]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memcontrol.c
btrfs: make the logic from btrfs_block_can_be_shared() easier to read
[thirdparty/linux.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
dc90f084 56#include <linux/memremap.h>
b69408e8 57#include <linux/mm_inline.h>
5d1ea48b 58#include <linux/swap_cgroup.h>
cdec2e42 59#include <linux/cpu.h>
158e0a2d 60#include <linux/oom.h>
0056f4e6 61#include <linux/lockdep.h>
79bd9814 62#include <linux/file.h>
03248add 63#include <linux/resume_user_mode.h>
0e4b01df 64#include <linux/psi.h>
c8713d0b 65#include <linux/seq_buf.h>
6a792697 66#include <linux/sched/isolation.h>
08e552c6 67#include "internal.h"
d1a4c0b3 68#include <net/sock.h>
4bd2c1ee 69#include <net/ip.h>
f35c3a8e 70#include "slab.h"
014bb1de 71#include "swap.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
37d5985c
RG
82/* Active memory cgroup to use from an interrupt context */
83DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 84EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 85
f7e1cb6e 86/* Socket memory accounting disabled? */
0f0cace3 87static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 88
04823c83 89/* Kernel memory accounting disabled? */
17c17367 90static bool cgroup_memory_nokmem __ro_after_init;
04823c83 91
b6c1a8af
YS
92/* BPF memory accounting disabled? */
93static bool cgroup_memory_nobpf __ro_after_init;
94
97b27821
TH
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
7941d214
JW
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
b25806dc 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
7941d214
JW
103}
104
a0db00fc
KS
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953 199/*
f4d005af 200 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
4e416953
BS
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
8c7c6e34 206/* for encoding cft->private value on file */
86ae53e1
GC
207enum res_type {
208 _MEM,
209 _MEMSWAP,
510fc4e1 210 _KMEM,
d55f90bf 211 _TCP,
86ae53e1
GC
212};
213
a0db00fc
KS
214#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34
KH
216#define MEMFILE_ATTR(val) ((val) & 0xffff)
217
b05706f1
KT
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
a4ebf1b6 233static inline bool task_is_dying(void)
7775face
TH
234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
70ddf637
AV
239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
9647875b 247struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 248{
9647875b 249 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
250}
251
1aacbd35
RG
252#define CURRENT_OBJCG_UPDATE_BIT 0
253#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
254
84c07d11 255#ifdef CONFIG_MEMCG_KMEM
0764db9b 256static DEFINE_SPINLOCK(objcg_lock);
bf4f0599 257
4d5c8aed
RG
258bool mem_cgroup_kmem_disabled(void)
259{
260 return cgroup_memory_nokmem;
261}
262
f1286fae
MS
263static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
264 unsigned int nr_pages);
c1a660de 265
bf4f0599
RG
266static void obj_cgroup_release(struct percpu_ref *ref)
267{
268 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
269 unsigned int nr_bytes;
270 unsigned int nr_pages;
271 unsigned long flags;
272
273 /*
274 * At this point all allocated objects are freed, and
275 * objcg->nr_charged_bytes can't have an arbitrary byte value.
276 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
277 *
278 * The following sequence can lead to it:
279 * 1) CPU0: objcg == stock->cached_objcg
280 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
281 * PAGE_SIZE bytes are charged
282 * 3) CPU1: a process from another memcg is allocating something,
283 * the stock if flushed,
284 * objcg->nr_charged_bytes = PAGE_SIZE - 92
285 * 5) CPU0: we do release this object,
286 * 92 bytes are added to stock->nr_bytes
287 * 6) CPU0: stock is flushed,
288 * 92 bytes are added to objcg->nr_charged_bytes
289 *
290 * In the result, nr_charged_bytes == PAGE_SIZE.
291 * This page will be uncharged in obj_cgroup_release().
292 */
293 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
294 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
295 nr_pages = nr_bytes >> PAGE_SHIFT;
296
bf4f0599 297 if (nr_pages)
f1286fae 298 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1 299
0764db9b 300 spin_lock_irqsave(&objcg_lock, flags);
bf4f0599 301 list_del(&objcg->list);
0764db9b 302 spin_unlock_irqrestore(&objcg_lock, flags);
bf4f0599
RG
303
304 percpu_ref_exit(ref);
305 kfree_rcu(objcg, rcu);
306}
307
308static struct obj_cgroup *obj_cgroup_alloc(void)
309{
310 struct obj_cgroup *objcg;
311 int ret;
312
313 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
314 if (!objcg)
315 return NULL;
316
317 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
318 GFP_KERNEL);
319 if (ret) {
320 kfree(objcg);
321 return NULL;
322 }
323 INIT_LIST_HEAD(&objcg->list);
324 return objcg;
325}
326
327static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
328 struct mem_cgroup *parent)
329{
330 struct obj_cgroup *objcg, *iter;
331
332 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
333
0764db9b 334 spin_lock_irq(&objcg_lock);
bf4f0599 335
9838354e
MS
336 /* 1) Ready to reparent active objcg. */
337 list_add(&objcg->list, &memcg->objcg_list);
338 /* 2) Reparent active objcg and already reparented objcgs to parent. */
339 list_for_each_entry(iter, &memcg->objcg_list, list)
340 WRITE_ONCE(iter->memcg, parent);
341 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
342 list_splice(&memcg->objcg_list, &parent->objcg_list);
343
0764db9b 344 spin_unlock_irq(&objcg_lock);
bf4f0599
RG
345
346 percpu_ref_kill(&objcg->refcnt);
347}
348
d7f25f8a
GC
349/*
350 * A lot of the calls to the cache allocation functions are expected to be
272911a4 351 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
352 * conditional to this static branch, we'll have to allow modules that does
353 * kmem_cache_alloc and the such to see this symbol as well
354 */
f7a449f7
RG
355DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
356EXPORT_SYMBOL(memcg_kmem_online_key);
b6c1a8af
YS
357
358DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
359EXPORT_SYMBOL(memcg_bpf_enabled_key);
0a432dcb 360#endif
17cc4dfe 361
ad7fa852 362/**
75376c6f
MWO
363 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
364 * @folio: folio of interest
ad7fa852
TH
365 *
366 * If memcg is bound to the default hierarchy, css of the memcg associated
75376c6f 367 * with @folio is returned. The returned css remains associated with @folio
ad7fa852
TH
368 * until it is released.
369 *
370 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
371 * is returned.
ad7fa852 372 */
75376c6f 373struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
ad7fa852 374{
75376c6f 375 struct mem_cgroup *memcg = folio_memcg(folio);
ad7fa852 376
9e10a130 377 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
378 memcg = root_mem_cgroup;
379
ad7fa852
TH
380 return &memcg->css;
381}
382
2fc04524
VD
383/**
384 * page_cgroup_ino - return inode number of the memcg a page is charged to
385 * @page: the page
386 *
387 * Look up the closest online ancestor of the memory cgroup @page is charged to
388 * and return its inode number or 0 if @page is not charged to any cgroup. It
389 * is safe to call this function without holding a reference to @page.
390 *
391 * Note, this function is inherently racy, because there is nothing to prevent
392 * the cgroup inode from getting torn down and potentially reallocated a moment
393 * after page_cgroup_ino() returns, so it only should be used by callers that
394 * do not care (such as procfs interfaces).
395 */
396ino_t page_cgroup_ino(struct page *page)
397{
398 struct mem_cgroup *memcg;
399 unsigned long ino = 0;
400
401 rcu_read_lock();
ec342603
YA
402 /* page_folio() is racy here, but the entire function is racy anyway */
403 memcg = folio_memcg_check(page_folio(page));
286e04b8 404
2fc04524
VD
405 while (memcg && !(memcg->css.flags & CSS_ONLINE))
406 memcg = parent_mem_cgroup(memcg);
407 if (memcg)
408 ino = cgroup_ino(memcg->css.cgroup);
409 rcu_read_unlock();
410 return ino;
411}
412
ef8f2327
MG
413static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
414 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 415 unsigned long new_usage_in_excess)
bb4cc1a8
AM
416{
417 struct rb_node **p = &mctz->rb_root.rb_node;
418 struct rb_node *parent = NULL;
ef8f2327 419 struct mem_cgroup_per_node *mz_node;
fa90b2fd 420 bool rightmost = true;
bb4cc1a8
AM
421
422 if (mz->on_tree)
423 return;
424
425 mz->usage_in_excess = new_usage_in_excess;
426 if (!mz->usage_in_excess)
427 return;
428 while (*p) {
429 parent = *p;
ef8f2327 430 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 431 tree_node);
fa90b2fd 432 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 433 p = &(*p)->rb_left;
fa90b2fd 434 rightmost = false;
378876b0 435 } else {
bb4cc1a8 436 p = &(*p)->rb_right;
378876b0 437 }
bb4cc1a8 438 }
fa90b2fd
DB
439
440 if (rightmost)
441 mctz->rb_rightmost = &mz->tree_node;
442
bb4cc1a8
AM
443 rb_link_node(&mz->tree_node, parent, p);
444 rb_insert_color(&mz->tree_node, &mctz->rb_root);
445 mz->on_tree = true;
446}
447
ef8f2327
MG
448static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
449 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
450{
451 if (!mz->on_tree)
452 return;
fa90b2fd
DB
453
454 if (&mz->tree_node == mctz->rb_rightmost)
455 mctz->rb_rightmost = rb_prev(&mz->tree_node);
456
bb4cc1a8
AM
457 rb_erase(&mz->tree_node, &mctz->rb_root);
458 mz->on_tree = false;
459}
460
ef8f2327
MG
461static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
462 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 463{
0a31bc97
JW
464 unsigned long flags;
465
466 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 467 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 468 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
469}
470
3e32cb2e
JW
471static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
472{
473 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 474 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
475 unsigned long excess = 0;
476
477 if (nr_pages > soft_limit)
478 excess = nr_pages - soft_limit;
479
480 return excess;
481}
bb4cc1a8 482
658b69c9 483static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
bb4cc1a8 484{
3e32cb2e 485 unsigned long excess;
ef8f2327
MG
486 struct mem_cgroup_per_node *mz;
487 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 488
e4dde56c 489 if (lru_gen_enabled()) {
36c7b4db 490 if (soft_limit_excess(memcg))
5c7e7a0d 491 lru_gen_soft_reclaim(memcg, nid);
e4dde56c
YZ
492 return;
493 }
494
2ab082ba 495 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
496 if (!mctz)
497 return;
bb4cc1a8
AM
498 /*
499 * Necessary to update all ancestors when hierarchy is used.
500 * because their event counter is not touched.
501 */
502 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
658b69c9 503 mz = memcg->nodeinfo[nid];
3e32cb2e 504 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
505 /*
506 * We have to update the tree if mz is on RB-tree or
507 * mem is over its softlimit.
508 */
509 if (excess || mz->on_tree) {
0a31bc97
JW
510 unsigned long flags;
511
512 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
513 /* if on-tree, remove it */
514 if (mz->on_tree)
cf2c8127 515 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
516 /*
517 * Insert again. mz->usage_in_excess will be updated.
518 * If excess is 0, no tree ops.
519 */
cf2c8127 520 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 521 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
522 }
523 }
524}
525
526static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
527{
ef8f2327
MG
528 struct mem_cgroup_tree_per_node *mctz;
529 struct mem_cgroup_per_node *mz;
530 int nid;
bb4cc1a8 531
e231875b 532 for_each_node(nid) {
a3747b53 533 mz = memcg->nodeinfo[nid];
2ab082ba 534 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
535 if (mctz)
536 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
537 }
538}
539
ef8f2327
MG
540static struct mem_cgroup_per_node *
541__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 542{
ef8f2327 543 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
544
545retry:
546 mz = NULL;
fa90b2fd 547 if (!mctz->rb_rightmost)
bb4cc1a8
AM
548 goto done; /* Nothing to reclaim from */
549
fa90b2fd
DB
550 mz = rb_entry(mctz->rb_rightmost,
551 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
552 /*
553 * Remove the node now but someone else can add it back,
554 * we will to add it back at the end of reclaim to its correct
555 * position in the tree.
556 */
cf2c8127 557 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 558 if (!soft_limit_excess(mz->memcg) ||
8965aa28 559 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
560 goto retry;
561done:
562 return mz;
563}
564
ef8f2327
MG
565static struct mem_cgroup_per_node *
566mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 567{
ef8f2327 568 struct mem_cgroup_per_node *mz;
bb4cc1a8 569
0a31bc97 570 spin_lock_irq(&mctz->lock);
bb4cc1a8 571 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 572 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
573 return mz;
574}
575
11192d9c
SB
576/*
577 * memcg and lruvec stats flushing
578 *
579 * Many codepaths leading to stats update or read are performance sensitive and
580 * adding stats flushing in such codepaths is not desirable. So, to optimize the
581 * flushing the kernel does:
582 *
583 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
584 * rstat update tree grow unbounded.
585 *
586 * 2) Flush the stats synchronously on reader side only when there are more than
587 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
588 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
589 * only for 2 seconds due to (1).
590 */
591static void flush_memcg_stats_dwork(struct work_struct *w);
592static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
11192d9c 593static DEFINE_PER_CPU(unsigned int, stats_updates);
3cd9992b 594static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
11192d9c 595static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
9b301615
SB
596static u64 flush_next_time;
597
598#define FLUSH_TIME (2UL*HZ)
11192d9c 599
be3e67b5
SAS
600/*
601 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
602 * not rely on this as part of an acquired spinlock_t lock. These functions are
603 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
604 * is sufficient.
605 */
606static void memcg_stats_lock(void)
607{
e575d401
TG
608 preempt_disable_nested();
609 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
610}
611
612static void __memcg_stats_lock(void)
613{
e575d401 614 preempt_disable_nested();
be3e67b5
SAS
615}
616
617static void memcg_stats_unlock(void)
618{
e575d401 619 preempt_enable_nested();
be3e67b5
SAS
620}
621
5b3be698 622static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
11192d9c 623{
5b3be698
SB
624 unsigned int x;
625
f9d911ca
YA
626 if (!val)
627 return;
628
11192d9c 629 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
5b3be698
SB
630
631 x = __this_cpu_add_return(stats_updates, abs(val));
632 if (x > MEMCG_CHARGE_BATCH) {
873f64b7
JS
633 /*
634 * If stats_flush_threshold exceeds the threshold
635 * (>num_online_cpus()), cgroup stats update will be triggered
636 * in __mem_cgroup_flush_stats(). Increasing this var further
637 * is redundant and simply adds overhead in atomic update.
638 */
639 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
640 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
5b3be698
SB
641 __this_cpu_write(stats_updates, 0);
642 }
11192d9c
SB
643}
644
35822fda 645static void do_flush_stats(void)
11192d9c 646{
3cd9992b
YA
647 /*
648 * We always flush the entire tree, so concurrent flushers can just
649 * skip. This avoids a thundering herd problem on the rstat global lock
650 * from memcg flushers (e.g. reclaim, refault, etc).
651 */
652 if (atomic_read(&stats_flush_ongoing) ||
653 atomic_xchg(&stats_flush_ongoing, 1))
11192d9c
SB
654 return;
655
3cd9992b 656 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
9fad9aee 657
35822fda 658 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
9fad9aee 659
11192d9c 660 atomic_set(&stats_flush_threshold, 0);
3cd9992b 661 atomic_set(&stats_flush_ongoing, 0);
11192d9c
SB
662}
663
664void mem_cgroup_flush_stats(void)
665{
35822fda
YA
666 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
667 do_flush_stats();
9fad9aee
YA
668}
669
4009b2f1 670void mem_cgroup_flush_stats_ratelimited(void)
9b301615 671{
3cd9992b 672 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
4009b2f1 673 mem_cgroup_flush_stats();
9b301615
SB
674}
675
11192d9c
SB
676static void flush_memcg_stats_dwork(struct work_struct *w)
677{
9fad9aee
YA
678 /*
679 * Always flush here so that flushing in latency-sensitive paths is
680 * as cheap as possible.
