858 unsigned long untagged_ptr;
859 unsigned long untagged_objp;
3c7b4e6b 860
c017b4be 861 object = find_and_get_object(ptr, 1);
3c7b4e6b 862 if (!object) {
ae281064
JP
863 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
864 ptr);
3c7b4e6b
CM
865 return;
866 }
867
bfc8089f
KYL
868 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
869 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
870
c5665868
CM
871 if (scan_area_cache)
872 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 873
8c96f1bc 874 raw_spin_lock_irqsave(&object->lock, flags);
dba82d94
CM
875 if (!area) {
876 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
877 /* mark the object for full scan to avoid false positives */
878 object->flags |= OBJECT_FULL_SCAN;
879 goto out_unlock;
880 }
7f88f88f 881 if (size == SIZE_MAX) {
bfc8089f
KYL
882 size = untagged_objp + object->size - untagged_ptr;
883 } else if (untagged_ptr + size > untagged_objp + object->size) {
ae281064 884 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
885 dump_object_info(object);
886 kmem_cache_free(scan_area_cache, area);
887 goto out_unlock;
888 }
889
890 INIT_HLIST_NODE(&area->node);
c017b4be
CM
891 area->start = ptr;
892 area->size = size;
3c7b4e6b
CM
893
894 hlist_add_head(&area->node, &object->area_list);
895out_unlock:
8c96f1bc 896 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
897 put_object(object);
898}
899
94f4a161
CM
900/*
901 * Any surplus references (object already gray) to 'ptr' are passed to
902 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
903 * vm_struct may be used as an alternative reference to the vmalloc'ed object
904 * (see free_thread_stack()).
905 */
906static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
907{
908 unsigned long flags;
909 struct kmemleak_object *object;
910
911 object = find_and_get_object(ptr, 0);
912 if (!object) {
913 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
914 ptr);
915 return;
916 }
917
8c96f1bc 918 raw_spin_lock_irqsave(&object->lock, flags);
94f4a161 919 object->excess_ref = excess_ref;
8c96f1bc 920 raw_spin_unlock_irqrestore(&object->lock, flags);
94f4a161
CM
921 put_object(object);
922}
923
3c7b4e6b
CM
924/*
925 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
926 * pointer. Such object will not be scanned by kmemleak but references to it
927 * are searched.
928 */
929static void object_no_scan(unsigned long ptr)
930{
931 unsigned long flags;
932 struct kmemleak_object *object;
933
934 object = find_and_get_object(ptr, 0);
935 if (!object) {
ae281064 936 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
937 return;
938 }
939
8c96f1bc 940 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b 941 object->flags |= OBJECT_NO_SCAN;
8c96f1bc 942 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
943 put_object(object);
944}
945
a2b6bf63
CM
946/**
947 * kmemleak_alloc - register a newly allocated object
948 * @ptr: pointer to beginning of the object
949 * @size: size of the object
950 * @min_count: minimum number of references to this object. If during memory
951 * scanning a number of references less than @min_count is found,
952 * the object is reported as a memory leak. If @min_count is 0,
953 * the object is never reported as a leak. If @min_count is -1,
954 * the object is ignored (not scanned and not reported as a leak)
955 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
956 *
957 * This function is called from the kernel allocators when a new object
94f4a161 958 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
3c7b4e6b 959 */
a6186d89
CM
960void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
961 gfp_t gfp)
3c7b4e6b
CM
962{
963 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
964
8910ae89 965 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 966 create_object((unsigned long)ptr, size, min_count, gfp);
3c7b4e6b
CM
967}
968EXPORT_SYMBOL_GPL(kmemleak_alloc);
969
f528f0b8
CM
970/**
971 * kmemleak_alloc_percpu - register a newly allocated __percpu object
972 * @ptr: __percpu pointer to beginning of the object
973 * @size: size of the object
8a8c35fa 974 * @gfp: flags used for kmemleak internal memory allocations
f528f0b8
CM
975 *
976 * This function is called from the kernel percpu allocator when a new object
8a8c35fa 977 * (memory block) is allocated (alloc_percpu).
f528f0b8 978 */
8a8c35fa
LF
979void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
980 gfp_t gfp)
f528f0b8
CM
981{
982 unsigned int cpu;
983
984 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
985
986 /*
987 * Percpu allocations are only scanned and not reported as leaks
988 * (min_count is set to 0).
989 */
8910ae89 990 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
991 for_each_possible_cpu(cpu)
992 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
8a8c35fa 993 size, 0, gfp);
f528f0b8
CM
994}
995EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
996
94f4a161
CM
997/**
998 * kmemleak_vmalloc - register a newly vmalloc'ed object
999 * @area: pointer to vm_struct
1000 * @size: size of the object
1001 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1002 *
1003 * This function is called from the vmalloc() kernel allocator when a new
1004 * object (memory block) is allocated.
1005 */
1006void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1007{
1008 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1009
1010 /*
1011 * A min_count = 2 is needed because vm_struct contains a reference to
1012 * the virtual address of the vmalloc'ed block.
1013 */
1014 if (kmemleak_enabled) {
1015 create_object((unsigned long)area->addr, size, 2, gfp);
1016 object_set_excess_ref((unsigned long)area,
1017 (unsigned long)area->addr);
94f4a161
CM
1018 }
1019}
1020EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1021
a2b6bf63
CM
1022/**
1023 * kmemleak_free - unregister a previously registered object
1024 * @ptr: pointer to beginning of the object
1025 *
1026 * This function is called from the kernel allocators when an object (memory
1027 * block) is freed (kmem_cache_free, kfree, vfree etc.).
