]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/memblock.c
memblock: add memblock_clear_nomap()
[thirdparty/kernel/linux.git] / mm / memblock.c
CommitLineData
95f72d1e
YL
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
142b45a7 14#include <linux/slab.h>
95f72d1e
YL
15#include <linux/init.h>
16#include <linux/bitops.h>
449e8df3 17#include <linux/poison.h>
c196f76f 18#include <linux/pfn.h>
6d03b885
BH
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
95f72d1e
YL
21#include <linux/memblock.h>
22
c4c5ad6b 23#include <asm/sections.h>
26f09e9b
SS
24#include <linux/io.h>
25
26#include "internal.h"
79442ed1 27
fe091c20
TH
28static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
70210ed9
PH
30#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32#endif
fe091c20
TH
33
34struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 38 .memory.name = "memory",
fe091c20
TH
39
40 .reserved.regions = memblock_reserved_init_regions,
41 .reserved.cnt = 1, /* empty dummy entry */
42 .reserved.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 43 .reserved.name = "reserved",
fe091c20 44
70210ed9
PH
45#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
46 .physmem.regions = memblock_physmem_init_regions,
47 .physmem.cnt = 1, /* empty dummy entry */
48 .physmem.max = INIT_PHYSMEM_REGIONS,
0262d9c8 49 .physmem.name = "physmem",
70210ed9
PH
50#endif
51
79442ed1 52 .bottom_up = false,
fe091c20
TH
53 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
54};
95f72d1e 55
10d06439 56int memblock_debug __initdata_memblock;
55ac590c
TC
57#ifdef CONFIG_MOVABLE_NODE
58bool movable_node_enabled __initdata_memblock = false;
59#endif
a3f5bafc 60static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 61static int memblock_can_resize __initdata_memblock;
181eb394
GS
62static int memblock_memory_in_slab __initdata_memblock = 0;
63static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 64
a3f5bafc
TL
65ulong __init_memblock choose_memblock_flags(void)
66{
67 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
68}
69
eb18f1b5
TH
70/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
71static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
72{
73 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
74}
75
6ed311b2
BH
76/*
77 * Address comparison utilities
78 */
10d06439 79static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 80 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
81{
82 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
83}
84
95cf82ec 85bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 86 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
87{
88 unsigned long i;
89
f14516fb
AK
90 for (i = 0; i < type->cnt; i++)
91 if (memblock_addrs_overlap(base, size, type->regions[i].base,
92 type->regions[i].size))
6ed311b2 93 break;
c5c5c9d1 94 return i < type->cnt;
6ed311b2
BH
95}
96
79442ed1
TC
97/*
98 * __memblock_find_range_bottom_up - find free area utility in bottom-up
99 * @start: start of candidate range
100 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
101 * @size: size of free area to find
102 * @align: alignment of free area to find
b1154233 103 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 104 * @flags: pick from blocks based on memory attributes
79442ed1
TC
105 *
106 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
107 *
108 * RETURNS:
109 * Found address on success, 0 on failure.
110 */
111static phys_addr_t __init_memblock
112__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9
TL
113 phys_addr_t size, phys_addr_t align, int nid,
114 ulong flags)
79442ed1
TC
115{
116 phys_addr_t this_start, this_end, cand;
117 u64 i;
118
fc6daaf9 119 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
120 this_start = clamp(this_start, start, end);
121 this_end = clamp(this_end, start, end);
122
123 cand = round_up(this_start, align);
124 if (cand < this_end && this_end - cand >= size)
125 return cand;
126 }
127
128 return 0;
129}
130
7bd0b0f0 131/**
1402899e 132 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0
TH
133 * @start: start of candidate range
134 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
135 * @size: size of free area to find
136 * @align: alignment of free area to find
b1154233 137 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 138 * @flags: pick from blocks based on memory attributes
7bd0b0f0 139 *
1402899e 140 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0
TH
141 *
142 * RETURNS:
79442ed1 143 * Found address on success, 0 on failure.
6ed311b2 144 */
1402899e
TC
145static phys_addr_t __init_memblock
146__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9
TL
147 phys_addr_t size, phys_addr_t align, int nid,
148 ulong flags)
f7210e6c
TC
149{
150 phys_addr_t this_start, this_end, cand;
151 u64 i;
152
fc6daaf9
TL
153 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
154 NULL) {
f7210e6c
TC
155 this_start = clamp(this_start, start, end);
156 this_end = clamp(this_end, start, end);
157
158 if (this_end < size)
159 continue;
160
161 cand = round_down(this_end - size, align);
162 if (cand >= this_start)
163 return cand;
164 }
1402899e 165
f7210e6c
TC
166 return 0;
167}
6ed311b2 168
1402899e
TC
169/**
170 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
171 * @size: size of free area to find
172 * @align: alignment of free area to find
87029ee9
GS
173 * @start: start of candidate range
174 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
b1154233 175 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 176 * @flags: pick from blocks based on memory attributes
1402899e
TC
177 *
178 * Find @size free area aligned to @align in the specified range and node.
179 *
79442ed1
TC
180 * When allocation direction is bottom-up, the @start should be greater
181 * than the end of the kernel image. Otherwise, it will be trimmed. The
182 * reason is that we want the bottom-up allocation just near the kernel
183 * image so it is highly likely that the allocated memory and the kernel
184 * will reside in the same node.
185 *
186 * If bottom-up allocation failed, will try to allocate memory top-down.
187 *
1402899e 188 * RETURNS:
79442ed1 189 * Found address on success, 0 on failure.
1402899e 190 */
87029ee9
GS
191phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
192 phys_addr_t align, phys_addr_t start,
fc6daaf9 193 phys_addr_t end, int nid, ulong flags)
1402899e 194{
0cfb8f0c 195 phys_addr_t kernel_end, ret;
79442ed1 196
1402899e
TC
197 /* pump up @end */
198 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
199 end = memblock.current_limit;
200
201 /* avoid allocating the first page */
202 start = max_t(phys_addr_t, start, PAGE_SIZE);
203 end = max(start, end);
79442ed1
TC
204 kernel_end = __pa_symbol(_end);
205
206 /*
207 * try bottom-up allocation only when bottom-up mode
208 * is set and @end is above the kernel image.
209 */
210 if (memblock_bottom_up() && end > kernel_end) {
211 phys_addr_t bottom_up_start;
212
213 /* make sure we will allocate above the kernel */
214 bottom_up_start = max(start, kernel_end);
215
216 /* ok, try bottom-up allocation first */
217 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
fc6daaf9 218 size, align, nid, flags);
79442ed1
TC
219 if (ret)
220 return ret;
221
222 /*
223 * we always limit bottom-up allocation above the kernel,
224 * but top-down allocation doesn't have the limit, so
225 * retrying top-down allocation may succeed when bottom-up
226 * allocation failed.
227 *
228 * bottom-up allocation is expected to be fail very rarely,
229 * so we use WARN_ONCE() here to see the stack trace if
230 * fail happens.
231 */
756a025f 232 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
79442ed1 233 }
1402899e 234
fc6daaf9
TL
235 return __memblock_find_range_top_down(start, end, size, align, nid,
236 flags);
1402899e
TC
237}
238
7bd0b0f0
TH
239/**
240 * memblock_find_in_range - find free area in given range
241 * @start: start of candidate range
242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
243 * @size: size of free area to find
244 * @align: alignment of free area to find
245 *
246 * Find @size free area aligned to @align in the specified range.