681 */
35822fda 682 do_flush_stats();
9b301615 683 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
11192d9c
SB
684}
685
d396def5
SB
686/* Subset of vm_event_item to report for memcg event stats */
687static const unsigned int memcg_vm_event_stat[] = {
8278f1c7
SB
688 PGPGIN,
689 PGPGOUT,
d396def5
SB
690 PGSCAN_KSWAPD,
691 PGSCAN_DIRECT,
57e9cc50 692 PGSCAN_KHUGEPAGED,
d396def5
SB
693 PGSTEAL_KSWAPD,
694 PGSTEAL_DIRECT,
57e9cc50 695 PGSTEAL_KHUGEPAGED,
d396def5
SB
696 PGFAULT,
697 PGMAJFAULT,
698 PGREFILL,
699 PGACTIVATE,
700 PGDEACTIVATE,
701 PGLAZYFREE,
702 PGLAZYFREED,
703#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
704 ZSWPIN,
705 ZSWPOUT,
706#endif
707#ifdef CONFIG_TRANSPARENT_HUGEPAGE
708 THP_FAULT_ALLOC,
709 THP_COLLAPSE_ALLOC,
811244a5
XH
710 THP_SWPOUT,
711 THP_SWPOUT_FALLBACK,
d396def5
SB
712#endif
713};
714
8278f1c7
SB
715#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
716static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
717
718static void init_memcg_events(void)
719{
720 int i;
721
722 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
723 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
724}
725
726static inline int memcg_events_index(enum vm_event_item idx)
727{
728 return mem_cgroup_events_index[idx] - 1;
729}
730
410f8e82
SB
731struct memcg_vmstats_percpu {
732 /* Local (CPU and cgroup) page state & events */
733 long state[MEMCG_NR_STAT];
8278f1c7 734 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
735
736 /* Delta calculation for lockless upward propagation */
737 long state_prev[MEMCG_NR_STAT];
8278f1c7 738 unsigned long events_prev[NR_MEMCG_EVENTS];
410f8e82
SB
739
740 /* Cgroup1: threshold notifications & softlimit tree updates */
741 unsigned long nr_page_events;
742 unsigned long targets[MEM_CGROUP_NTARGETS];
743};
744
745struct memcg_vmstats {
746 /* Aggregated (CPU and subtree) page state & events */
747 long state[MEMCG_NR_STAT];
8278f1c7 748 unsigned long events[NR_MEMCG_EVENTS];
410f8e82 749
f82e6bf9
YA
750 /* Non-hierarchical (CPU aggregated) page state & events */
751 long state_local[MEMCG_NR_STAT];
752 unsigned long events_local[NR_MEMCG_EVENTS];
753
410f8e82
SB
754 /* Pending child counts during tree propagation */
755 long state_pending[MEMCG_NR_STAT];
8278f1c7 756 unsigned long events_pending[NR_MEMCG_EVENTS];
410f8e82
SB
757};
758
759unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
760{
761 long x = READ_ONCE(memcg->vmstats->state[idx]);
762#ifdef CONFIG_SMP
763 if (x < 0)
764 x = 0;
765#endif
766 return x;
767}
768
7bd5bc3c
YA
769static int memcg_page_state_unit(int item);
770
771/*
772 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
773 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
774 */
775static int memcg_state_val_in_pages(int idx, int val)
776{
777 int unit = memcg_page_state_unit(idx);
778
779 if (!val || unit == PAGE_SIZE)
780 return val;
781 else
782 return max(val * unit / PAGE_SIZE, 1UL);
783}
784
db9adbcb
JW
785/**
786 * __mod_memcg_state - update cgroup memory statistics
787 * @memcg: the memory cgroup
788 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
789 * @val: delta to add to the counter, can be negative
790 */
791void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
792{
db9adbcb
JW
793 if (mem_cgroup_disabled())
794 return;
795
2d146aa3 796 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
7bd5bc3c 797 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
db9adbcb
JW
798}
799
2d146aa3 800/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
801static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
802{
f82e6bf9 803 long x = READ_ONCE(memcg->vmstats->state_local[idx]);
a18e6e6e 804
a18e6e6e
JW
805#ifdef CONFIG_SMP
806 if (x < 0)
807 x = 0;
808#endif
809 return x;
810}
811
eedc4e5a
RG
812void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
813 int val)
db9adbcb
JW
814{
815 struct mem_cgroup_per_node *pn;
42a30035 816 struct mem_cgroup *memcg;
db9adbcb 817
db9adbcb 818 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 819 memcg = pn->memcg;
db9adbcb 820
be3e67b5 821 /*
be16dd76 822 * The caller from rmap relies on disabled preemption because they never
be3e67b5
SAS
823 * update their counter from in-interrupt context. For these two
824 * counters we check that the update is never performed from an
825 * interrupt context while other caller need to have disabled interrupt.
826 */
827 __memcg_stats_lock();
e575d401 828 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
be3e67b5
SAS
829 switch (idx) {
830 case NR_ANON_MAPPED:
831 case NR_FILE_MAPPED:
832 case NR_ANON_THPS:
833 case NR_SHMEM_PMDMAPPED:
834 case NR_FILE_PMDMAPPED:
835 WARN_ON_ONCE(!in_task());
836 break;
837 default:
e575d401 838 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
839 }
840 }
841
db9adbcb 842 /* Update memcg */
11192d9c 843 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
db9adbcb 844
b4c46484 845 /* Update lruvec */
7e1c0d6f 846 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
11192d9c 847
7bd5bc3c 848 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
be3e67b5 849 memcg_stats_unlock();
db9adbcb
JW
850}
851
eedc4e5a
RG
852/**
853 * __mod_lruvec_state - update lruvec memory statistics
854 * @lruvec: the lruvec
855 * @idx: the stat item
856 * @val: delta to add to the counter, can be negative
857 *
858 * The lruvec is the intersection of the NUMA node and a cgroup. This
859 * function updates the all three counters that are affected by a
860 * change of state at this level: per-node, per-cgroup, per-lruvec.
861 */
862void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
863 int val)
864{
865 /* Update node */
866 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
867
868 /* Update memcg and lruvec */
869 if (!mem_cgroup_disabled())
870 __mod_memcg_lruvec_state(lruvec, idx, val);
871}
872
c47d5032
SB
873void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
874 int val)
875{
876 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 877 struct mem_cgroup *memcg;
c47d5032
SB
878 pg_data_t *pgdat = page_pgdat(page);
879 struct lruvec *lruvec;
880
b4e0b68f
MS
881 rcu_read_lock();
882 memcg = page_memcg(head);
c47d5032 883 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 884 if (!memcg) {
b4e0b68f 885 rcu_read_unlock();
c47d5032
SB
886 __mod_node_page_state(pgdat, idx, val);
887 return;
888 }
889
d635a69d 890 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 891 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 892 rcu_read_unlock();
c47d5032 893}
f0c0c115 894EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 895
da3ceeff 896void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 897{
4f103c63 898 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
899 struct mem_cgroup *memcg;
900 struct lruvec *lruvec;
901
902 rcu_read_lock();
fc4db90f 903 memcg = mem_cgroup_from_slab_obj(p);
ec9f0238 904
8faeb1ff
MS
905 /*
906 * Untracked pages have no memcg, no lruvec. Update only the
907 * node. If we reparent the slab objects to the root memcg,
908 * when we free the slab object, we need to update the per-memcg
909 * vmstats to keep it correct for the root memcg.
910 */
911 if (!memcg) {
ec9f0238
RG
912 __mod_node_page_state(pgdat, idx, val);
913 } else {
867e5e1d 914 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
915 __mod_lruvec_state(lruvec, idx, val);
916 }
917 rcu_read_unlock();
918}
919
db9adbcb
JW
920/**
921 * __count_memcg_events - account VM events in a cgroup
922 * @memcg: the memory cgroup
923 * @idx: the event item
f0953a1b 924 * @count: the number of events that occurred
db9adbcb
JW
925 */
926void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
927 unsigned long count)
928{
8278f1c7
SB
929 int index = memcg_events_index(idx);
930
931 if (mem_cgroup_disabled() || index < 0)
db9adbcb
JW
932 return;
933
be3e67b5 934 memcg_stats_lock();
8278f1c7 935 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
5b3be698 936 memcg_rstat_updated(memcg, count);
be3e67b5 937 memcg_stats_unlock();
db9adbcb
JW
938}
939
42a30035 940static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 941{
8278f1c7
SB
942 int index = memcg_events_index(event);
943
944 if (index < 0)
945 return 0;
946 return READ_ONCE(memcg->vmstats->events[index]);
e9f8974f
JW
947}
948
42a30035
JW
949static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
950{
8278f1c7
SB
951 int index = memcg_events_index(event);
952
953 if (index < 0)
954 return 0;
815744d7 955
f82e6bf9 956 return READ_ONCE(memcg->vmstats->events_local[index]);
42a30035
JW
957}
958
c0ff4b85 959static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
3fba69a5 960 int nr_pages)
d52aa412 961{
e401f176
KH
962 /* pagein of a big page is an event. So, ignore page size */
963 if (nr_pages > 0)
c9019e9b 964 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 965 else {
c9019e9b 966 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
967 nr_pages = -nr_pages; /* for event */
968 }
e401f176 969
871789d4 970 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
971}
972
f53d7ce3
JW
973static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
974 enum mem_cgroup_events_target target)
7a159cc9
JW
975{
976 unsigned long val, next;
977
871789d4
CD
978 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
979 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 980 /* from time_after() in jiffies.h */
6a1a8b80 981 if ((long)(next - val) < 0) {
f53d7ce3
JW
982 switch (target) {
983 case MEM_CGROUP_TARGET_THRESH:
984 next = val + THRESHOLDS_EVENTS_TARGET;
985 break;
bb4cc1a8
AM
986 case MEM_CGROUP_TARGET_SOFTLIMIT:
987 next = val + SOFTLIMIT_EVENTS_TARGET;
988 break;
f53d7ce3
JW
989 default:
990 break;
991 }
871789d4 992 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 993 return true;
7a159cc9 994 }
f53d7ce3 995 return false;
d2265e6f
KH
996}
997
998/*
999 * Check events in order.
1000 *
1001 */
8e88bd2d 1002static void memcg_check_events(struct mem_cgroup *memcg, int nid)
d2265e6f 1003{
2343e88d
SAS
1004 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1005 return;
1006
d2265e6f 1007 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1008 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1009 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1010 bool do_softlimit;
f53d7ce3 1011
bb4cc1a8
AM
1012 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1013 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 1014 mem_cgroup_threshold(memcg);
bb4cc1a8 1015 if (unlikely(do_softlimit))
8e88bd2d 1016 mem_cgroup_update_tree(memcg, nid);
0a31bc97 1017 }
d2265e6f
KH
1018}
1019
cf475ad2 1020struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1021{
31a78f23
BS
1022 /*
1023 * mm_update_next_owner() may clear mm->owner to NULL
1024 * if it races with swapoff, page migration, etc.
1025 * So this can be called with p == NULL.
1026 */
1027 if (unlikely(!p))
1028 return NULL;
1029
073219e9 1030 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1031}
33398cf2 1032EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1033
04f94e3f
DS
1034static __always_inline struct mem_cgroup *active_memcg(void)
1035{
55a68c82 1036 if (!in_task())
04f94e3f
DS
1037 return this_cpu_read(int_active_memcg);
1038 else
1039 return current->active_memcg;
1040}
1041
d46eb14b
SB
1042/**
1043 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1044 * @mm: mm from which memcg should be extracted. It can be NULL.
1045 *
04f94e3f
DS
1046 * Obtain a reference on mm->memcg and returns it if successful. If mm
1047 * is NULL, then the memcg is chosen as follows:
1048 * 1) The active memcg, if set.
1049 * 2) current->mm->memcg, if available
1050 * 3) root memcg
1051 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
1052 */
1053struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1054{
d46eb14b
SB
1055 struct mem_cgroup *memcg;
1056
1057 if (mem_cgroup_disabled())
1058 return NULL;
0b7f569e 1059
2884b6b7
MS
1060 /*
1061 * Page cache insertions can happen without an
1062 * actual mm context, e.g. during disk probing
1063 * on boot, loopback IO, acct() writes etc.
1064 *
1065 * No need to css_get on root memcg as the reference
1066 * counting is disabled on the root level in the
1067 * cgroup core. See CSS_NO_REF.
1068 */
04f94e3f
DS
1069 if (unlikely(!mm)) {
1070 memcg = active_memcg();
1071 if (unlikely(memcg)) {
1072 /* remote memcg must hold a ref */
1073 css_get(&memcg->css);
1074 return memcg;
1075 }
1076 mm = current->mm;
1077 if (unlikely(!mm))
1078 return root_mem_cgroup;
1079 }
2884b6b7 1080
54595fe2
KH
1081 rcu_read_lock();
1082 do {
2884b6b7
MS
1083 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1084 if (unlikely(!memcg))
df381975 1085 memcg = root_mem_cgroup;
00d484f3 1086 } while (!css_tryget(&memcg->css));
54595fe2 1087 rcu_read_unlock();
c0ff4b85 1088 return memcg;
54595fe2 1089}
d46eb14b
SB
1090EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1091
4b569387
NP
1092/**
1093 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
1094 */
1095struct mem_cgroup *get_mem_cgroup_from_current(void)
1096{
1097 struct mem_cgroup *memcg;
1098
1099 if (mem_cgroup_disabled())
1100 return NULL;
1101
1102again:
1103 rcu_read_lock();
1104 memcg = mem_cgroup_from_task(current);
1105 if (!css_tryget(&memcg->css)) {
1106 rcu_read_unlock();
1107 goto again;
1108 }
1109 rcu_read_unlock();
1110 return memcg;
1111}
1112
5660048c
JW
1113/**
1114 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1115 * @root: hierarchy root
1116 * @prev: previously returned memcg, NULL on first invocation
1117 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1118 *
1119 * Returns references to children of the hierarchy below @root, or
1120 * @root itself, or %NULL after a full round-trip.
1121 *
1122 * Caller must pass the return value in @prev on subsequent
1123 * invocations for reference counting, or use mem_cgroup_iter_break()
1124 * to cancel a hierarchy walk before the round-trip is complete.
1125 *
05bdc520
ML
1126 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1127 * in the hierarchy among all concurrent reclaimers operating on the
1128 * same node.
5660048c 1129 */
694fbc0f 1130struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1131 struct mem_cgroup *prev,
694fbc0f 1132 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1133{
3f649ab7 1134 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1135 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1136 struct mem_cgroup *memcg = NULL;
5ac8fb31 1137 struct mem_cgroup *pos = NULL;
711d3d2c 1138
694fbc0f
AM
1139 if (mem_cgroup_disabled())
1140 return NULL;
5660048c 1141
9f3a0d09
JW
1142 if (!root)
1143 root = root_mem_cgroup;
7d74b06f 1144
542f85f9 1145 rcu_read_lock();
5f578161 1146
5ac8fb31 1147 if (reclaim) {
ef8f2327 1148 struct mem_cgroup_per_node *mz;
5ac8fb31 1149
a3747b53 1150 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1151 iter = &mz->iter;
5ac8fb31 1152
a9320aae
WY
1153 /*
1154 * On start, join the current reclaim iteration cycle.
1155 * Exit when a concurrent walker completes it.
1156 */
1157 if (!prev)
1158 reclaim->generation = iter->generation;
1159 else if (reclaim->generation != iter->generation)
5ac8fb31
JW
1160 goto out_unlock;
1161
6df38689 1162 while (1) {
4db0c3c2 1163 pos = READ_ONCE(iter->position);
6df38689
VD
1164 if (!pos || css_tryget(&pos->css))
1165 break;
5ac8fb31 1166 /*
6df38689
VD
1167 * css reference reached zero, so iter->position will
1168 * be cleared by ->css_released. However, we should not
1169 * rely on this happening soon, because ->css_released
1170 * is called from a work queue, and by busy-waiting we
1171 * might block it. So we clear iter->position right
1172 * away.
5ac8fb31 1173 */
6df38689
VD
1174 (void)cmpxchg(&iter->position, pos, NULL);
1175 }
89d8330c
WY
1176 } else if (prev) {
1177 pos = prev;
5ac8fb31
JW
1178 }
1179
1180 if (pos)
1181 css = &pos->css;
1182
1183 for (;;) {
1184 css = css_next_descendant_pre(css, &root->css);
1185 if (!css) {
1186 /*
1187 * Reclaimers share the hierarchy walk, and a
1188 * new one might jump in right at the end of
1189 * the hierarchy - make sure they see at least
1190 * one group and restart from the beginning.
1191 */
1192 if (!prev)
1193 continue;
1194 break;
527a5ec9 1195 }
7d74b06f 1196
5ac8fb31
JW
1197 /*
1198 * Verify the css and acquire a reference. The root
1199 * is provided by the caller, so we know it's alive
1200 * and kicking, and don't take an extra reference.
