]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/ksm.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[thirdparty/kernel/stable.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
28#include <linux/jhash.h>
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
f8af4da3 42
31dbd01f 43#include <asm/tlbflush.h>
73848b46 44#include "internal.h"
31dbd01f 45
e850dcf5
HD
46#ifdef CONFIG_NUMA
47#define NUMA(x) (x)
48#define DO_NUMA(x) do { (x); } while (0)
49#else
50#define NUMA(x) (0)
51#define DO_NUMA(x) do { } while (0)
52#endif
53
5a2ca3ef
MR
54/**
55 * DOC: Overview
56 *
31dbd01f
IE
57 * A few notes about the KSM scanning process,
58 * to make it easier to understand the data structures below:
59 *
60 * In order to reduce excessive scanning, KSM sorts the memory pages by their
61 * contents into a data structure that holds pointers to the pages' locations.
62 *
63 * Since the contents of the pages may change at any moment, KSM cannot just
64 * insert the pages into a normal sorted tree and expect it to find anything.
65 * Therefore KSM uses two data structures - the stable and the unstable tree.
66 *
67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68 * by their contents. Because each such page is write-protected, searching on
69 * this tree is fully assured to be working (except when pages are unmapped),
70 * and therefore this tree is called the stable tree.
71 *
5a2ca3ef
MR
72 * The stable tree node includes information required for reverse
73 * mapping from a KSM page to virtual addresses that map this page.
74 *
75 * In order to avoid large latencies of the rmap walks on KSM pages,
76 * KSM maintains two types of nodes in the stable tree:
77 *
78 * * the regular nodes that keep the reverse mapping structures in a
79 * linked list
80 * * the "chains" that link nodes ("dups") that represent the same
81 * write protected memory content, but each "dup" corresponds to a
82 * different KSM page copy of that content
83 *
84 * Internally, the regular nodes, "dups" and "chains" are represented
85 * using the same :c:type:`struct stable_node` structure.
86 *
31dbd01f
IE
87 * In addition to the stable tree, KSM uses a second data structure called the
88 * unstable tree: this tree holds pointers to pages which have been found to
89 * be "unchanged for a period of time". The unstable tree sorts these pages
90 * by their contents, but since they are not write-protected, KSM cannot rely
91 * upon the unstable tree to work correctly - the unstable tree is liable to
92 * be corrupted as its contents are modified, and so it is called unstable.
93 *
94 * KSM solves this problem by several techniques:
95 *
96 * 1) The unstable tree is flushed every time KSM completes scanning all
97 * memory areas, and then the tree is rebuilt again from the beginning.
98 * 2) KSM will only insert into the unstable tree, pages whose hash value
99 * has not changed since the previous scan of all memory areas.
100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101 * colors of the nodes and not on their contents, assuring that even when
102 * the tree gets "corrupted" it won't get out of balance, so scanning time
103 * remains the same (also, searching and inserting nodes in an rbtree uses
104 * the same algorithm, so we have no overhead when we flush and rebuild).
105 * 4) KSM never flushes the stable tree, which means that even if it were to
106 * take 10 attempts to find a page in the unstable tree, once it is found,
107 * it is secured in the stable tree. (When we scan a new page, we first
108 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
109 *
110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
112 */
113
114/**
115 * struct mm_slot - ksm information per mm that is being scanned
116 * @link: link to the mm_slots hash list
117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
119 * @mm: the mm that this information is valid for
120 */
121struct mm_slot {
122 struct hlist_node link;
123 struct list_head mm_list;
6514d511 124 struct rmap_item *rmap_list;
31dbd01f
IE
125 struct mm_struct *mm;
126};
127
128/**
129 * struct ksm_scan - cursor for scanning
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
6514d511 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
133 * @seqnr: count of completed full scans (needed when removing unstable node)
134 *
135 * There is only the one ksm_scan instance of this cursor structure.
136 */
137struct ksm_scan {
138 struct mm_slot *mm_slot;
139 unsigned long address;
6514d511 140 struct rmap_item **rmap_list;
31dbd01f
IE
141 unsigned long seqnr;
142};
143
7b6ba2c7
HD
144/**
145 * struct stable_node - node of the stable rbtree
146 * @node: rb node of this ksm page in the stable tree
4146d2d6 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 149 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 150 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
152 * @chain_prune_time: time of the last full garbage collection
153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
155 */
156struct stable_node {
4146d2d6
HD
157 union {
158 struct rb_node node; /* when node of stable tree */
159 struct { /* when listed for migration */
160 struct list_head *head;
2c653d0e
AA
161 struct {
162 struct hlist_node hlist_dup;
163 struct list_head list;
164 };
4146d2d6
HD
165 };
166 };
7b6ba2c7 167 struct hlist_head hlist;
2c653d0e
AA
168 union {
169 unsigned long kpfn;
170 unsigned long chain_prune_time;
171 };
172 /*
173 * STABLE_NODE_CHAIN can be any negative number in
174 * rmap_hlist_len negative range, but better not -1 to be able
175 * to reliably detect underflows.
176 */
177#define STABLE_NODE_CHAIN -1024
178 int rmap_hlist_len;
4146d2d6
HD
179#ifdef CONFIG_NUMA
180 int nid;
181#endif
7b6ba2c7
HD
182};
183
31dbd01f
IE
184/**
185 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 188 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
189 * @mm: the memory structure this rmap_item is pointing into
190 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
192 * @node: rb node of this rmap_item in the unstable tree
193 * @head: pointer to stable_node heading this list in the stable tree
194 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
195 */
196struct rmap_item {
6514d511 197 struct rmap_item *rmap_list;
bc56620b
HD
198 union {
199 struct anon_vma *anon_vma; /* when stable */
200#ifdef CONFIG_NUMA
201 int nid; /* when node of unstable tree */
202#endif
203 };
31dbd01f
IE
204 struct mm_struct *mm;
205 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 206 unsigned int oldchecksum; /* when unstable */
31dbd01f 207 union {
7b6ba2c7
HD
208 struct rb_node node; /* when node of unstable tree */
209 struct { /* when listed from stable tree */
210 struct stable_node *head;
211 struct hlist_node hlist;
212 };
31dbd01f
IE
213 };
214};
215
216#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
217#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
218#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
219
220/* The stable and unstable tree heads */
ef53d16c
HD
221static struct rb_root one_stable_tree[1] = { RB_ROOT };
222static struct rb_root one_unstable_tree[1] = { RB_ROOT };
223static struct rb_root *root_stable_tree = one_stable_tree;
224static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 225
4146d2d6
HD
226/* Recently migrated nodes of stable tree, pending proper placement */
227static LIST_HEAD(migrate_nodes);
2c653d0e 228#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 229
4ca3a69b
SL
230#define MM_SLOTS_HASH_BITS 10
231static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
232
233static struct mm_slot ksm_mm_head = {
234 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
235};
236static struct ksm_scan ksm_scan = {
237 .mm_slot = &ksm_mm_head,
238};
239
240static struct kmem_cache *rmap_item_cache;
7b6ba2c7 241static struct kmem_cache *stable_node_cache;
31dbd01f
IE
242static struct kmem_cache *mm_slot_cache;
243
244/* The number of nodes in the stable tree */
b4028260 245static unsigned long ksm_pages_shared;
31dbd01f 246
e178dfde 247/* The number of page slots additionally sharing those nodes */
b4028260 248static unsigned long ksm_pages_sharing;
31dbd01f 249
473b0ce4
HD
250/* The number of nodes in the unstable tree */
251static unsigned long ksm_pages_unshared;
252
253/* The number of rmap_items in use: to calculate pages_volatile */
254static unsigned long ksm_rmap_items;
255
2c653d0e
AA
256/* The number of stable_node chains */
257static unsigned long ksm_stable_node_chains;
258
259/* The number of stable_node dups linked to the stable_node chains */
260static unsigned long ksm_stable_node_dups;
261
262/* Delay in pruning stale stable_node_dups in the stable_node_chains */
263static int ksm_stable_node_chains_prune_millisecs = 2000;
264
265/* Maximum number of page slots sharing a stable node */
266static int ksm_max_page_sharing = 256;
267
31dbd01f 268/* Number of pages ksmd should scan in one batch */
2c6854fd 269static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
270
271/* Milliseconds ksmd should sleep between batches */
2ffd8679 272static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 273
e86c59b1
CI
274/* Checksum of an empty (zeroed) page */
275static unsigned int zero_checksum __read_mostly;
276
277/* Whether to merge empty (zeroed) pages with actual zero pages */
278static bool ksm_use_zero_pages __read_mostly;
279
e850dcf5 280#ifdef CONFIG_NUMA
90bd6fd3
PH
281/* Zeroed when merging across nodes is not allowed */
282static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 283static int ksm_nr_node_ids = 1;
e850dcf5
HD
284#else
285#define ksm_merge_across_nodes 1U
ef53d16c 286#define ksm_nr_node_ids 1
e850dcf5 287#endif
90bd6fd3 288
31dbd01f
IE
289#define KSM_RUN_STOP 0
290#define KSM_RUN_MERGE 1
291#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
292#define KSM_RUN_OFFLINE 4
293static unsigned long ksm_run = KSM_RUN_STOP;
294static void wait_while_offlining(void);
31dbd01f
IE
295
296static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
297static DEFINE_MUTEX(ksm_thread_mutex);
298static DEFINE_SPINLOCK(ksm_mmlist_lock);
299
300#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
301 sizeof(struct __struct), __alignof__(struct __struct),\
302 (__flags), NULL)
303
304static int __init ksm_slab_init(void)
305{
306 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
307 if (!rmap_item_cache)
308 goto out;
309
7b6ba2c7
HD
310 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
311 if (!stable_node_cache)
312 goto out_free1;
313
31dbd01f
IE
314 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
315 if (!mm_slot_cache)
7b6ba2c7 316 goto out_free2;
31dbd01f
IE
317
318 return 0;
319
7b6ba2c7
HD
320out_free2:
321 kmem_cache_destroy(stable_node_cache);
322out_free1:
31dbd01f
IE
323 kmem_cache_destroy(rmap_item_cache);
324out:
325 return -ENOMEM;
326}
327
328static void __init ksm_slab_free(void)
329{
330 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 331 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
332 kmem_cache_destroy(rmap_item_cache);
333 mm_slot_cache = NULL;
334}
335
2c653d0e
AA
336static __always_inline bool is_stable_node_chain(struct stable_node *chain)
337{
338 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
339}
340
341static __always_inline bool is_stable_node_dup(struct stable_node *dup)
342{
343 return dup->head == STABLE_NODE_DUP_HEAD;
344}
345
346static inline void stable_node_chain_add_dup(struct stable_node *dup,
347 struct stable_node *chain)
348{
349 VM_BUG_ON(is_stable_node_dup(dup));
350 dup->head = STABLE_NODE_DUP_HEAD;
351 VM_BUG_ON(!is_stable_node_chain(chain));
352 hlist_add_head(&dup->hlist_dup, &chain->hlist);
353 ksm_stable_node_dups++;
354}
355
356static inline void __stable_node_dup_del(struct stable_node *dup)
357{
b4fecc67 358 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
359 hlist_del(&dup->hlist_dup);
360 ksm_stable_node_dups--;
361}
362
363static inline void stable_node_dup_del(struct stable_node *dup)
364{
365 VM_BUG_ON(is_stable_node_chain(dup));
366 if (is_stable_node_dup(dup))
367 __stable_node_dup_del(dup);
368 else
369 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
370#ifdef CONFIG_DEBUG_VM
371 dup->head = NULL;
372#endif
373}
374
31dbd01f
IE
375static inline struct rmap_item *alloc_rmap_item(void)
376{
473b0ce4
HD
377 struct rmap_item *rmap_item;
378
5b398e41 379 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
380 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
381 if (rmap_item)
382 ksm_rmap_items++;
383 return rmap_item;
31dbd01f
IE
384}
385
386static inline void free_rmap_item(struct rmap_item *rmap_item)
387{
473b0ce4 388 ksm_rmap_items--;
31dbd01f
IE
389 rmap_item->mm = NULL; /* debug safety */
390 kmem_cache_free(rmap_item_cache, rmap_item);
391}
392
7b6ba2c7
HD
393static inline struct stable_node *alloc_stable_node(void)
394{
6213055f 395 /*
396 * The allocation can take too long with GFP_KERNEL when memory is under
397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
398 * grants access to memory reserves, helping to avoid this problem.
399 */
400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
401}
402
403static inline void free_stable_node(struct stable_node *stable_node)
404{
2c653d0e
AA
405 VM_BUG_ON(stable_node->rmap_hlist_len &&
406 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
407 kmem_cache_free(stable_node_cache, stable_node);
408}
409
31dbd01f
IE
410static inline struct mm_slot *alloc_mm_slot(void)
411{
412 if (!mm_slot_cache) /* initialization failed */
413 return NULL;
414 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
415}
416
417static inline void free_mm_slot(struct mm_slot *mm_slot)
418{
419 kmem_cache_free(mm_slot_cache, mm_slot);
420}
421
31dbd01f
IE
422static struct mm_slot *get_mm_slot(struct mm_struct *mm)
423{
4ca3a69b
SL
424 struct mm_slot *slot;
425
b67bfe0d 426 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
427 if (slot->mm == mm)
428 return slot;
31dbd01f 429
31dbd01f
IE
430 return NULL;
431}
432
433static void insert_to_mm_slots_hash(struct mm_struct *mm,
434 struct mm_slot *mm_slot)
435{
31dbd01f 436 mm_slot->mm = mm;
4ca3a69b 437 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
438}
439
a913e182
HD
440/*
441 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
442 * page tables after it has passed through ksm_exit() - which, if necessary,
443 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
444 * a special flag: they can just back out as soon as mm_users goes to zero.