247 *
248 * RETURNS:
79442ed1 249 * Found address on success, 0 on failure.
fc769a8e 250 */
7bd0b0f0
TH
251phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
252 phys_addr_t end, phys_addr_t size,
253 phys_addr_t align)
6ed311b2 254{
a3f5bafc
TL
255 phys_addr_t ret;
256 ulong flags = choose_memblock_flags();
257
258again:
259 ret = memblock_find_in_range_node(size, align, start, end,
260 NUMA_NO_NODE, flags);
261
262 if (!ret && (flags & MEMBLOCK_MIRROR)) {
263 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
264 &size);
265 flags &= ~MEMBLOCK_MIRROR;
266 goto again;
267 }
268
269 return ret;
6ed311b2
BH
270}
271
10d06439 272static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 273{
1440c4e2 274 type->total_size -= type->regions[r].size;
7c0caeb8
TH
275 memmove(&type->regions[r], &type->regions[r + 1],
276 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 277 type->cnt--;
95f72d1e 278
8f7a6605
BH
279 /* Special case for empty arrays */
280 if (type->cnt == 0) {
1440c4e2 281 WARN_ON(type->total_size != 0);
8f7a6605
BH
282 type->cnt = 1;
283 type->regions[0].base = 0;
284 type->regions[0].size = 0;
66a20757 285 type->regions[0].flags = 0;
7c0caeb8 286 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 287 }
95f72d1e
YL
288}
289
354f17e1
PH
290#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
291
29f67386
YL
292phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
293 phys_addr_t *addr)
294{
295 if (memblock.reserved.regions == memblock_reserved_init_regions)
296 return 0;
297
298 *addr = __pa(memblock.reserved.regions);
299
300 return PAGE_ALIGN(sizeof(struct memblock_region) *
301 memblock.reserved.max);
302}
303
5e270e25
PH
304phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
305 phys_addr_t *addr)
306{
307 if (memblock.memory.regions == memblock_memory_init_regions)
308 return 0;
309
310 *addr = __pa(memblock.memory.regions);
311
312 return PAGE_ALIGN(sizeof(struct memblock_region) *
313 memblock.memory.max);
314}
315
316#endif
317
48c3b583
GP
318/**
319 * memblock_double_array - double the size of the memblock regions array
320 * @type: memblock type of the regions array being doubled
321 * @new_area_start: starting address of memory range to avoid overlap with
322 * @new_area_size: size of memory range to avoid overlap with
323 *
324 * Double the size of the @type regions array. If memblock is being used to
325 * allocate memory for a new reserved regions array and there is a previously
326 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
327 * waiting to be reserved, ensure the memory used by the new array does
328 * not overlap.
329 *
330 * RETURNS:
331 * 0 on success, -1 on failure.
332 */
333static int __init_memblock memblock_double_array(struct memblock_type *type,
334 phys_addr_t new_area_start,
335 phys_addr_t new_area_size)
142b45a7
BH
336{
337 struct memblock_region *new_array, *old_array;
29f67386 338 phys_addr_t old_alloc_size, new_alloc_size;
142b45a7
BH
339 phys_addr_t old_size, new_size, addr;
340 int use_slab = slab_is_available();
181eb394 341 int *in_slab;
142b45a7
BH
342
343 /* We don't allow resizing until we know about the reserved regions
344 * of memory that aren't suitable for allocation
345 */
346 if (!memblock_can_resize)
347 return -1;
348
142b45a7
BH
349 /* Calculate new doubled size */
350 old_size = type->max * sizeof(struct memblock_region);
351 new_size = old_size << 1;
29f67386
YL
352 /*
353 * We need to allocated new one align to PAGE_SIZE,
354 * so we can free them completely later.
355 */
356 old_alloc_size = PAGE_ALIGN(old_size);
357 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 358
181eb394
GS
359 /* Retrieve the slab flag */
360 if (type == &memblock.memory)
361 in_slab = &memblock_memory_in_slab;
362 else
363 in_slab = &memblock_reserved_in_slab;
364
142b45a7
BH
365 /* Try to find some space for it.
366 *
367 * WARNING: We assume that either slab_is_available() and we use it or
fd07383b
AM
368 * we use MEMBLOCK for allocations. That means that this is unsafe to
369 * use when bootmem is currently active (unless bootmem itself is
370 * implemented on top of MEMBLOCK which isn't the case yet)
142b45a7
BH
371 *
372 * This should however not be an issue for now, as we currently only
fd07383b
AM
373 * call into MEMBLOCK while it's still active, or much later when slab
374 * is active for memory hotplug operations
142b45a7
BH
375 */
376 if (use_slab) {
377 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 378 addr = new_array ? __pa(new_array) : 0;
4e2f0775 379 } else {
48c3b583
GP
380 /* only exclude range when trying to double reserved.regions */
381 if (type != &memblock.reserved)
382 new_area_start = new_area_size = 0;
383
384 addr = memblock_find_in_range(new_area_start + new_area_size,
385 memblock.current_limit,
29f67386 386 new_alloc_size, PAGE_SIZE);
48c3b583
GP
387 if (!addr && new_area_size)
388 addr = memblock_find_in_range(0,
fd07383b
AM
389 min(new_area_start, memblock.current_limit),
390 new_alloc_size, PAGE_SIZE);
48c3b583 391
15674868 392 new_array = addr ? __va(addr) : NULL;
4e2f0775 393 }
1f5026a7 394 if (!addr) {
142b45a7 395 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 396 type->name, type->max, type->max * 2);
142b45a7
BH
397 return -1;
398 }
142b45a7 399
fd07383b 400 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
0262d9c8 401 type->name, type->max * 2, (u64)addr,
fd07383b 402 (u64)addr + new_size - 1);
ea9e4376 403
fd07383b
AM
404 /*
405 * Found space, we now need to move the array over before we add the
406 * reserved region since it may be our reserved array itself that is
407 * full.
142b45a7
BH
408 */
409 memcpy(new_array, type->regions, old_size);
410 memset(new_array + type->max, 0, old_size);
411 old_array = type->regions;
412 type->regions = new_array;
413 type->max <<= 1;
414
fd07383b 415 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
416 if (*in_slab)
417 kfree(old_array);
418 else if (old_array != memblock_memory_init_regions &&
419 old_array != memblock_reserved_init_regions)
29f67386 420 memblock_free(__pa(old_array), old_alloc_size);
142b45a7 421
fd07383b
AM
422 /*
423 * Reserve the new array if that comes from the memblock. Otherwise, we
424 * needn't do it
181eb394
GS
425 */
426 if (!use_slab)
29f67386 427 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
428
429 /* Update slab flag */
430 *in_slab = use_slab;
431
142b45a7
BH
432 return 0;
433}
434
784656f9
TH
435/**
436 * memblock_merge_regions - merge neighboring compatible regions
437 * @type: memblock type to scan
438 *
439 * Scan @type and merge neighboring compatible regions.