1201 */
41555dad
WY
1202 if (css == &root->css || css_tryget(css)) {
1203 memcg = mem_cgroup_from_css(css);
0b8f73e1 1204 break;
41555dad 1205 }
9f3a0d09 1206 }
5ac8fb31
JW
1207
1208 if (reclaim) {
5ac8fb31 1209 /*
6df38689
VD
1210 * The position could have already been updated by a competing
1211 * thread, so check that the value hasn't changed since we read
1212 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1213 */
6df38689
VD
1214 (void)cmpxchg(&iter->position, pos, memcg);
1215
5ac8fb31
JW
1216 if (pos)
1217 css_put(&pos->css);
1218
1219 if (!memcg)
1220 iter->generation++;
9f3a0d09 1221 }
5ac8fb31 1222
542f85f9
MH
1223out_unlock:
1224 rcu_read_unlock();
c40046f3
MH
1225 if (prev && prev != root)
1226 css_put(&prev->css);
1227
9f3a0d09 1228 return memcg;
14067bb3 1229}
7d74b06f 1230
5660048c
JW
1231/**
1232 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1233 * @root: hierarchy root
1234 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1235 */
1236void mem_cgroup_iter_break(struct mem_cgroup *root,
1237 struct mem_cgroup *prev)
9f3a0d09
JW
1238{
1239 if (!root)
1240 root = root_mem_cgroup;
1241 if (prev && prev != root)
1242 css_put(&prev->css);
1243}
7d74b06f 1244
54a83d6b
MC
1245static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1246 struct mem_cgroup *dead_memcg)
6df38689 1247{
6df38689 1248 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1249 struct mem_cgroup_per_node *mz;
1250 int nid;
6df38689 1251
54a83d6b 1252 for_each_node(nid) {
a3747b53 1253 mz = from->nodeinfo[nid];
9da83f3f
YS
1254 iter = &mz->iter;
1255 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1256 }
1257}
1258
54a83d6b
MC
1259static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1260{
1261 struct mem_cgroup *memcg = dead_memcg;
1262 struct mem_cgroup *last;
1263
1264 do {
1265 __invalidate_reclaim_iterators(memcg, dead_memcg);
1266 last = memcg;
1267 } while ((memcg = parent_mem_cgroup(memcg)));
1268
1269 /*
b8dd3ee9 1270 * When cgroup1 non-hierarchy mode is used,
54a83d6b
MC
1271 * parent_mem_cgroup() does not walk all the way up to the
1272 * cgroup root (root_mem_cgroup). So we have to handle
1273 * dead_memcg from cgroup root separately.
1274 */
7848ed62 1275 if (!mem_cgroup_is_root(last))
54a83d6b
MC
1276 __invalidate_reclaim_iterators(root_mem_cgroup,
1277 dead_memcg);
1278}
1279
7c5f64f8
VD
1280/**
1281 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1282 * @memcg: hierarchy root
1283 * @fn: function to call for each task
1284 * @arg: argument passed to @fn
1285 *
1286 * This function iterates over tasks attached to @memcg or to any of its
1287 * descendants and calls @fn for each task. If @fn returns a non-zero
025b7799
Z
1288 * value, the function breaks the iteration loop. Otherwise, it will iterate
1289 * over all tasks and return 0.
7c5f64f8
VD
1290 *
1291 * This function must not be called for the root memory cgroup.
1292 */
025b7799
Z
1293void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1294 int (*fn)(struct task_struct *, void *), void *arg)
7c5f64f8
VD
1295{
1296 struct mem_cgroup *iter;
1297 int ret = 0;
1298
7848ed62 1299 BUG_ON(mem_cgroup_is_root(memcg));
7c5f64f8
VD
1300
1301 for_each_mem_cgroup_tree(iter, memcg) {
1302 struct css_task_iter it;
1303 struct task_struct *task;
1304
f168a9a5 1305 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1306 while (!ret && (task = css_task_iter_next(&it)))
1307 ret = fn(task, arg);
1308 css_task_iter_end(&it);
1309 if (ret) {
1310 mem_cgroup_iter_break(memcg, iter);
1311 break;
1312 }
1313 }
7c5f64f8
VD
1314}
1315
6168d0da 1316#ifdef CONFIG_DEBUG_VM
e809c3fe 1317void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
6168d0da
AS
1318{
1319 struct mem_cgroup *memcg;
1320
1321 if (mem_cgroup_disabled())
1322 return;
1323
e809c3fe 1324 memcg = folio_memcg(folio);
6168d0da
AS
1325
1326 if (!memcg)
7848ed62 1327 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
6168d0da 1328 else
e809c3fe 1329 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
6168d0da
AS
1330}
1331#endif
1332
6168d0da 1333/**
e809c3fe
MWO
1334 * folio_lruvec_lock - Lock the lruvec for a folio.
1335 * @folio: Pointer to the folio.
6168d0da 1336 *
d7e3aba5 1337 * These functions are safe to use under any of the following conditions:
e809c3fe
MWO
1338 * - folio locked
1339 * - folio_test_lru false
1340 * - folio_memcg_lock()
1341 * - folio frozen (refcount of 0)
1342 *
1343 * Return: The lruvec this folio is on with its lock held.
6168d0da 1344 */
e809c3fe 1345struct lruvec *folio_lruvec_lock(struct folio *folio)
6168d0da 1346{
e809c3fe 1347 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1348
6168d0da 1349 spin_lock(&lruvec->lru_lock);
e809c3fe 1350 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1351
1352 return lruvec;
1353}
1354
e809c3fe
MWO
1355/**
1356 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1357 * @folio: Pointer to the folio.
1358 *
1359 * These functions are safe to use under any of the following conditions:
1360 * - folio locked
1361 * - folio_test_lru false
1362 * - folio_memcg_lock()
1363 * - folio frozen (refcount of 0)
1364 *
1365 * Return: The lruvec this folio is on with its lock held and interrupts
1366 * disabled.
1367 */
1368struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
6168d0da 1369{
e809c3fe 1370 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1371
6168d0da 1372 spin_lock_irq(&lruvec->lru_lock);
e809c3fe 1373 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1374
1375 return lruvec;
1376}
1377
e809c3fe
MWO
1378/**
1379 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1380 * @folio: Pointer to the folio.
1381 * @flags: Pointer to irqsave flags.
1382 *
1383 * These functions are safe to use under any of the following conditions:
1384 * - folio locked
1385 * - folio_test_lru false
1386 * - folio_memcg_lock()
1387 * - folio frozen (refcount of 0)
1388 *
1389 * Return: The lruvec this folio is on with its lock held and interrupts
1390 * disabled.
1391 */
1392struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1393 unsigned long *flags)
6168d0da 1394{
e809c3fe 1395 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1396
6168d0da 1397 spin_lock_irqsave(&lruvec->lru_lock, *flags);
e809c3fe 1398 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1399
1400 return lruvec;
1401}
1402
925b7673 1403/**
fa9add64
HD
1404 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1405 * @lruvec: mem_cgroup per zone lru vector
1406 * @lru: index of lru list the page is sitting on
b4536f0c 1407 * @zid: zone id of the accounted pages
fa9add64 1408 * @nr_pages: positive when adding or negative when removing
925b7673 1409 *
ca707239 1410 * This function must be called under lru_lock, just before a page is added
07ca7606 1411 * to or just after a page is removed from an lru list.
3f58a829 1412 */
fa9add64 1413void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1414 int zid, int nr_pages)
3f58a829 1415{
ef8f2327 1416 struct mem_cgroup_per_node *mz;
fa9add64 1417 unsigned long *lru_size;
ca707239 1418 long size;
3f58a829
MK
1419
1420 if (mem_cgroup_disabled())
1421 return;
1422
ef8f2327 1423 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1424 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1425
1426 if (nr_pages < 0)
1427 *lru_size += nr_pages;
1428
1429 size = *lru_size;
b4536f0c
MH
1430 if (WARN_ONCE(size < 0,
1431 "%s(%p, %d, %d): lru_size %ld\n",
1432 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1433 VM_BUG_ON(1);
1434 *lru_size = 0;
1435 }
1436
1437 if (nr_pages > 0)
1438 *lru_size += nr_pages;
08e552c6 1439}
544122e5 1440
19942822 1441/**
9d11ea9f 1442 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1443 * @memcg: the memory cgroup
19942822 1444 *
9d11ea9f 1445 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1446 * pages.
19942822 1447 */
c0ff4b85 1448static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1449{
3e32cb2e
JW
1450 unsigned long margin = 0;
1451 unsigned long count;
1452 unsigned long limit;
9d11ea9f 1453
3e32cb2e 1454 count = page_counter_read(&memcg->memory);
bbec2e15 1455 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1456 if (count < limit)
1457 margin = limit - count;
1458
7941d214 1459 if (do_memsw_account()) {
3e32cb2e 1460 count = page_counter_read(&memcg->memsw);
bbec2e15 1461 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1462 if (count < limit)
3e32cb2e 1463 margin = min(margin, limit - count);
cbedbac3
LR
1464 else
1465 margin = 0;
3e32cb2e
JW
1466 }
1467
1468 return margin;
19942822
JW
1469}
1470
32047e2a 1471/*
bdcbb659 1472 * A routine for checking "mem" is under move_account() or not.
32047e2a 1473 *
bdcbb659
QH
1474 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1475 * moving cgroups. This is for waiting at high-memory pressure
1476 * caused by "move".
32047e2a 1477 */
c0ff4b85 1478static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1479{
2bd9bb20
KH
1480 struct mem_cgroup *from;
1481 struct mem_cgroup *to;
4b534334 1482 bool ret = false;
2bd9bb20
KH
1483 /*
1484 * Unlike task_move routines, we access mc.to, mc.from not under
1485 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1486 */
1487 spin_lock(&mc.lock);
1488 from = mc.from;
1489 to = mc.to;
1490 if (!from)
1491 goto unlock;
3e92041d 1492
2314b42d
JW
1493 ret = mem_cgroup_is_descendant(from, memcg) ||
1494 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1495unlock:
1496 spin_unlock(&mc.lock);
4b534334
KH
1497 return ret;
1498}
1499
c0ff4b85 1500static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1501{
1502 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1503 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1504 DEFINE_WAIT(wait);
1505 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1506 /* moving charge context might have finished. */
1507 if (mc.moving_task)
1508 schedule();
1509 finish_wait(&mc.waitq, &wait);
1510 return true;
1511 }
1512 }
1513 return false;
1514}
1515
5f9a4f4a
MS
1516struct memory_stat {
1517 const char *name;
5f9a4f4a
MS
1518 unsigned int idx;
1519};
1520
57b2847d 1521static const struct memory_stat memory_stats[] = {
fff66b79
MS
1522 { "anon", NR_ANON_MAPPED },
1523 { "file", NR_FILE_PAGES },
a8c49af3 1524 { "kernel", MEMCG_KMEM },
fff66b79
MS
1525 { "kernel_stack", NR_KERNEL_STACK_KB },
1526 { "pagetables", NR_PAGETABLE },
ebc97a52 1527 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
fff66b79
MS
1528 { "percpu", MEMCG_PERCPU_B },
1529 { "sock", MEMCG_SOCK },
4e5aa1f4 1530 { "vmalloc", MEMCG_VMALLOC },
fff66b79 1531 { "shmem", NR_SHMEM },
f4840ccf
JW
1532#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1533 { "zswap", MEMCG_ZSWAP_B },
1534 { "zswapped", MEMCG_ZSWAPPED },
1535#endif
fff66b79
MS
1536 { "file_mapped", NR_FILE_MAPPED },
1537 { "file_dirty", NR_FILE_DIRTY },
1538 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1539#ifdef CONFIG_SWAP
1540 { "swapcached", NR_SWAPCACHE },
1541#endif
5f9a4f4a 1542#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1543 { "anon_thp", NR_ANON_THPS },
1544 { "file_thp", NR_FILE_THPS },
1545 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1546#endif
fff66b79
MS
1547 { "inactive_anon", NR_INACTIVE_ANON },
1548 { "active_anon", NR_ACTIVE_ANON },
1549 { "inactive_file", NR_INACTIVE_FILE },
1550 { "active_file", NR_ACTIVE_FILE },
1551 { "unevictable", NR_UNEVICTABLE },
1552 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1553 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1554
1555 /* The memory events */
fff66b79
MS
1556 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1557 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1558 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1559 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1560 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1561 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1562 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1563};
1564
ff841a06 1565/* The actual unit of the state item, not the same as the output unit */
fff66b79
MS
1566static int memcg_page_state_unit(int item)
1567{
1568 switch (item) {
1569 case MEMCG_PERCPU_B:
f4840ccf 1570 case MEMCG_ZSWAP_B:
fff66b79
MS
1571 case NR_SLAB_RECLAIMABLE_B:
1572 case NR_SLAB_UNRECLAIMABLE_B:
ff841a06
YA
1573 return 1;
1574 case NR_KERNEL_STACK_KB:
1575 return SZ_1K;
1576 default:
1577 return PAGE_SIZE;
1578 }
1579}
1580
1581/* Translate stat items to the correct unit for memory.stat output */
1582static int memcg_page_state_output_unit(int item)
1583{
1584 /*
1585 * Workingset state is actually in pages, but we export it to userspace
1586 * as a scalar count of events, so special case it here.
1587 */
1588 switch (item) {
fff66b79
MS
1589 case WORKINGSET_REFAULT_ANON:
1590 case WORKINGSET_REFAULT_FILE:
1591 case WORKINGSET_ACTIVATE_ANON:
1592 case WORKINGSET_ACTIVATE_FILE:
1593 case WORKINGSET_RESTORE_ANON:
1594 case WORKINGSET_RESTORE_FILE:
1595 case WORKINGSET_NODERECLAIM:
1596 return 1;
fff66b79 1597 default:
ff841a06 1598 return memcg_page_state_unit(item);
fff66b79
MS
1599 }
1600}
1601
1602static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1603 int item)
1604{
ff841a06
YA
1605 return memcg_page_state(memcg, item) *
1606 memcg_page_state_output_unit(item);
1607}
1608
1609static inline unsigned long memcg_page_state_local_output(
1610 struct mem_cgroup *memcg, int item)
1611{
1612 return memcg_page_state_local(memcg, item) *
1613 memcg_page_state_output_unit(item);
fff66b79
MS
1614}
1615
dddb44ff 1616static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
c8713d0b 1617{
c8713d0b 1618 int i;
71cd3113 1619
c8713d0b
JW
1620 /*
1621 * Provide statistics on the state of the memory subsystem as
1622 * well as cumulative event counters that show past behavior.
1623 *
1624 * This list is ordered following a combination of these gradients:
1625 * 1) generic big picture -> specifics and details
1626 * 2) reflecting userspace activity -> reflecting kernel heuristics
1627 *
1628 * Current memory state:
1629 */
fd25a9e0 1630 mem_cgroup_flush_stats();
c8713d0b 1631
5f9a4f4a
MS
1632 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1633 u64 size;
c8713d0b 1634
fff66b79 1635 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5b42360c 1636 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1637
5f9a4f4a 1638 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1639 size += memcg_page_state_output(memcg,
1640 NR_SLAB_RECLAIMABLE_B);
5b42360c 1641 seq_buf_printf(s, "slab %llu\n", size);
5f9a4f4a
MS
1642 }
1643 }
c8713d0b
JW
1644
1645 /* Accumulated memory events */
5b42360c 1646 seq_buf_printf(s, "pgscan %lu\n",
c8713d0b 1647 memcg_events(memcg, PGSCAN_KSWAPD) +
57e9cc50
JW
1648 memcg_events(memcg, PGSCAN_DIRECT) +
1649 memcg_events(memcg, PGSCAN_KHUGEPAGED));
5b42360c 1650 seq_buf_printf(s, "pgsteal %lu\n",
c8713d0b 1651 memcg_events(memcg, PGSTEAL_KSWAPD) +
57e9cc50
JW
1652 memcg_events(memcg, PGSTEAL_DIRECT) +
1653 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
c8713d0b 1654
8278f1c7
SB
1655 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1656 if (memcg_vm_event_stat[i] == PGPGIN ||
1657 memcg_vm_event_stat[i] == PGPGOUT)
1658 continue;
1659
5b42360c 1660 seq_buf_printf(s, "%s %lu\n",
673520f8
QZ
1661 vm_event_name(memcg_vm_event_stat[i]),
1662 memcg_events(memcg, memcg_vm_event_stat[i]));
8278f1c7 1663 }
c8713d0b
JW
1664
1665 /* The above should easily fit into one page */
5b42360c 1666 WARN_ON_ONCE(seq_buf_has_overflowed(s));
c8713d0b 1667}
71cd3113 1668
dddb44ff
YA
1669static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1670
1671static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1672{
1673 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1674 memcg_stat_format(memcg, s);
1675 else
1676 memcg1_stat_format(memcg, s);
1677 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1678}
1679
e222432b 1680/**
f0c867d9 1681 * mem_cgroup_print_oom_context: Print OOM information relevant to
1682 * memory controller.
e222432b
BS
1683 * @memcg: The memory cgroup that went over limit
1684 * @p: Task that is going to be killed
1685 *
1686 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1687 * enabled
1688 */
f0c867d9 1689void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1690{
e222432b
BS
1691 rcu_read_lock();
1692
f0c867d9 1693 if (memcg) {
1694 pr_cont(",oom_memcg=");
1695 pr_cont_cgroup_path(memcg->css.cgroup);
1696 } else
1697 pr_cont(",global_oom");
2415b9f5 1698 if (p) {
f0c867d9 1699 pr_cont(",task_memcg=");
2415b9f5 1700 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1701 }
e222432b 1702 rcu_read_unlock();
f0c867d9 1703}
1704
1705/**
1706 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1707 * memory controller.