3c7b4e6b 1028 */
a6186d89 1029void __ref kmemleak_free(const void *ptr)
3c7b4e6b
CM
1030{
1031 pr_debug("%s(0x%p)\n", __func__, ptr);
1032
c5f3b1a5 1033 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
53238a60 1034 delete_object_full((unsigned long)ptr);
3c7b4e6b
CM
1035}
1036EXPORT_SYMBOL_GPL(kmemleak_free);
1037
a2b6bf63
CM
1038/**
1039 * kmemleak_free_part - partially unregister a previously registered object
1040 * @ptr: pointer to the beginning or inside the object. This also
1041 * represents the start of the range to be freed
1042 * @size: size to be unregistered
1043 *
1044 * This function is called when only a part of a memory block is freed
1045 * (usually from the bootmem allocator).
53238a60 1046 */
a6186d89 1047void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60
CM
1048{
1049 pr_debug("%s(0x%p)\n", __func__, ptr);
1050
8910ae89 1051 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
0c24e061 1052 delete_object_part((unsigned long)ptr, size, false);
53238a60
CM
1053}
1054EXPORT_SYMBOL_GPL(kmemleak_free_part);
1055
f528f0b8
CM
1056/**
1057 * kmemleak_free_percpu - unregister a previously registered __percpu object
1058 * @ptr: __percpu pointer to beginning of the object
1059 *
1060 * This function is called from the kernel percpu allocator when an object
1061 * (memory block) is freed (free_percpu).
1062 */
1063void __ref kmemleak_free_percpu(const void __percpu *ptr)
1064{
1065 unsigned int cpu;
1066
1067 pr_debug("%s(0x%p)\n", __func__, ptr);
1068
c5f3b1a5 1069 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1070 for_each_possible_cpu(cpu)
1071 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1072 cpu));
f528f0b8
CM
1073}
1074EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1075
ffe2c748
CM
1076/**
1077 * kmemleak_update_trace - update object allocation stack trace
1078 * @ptr: pointer to beginning of the object
1079 *
1080 * Override the object allocation stack trace for cases where the actual
1081 * allocation place is not always useful.
1082 */
1083void __ref kmemleak_update_trace(const void *ptr)
1084{
1085 struct kmemleak_object *object;
1086 unsigned long flags;
1087
1088 pr_debug("%s(0x%p)\n", __func__, ptr);
1089
1090 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1091 return;
1092
1093 object = find_and_get_object((unsigned long)ptr, 1);
1094 if (!object) {
1095#ifdef DEBUG
1096 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1097 ptr);
1098#endif
1099 return;
1100 }
1101
8c96f1bc 1102 raw_spin_lock_irqsave(&object->lock, flags);
56a61617 1103 object->trace_handle = set_track_prepare();
8c96f1bc 1104 raw_spin_unlock_irqrestore(&object->lock, flags);
ffe2c748
CM
1105
1106 put_object(object);
1107}
1108EXPORT_SYMBOL(kmemleak_update_trace);
1109
a2b6bf63
CM
1110/**
1111 * kmemleak_not_leak - mark an allocated object as false positive
1112 * @ptr: pointer to beginning of the object
1113 *
1114 * Calling this function on an object will cause the memory block to no longer
1115 * be reported as leak and always be scanned.
3c7b4e6b 1116 */
a6186d89 1117void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b
CM
1118{
1119 pr_debug("%s(0x%p)\n", __func__, ptr);
1120
8910ae89 1121 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1122 make_gray_object((unsigned long)ptr);
3c7b4e6b
CM
1123}
1124EXPORT_SYMBOL(kmemleak_not_leak);
1125
a2b6bf63
CM
1126/**
1127 * kmemleak_ignore - ignore an allocated object
1128 * @ptr: pointer to beginning of the object
1129 *
1130 * Calling this function on an object will cause the memory block to be
1131 * ignored (not scanned and not reported as a leak). This is usually done when
1132 * it is known that the corresponding block is not a leak and does not contain
1133 * any references to other allocated memory blocks.
3c7b4e6b 1134 */
a6186d89 1135void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b
CM
1136{
1137 pr_debug("%s(0x%p)\n", __func__, ptr);
1138
8910ae89 1139 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
0c24e061 1140 make_black_object((unsigned long)ptr, false);
3c7b4e6b
CM
1141}
1142EXPORT_SYMBOL(kmemleak_ignore);
1143
a2b6bf63
CM
1144/**
1145 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1146 * @ptr: pointer to beginning or inside the object. This also
1147 * represents the start of the scan area
1148 * @size: size of the scan area
1149 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1150 *
1151 * This function is used when it is known that only certain parts of an object
1152 * contain references to other objects. Kmemleak will only scan these areas
1153 * reducing the number false negatives.
3c7b4e6b 1154 */
c017b4be 1155void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
1156{
1157 pr_debug("%s(0x%p)\n", __func__, ptr);
1158
8910ae89 1159 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
c017b4be 1160 add_scan_area((unsigned long)ptr, size, gfp);
3c7b4e6b
CM
1161}
1162EXPORT_SYMBOL(kmemleak_scan_area);
1163
a2b6bf63
CM
1164/**
1165 * kmemleak_no_scan - do not scan an allocated object
1166 * @ptr: pointer to beginning of the object
1167 *
1168 * This function notifies kmemleak not to scan the given memory block. Useful
1169 * in situations where it is known that the given object does not contain any
1170 * references to other objects. Kmemleak will not scan such objects reducing
1171 * the number of false negatives.
3c7b4e6b 1172 */
a6186d89 1173void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b
CM
1174{
1175 pr_debug("%s(0x%p)\n", __func__, ptr);
1176
8910ae89 1177 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1178 object_no_scan((unsigned long)ptr);
3c7b4e6b
CM
1179}
1180EXPORT_SYMBOL(kmemleak_no_scan);
1181
9099daed
CM
1182/**
1183 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1184 * address argument
e8b098fc
MR
1185 * @phys: physical address of the object
1186 * @size: size of the object
e8b098fc 1187 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
9099daed 1188 */
c200d900 1189void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
9099daed 1190{
8e0c4ab3
PW
1191 pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1192
84c32629 1193 if (kmemleak_enabled)
8e0c4ab3
PW
1194 /*
1195 * Create object with OBJECT_PHYS flag and
1196 * assume min_count 0.