445 * ksm_test_exit() is used throughout to make this test for exit: in some
446 * places for correctness, in some places just to avoid unnecessary work.
447 */
448static inline bool ksm_test_exit(struct mm_struct *mm)
449{
450 return atomic_read(&mm->mm_users) == 0;
451}
452
31dbd01f
IE
453/*
454 * We use break_ksm to break COW on a ksm page: it's a stripped down
455 *
d4edcf0d 456 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
31dbd01f
IE
457 * put_page(page);
458 *
459 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
460 * in case the application has unmapped and remapped mm,addr meanwhile.
461 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
462 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
1b2ee126
DH
463 *
464 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
465 * of the process that owns 'vma'. We also do not want to enforce
466 * protection keys here anyway.
31dbd01f 467 */
d952b791 468static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
469{
470 struct page *page;
d952b791 471 int ret = 0;
31dbd01f
IE
472
473 do {
474 cond_resched();
1b2ee126
DH
475 page = follow_page(vma, addr,
476 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
22eccdd7 477 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
478 break;
479 if (PageKsm(page))
dcddffd4
KS
480 ret = handle_mm_fault(vma, addr,
481 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
31dbd01f
IE
482 else
483 ret = VM_FAULT_WRITE;
484 put_page(page);
33692f27 485 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
486 /*
487 * We must loop because handle_mm_fault() may back out if there's
488 * any difficulty e.g. if pte accessed bit gets updated concurrently.
489 *
490 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
491 * COW has been broken, even if the vma does not permit VM_WRITE;
492 * but note that a concurrent fault might break PageKsm for us.
493 *
494 * VM_FAULT_SIGBUS could occur if we race with truncation of the
495 * backing file, which also invalidates anonymous pages: that's
496 * okay, that truncation will have unmapped the PageKsm for us.
497 *
498 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
499 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
500 * current task has TIF_MEMDIE set, and will be OOM killed on return
501 * to user; and ksmd, having no mm, would never be chosen for that.
502 *
503 * But if the mm is in a limited mem_cgroup, then the fault may fail
504 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
505 * even ksmd can fail in this way - though it's usually breaking ksm
506 * just to undo a merge it made a moment before, so unlikely to oom.
507 *
508 * That's a pity: we might therefore have more kernel pages allocated
509 * than we're counting as nodes in the stable tree; but ksm_do_scan
510 * will retry to break_cow on each pass, so should recover the page
511 * in due course. The important thing is to not let VM_MERGEABLE
512 * be cleared while any such pages might remain in the area.
513 */
514 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
515}
516
ef694222
BL
517static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
518 unsigned long addr)
519{
520 struct vm_area_struct *vma;
521 if (ksm_test_exit(mm))
522 return NULL;
523 vma = find_vma(mm, addr);
524 if (!vma || vma->vm_start > addr)
525 return NULL;
526 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
527 return NULL;
528 return vma;
529}
530
8dd3557a 531static void break_cow(struct rmap_item *rmap_item)
31dbd01f 532{
8dd3557a
HD
533 struct mm_struct *mm = rmap_item->mm;
534 unsigned long addr = rmap_item->address;
31dbd01f
IE
535 struct vm_area_struct *vma;
536
4035c07a
HD
537 /*
538 * It is not an accident that whenever we want to break COW
539 * to undo, we also need to drop a reference to the anon_vma.
540 */
9e60109f 541 put_anon_vma(rmap_item->anon_vma);
4035c07a 542
81464e30 543 down_read(&mm->mmap_sem);
ef694222
BL
544 vma = find_mergeable_vma(mm, addr);
545 if (vma)
546 break_ksm(vma, addr);
31dbd01f
IE
547 up_read(&mm->mmap_sem);
548}
549
550static struct page *get_mergeable_page(struct rmap_item *rmap_item)
551{
552 struct mm_struct *mm = rmap_item->mm;
553 unsigned long addr = rmap_item->address;
554 struct vm_area_struct *vma;
555 struct page *page;
556
557 down_read(&mm->mmap_sem);
ef694222
BL
558 vma = find_mergeable_vma(mm, addr);
559 if (!vma)
31dbd01f
IE
560 goto out;
561
562 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 563 if (IS_ERR_OR_NULL(page))
31dbd01f 564 goto out;
f765f540 565 if (PageAnon(page)) {
31dbd01f
IE
566 flush_anon_page(vma, page, addr);
567 flush_dcache_page(page);
568 } else {
569 put_page(page);
c8f95ed1
AA
570out:
571 page = NULL;
31dbd01f
IE
572 }
573 up_read(&mm->mmap_sem);
574 return page;
575}
576
90bd6fd3
PH
577/*
578 * This helper is used for getting right index into array of tree roots.
579 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
580 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
581 * every node has its own stable and unstable tree.
582 */
583static inline int get_kpfn_nid(unsigned long kpfn)
584{
d8fc16a8 585 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
586}
587
2c653d0e
AA
588static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
589 struct rb_root *root)
590{
591 struct stable_node *chain = alloc_stable_node();
592 VM_BUG_ON(is_stable_node_chain(dup));
593 if (likely(chain)) {
594 INIT_HLIST_HEAD(&chain->hlist);
595 chain->chain_prune_time = jiffies;
596 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
597#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
598 chain->nid = -1; /* debug */
599#endif
600 ksm_stable_node_chains++;
601
602 /*
603 * Put the stable node chain in the first dimension of
604 * the stable tree and at the same time remove the old
605 * stable node.
606 */
607 rb_replace_node(&dup->node, &chain->node, root);
608
609 /*
610 * Move the old stable node to the second dimension
611 * queued in the hlist_dup. The invariant is that all
612 * dup stable_nodes in the chain->hlist point to pages
613 * that are wrprotected and have the exact same
614 * content.
615 */
616 stable_node_chain_add_dup(dup, chain);
617 }
618 return chain;
619}
620
621static inline void free_stable_node_chain(struct stable_node *chain,
622 struct rb_root *root)
623{
624 rb_erase(&chain->node, root);
625 free_stable_node(chain);
626 ksm_stable_node_chains--;
627}
628
4035c07a
HD
629static void remove_node_from_stable_tree(struct stable_node *stable_node)
630{
631 struct rmap_item *rmap_item;
4035c07a 632
2c653d0e
AA
633 /* check it's not STABLE_NODE_CHAIN or negative */
634 BUG_ON(stable_node->rmap_hlist_len < 0);
635
b67bfe0d 636 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
637 if (rmap_item->hlist.next)
638 ksm_pages_sharing--;
639 else
640 ksm_pages_shared--;
2c653d0e
AA
641 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
642 stable_node->rmap_hlist_len--;
9e60109f 643 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
644 rmap_item->address &= PAGE_MASK;
645 cond_resched();
646 }
647
2c653d0e
AA
648 /*
649 * We need the second aligned pointer of the migrate_nodes
650 * list_head to stay clear from the rb_parent_color union
651 * (aligned and different than any node) and also different
652 * from &migrate_nodes. This will verify that future list.h changes
653 * don't break STABLE_NODE_DUP_HEAD.
654 */
655#if GCC_VERSION >= 40903 /* only recent gcc can handle it */
656 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
657 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
658#endif
659
4146d2d6
HD
660 if (stable_node->head == &migrate_nodes)
661 list_del(&stable_node->list);
662 else
2c653d0e 663 stable_node_dup_del(stable_node);
4035c07a
HD
664 free_stable_node(stable_node);
665}
666
667/*
668 * get_ksm_page: checks if the page indicated by the stable node
669 * is still its ksm page, despite having held no reference to it.
670 * In which case we can trust the content of the page, and it
671 * returns the gotten page; but if the page has now been zapped,
672 * remove the stale node from the stable tree and return NULL.
c8d6553b 673 * But beware, the stable node's page might be being migrated.
4035c07a
HD
674 *
675 * You would expect the stable_node to hold a reference to the ksm page.
676 * But if it increments the page's count, swapping out has to wait for
677 * ksmd to come around again before it can free the page, which may take
678 * seconds or even minutes: much too unresponsive. So instead we use a
679 * "keyhole reference": access to the ksm page from the stable node peeps
680 * out through its keyhole to see if that page still holds the right key,
681 * pointing back to this stable node. This relies on freeing a PageAnon
682 * page to reset its page->mapping to NULL, and relies on no other use of
683 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
684 * is on its way to being freed; but it is an anomaly to bear in mind.
685 */
8fdb3dbf 686static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
4035c07a
HD
687{
688 struct page *page;
689 void *expected_mapping;
c8d6553b 690 unsigned long kpfn;
4035c07a 691
bda807d4
MK
692 expected_mapping = (void *)((unsigned long)stable_node |
693 PAGE_MAPPING_KSM);
c8d6553b 694again:
08df4774 695 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 696 page = pfn_to_page(kpfn);
4db0c3c2 697 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 698 goto stale;
c8d6553b
HD
699
700 /*
701 * We cannot do anything with the page while its refcount is 0.
702 * Usually 0 means free, or tail of a higher-order page: in which
703 * case this node is no longer referenced, and should be freed;
704 * however, it might mean that the page is under page_freeze_refs().
705 * The __remove_mapping() case is easy, again the node is now stale;
706 * but if page is swapcache in migrate_page_move_mapping(), it might
707 * still be our page, in which case it's essential to keep the node.
708 */
709 while (!get_page_unless_zero(page)) {
710 /*
711 * Another check for page->mapping != expected_mapping would
712 * work here too. We have chosen the !PageSwapCache test to
713 * optimize the common case, when the page is or is about to
714 * be freed: PageSwapCache is cleared (under spin_lock_irq)
715 * in the freeze_refs section of __remove_mapping(); but Anon
716 * page->mapping reset to NULL later, in free_pages_prepare().
717 */
718 if (!PageSwapCache(page))
719 goto stale;
720 cpu_relax();
721 }
722
4db0c3c2 723 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
724 put_page(page);
725 goto stale;
726 }
c8d6553b 727
8fdb3dbf 728 if (lock_it) {
8aafa6a4 729 lock_page(page);
4db0c3c2 730 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
731 unlock_page(page);
732 put_page(page);
733 goto stale;
734 }
735 }
4035c07a 736 return page;
c8d6553b 737
4035c07a 738stale:
c8d6553b
HD
739 /*
740 * We come here from above when page->mapping or !PageSwapCache
741 * suggests that the node is stale; but it might be under migration.
742 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
743 * before checking whether node->kpfn has been changed.
744 */
745 smp_rmb();
4db0c3c2 746 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 747 goto again;
4035c07a
HD
748 remove_node_from_stable_tree(stable_node);
749 return NULL;
750}
751
31dbd01f
IE
752/*
753 * Removing rmap_item from stable or unstable tree.
754 * This function will clean the information from the stable/unstable tree.
755 */
756static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
757{
7b6ba2c7
HD
758 if (rmap_item->address & STABLE_FLAG) {
759 struct stable_node *stable_node;
5ad64688 760 struct page *page;
31dbd01f 761
7b6ba2c7 762 stable_node = rmap_item->head;
8aafa6a4 763 page = get_ksm_page(stable_node, true);
4035c07a
HD
764 if (!page)
765 goto out;
5ad64688 766
7b6ba2c7 767 hlist_del(&rmap_item->hlist);
4035c07a
HD
768 unlock_page(page);
769 put_page(page);
08beca44 770
98666f8a 771 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
772 ksm_pages_sharing--;
773 else
7b6ba2c7 774 ksm_pages_shared--;
2c653d0e
AA
775 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
776 stable_node->rmap_hlist_len--;
31dbd01f 777
9e60109f 778 put_anon_vma(rmap_item->anon_vma);
93d17715 779 rmap_item->address &= PAGE_MASK;
31dbd01f 780
7b6ba2c7 781 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
782 unsigned char age;
783 /*
9ba69294 784 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 785 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
786 * But be careful when an mm is exiting: do the rb_erase
787 * if this rmap_item was inserted by this scan, rather
788 * than left over from before.
31dbd01f
IE
789 */
790 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 791 BUG_ON(age > 1);
31dbd01f 792 if (!age)
90bd6fd3 793 rb_erase(&rmap_item->node,
ef53d16c 794 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 795 ksm_pages_unshared--;
93d17715 796 rmap_item->address &= PAGE_MASK;
31dbd01f 797 }
4035c07a 798out:
31dbd01f
IE
799 cond_resched(); /* we're called from many long loops */
800}
801
31dbd01f 802static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 803 struct rmap_item **rmap_list)
31dbd01f 804{
6514d511
HD
805 while (*rmap_list) {
806 struct rmap_item *rmap_item = *rmap_list;
807 *rmap_list = rmap_item->rmap_list;
31dbd01f 808 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
809 free_rmap_item(rmap_item);
810 }
811}
812
813/*
e850dcf5 814 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
815 * than check every pte of a given vma, the locking doesn't quite work for
816 * that - an rmap_item is assigned to the stable tree after inserting ksm
817 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
818 * rmap_items from parent to child at fork time (so as not to waste time
819 * if exit comes before the next scan reaches it).