440 */
441static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 442{
784656f9 443 int i = 0;
95f72d1e 444
784656f9
TH
445 /* cnt never goes below 1 */
446 while (i < type->cnt - 1) {
447 struct memblock_region *this = &type->regions[i];
448 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 449
7c0caeb8
TH
450 if (this->base + this->size != next->base ||
451 memblock_get_region_node(this) !=
66a20757
TC
452 memblock_get_region_node(next) ||
453 this->flags != next->flags) {
784656f9
TH
454 BUG_ON(this->base + this->size > next->base);
455 i++;
456 continue;
8f7a6605
BH
457 }
458
784656f9 459 this->size += next->size;
c0232ae8
LF
460 /* move forward from next + 1, index of which is i + 2 */
461 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 462 type->cnt--;
95f72d1e 463 }
784656f9 464}
95f72d1e 465
784656f9
TH
466/**
467 * memblock_insert_region - insert new memblock region
209ff86d
TC
468 * @type: memblock type to insert into
469 * @idx: index for the insertion point
470 * @base: base address of the new region
471 * @size: size of the new region
472 * @nid: node id of the new region
66a20757 473 * @flags: flags of the new region
784656f9
TH
474 *
475 * Insert new memblock region [@base,@base+@size) into @type at @idx.
412d0008 476 * @type must already have extra room to accommodate the new region.
784656f9
TH
477 */
478static void __init_memblock memblock_insert_region(struct memblock_type *type,
479 int idx, phys_addr_t base,
66a20757
TC
480 phys_addr_t size,
481 int nid, unsigned long flags)
784656f9
TH
482{
483 struct memblock_region *rgn = &type->regions[idx];
484
485 BUG_ON(type->cnt >= type->max);
486 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
487 rgn->base = base;
488 rgn->size = size;
66a20757 489 rgn->flags = flags;
7c0caeb8 490 memblock_set_region_node(rgn, nid);
784656f9 491 type->cnt++;
1440c4e2 492 type->total_size += size;
784656f9
TH
493}
494
495/**
f1af9d3a 496 * memblock_add_range - add new memblock region
784656f9
TH
497 * @type: memblock type to add new region into
498 * @base: base address of the new region
499 * @size: size of the new region
7fb0bc3f 500 * @nid: nid of the new region
66a20757 501 * @flags: flags of the new region
784656f9
TH
502 *
503 * Add new memblock region [@base,@base+@size) into @type. The new region
504 * is allowed to overlap with existing ones - overlaps don't affect already
505 * existing regions. @type is guaranteed to be minimal (all neighbouring
506 * compatible regions are merged) after the addition.
507 *
508 * RETURNS:
509 * 0 on success, -errno on failure.
510 */
f1af9d3a 511int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757
TC
512 phys_addr_t base, phys_addr_t size,
513 int nid, unsigned long flags)
784656f9
TH
514{
515 bool insert = false;
eb18f1b5
TH
516 phys_addr_t obase = base;
517 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
518 int idx, nr_new;
519 struct memblock_region *rgn;
784656f9 520
b3dc627c
TH
521 if (!size)
522 return 0;
523
784656f9
TH
524 /* special case for empty array */
525 if (type->regions[0].size == 0) {
1440c4e2 526 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
527 type->regions[0].base = base;
528 type->regions[0].size = size;
66a20757 529 type->regions[0].flags = flags;
7fb0bc3f 530 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 531 type->total_size = size;
8f7a6605 532 return 0;
95f72d1e 533 }
784656f9
TH
534repeat:
535 /*
536 * The following is executed twice. Once with %false @insert and
537 * then with %true. The first counts the number of regions needed
412d0008 538 * to accommodate the new area. The second actually inserts them.
142b45a7 539 */
784656f9
TH
540 base = obase;
541 nr_new = 0;
95f72d1e 542
8c9c1701 543 for_each_memblock_type(type, rgn) {
784656f9
TH
544 phys_addr_t rbase = rgn->base;
545 phys_addr_t rend = rbase + rgn->size;
546
547 if (rbase >= end)
95f72d1e 548 break;
784656f9
TH
549 if (rend <= base)
550 continue;
551 /*
552 * @rgn overlaps. If it separates the lower part of new
553 * area, insert that portion.
554 */
555 if (rbase > base) {
c0a29498
WY
556#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
557 WARN_ON(nid != memblock_get_region_node(rgn));
558#endif
4fcab5f4 559 WARN_ON(flags != rgn->flags);
784656f9
TH
560 nr_new++;
561 if (insert)
8c9c1701 562 memblock_insert_region(type, idx++, base,
66a20757
TC
563 rbase - base, nid,
564 flags);
95f72d1e 565 }
784656f9
TH
566 /* area below @rend is dealt with, forget about it */
567 base = min(rend, end);
95f72d1e 568 }
784656f9
TH
569
570 /* insert the remaining portion */
571 if (base < end) {
572 nr_new++;
573 if (insert)
8c9c1701 574 memblock_insert_region(type, idx, base, end - base,
66a20757 575 nid, flags);
95f72d1e 576 }
95f72d1e 577
ef3cc4db 578 if (!nr_new)
579 return 0;
580
784656f9
TH
581 /*
582 * If this was the first round, resize array and repeat for actual
583 * insertions; otherwise, merge and return.
142b45a7 584 */
784656f9
TH
585 if (!insert) {
586 while (type->cnt + nr_new > type->max)
48c3b583 587 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
588 return -ENOMEM;
589 insert = true;
590 goto repeat;
591 } else {
592 memblock_merge_regions(type);
593 return 0;
142b45a7 594 }
95f72d1e
YL
595}
596
7fb0bc3f
TH
597int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
598 int nid)
599{
f1af9d3a 600 return memblock_add_range(&memblock.memory, base, size, nid, 0);
7fb0bc3f
TH
601}
602
f705ac4b 603int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 604{
5d63f81c
MC
605 phys_addr_t end = base + size - 1;
606
607 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
608 &base, &end, (void *)_RET_IP_);
6a4055bc 609
f705ac4b 610 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
611}
612
6a9ceb31
TH
613/**
614 * memblock_isolate_range - isolate given range into disjoint memblocks
615 * @type: memblock type to isolate range for
616 * @base: base of range to isolate
617 * @size: size of range to isolate
618 * @start_rgn: out parameter for the start of isolated region
619 * @end_rgn: out parameter for the end of isolated region
620 *
621 * Walk @type and ensure that regions don't cross the boundaries defined by
622 * [@base,@base+@size). Crossing regions are split at the boundaries,
623 * which may create at most two more regions. The index of the first
624 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
625 *
626 * RETURNS:
627 * 0 on success, -errno on failure.
628 */
629static int __init_memblock memblock_isolate_range(struct memblock_type *type,
630 phys_addr_t base, phys_addr_t size,
631 int *start_rgn, int *end_rgn)
632{
eb18f1b5 633 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
634 int idx;
635 struct memblock_region *rgn;
6a9ceb31
TH
636
637 *start_rgn = *end_rgn = 0;
638
b3dc627c
TH
639 if (!size)
640 return 0;
641
6a9ceb31
TH
642 /* we'll create at most two more regions */
643 while (type->cnt + 2 > type->max)
48c3b583 644 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
645 return -ENOMEM;
646
8c9c1701 647 for_each_memblock_type(type, rgn) {
6a9ceb31
TH
648 phys_addr_t rbase = rgn->base;
649 phys_addr_t rend = rbase + rgn->size;
650
651 if (rbase >= end)
652 break;
653 if (rend <= base)
654 continue;
655
656 if (rbase < base) {
657 /*
658 * @rgn intersects from below. Split and continue
659 * to process the next region - the new top half.