1197 */
0c24e061 1198 create_object_phys((unsigned long)phys, size, 0, gfp);
9099daed
CM
1199}
1200EXPORT_SYMBOL(kmemleak_alloc_phys);
1201
1202/**
1203 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1204 * physical address argument
e8b098fc
MR
1205 * @phys: physical address if the beginning or inside an object. This
1206 * also represents the start of the range to be freed
1207 * @size: size to be unregistered
9099daed
CM
1208 */
1209void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1210{
0c24e061
PW
1211 pr_debug("%s(0x%pa)\n", __func__, &phys);
1212
84c32629 1213 if (kmemleak_enabled)
0c24e061 1214 delete_object_part((unsigned long)phys, size, true);
9099daed
CM
1215}
1216EXPORT_SYMBOL(kmemleak_free_part_phys);
1217
9099daed
CM
1218/**
1219 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1220 * address argument
e8b098fc 1221 * @phys: physical address of the object
9099daed
CM
1222 */
1223void __ref kmemleak_ignore_phys(phys_addr_t phys)
1224{
0c24e061
PW
1225 pr_debug("%s(0x%pa)\n", __func__, &phys);
1226
84c32629 1227 if (kmemleak_enabled)
0c24e061 1228 make_black_object((unsigned long)phys, true);
9099daed
CM
1229}
1230EXPORT_SYMBOL(kmemleak_ignore_phys);
1231
04609ccc
CM
1232/*
1233 * Update an object's checksum and return true if it was modified.
1234 */
1235static bool update_checksum(struct kmemleak_object *object)
1236{
1237 u32 old_csum = object->checksum;
1238
0c24e061
PW
1239 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1240 return false;
1241
e79ed2f1 1242 kasan_disable_current();
69d0b54d 1243 kcsan_disable_current();
6c7a00b8 1244 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
e79ed2f1 1245 kasan_enable_current();
69d0b54d 1246 kcsan_enable_current();
e79ed2f1 1247
04609ccc
CM
1248 return object->checksum != old_csum;
1249}
1250
04f70d13
CM
1251/*
1252 * Update an object's references. object->lock must be held by the caller.
1253 */
1254static void update_refs(struct kmemleak_object *object)
1255{
1256 if (!color_white(object)) {
1257 /* non-orphan, ignored or new */
1258 return;
1259 }
1260
1261 /*
1262 * Increase the object's reference count (number of pointers to the
1263 * memory block). If this count reaches the required minimum, the
1264 * object's color will become gray and it will be added to the
1265 * gray_list.
1266 */
1267 object->count++;
1268 if (color_gray(object)) {
1269 /* put_object() called when removing from gray_list */
1270 WARN_ON(!get_object(object));
1271 list_add_tail(&object->gray_list, &gray_list);
1272 }
1273}
1274
3c7b4e6b 1275/*
0b5121ef 1276 * Memory scanning is a long process and it needs to be interruptible. This
25985edc 1277 * function checks whether such interrupt condition occurred.
3c7b4e6b
CM
1278 */
1279static int scan_should_stop(void)
1280{
8910ae89 1281 if (!kmemleak_enabled)
3c7b4e6b
CM
1282 return 1;
1283
1284 /*
1285 * This function may be called from either process or kthread context,
1286 * hence the need to check for both stop conditions.
1287 */
1288 if (current->mm)
1289 return signal_pending(current);
1290 else
1291 return kthread_should_stop();
1292
1293 return 0;
1294}
1295
1296/*
1297 * Scan a memory block (exclusive range) for valid pointers and add those
1298 * found to the gray list.
1299 */
1300static void scan_block(void *_start, void *_end,
93ada579 1301 struct kmemleak_object *scanned)
3c7b4e6b
CM
1302{
1303 unsigned long *ptr;
1304 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1305 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
93ada579 1306 unsigned long flags;
a2f77575 1307 unsigned long untagged_ptr;
3c7b4e6b 1308
8c96f1bc 1309 raw_spin_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b 1310 for (ptr = start; ptr < end; ptr++) {
3c7b4e6b 1311 struct kmemleak_object *object;
8e019366 1312 unsigned long pointer;
94f4a161 1313 unsigned long excess_ref;
3c7b4e6b
CM
1314
1315 if (scan_should_stop())
1316 break;
1317
e79ed2f1 1318 kasan_disable_current();
6c7a00b8 1319 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
e79ed2f1 1320 kasan_enable_current();
8e019366 1321
a2f77575
AK
1322 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1323 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
93ada579
CM
1324 continue;
1325
1326 /*
1327 * No need for get_object() here since we hold kmemleak_lock.
1328 * object->use_count cannot be dropped to 0 while the object
1329 * is still present in object_tree_root and object_list
1330 * (with updates protected by kmemleak_lock).
1331 */
1332 object = lookup_object(pointer, 1);
3c7b4e6b
CM
1333 if (!object)
1334 continue;
93ada579 1335 if (object == scanned)
3c7b4e6b 1336 /* self referenced, ignore */
3c7b4e6b 1337 continue;
3c7b4e6b
CM
1338
1339 /*
1340 * Avoid the lockdep recursive warning on object->lock being
1341 * previously acquired in scan_object(). These locks are
1342 * enclosed by scan_mutex.