81464e30
HD
820 *
821 * Similarly, although we'd like to remove rmap_items (so updating counts
822 * and freeing memory) when unmerging an area, it's easier to leave that
823 * to the next pass of ksmd - consider, for example, how ksmd might be
824 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 825 */
d952b791
HD
826static int unmerge_ksm_pages(struct vm_area_struct *vma,
827 unsigned long start, unsigned long end)
31dbd01f
IE
828{
829 unsigned long addr;
d952b791 830 int err = 0;
31dbd01f 831
d952b791 832 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
833 if (ksm_test_exit(vma->vm_mm))
834 break;
d952b791
HD
835 if (signal_pending(current))
836 err = -ERESTARTSYS;
837 else
838 err = break_ksm(vma, addr);
839 }
840 return err;
31dbd01f
IE
841}
842
88484826
MR
843static inline struct stable_node *page_stable_node(struct page *page)
844{
845 return PageKsm(page) ? page_rmapping(page) : NULL;
846}
847
848static inline void set_page_stable_node(struct page *page,
849 struct stable_node *stable_node)
850{
851 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
852}
853
2ffd8679
HD
854#ifdef CONFIG_SYSFS
855/*
856 * Only called through the sysfs control interface:
857 */
cbf86cfe
HD
858static int remove_stable_node(struct stable_node *stable_node)
859{
860 struct page *page;
861 int err;
862
863 page = get_ksm_page(stable_node, true);
864 if (!page) {
865 /*
866 * get_ksm_page did remove_node_from_stable_tree itself.
867 */
868 return 0;
869 }
870
8fdb3dbf
HD
871 if (WARN_ON_ONCE(page_mapped(page))) {
872 /*
873 * This should not happen: but if it does, just refuse to let
874 * merge_across_nodes be switched - there is no need to panic.
875 */
cbf86cfe 876 err = -EBUSY;
8fdb3dbf 877 } else {
cbf86cfe 878 /*
8fdb3dbf
HD
879 * The stable node did not yet appear stale to get_ksm_page(),
880 * since that allows for an unmapped ksm page to be recognized
881 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
882 * This page might be in a pagevec waiting to be freed,
883 * or it might be PageSwapCache (perhaps under writeback),
884 * or it might have been removed from swapcache a moment ago.
885 */
886 set_page_stable_node(page, NULL);
887 remove_node_from_stable_tree(stable_node);
888 err = 0;
889 }
890
891 unlock_page(page);
892 put_page(page);
893 return err;
894}
895
2c653d0e
AA
896static int remove_stable_node_chain(struct stable_node *stable_node,
897 struct rb_root *root)
898{
899 struct stable_node *dup;
900 struct hlist_node *hlist_safe;
901
902 if (!is_stable_node_chain(stable_node)) {
903 VM_BUG_ON(is_stable_node_dup(stable_node));
904 if (remove_stable_node(stable_node))
905 return true;
906 else
907 return false;
908 }
909
910 hlist_for_each_entry_safe(dup, hlist_safe,
911 &stable_node->hlist, hlist_dup) {
912 VM_BUG_ON(!is_stable_node_dup(dup));
913 if (remove_stable_node(dup))
914 return true;
915 }
916 BUG_ON(!hlist_empty(&stable_node->hlist));
917 free_stable_node_chain(stable_node, root);
918 return false;
919}
920
cbf86cfe
HD
921static int remove_all_stable_nodes(void)
922{
03640418 923 struct stable_node *stable_node, *next;
cbf86cfe
HD
924 int nid;
925 int err = 0;
926
ef53d16c 927 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
928 while (root_stable_tree[nid].rb_node) {
929 stable_node = rb_entry(root_stable_tree[nid].rb_node,
930 struct stable_node, node);
2c653d0e
AA
931 if (remove_stable_node_chain(stable_node,
932 root_stable_tree + nid)) {
cbf86cfe
HD
933 err = -EBUSY;
934 break; /* proceed to next nid */
935 }
936 cond_resched();
937 }
938 }
03640418 939 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
940 if (remove_stable_node(stable_node))
941 err = -EBUSY;
942 cond_resched();
943 }
cbf86cfe
HD
944 return err;
945}
946
d952b791 947static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
948{
949 struct mm_slot *mm_slot;
950 struct mm_struct *mm;
951 struct vm_area_struct *vma;
d952b791
HD
952 int err = 0;
953
954 spin_lock(&ksm_mmlist_lock);
9ba69294 955 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
956 struct mm_slot, mm_list);
957 spin_unlock(&ksm_mmlist_lock);
31dbd01f 958
9ba69294
HD
959 for (mm_slot = ksm_scan.mm_slot;
960 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
961 mm = mm_slot->mm;
962 down_read(&mm->mmap_sem);
963 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
964 if (ksm_test_exit(mm))
965 break;
31dbd01f
IE
966 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
967 continue;
d952b791
HD
968 err = unmerge_ksm_pages(vma,
969 vma->vm_start, vma->vm_end);
9ba69294
HD
970 if (err)
971 goto error;
31dbd01f 972 }
9ba69294 973
6514d511 974 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
7496fea9 975 up_read(&mm->mmap_sem);
d952b791
HD
976
977 spin_lock(&ksm_mmlist_lock);
9ba69294 978 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 979 struct mm_slot, mm_list);
9ba69294 980 if (ksm_test_exit(mm)) {
4ca3a69b 981 hash_del(&mm_slot->link);
9ba69294
HD
982 list_del(&mm_slot->mm_list);
983 spin_unlock(&ksm_mmlist_lock);
984
985 free_mm_slot(mm_slot);
986 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 987 mmdrop(mm);
7496fea9 988 } else
9ba69294 989 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
990 }
991
cbf86cfe
HD
992 /* Clean up stable nodes, but don't worry if some are still busy */
993 remove_all_stable_nodes();
d952b791 994 ksm_scan.seqnr = 0;
9ba69294
HD
995 return 0;
996
997error:
998 up_read(&mm->mmap_sem);
31dbd01f 999 spin_lock(&ksm_mmlist_lock);
d952b791 1000 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1001 spin_unlock(&ksm_mmlist_lock);
d952b791 1002 return err;
31dbd01f 1003}
2ffd8679 1004#endif /* CONFIG_SYSFS */
31dbd01f 1005
31dbd01f
IE
1006static u32 calc_checksum(struct page *page)
1007{
1008 u32 checksum;
9b04c5fe 1009 void *addr = kmap_atomic(page);
31dbd01f 1010 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
9b04c5fe 1011 kunmap_atomic(addr);
31dbd01f
IE
1012 return checksum;
1013}
1014
1015static int memcmp_pages(struct page *page1, struct page *page2)
1016{
1017 char *addr1, *addr2;
1018 int ret;
1019
9b04c5fe
CW
1020 addr1 = kmap_atomic(page1);
1021 addr2 = kmap_atomic(page2);
31dbd01f 1022 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
1023 kunmap_atomic(addr2);
1024 kunmap_atomic(addr1);
31dbd01f
IE
1025 return ret;
1026}
1027
1028static inline int pages_identical(struct page *page1, struct page *page2)
1029{
1030 return !memcmp_pages(page1, page2);
1031}
1032
1033static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1034 pte_t *orig_pte)
1035{
1036 struct mm_struct *mm = vma->vm_mm;
36eaff33
KS
1037 struct page_vma_mapped_walk pvmw = {
1038 .page = page,
1039 .vma = vma,
1040 };
31dbd01f
IE
1041 int swapped;
1042 int err = -EFAULT;
6bdb913f
HE
1043 unsigned long mmun_start; /* For mmu_notifiers */
1044 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 1045
36eaff33
KS
1046 pvmw.address = page_address_in_vma(page, vma);
1047 if (pvmw.address == -EFAULT)
31dbd01f
IE
1048 goto out;
1049
29ad768c 1050 BUG_ON(PageTransCompound(page));
6bdb913f 1051
36eaff33
KS
1052 mmun_start = pvmw.address;
1053 mmun_end = pvmw.address + PAGE_SIZE;
6bdb913f
HE
1054 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1055
36eaff33 1056 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1057 goto out_mn;
36eaff33
KS
1058 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1059 goto out_unlock;
31dbd01f 1060
595cd8f2 1061 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
b3a81d08
MK
1062 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1063 mm_tlb_flush_pending(mm)) {
31dbd01f
IE
1064 pte_t entry;
1065
1066 swapped = PageSwapCache(page);
36eaff33 1067 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1068 /*
25985edc 1069 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
1070 * take any lock, therefore the check that we are going to make
1071 * with the pagecount against the mapcount is racey and
1072 * O_DIRECT can happen right after the check.
1073 * So we clear the pte and flush the tlb before the check
1074 * this assure us that no O_DIRECT can happen after the check
1075 * or in the middle of the check.
0f10851e
JG
1076 *
1077 * No need to notify as we are downgrading page table to read
1078 * only not changing it to point to a new page.
1079 *
ad56b738 1080 * See Documentation/vm/mmu_notifier.rst
31dbd01f 1081 */
0f10851e 1082 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1083 /*
1084 * Check that no O_DIRECT or similar I/O is in progress on the
1085 * page
1086 */
31e855ea 1087 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1088 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1089 goto out_unlock;
1090 }
4e31635c
HD
1091 if (pte_dirty(entry))
1092 set_page_dirty(page);
595cd8f2
AK
1093
1094 if (pte_protnone(entry))
1095 entry = pte_mkclean(pte_clear_savedwrite(entry));
1096 else
1097 entry = pte_mkclean(pte_wrprotect(entry));
36eaff33 1098 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1099 }
36eaff33 1100 *orig_pte = *pvmw.pte;
31dbd01f
IE
1101 err = 0;
1102
1103out_unlock:
36eaff33 1104 page_vma_mapped_walk_done(&pvmw);
6bdb913f
HE
1105out_mn:
1106 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
1107out:
1108 return err;
1109}
1110
1111/**
1112 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1113 * @vma: vma that holds the pte pointing to page
1114 * @page: the page we are replacing by kpage
1115 * @kpage: the ksm page we replace page by
31dbd01f
IE
1116 * @orig_pte: the original value of the pte
1117 *
1118 * Returns 0 on success, -EFAULT on failure.
1119 */
8dd3557a
HD
1120static int replace_page(struct vm_area_struct *vma, struct page *page,
1121 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1122{
1123 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
1124 pmd_t *pmd;
1125 pte_t *ptep;
e86c59b1 1126 pte_t newpte;
31dbd01f
IE
1127 spinlock_t *ptl;
1128 unsigned long addr;
31dbd01f 1129 int err = -EFAULT;
6bdb913f
HE
1130 unsigned long mmun_start; /* For mmu_notifiers */
1131 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 1132
8dd3557a 1133 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1134 if (addr == -EFAULT)
1135 goto out;
1136
6219049a
BL
1137 pmd = mm_find_pmd(mm, addr);
1138 if (!pmd)
31dbd01f 1139 goto out;
31dbd01f 1140
6bdb913f
HE
1141 mmun_start = addr;
1142 mmun_end = addr + PAGE_SIZE;
1143 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1144
31dbd01f
IE
1145 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1146 if (!pte_same(*ptep, orig_pte)) {
1147 pte_unmap_unlock(ptep, ptl);
6bdb913f 1148 goto out_mn;
31dbd01f
IE
1149 }
1150
e86c59b1
CI
1151 /*
1152 * No need to check ksm_use_zero_pages here: we can only have a
1153 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1154 */
1155 if (!is_zero_pfn(page_to_pfn(kpage))) {
1156 get_page(kpage);
1157 page_add_anon_rmap(kpage, vma, addr, false);
1158 newpte = mk_pte(kpage, vma->vm_page_prot);
1159 } else {
1160 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1161 vma->vm_page_prot));
a38c015f
CI
1162 /*
1163 * We're replacing an anonymous page with a zero page, which is
1164 * not anonymous. We need to do proper accounting otherwise we
1165 * will get wrong values in /proc, and a BUG message in dmesg
1166 * when tearing down the mm.
1167 */
1168 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1169 }
31dbd01f
IE
1170
1171 flush_cache_page(vma, addr, pte_pfn(*ptep));
0f10851e
JG
1172 /*
1173 * No need to notify as we are replacing a read only page with another
1174 * read only page with the same content.
1175 *
ad56b738 1176 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
1177 */
1178 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1179 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1180
d281ee61 1181 page_remove_rmap(page, false);
ae52a2ad
HD
1182 if (!page_mapped(page))
1183 try_to_free_swap(page);
8dd3557a 1184 put_page(page);
31dbd01f
IE
1185
1186 pte_unmap_unlock(ptep, ptl);
1187 err = 0;
6bdb913f
HE
1188out_mn:
1189 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
1190out:
1191 return err;
1192}
1193
1194/*
1195 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1196 * @vma: the vma that holds the pte pointing to page
1197 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1198 * @kpage: the PageKsm page that we want to map instead of page,
1199 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1200 *
1201 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1202 */
1203static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1204 struct page *page, struct page *kpage)
31dbd01f
IE
1205{
1206 pte_t orig_pte = __pte(0);
1207 int err = -EFAULT;
1208
db114b83
HD
1209 if (page == kpage) /* ksm page forked */
1210 return 0;
1211
8dd3557a 1212 if (!PageAnon(page))
31dbd01f
IE
1213 goto out;
1214
31dbd01f
IE
1215 /*
1216 * We need the page lock to read a stable PageSwapCache in
1217 * write_protect_page(). We use trylock_page() instead of
1218 * lock_page() because we don't want to wait here - we
1219 * prefer to continue scanning and merging different pages,
1220 * then come back to this page when it is unlocked.
1221 */
8dd3557a 1222 if (!trylock_page(page))
31e855ea 1223 goto out;
f765f540
KS
1224
1225 if (PageTransCompound(page)) {
a7306c34 1226 if (split_huge_page(page))
f765f540
KS
1227 goto out_unlock;
1228 }
1229
31dbd01f
IE
1230 /*
1231 * If this anonymous page is mapped only here, its pte may need
1232 * to be write-protected. If it's mapped elsewhere, all of its
1233 * ptes are necessarily already write-protected. But in either
1234 * case, we need to lock and check page_count is not raised.