1708 * @memcg: The memory cgroup that went over limit
1709 */
1710void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1711{
68aaee14
TH
1712 /* Use static buffer, for the caller is holding oom_lock. */
1713 static char buf[PAGE_SIZE];
5b42360c 1714 struct seq_buf s;
68aaee14
TH
1715
1716 lockdep_assert_held(&oom_lock);
e222432b 1717
3e32cb2e
JW
1718 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1719 K((u64)page_counter_read(&memcg->memory)),
15b42562 1720 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1721 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1722 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1723 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1724 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1725 else {
1726 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1727 K((u64)page_counter_read(&memcg->memsw)),
1728 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1729 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1730 K((u64)page_counter_read(&memcg->kmem)),
1731 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1732 }
c8713d0b
JW
1733
1734 pr_info("Memory cgroup stats for ");
1735 pr_cont_cgroup_path(memcg->css.cgroup);
1736 pr_cont(":");
5b42360c
YA
1737 seq_buf_init(&s, buf, sizeof(buf));
1738 memory_stat_format(memcg, &s);
1739 seq_buf_do_printk(&s, KERN_INFO);
e222432b
BS
1740}
1741
a63d83f4
DR
1742/*
1743 * Return the memory (and swap, if configured) limit for a memcg.
1744 */
bbec2e15 1745unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1746{
8d387a5f
WL
1747 unsigned long max = READ_ONCE(memcg->memory.max);
1748
b94c4e94 1749 if (do_memsw_account()) {
8d387a5f
WL
1750 if (mem_cgroup_swappiness(memcg)) {
1751 /* Calculate swap excess capacity from memsw limit */
1752 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1753
1754 max += min(swap, (unsigned long)total_swap_pages);
1755 }
b94c4e94
JW
1756 } else {
1757 if (mem_cgroup_swappiness(memcg))
1758 max += min(READ_ONCE(memcg->swap.max),
1759 (unsigned long)total_swap_pages);
9a5a8f19 1760 }
bbec2e15 1761 return max;
a63d83f4
DR
1762}
1763
9783aa99
CD
1764unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1765{
1766 return page_counter_read(&memcg->memory);
1767}
1768
b6e6edcf 1769static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1770 int order)
9cbb78bb 1771{
6e0fc46d
DR
1772 struct oom_control oc = {
1773 .zonelist = NULL,
1774 .nodemask = NULL,
2a966b77 1775 .memcg = memcg,
6e0fc46d
DR
1776 .gfp_mask = gfp_mask,
1777 .order = order,
6e0fc46d 1778 };
1378b37d 1779 bool ret = true;
9cbb78bb 1780
7775face
TH
1781 if (mutex_lock_killable(&oom_lock))
1782 return true;
1378b37d
YS
1783
1784 if (mem_cgroup_margin(memcg) >= (1 << order))
1785 goto unlock;
1786
7775face
TH
1787 /*
1788 * A few threads which were not waiting at mutex_lock_killable() can
1789 * fail to bail out. Therefore, check again after holding oom_lock.
1790 */
a4ebf1b6 1791 ret = task_is_dying() || out_of_memory(&oc);
1378b37d
YS
1792
1793unlock:
dc56401f 1794 mutex_unlock(&oom_lock);
7c5f64f8 1795 return ret;
9cbb78bb
DR
1796}
1797
0608f43d 1798static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1799 pg_data_t *pgdat,
0608f43d
AM
1800 gfp_t gfp_mask,
1801 unsigned long *total_scanned)
1802{
1803 struct mem_cgroup *victim = NULL;
1804 int total = 0;
1805 int loop = 0;
1806 unsigned long excess;
1807 unsigned long nr_scanned;
1808 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1809 .pgdat = pgdat,
0608f43d
AM
1810 };
1811
3e32cb2e 1812 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1813
1814 while (1) {
1815 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1816 if (!victim) {
1817 loop++;
1818 if (loop >= 2) {
1819 /*
1820 * If we have not been able to reclaim
1821 * anything, it might because there are
1822 * no reclaimable pages under this hierarchy
1823 */
1824 if (!total)
1825 break;
1826 /*
1827 * We want to do more targeted reclaim.
1828 * excess >> 2 is not to excessive so as to
1829 * reclaim too much, nor too less that we keep
1830 * coming back to reclaim from this cgroup
1831 */
1832 if (total >= (excess >> 2) ||
1833 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1834 break;
1835 }
1836 continue;
1837 }
a9dd0a83 1838 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1839 pgdat, &nr_scanned);
0608f43d 1840 *total_scanned += nr_scanned;
3e32cb2e 1841 if (!soft_limit_excess(root_memcg))
0608f43d 1842 break;
6d61ef40 1843 }
0608f43d
AM
1844 mem_cgroup_iter_break(root_memcg, victim);
1845 return total;
6d61ef40
BS
1846}
1847
0056f4e6
JW
1848#ifdef CONFIG_LOCKDEP
1849static struct lockdep_map memcg_oom_lock_dep_map = {
1850 .name = "memcg_oom_lock",
1851};
1852#endif
1853
fb2a6fc5
JW
1854static DEFINE_SPINLOCK(memcg_oom_lock);
1855
867578cb
KH
1856/*
1857 * Check OOM-Killer is already running under our hierarchy.
1858 * If someone is running, return false.
1859 */
fb2a6fc5 1860static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1861{
79dfdacc 1862 struct mem_cgroup *iter, *failed = NULL;
a636b327 1863
fb2a6fc5
JW
1864 spin_lock(&memcg_oom_lock);
1865
9f3a0d09 1866 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1867 if (iter->oom_lock) {
79dfdacc
MH
1868 /*
1869 * this subtree of our hierarchy is already locked
1870 * so we cannot give a lock.
1871 */
79dfdacc 1872 failed = iter;
9f3a0d09
JW
1873 mem_cgroup_iter_break(memcg, iter);
1874 break;
23751be0
JW
1875 } else
1876 iter->oom_lock = true;
7d74b06f 1877 }
867578cb 1878
fb2a6fc5
JW
1879 if (failed) {
1880 /*
1881 * OK, we failed to lock the whole subtree so we have
1882 * to clean up what we set up to the failing subtree
1883 */
1884 for_each_mem_cgroup_tree(iter, memcg) {
1885 if (iter == failed) {
1886 mem_cgroup_iter_break(memcg, iter);
1887 break;
1888 }
1889 iter->oom_lock = false;
79dfdacc 1890 }
0056f4e6
JW
1891 } else
1892 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1893
1894 spin_unlock(&memcg_oom_lock);
1895
1896 return !failed;
a636b327 1897}
0b7f569e 1898
fb2a6fc5 1899static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1900{
7d74b06f
KH
1901 struct mem_cgroup *iter;
1902
fb2a6fc5 1903 spin_lock(&memcg_oom_lock);
5facae4f 1904 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1905 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1906 iter->oom_lock = false;
fb2a6fc5 1907 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1908}
1909
c0ff4b85 1910static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1911{
1912 struct mem_cgroup *iter;
1913
c2b42d3c 1914 spin_lock(&memcg_oom_lock);
c0ff4b85 1915 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1916 iter->under_oom++;
1917 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1918}
1919
c0ff4b85 1920static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1921{
1922 struct mem_cgroup *iter;
1923
867578cb 1924 /*
f0953a1b 1925 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1926 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1927 */
c2b42d3c 1928 spin_lock(&memcg_oom_lock);
c0ff4b85 1929 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1930 if (iter->under_oom > 0)
1931 iter->under_oom--;
1932 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1933}
1934
867578cb
KH
1935static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1936
dc98df5a 1937struct oom_wait_info {
d79154bb 1938 struct mem_cgroup *memcg;
ac6424b9 1939 wait_queue_entry_t wait;
dc98df5a
KH
1940};
1941
ac6424b9 1942static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1943 unsigned mode, int sync, void *arg)
1944{
d79154bb
HD
1945 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1946 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1947 struct oom_wait_info *oom_wait_info;
1948
1949 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1950 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1951
2314b42d
JW
1952 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1953 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1954 return 0;
dc98df5a
KH
1955 return autoremove_wake_function(wait, mode, sync, arg);
1956}
1957
c0ff4b85 1958static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1959{
c2b42d3c
TH
1960 /*
1961 * For the following lockless ->under_oom test, the only required
1962 * guarantee is that it must see the state asserted by an OOM when
1963 * this function is called as a result of userland actions
1964 * triggered by the notification of the OOM. This is trivially
1965 * achieved by invoking mem_cgroup_mark_under_oom() before
1966 * triggering notification.
1967 */
1968 if (memcg && memcg->under_oom)
f4b90b70 1969 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1970}
1971
becdf89d
SB
1972/*
1973 * Returns true if successfully killed one or more processes. Though in some
1974 * corner cases it can return true even without killing any process.
1975 */
1976static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1977{
becdf89d 1978 bool locked, ret;
7056d3a3 1979
29ef680a 1980 if (order > PAGE_ALLOC_COSTLY_ORDER)
becdf89d 1981 return false;
29ef680a 1982
7a1adfdd
RG
1983 memcg_memory_event(memcg, MEMCG_OOM);
1984
867578cb 1985 /*
49426420
JW
1986 * We are in the middle of the charge context here, so we
1987 * don't want to block when potentially sitting on a callstack
1988 * that holds all kinds of filesystem and mm locks.
1989 *
29ef680a
MH
1990 * cgroup1 allows disabling the OOM killer and waiting for outside
1991 * handling until the charge can succeed; remember the context and put
1992 * the task to sleep at the end of the page fault when all locks are
1993 * released.
49426420 1994 *
29ef680a
MH
1995 * On the other hand, in-kernel OOM killer allows for an async victim
1996 * memory reclaim (oom_reaper) and that means that we are not solely
1997 * relying on the oom victim to make a forward progress and we can
1998 * invoke the oom killer here.
1999 *
2000 * Please note that mem_cgroup_out_of_memory might fail to find a
2001 * victim and then we have to bail out from the charge path.
867578cb 2002 */
17c56de6 2003 if (READ_ONCE(memcg->oom_kill_disable)) {
becdf89d
SB
2004 if (current->in_user_fault) {
2005 css_get(&memcg->css);
2006 current->memcg_in_oom = memcg;
2007 current->memcg_oom_gfp_mask = mask;
2008 current->memcg_oom_order = order;
2009 }
2010 return false;
29ef680a
MH
2011 }
2012
7056d3a3
MH
2013 mem_cgroup_mark_under_oom(memcg);
2014
2015 locked = mem_cgroup_oom_trylock(memcg);
2016
2017 if (locked)
2018 mem_cgroup_oom_notify(memcg);
2019
2020 mem_cgroup_unmark_under_oom(memcg);
becdf89d 2021 ret = mem_cgroup_out_of_memory(memcg, mask, order);
7056d3a3
MH
2022
2023 if (locked)
2024 mem_cgroup_oom_unlock(memcg);
29ef680a 2025
7056d3a3 2026 return ret;
3812c8c8
JW
2027}
2028
2029/**
2030 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2031 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2032 *
49426420
JW
2033 * This has to be called at the end of a page fault if the memcg OOM
2034 * handler was enabled.
3812c8c8 2035 *
49426420 2036 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2037 * sleep on a waitqueue until the userspace task resolves the
2038 * situation. Sleeping directly in the charge context with all kinds
2039 * of locks held is not a good idea, instead we remember an OOM state
2040 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2041 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2042 *
2043 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2044 * completed, %false otherwise.
3812c8c8 2045 */
49426420 2046bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2047{
626ebc41 2048 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2049 struct oom_wait_info owait;
49426420 2050 bool locked;
3812c8c8
JW
2051
2052 /* OOM is global, do not handle */
3812c8c8 2053 if (!memcg)
49426420 2054 return false;
3812c8c8 2055
7c5f64f8 2056 if (!handle)
49426420 2057 goto cleanup;
3812c8c8
JW
2058
2059 owait.memcg = memcg;
2060 owait.wait.flags = 0;
2061 owait.wait.func = memcg_oom_wake_function;
2062 owait.wait.private = current;
2055da97 2063 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2064
3812c8c8 2065 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2066 mem_cgroup_mark_under_oom(memcg);
2067
2068 locked = mem_cgroup_oom_trylock(memcg);
2069
2070 if (locked)
2071 mem_cgroup_oom_notify(memcg);
2072
857f2139
HX
2073 schedule();
2074 mem_cgroup_unmark_under_oom(memcg);
2075 finish_wait(&memcg_oom_waitq, &owait.wait);
49426420 2076
18b1d18b 2077 if (locked)
fb2a6fc5 2078 mem_cgroup_oom_unlock(memcg);
49426420 2079cleanup:
626ebc41 2080 current->memcg_in_oom = NULL;
3812c8c8 2081 css_put(&memcg->css);
867578cb 2082 return true;
0b7f569e
KH
2083}
2084
3d8b38eb
RG
2085/**
2086 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2087 * @victim: task to be killed by the OOM killer
2088 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2089 *
2090 * Returns a pointer to a memory cgroup, which has to be cleaned up
2091 * by killing all belonging OOM-killable tasks.
2092 *
2093 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2094 */
2095struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2096 struct mem_cgroup *oom_domain)
2097{
2098 struct mem_cgroup *oom_group = NULL;
2099 struct mem_cgroup *memcg;
2100
2101 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2102 return NULL;
2103
2104 if (!oom_domain)
2105 oom_domain = root_mem_cgroup;
2106
2107 rcu_read_lock();
2108
2109 memcg = mem_cgroup_from_task(victim);
7848ed62 2110 if (mem_cgroup_is_root(memcg))
3d8b38eb
RG
2111 goto out;
2112
48fe267c
RG
2113 /*
2114 * If the victim task has been asynchronously moved to a different
2115 * memory cgroup, we might end up killing tasks outside oom_domain.
2116 * In this case it's better to ignore memory.group.oom.
2117 */
2118 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2119 goto out;
2120
3d8b38eb
RG
2121 /*
2122 * Traverse the memory cgroup hierarchy from the victim task's
2123 * cgroup up to the OOMing cgroup (or root) to find the
2124 * highest-level memory cgroup with oom.group set.
2125 */
2126 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
eaf7b66b 2127 if (READ_ONCE(memcg->oom_group))
3d8b38eb
RG
2128 oom_group = memcg;
2129
2130 if (memcg == oom_domain)
2131 break;
2132 }
2133
2134 if (oom_group)
2135 css_get(&oom_group->css);
2136out:
2137 rcu_read_unlock();
2138
2139 return oom_group;
2140}
2141
2142void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2143{
2144 pr_info("Tasks in ");
2145 pr_cont_cgroup_path(memcg->css.cgroup);
2146 pr_cont(" are going to be killed due to memory.oom.group set\n");
2147}
2148
d7365e78 2149/**
f70ad448
MWO
2150 * folio_memcg_lock - Bind a folio to its memcg.