1343 */
8c96f1bc 1344 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161
CM
1345 /* only pass surplus references (object already gray) */
1346 if (color_gray(object)) {
1347 excess_ref = object->excess_ref;
1348 /* no need for update_refs() if object already gray */
1349 } else {
1350 excess_ref = 0;
1351 update_refs(object);
1352 }
8c96f1bc 1353 raw_spin_unlock(&object->lock);
94f4a161
CM
1354
1355 if (excess_ref) {
1356 object = lookup_object(excess_ref, 0);
1357 if (!object)
1358 continue;
1359 if (object == scanned)
1360 /* circular reference, ignore */
1361 continue;
8c96f1bc 1362 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161 1363 update_refs(object);
8c96f1bc 1364 raw_spin_unlock(&object->lock);
94f4a161 1365 }
93ada579 1366 }
8c96f1bc 1367 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
93ada579 1368}
0587da40 1369
93ada579
CM
1370/*
1371 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1372 */
dce5b0bd 1373#ifdef CONFIG_SMP
93ada579
CM
1374static void scan_large_block(void *start, void *end)
1375{
1376 void *next;
1377
1378 while (start < end) {
1379 next = min(start + MAX_SCAN_SIZE, end);
1380 scan_block(start, next, NULL);
1381 start = next;
1382 cond_resched();
3c7b4e6b
CM
1383 }
1384}
dce5b0bd 1385#endif
3c7b4e6b
CM
1386
1387/*
1388 * Scan a memory block corresponding to a kmemleak_object. A condition is
1389 * that object->use_count >= 1.
1390 */
1391static void scan_object(struct kmemleak_object *object)
1392{
1393 struct kmemleak_scan_area *area;
3c7b4e6b 1394 unsigned long flags;
0c24e061 1395 void *obj_ptr;
3c7b4e6b
CM
1396
1397 /*
21ae2956
UKK
1398 * Once the object->lock is acquired, the corresponding memory block
1399 * cannot be freed (the same lock is acquired in delete_object).
3c7b4e6b 1400 */
8c96f1bc 1401 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
1402 if (object->flags & OBJECT_NO_SCAN)
1403 goto out;
1404 if (!(object->flags & OBJECT_ALLOCATED))
1405 /* already freed object */
1406 goto out;
0c24e061
PW
1407
1408 obj_ptr = object->flags & OBJECT_PHYS ?
1409 __va((phys_addr_t)object->pointer) :
1410 (void *)object->pointer;
1411
dba82d94
CM
1412 if (hlist_empty(&object->area_list) ||
1413 object->flags & OBJECT_FULL_SCAN) {
0c24e061
PW
1414 void *start = obj_ptr;
1415 void *end = obj_ptr + object->size;
93ada579
CM
1416 void *next;
1417
1418 do {
1419 next = min(start + MAX_SCAN_SIZE, end);
1420 scan_block(start, next, object);
af98603d 1421
93ada579
CM
1422 start = next;
1423 if (start >= end)
1424 break;
af98603d 1425
8c96f1bc 1426 raw_spin_unlock_irqrestore(&object->lock, flags);
af98603d 1427 cond_resched();
8c96f1bc 1428 raw_spin_lock_irqsave(&object->lock, flags);
93ada579 1429 } while (object->flags & OBJECT_ALLOCATED);
af98603d 1430 } else
b67bfe0d 1431 hlist_for_each_entry(area, &object->area_list, node)
c017b4be
CM
1432 scan_block((void *)area->start,
1433 (void *)(area->start + area->size),
93ada579 1434 object);
3c7b4e6b 1435out:
8c96f1bc 1436 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
1437}
1438
04609ccc
CM
1439/*
1440 * Scan the objects already referenced (gray objects). More objects will be
1441 * referenced and, if there are no memory leaks, all the objects are scanned.
1442 */
1443static void scan_gray_list(void)
1444{
1445 struct kmemleak_object *object, *tmp;
1446
1447 /*
1448 * The list traversal is safe for both tail additions and removals
1449 * from inside the loop. The kmemleak objects cannot be freed from
1450 * outside the loop because their use_count was incremented.
1451 */
1452 object = list_entry(gray_list.next, typeof(*object), gray_list);
1453 while (&object->gray_list != &gray_list) {
1454 cond_resched();
1455
1456 /* may add new objects to the list */
1457 if (!scan_should_stop())
1458 scan_object(object);
1459
1460 tmp = list_entry(object->gray_list.next, typeof(*object),
1461 gray_list);
1462
1463 /* remove the object from the list and release it */
1464 list_del(&object->gray_list);
1465 put_object(object);
1466
1467 object = tmp;
1468 }
1469 WARN_ON(!list_empty(&gray_list));
1470}
1471
984a6083 1472/*
25e9fa22 1473 * Conditionally call resched() in an object iteration loop while making sure
984a6083
WL
1474 * that the given object won't go away without RCU read lock by performing a
1475 * get_object() if !pinned.
1476 *
1477 * Return: false if can't do a cond_resched() due to get_object() failure
1478 * true otherwise
1479 */
1480static bool kmemleak_cond_resched(struct kmemleak_object *object, bool pinned)
1481{
1482 if (!pinned && !get_object(object))
1483 return false;
1484
1485 rcu_read_unlock();
1486 cond_resched();
1487 rcu_read_lock();
1488 if (!pinned)
1489 put_object(object);
1490 return true;
1491}
1492
3c7b4e6b
CM
1493/*
1494 * Scan data sections and all the referenced memory blocks allocated via the
1495 * kernel's standard allocators. This function must be called with the
1496 * scan_mutex held.
1497 */
1498static void kmemleak_scan(void)
1499{
04609ccc 1500 struct kmemleak_object *object;
c10a0f87
LY
1501 struct zone *zone;
1502 int __maybe_unused i;
4698c1f2 1503 int new_leaks = 0;
984a6083 1504 int loop_cnt = 0;
3c7b4e6b 1505
acf4968e
CM
1506 jiffies_last_scan = jiffies;
1507
3c7b4e6b
CM
1508 /* prepare the kmemleak_object's */
1509 rcu_read_lock();
1510 list_for_each_entry_rcu(object, &object_list, object_list) {
6edda04c
WL
1511 bool obj_pinned = false;
1512
00c15506 1513 raw_spin_lock_irq(&object->lock);
3c7b4e6b
CM
1514#ifdef DEBUG
1515 /*
1516 * With a few exceptions there should be a maximum of
1517 * 1 reference to any object at this point.