660 */
661 rgn->base = base;
1440c4e2
TH
662 rgn->size -= base - rbase;
663 type->total_size -= base - rbase;
8c9c1701 664 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
665 memblock_get_region_node(rgn),
666 rgn->flags);
6a9ceb31
TH
667 } else if (rend > end) {
668 /*
669 * @rgn intersects from above. Split and redo the
670 * current region - the new bottom half.
671 */
672 rgn->base = end;
1440c4e2
TH
673 rgn->size -= end - rbase;
674 type->total_size -= end - rbase;
8c9c1701 675 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
676 memblock_get_region_node(rgn),
677 rgn->flags);
6a9ceb31
TH
678 } else {
679 /* @rgn is fully contained, record it */
680 if (!*end_rgn)
8c9c1701
AK
681 *start_rgn = idx;
682 *end_rgn = idx + 1;
6a9ceb31
TH
683 }
684 }
685
686 return 0;
687}
6a9ceb31 688
35bd16a2 689static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 690 phys_addr_t base, phys_addr_t size)
95f72d1e 691{
71936180
TH
692 int start_rgn, end_rgn;
693 int i, ret;
95f72d1e 694
71936180
TH
695 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
696 if (ret)
697 return ret;
95f72d1e 698
71936180
TH
699 for (i = end_rgn - 1; i >= start_rgn; i--)
700 memblock_remove_region(type, i);
8f7a6605 701 return 0;
95f72d1e
YL
702}
703
581adcbe 704int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 705{
f1af9d3a 706 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
707}
708
f1af9d3a 709
581adcbe 710int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 711{
5d63f81c
MC
712 phys_addr_t end = base + size - 1;
713
714 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
715 &base, &end, (void *)_RET_IP_);
24aa0788 716
9099daed 717 kmemleak_free_part_phys(base, size);
f1af9d3a 718 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
719}
720
f705ac4b 721int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 722{
5d63f81c
MC
723 phys_addr_t end = base + size - 1;
724
725 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
726 &base, &end, (void *)_RET_IP_);
95f72d1e 727
f705ac4b 728 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
729}
730
66b16edf 731/**
66b16edf 732 *
4308ce17 733 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 734 *
c1153931 735 * Return 0 on success, -errno on failure.
66b16edf 736 */
4308ce17
TL
737static int __init_memblock memblock_setclr_flag(phys_addr_t base,
738 phys_addr_t size, int set, int flag)
66b16edf
TC
739{
740 struct memblock_type *type = &memblock.memory;
741 int i, ret, start_rgn, end_rgn;
742
743 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
744 if (ret)
745 return ret;
746
747 for (i = start_rgn; i < end_rgn; i++)
4308ce17
TL
748 if (set)
749 memblock_set_region_flags(&type->regions[i], flag);
750 else
751 memblock_clear_region_flags(&type->regions[i], flag);
66b16edf
TC
752
753 memblock_merge_regions(type);
754 return 0;
755}
756
757/**
4308ce17 758 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
759 * @base: the base phys addr of the region
760 * @size: the size of the region
761 *
c1153931 762 * Return 0 on success, -errno on failure.
4308ce17
TL
763 */
764int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
765{
766 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
767}
768
769/**
770 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
771 * @base: the base phys addr of the region
772 * @size: the size of the region
66b16edf 773 *
c1153931 774 * Return 0 on success, -errno on failure.
66b16edf
TC
775 */
776int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
777{
4308ce17 778 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
779}
780
a3f5bafc
TL
781/**
782 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
783 * @base: the base phys addr of the region
784 * @size: the size of the region
785 *
c1153931 786 * Return 0 on success, -errno on failure.
a3f5bafc
TL
787 */
788int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
789{
790 system_has_some_mirror = true;
791
792 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
793}
794
bf3d3cc5
AB
795/**
796 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
797 * @base: the base phys addr of the region
798 * @size: the size of the region
799 *
800 * Return 0 on success, -errno on failure.
801 */
802int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
803{
804 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
805}
a3f5bafc 806
4c546b8a
AT
807/**
808 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
809 * @base: the base phys addr of the region
810 * @size: the size of the region
811 *
812 * Return 0 on success, -errno on failure.
813 */
814int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
815{
816 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
817}
818
8e7a7f86
RH
819/**
820 * __next_reserved_mem_region - next function for for_each_reserved_region()
821 * @idx: pointer to u64 loop variable
822 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
823 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
824 *
825 * Iterate over all reserved memory regions.
826 */
827void __init_memblock __next_reserved_mem_region(u64 *idx,
828 phys_addr_t *out_start,
829 phys_addr_t *out_end)
830{
567d117b 831 struct memblock_type *type = &memblock.reserved;
8e7a7f86 832
cd33a76b 833 if (*idx < type->cnt) {
567d117b 834 struct memblock_region *r = &type->regions[*idx];
8e7a7f86
RH
835 phys_addr_t base = r->base;
836 phys_addr_t size = r->size;
837
838 if (out_start)
839 *out_start = base;
840 if (out_end)
841 *out_end = base + size - 1;
842
843 *idx += 1;
844 return;
845 }
846
847 /* signal end of iteration */
848 *idx = ULLONG_MAX;
849}
850
35fd0808 851/**
f1af9d3a 852 * __next__mem_range - next function for for_each_free_mem_range() etc.
35fd0808 853 * @idx: pointer to u64 loop variable
b1154233 854 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 855 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
856 * @type_a: pointer to memblock_type from where the range is taken
857 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
858 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
859 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
860 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 861 *
f1af9d3a 862 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 863 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
864 * *@idx contains index into type_a and the upper 32bit indexes the
865 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
866 * look like the following,
867 *
868 * 0:[0-16), 1:[32-48), 2:[128-130)
869 *
870 * The upper 32bit indexes the following regions.
871 *
872 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
873 *
874 * As both region arrays are sorted, the function advances the two indices
875 * in lockstep and returns each intersection.
876 */
fc6daaf9 877void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
f1af9d3a
PH
878 struct memblock_type *type_a,
879 struct memblock_type *type_b,
880 phys_addr_t *out_start,
881 phys_addr_t *out_end, int *out_nid)
35fd0808 882{
f1af9d3a
PH
883 int idx_a = *idx & 0xffffffff;
884 int idx_b = *idx >> 32;
b1154233 885
f1af9d3a
PH
886 if (WARN_ONCE(nid == MAX_NUMNODES,
887 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 888 nid = NUMA_NO_NODE;
35fd0808 889
f1af9d3a
PH
890 for (; idx_a < type_a->cnt; idx_a++) {
891 struct memblock_region *m = &type_a->regions[idx_a];
892
35fd0808
TH
893 phys_addr_t m_start = m->base;
894 phys_addr_t m_end = m->base + m->size;
f1af9d3a 895 int m_nid = memblock_get_region_node(m);
35fd0808
TH
896
897 /* only memory regions are associated with nodes, check it */
f1af9d3a 898 if (nid != NUMA_NO_NODE && nid != m_nid)
35fd0808
TH
899 continue;
900
0a313a99
XQ
901 /* skip hotpluggable memory regions if needed */
902 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
903 continue;
904
a3f5bafc
TL
905 /* if we want mirror memory skip non-mirror memory regions */
906 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
907 continue;
908
bf3d3cc5
AB
909 /* skip nomap memory unless we were asked for it explicitly */
910 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
911 continue;
912
f1af9d3a
PH
913 if (!type_b) {
914 if (out_start)
915 *out_start = m_start;
916 if (out_end)
917 *out_end = m_end;
918 if (out_nid)
919 *out_nid = m_nid;
920 idx_a++;
921 *idx = (u32)idx_a | (u64)idx_b << 32;
922 return;
923 }
924
925 /* scan areas before each reservation */
926 for (; idx_b < type_b->cnt + 1; idx_b++) {
927 struct memblock_region *r;
928 phys_addr_t r_start;
929 phys_addr_t r_end;
930
931 r = &type_b->regions[idx_b];
932 r_start = idx_b ? r[-1].base + r[-1].size : 0;
933 r_end = idx_b < type_b->cnt ?