1235 */
80e14822
HD
1236 if (write_protect_page(vma, page, &orig_pte) == 0) {
1237 if (!kpage) {
1238 /*
1239 * While we hold page lock, upgrade page from
1240 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1241 * stable_tree_insert() will update stable_node.
1242 */
1243 set_page_stable_node(page, NULL);
1244 mark_page_accessed(page);
337ed7eb
MK
1245 /*
1246 * Page reclaim just frees a clean page with no dirty
1247 * ptes: make sure that the ksm page would be swapped.
1248 */
1249 if (!PageDirty(page))
1250 SetPageDirty(page);
80e14822
HD
1251 err = 0;
1252 } else if (pages_identical(page, kpage))
1253 err = replace_page(vma, page, kpage, orig_pte);
1254 }
31dbd01f 1255
80e14822 1256 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1257 munlock_vma_page(page);
5ad64688
HD
1258 if (!PageMlocked(kpage)) {
1259 unlock_page(page);
5ad64688
HD
1260 lock_page(kpage);
1261 mlock_vma_page(kpage);
1262 page = kpage; /* for final unlock */
1263 }
1264 }
73848b46 1265
f765f540 1266out_unlock:
8dd3557a 1267 unlock_page(page);
31dbd01f
IE
1268out:
1269 return err;
1270}
1271
81464e30
HD
1272/*
1273 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1274 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1275 *
1276 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1277 */
8dd3557a
HD
1278static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1279 struct page *page, struct page *kpage)
81464e30 1280{
8dd3557a 1281 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1282 struct vm_area_struct *vma;
1283 int err = -EFAULT;
1284
8dd3557a 1285 down_read(&mm->mmap_sem);
85c6e8dd
AA
1286 vma = find_mergeable_vma(mm, rmap_item->address);
1287 if (!vma)
81464e30
HD
1288 goto out;
1289
8dd3557a 1290 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1291 if (err)
1292 goto out;
1293
bc56620b
HD
1294 /* Unstable nid is in union with stable anon_vma: remove first */
1295 remove_rmap_item_from_tree(rmap_item);
1296
db114b83 1297 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
1298 rmap_item->anon_vma = vma->anon_vma;
1299 get_anon_vma(vma->anon_vma);
81464e30 1300out:
8dd3557a 1301 up_read(&mm->mmap_sem);
81464e30
HD
1302 return err;
1303}
1304
31dbd01f
IE
1305/*
1306 * try_to_merge_two_pages - take two identical pages and prepare them
1307 * to be merged into one page.
1308 *
8dd3557a
HD
1309 * This function returns the kpage if we successfully merged two identical
1310 * pages into one ksm page, NULL otherwise.
31dbd01f 1311 *
80e14822 1312 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1313 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1314 */
8dd3557a
HD
1315static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1316 struct page *page,
1317 struct rmap_item *tree_rmap_item,
1318 struct page *tree_page)
31dbd01f 1319{
80e14822 1320 int err;
31dbd01f 1321
80e14822 1322 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1323 if (!err) {
8dd3557a 1324 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1325 tree_page, page);
31dbd01f 1326 /*
81464e30
HD
1327 * If that fails, we have a ksm page with only one pte
1328 * pointing to it: so break it.
31dbd01f 1329 */
4035c07a 1330 if (err)
8dd3557a 1331 break_cow(rmap_item);
31dbd01f 1332 }
80e14822 1333 return err ? NULL : page;
31dbd01f
IE
1334}
1335
2c653d0e
AA
1336static __always_inline
1337bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1338{
1339 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1340 /*
1341 * Check that at least one mapping still exists, otherwise
1342 * there's no much point to merge and share with this
1343 * stable_node, as the underlying tree_page of the other
1344 * sharer is going to be freed soon.
1345 */
1346 return stable_node->rmap_hlist_len &&
1347 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1348}
1349
1350static __always_inline
1351bool is_page_sharing_candidate(struct stable_node *stable_node)
1352{
1353 return __is_page_sharing_candidate(stable_node, 0);
1354}
1355
c01f0b54
CIK
1356static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1357 struct stable_node **_stable_node,
1358 struct rb_root *root,
1359 bool prune_stale_stable_nodes)
2c653d0e 1360{
b4fecc67 1361 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1362 struct hlist_node *hlist_safe;
8dc5ffcd 1363 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1364 int nr = 0;
1365 int found_rmap_hlist_len;
1366
1367 if (!prune_stale_stable_nodes ||
1368 time_before(jiffies, stable_node->chain_prune_time +
1369 msecs_to_jiffies(
1370 ksm_stable_node_chains_prune_millisecs)))
1371 prune_stale_stable_nodes = false;
1372 else
1373 stable_node->chain_prune_time = jiffies;
1374
1375 hlist_for_each_entry_safe(dup, hlist_safe,
1376 &stable_node->hlist, hlist_dup) {
1377 cond_resched();
1378 /*
1379 * We must walk all stable_node_dup to prune the stale
1380 * stable nodes during lookup.
1381 *
1382 * get_ksm_page can drop the nodes from the
1383 * stable_node->hlist if they point to freed pages
1384 * (that's why we do a _safe walk). The "dup"
1385 * stable_node parameter itself will be freed from
1386 * under us if it returns NULL.
1387 */
1388 _tree_page = get_ksm_page(dup, false);
1389 if (!_tree_page)
1390 continue;
1391 nr += 1;
1392 if (is_page_sharing_candidate(dup)) {
1393 if (!found ||
1394 dup->rmap_hlist_len > found_rmap_hlist_len) {
1395 if (found)
8dc5ffcd 1396 put_page(tree_page);
2c653d0e
AA
1397 found = dup;
1398 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1399 tree_page = _tree_page;
2c653d0e 1400
8dc5ffcd 1401 /* skip put_page for found dup */
2c653d0e
AA
1402 if (!prune_stale_stable_nodes)
1403 break;
2c653d0e
AA
1404 continue;
1405 }
1406 }
1407 put_page(_tree_page);
1408 }
1409
80b18dfa
AA
1410 if (found) {
1411 /*
1412 * nr is counting all dups in the chain only if
1413 * prune_stale_stable_nodes is true, otherwise we may
1414 * break the loop at nr == 1 even if there are
1415 * multiple entries.
1416 */
1417 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1418 /*
1419 * If there's not just one entry it would
1420 * corrupt memory, better BUG_ON. In KSM
1421 * context with no lock held it's not even
1422 * fatal.
1423 */
1424 BUG_ON(stable_node->hlist.first->next);
1425
1426 /*
1427 * There's just one entry and it is below the
1428 * deduplication limit so drop the chain.
1429 */
1430 rb_replace_node(&stable_node->node, &found->node,
1431 root);
1432 free_stable_node(stable_node);
1433 ksm_stable_node_chains--;
1434 ksm_stable_node_dups--;
b4fecc67 1435 /*
0ba1d0f7
AA
1436 * NOTE: the caller depends on the stable_node
1437 * to be equal to stable_node_dup if the chain
1438 * was collapsed.
b4fecc67 1439 */
0ba1d0f7
AA
1440 *_stable_node = found;
1441 /*
1442 * Just for robustneess as stable_node is
1443 * otherwise left as a stable pointer, the
1444 * compiler shall optimize it away at build
1445 * time.
1446 */
1447 stable_node = NULL;
80b18dfa
AA
1448 } else if (stable_node->hlist.first != &found->hlist_dup &&
1449 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1450 /*
80b18dfa
AA
1451 * If the found stable_node dup can accept one
1452 * more future merge (in addition to the one
1453 * that is underway) and is not at the head of
1454 * the chain, put it there so next search will
1455 * be quicker in the !prune_stale_stable_nodes
1456 * case.
1457 *
1458 * NOTE: it would be inaccurate to use nr > 1
1459 * instead of checking the hlist.first pointer
1460 * directly, because in the
1461 * prune_stale_stable_nodes case "nr" isn't
1462 * the position of the found dup in the chain,
1463 * but the total number of dups in the chain.
2c653d0e
AA
1464 */
1465 hlist_del(&found->hlist_dup);
1466 hlist_add_head(&found->hlist_dup,
1467 &stable_node->hlist);
1468 }
1469 }
1470
8dc5ffcd
AA
1471 *_stable_node_dup = found;
1472 return tree_page;
2c653d0e
AA
1473}
1474
1475static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1476 struct rb_root *root)
1477{
1478 if (!is_stable_node_chain(stable_node))
1479 return stable_node;
1480 if (hlist_empty(&stable_node->hlist)) {
1481 free_stable_node_chain(stable_node, root);
1482 return NULL;
1483 }
1484 return hlist_entry(stable_node->hlist.first,
1485 typeof(*stable_node), hlist_dup);
1486}
1487
8dc5ffcd
AA
1488/*
1489 * Like for get_ksm_page, this function can free the *_stable_node and
1490 * *_stable_node_dup if the returned tree_page is NULL.
1491 *
1492 * It can also free and overwrite *_stable_node with the found
1493 * stable_node_dup if the chain is collapsed (in which case
1494 * *_stable_node will be equal to *_stable_node_dup like if the chain
1495 * never existed). It's up to the caller to verify tree_page is not
1496 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1497 *
1498 * *_stable_node_dup is really a second output parameter of this
1499 * function and will be overwritten in all cases, the caller doesn't
1500 * need to initialize it.
1501 */
1502static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1503 struct stable_node **_stable_node,
1504 struct rb_root *root,
1505 bool prune_stale_stable_nodes)
2c653d0e 1506{
b4fecc67 1507 struct stable_node *stable_node = *_stable_node;
2c653d0e
AA
1508 if (!is_stable_node_chain(stable_node)) {
1509 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd
AA
1510 *_stable_node_dup = stable_node;
1511 return get_ksm_page(stable_node, false);
2c653d0e 1512 }
8dc5ffcd
AA
1513 /*
1514 * _stable_node_dup set to NULL means the stable_node
1515 * reached the ksm_max_page_sharing limit.
1516 */
1517 *_stable_node_dup = NULL;
2c653d0e
AA
1518 return NULL;
1519 }
8dc5ffcd 1520 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1521 prune_stale_stable_nodes);
1522}
1523
8dc5ffcd
AA
1524static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1525 struct stable_node **s_n,
1526 struct rb_root *root)
2c653d0e 1527{
8dc5ffcd 1528 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1529}
1530
8dc5ffcd
AA
1531static __always_inline struct page *chain(struct stable_node **s_n_d,
1532 struct stable_node *s_n,
1533 struct rb_root *root)
2c653d0e 1534{
8dc5ffcd
AA
1535 struct stable_node *old_stable_node = s_n;
1536 struct page *tree_page;
1537
1538 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1539 /* not pruning dups so s_n cannot have changed */
1540 VM_BUG_ON(s_n != old_stable_node);
1541 return tree_page;
2c653d0e
AA
1542}
1543
31dbd01f 1544/*
8dd3557a 1545 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1546 *
1547 * This function checks if there is a page inside the stable tree
1548 * with identical content to the page that we are scanning right now.
1549 *
7b6ba2c7 1550 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1551 * NULL otherwise.
1552 */
62b61f61 1553static struct page *stable_tree_search(struct page *page)
31dbd01f 1554{
90bd6fd3 1555 int nid;
ef53d16c 1556 struct rb_root *root;
4146d2d6
HD
1557 struct rb_node **new;
1558 struct rb_node *parent;
2c653d0e 1559 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
4146d2d6 1560 struct stable_node *page_node;
31dbd01f 1561
4146d2d6
HD
1562 page_node = page_stable_node(page);
1563 if (page_node && page_node->head != &migrate_nodes) {
1564 /* ksm page forked */
08beca44 1565 get_page(page);
62b61f61 1566 return page;
08beca44
HD
1567 }
1568
90bd6fd3 1569 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1570 root = root_stable_tree + nid;
4146d2d6 1571again:
ef53d16c 1572 new = &root->rb_node;
4146d2d6 1573 parent = NULL;
90bd6fd3 1574
4146d2d6 1575 while (*new) {
4035c07a 1576 struct page *tree_page;
31dbd01f
IE
1577 int ret;
1578
08beca44 1579 cond_resched();
4146d2d6 1580 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1581 stable_node_any = NULL;
8dc5ffcd 1582 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1583 /*
1584 * NOTE: stable_node may have been freed by
1585 * chain_prune() if the returned stable_node_dup is
1586 * not NULL. stable_node_dup may have been inserted in
1587 * the rbtree instead as a regular stable_node (in
1588 * order to collapse the stable_node chain if a single
0ba1d0f7
AA
1589 * stable_node dup was found in it). In such case the
1590 * stable_node is overwritten by the calleee to point
1591 * to the stable_node_dup that was collapsed in the
1592 * stable rbtree and stable_node will be equal to
1593 * stable_node_dup like if the chain never existed.
b4fecc67 1594 */
2c653d0e
AA
1595 if (!stable_node_dup) {
1596 /*
1597 * Either all stable_node dups were full in
1598 * this stable_node chain, or this chain was
1599 * empty and should be rb_erased.
1600 */
1601 stable_node_any = stable_node_dup_any(stable_node,
1602 root);
1603 if (!stable_node_any) {
1604 /* rb_erase just run */
1605 goto again;
1606 }
1607 /*
1608 * Take any of the stable_node dups page of
1609 * this stable_node chain to let the tree walk
1610 * continue. All KSM pages belonging to the
1611 * stable_node dups in a stable_node chain
1612 * have the same content and they're
1613 * wrprotected at all times. Any will work
1614 * fine to continue the walk.