2151 * @folio: The folio.
32047e2a 2152 *
f70ad448 2153 * This function prevents unlocked LRU folios from being moved to
739f79fc
JW
2154 * another cgroup.
2155 *
f70ad448
MWO
2156 * It ensures lifetime of the bound memcg. The caller is responsible
2157 * for the lifetime of the folio.
d69b042f 2158 */
f70ad448 2159void folio_memcg_lock(struct folio *folio)
89c06bd5
KH
2160{
2161 struct mem_cgroup *memcg;
6de22619 2162 unsigned long flags;
89c06bd5 2163
6de22619
JW
2164 /*
2165 * The RCU lock is held throughout the transaction. The fast
2166 * path can get away without acquiring the memcg->move_lock
2167 * because page moving starts with an RCU grace period.
739f79fc 2168 */
d7365e78
JW
2169 rcu_read_lock();
2170
2171 if (mem_cgroup_disabled())
1c824a68 2172 return;
89c06bd5 2173again:
f70ad448 2174 memcg = folio_memcg(folio);
29833315 2175 if (unlikely(!memcg))
1c824a68 2176 return;
d7365e78 2177
20ad50d6
AS
2178#ifdef CONFIG_PROVE_LOCKING
2179 local_irq_save(flags);
2180 might_lock(&memcg->move_lock);
2181 local_irq_restore(flags);
2182#endif
2183
bdcbb659 2184 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2185 return;
89c06bd5 2186
6de22619 2187 spin_lock_irqsave(&memcg->move_lock, flags);
f70ad448 2188 if (memcg != folio_memcg(folio)) {
6de22619 2189 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2190 goto again;
2191 }
6de22619
JW
2192
2193 /*
1c824a68
JW
2194 * When charge migration first begins, we can have multiple
2195 * critical sections holding the fast-path RCU lock and one
2196 * holding the slowpath move_lock. Track the task who has the
6c77b607 2197 * move_lock for folio_memcg_unlock().
6de22619
JW
2198 */
2199 memcg->move_lock_task = current;
2200 memcg->move_lock_flags = flags;
89c06bd5 2201}
f70ad448 2202
f70ad448 2203static void __folio_memcg_unlock(struct mem_cgroup *memcg)
89c06bd5 2204{
6de22619
JW
2205 if (memcg && memcg->move_lock_task == current) {
2206 unsigned long flags = memcg->move_lock_flags;
2207
2208 memcg->move_lock_task = NULL;
2209 memcg->move_lock_flags = 0;
2210
2211 spin_unlock_irqrestore(&memcg->move_lock, flags);
2212 }
89c06bd5 2213
d7365e78 2214 rcu_read_unlock();
89c06bd5 2215}
739f79fc
JW
2216
2217/**
f70ad448
MWO
2218 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2219 * @folio: The folio.
2220 *
2221 * This releases the binding created by folio_memcg_lock(). This does
2222 * not change the accounting of this folio to its memcg, but it does
2223 * permit others to change it.
739f79fc 2224 */
f70ad448 2225void folio_memcg_unlock(struct folio *folio)
739f79fc 2226{
f70ad448
MWO
2227 __folio_memcg_unlock(folio_memcg(folio));
2228}
9da7b521 2229
fead2b86 2230struct memcg_stock_pcp {
56751146 2231 local_lock_t stock_lock;
fead2b86
MH
2232 struct mem_cgroup *cached; /* this never be root cgroup */
2233 unsigned int nr_pages;
2234
bf4f0599
RG
2235#ifdef CONFIG_MEMCG_KMEM
2236 struct obj_cgroup *cached_objcg;
68ac5b3c 2237 struct pglist_data *cached_pgdat;
bf4f0599 2238 unsigned int nr_bytes;
68ac5b3c
WL
2239 int nr_slab_reclaimable_b;
2240 int nr_slab_unreclaimable_b;
bf4f0599
RG
2241#endif
2242
cdec2e42 2243 struct work_struct work;
26fe6168 2244 unsigned long flags;
a0db00fc 2245#define FLUSHING_CACHED_CHARGE 0
cdec2e42 2246};
56751146
SAS
2247static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2248 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2249};
9f50fad6 2250static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2251
bf4f0599 2252#ifdef CONFIG_MEMCG_KMEM
56751146 2253static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
bf4f0599
RG
2254static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2255 struct mem_cgroup *root_memcg);
a8c49af3 2256static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
bf4f0599
RG
2257
2258#else
56751146 2259static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 2260{
56751146 2261 return NULL;
bf4f0599
RG
2262}
2263static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2264 struct mem_cgroup *root_memcg)
2265{
2266 return false;
2267}
a8c49af3
YA
2268static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2269{
2270}
bf4f0599
RG
2271#endif
2272
a0956d54
SS
2273/**
2274 * consume_stock: Try to consume stocked charge on this cpu.
2275 * @memcg: memcg to consume from.
2276 * @nr_pages: how many pages to charge.
2277 *
2278 * The charges will only happen if @memcg matches the current cpu's memcg
2279 * stock, and at least @nr_pages are available in that stock. Failure to
2280 * service an allocation will refill the stock.
2281 *
2282 * returns true if successful, false otherwise.
cdec2e42 2283 */
a0956d54 2284static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2285{
2286 struct memcg_stock_pcp *stock;
db2ba40c 2287 unsigned long flags;
3e32cb2e 2288 bool ret = false;
cdec2e42 2289
a983b5eb 2290 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2291 return ret;
a0956d54 2292
56751146 2293 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2294
2295 stock = this_cpu_ptr(&memcg_stock);
f785a8f2 2296 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
a0956d54 2297 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2298 ret = true;
2299 }
db2ba40c 2300
56751146 2301 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
db2ba40c 2302
cdec2e42
KH
2303 return ret;
2304}
2305
2306/*
3e32cb2e 2307 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2308 */
2309static void drain_stock(struct memcg_stock_pcp *stock)
2310{
f785a8f2 2311 struct mem_cgroup *old = READ_ONCE(stock->cached);
cdec2e42 2312
1a3e1f40
JW
2313 if (!old)
2314 return;
2315
11c9ea4e 2316 if (stock->nr_pages) {
3e32cb2e 2317 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2318 if (do_memsw_account())
3e32cb2e 2319 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2320 stock->nr_pages = 0;
cdec2e42 2321 }
1a3e1f40
JW
2322
2323 css_put(&old->css);
f785a8f2 2324 WRITE_ONCE(stock->cached, NULL);
cdec2e42
KH
2325}
2326
cdec2e42
KH
2327static void drain_local_stock(struct work_struct *dummy)
2328{
db2ba40c 2329 struct memcg_stock_pcp *stock;
56751146 2330 struct obj_cgroup *old = NULL;
db2ba40c
JW
2331 unsigned long flags;
2332
72f0184c 2333 /*
5c49cf9a
MH
2334 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2335 * drain_stock races is that we always operate on local CPU stock
2336 * here with IRQ disabled
72f0184c 2337 */
56751146 2338 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2339
2340 stock = this_cpu_ptr(&memcg_stock);
56751146 2341 old = drain_obj_stock(stock);
cdec2e42 2342 drain_stock(stock);
26fe6168 2343 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c 2344
56751146
SAS
2345 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2346 if (old)
2347 obj_cgroup_put(old);
cdec2e42
KH
2348}
2349
2350/*
3e32cb2e 2351 * Cache charges(val) to local per_cpu area.
320cc51d 2352 * This will be consumed by consume_stock() function, later.
cdec2e42 2353 */
af9a3b69 2354static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2355{
db2ba40c 2356 struct memcg_stock_pcp *stock;
cdec2e42 2357
db2ba40c 2358 stock = this_cpu_ptr(&memcg_stock);
f785a8f2 2359 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
cdec2e42 2360 drain_stock(stock);
1a3e1f40 2361 css_get(&memcg->css);
f785a8f2 2362 WRITE_ONCE(stock->cached, memcg);
cdec2e42 2363 }
11c9ea4e 2364 stock->nr_pages += nr_pages;
db2ba40c 2365
a983b5eb 2366 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487 2367 drain_stock(stock);
af9a3b69
JW
2368}
2369
2370static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2371{
2372 unsigned long flags;
475d0487 2373
56751146 2374 local_lock_irqsave(&memcg_stock.stock_lock, flags);
af9a3b69 2375 __refill_stock(memcg, nr_pages);
56751146 2376 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
cdec2e42
KH
2377}
2378
2379/*
c0ff4b85 2380 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2381 * of the hierarchy under it.
cdec2e42 2382 */
6d3d6aa2 2383static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2384{
26fe6168 2385 int cpu, curcpu;
d38144b7 2386
6d3d6aa2
JW
2387 /* If someone's already draining, avoid adding running more workers. */
2388 if (!mutex_trylock(&percpu_charge_mutex))
2389 return;
72f0184c
MH
2390 /*
2391 * Notify other cpus that system-wide "drain" is running
2392 * We do not care about races with the cpu hotplug because cpu down
2393 * as well as workers from this path always operate on the local
2394 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2395 */
0790ed62
SAS
2396 migrate_disable();
2397 curcpu = smp_processor_id();
cdec2e42
KH
2398 for_each_online_cpu(cpu) {
2399 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2400 struct mem_cgroup *memcg;
e1a366be 2401 bool flush = false;
26fe6168 2402
e1a366be 2403 rcu_read_lock();
f785a8f2 2404 memcg = READ_ONCE(stock->cached);
e1a366be
RG
2405 if (memcg && stock->nr_pages &&
2406 mem_cgroup_is_descendant(memcg, root_memcg))
2407 flush = true;
27fb0956 2408 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2409 flush = true;
e1a366be
RG
2410 rcu_read_unlock();
2411
2412 if (flush &&
2413 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2414 if (cpu == curcpu)
2415 drain_local_stock(&stock->work);
6a792697 2416 else if (!cpu_is_isolated(cpu))
d1a05b69
MH
2417 schedule_work_on(cpu, &stock->work);
2418 }
cdec2e42 2419 }
0790ed62 2420 migrate_enable();
9f50fad6 2421 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2422}
2423
2cd21c89
JW
2424static int memcg_hotplug_cpu_dead(unsigned int cpu)
2425{
2426 struct memcg_stock_pcp *stock;
a3d4c05a 2427
2cd21c89
JW
2428 stock = &per_cpu(memcg_stock, cpu);
2429 drain_stock(stock);
a3d4c05a 2430
308167fc 2431 return 0;
cdec2e42
KH
2432}
2433
b3ff9291
CD
2434static unsigned long reclaim_high(struct mem_cgroup *memcg,
2435 unsigned int nr_pages,
2436 gfp_t gfp_mask)
f7e1cb6e 2437{
b3ff9291
CD
2438 unsigned long nr_reclaimed = 0;
2439
f7e1cb6e 2440 do {
e22c6ed9
JW
2441 unsigned long pflags;
2442
d1663a90
JK
2443 if (page_counter_read(&memcg->memory) <=
2444 READ_ONCE(memcg->memory.high))
f7e1cb6e 2445 continue;
e22c6ed9 2446
e27be240 2447 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2448
2449 psi_memstall_enter(&pflags);
b3ff9291 2450 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
73b73bac 2451 gfp_mask,
55ab834a 2452 MEMCG_RECLAIM_MAY_SWAP);
e22c6ed9 2453 psi_memstall_leave(&pflags);
4bf17307
CD
2454 } while ((memcg = parent_mem_cgroup(memcg)) &&
2455 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2456
2457 return nr_reclaimed;
f7e1cb6e
JW
2458}
2459
2460static void high_work_func(struct work_struct *work)
2461{
2462 struct mem_cgroup *memcg;
2463
2464 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2465 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2466}
2467
0e4b01df
CD
2468/*
2469 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2470 * enough to still cause a significant slowdown in most cases, while still
2471 * allowing diagnostics and tracing to proceed without becoming stuck.
2472 */
2473#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2474
2475/*
2476 * When calculating the delay, we use these either side of the exponentiation to
2477 * maintain precision and scale to a reasonable number of jiffies (see the table
2478 * below.
2479 *
2480 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2481 * overage ratio to a delay.
ac5ddd0f 2482 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2483 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2484 * to produce a reasonable delay curve.
2485 *
2486 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2487 * reasonable delay curve compared to precision-adjusted overage, not
2488 * penalising heavily at first, but still making sure that growth beyond the
2489 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2490 * example, with a high of 100 megabytes:
2491 *
2492 * +-------+------------------------+
2493 * | usage | time to allocate in ms |
2494 * +-------+------------------------+
2495 * | 100M | 0 |
2496 * | 101M | 6 |
2497 * | 102M | 25 |
2498 * | 103M | 57 |
2499 * | 104M | 102 |
2500 * | 105M | 159 |
2501 * | 106M | 230 |
2502 * | 107M | 313 |
2503 * | 108M | 409 |
2504 * | 109M | 518 |
2505 * | 110M | 639 |
2506 * | 111M | 774 |
2507 * | 112M | 921 |
2508 * | 113M | 1081 |
2509 * | 114M | 1254 |
2510 * | 115M | 1439 |
2511 * | 116M | 1638 |
2512 * | 117M | 1849 |
2513 * | 118M | 2000 |
2514 * | 119M | 2000 |
2515 * | 120M | 2000 |
2516 * +-------+------------------------+
2517 */
2518 #define MEMCG_DELAY_PRECISION_SHIFT 20
2519 #define MEMCG_DELAY_SCALING_SHIFT 14
2520
8a5dbc65 2521static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2522{
8a5dbc65 2523 u64 overage;
b23afb93 2524
8a5dbc65
JK
2525 if (usage <= high)
2526 return 0;
e26733e0 2527
8a5dbc65
JK
2528 /*
2529 * Prevent division by 0 in overage calculation by acting as if
2530 * it was a threshold of 1 page
2531 */
2532 high = max(high, 1UL);
9b8b1754 2533
8a5dbc65
JK
2534 overage = usage - high;
2535 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2536 return div64_u64(overage, high);
2537}
e26733e0 2538
8a5dbc65
JK
2539static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2540{
2541 u64 overage, max_overage = 0;
e26733e0 2542
8a5dbc65
JK
2543 do {
2544 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2545 READ_ONCE(memcg->memory.high));
8a5dbc65 2546 max_overage = max(overage, max_overage);
e26733e0
CD
2547 } while ((memcg = parent_mem_cgroup(memcg)) &&
2548 !mem_cgroup_is_root(memcg));
2549
8a5dbc65
JK
2550 return max_overage;
2551}
2552
4b82ab4f
JK
2553static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2554{
2555 u64 overage, max_overage = 0;
2556
2557 do {
2558 overage = calculate_overage(page_counter_read(&memcg->swap),
2559 READ_ONCE(memcg->swap.high));
2560 if (overage)
2561 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2562 max_overage = max(overage, max_overage);
2563 } while ((memcg = parent_mem_cgroup(memcg)) &&
2564 !mem_cgroup_is_root(memcg));
2565
2566 return max_overage;
2567}
2568
8a5dbc65
JK
2569/*
2570 * Get the number of jiffies that we should penalise a mischievous cgroup which
2571 * is exceeding its memory.high by checking both it and its ancestors.
2572 */
2573static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2574 unsigned int nr_pages,
2575 u64 max_overage)
2576{
2577 unsigned long penalty_jiffies;
2578
e26733e0
CD
2579 if (!max_overage)
2580 return 0;
0e4b01df
CD
2581
2582 /*
0e4b01df
CD
2583 * We use overage compared to memory.high to calculate the number of
2584 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2585 * fairly lenient on small overages, and increasingly harsh when the
2586 * memcg in question makes it clear that it has no intention of stopping
2587 * its crazy behaviour, so we exponentially increase the delay based on
2588 * overage amount.
2589 */
e26733e0
CD
2590 penalty_jiffies = max_overage * max_overage * HZ;
2591 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2592 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2593
2594 /*
2595 * Factor in the task's own contribution to the overage, such that four
2596 * N-sized allocations are throttled approximately the same as one
2597 * 4N-sized allocation.
2598 *
2599 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2600 * larger the current charge patch is than that.
2601 */
ff144e69 2602 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2603}
2604
2605/*
2606 * Scheduled by try_charge() to be executed from the userland return path
2607 * and reclaims memory over the high limit.