1518 */
1519 if (atomic_read(&object->use_count) > 1) {
ae281064 1520 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1521 atomic_read(&object->use_count));
1522 dump_object_info(object);
1523 }
1524#endif
84c32629
PW
1525
1526 /* ignore objects outside lowmem (paint them black) */
1527 if ((object->flags & OBJECT_PHYS) &&
1528 !(object->flags & OBJECT_NO_SCAN)) {
1529 unsigned long phys = object->pointer;
1530
1531 if (PHYS_PFN(phys) < min_low_pfn ||
1532 PHYS_PFN(phys + object->size) >= max_low_pfn)
1533 __paint_it(object, KMEMLEAK_BLACK);
1534 }
1535
3c7b4e6b
CM
1536 /* reset the reference count (whiten the object) */
1537 object->count = 0;
6edda04c 1538 if (color_gray(object) && get_object(object)) {
3c7b4e6b 1539 list_add_tail(&object->gray_list, &gray_list);
6edda04c
WL
1540 obj_pinned = true;
1541 }
3c7b4e6b 1542
00c15506 1543 raw_spin_unlock_irq(&object->lock);
6edda04c
WL
1544
1545 /*
984a6083 1546 * Do a cond_resched() every 64k objects to avoid soft lockup.
6edda04c 1547 */
984a6083
WL
1548 if (!(++loop_cnt & 0xffff) &&
1549 !kmemleak_cond_resched(object, obj_pinned))
1550 loop_cnt--; /* Try again on next object */
3c7b4e6b
CM
1551 }
1552 rcu_read_unlock();
1553
3c7b4e6b
CM
1554#ifdef CONFIG_SMP
1555 /* per-cpu sections scanning */
1556 for_each_possible_cpu(i)
93ada579
CM
1557 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1558 __per_cpu_end + per_cpu_offset(i));
3c7b4e6b
CM
1559#endif
1560
1561 /*
029aeff5 1562 * Struct page scanning for each node.
3c7b4e6b 1563 */
bfc8c901 1564 get_online_mems();
c10a0f87
LY
1565 for_each_populated_zone(zone) {
1566 unsigned long start_pfn = zone->zone_start_pfn;
1567 unsigned long end_pfn = zone_end_pfn(zone);
3c7b4e6b
CM
1568 unsigned long pfn;
1569
1570 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
9f1eb38e 1571 struct page *page = pfn_to_online_page(pfn);
3c7b4e6b 1572
9f1eb38e
OS
1573 if (!page)
1574 continue;
1575
c10a0f87
LY
1576 /* only scan pages belonging to this zone */
1577 if (page_zone(page) != zone)
3c7b4e6b 1578 continue;
3c7b4e6b
CM
1579 /* only scan if page is in use */
1580 if (page_count(page) == 0)
1581 continue;
93ada579 1582 scan_block(page, page + 1, NULL);
13ab183d 1583 if (!(pfn & 63))
bde5f6bc 1584 cond_resched();
3c7b4e6b
CM
1585 }
1586 }
bfc8c901 1587 put_online_mems();
3c7b4e6b
CM
1588
1589 /*
43ed5d6e 1590 * Scanning the task stacks (may introduce false negatives).
3c7b4e6b
CM
1591 */
1592 if (kmemleak_stack_scan) {
43ed5d6e
CM
1593 struct task_struct *p, *g;
1594
c4b28963
DB
1595 rcu_read_lock();
1596 for_each_process_thread(g, p) {
37df49f4
CM
1597 void *stack = try_get_task_stack(p);
1598 if (stack) {
1599 scan_block(stack, stack + THREAD_SIZE, NULL);
1600 put_task_stack(p);
1601 }
c4b28963
DB
1602 }
1603 rcu_read_unlock();
3c7b4e6b
CM
1604 }
1605
1606 /*
1607 * Scan the objects already referenced from the sections scanned
04609ccc 1608 * above.
3c7b4e6b 1609 */
04609ccc 1610 scan_gray_list();
2587362e
CM
1611
1612 /*
04609ccc
CM
1613 * Check for new or unreferenced objects modified since the previous
1614 * scan and color them gray until the next scan.
2587362e
CM
1615 */
1616 rcu_read_lock();
984a6083 1617 loop_cnt = 0;
2587362e 1618 list_for_each_entry_rcu(object, &object_list, object_list) {
984a6083
WL
1619 /*
1620 * Do a cond_resched() every 64k objects to avoid soft lockup.
1621 */
1622 if (!(++loop_cnt & 0xffff) &&
1623 !kmemleak_cond_resched(object, false))
1624 loop_cnt--; /* Try again on next object */
1625
64977918
WL
1626 /*
1627 * This is racy but we can save the overhead of lock/unlock
1628 * calls. The missed objects, if any, should be caught in
1629 * the next scan.
1630 */
1631 if (!color_white(object))
1632 continue;
00c15506 1633 raw_spin_lock_irq(&object->lock);
04609ccc
CM
1634 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1635 && update_checksum(object) && get_object(object)) {
1636 /* color it gray temporarily */
1637 object->count = object->min_count;
2587362e
CM
1638 list_add_tail(&object->gray_list, &gray_list);
1639 }
00c15506 1640 raw_spin_unlock_irq(&object->lock);
2587362e
CM
1641 }
1642 rcu_read_unlock();
1643
04609ccc
CM
1644 /*
1645 * Re-scan the gray list for modified unreferenced objects.
1646 */
1647 scan_gray_list();
4698c1f2 1648
17bb9e0d 1649 /*
04609ccc 1650 * If scanning was stopped do not report any new unreferenced objects.
17bb9e0d 1651 */
04609ccc 1652 if (scan_should_stop())
17bb9e0d
CM
1653 return;
1654
4698c1f2
CM
1655 /*
1656 * Scanning result reporting.
1657 */
1658 rcu_read_lock();
984a6083 1659 loop_cnt = 0;
4698c1f2 1660 list_for_each_entry_rcu(object, &object_list, object_list) {
984a6083
WL
1661 /*
1662 * Do a cond_resched() every 64k objects to avoid soft lockup.