1615 */
1616 tree_page = get_ksm_page(stable_node_any, false);
1617 }
1618 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1619 if (!tree_page) {
1620 /*
1621 * If we walked over a stale stable_node,
1622 * get_ksm_page() will call rb_erase() and it
1623 * may rebalance the tree from under us. So
1624 * restart the search from scratch. Returning
1625 * NULL would be safe too, but we'd generate
1626 * false negative insertions just because some
1627 * stable_node was stale.
1628 */
1629 goto again;
1630 }
31dbd01f 1631
4035c07a 1632 ret = memcmp_pages(page, tree_page);
c8d6553b 1633 put_page(tree_page);
31dbd01f 1634
4146d2d6 1635 parent = *new;
c8d6553b 1636 if (ret < 0)
4146d2d6 1637 new = &parent->rb_left;
c8d6553b 1638 else if (ret > 0)
4146d2d6 1639 new = &parent->rb_right;
c8d6553b 1640 else {
2c653d0e
AA
1641 if (page_node) {
1642 VM_BUG_ON(page_node->head != &migrate_nodes);
1643 /*
1644 * Test if the migrated page should be merged
1645 * into a stable node dup. If the mapcount is
1646 * 1 we can migrate it with another KSM page
1647 * without adding it to the chain.
1648 */
1649 if (page_mapcount(page) > 1)
1650 goto chain_append;
1651 }
1652
1653 if (!stable_node_dup) {
1654 /*
1655 * If the stable_node is a chain and
1656 * we got a payload match in memcmp
1657 * but we cannot merge the scanned
1658 * page in any of the existing
1659 * stable_node dups because they're
1660 * all full, we need to wait the
1661 * scanned page to find itself a match
1662 * in the unstable tree to create a
1663 * brand new KSM page to add later to
1664 * the dups of this stable_node.
1665 */
1666 return NULL;
1667 }
1668
c8d6553b
HD
1669 /*
1670 * Lock and unlock the stable_node's page (which
1671 * might already have been migrated) so that page
1672 * migration is sure to notice its raised count.
1673 * It would be more elegant to return stable_node
1674 * than kpage, but that involves more changes.
1675 */
2c653d0e
AA
1676 tree_page = get_ksm_page(stable_node_dup, true);
1677 if (unlikely(!tree_page))
1678 /*
1679 * The tree may have been rebalanced,
1680 * so re-evaluate parent and new.
1681 */
4146d2d6 1682 goto again;
2c653d0e
AA
1683 unlock_page(tree_page);
1684
1685 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1686 NUMA(stable_node_dup->nid)) {
1687 put_page(tree_page);
1688 goto replace;
1689 }
1690 return tree_page;
c8d6553b 1691 }
31dbd01f
IE
1692 }
1693
4146d2d6
HD
1694 if (!page_node)
1695 return NULL;
1696
1697 list_del(&page_node->list);
1698 DO_NUMA(page_node->nid = nid);
1699 rb_link_node(&page_node->node, parent, new);
ef53d16c 1700 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1701out:
1702 if (is_page_sharing_candidate(page_node)) {
1703 get_page(page);
1704 return page;
1705 } else
1706 return NULL;
4146d2d6
HD
1707
1708replace:
b4fecc67
AA
1709 /*
1710 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1711 * stable_node has been updated to be the new regular
1712 * stable_node. A collapse of the chain is indistinguishable
1713 * from the case there was no chain in the stable
1714 * rbtree. Otherwise stable_node is the chain and
1715 * stable_node_dup is the dup to replace.
b4fecc67 1716 */
0ba1d0f7 1717 if (stable_node_dup == stable_node) {
b4fecc67
AA
1718 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1719 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1720 /* there is no chain */
1721 if (page_node) {
1722 VM_BUG_ON(page_node->head != &migrate_nodes);
1723 list_del(&page_node->list);
1724 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1725 rb_replace_node(&stable_node_dup->node,
1726 &page_node->node,
2c653d0e
AA
1727 root);
1728 if (is_page_sharing_candidate(page_node))
1729 get_page(page);
1730 else
1731 page = NULL;
1732 } else {
b4fecc67 1733 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1734 page = NULL;
1735 }
4146d2d6 1736 } else {
2c653d0e
AA
1737 VM_BUG_ON(!is_stable_node_chain(stable_node));
1738 __stable_node_dup_del(stable_node_dup);
1739 if (page_node) {
1740 VM_BUG_ON(page_node->head != &migrate_nodes);
1741 list_del(&page_node->list);
1742 DO_NUMA(page_node->nid = nid);
1743 stable_node_chain_add_dup(page_node, stable_node);
1744 if (is_page_sharing_candidate(page_node))
1745 get_page(page);
1746 else
1747 page = NULL;
1748 } else {
1749 page = NULL;
1750 }
4146d2d6 1751 }
2c653d0e
AA
1752 stable_node_dup->head = &migrate_nodes;
1753 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1754 return page;
2c653d0e
AA
1755
1756chain_append:
1757 /* stable_node_dup could be null if it reached the limit */
1758 if (!stable_node_dup)
1759 stable_node_dup = stable_node_any;
b4fecc67
AA
1760 /*
1761 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1762 * stable_node has been updated to be the new regular
1763 * stable_node. A collapse of the chain is indistinguishable
1764 * from the case there was no chain in the stable
1765 * rbtree. Otherwise stable_node is the chain and
1766 * stable_node_dup is the dup to replace.
b4fecc67 1767 */
0ba1d0f7 1768 if (stable_node_dup == stable_node) {
b4fecc67
AA
1769 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1770 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1771 /* chain is missing so create it */
1772 stable_node = alloc_stable_node_chain(stable_node_dup,
1773 root);
1774 if (!stable_node)
1775 return NULL;
1776 }
1777 /*
1778 * Add this stable_node dup that was
1779 * migrated to the stable_node chain
1780 * of the current nid for this page
1781 * content.
1782 */
b4fecc67
AA
1783 VM_BUG_ON(!is_stable_node_chain(stable_node));
1784 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1785 VM_BUG_ON(page_node->head != &migrate_nodes);
1786 list_del(&page_node->list);
1787 DO_NUMA(page_node->nid = nid);
1788 stable_node_chain_add_dup(page_node, stable_node);
1789 goto out;
31dbd01f
IE
1790}
1791
1792/*
e850dcf5 1793 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1794 * into the stable tree.
1795 *
7b6ba2c7
HD
1796 * This function returns the stable tree node just allocated on success,
1797 * NULL otherwise.
31dbd01f 1798 */
7b6ba2c7 1799static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1800{
90bd6fd3
PH
1801 int nid;
1802 unsigned long kpfn;
ef53d16c 1803 struct rb_root *root;
90bd6fd3 1804 struct rb_node **new;
f2e5ff85 1805 struct rb_node *parent;
2c653d0e
AA
1806 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1807 bool need_chain = false;
31dbd01f 1808
90bd6fd3
PH
1809 kpfn = page_to_pfn(kpage);
1810 nid = get_kpfn_nid(kpfn);
ef53d16c 1811 root = root_stable_tree + nid;
f2e5ff85
AA
1812again:
1813 parent = NULL;
ef53d16c 1814 new = &root->rb_node;
90bd6fd3 1815
31dbd01f 1816 while (*new) {
4035c07a 1817 struct page *tree_page;
31dbd01f
IE
1818 int ret;
1819
08beca44 1820 cond_resched();
7b6ba2c7 1821 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1822 stable_node_any = NULL;
8dc5ffcd 1823 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1824 if (!stable_node_dup) {
1825 /*
1826 * Either all stable_node dups were full in
1827 * this stable_node chain, or this chain was
1828 * empty and should be rb_erased.
1829 */
1830 stable_node_any = stable_node_dup_any(stable_node,
1831 root);
1832 if (!stable_node_any) {
1833 /* rb_erase just run */
1834 goto again;
1835 }
1836 /*
1837 * Take any of the stable_node dups page of
1838 * this stable_node chain to let the tree walk
1839 * continue. All KSM pages belonging to the
1840 * stable_node dups in a stable_node chain
1841 * have the same content and they're
1842 * wrprotected at all times. Any will work
1843 * fine to continue the walk.
1844 */
1845 tree_page = get_ksm_page(stable_node_any, false);
1846 }
1847 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1848 if (!tree_page) {
1849 /*
1850 * If we walked over a stale stable_node,
1851 * get_ksm_page() will call rb_erase() and it
1852 * may rebalance the tree from under us. So
1853 * restart the search from scratch. Returning
1854 * NULL would be safe too, but we'd generate
1855 * false negative insertions just because some
1856 * stable_node was stale.
1857 */
1858 goto again;
1859 }
31dbd01f 1860
4035c07a
HD
1861 ret = memcmp_pages(kpage, tree_page);
1862 put_page(tree_page);
31dbd01f
IE
1863
1864 parent = *new;
1865 if (ret < 0)
1866 new = &parent->rb_left;
1867 else if (ret > 0)
1868 new = &parent->rb_right;
1869 else {
2c653d0e
AA
1870 need_chain = true;
1871 break;
31dbd01f
IE
1872 }
1873 }
1874
2c653d0e
AA
1875 stable_node_dup = alloc_stable_node();
1876 if (!stable_node_dup)
7b6ba2c7 1877 return NULL;
31dbd01f 1878
2c653d0e
AA
1879 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1880 stable_node_dup->kpfn = kpfn;
1881 set_page_stable_node(kpage, stable_node_dup);
1882 stable_node_dup->rmap_hlist_len = 0;
1883 DO_NUMA(stable_node_dup->nid = nid);
1884 if (!need_chain) {
1885 rb_link_node(&stable_node_dup->node, parent, new);
1886 rb_insert_color(&stable_node_dup->node, root);
1887 } else {
1888 if (!is_stable_node_chain(stable_node)) {
1889 struct stable_node *orig = stable_node;
1890 /* chain is missing so create it */
1891 stable_node = alloc_stable_node_chain(orig, root);
1892 if (!stable_node) {
1893 free_stable_node(stable_node_dup);
1894 return NULL;
1895 }
1896 }
1897 stable_node_chain_add_dup(stable_node_dup, stable_node);
1898 }
08beca44 1899
2c653d0e 1900 return stable_node_dup;
31dbd01f
IE
1901}
1902
1903/*
8dd3557a
HD
1904 * unstable_tree_search_insert - search for identical page,
1905 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1906 *
1907 * This function searches for a page in the unstable tree identical to the
1908 * page currently being scanned; and if no identical page is found in the
1909 * tree, we insert rmap_item as a new object into the unstable tree.
1910 *
1911 * This function returns pointer to rmap_item found to be identical
1912 * to the currently scanned page, NULL otherwise.
1913 *
1914 * This function does both searching and inserting, because they share
1915 * the same walking algorithm in an rbtree.
1916 */
8dd3557a
HD
1917static
1918struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1919 struct page *page,
1920 struct page **tree_pagep)
31dbd01f 1921{
90bd6fd3
PH
1922 struct rb_node **new;
1923 struct rb_root *root;
31dbd01f 1924 struct rb_node *parent = NULL;
90bd6fd3
PH
1925 int nid;
1926
1927 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1928 root = root_unstable_tree + nid;
90bd6fd3 1929 new = &root->rb_node;
31dbd01f
IE
1930
1931 while (*new) {
1932 struct rmap_item *tree_rmap_item;
8dd3557a 1933 struct page *tree_page;
31dbd01f
IE
1934 int ret;
1935
d178f27f 1936 cond_resched();
31dbd01f 1937 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1938 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1939 if (!tree_page)
31dbd01f
IE
1940 return NULL;
1941
1942 /*
8dd3557a 1943 * Don't substitute a ksm page for a forked page.
31dbd01f 1944 */
8dd3557a
HD
1945 if (page == tree_page) {
1946 put_page(tree_page);
31dbd01f
IE
1947 return NULL;
1948 }
1949
8dd3557a 1950 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1951
1952 parent = *new;
1953 if (ret < 0) {
8dd3557a 1954 put_page(tree_page);
31dbd01f
IE
1955 new = &parent->rb_left;
1956 } else if (ret > 0) {
8dd3557a 1957 put_page(tree_page);
31dbd01f 1958 new = &parent->rb_right;
b599cbdf
HD
1959 } else if (!ksm_merge_across_nodes &&
1960 page_to_nid(tree_page) != nid) {
1961 /*
1962 * If tree_page has been migrated to another NUMA node,
1963 * it will be flushed out and put in the right unstable
1964 * tree next time: only merge with it when across_nodes.
1965 */
1966 put_page(tree_page);
1967 return NULL;
31dbd01f 1968 } else {
8dd3557a 1969 *tree_pagep = tree_page;
31dbd01f
IE
1970 return tree_rmap_item;
1971 }
1972 }
1973
7b6ba2c7 1974 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1975 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1976 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1977 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1978 rb_insert_color(&rmap_item->node, root);
31dbd01f 1979
473b0ce4 1980 ksm_pages_unshared++;
31dbd01f
IE
1981 return NULL;
1982}
1983
1984/*
1985 * stable_tree_append - add another rmap_item to the linked list of
1986 * rmap_items hanging off a given node of the stable tree, all sharing
1987 * the same ksm page.
1988 */
1989static void stable_tree_append(struct rmap_item *rmap_item,
2c653d0e
AA
1990 struct stable_node *stable_node,
1991 bool max_page_sharing_bypass)
31dbd01f 1992{
2c653d0e
AA
1993 /*
1994 * rmap won't find this mapping if we don't insert the
1995 * rmap_item in the right stable_node
1996 * duplicate. page_migration could break later if rmap breaks,
1997 * so we can as well crash here. We really need to check for
1998 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1999 * for other negative values as an undeflow if detected here
2000 * for the first time (and not when decreasing rmap_hlist_len)
2001 * would be sign of memory corruption in the stable_node.