2608 */
9ea9cb00 2609void mem_cgroup_handle_over_high(gfp_t gfp_mask)
e26733e0
CD
2610{
2611 unsigned long penalty_jiffies;
2612 unsigned long pflags;
b3ff9291 2613 unsigned long nr_reclaimed;
e26733e0 2614 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2615 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2616 struct mem_cgroup *memcg;
b3ff9291 2617 bool in_retry = false;
e26733e0
CD
2618
2619 if (likely(!nr_pages))
2620 return;
2621
2622 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2623 current->memcg_nr_pages_over_high = 0;
2624
b3ff9291
CD
2625retry_reclaim:
2626 /*
2627 * The allocating task should reclaim at least the batch size, but for
2628 * subsequent retries we only want to do what's necessary to prevent oom
2629 * or breaching resource isolation.
2630 *
2631 * This is distinct from memory.max or page allocator behaviour because
2632 * memory.high is currently batched, whereas memory.max and the page
2633 * allocator run every time an allocation is made.
2634 */
2635 nr_reclaimed = reclaim_high(memcg,
2636 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
9ea9cb00 2637 gfp_mask);
b3ff9291 2638
e26733e0
CD
2639 /*
2640 * memory.high is breached and reclaim is unable to keep up. Throttle
2641 * allocators proactively to slow down excessive growth.
2642 */
8a5dbc65
JK
2643 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2644 mem_find_max_overage(memcg));
0e4b01df 2645
4b82ab4f
JK
2646 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2647 swap_find_max_overage(memcg));
2648
ff144e69
JK
2649 /*
2650 * Clamp the max delay per usermode return so as to still keep the
2651 * application moving forwards and also permit diagnostics, albeit
2652 * extremely slowly.
2653 */
2654 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2655
0e4b01df
CD
2656 /*
2657 * Don't sleep if the amount of jiffies this memcg owes us is so low
2658 * that it's not even worth doing, in an attempt to be nice to those who
2659 * go only a small amount over their memory.high value and maybe haven't
2660 * been aggressively reclaimed enough yet.
2661 */
2662 if (penalty_jiffies <= HZ / 100)
2663 goto out;
2664
b3ff9291
CD
2665 /*
2666 * If reclaim is making forward progress but we're still over
2667 * memory.high, we want to encourage that rather than doing allocator
2668 * throttling.
2669 */
2670 if (nr_reclaimed || nr_retries--) {
2671 in_retry = true;
2672 goto retry_reclaim;
2673 }
2674
0e4b01df
CD
2675 /*
2676 * If we exit early, we're guaranteed to die (since
2677 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2678 * need to account for any ill-begotten jiffies to pay them off later.
2679 */
2680 psi_memstall_enter(&pflags);
2681 schedule_timeout_killable(penalty_jiffies);
2682 psi_memstall_leave(&pflags);
2683
2684out:
2685 css_put(&memcg->css);
b23afb93
TH
2686}
2687
c5c8b16b
MS
2688static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2689 unsigned int nr_pages)
8a9f3ccd 2690{
a983b5eb 2691 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2692 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2693 struct mem_cgroup *mem_over_limit;
3e32cb2e 2694 struct page_counter *counter;
6539cc05 2695 unsigned long nr_reclaimed;
a4ebf1b6 2696 bool passed_oom = false;
73b73bac 2697 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
b70a2a21 2698 bool drained = false;
d6e103a7 2699 bool raised_max_event = false;
e22c6ed9 2700 unsigned long pflags;
a636b327 2701
6539cc05 2702retry:
b6b6cc72 2703 if (consume_stock(memcg, nr_pages))
10d53c74 2704 return 0;
8a9f3ccd 2705
7941d214 2706 if (!do_memsw_account() ||
6071ca52
JW
2707 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2708 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2709 goto done_restock;
7941d214 2710 if (do_memsw_account())
3e32cb2e
JW
2711 page_counter_uncharge(&memcg->memsw, batch);
2712 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2713 } else {
3e32cb2e 2714 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
73b73bac 2715 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
3fbe7244 2716 }
7a81b88c 2717
6539cc05
JW
2718 if (batch > nr_pages) {
2719 batch = nr_pages;
2720 goto retry;
2721 }
6d61ef40 2722
89a28483
JW
2723 /*
2724 * Prevent unbounded recursion when reclaim operations need to
2725 * allocate memory. This might exceed the limits temporarily,
2726 * but we prefer facilitating memory reclaim and getting back
2727 * under the limit over triggering OOM kills in these cases.
2728 */
2729 if (unlikely(current->flags & PF_MEMALLOC))
2730 goto force;
2731
06b078fc
JW
2732 if (unlikely(task_in_memcg_oom(current)))
2733 goto nomem;
2734
d0164adc 2735 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2736 goto nomem;
4b534334 2737
e27be240 2738 memcg_memory_event(mem_over_limit, MEMCG_MAX);
d6e103a7 2739 raised_max_event = true;
241994ed 2740
e22c6ed9 2741 psi_memstall_enter(&pflags);
b70a2a21 2742 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
55ab834a 2743 gfp_mask, reclaim_options);
e22c6ed9 2744 psi_memstall_leave(&pflags);
6539cc05 2745
61e02c74 2746 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2747 goto retry;
28c34c29 2748
b70a2a21 2749 if (!drained) {
6d3d6aa2 2750 drain_all_stock(mem_over_limit);
b70a2a21
JW
2751 drained = true;
2752 goto retry;
2753 }
2754
28c34c29
JW
2755 if (gfp_mask & __GFP_NORETRY)
2756 goto nomem;
6539cc05
JW
2757 /*
2758 * Even though the limit is exceeded at this point, reclaim
2759 * may have been able to free some pages. Retry the charge
2760 * before killing the task.
2761 *
2762 * Only for regular pages, though: huge pages are rather
2763 * unlikely to succeed so close to the limit, and we fall back
2764 * to regular pages anyway in case of failure.
2765 */
61e02c74 2766 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2767 goto retry;
2768 /*
2769 * At task move, charge accounts can be doubly counted. So, it's
2770 * better to wait until the end of task_move if something is going on.
2771 */
2772 if (mem_cgroup_wait_acct_move(mem_over_limit))
2773 goto retry;
2774
9b130619
JW
2775 if (nr_retries--)
2776 goto retry;
2777
38d38493 2778 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2779 goto nomem;
2780
a4ebf1b6
VA
2781 /* Avoid endless loop for tasks bypassed by the oom killer */
2782 if (passed_oom && task_is_dying())
2783 goto nomem;
6539cc05 2784
29ef680a
MH
2785 /*
2786 * keep retrying as long as the memcg oom killer is able to make
2787 * a forward progress or bypass the charge if the oom killer
2788 * couldn't make any progress.
2789 */
becdf89d
SB
2790 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2791 get_order(nr_pages * PAGE_SIZE))) {
a4ebf1b6 2792 passed_oom = true;
d977aa93 2793 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a 2794 goto retry;
29ef680a 2795 }
7a81b88c 2796nomem:
1461e8c2
SB
2797 /*
2798 * Memcg doesn't have a dedicated reserve for atomic
2799 * allocations. But like the global atomic pool, we need to
2800 * put the burden of reclaim on regular allocation requests
2801 * and let these go through as privileged allocations.
2802 */
2803 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
3168ecbe 2804 return -ENOMEM;
10d53c74 2805force:
d6e103a7
RG
2806 /*
2807 * If the allocation has to be enforced, don't forget to raise
2808 * a MEMCG_MAX event.
2809 */
2810 if (!raised_max_event)
2811 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2812
10d53c74
TH
2813 /*
2814 * The allocation either can't fail or will lead to more memory
2815 * being freed very soon. Allow memory usage go over the limit
2816 * temporarily by force charging it.
2817 */
2818 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2819 if (do_memsw_account())
10d53c74 2820 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2821
2822 return 0;
6539cc05
JW
2823
2824done_restock:
2825 if (batch > nr_pages)
2826 refill_stock(memcg, batch - nr_pages);
b23afb93 2827
241994ed 2828 /*
b23afb93
TH
2829 * If the hierarchy is above the normal consumption range, schedule
2830 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2831 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2832 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2833 * not recorded as it most likely matches current's and won't
2834 * change in the meantime. As high limit is checked again before
2835 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2836 */
2837 do {
4b82ab4f
JK
2838 bool mem_high, swap_high;
2839
2840 mem_high = page_counter_read(&memcg->memory) >
2841 READ_ONCE(memcg->memory.high);
2842 swap_high = page_counter_read(&memcg->swap) >
2843 READ_ONCE(memcg->swap.high);
2844
2845 /* Don't bother a random interrupted task */
086f694a 2846 if (!in_task()) {
4b82ab4f 2847 if (mem_high) {
f7e1cb6e
JW
2848 schedule_work(&memcg->high_work);
2849 break;
2850 }
4b82ab4f
JK
2851 continue;
2852 }
2853
2854 if (mem_high || swap_high) {
2855 /*
2856 * The allocating tasks in this cgroup will need to do
2857 * reclaim or be throttled to prevent further growth
2858 * of the memory or swap footprints.
2859 *
2860 * Target some best-effort fairness between the tasks,
2861 * and distribute reclaim work and delay penalties
2862 * based on how much each task is actually allocating.
2863 */
9516a18a 2864 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2865 set_notify_resume(current);
2866 break;
2867 }
241994ed 2868 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74 2869
c9afe31e
SB
2870 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2871 !(current->flags & PF_MEMALLOC) &&
2872 gfpflags_allow_blocking(gfp_mask)) {
9ea9cb00 2873 mem_cgroup_handle_over_high(gfp_mask);
c9afe31e 2874 }
10d53c74 2875 return 0;
7a81b88c 2876}
8a9f3ccd 2877
c5c8b16b
MS
2878static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2879 unsigned int nr_pages)
2880{
2881 if (mem_cgroup_is_root(memcg))
2882 return 0;
2883
2884 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2885}
2886
4b569387
NP
2887/**
2888 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2889 * @memcg: memcg previously charged.
2890 * @nr_pages: number of pages previously charged.
2891 */
2892void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2893{
ce00a967
JW
2894 if (mem_cgroup_is_root(memcg))
2895 return;
2896
3e32cb2e 2897 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2898 if (do_memsw_account())
3e32cb2e 2899 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
2900}
2901
118f2875 2902static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
0a31bc97 2903{
118f2875 2904 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
0a31bc97 2905 /*
a5eb011a 2906 * Any of the following ensures page's memcg stability:
0a31bc97 2907 *
a0b5b414
JW
2908 * - the page lock
2909 * - LRU isolation
6c77b607 2910 * - folio_memcg_lock()
a0b5b414 2911 * - exclusive reference
018ee47f 2912 * - mem_cgroup_trylock_pages()
0a31bc97 2913 */
118f2875 2914 folio->memcg_data = (unsigned long)memcg;
7a81b88c 2915}
66e1707b 2916
4b569387
NP
2917/**
2918 * mem_cgroup_commit_charge - commit a previously successful try_charge().
2919 * @folio: folio to commit the charge to.
2920 * @memcg: memcg previously charged.
2921 */
2922void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2923{
2924 css_get(&memcg->css);
2925 commit_charge(folio, memcg);
2926
2927 local_irq_disable();
2928 mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio));
2929 memcg_check_events(memcg, folio_nid(folio));
2930 local_irq_enable();
2931}
2932
84c07d11 2933#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2934/*
2935 * The allocated objcg pointers array is not accounted directly.
2936 * Moreover, it should not come from DMA buffer and is not readily
2937 * reclaimable. So those GFP bits should be masked off.
2938 */
24948e3b
RG
2939#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2940 __GFP_ACCOUNT | __GFP_NOFAIL)
41eb5df1 2941
a7ebf564
WL
2942/*
2943 * mod_objcg_mlstate() may be called with irq enabled, so
2944 * mod_memcg_lruvec_state() should be used.
2945 */
2946static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2947 struct pglist_data *pgdat,
2948 enum node_stat_item idx, int nr)
2949{
2950 struct mem_cgroup *memcg;
2951 struct lruvec *lruvec;
2952
2953 rcu_read_lock();
2954 memcg = obj_cgroup_memcg(objcg);
2955 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2956 mod_memcg_lruvec_state(lruvec, idx, nr);
2957 rcu_read_unlock();
2958}
2959
4b5f8d9a
VB
2960int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2961 gfp_t gfp, bool new_slab)
10befea9 2962{
4b5f8d9a 2963 unsigned int objects = objs_per_slab(s, slab);
2e9bd483 2964 unsigned long memcg_data;
10befea9
RG
2965 void *vec;
2966
41eb5df1 2967 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9 2968 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
4b5f8d9a 2969 slab_nid(slab));
10befea9
RG
2970 if (!vec)
2971 return -ENOMEM;
2972
2e9bd483 2973 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
4b5f8d9a 2974 if (new_slab) {
2e9bd483 2975 /*
4b5f8d9a
VB
2976 * If the slab is brand new and nobody can yet access its
2977 * memcg_data, no synchronization is required and memcg_data can
2978 * be simply assigned.
2e9bd483 2979 */
4b5f8d9a
VB
2980 slab->memcg_data = memcg_data;
2981 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2e9bd483 2982 /*
4b5f8d9a
VB
2983 * If the slab is already in use, somebody can allocate and
2984 * assign obj_cgroups in parallel. In this case the existing
2e9bd483
RG
2985 * objcg vector should be reused.
2986 */
10befea9 2987 kfree(vec);
2e9bd483
RG
2988 return 0;
2989 }
10befea9 2990
2e9bd483 2991 kmemleak_not_leak(vec);
10befea9
RG
2992 return 0;
2993}
2994
fc4db90f
RG
2995static __always_inline
2996struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
8380ce47 2997{
8380ce47 2998 /*
9855609b
RG
2999 * Slab objects are accounted individually, not per-page.
3000 * Memcg membership data for each individual object is saved in
4b5f8d9a 3001 * slab->memcg_data.
8380ce47 3002 */
4b5f8d9a
VB
3003 if (folio_test_slab(folio)) {
3004 struct obj_cgroup **objcgs;
3005 struct slab *slab;
9855609b
RG
3006 unsigned int off;
3007
4b5f8d9a
VB
3008 slab = folio_slab(folio);
3009 objcgs = slab_objcgs(slab);
3010 if (!objcgs)
3011 return NULL;
3012
3013 off = obj_to_index(slab->slab_cache, slab, p);
3014 if (objcgs[off])
3015 return obj_cgroup_memcg(objcgs[off]);
10befea9
RG
3016
3017 return NULL;
9855609b 3018 }
8380ce47 3019
bcfe06bf 3020 /*
becacb04 3021 * folio_memcg_check() is used here, because in theory we can encounter
4b5f8d9a
VB
3022 * a folio where the slab flag has been cleared already, but
3023 * slab->memcg_data has not been freed yet
becacb04 3024 * folio_memcg_check() will guarantee that a proper memory
bcfe06bf
RG
3025 * cgroup pointer or NULL will be returned.
3026 */
becacb04 3027 return folio_memcg_check(folio);
8380ce47
RG
3028}
3029
fc4db90f
RG
3030/*
3031 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3032 *
3033 * A passed kernel object can be a slab object, vmalloc object or a generic
3034 * kernel page, so different mechanisms for getting the memory cgroup pointer
3035 * should be used.
3036 *
3037 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
3038 * can not know for sure how the kernel object is implemented.
3039 * mem_cgroup_from_obj() can be safely used in such cases.
3040 *
3041 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3042 * cgroup_mutex, etc.
3043 */
3044struct mem_cgroup *mem_cgroup_from_obj(void *p)
3045{
3046 struct folio *folio;
3047
3048 if (mem_cgroup_disabled())
3049 return NULL;
3050
3051 if (unlikely(is_vmalloc_addr(p)))
3052 folio = page_folio(vmalloc_to_page(p));
3053 else
3054 folio = virt_to_folio(p);
3055
3056 return mem_cgroup_from_obj_folio(folio, p);
3057}
3058
3059/*
3060 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3061 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3062 * allocated using vmalloc().
3063 *
3064 * A passed kernel object must be a slab object or a generic kernel page.
3065 *
3066 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3067 * cgroup_mutex, etc.