1663 */
1664 if (!(++loop_cnt & 0xffff) &&
1665 !kmemleak_cond_resched(object, false))
1666 loop_cnt--; /* Try again on next object */
1667
64977918
WL
1668 /*
1669 * This is racy but we can save the overhead of lock/unlock
1670 * calls. The missed objects, if any, should be caught in
1671 * the next scan.
1672 */
1673 if (!color_white(object))
1674 continue;
00c15506 1675 raw_spin_lock_irq(&object->lock);
4698c1f2
CM
1676 if (unreferenced_object(object) &&
1677 !(object->flags & OBJECT_REPORTED)) {
1678 object->flags |= OBJECT_REPORTED;
154221c3
VW
1679
1680 if (kmemleak_verbose)
1681 print_unreferenced(NULL, object);
1682
4698c1f2
CM
1683 new_leaks++;
1684 }
00c15506 1685 raw_spin_unlock_irq(&object->lock);
4698c1f2
CM
1686 }
1687 rcu_read_unlock();
1688
dc9b3f42
LZ
1689 if (new_leaks) {
1690 kmemleak_found_leaks = true;
1691
756a025f
JP
1692 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1693 new_leaks);
dc9b3f42 1694 }
4698c1f2 1695
3c7b4e6b
CM
1696}
1697
1698/*
1699 * Thread function performing automatic memory scanning. Unreferenced objects
1700 * at the end of a memory scan are reported but only the first time.
1701 */
1702static int kmemleak_scan_thread(void *arg)
1703{
d53ce042 1704 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
3c7b4e6b 1705
ae281064 1706 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1707 set_user_nice(current, 10);
3c7b4e6b
CM
1708
1709 /*
1710 * Wait before the first scan to allow the system to fully initialize.
1711 */
1712 if (first_run) {
98c42d94 1713 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
3c7b4e6b 1714 first_run = 0;
98c42d94
VN
1715 while (timeout && !kthread_should_stop())
1716 timeout = schedule_timeout_interruptible(timeout);
3c7b4e6b
CM
1717 }
1718
1719 while (!kthread_should_stop()) {
54dd200c 1720 signed long timeout = READ_ONCE(jiffies_scan_wait);
3c7b4e6b
CM
1721
1722 mutex_lock(&scan_mutex);
3c7b4e6b 1723 kmemleak_scan();
3c7b4e6b 1724 mutex_unlock(&scan_mutex);
4698c1f2 1725
3c7b4e6b
CM
1726 /* wait before the next scan */
1727 while (timeout && !kthread_should_stop())
1728 timeout = schedule_timeout_interruptible(timeout);
1729 }
1730
ae281064 1731 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1732
1733 return 0;
1734}
1735
1736/*
1737 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1738 * with the scan_mutex held.
3c7b4e6b 1739 */
7eb0d5e5 1740static void start_scan_thread(void)
3c7b4e6b
CM
1741{
1742 if (scan_thread)
1743 return;
1744 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1745 if (IS_ERR(scan_thread)) {
598d8091 1746 pr_warn("Failed to create the scan thread\n");
3c7b4e6b
CM
1747 scan_thread = NULL;
1748 }
1749}
1750
1751/*
914b6dff 1752 * Stop the automatic memory scanning thread.
3c7b4e6b 1753 */
7eb0d5e5 1754static void stop_scan_thread(void)
3c7b4e6b
CM
1755{
1756 if (scan_thread) {
1757 kthread_stop(scan_thread);
1758 scan_thread = NULL;
1759 }
1760}
1761
1762/*
1763 * Iterate over the object_list and return the first valid object at or after
1764 * the required position with its use_count incremented. The function triggers
1765 * a memory scanning when the pos argument points to the first position.
1766 */
1767static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1768{
1769 struct kmemleak_object *object;
1770 loff_t n = *pos;
b87324d0
CM
1771 int err;
1772
1773 err = mutex_lock_interruptible(&scan_mutex);
1774 if (err < 0)
1775 return ERR_PTR(err);
3c7b4e6b 1776
3c7b4e6b
CM
1777 rcu_read_lock();
1778 list_for_each_entry_rcu(object, &object_list, object_list) {
1779 if (n-- > 0)
1780 continue;
1781 if (get_object(object))
1782 goto out;
1783 }
1784 object = NULL;
1785out:
3c7b4e6b
CM
1786 return object;
1787}
1788
1789/*
1790 * Return the next object in the object_list. The function decrements the
1791 * use_count of the previous object and increases that of the next one.
1792 */
1793static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1794{
1795 struct kmemleak_object *prev_obj = v;
1796 struct kmemleak_object *next_obj = NULL;
58fac095 1797 struct kmemleak_object *obj = prev_obj;
3c7b4e6b
CM
1798
1799 ++(*pos);
3c7b4e6b 1800
58fac095 1801 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
52c3ce4e
CM
1802 if (get_object(obj)) {
1803 next_obj = obj;
3c7b4e6b 1804 break;
52c3ce4e 1805 }
3c7b4e6b 1806 }
288c857d 1807
3c7b4e6b
CM
1808 put_object(prev_obj);
1809 return next_obj;
1810}
1811
1812/*
1813 * Decrement the use_count of the last object required, if any.
1814 */
1815static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1816{
b87324d0
CM
1817 if (!IS_ERR(v)) {
1818 /*
1819 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1820 * waiting was interrupted, so only release it if !IS_ERR.
1821 */
f5886c7f 1822 rcu_read_unlock();
b87324d0
CM
1823 mutex_unlock(&scan_mutex);
1824 if (v)
1825 put_object(v);
1826 }
3c7b4e6b
CM
1827}
1828
1829/*
1830 * Print the information for an unreferenced object to the seq file.