2002 */
2003 BUG_ON(stable_node->rmap_hlist_len < 0);
2004
2005 stable_node->rmap_hlist_len++;
2006 if (!max_page_sharing_bypass)
2007 /* possibly non fatal but unexpected overflow, only warn */
2008 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2009 ksm_max_page_sharing);
2010
7b6ba2c7 2011 rmap_item->head = stable_node;
31dbd01f 2012 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2013 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2014
7b6ba2c7
HD
2015 if (rmap_item->hlist.next)
2016 ksm_pages_sharing++;
2017 else
2018 ksm_pages_shared++;
31dbd01f
IE
2019}
2020
2021/*
81464e30
HD
2022 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2023 * if not, compare checksum to previous and if it's the same, see if page can
2024 * be inserted into the unstable tree, or merged with a page already there and
2025 * both transferred to the stable tree.
31dbd01f
IE
2026 *
2027 * @page: the page that we are searching identical page to.
2028 * @rmap_item: the reverse mapping into the virtual address of this page
2029 */
2030static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2031{
4b22927f 2032 struct mm_struct *mm = rmap_item->mm;
31dbd01f 2033 struct rmap_item *tree_rmap_item;
8dd3557a 2034 struct page *tree_page = NULL;
7b6ba2c7 2035 struct stable_node *stable_node;
8dd3557a 2036 struct page *kpage;
31dbd01f
IE
2037 unsigned int checksum;
2038 int err;
2c653d0e 2039 bool max_page_sharing_bypass = false;
31dbd01f 2040
4146d2d6
HD
2041 stable_node = page_stable_node(page);
2042 if (stable_node) {
2043 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2044 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2045 NUMA(stable_node->nid)) {
2046 stable_node_dup_del(stable_node);
4146d2d6
HD
2047 stable_node->head = &migrate_nodes;
2048 list_add(&stable_node->list, stable_node->head);
2049 }
2050 if (stable_node->head != &migrate_nodes &&
2051 rmap_item->head == stable_node)
2052 return;
2c653d0e
AA
2053 /*
2054 * If it's a KSM fork, allow it to go over the sharing limit
2055 * without warnings.
2056 */
2057 if (!is_page_sharing_candidate(stable_node))
2058 max_page_sharing_bypass = true;
4146d2d6 2059 }
31dbd01f
IE
2060
2061 /* We first start with searching the page inside the stable tree */
62b61f61 2062 kpage = stable_tree_search(page);
4146d2d6
HD
2063 if (kpage == page && rmap_item->head == stable_node) {
2064 put_page(kpage);
2065 return;
2066 }
2067
2068 remove_rmap_item_from_tree(rmap_item);
2069
62b61f61 2070 if (kpage) {
08beca44 2071 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2072 if (!err) {
2073 /*
2074 * The page was successfully merged:
2075 * add its rmap_item to the stable tree.
2076 */
5ad64688 2077 lock_page(kpage);
2c653d0e
AA
2078 stable_tree_append(rmap_item, page_stable_node(kpage),
2079 max_page_sharing_bypass);
5ad64688 2080 unlock_page(kpage);
31dbd01f 2081 }
8dd3557a 2082 put_page(kpage);
31dbd01f
IE
2083 return;
2084 }
2085
2086 /*
4035c07a
HD
2087 * If the hash value of the page has changed from the last time
2088 * we calculated it, this page is changing frequently: therefore we
2089 * don't want to insert it in the unstable tree, and we don't want
2090 * to waste our time searching for something identical to it there.
31dbd01f
IE
2091 */
2092 checksum = calc_checksum(page);
2093 if (rmap_item->oldchecksum != checksum) {
2094 rmap_item->oldchecksum = checksum;
2095 return;
2096 }
2097
e86c59b1
CI
2098 /*
2099 * Same checksum as an empty page. We attempt to merge it with the
2100 * appropriate zero page if the user enabled this via sysfs.
2101 */
2102 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2103 struct vm_area_struct *vma;
2104
4b22927f
KT
2105 down_read(&mm->mmap_sem);
2106 vma = find_mergeable_vma(mm, rmap_item->address);
e86c59b1
CI
2107 err = try_to_merge_one_page(vma, page,
2108 ZERO_PAGE(rmap_item->address));
4b22927f 2109 up_read(&mm->mmap_sem);
e86c59b1
CI
2110 /*
2111 * In case of failure, the page was not really empty, so we
2112 * need to continue. Otherwise we're done.
2113 */
2114 if (!err)
2115 return;
2116 }
8dd3557a
HD
2117 tree_rmap_item =
2118 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2119 if (tree_rmap_item) {
77da2ba0
CI
2120 bool split;
2121
8dd3557a
HD
2122 kpage = try_to_merge_two_pages(rmap_item, page,
2123 tree_rmap_item, tree_page);
77da2ba0
CI
2124 /*
2125 * If both pages we tried to merge belong to the same compound
2126 * page, then we actually ended up increasing the reference
2127 * count of the same compound page twice, and split_huge_page
2128 * failed.
2129 * Here we set a flag if that happened, and we use it later to
2130 * try split_huge_page again. Since we call put_page right
2131 * afterwards, the reference count will be correct and
2132 * split_huge_page should succeed.
2133 */
2134 split = PageTransCompound(page)
2135 && compound_head(page) == compound_head(tree_page);
8dd3557a 2136 put_page(tree_page);
8dd3557a 2137 if (kpage) {
bc56620b
HD
2138 /*
2139 * The pages were successfully merged: insert new
2140 * node in the stable tree and add both rmap_items.
2141 */
5ad64688 2142 lock_page(kpage);
7b6ba2c7
HD
2143 stable_node = stable_tree_insert(kpage);
2144 if (stable_node) {
2c653d0e
AA
2145 stable_tree_append(tree_rmap_item, stable_node,
2146 false);
2147 stable_tree_append(rmap_item, stable_node,
2148 false);
7b6ba2c7 2149 }
5ad64688 2150 unlock_page(kpage);
7b6ba2c7 2151
31dbd01f
IE
2152 /*
2153 * If we fail to insert the page into the stable tree,
2154 * we will have 2 virtual addresses that are pointing
2155 * to a ksm page left outside the stable tree,
2156 * in which case we need to break_cow on both.
2157 */
7b6ba2c7 2158 if (!stable_node) {
8dd3557a
HD
2159 break_cow(tree_rmap_item);
2160 break_cow(rmap_item);
31dbd01f 2161 }
77da2ba0
CI
2162 } else if (split) {
2163 /*
2164 * We are here if we tried to merge two pages and
2165 * failed because they both belonged to the same
2166 * compound page. We will split the page now, but no
2167 * merging will take place.
2168 * We do not want to add the cost of a full lock; if
2169 * the page is locked, it is better to skip it and
2170 * perhaps try again later.
2171 */
2172 if (!trylock_page(page))
2173 return;
2174 split_huge_page(page);
2175 unlock_page(page);
31dbd01f 2176 }
31dbd01f
IE
2177 }
2178}
2179
2180static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 2181 struct rmap_item **rmap_list,
31dbd01f
IE
2182 unsigned long addr)
2183{
2184 struct rmap_item *rmap_item;
2185
6514d511
HD
2186 while (*rmap_list) {
2187 rmap_item = *rmap_list;
93d17715 2188 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2189 return rmap_item;
31dbd01f
IE
2190 if (rmap_item->address > addr)
2191 break;
6514d511 2192 *rmap_list = rmap_item->rmap_list;
31dbd01f 2193 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2194 free_rmap_item(rmap_item);
2195 }
2196
2197 rmap_item = alloc_rmap_item();
2198 if (rmap_item) {
2199 /* It has already been zeroed */
2200 rmap_item->mm = mm_slot->mm;
2201 rmap_item->address = addr;
6514d511
HD
2202 rmap_item->rmap_list = *rmap_list;
2203 *rmap_list = rmap_item;
31dbd01f
IE
2204 }
2205 return rmap_item;
2206}
2207
2208static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2209{
2210 struct mm_struct *mm;
2211 struct mm_slot *slot;
2212 struct vm_area_struct *vma;
2213 struct rmap_item *rmap_item;
90bd6fd3 2214 int nid;
31dbd01f
IE
2215
2216 if (list_empty(&ksm_mm_head.mm_list))
2217 return NULL;
2218
2219 slot = ksm_scan.mm_slot;
2220 if (slot == &ksm_mm_head) {
2919bfd0
HD
2221 /*
2222 * A number of pages can hang around indefinitely on per-cpu
2223 * pagevecs, raised page count preventing write_protect_page
2224 * from merging them. Though it doesn't really matter much,
2225 * it is puzzling to see some stuck in pages_volatile until
2226 * other activity jostles them out, and they also prevented
2227 * LTP's KSM test from succeeding deterministically; so drain
2228 * them here (here rather than on entry to ksm_do_scan(),
2229 * so we don't IPI too often when pages_to_scan is set low).
2230 */
2231 lru_add_drain_all();
2232
4146d2d6
HD
2233 /*
2234 * Whereas stale stable_nodes on the stable_tree itself
2235 * get pruned in the regular course of stable_tree_search(),
2236 * those moved out to the migrate_nodes list can accumulate:
2237 * so prune them once before each full scan.
2238 */
2239 if (!ksm_merge_across_nodes) {
03640418 2240 struct stable_node *stable_node, *next;
4146d2d6
HD
2241 struct page *page;
2242
03640418
GT
2243 list_for_each_entry_safe(stable_node, next,
2244 &migrate_nodes, list) {
4146d2d6
HD
2245 page = get_ksm_page(stable_node, false);
2246 if (page)
2247 put_page(page);
2248 cond_resched();
2249 }
2250 }
2251
ef53d16c 2252 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2253 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2254
2255 spin_lock(&ksm_mmlist_lock);
2256 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2257 ksm_scan.mm_slot = slot;
2258 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2259 /*
2260 * Although we tested list_empty() above, a racing __ksm_exit
2261 * of the last mm on the list may have removed it since then.
2262 */
2263 if (slot == &ksm_mm_head)
2264 return NULL;
31dbd01f
IE
2265next_mm:
2266 ksm_scan.address = 0;
6514d511 2267 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
2268 }
2269
2270 mm = slot->mm;
2271 down_read(&mm->mmap_sem);
9ba69294
HD
2272 if (ksm_test_exit(mm))
2273 vma = NULL;
2274 else
2275 vma = find_vma(mm, ksm_scan.address);
2276
2277 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
2278 if (!(vma->vm_flags & VM_MERGEABLE))
2279 continue;
2280 if (ksm_scan.address < vma->vm_start)
2281 ksm_scan.address = vma->vm_start;
2282 if (!vma->anon_vma)
2283 ksm_scan.address = vma->vm_end;
2284
2285 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2286 if (ksm_test_exit(mm))
2287 break;
31dbd01f 2288 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
2289 if (IS_ERR_OR_NULL(*page)) {
2290 ksm_scan.address += PAGE_SIZE;
2291 cond_resched();
2292 continue;
2293 }
f765f540 2294 if (PageAnon(*page)) {
31dbd01f
IE
2295 flush_anon_page(vma, *page, ksm_scan.address);
2296 flush_dcache_page(*page);
2297 rmap_item = get_next_rmap_item(slot,
6514d511 2298 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2299 if (rmap_item) {
6514d511
HD
2300 ksm_scan.rmap_list =
2301 &rmap_item->rmap_list;
31dbd01f
IE
2302 ksm_scan.address += PAGE_SIZE;
2303 } else
2304 put_page(*page);
2305 up_read(&mm->mmap_sem);
2306 return rmap_item;
2307 }
21ae5b01 2308 put_page(*page);
31dbd01f
IE
2309 ksm_scan.address += PAGE_SIZE;
2310 cond_resched();
2311 }
2312 }
2313
9ba69294
HD
2314 if (ksm_test_exit(mm)) {
2315 ksm_scan.address = 0;
6514d511 2316 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 2317 }
31dbd01f
IE
2318 /*
2319 * Nuke all the rmap_items that are above this current rmap:
2320 * because there were no VM_MERGEABLE vmas with such addresses.
2321 */
6514d511 2322 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
2323
2324 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
2325 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2326 struct mm_slot, mm_list);
2327 if (ksm_scan.address == 0) {
2328 /*
2329 * We've completed a full scan of all vmas, holding mmap_sem
2330 * throughout, and found no VM_MERGEABLE: so do the same as
2331 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2332 * This applies either when cleaning up after __ksm_exit
2333 * (but beware: we can reach here even before __ksm_exit),
2334 * or when all VM_MERGEABLE areas have been unmapped (and
2335 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 2336 */
4ca3a69b 2337 hash_del(&slot->link);
cd551f97 2338 list_del(&slot->mm_list);
9ba69294
HD
2339 spin_unlock(&ksm_mmlist_lock);
2340
cd551f97
HD
2341 free_mm_slot(slot);
2342 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
2343 up_read(&mm->mmap_sem);
2344 mmdrop(mm);
2345 } else {
9ba69294 2346 up_read(&mm->mmap_sem);
7496fea9
ZC
2347 /*
2348 * up_read(&mm->mmap_sem) first because after
2349 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2350 * already have been freed under us by __ksm_exit()
2351 * because the "mm_slot" is still hashed and
2352 * ksm_scan.mm_slot doesn't point to it anymore.