3068 */
3069struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3070{
3071 if (mem_cgroup_disabled())
3072 return NULL;
3073
3074 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3075}
3076
f4840ccf
JW
3077static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3078{
3079 struct obj_cgroup *objcg = NULL;
3080
7848ed62 3081 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
f4840ccf 3082 objcg = rcu_dereference(memcg->objcg);
7d0715d0 3083 if (likely(objcg && obj_cgroup_tryget(objcg)))
f4840ccf
JW
3084 break;
3085 objcg = NULL;
3086 }
3087 return objcg;
3088}
3089
1aacbd35
RG
3090static struct obj_cgroup *current_objcg_update(void)
3091{
3092 struct mem_cgroup *memcg;
3093 struct obj_cgroup *old, *objcg = NULL;
3094
3095 do {
3096 /* Atomically drop the update bit. */
3097 old = xchg(&current->objcg, NULL);
3098 if (old) {
3099 old = (struct obj_cgroup *)
3100 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
3101 if (old)
3102 obj_cgroup_put(old);
3103
3104 old = NULL;
3105 }
3106
3107 /* If new objcg is NULL, no reason for the second atomic update. */
3108 if (!current->mm || (current->flags & PF_KTHREAD))
3109 return NULL;
3110
3111 /*
3112 * Release the objcg pointer from the previous iteration,
3113 * if try_cmpxcg() below fails.
3114 */
3115 if (unlikely(objcg)) {
3116 obj_cgroup_put(objcg);
3117 objcg = NULL;
3118 }
3119
3120 /*
3121 * Obtain the new objcg pointer. The current task can be
3122 * asynchronously moved to another memcg and the previous
3123 * memcg can be offlined. So let's get the memcg pointer
3124 * and try get a reference to objcg under a rcu read lock.
3125 */
3126
3127 rcu_read_lock();
3128 memcg = mem_cgroup_from_task(current);
3129 objcg = __get_obj_cgroup_from_memcg(memcg);
3130 rcu_read_unlock();
3131
3132 /*
3133 * Try set up a new objcg pointer atomically. If it
3134 * fails, it means the update flag was set concurrently, so
3135 * the whole procedure should be repeated.
3136 */
3137 } while (!try_cmpxchg(&current->objcg, &old, objcg));
3138
3139 return objcg;
3140}
3141
e86828e5
RG
3142__always_inline struct obj_cgroup *current_obj_cgroup(void)
3143{
3144 struct mem_cgroup *memcg;
3145 struct obj_cgroup *objcg;
3146
3147 if (in_task()) {
3148 memcg = current->active_memcg;
3149 if (unlikely(memcg))
3150 goto from_memcg;
3151
3152 objcg = READ_ONCE(current->objcg);
3153 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
3154 objcg = current_objcg_update();
3155 /*
3156 * Objcg reference is kept by the task, so it's safe
3157 * to use the objcg by the current task.
3158 */
3159 return objcg;
3160 }
3161
3162 memcg = this_cpu_read(int_active_memcg);
3163 if (unlikely(memcg))
3164 goto from_memcg;
3165
3166 return NULL;
3167
3168from_memcg:
5f79489a 3169 objcg = NULL;
e86828e5
RG
3170 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3171 /*
3172 * Memcg pointer is protected by scope (see set_active_memcg())
3173 * and is pinning the corresponding objcg, so objcg can't go
3174 * away and can be used within the scope without any additional
3175 * protection.
3176 */
3177 objcg = rcu_dereference_check(memcg->objcg, 1);
3178 if (likely(objcg))
3179 break;
e86828e5
RG
3180 }
3181
3182 return objcg;
3183}
3184
074e3e26 3185struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
f4840ccf
JW
3186{
3187 struct obj_cgroup *objcg;
3188
f7a449f7 3189 if (!memcg_kmem_online())
f4840ccf
JW
3190 return NULL;
3191
074e3e26
MWO
3192 if (folio_memcg_kmem(folio)) {
3193 objcg = __folio_objcg(folio);
f4840ccf
JW
3194 obj_cgroup_get(objcg);
3195 } else {
3196 struct mem_cgroup *memcg;
bf4f0599 3197
f4840ccf 3198 rcu_read_lock();
074e3e26 3199 memcg = __folio_memcg(folio);
f4840ccf
JW
3200 if (memcg)
3201 objcg = __get_obj_cgroup_from_memcg(memcg);
3202 else
3203 objcg = NULL;
3204 rcu_read_unlock();
3205 }
bf4f0599
RG
3206 return objcg;
3207}
3208
a8c49af3
YA
3209static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3210{
3211 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3212 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3213 if (nr_pages > 0)
3214 page_counter_charge(&memcg->kmem, nr_pages);
3215 else
3216 page_counter_uncharge(&memcg->kmem, -nr_pages);
3217 }
3218}
3219
3220
f1286fae
MS
3221/*
3222 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3223 * @objcg: object cgroup to uncharge
3224 * @nr_pages: number of pages to uncharge
3225 */
e74d2259
MS
3226static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3227 unsigned int nr_pages)
3228{
3229 struct mem_cgroup *memcg;
3230
3231 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 3232
a8c49af3 3233 memcg_account_kmem(memcg, -nr_pages);
f1286fae 3234 refill_stock(memcg, nr_pages);
e74d2259 3235
e74d2259 3236 css_put(&memcg->css);
e74d2259
MS
3237}
3238
f1286fae
MS
3239/*
3240 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3241 * @objcg: object cgroup to charge
45264778 3242 * @gfp: reclaim mode
92d0510c 3243 * @nr_pages: number of pages to charge
45264778
VD
3244 *
3245 * Returns 0 on success, an error code on failure.
3246 */
f1286fae
MS
3247static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3248 unsigned int nr_pages)
7ae1e1d0 3249{
f1286fae 3250 struct mem_cgroup *memcg;
7ae1e1d0
GC
3251 int ret;
3252
f1286fae
MS
3253 memcg = get_mem_cgroup_from_objcg(objcg);
3254
c5c8b16b 3255 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 3256 if (ret)
f1286fae 3257 goto out;
52c29b04 3258
a8c49af3 3259 memcg_account_kmem(memcg, nr_pages);
f1286fae
MS
3260out:
3261 css_put(&memcg->css);
4b13f64d 3262
f1286fae 3263 return ret;
4b13f64d
RG
3264}
3265
45264778 3266/**
f4b00eab 3267 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3268 * @page: page to charge
3269 * @gfp: reclaim mode
3270 * @order: allocation order
3271 *
3272 * Returns 0 on success, an error code on failure.
3273 */
f4b00eab 3274int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3275{
b4e0b68f 3276 struct obj_cgroup *objcg;
fcff7d7e 3277 int ret = 0;
7ae1e1d0 3278
e86828e5 3279 objcg = current_obj_cgroup();
b4e0b68f
MS
3280 if (objcg) {
3281 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3282 if (!ret) {
e86828e5 3283 obj_cgroup_get(objcg);
b4e0b68f 3284 page->memcg_data = (unsigned long)objcg |
18b2db3b 3285 MEMCG_DATA_KMEM;
1a3e1f40 3286 return 0;
4d96ba35 3287 }
c4159a75 3288 }
d05e83a6 3289 return ret;
7ae1e1d0 3290}
49a18eae 3291
45264778 3292/**
f4b00eab 3293 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3294 * @page: page to uncharge
3295 * @order: allocation order
3296 */
f4b00eab 3297void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3298{
1b7e4464 3299 struct folio *folio = page_folio(page);
b4e0b68f 3300 struct obj_cgroup *objcg;
f3ccb2c4 3301 unsigned int nr_pages = 1 << order;
7ae1e1d0 3302
1b7e4464 3303 if (!folio_memcg_kmem(folio))
7ae1e1d0
GC
3304 return;
3305
1b7e4464 3306 objcg = __folio_objcg(folio);
b4e0b68f 3307 obj_cgroup_uncharge_pages(objcg, nr_pages);
1b7e4464 3308 folio->memcg_data = 0;
b4e0b68f 3309 obj_cgroup_put(objcg);
60d3fd32 3310}
bf4f0599 3311
68ac5b3c
WL
3312void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3313 enum node_stat_item idx, int nr)
3314{
fead2b86 3315 struct memcg_stock_pcp *stock;
56751146 3316 struct obj_cgroup *old = NULL;
68ac5b3c
WL
3317 unsigned long flags;
3318 int *bytes;
3319
56751146 3320 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3321 stock = this_cpu_ptr(&memcg_stock);
3322
68ac5b3c
WL
3323 /*
3324 * Save vmstat data in stock and skip vmstat array update unless
3325 * accumulating over a page of vmstat data or when pgdat or idx
3326 * changes.
3327 */
3b8abb32 3328 if (READ_ONCE(stock->cached_objcg) != objcg) {
56751146 3329 old = drain_obj_stock(stock);
68ac5b3c
WL
3330 obj_cgroup_get(objcg);
3331 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3332 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3b8abb32 3333 WRITE_ONCE(stock->cached_objcg, objcg);
68ac5b3c
WL
3334 stock->cached_pgdat = pgdat;
3335 } else if (stock->cached_pgdat != pgdat) {
3336 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3337 struct pglist_data *oldpg = stock->cached_pgdat;
3338
68ac5b3c 3339 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3340 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3341 stock->nr_slab_reclaimable_b);
3342 stock->nr_slab_reclaimable_b = 0;
3343 }
3344 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3345 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3346 stock->nr_slab_unreclaimable_b);
3347 stock->nr_slab_unreclaimable_b = 0;
3348 }
3349 stock->cached_pgdat = pgdat;
3350 }
3351
3352 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3353 : &stock->nr_slab_unreclaimable_b;
3354 /*
3355 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3356 * cached locally at least once before pushing it out.
3357 */
3358 if (!*bytes) {
3359 *bytes = nr;
3360 nr = 0;
3361 } else {
3362 *bytes += nr;
3363 if (abs(*bytes) > PAGE_SIZE) {
3364 nr = *bytes;
3365 *bytes = 0;
3366 } else {
3367 nr = 0;
3368 }
3369 }
3370 if (nr)
3371 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3372
56751146
SAS
3373 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3374 if (old)
3375 obj_cgroup_put(old);
68ac5b3c
WL
3376}
3377
bf4f0599
RG
3378static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3379{
fead2b86 3380 struct memcg_stock_pcp *stock;
bf4f0599
RG
3381 unsigned long flags;
3382 bool ret = false;
3383
56751146 3384 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3385
3386 stock = this_cpu_ptr(&memcg_stock);
3b8abb32 3387 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
bf4f0599
RG
3388 stock->nr_bytes -= nr_bytes;
3389 ret = true;
3390 }
3391
56751146 3392 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
bf4f0599
RG
3393
3394 return ret;
3395}
3396
56751146 3397static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 3398{
3b8abb32 3399 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
bf4f0599
RG
3400
3401 if (!old)
56751146 3402 return NULL;
bf4f0599
RG
3403
3404 if (stock->nr_bytes) {
3405 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3406 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3407
af9a3b69
JW
3408 if (nr_pages) {
3409 struct mem_cgroup *memcg;
3410
3411 memcg = get_mem_cgroup_from_objcg(old);
3412
3413 memcg_account_kmem(memcg, -nr_pages);
3414 __refill_stock(memcg, nr_pages);
3415
3416 css_put(&memcg->css);
3417 }
bf4f0599
RG
3418
3419 /*
3420 * The leftover is flushed to the centralized per-memcg value.
3421 * On the next attempt to refill obj stock it will be moved
3422 * to a per-cpu stock (probably, on an other CPU), see
3423 * refill_obj_stock().
3424 *
3425 * How often it's flushed is a trade-off between the memory
3426 * limit enforcement accuracy and potential CPU contention,
3427 * so it might be changed in the future.
3428 */
3429 atomic_add(nr_bytes, &old->nr_charged_bytes);
3430 stock->nr_bytes = 0;
3431 }
3432
68ac5b3c
WL
3433 /*
3434 * Flush the vmstat data in current stock
3435 */
3436 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3437 if (stock->nr_slab_reclaimable_b) {
3438 mod_objcg_mlstate(old, stock->cached_pgdat,
3439 NR_SLAB_RECLAIMABLE_B,
3440 stock->nr_slab_reclaimable_b);
3441 stock->nr_slab_reclaimable_b = 0;
3442 }
3443 if (stock->nr_slab_unreclaimable_b) {
3444 mod_objcg_mlstate(old, stock->cached_pgdat,
3445 NR_SLAB_UNRECLAIMABLE_B,
3446 stock->nr_slab_unreclaimable_b);
3447 stock->nr_slab_unreclaimable_b = 0;
3448 }
3449 stock->cached_pgdat = NULL;
3450 }
3451
3b8abb32 3452 WRITE_ONCE(stock->cached_objcg, NULL);
56751146
SAS
3453 /*
3454 * The `old' objects needs to be released by the caller via
3455 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3456 */
3457 return old;
bf4f0599
RG
3458}
3459
3460static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3461 struct mem_cgroup *root_memcg)
3462{
3b8abb32 3463 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
bf4f0599
RG
3464 struct mem_cgroup *memcg;
3465
3b8abb32
RG
3466 if (objcg) {
3467 memcg = obj_cgroup_memcg(objcg);
bf4f0599
RG
3468 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3469 return true;
3470 }
3471
3472 return false;
3473}
3474
5387c904
WL
3475static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3476 bool allow_uncharge)
bf4f0599 3477{
fead2b86 3478 struct memcg_stock_pcp *stock;
56751146 3479 struct obj_cgroup *old = NULL;
bf4f0599 3480 unsigned long flags;
5387c904 3481 unsigned int nr_pages = 0;
bf4f0599 3482
56751146 3483 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3484
3485 stock = this_cpu_ptr(&memcg_stock);
3b8abb32 3486 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
56751146 3487 old = drain_obj_stock(stock);
bf4f0599 3488 obj_cgroup_get(objcg);
3b8abb32 3489 WRITE_ONCE(stock->cached_objcg, objcg);
5387c904
WL
3490 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3491 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3492 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3493 }
3494 stock->nr_bytes += nr_bytes;
3495
5387c904
WL
3496 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3497 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3498 stock->nr_bytes &= (PAGE_SIZE - 1);
3499 }
bf4f0599 3500
56751146
SAS
3501 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3502 if (old)
3503 obj_cgroup_put(old);
5387c904
WL
3504
3505 if (nr_pages)
3506 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3507}
3508
3509int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3510{
bf4f0599
RG
3511 unsigned int nr_pages, nr_bytes;
3512 int ret;
3513
3514 if (consume_obj_stock(objcg, size))
3515 return 0;
3516
3517 /*
5387c904 3518 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3519 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3520 * flushing objcg->nr_charged_bytes requires two atomic
3521 * operations, and objcg->nr_charged_bytes can't be big.
3522 * The shared objcg->nr_charged_bytes can also become a
3523 * performance bottleneck if all tasks of the same memcg are
3524 * trying to update it. So it's better to ignore it and try
3525 * grab some new pages. The stock's nr_bytes will be flushed to
3526 * objcg->nr_charged_bytes later on when objcg changes.
3527 *
3528 * The stock's nr_bytes may contain enough pre-charged bytes
3529 * to allow one less page from being charged, but we can't rely
3530 * on the pre-charged bytes not being changed outside of
3531 * consume_obj_stock() or refill_obj_stock(). So ignore those
3532 * pre-charged bytes as well when charging pages. To avoid a
3533 * page uncharge right after a page charge, we set the
3534 * allow_uncharge flag to false when calling refill_obj_stock()
3535 * to temporarily allow the pre-charged bytes to exceed the page
3536 * size limit. The maximum reachable value of the pre-charged
3537 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3538 * race.
bf4f0599 3539 */
bf4f0599
RG
3540 nr_pages = size >> PAGE_SHIFT;
3541 nr_bytes = size & (PAGE_SIZE - 1);
3542
3543 if (nr_bytes)
3544 nr_pages += 1;
3545
e74d2259 3546 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3547 if (!ret && nr_bytes)
5387c904 3548 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3549
bf4f0599
RG
3550 return ret;
3551}
3552
3553void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3554{
5387c904 3555 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3556}
3557
84c07d11 3558#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3559
ca3e0214 3560/*
be6c8982 3561 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3562 */
be6c8982 3563void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3564{
1b7e4464
MWO
3565 struct folio *folio = page_folio(head);
3566 struct mem_cgroup *memcg = folio_memcg(folio);
e94c8a9c 3567 int i;
ca3e0214 3568
be6c8982 3569 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3570 return;
b070e65c 3571
be6c8982 3572 for (i = 1; i < nr; i++)
1b7e4464 3573 folio_page(folio, i)->memcg_data = folio->memcg_data;
b4e0b68f 3574
1b7e4464
MWO
3575 if (folio_memcg_kmem(folio))
3576 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
b4e0b68f
MS
3577 else
3578 css_get_many(&memcg->css, nr - 1);
ca3e0214 3579}
ca3e0214 3580
e55b9f96 3581#ifdef CONFIG_SWAP
02491447
DN
3582/**
3583 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3584 * @entry: swap entry to be moved
3585 * @from: mem_cgroup which the entry is moved from
3586 * @to: mem_cgroup which the entry is moved to
3587 *
3588 * It succeeds only when the swap_cgroup's record for this entry is the same
3589 * as the mem_cgroup's id of @from.