1831 */
1832static int kmemleak_seq_show(struct seq_file *seq, void *v)
1833{
1834 struct kmemleak_object *object = v;
1835 unsigned long flags;
1836
8c96f1bc 1837 raw_spin_lock_irqsave(&object->lock, flags);
288c857d 1838 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1839 print_unreferenced(seq, object);
8c96f1bc 1840 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
1841 return 0;
1842}
1843
1844static const struct seq_operations kmemleak_seq_ops = {
1845 .start = kmemleak_seq_start,
1846 .next = kmemleak_seq_next,
1847 .stop = kmemleak_seq_stop,
1848 .show = kmemleak_seq_show,
1849};
1850
1851static int kmemleak_open(struct inode *inode, struct file *file)
1852{
b87324d0 1853 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1854}
1855
189d84ed
CM
1856static int dump_str_object_info(const char *str)
1857{
1858 unsigned long flags;
1859 struct kmemleak_object *object;
1860 unsigned long addr;
1861
dc053733
AP
1862 if (kstrtoul(str, 0, &addr))
1863 return -EINVAL;
189d84ed
CM
1864 object = find_and_get_object(addr, 0);
1865 if (!object) {
1866 pr_info("Unknown object at 0x%08lx\n", addr);
1867 return -EINVAL;
1868 }
1869
8c96f1bc 1870 raw_spin_lock_irqsave(&object->lock, flags);
189d84ed 1871 dump_object_info(object);
8c96f1bc 1872 raw_spin_unlock_irqrestore(&object->lock, flags);
189d84ed
CM
1873
1874 put_object(object);
1875 return 0;
1876}
1877
30b37101
LR
1878/*
1879 * We use grey instead of black to ensure we can do future scans on the same
1880 * objects. If we did not do future scans these black objects could
1881 * potentially contain references to newly allocated objects in the future and
1882 * we'd end up with false positives.
1883 */
1884static void kmemleak_clear(void)
1885{
1886 struct kmemleak_object *object;
30b37101
LR
1887
1888 rcu_read_lock();
1889 list_for_each_entry_rcu(object, &object_list, object_list) {
00c15506 1890 raw_spin_lock_irq(&object->lock);
30b37101
LR
1891 if ((object->flags & OBJECT_REPORTED) &&
1892 unreferenced_object(object))
a1084c87 1893 __paint_it(object, KMEMLEAK_GREY);
00c15506 1894 raw_spin_unlock_irq(&object->lock);
30b37101
LR
1895 }
1896 rcu_read_unlock();
dc9b3f42
LZ
1897
1898 kmemleak_found_leaks = false;
30b37101
LR
1899}
1900
c89da70c
LZ
1901static void __kmemleak_do_cleanup(void);
1902
3c7b4e6b
CM
1903/*
1904 * File write operation to configure kmemleak at run-time. The following
1905 * commands can be written to the /sys/kernel/debug/kmemleak file:
1906 * off - disable kmemleak (irreversible)
1907 * stack=on - enable the task stacks scanning
1908 * stack=off - disable the tasks stacks scanning
1909 * scan=on - start the automatic memory scanning thread
1910 * scan=off - stop the automatic memory scanning thread
1911 * scan=... - set the automatic memory scanning period in seconds (0 to
1912 * disable it)
4698c1f2 1913 * scan - trigger a memory scan
30b37101 1914 * clear - mark all current reported unreferenced kmemleak objects as
c89da70c
LZ
1915 * grey to ignore printing them, or free all kmemleak objects
1916 * if kmemleak has been disabled.
189d84ed 1917 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1918 */
1919static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1920 size_t size, loff_t *ppos)
1921{
1922 char buf[64];
1923 int buf_size;
b87324d0 1924 int ret;
3c7b4e6b
CM
1925
1926 buf_size = min(size, (sizeof(buf) - 1));
1927 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1928 return -EFAULT;
1929 buf[buf_size] = 0;
1930
b87324d0
CM
1931 ret = mutex_lock_interruptible(&scan_mutex);
1932 if (ret < 0)
1933 return ret;
1934
c89da70c 1935 if (strncmp(buf, "clear", 5) == 0) {
8910ae89 1936 if (kmemleak_enabled)
c89da70c
LZ
1937 kmemleak_clear();
1938 else
1939 __kmemleak_do_cleanup();
1940 goto out;
1941 }
1942
8910ae89 1943 if (!kmemleak_enabled) {
4e4dfce2 1944 ret = -EPERM;
c89da70c
LZ
1945 goto out;
1946 }
1947
3c7b4e6b
CM
1948 if (strncmp(buf, "off", 3) == 0)
1949 kmemleak_disable();
1950 else if (strncmp(buf, "stack=on", 8) == 0)
1951 kmemleak_stack_scan = 1;
1952 else if (strncmp(buf, "stack=off", 9) == 0)
1953 kmemleak_stack_scan = 0;
1954 else if (strncmp(buf, "scan=on", 7) == 0)
1955 start_scan_thread();
1956 else if (strncmp(buf, "scan=off", 8) == 0)
1957 stop_scan_thread();
1958 else if (strncmp(buf, "scan=", 5) == 0) {
54dd200c
YX
1959 unsigned secs;
1960 unsigned long msecs;
3c7b4e6b 1961
54dd200c 1962 ret = kstrtouint(buf + 5, 0, &secs);
b87324d0
CM
1963 if (ret < 0)
1964 goto out;
54dd200c
YX
1965
1966 msecs = secs * MSEC_PER_SEC;
1967 if (msecs > UINT_MAX)
1968 msecs = UINT_MAX;
1969
3c7b4e6b 1970 stop_scan_thread();
54dd200c
YX
1971 if (msecs) {
1972 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
3c7b4e6b
CM
1973 start_scan_thread();
1974 }
4698c1f2
CM
1975 } else if (strncmp(buf, "scan", 4) == 0)
1976 kmemleak_scan();
189d84ed
CM
1977 else if (strncmp(buf, "dump=", 5) == 0)
1978 ret = dump_str_object_info(buf + 5);
4698c1f2 1979 else
b87324d0
CM
1980 ret = -EINVAL;
1981
1982out:
1983 mutex_unlock(&scan_mutex);
1984 if (ret < 0)
1985 return ret;
3c7b4e6b
CM
1986
1987 /* ignore the rest of the buffer, only one command at a time */
1988 *ppos += size;
1989 return size;
1990}
1991
1992static const struct file_operations kmemleak_fops = {
1993 .owner = THIS_MODULE,
1994 .open = kmemleak_open,
1995 .read = seq_read,
1996 .write = kmemleak_write,
1997 .llseek = seq_lseek,
5f3bf19a 1998 .release = seq_release,
3c7b4e6b
CM
1999};
2000
c89da70c
LZ
2001static void __kmemleak_do_cleanup(void)
2002{
2abd839a 2003 struct kmemleak_object *object, *tmp;
c89da70c 2004
2abd839a
CM
2005 /*
2006 * Kmemleak has already been disabled, no need for RCU list traversal
2007 * or kmemleak_lock held.