934 r->base : ULLONG_MAX;
35fd0808 935
f1af9d3a
PH
936 /*
937 * if idx_b advanced past idx_a,
938 * break out to advance idx_a
939 */
35fd0808
TH
940 if (r_start >= m_end)
941 break;
942 /* if the two regions intersect, we're done */
943 if (m_start < r_end) {
944 if (out_start)
f1af9d3a
PH
945 *out_start =
946 max(m_start, r_start);
35fd0808
TH
947 if (out_end)
948 *out_end = min(m_end, r_end);
949 if (out_nid)
f1af9d3a 950 *out_nid = m_nid;
35fd0808 951 /*
f1af9d3a
PH
952 * The region which ends first is
953 * advanced for the next iteration.
35fd0808
TH
954 */
955 if (m_end <= r_end)
f1af9d3a 956 idx_a++;
35fd0808 957 else
f1af9d3a
PH
958 idx_b++;
959 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
960 return;
961 }
962 }
963 }
964
965 /* signal end of iteration */
966 *idx = ULLONG_MAX;
967}
968
7bd0b0f0 969/**
f1af9d3a
PH
970 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
971 *
972 * Finds the next range from type_a which is not marked as unsuitable
973 * in type_b.
974 *
7bd0b0f0 975 * @idx: pointer to u64 loop variable
ad5ea8cd 976 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 977 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
978 * @type_a: pointer to memblock_type from where the range is taken
979 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
980 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
981 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
982 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 983 *
f1af9d3a 984 * Reverse of __next_mem_range().
7bd0b0f0 985 */
fc6daaf9 986void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
f1af9d3a
PH
987 struct memblock_type *type_a,
988 struct memblock_type *type_b,
989 phys_addr_t *out_start,
990 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 991{
f1af9d3a
PH
992 int idx_a = *idx & 0xffffffff;
993 int idx_b = *idx >> 32;
b1154233 994
560dca27
GS
995 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
996 nid = NUMA_NO_NODE;
7bd0b0f0
TH
997
998 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 999 idx_a = type_a->cnt - 1;
e47608ab 1000 if (type_b != NULL)
1001 idx_b = type_b->cnt;
1002 else
1003 idx_b = 0;
7bd0b0f0
TH
1004 }
1005
f1af9d3a
PH
1006 for (; idx_a >= 0; idx_a--) {
1007 struct memblock_region *m = &type_a->regions[idx_a];
1008
7bd0b0f0
TH
1009 phys_addr_t m_start = m->base;
1010 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1011 int m_nid = memblock_get_region_node(m);
7bd0b0f0
TH
1012
1013 /* only memory regions are associated with nodes, check it */
f1af9d3a 1014 if (nid != NUMA_NO_NODE && nid != m_nid)
7bd0b0f0
TH
1015 continue;
1016
55ac590c
TC
1017 /* skip hotpluggable memory regions if needed */
1018 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1019 continue;
1020
a3f5bafc
TL
1021 /* if we want mirror memory skip non-mirror memory regions */
1022 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1023 continue;
1024
bf3d3cc5
AB
1025 /* skip nomap memory unless we were asked for it explicitly */
1026 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1027 continue;
1028
f1af9d3a
PH
1029 if (!type_b) {
1030 if (out_start)
1031 *out_start = m_start;
1032 if (out_end)
1033 *out_end = m_end;
1034 if (out_nid)
1035 *out_nid = m_nid;
fb399b48 1036 idx_a--;
f1af9d3a
PH
1037 *idx = (u32)idx_a | (u64)idx_b << 32;
1038 return;
1039 }
1040
1041 /* scan areas before each reservation */
1042 for (; idx_b >= 0; idx_b--) {
1043 struct memblock_region *r;
1044 phys_addr_t r_start;
1045 phys_addr_t r_end;
1046
1047 r = &type_b->regions[idx_b];
1048 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1049 r_end = idx_b < type_b->cnt ?
1050 r->base : ULLONG_MAX;
1051 /*
1052 * if idx_b advanced past idx_a,
1053 * break out to advance idx_a
1054 */
7bd0b0f0 1055
7bd0b0f0
TH
1056 if (r_end <= m_start)
1057 break;
1058 /* if the two regions intersect, we're done */
1059 if (m_end > r_start) {
1060 if (out_start)
1061 *out_start = max(m_start, r_start);
1062 if (out_end)
1063 *out_end = min(m_end, r_end);
1064 if (out_nid)
f1af9d3a 1065 *out_nid = m_nid;
7bd0b0f0 1066 if (m_start >= r_start)
f1af9d3a 1067 idx_a--;
7bd0b0f0 1068 else
f1af9d3a
PH
1069 idx_b--;
1070 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1071 return;
1072 }
1073 }
1074 }
f1af9d3a 1075 /* signal end of iteration */
7bd0b0f0
TH
1076 *idx = ULLONG_MAX;
1077}
1078
7c0caeb8
TH
1079#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1080/*
1081 * Common iterator interface used to define for_each_mem_range().
1082 */
1083void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1084 unsigned long *out_start_pfn,
1085 unsigned long *out_end_pfn, int *out_nid)
1086{
1087 struct memblock_type *type = &memblock.memory;
1088 struct memblock_region *r;
1089
1090 while (++*idx < type->cnt) {
1091 r = &type->regions[*idx];
1092
1093 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1094 continue;
1095 if (nid == MAX_NUMNODES || nid == r->nid)
1096 break;
1097 }
1098 if (*idx >= type->cnt) {
1099 *idx = -1;
1100 return;
1101 }
1102
1103 if (out_start_pfn)
1104 *out_start_pfn = PFN_UP(r->base);
1105 if (out_end_pfn)
1106 *out_end_pfn = PFN_DOWN(r->base + r->size);
1107 if (out_nid)
1108 *out_nid = r->nid;
1109}
1110
b92df1de
PB
1111unsigned long __init_memblock memblock_next_valid_pfn(unsigned long pfn,
1112 unsigned long max_pfn)
1113{
1114 struct memblock_type *type = &memblock.memory;
1115 unsigned int right = type->cnt;
1116 unsigned int mid, left = 0;
1117 phys_addr_t addr = PFN_PHYS(pfn + 1);
1118
1119 do {
1120 mid = (right + left) / 2;
1121
1122 if (addr < type->regions[mid].base)
1123 right = mid;
1124 else if (addr >= (type->regions[mid].base +
1125 type->regions[mid].size))
1126 left = mid + 1;
1127 else {
1128 /* addr is within the region, so pfn + 1 is valid */
1129 return min(pfn + 1, max_pfn);
1130 }
1131 } while (left < right);
1132
c9a1b80d
AT
1133 if (right == type->cnt)
1134 return max_pfn;
1135 else
1136 return min(PHYS_PFN(type->regions[right].base), max_pfn);
b92df1de
PB
1137}
1138
7c0caeb8
TH
1139/**
1140 * memblock_set_node - set node ID on memblock regions
1141 * @base: base of area to set node ID for
1142 * @size: size of area to set node ID for
e7e8de59 1143 * @type: memblock type to set node ID for
7c0caeb8
TH
1144 * @nid: node ID to set
1145 *
e7e8de59 1146 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
7c0caeb8
TH
1147 * Regions which cross the area boundaries are split as necessary.