2353 */
2354 spin_unlock(&ksm_mmlist_lock);
cd551f97 2355 }
31dbd01f
IE
2356
2357 /* Repeat until we've completed scanning the whole list */
cd551f97 2358 slot = ksm_scan.mm_slot;
31dbd01f
IE
2359 if (slot != &ksm_mm_head)
2360 goto next_mm;
2361
31dbd01f
IE
2362 ksm_scan.seqnr++;
2363 return NULL;
2364}
2365
2366/**
2367 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2368 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2369 */
2370static void ksm_do_scan(unsigned int scan_npages)
2371{
2372 struct rmap_item *rmap_item;
22eccdd7 2373 struct page *uninitialized_var(page);
31dbd01f 2374
878aee7d 2375 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2376 cond_resched();
2377 rmap_item = scan_get_next_rmap_item(&page);
2378 if (!rmap_item)
2379 return;
4146d2d6 2380 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2381 put_page(page);
2382 }
2383}
2384
6e158384
HD
2385static int ksmd_should_run(void)
2386{
2387 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2388}
2389
31dbd01f
IE
2390static int ksm_scan_thread(void *nothing)
2391{
878aee7d 2392 set_freezable();
339aa624 2393 set_user_nice(current, 5);
31dbd01f
IE
2394
2395 while (!kthread_should_stop()) {
6e158384 2396 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2397 wait_while_offlining();
6e158384 2398 if (ksmd_should_run())
31dbd01f 2399 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2400 mutex_unlock(&ksm_thread_mutex);
2401
878aee7d
AA
2402 try_to_freeze();
2403
6e158384 2404 if (ksmd_should_run()) {
31dbd01f
IE
2405 schedule_timeout_interruptible(
2406 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2407 } else {
878aee7d 2408 wait_event_freezable(ksm_thread_wait,
6e158384 2409 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2410 }
2411 }
2412 return 0;
2413}
2414
f8af4da3
HD
2415int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2416 unsigned long end, int advice, unsigned long *vm_flags)
2417{
2418 struct mm_struct *mm = vma->vm_mm;
d952b791 2419 int err;
f8af4da3
HD
2420
2421 switch (advice) {
2422 case MADV_MERGEABLE:
2423 /*
2424 * Be somewhat over-protective for now!
2425 */
2426 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2427 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2428 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2429 return 0; /* just ignore the advice */
2430
cc2383ec
KK
2431#ifdef VM_SAO
2432 if (*vm_flags & VM_SAO)
2433 return 0;
2434#endif
74a04967
KA
2435#ifdef VM_SPARC_ADI
2436 if (*vm_flags & VM_SPARC_ADI)
2437 return 0;
2438#endif
cc2383ec 2439
d952b791
HD
2440 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2441 err = __ksm_enter(mm);
2442 if (err)
2443 return err;
2444 }
f8af4da3
HD
2445
2446 *vm_flags |= VM_MERGEABLE;
2447 break;
2448
2449 case MADV_UNMERGEABLE:
2450 if (!(*vm_flags & VM_MERGEABLE))
2451 return 0; /* just ignore the advice */
2452
d952b791
HD
2453 if (vma->anon_vma) {
2454 err = unmerge_ksm_pages(vma, start, end);
2455 if (err)
2456 return err;
2457 }
f8af4da3
HD
2458
2459 *vm_flags &= ~VM_MERGEABLE;
2460 break;
2461 }
2462
2463 return 0;
2464}
2465
2466int __ksm_enter(struct mm_struct *mm)
2467{
6e158384
HD
2468 struct mm_slot *mm_slot;
2469 int needs_wakeup;
2470
2471 mm_slot = alloc_mm_slot();
31dbd01f
IE
2472 if (!mm_slot)
2473 return -ENOMEM;
2474
6e158384
HD
2475 /* Check ksm_run too? Would need tighter locking */
2476 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2477
31dbd01f
IE
2478 spin_lock(&ksm_mmlist_lock);
2479 insert_to_mm_slots_hash(mm, mm_slot);
2480 /*
cbf86cfe
HD
2481 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2482 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2483 * down a little; when fork is followed by immediate exec, we don't
2484 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2485 *
2486 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2487 * scanning cursor, otherwise KSM pages in newly forked mms will be
2488 * missed: then we might as well insert at the end of the list.
31dbd01f 2489 */
cbf86cfe
HD
2490 if (ksm_run & KSM_RUN_UNMERGE)
2491 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2492 else
2493 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
2494 spin_unlock(&ksm_mmlist_lock);
2495
f8af4da3 2496 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2497 mmgrab(mm);
6e158384
HD
2498
2499 if (needs_wakeup)
2500 wake_up_interruptible(&ksm_thread_wait);
2501
f8af4da3
HD
2502 return 0;
2503}
2504
1c2fb7a4 2505void __ksm_exit(struct mm_struct *mm)
f8af4da3 2506{
cd551f97 2507 struct mm_slot *mm_slot;
9ba69294 2508 int easy_to_free = 0;
cd551f97 2509
31dbd01f 2510 /*
9ba69294
HD
2511 * This process is exiting: if it's straightforward (as is the
2512 * case when ksmd was never running), free mm_slot immediately.
2513 * But if it's at the cursor or has rmap_items linked to it, use
2514 * mmap_sem to synchronize with any break_cows before pagetables
2515 * are freed, and leave the mm_slot on the list for ksmd to free.
2516 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2517 */
9ba69294 2518
cd551f97
HD
2519 spin_lock(&ksm_mmlist_lock);
2520 mm_slot = get_mm_slot(mm);
9ba69294 2521 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2522 if (!mm_slot->rmap_list) {
4ca3a69b 2523 hash_del(&mm_slot->link);
9ba69294
HD
2524 list_del(&mm_slot->mm_list);
2525 easy_to_free = 1;
2526 } else {
2527 list_move(&mm_slot->mm_list,
2528 &ksm_scan.mm_slot->mm_list);
2529 }
cd551f97 2530 }
cd551f97
HD
2531 spin_unlock(&ksm_mmlist_lock);
2532
9ba69294
HD
2533 if (easy_to_free) {
2534 free_mm_slot(mm_slot);
2535 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2536 mmdrop(mm);
2537 } else if (mm_slot) {
9ba69294
HD
2538 down_write(&mm->mmap_sem);
2539 up_write(&mm->mmap_sem);
9ba69294 2540 }
31dbd01f
IE
2541}
2542
cbf86cfe 2543struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2544 struct vm_area_struct *vma, unsigned long address)
2545{
cbf86cfe 2546 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
2547 struct page *new_page;
2548
cbf86cfe
HD
2549 if (PageKsm(page)) {
2550 if (page_stable_node(page) &&
2551 !(ksm_run & KSM_RUN_UNMERGE))
2552 return page; /* no need to copy it */
2553 } else if (!anon_vma) {
2554 return page; /* no need to copy it */
2555 } else if (anon_vma->root == vma->anon_vma->root &&
2556 page->index == linear_page_index(vma, address)) {
2557 return page; /* still no need to copy it */
2558 }
2559 if (!PageUptodate(page))
2560 return page; /* let do_swap_page report the error */
2561
5ad64688
HD
2562 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2563 if (new_page) {
2564 copy_user_highpage(new_page, page, address, vma);
2565
2566 SetPageDirty(new_page);
2567 __SetPageUptodate(new_page);
48c935ad 2568 __SetPageLocked(new_page);
5ad64688
HD
2569 }
2570
5ad64688
HD
2571 return new_page;
2572}
2573
1df631ae 2574void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
2575{
2576 struct stable_node *stable_node;
e9995ef9 2577 struct rmap_item *rmap_item;
e9995ef9
HD
2578 int search_new_forks = 0;
2579
309381fe 2580 VM_BUG_ON_PAGE(!PageKsm(page), page);
9f32624b
JK
2581
2582 /*
2583 * Rely on the page lock to protect against concurrent modifications
2584 * to that page's node of the stable tree.
2585 */
309381fe 2586 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9995ef9
HD
2587
2588 stable_node = page_stable_node(page);
2589 if (!stable_node)
1df631ae 2590 return;
e9995ef9 2591again:
b67bfe0d 2592 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2593 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2594 struct anon_vma_chain *vmac;
e9995ef9
HD
2595 struct vm_area_struct *vma;
2596
ad12695f 2597 cond_resched();
b6b19f25 2598 anon_vma_lock_read(anon_vma);
bf181b9f
ML
2599 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2600 0, ULONG_MAX) {
ad12695f 2601 cond_resched();
5beb4930 2602 vma = vmac->vma;
e9995ef9
HD
2603 if (rmap_item->address < vma->vm_start ||
2604 rmap_item->address >= vma->vm_end)
2605 continue;
2606 /*
2607 * Initially we examine only the vma which covers this
2608 * rmap_item; but later, if there is still work to do,
2609 * we examine covering vmas in other mms: in case they
2610 * were forked from the original since ksmd passed.
2611 */
2612 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2613 continue;
2614
0dd1c7bb
JK
2615 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2616 continue;
2617
e4b82222 2618 if (!rwc->rmap_one(page, vma,
1df631ae 2619 rmap_item->address, rwc->arg)) {
b6b19f25 2620 anon_vma_unlock_read(anon_vma);
1df631ae 2621 return;
e9995ef9 2622 }
0dd1c7bb
JK
2623 if (rwc->done && rwc->done(page)) {
2624 anon_vma_unlock_read(anon_vma);
1df631ae 2625 return;
0dd1c7bb 2626 }
e9995ef9 2627 }
b6b19f25 2628 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2629 }
2630 if (!search_new_forks++)
2631 goto again;
e9995ef9
HD
2632}
2633
52629506 2634#ifdef CONFIG_MIGRATION
e9995ef9
HD
2635void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2636{
2637 struct stable_node *stable_node;
2638
309381fe
SL
2639 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2640 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2641 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
e9995ef9
HD
2642
2643 stable_node = page_stable_node(newpage);
2644 if (stable_node) {
309381fe 2645 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
62b61f61 2646 stable_node->kpfn = page_to_pfn(newpage);
c8d6553b
HD
2647 /*
2648 * newpage->mapping was set in advance; now we need smp_wmb()
2649 * to make sure that the new stable_node->kpfn is visible
2650 * to get_ksm_page() before it can see that oldpage->mapping
2651 * has gone stale (or that PageSwapCache has been cleared).
2652 */
2653 smp_wmb();
2654 set_page_stable_node(oldpage, NULL);
e9995ef9
HD
2655 }
2656}
2657#endif /* CONFIG_MIGRATION */
2658
62b61f61 2659#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2660static void wait_while_offlining(void)
2661{
2662 while (ksm_run & KSM_RUN_OFFLINE) {
2663 mutex_unlock(&ksm_thread_mutex);
2664 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2665 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2666 mutex_lock(&ksm_thread_mutex);
2667 }
2668}
2669
2c653d0e
AA
2670static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2671 unsigned long start_pfn,
2672 unsigned long end_pfn)
2673{
2674 if (stable_node->kpfn >= start_pfn &&
2675 stable_node->kpfn < end_pfn) {
2676 /*
2677 * Don't get_ksm_page, page has already gone:
2678 * which is why we keep kpfn instead of page*
2679 */
2680 remove_node_from_stable_tree(stable_node);
2681 return true;
2682 }
2683 return false;
2684}
2685
2686static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2687 unsigned long start_pfn,
2688 unsigned long end_pfn,
2689 struct rb_root *root)
2690{
2691 struct stable_node *dup;
2692 struct hlist_node *hlist_safe;
2693
2694 if (!is_stable_node_chain(stable_node)) {
2695 VM_BUG_ON(is_stable_node_dup(stable_node));
2696 return stable_node_dup_remove_range(stable_node, start_pfn,
2697 end_pfn);
2698 }
2699
2700 hlist_for_each_entry_safe(dup, hlist_safe,
2701 &stable_node->hlist, hlist_dup) {
2702 VM_BUG_ON(!is_stable_node_dup(dup));
2703 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2704 }
2705 if (hlist_empty(&stable_node->hlist)) {
2706 free_stable_node_chain(stable_node, root);
2707 return true; /* notify caller that tree was rebalanced */
2708 } else
2709 return false;
2710}
2711
ee0ea59c
HD
2712static void ksm_check_stable_tree(unsigned long start_pfn,
2713 unsigned long end_pfn)
62b61f61 2714{
03640418 2715 struct stable_node *stable_node, *next;
62b61f61 2716 struct rb_node *node;
90bd6fd3 2717 int nid;
62b61f61 2718
ef53d16c
HD
2719 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2720 node = rb_first(root_stable_tree + nid);
ee0ea59c 2721 while (node) {
90bd6fd3 2722 stable_node = rb_entry(node, struct stable_node, node);
2c653d0e
AA
2723 if (stable_node_chain_remove_range(stable_node,
2724 start_pfn, end_pfn,
2725 root_stable_tree +
2726 nid))
ef53d16c 2727 node = rb_first(root_stable_tree + nid);
2c653d0e 2728 else
ee0ea59c
HD
2729 node = rb_next(node);
2730 cond_resched();
90bd6fd3 2731 }
ee0ea59c 2732 }
03640418 2733 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2734 if (stable_node->kpfn >= start_pfn &&
2735 stable_node->kpfn < end_pfn)
2736 remove_node_from_stable_tree(stable_node);
2737 cond_resched();
2738 }
62b61f61
HD
2739}
2740
2741static int ksm_memory_callback(struct notifier_block *self,
2742 unsigned long action, void *arg)
2743{
2744 struct memory_notify *mn = arg;
62b61f61
HD
2745
2746 switch (action) {
2747 case MEM_GOING_OFFLINE:
2748 /*
ef4d43a8
HD
2749 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2750 * and remove_all_stable_nodes() while memory is going offline:
2751 * it is unsafe for them to touch the stable tree at this time.