2008 */
2009 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2010 __remove_object(object);
2011 __delete_object(object);
2012 }
c89da70c
LZ
2013}
2014
3c7b4e6b 2015/*
74341703
CM
2016 * Stop the memory scanning thread and free the kmemleak internal objects if
2017 * no previous scan thread (otherwise, kmemleak may still have some useful
2018 * information on memory leaks).
3c7b4e6b 2019 */
179a8100 2020static void kmemleak_do_cleanup(struct work_struct *work)
3c7b4e6b 2021{
3c7b4e6b 2022 stop_scan_thread();
3c7b4e6b 2023
914b6dff 2024 mutex_lock(&scan_mutex);
c5f3b1a5 2025 /*
914b6dff
VM
2026 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2027 * longer track object freeing. Ordering of the scan thread stopping and
2028 * the memory accesses below is guaranteed by the kthread_stop()
2029 * function.
c5f3b1a5
CM
2030 */
2031 kmemleak_free_enabled = 0;
914b6dff 2032 mutex_unlock(&scan_mutex);
c5f3b1a5 2033
c89da70c
LZ
2034 if (!kmemleak_found_leaks)
2035 __kmemleak_do_cleanup();
2036 else
756a025f 2037 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
3c7b4e6b
CM
2038}
2039
179a8100 2040static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
3c7b4e6b
CM
2041
2042/*
2043 * Disable kmemleak. No memory allocation/freeing will be traced once this
2044 * function is called. Disabling kmemleak is an irreversible operation.
2045 */
2046static void kmemleak_disable(void)
2047{
2048 /* atomically check whether it was already invoked */
8910ae89 2049 if (cmpxchg(&kmemleak_error, 0, 1))
3c7b4e6b
CM
2050 return;
2051
2052 /* stop any memory operation tracing */
8910ae89 2053 kmemleak_enabled = 0;
3c7b4e6b
CM
2054
2055 /* check whether it is too early for a kernel thread */
8910ae89 2056 if (kmemleak_initialized)
179a8100 2057 schedule_work(&cleanup_work);
c5f3b1a5
CM
2058 else
2059 kmemleak_free_enabled = 0;
3c7b4e6b
CM
2060
2061 pr_info("Kernel memory leak detector disabled\n");
2062}
2063
2064/*
2065 * Allow boot-time kmemleak disabling (enabled by default).
2066 */
8bd30c10 2067static int __init kmemleak_boot_config(char *str)
3c7b4e6b
CM
2068{
2069 if (!str)
2070 return -EINVAL;
2071 if (strcmp(str, "off") == 0)
2072 kmemleak_disable();
ab0155a2
JB
2073 else if (strcmp(str, "on") == 0)
2074 kmemleak_skip_disable = 1;
2075 else
3c7b4e6b
CM
2076 return -EINVAL;
2077 return 0;
2078}
2079early_param("kmemleak", kmemleak_boot_config);
2080
2081/*
2030117d 2082 * Kmemleak initialization.
3c7b4e6b
CM
2083 */
2084void __init kmemleak_init(void)
2085{
ab0155a2
JB
2086#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2087 if (!kmemleak_skip_disable) {
2088 kmemleak_disable();
2089 return;
2090 }
2091#endif
2092
c5665868
CM
2093 if (kmemleak_error)
2094 return;
2095
56a61617 2096 stack_depot_init();
3c7b4e6b
CM
2097 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2098 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2099
2100 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2101 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
3c7b4e6b 2102
298a32b1
CM
2103 /* register the data/bss sections */
2104 create_object((unsigned long)_sdata, _edata - _sdata,
2105 KMEMLEAK_GREY, GFP_ATOMIC);
2106 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2107 KMEMLEAK_GREY, GFP_ATOMIC);
2108 /* only register .data..ro_after_init if not within .data */
b0d14fc4 2109 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
298a32b1
CM
2110 create_object((unsigned long)__start_ro_after_init,
2111 __end_ro_after_init - __start_ro_after_init,
2112 KMEMLEAK_GREY, GFP_ATOMIC);
3c7b4e6b
CM
2113}
2114
2115/*
2116 * Late initialization function.
2117 */
2118static int __init kmemleak_late_init(void)
2119{
8910ae89 2120 kmemleak_initialized = 1;
3c7b4e6b 2121
282401df 2122 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
b353756b 2123
8910ae89 2124 if (kmemleak_error) {
3c7b4e6b 2125 /*
25985edc 2126 * Some error occurred and kmemleak was disabled. There is a
3c7b4e6b
CM
2127 * small chance that kmemleak_disable() was called immediately
2128 * after setting kmemleak_initialized and we may end up with
2129 * two clean-up threads but serialized by scan_mutex.
2130 */
179a8100 2131 schedule_work(&cleanup_work);
3c7b4e6b
CM
2132 return -ENOMEM;
2133 }
2134
d53ce042
SK
2135 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2136 mutex_lock(&scan_mutex);
2137 start_scan_thread();
2138 mutex_unlock(&scan_mutex);
2139 }
3c7b4e6b 2140
0e965a6b
QC
2141 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2142 mem_pool_free_count);
3c7b4e6b
CM
2143
2144 return 0;
2145}
2146late_initcall(kmemleak_late_init);