1148 *
1149 * RETURNS:
1150 * 0 on success, -errno on failure.
1151 */
1152int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1153 struct memblock_type *type, int nid)
7c0caeb8 1154{
6a9ceb31
TH
1155 int start_rgn, end_rgn;
1156 int i, ret;
7c0caeb8 1157
6a9ceb31
TH
1158 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1159 if (ret)
1160 return ret;
7c0caeb8 1161
6a9ceb31 1162 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1163 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1164
1165 memblock_merge_regions(type);
1166 return 0;
1167}
1168#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1169
2bfc2862
AM
1170static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1171 phys_addr_t align, phys_addr_t start,
fc6daaf9 1172 phys_addr_t end, int nid, ulong flags)
95f72d1e 1173{
6ed311b2 1174 phys_addr_t found;
95f72d1e 1175
79f40fab
GS
1176 if (!align)
1177 align = SMP_CACHE_BYTES;
94f3d3af 1178
fc6daaf9
TL
1179 found = memblock_find_in_range_node(size, align, start, end, nid,
1180 flags);
aedf95ea
CM
1181 if (found && !memblock_reserve(found, size)) {
1182 /*
1183 * The min_count is set to 0 so that memblock allocations are
1184 * never reported as leaks.
1185 */
9099daed 1186 kmemleak_alloc_phys(found, size, 0, 0);
6ed311b2 1187 return found;
aedf95ea 1188 }
6ed311b2 1189 return 0;
95f72d1e
YL
1190}
1191
2bfc2862 1192phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
fc6daaf9
TL
1193 phys_addr_t start, phys_addr_t end,
1194 ulong flags)
2bfc2862 1195{
fc6daaf9
TL
1196 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1197 flags);
2bfc2862
AM
1198}
1199
1200static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1201 phys_addr_t align, phys_addr_t max_addr,
fc6daaf9 1202 int nid, ulong flags)
2bfc2862 1203{
fc6daaf9 1204 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
2bfc2862
AM
1205}
1206
7bd0b0f0
TH
1207phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1208{
a3f5bafc
TL
1209 ulong flags = choose_memblock_flags();
1210 phys_addr_t ret;
1211
1212again:
1213 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1214 nid, flags);
1215
1216 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1217 flags &= ~MEMBLOCK_MIRROR;
1218 goto again;
1219 }
1220 return ret;
7bd0b0f0
TH
1221}
1222
1223phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1224{
fc6daaf9
TL
1225 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1226 MEMBLOCK_NONE);
7bd0b0f0
TH
1227}
1228
6ed311b2 1229phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
95f72d1e 1230{
6ed311b2
BH
1231 phys_addr_t alloc;
1232
1233 alloc = __memblock_alloc_base(size, align, max_addr);
1234
1235 if (alloc == 0)
5d63f81c
MC
1236 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1237 &size, &max_addr);
6ed311b2
BH
1238
1239 return alloc;
95f72d1e
YL
1240}
1241
6ed311b2 1242phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
95f72d1e 1243{
6ed311b2
BH
1244 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1245}
95f72d1e 1246
9d1e2492
BH
1247phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1248{
1249 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1250
1251 if (res)
1252 return res;
15fb0972 1253 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
95f72d1e
YL
1254}
1255
26f09e9b
SS
1256/**
1257 * memblock_virt_alloc_internal - allocate boot memory block
1258 * @size: size of memory block to be allocated in bytes
1259 * @align: alignment of the region and block's size
1260 * @min_addr: the lower bound of the memory region to allocate (phys address)
1261 * @max_addr: the upper bound of the memory region to allocate (phys address)
1262 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1263 *
1264 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1265 * will fall back to memory below @min_addr. Also, allocation may fall back
1266 * to any node in the system if the specified node can not
1267 * hold the requested memory.
1268 *
1269 * The allocation is performed from memory region limited by
1270 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1271 *
1272 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1273 *
1274 * The phys address of allocated boot memory block is converted to virtual and
1275 * allocated memory is reset to 0.
1276 *
1277 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1278 * allocated boot memory block, so that it is never reported as leaks.
1279 *
1280 * RETURNS:
1281 * Virtual address of allocated memory block on success, NULL on failure.
1282 */
1283static void * __init memblock_virt_alloc_internal(
1284 phys_addr_t size, phys_addr_t align,
1285 phys_addr_t min_addr, phys_addr_t max_addr,
1286 int nid)
1287{
1288 phys_addr_t alloc;
1289 void *ptr;
a3f5bafc 1290 ulong flags = choose_memblock_flags();
26f09e9b 1291
560dca27
GS
1292 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1293 nid = NUMA_NO_NODE;
26f09e9b
SS
1294
1295 /*
1296 * Detect any accidental use of these APIs after slab is ready, as at
1297 * this moment memblock may be deinitialized already and its
1298 * internal data may be destroyed (after execution of free_all_bootmem)
1299 */
1300 if (WARN_ON_ONCE(slab_is_available()))
1301 return kzalloc_node(size, GFP_NOWAIT, nid);
1302
1303 if (!align)
1304 align = SMP_CACHE_BYTES;
1305
f544e14f
YL
1306 if (max_addr > memblock.current_limit)
1307 max_addr = memblock.current_limit;
26f09e9b
SS
1308again:
1309 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
a3f5bafc 1310 nid, flags);
7d41c03e 1311 if (alloc && !memblock_reserve(alloc, size))
26f09e9b
SS
1312 goto done;
1313
1314 if (nid != NUMA_NO_NODE) {
1315 alloc = memblock_find_in_range_node(size, align, min_addr,
fc6daaf9 1316 max_addr, NUMA_NO_NODE,
a3f5bafc 1317 flags);
7d41c03e 1318 if (alloc && !memblock_reserve(alloc, size))
26f09e9b
SS
1319 goto done;
1320 }
1321
1322 if (min_addr) {
1323 min_addr = 0;
1324 goto again;
26f09e9b
SS
1325 }
1326
a3f5bafc
TL
1327 if (flags & MEMBLOCK_MIRROR) {
1328 flags &= ~MEMBLOCK_MIRROR;
1329 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1330 &size);
1331 goto again;
1332 }
1333
1334 return NULL;
26f09e9b 1335done:
26f09e9b
SS
1336 ptr = phys_to_virt(alloc);
1337 memset(ptr, 0, size);
1338
1339 /*
1340 * The min_count is set to 0 so that bootmem allocated blocks
1341 * are never reported as leaks. This is because many of these blocks
1342 * are only referred via the physical address which is not
1343 * looked up by kmemleak.