2752 * But unmerge_ksm_pages(), rmap lookups and other entry points
2753 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2754 */
ef4d43a8
HD
2755 mutex_lock(&ksm_thread_mutex);
2756 ksm_run |= KSM_RUN_OFFLINE;
2757 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2758 break;
2759
2760 case MEM_OFFLINE:
2761 /*
2762 * Most of the work is done by page migration; but there might
2763 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2764 * pages which have been offlined: prune those from the tree,
2765 * otherwise get_ksm_page() might later try to access a
2766 * non-existent struct page.
62b61f61 2767 */
ee0ea59c
HD
2768 ksm_check_stable_tree(mn->start_pfn,
2769 mn->start_pfn + mn->nr_pages);
62b61f61
HD
2770 /* fallthrough */
2771
2772 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2773 mutex_lock(&ksm_thread_mutex);
2774 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2775 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2776
2777 smp_mb(); /* wake_up_bit advises this */
2778 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2779 break;
2780 }
2781 return NOTIFY_OK;
2782}
ef4d43a8
HD
2783#else
2784static void wait_while_offlining(void)
2785{
2786}
62b61f61
HD
2787#endif /* CONFIG_MEMORY_HOTREMOVE */
2788
2ffd8679
HD
2789#ifdef CONFIG_SYSFS
2790/*
2791 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2792 */
2793
31dbd01f
IE
2794#define KSM_ATTR_RO(_name) \
2795 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2796#define KSM_ATTR(_name) \
2797 static struct kobj_attribute _name##_attr = \
2798 __ATTR(_name, 0644, _name##_show, _name##_store)
2799
2800static ssize_t sleep_millisecs_show(struct kobject *kobj,
2801 struct kobj_attribute *attr, char *buf)
2802{
2803 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2804}
2805
2806static ssize_t sleep_millisecs_store(struct kobject *kobj,
2807 struct kobj_attribute *attr,
2808 const char *buf, size_t count)
2809{
2810 unsigned long msecs;
2811 int err;
2812
3dbb95f7 2813 err = kstrtoul(buf, 10, &msecs);
31dbd01f
IE
2814 if (err || msecs > UINT_MAX)
2815 return -EINVAL;
2816
2817 ksm_thread_sleep_millisecs = msecs;
2818
2819 return count;
2820}
2821KSM_ATTR(sleep_millisecs);
2822
2823static ssize_t pages_to_scan_show(struct kobject *kobj,
2824 struct kobj_attribute *attr, char *buf)
2825{
2826 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2827}
2828
2829static ssize_t pages_to_scan_store(struct kobject *kobj,
2830 struct kobj_attribute *attr,
2831 const char *buf, size_t count)
2832{
2833 int err;
2834 unsigned long nr_pages;
2835
3dbb95f7 2836 err = kstrtoul(buf, 10, &nr_pages);
31dbd01f
IE
2837 if (err || nr_pages > UINT_MAX)
2838 return -EINVAL;
2839
2840 ksm_thread_pages_to_scan = nr_pages;
2841
2842 return count;
2843}
2844KSM_ATTR(pages_to_scan);
2845
2846static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2847 char *buf)
2848{
ef4d43a8 2849 return sprintf(buf, "%lu\n", ksm_run);
31dbd01f
IE
2850}
2851
2852static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2853 const char *buf, size_t count)
2854{
2855 int err;
2856 unsigned long flags;
2857
3dbb95f7 2858 err = kstrtoul(buf, 10, &flags);
31dbd01f
IE
2859 if (err || flags > UINT_MAX)
2860 return -EINVAL;
2861 if (flags > KSM_RUN_UNMERGE)
2862 return -EINVAL;
2863
2864 /*
2865 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2866 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2867 * breaking COW to free the pages_shared (but leaves mm_slots
2868 * on the list for when ksmd may be set running again).
31dbd01f
IE
2869 */
2870
2871 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2872 wait_while_offlining();
31dbd01f
IE
2873 if (ksm_run != flags) {
2874 ksm_run = flags;
d952b791 2875 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2876 set_current_oom_origin();
d952b791 2877 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2878 clear_current_oom_origin();
d952b791
HD
2879 if (err) {
2880 ksm_run = KSM_RUN_STOP;
2881 count = err;
2882 }
2883 }
31dbd01f
IE
2884 }
2885 mutex_unlock(&ksm_thread_mutex);
2886
2887 if (flags & KSM_RUN_MERGE)
2888 wake_up_interruptible(&ksm_thread_wait);
2889
2890 return count;
2891}
2892KSM_ATTR(run);
2893
90bd6fd3
PH
2894#ifdef CONFIG_NUMA
2895static ssize_t merge_across_nodes_show(struct kobject *kobj,
2896 struct kobj_attribute *attr, char *buf)
2897{
2898 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2899}
2900
2901static ssize_t merge_across_nodes_store(struct kobject *kobj,
2902 struct kobj_attribute *attr,
2903 const char *buf, size_t count)
2904{
2905 int err;
2906 unsigned long knob;
2907
2908 err = kstrtoul(buf, 10, &knob);
2909 if (err)
2910 return err;
2911 if (knob > 1)
2912 return -EINVAL;
2913
2914 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2915 wait_while_offlining();
90bd6fd3 2916 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2917 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2918 err = -EBUSY;
ef53d16c
HD
2919 else if (root_stable_tree == one_stable_tree) {
2920 struct rb_root *buf;
2921 /*
2922 * This is the first time that we switch away from the
2923 * default of merging across nodes: must now allocate
2924 * a buffer to hold as many roots as may be needed.
2925 * Allocate stable and unstable together:
2926 * MAXSMP NODES_SHIFT 10 will use 16kB.
2927 */
bafe1e14
JP
2928 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2929 GFP_KERNEL);
ef53d16c
HD
2930 /* Let us assume that RB_ROOT is NULL is zero */
2931 if (!buf)
2932 err = -ENOMEM;
2933 else {
2934 root_stable_tree = buf;
2935 root_unstable_tree = buf + nr_node_ids;
2936 /* Stable tree is empty but not the unstable */
2937 root_unstable_tree[0] = one_unstable_tree[0];
2938 }
2939 }
2940 if (!err) {
90bd6fd3 2941 ksm_merge_across_nodes = knob;
ef53d16c
HD
2942 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2943 }
90bd6fd3
PH
2944 }
2945 mutex_unlock(&ksm_thread_mutex);
2946
2947 return err ? err : count;
2948}
2949KSM_ATTR(merge_across_nodes);
2950#endif
2951
e86c59b1
CI
2952static ssize_t use_zero_pages_show(struct kobject *kobj,
2953 struct kobj_attribute *attr, char *buf)
2954{
2955 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2956}
2957static ssize_t use_zero_pages_store(struct kobject *kobj,
2958 struct kobj_attribute *attr,
2959 const char *buf, size_t count)
2960{
2961 int err;
2962 bool value;
2963
2964 err = kstrtobool(buf, &value);
2965 if (err)
2966 return -EINVAL;
2967
2968 ksm_use_zero_pages = value;
2969
2970 return count;
2971}
2972KSM_ATTR(use_zero_pages);
2973
2c653d0e
AA
2974static ssize_t max_page_sharing_show(struct kobject *kobj,
2975 struct kobj_attribute *attr, char *buf)
2976{
2977 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2978}
2979
2980static ssize_t max_page_sharing_store(struct kobject *kobj,
2981 struct kobj_attribute *attr,
2982 const char *buf, size_t count)
2983{
2984 int err;
2985 int knob;
2986
2987 err = kstrtoint(buf, 10, &knob);
2988 if (err)
2989 return err;
2990 /*
2991 * When a KSM page is created it is shared by 2 mappings. This
2992 * being a signed comparison, it implicitly verifies it's not
2993 * negative.
2994 */
2995 if (knob < 2)
2996 return -EINVAL;
2997
2998 if (READ_ONCE(ksm_max_page_sharing) == knob)
2999 return count;
3000
3001 mutex_lock(&ksm_thread_mutex);
3002 wait_while_offlining();
3003 if (ksm_max_page_sharing != knob) {
3004 if (ksm_pages_shared || remove_all_stable_nodes())
3005 err = -EBUSY;
3006 else
3007 ksm_max_page_sharing = knob;
3008 }
3009 mutex_unlock(&ksm_thread_mutex);
3010
3011 return err ? err : count;
3012}
3013KSM_ATTR(max_page_sharing);
3014
b4028260
HD
3015static ssize_t pages_shared_show(struct kobject *kobj,
3016 struct kobj_attribute *attr, char *buf)
3017{
3018 return sprintf(buf, "%lu\n", ksm_pages_shared);
3019}
3020KSM_ATTR_RO(pages_shared);
3021
3022static ssize_t pages_sharing_show(struct kobject *kobj,
3023 struct kobj_attribute *attr, char *buf)
3024{
e178dfde 3025 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3026}
3027KSM_ATTR_RO(pages_sharing);
3028
473b0ce4
HD
3029static ssize_t pages_unshared_show(struct kobject *kobj,
3030 struct kobj_attribute *attr, char *buf)
3031{
3032 return sprintf(buf, "%lu\n", ksm_pages_unshared);
3033}
3034KSM_ATTR_RO(pages_unshared);
3035
3036static ssize_t pages_volatile_show(struct kobject *kobj,
3037 struct kobj_attribute *attr, char *buf)
3038{
3039 long ksm_pages_volatile;
3040
3041 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3042 - ksm_pages_sharing - ksm_pages_unshared;
3043 /*
3044 * It was not worth any locking to calculate that statistic,
3045 * but it might therefore sometimes be negative: conceal that.
3046 */
3047 if (ksm_pages_volatile < 0)
3048 ksm_pages_volatile = 0;
3049 return sprintf(buf, "%ld\n", ksm_pages_volatile);
3050}
3051KSM_ATTR_RO(pages_volatile);
3052
2c653d0e
AA
3053static ssize_t stable_node_dups_show(struct kobject *kobj,
3054 struct kobj_attribute *attr, char *buf)
3055{
3056 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3057}
3058KSM_ATTR_RO(stable_node_dups);
3059
3060static ssize_t stable_node_chains_show(struct kobject *kobj,
3061 struct kobj_attribute *attr, char *buf)
3062{
3063 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3064}
3065KSM_ATTR_RO(stable_node_chains);
3066
3067static ssize_t
3068stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3069 struct kobj_attribute *attr,
3070 char *buf)
3071{
3072 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3073}
3074
3075static ssize_t
3076stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3077 struct kobj_attribute *attr,
3078 const char *buf, size_t count)
3079{
3080 unsigned long msecs;
3081 int err;
3082
3083 err = kstrtoul(buf, 10, &msecs);
3084 if (err || msecs > UINT_MAX)
3085 return -EINVAL;
3086
3087 ksm_stable_node_chains_prune_millisecs = msecs;
3088
3089 return count;
3090}
3091KSM_ATTR(stable_node_chains_prune_millisecs);
3092
473b0ce4
HD
3093static ssize_t full_scans_show(struct kobject *kobj,
3094 struct kobj_attribute *attr, char *buf)
3095{
3096 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3097}
3098KSM_ATTR_RO(full_scans);
3099
31dbd01f
IE
3100static struct attribute *ksm_attrs[] = {
3101 &sleep_millisecs_attr.attr,
3102 &pages_to_scan_attr.attr,
3103 &run_attr.attr,
b4028260
HD
3104 &pages_shared_attr.attr,
3105 &pages_sharing_attr.attr,
473b0ce4
HD
3106 &pages_unshared_attr.attr,
3107 &pages_volatile_attr.attr,
3108 &full_scans_attr.attr,
90bd6fd3
PH
3109#ifdef CONFIG_NUMA
3110 &merge_across_nodes_attr.attr,
3111#endif
2c653d0e
AA
3112 &max_page_sharing_attr.attr,
3113 &stable_node_chains_attr.attr,
3114 &stable_node_dups_attr.attr,
3115 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3116 &use_zero_pages_attr.attr,
31dbd01f
IE
3117 NULL,
3118};
3119
f907c26a 3120static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3121 .attrs = ksm_attrs,
3122 .name = "ksm",
3123};
2ffd8679 3124#endif /* CONFIG_SYSFS */
31dbd01f
IE
3125
3126static int __init ksm_init(void)
3127{
3128 struct task_struct *ksm_thread;
3129 int err;
3130
e86c59b1
CI
3131 /* The correct value depends on page size and endianness */
3132 zero_checksum = calc_checksum(ZERO_PAGE(0));
3133 /* Default to false for backwards compatibility */
3134 ksm_use_zero_pages = false;
3135
31dbd01f
IE
3136 err = ksm_slab_init();
3137 if (err)
3138 goto out;
3139
31dbd01f
IE
3140 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3141 if (IS_ERR(ksm_thread)) {
25acde31 3142 pr_err("ksm: creating kthread failed\n");
31dbd01f 3143 err = PTR_ERR(ksm_thread);
d9f8984c 3144 goto out_free;
31dbd01f
IE
3145 }
3146
2ffd8679 3147#ifdef CONFIG_SYSFS
31dbd01f
IE
3148 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3149 if (err) {
25acde31 3150 pr_err("ksm: register sysfs failed\n");
2ffd8679 3151 kthread_stop(ksm_thread);
d9f8984c 3152 goto out_free;
31dbd01f 3153 }
c73602ad
HD
3154#else
3155 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3156
2ffd8679 3157#endif /* CONFIG_SYSFS */
31dbd01f 3158
62b61f61 3159#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3160 /* There is no significance to this priority 100 */
62b61f61
HD
3161 hotplug_memory_notifier(ksm_memory_callback, 100);
3162#endif
31dbd01f
IE
3163 return 0;
3164
d9f8984c 3165out_free:
31dbd01f
IE
3166 ksm_slab_free();
3167out:
3168 return err;
f8af4da3 3169}
a64fb3cd 3170subsys_initcall(ksm_init);