1344 */
1345 kmemleak_alloc(ptr, size, 0, 0);
1346
1347 return ptr;
26f09e9b
SS
1348}
1349
1350/**
1351 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1352 * @size: size of memory block to be allocated in bytes
1353 * @align: alignment of the region and block's size
1354 * @min_addr: the lower bound of the memory region from where the allocation
1355 * is preferred (phys address)
1356 * @max_addr: the upper bound of the memory region from where the allocation
1357 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1358 * allocate only from memory limited by memblock.current_limit value
1359 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1360 *
1361 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1362 * additional debug information (including caller info), if enabled.
1363 *
1364 * RETURNS:
1365 * Virtual address of allocated memory block on success, NULL on failure.
1366 */
1367void * __init memblock_virt_alloc_try_nid_nopanic(
1368 phys_addr_t size, phys_addr_t align,
1369 phys_addr_t min_addr, phys_addr_t max_addr,
1370 int nid)
1371{
1372 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1373 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1374 (u64)max_addr, (void *)_RET_IP_);
1375 return memblock_virt_alloc_internal(size, align, min_addr,
1376 max_addr, nid);
1377}
1378
1379/**
1380 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1381 * @size: size of memory block to be allocated in bytes
1382 * @align: alignment of the region and block's size
1383 * @min_addr: the lower bound of the memory region from where the allocation
1384 * is preferred (phys address)
1385 * @max_addr: the upper bound of the memory region from where the allocation
1386 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1387 * allocate only from memory limited by memblock.current_limit value
1388 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1389 *
1390 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1391 * which provides debug information (including caller info), if enabled,
1392 * and panics if the request can not be satisfied.
1393 *
1394 * RETURNS:
1395 * Virtual address of allocated memory block on success, NULL on failure.
1396 */
1397void * __init memblock_virt_alloc_try_nid(
1398 phys_addr_t size, phys_addr_t align,
1399 phys_addr_t min_addr, phys_addr_t max_addr,
1400 int nid)
1401{
1402 void *ptr;
1403
1404 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1405 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1406 (u64)max_addr, (void *)_RET_IP_);
1407 ptr = memblock_virt_alloc_internal(size, align,
1408 min_addr, max_addr, nid);
1409 if (ptr)
1410 return ptr;
1411
1412 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1413 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1414 (u64)max_addr);
1415 return NULL;
1416}
1417
1418/**
1419 * __memblock_free_early - free boot memory block
1420 * @base: phys starting address of the boot memory block
1421 * @size: size of the boot memory block in bytes
1422 *
1423 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1424 * The freeing memory will not be released to the buddy allocator.
1425 */
1426void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1427{
1428 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1429 __func__, (u64)base, (u64)base + size - 1,
1430 (void *)_RET_IP_);
9099daed 1431 kmemleak_free_part_phys(base, size);
f1af9d3a 1432 memblock_remove_range(&memblock.reserved, base, size);
26f09e9b
SS
1433}
1434
1435/*
1436 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1437 * @addr: phys starting address of the boot memory block
1438 * @size: size of the boot memory block in bytes
1439 *
1440 * This is only useful when the bootmem allocator has already been torn
1441 * down, but we are still initializing the system. Pages are released directly
1442 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1443 */
1444void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1445{
1446 u64 cursor, end;
1447
1448 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1449 __func__, (u64)base, (u64)base + size - 1,
1450 (void *)_RET_IP_);
9099daed 1451 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1452 cursor = PFN_UP(base);
1453 end = PFN_DOWN(base + size);
1454
1455 for (; cursor < end; cursor++) {
d70ddd7a 1456 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
26f09e9b
SS
1457 totalram_pages++;
1458 }
1459}
9d1e2492
BH
1460
1461/*
1462 * Remaining API functions
1463 */
1464
1f1ffb8a 1465phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1466{
1440c4e2 1467 return memblock.memory.total_size;
95f72d1e
YL
1468}
1469
8907de5d
SD
1470phys_addr_t __init_memblock memblock_reserved_size(void)
1471{
1472 return memblock.reserved.total_size;
1473}
1474
595ad9af
YL
1475phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1476{
1477 unsigned long pages = 0;
1478 struct memblock_region *r;
1479 unsigned long start_pfn, end_pfn;
1480
1481 for_each_memblock(memory, r) {
1482 start_pfn = memblock_region_memory_base_pfn(r);
1483 end_pfn = memblock_region_memory_end_pfn(r);
1484 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1485 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1486 pages += end_pfn - start_pfn;
1487 }
1488
16763230 1489 return PFN_PHYS(pages);
595ad9af
YL
1490}
1491
0a93ebef
SR
1492/* lowest address */
1493phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1494{
1495 return memblock.memory.regions[0].base;
1496}
1497
10d06439 1498phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1499{
1500 int idx = memblock.memory.cnt - 1;
1501
e3239ff9 1502 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1503}
1504
a571d4eb 1505static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1506{
c0ce8fef 1507 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
136199f0 1508 struct memblock_region *r;
95f72d1e 1509
a571d4eb
DC
1510 /*
1511 * translate the memory @limit size into the max address within one of
1512 * the memory memblock regions, if the @limit exceeds the total size
1513 * of those regions, max_addr will keep original value ULLONG_MAX
1514 */
136199f0 1515 for_each_memblock(memory, r) {
c0ce8fef
TH
1516 if (limit <= r->size) {
1517 max_addr = r->base + limit;
1518 break;
95f72d1e 1519 }
c0ce8fef 1520 limit -= r->size;
95f72d1e 1521 }
c0ce8fef 1522
a571d4eb
DC
1523 return max_addr;
1524}
1525
1526void __init memblock_enforce_memory_limit(phys_addr_t limit)
1527{
1528 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1529
1530 if (!limit)
1531 return;
1532
1533 max_addr = __find_max_addr(limit);
1534
1535 /* @limit exceeds the total size of the memory, do nothing */
1536 if (max_addr == (phys_addr_t)ULLONG_MAX)
1537 return;
1538
c0ce8fef 1539 /* truncate both memory and reserved regions */
f1af9d3a
PH
1540 memblock_remove_range(&memblock.memory, max_addr,
1541 (phys_addr_t)ULLONG_MAX);
1542 memblock_remove_range(&memblock.reserved, max_addr,
1543 (phys_addr_t)ULLONG_MAX);
95f72d1e
YL
1544}
1545
a571d4eb
DC
1546void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1547{
1548 struct memblock_type *type = &memblock.memory;
1549 phys_addr_t max_addr;
1550 int i, ret, start_rgn, end_rgn;
1551
1552 if (!limit)
1553 return;
1554
1555 max_addr = __find_max_addr(limit);
1556
1557 /* @limit exceeds the total size of the memory, do nothing */
1558 if (max_addr == (phys_addr_t)ULLONG_MAX)
1559 return;
1560
1561 ret = memblock_isolate_range(type, max_addr, (phys_addr_t)ULLONG_MAX,
1562 &start_rgn, &end_rgn);
1563 if (ret)
1564 return;
1565
1566 /* remove all the MAP regions above the limit */
1567 for (i = end_rgn - 1; i >= start_rgn; i--) {
1568 if (!memblock_is_nomap(&type->regions[i]))
1569 memblock_remove_region(type, i);
1570 }
1571 /* truncate the reserved regions */
1572 memblock_remove_range(&memblock.reserved, max_addr,
1573 (phys_addr_t)ULLONG_MAX);
1574}
1575
cd79481d 1576static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1577{
1578 unsigned int left = 0, right = type->cnt;
1579
1580 do {
1581 unsigned int mid = (right + left) / 2;
1582
1583 if (addr < type->regions[mid].base)
1584 right = mid;
1585 else if (addr >= (type->regions[mid].base +
1586 type->regions[mid].size))
1587 left = mid + 1;
1588 else
1589 return mid;
1590 } while (left < right);
1591 return -1;
1592}
1593
b4ad0c7e 1594bool __init memblock_is_reserved(phys_addr_t addr)
95f72d1e 1595{
72d4b0b4
BH
1596 return memblock_search(&memblock.reserved, addr) != -1;
1597}
95f72d1e 1598
b4ad0c7e 1599bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1600{
1601 return memblock_search(&memblock.memory, addr) != -1;
1602}
1603
bf3d3cc5
AB
1604int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1605{
1606 int i = memblock_search(&memblock.memory, addr);
1607
1608 if (i == -1)
1609 return false;
1610 return !memblock_is_nomap(&memblock.memory.regions[i]);
1611}
1612
e76b63f8
YL
1613#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1614int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1615 unsigned long *start_pfn, unsigned long *end_pfn)
1616{
1617 struct memblock_type *type = &memblock.memory;
16763230 1618 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1619
1620 if (mid == -1)
1621 return -1;
1622
f7e2f7e8
FF
1623 *start_pfn = PFN_DOWN(type->regions[mid].base);
1624 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8
YL
1625
1626 return type->regions[mid].nid;
1627}
1628#endif
1629
eab30949
SB
1630/**
1631 * memblock_is_region_memory - check if a region is a subset of memory
1632 * @base: base of region to check
1633 * @size: size of region to check
1634 *
1635 * Check if the region [@base, @base+@size) is a subset of a memory block.
1636 *
1637 * RETURNS:
1638 * 0 if false, non-zero if true
1639 */
3661ca66 1640int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1641{
abb65272 1642 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1643 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1644
1645 if (idx == -1)
1646 return 0;
ef415ef4 1647 return (memblock.memory.regions[idx].base +
eb18f1b5 1648 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1649}
1650
eab30949
SB
1651/**
1652 * memblock_is_region_reserved - check if a region intersects reserved memory
1653 * @base: base of region to check
1654 * @size: size of region to check
1655 *
1656 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1657 *
1658 * RETURNS:
c5c5c9d1 1659 * True if they intersect, false if not.
eab30949 1660 */
c5c5c9d1 1661bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1662{
eb18f1b5 1663 memblock_cap_size(base, &size);
c5c5c9d1 1664 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1665}
1666
6ede1fd3
YL
1667void __init_memblock memblock_trim_memory(phys_addr_t align)
1668{
6ede1fd3 1669 phys_addr_t start, end, orig_start, orig_end;
136199f0 1670 struct memblock_region *r;
6ede1fd3 1671
136199f0
EM
1672 for_each_memblock(memory, r) {
1673 orig_start = r->base;
1674 orig_end = r->base + r->size;
6ede1fd3
YL
1675 start = round_up(orig_start, align);
1676 end = round_down(orig_end, align);
1677
1678 if (start == orig_start && end == orig_end)
1679 continue;
1680
1681 if (start < end) {
136199f0
EM
1682 r->base = start;
1683 r->size = end - start;
6ede1fd3 1684 } else {
136199f0
EM
1685 memblock_remove_region(&memblock.memory,
1686 r - memblock.memory.regions);
1687 r--;
6ede1fd3
YL
1688 }
1689 }
1690}
e63075a3 1691
3661ca66 1692void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1693{
1694 memblock.current_limit = limit;
1695}
1696
fec51014
LA
1697phys_addr_t __init_memblock memblock_get_current_limit(void)
1698{
1699 return memblock.current_limit;
1700}
1701
0262d9c8 1702static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1703{
5d63f81c 1704 phys_addr_t base, end, size;
66a20757 1705 unsigned long flags;
8c9c1701
AK
1706 int idx;
1707 struct memblock_region *rgn;
6ed311b2 1708
0262d9c8 1709 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1710
8c9c1701 1711 for_each_memblock_type(type, rgn) {
7c0caeb8
TH
1712 char nid_buf[32] = "";
1713
1714 base = rgn->base;
1715 size = rgn->size;
5d63f81c 1716 end = base + size - 1;
66a20757 1717 flags = rgn->flags;
7c0caeb8
TH
1718#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1719 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1720 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1721 memblock_get_region_node(rgn));
1722#endif
5d63f81c 1723 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
0262d9c8 1724 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1725 }
1726}
1727
4ff7b82f 1728void __init_memblock __memblock_dump_all(void)
6ed311b2 1729{
6ed311b2 1730 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1731 pr_info(" memory size = %pa reserved size = %pa\n",
1732 &memblock.memory.total_size,
1733 &memblock.reserved.total_size);
6ed311b2 1734
0262d9c8
HC
1735 memblock_dump(&memblock.memory);
1736 memblock_dump(&memblock.reserved);
409efd4c 1737#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
0262d9c8 1738 memblock_dump(&memblock.physmem);
409efd4c 1739#endif
6ed311b2
BH
1740}
1741
1aadc056 1742void __init memblock_allow_resize(void)
6ed311b2 1743{
142b45a7 1744 memblock_can_resize = 1;
6ed311b2
BH
1745}
1746
6ed311b2
BH
1747static int __init early_memblock(char *p)
1748{
1749 if (p && strstr(p, "debug"))
1750 memblock_debug = 1;
1751 return 0;
1752}
1753early_param("memblock", early_memblock);
1754
c378ddd5 1755#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
6d03b885
BH
1756
1757static int memblock_debug_show(struct seq_file *m, void *private)
1758{
1759 struct memblock_type *type = m->private;
1760 struct memblock_region *reg;
1761 int i;
5d63f81c 1762 phys_addr_t end;
6d03b885
BH
1763
1764 for (i = 0; i < type->cnt; i++) {
1765 reg = &type->regions[i];
5d63f81c 1766 end = reg->base + reg->size - 1;
6d03b885 1767
5d63f81c
MC
1768 seq_printf(m, "%4d: ", i);
1769 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
6d03b885
BH
1770 }
1771 return 0;
1772}
1773
1774static int memblock_debug_open(struct inode *inode, struct file *file)
1775{
1776 return single_open(file, memblock_debug_show, inode->i_private);
1777}
1778
1779static const struct file_operations memblock_debug_fops = {
1780 .open = memblock_debug_open,
1781 .read = seq_read,
1782 .llseek = seq_lseek,
1783 .release = single_release,
1784};
1785
1786static int __init memblock_init_debugfs(void)
1787{
1788 struct dentry *root = debugfs_create_dir("memblock", NULL);
1789 if (!root)
1790 return -ENXIO;
1791 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1792 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
70210ed9
PH
1793#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1794 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1795#endif
6d03b885
BH
1796
1797 return 0;
1798}
1799__initcall(memblock_init_debugfs);
1800
1801#endif /* CONFIG_DEBUG_FS */