3590 *
3591 * Returns 0 on success, -EINVAL on failure.
3592 *
3e32cb2e 3593 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3594 * both res and memsw, and called css_get().
3595 */
3596static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3597 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3598{
3599 unsigned short old_id, new_id;
3600
34c00c31
LZ
3601 old_id = mem_cgroup_id(from);
3602 new_id = mem_cgroup_id(to);
02491447
DN
3603
3604 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3605 mod_memcg_state(from, MEMCG_SWAP, -1);
3606 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3607 return 0;
3608 }
3609 return -EINVAL;
3610}
3611#else
3612static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3613 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3614{
3615 return -EINVAL;
3616}
8c7c6e34 3617#endif
d13d1443 3618
bbec2e15 3619static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3620
bbec2e15
RG
3621static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3622 unsigned long max, bool memsw)
628f4235 3623{
3e32cb2e 3624 bool enlarge = false;
bb4a7ea2 3625 bool drained = false;
3e32cb2e 3626 int ret;
c054a78c
YZ
3627 bool limits_invariant;
3628 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3629
3e32cb2e 3630 do {
628f4235
KH
3631 if (signal_pending(current)) {
3632 ret = -EINTR;
3633 break;
3634 }
3e32cb2e 3635
bbec2e15 3636 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3637 /*
3638 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3639 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3640 */
15b42562 3641 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3642 max <= memcg->memsw.max;
c054a78c 3643 if (!limits_invariant) {
bbec2e15 3644 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3645 ret = -EINVAL;
8c7c6e34
KH
3646 break;
3647 }
bbec2e15 3648 if (max > counter->max)
3e32cb2e 3649 enlarge = true;
bbec2e15
RG
3650 ret = page_counter_set_max(counter, max);
3651 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3652
3653 if (!ret)
3654 break;
3655
bb4a7ea2
SB
3656 if (!drained) {
3657 drain_all_stock(memcg);
3658 drained = true;
3659 continue;
3660 }
3661
73b73bac 3662 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3663 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
1ab5c056
AR
3664 ret = -EBUSY;
3665 break;
3666 }
3667 } while (true);
3e32cb2e 3668
3c11ecf4
KH
3669 if (!ret && enlarge)
3670 memcg_oom_recover(memcg);
3e32cb2e 3671
628f4235
KH
3672 return ret;
3673}
3674
ef8f2327 3675unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3676 gfp_t gfp_mask,
3677 unsigned long *total_scanned)
3678{
3679 unsigned long nr_reclaimed = 0;
ef8f2327 3680 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3681 unsigned long reclaimed;
3682 int loop = 0;
ef8f2327 3683 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3684 unsigned long excess;
0608f43d 3685
e4dde56c
YZ
3686 if (lru_gen_enabled())
3687 return 0;
3688
0608f43d
AM
3689 if (order > 0)
3690 return 0;
3691
2ab082ba 3692 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
d6507ff5
MH
3693
3694 /*
3695 * Do not even bother to check the largest node if the root
3696 * is empty. Do it lockless to prevent lock bouncing. Races
3697 * are acceptable as soft limit is best effort anyway.
3698 */
bfc7228b 3699 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3700 return 0;
3701
0608f43d
AM
3702 /*
3703 * This loop can run a while, specially if mem_cgroup's continuously
3704 * keep exceeding their soft limit and putting the system under
3705 * pressure
3706 */
3707 do {
3708 if (next_mz)
3709 mz = next_mz;
3710 else
3711 mz = mem_cgroup_largest_soft_limit_node(mctz);
3712 if (!mz)
3713 break;
3714
ef8f2327 3715 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
d8f65338 3716 gfp_mask, total_scanned);
0608f43d 3717 nr_reclaimed += reclaimed;
0a31bc97 3718 spin_lock_irq(&mctz->lock);
0608f43d
AM
3719
3720 /*
3721 * If we failed to reclaim anything from this memory cgroup
3722 * it is time to move on to the next cgroup
3723 */
3724 next_mz = NULL;
bc2f2e7f
VD
3725 if (!reclaimed)
3726 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3727
3e32cb2e 3728 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3729 /*
3730 * One school of thought says that we should not add
3731 * back the node to the tree if reclaim returns 0.
3732 * But our reclaim could return 0, simply because due
3733 * to priority we are exposing a smaller subset of
3734 * memory to reclaim from. Consider this as a longer
3735 * term TODO.
3736 */
3737 /* If excess == 0, no tree ops */
cf2c8127 3738 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3739 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3740 css_put(&mz->memcg->css);
3741 loop++;
3742 /*
3743 * Could not reclaim anything and there are no more
3744 * mem cgroups to try or we seem to be looping without
3745 * reclaiming anything.
3746 */
3747 if (!nr_reclaimed &&
3748 (next_mz == NULL ||
3749 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3750 break;
3751 } while (!nr_reclaimed);
3752 if (next_mz)
3753 css_put(&next_mz->memcg->css);
3754 return nr_reclaimed;
3755}
3756
c26251f9 3757/*
51038171 3758 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3759 *
3760 * Caller is responsible for holding css reference for memcg.
3761 */
3762static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3763{
d977aa93 3764 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3765
c1e862c1
KH
3766 /* we call try-to-free pages for make this cgroup empty */
3767 lru_add_drain_all();
d12c60f6
JS
3768
3769 drain_all_stock(memcg);
3770
f817ed48 3771 /* try to free all pages in this cgroup */
3e32cb2e 3772 while (nr_retries && page_counter_read(&memcg->memory)) {
c26251f9
MH
3773 if (signal_pending(current))
3774 return -EINTR;
3775
73b73bac 3776 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3777 MEMCG_RECLAIM_MAY_SWAP))
f817ed48 3778 nr_retries--;
f817ed48 3779 }
ab5196c2
MH
3780
3781 return 0;
cc847582
KH
3782}
3783
6770c64e
TH
3784static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3785 char *buf, size_t nbytes,
3786 loff_t off)
c1e862c1 3787{
6770c64e 3788 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3789
d8423011
MH
3790 if (mem_cgroup_is_root(memcg))
3791 return -EINVAL;
6770c64e 3792 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3793}
3794
182446d0
TH
3795static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3796 struct cftype *cft)
18f59ea7 3797{
bef8620c 3798 return 1;
18f59ea7
BS
3799}
3800
182446d0
TH
3801static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3802 struct cftype *cft, u64 val)
18f59ea7 3803{
bef8620c 3804 if (val == 1)
0b8f73e1 3805 return 0;
567fb435 3806
bef8620c
RG
3807 pr_warn_once("Non-hierarchical mode is deprecated. "
3808 "Please report your usecase to linux-mm@kvack.org if you "
3809 "depend on this functionality.\n");
567fb435 3810
bef8620c 3811 return -EINVAL;
18f59ea7
BS
3812}
3813
6f646156 3814static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3815{
42a30035 3816 unsigned long val;
ce00a967 3817
3e32cb2e 3818 if (mem_cgroup_is_root(memcg)) {
a2174e95 3819 /*
f82a7a86
YA
3820 * Approximate root's usage from global state. This isn't
3821 * perfect, but the root usage was always an approximation.
a2174e95 3822 */
f82a7a86
YA
3823 val = global_node_page_state(NR_FILE_PAGES) +
3824 global_node_page_state(NR_ANON_MAPPED);
42a30035 3825 if (swap)
f82a7a86 3826 val += total_swap_pages - get_nr_swap_pages();
3e32cb2e 3827 } else {
ce00a967 3828 if (!swap)
3e32cb2e 3829 val = page_counter_read(&memcg->memory);
ce00a967 3830 else
3e32cb2e 3831 val = page_counter_read(&memcg->memsw);
ce00a967 3832 }
c12176d3 3833 return val;
ce00a967
JW
3834}
3835
3e32cb2e
JW
3836enum {
3837 RES_USAGE,
3838 RES_LIMIT,
3839 RES_MAX_USAGE,
3840 RES_FAILCNT,
3841 RES_SOFT_LIMIT,
3842};
ce00a967 3843
791badbd 3844static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3845 struct cftype *cft)
8cdea7c0 3846{
182446d0 3847 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3848 struct page_counter *counter;
af36f906 3849
3e32cb2e 3850 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3851 case _MEM:
3e32cb2e
JW
3852 counter = &memcg->memory;
3853 break;
8c7c6e34 3854 case _MEMSWAP:
3e32cb2e
JW
3855 counter = &memcg->memsw;
3856 break;
510fc4e1 3857 case _KMEM:
3e32cb2e 3858 counter = &memcg->kmem;
510fc4e1 3859 break;
d55f90bf 3860 case _TCP:
0db15298 3861 counter = &memcg->tcpmem;
d55f90bf 3862 break;
8c7c6e34
KH
3863 default:
3864 BUG();
8c7c6e34 3865 }
3e32cb2e
JW
3866
3867 switch (MEMFILE_ATTR(cft->private)) {
3868 case RES_USAGE:
3869 if (counter == &memcg->memory)
c12176d3 3870 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3871 if (counter == &memcg->memsw)
c12176d3 3872 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3873 return (u64)page_counter_read(counter) * PAGE_SIZE;
3874 case RES_LIMIT:
bbec2e15 3875 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3876 case RES_MAX_USAGE:
3877 return (u64)counter->watermark * PAGE_SIZE;
3878 case RES_FAILCNT:
3879 return counter->failcnt;
3880 case RES_SOFT_LIMIT:
2178e20c 3881 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3e32cb2e
JW
3882 default:
3883 BUG();
3884 }
8cdea7c0 3885}
510fc4e1 3886
6b0ba2ab
FS
3887/*
3888 * This function doesn't do anything useful. Its only job is to provide a read
3889 * handler for a file so that cgroup_file_mode() will add read permissions.
3890 */
3891static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3892 __always_unused void *v)
3893{
3894 return -EINVAL;
3895}
3896
84c07d11 3897#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3898static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3899{
bf4f0599 3900 struct obj_cgroup *objcg;
d6441637 3901
9c94bef9 3902 if (mem_cgroup_kmem_disabled())
b313aeee
VD
3903 return 0;
3904
da0efe30
MS
3905 if (unlikely(mem_cgroup_is_root(memcg)))
3906 return 0;
d6441637 3907
bf4f0599 3908 objcg = obj_cgroup_alloc();
f9c69d63 3909 if (!objcg)
bf4f0599 3910 return -ENOMEM;
f9c69d63 3911
bf4f0599
RG
3912 objcg->memcg = memcg;
3913 rcu_assign_pointer(memcg->objcg, objcg);
675d6c9b
RG
3914 obj_cgroup_get(objcg);
3915 memcg->orig_objcg = objcg;
bf4f0599 3916
f7a449f7 3917 static_branch_enable(&memcg_kmem_online_key);
d648bcc7 3918
f9c69d63 3919 memcg->kmemcg_id = memcg->id.id;
0b8f73e1
JW
3920
3921 return 0;
d6441637
VD
3922}
3923
8e0a8912
JW
3924static void memcg_offline_kmem(struct mem_cgroup *memcg)
3925{
64268868 3926 struct mem_cgroup *parent;
8e0a8912 3927
9c94bef9 3928 if (mem_cgroup_kmem_disabled())
da0efe30
MS
3929 return;
3930
3931 if (unlikely(mem_cgroup_is_root(memcg)))
8e0a8912 3932 return;
9855609b 3933
8e0a8912
JW
3934 parent = parent_mem_cgroup(memcg);
3935 if (!parent)
3936 parent = root_mem_cgroup;
3937
bf4f0599 3938 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a 3939
8e0a8912 3940 /*
64268868
MS
3941 * After we have finished memcg_reparent_objcgs(), all list_lrus
3942 * corresponding to this cgroup are guaranteed to remain empty.
3943 * The ordering is imposed by list_lru_node->lock taken by
1f391eb2 3944 * memcg_reparent_list_lrus().
8e0a8912 3945 */
1f391eb2 3946 memcg_reparent_list_lrus(memcg, parent);
8e0a8912 3947}
d6441637 3948#else
0b8f73e1 3949static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3950{
3951 return 0;
3952}
3953static void memcg_offline_kmem(struct mem_cgroup *memcg)
3954{
3955}
84c07d11 3956#endif /* CONFIG_MEMCG_KMEM */
127424c8 3957
bbec2e15 3958static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3959{
3960 int ret;
3961
bbec2e15 3962 mutex_lock(&memcg_max_mutex);
d55f90bf 3963
bbec2e15 3964 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3965 if (ret)
3966 goto out;
3967
0db15298 3968 if (!memcg->tcpmem_active) {
d55f90bf
VD
3969 /*
3970 * The active flag needs to be written after the static_key
3971 * update. This is what guarantees that the socket activation
2d758073
JW
3972 * function is the last one to run. See mem_cgroup_sk_alloc()
3973 * for details, and note that we don't mark any socket as
3974 * belonging to this memcg until that flag is up.
d55f90bf
VD
3975 *
3976 * We need to do this, because static_keys will span multiple
3977 * sites, but we can't control their order. If we mark a socket
3978 * as accounted, but the accounting functions are not patched in
3979 * yet, we'll lose accounting.
3980 *
2d758073 3981 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3982 * because when this value change, the code to process it is not
3983 * patched in yet.
3984 */
3985 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3986 memcg->tcpmem_active = true;
d55f90bf
VD
3987 }
3988out:
bbec2e15 3989 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3990 return ret;
3991}
d55f90bf 3992
628f4235
KH
3993/*
3994 * The user of this function is...
3995 * RES_LIMIT.
3996 */
451af504
TH
3997static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3998 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3999{
451af504 4000 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 4001 unsigned long nr_pages;
628f4235
KH
4002 int ret;
4003
451af504 4004 buf = strstrip(buf);
650c5e56 4005 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
4006 if (ret)
4007 return ret;
af36f906 4008
3e32cb2e 4009 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 4010 case RES_LIMIT:
4b3bde4c
BS
4011 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4012 ret = -EINVAL;
4013 break;
4014 }
3e32cb2e
JW
4015 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4016 case _MEM:
bbec2e15 4017 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 4018 break;
3e32cb2e 4019 case _MEMSWAP:
bbec2e15 4020 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 4021 break;
4597648f
MH
4022 case _KMEM:
4023 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
4024 "Writing any value to this file has no effect. "
4025 "Please report your usecase to linux-mm@kvack.org if you "
4026 "depend on this functionality.\n");
4027 ret = 0;
4028 break;
d55f90bf 4029 case _TCP:
bbec2e15 4030 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 4031 break;
3e32cb2e 4032 }
296c81d8 4033 break;
3e32cb2e 4034 case RES_SOFT_LIMIT:
2343e88d
SAS
4035 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4036 ret = -EOPNOTSUPP;
4037 } else {
2178e20c 4038 WRITE_ONCE(memcg->soft_limit, nr_pages);
2343e88d
SAS
4039 ret = 0;
4040 }
628f4235
KH
4041 break;
4042 }
451af504 4043 return ret ?: nbytes;
8cdea7c0
BS
4044}
4045
6770c64e
TH
4046static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4047 size_t nbytes, loff_t off)
c84872e1 4048{
6770c64e 4049 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 4050 struct page_counter *counter;
c84872e1 4051
3e32cb2e
JW
4052 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4053 case _MEM:
4054 counter = &memcg->memory;
4055 break;
4056 case _MEMSWAP:
4057 counter = &memcg->memsw;
4058 break;
4059 case _KMEM:
4060 counter = &memcg->kmem;
4061 break;
d55f90bf 4062 case _TCP:
0db15298 4063 counter = &memcg->tcpmem;
d55f90bf 4064 break;
3e32cb2e
JW
4065 default:
4066 BUG();
4067 }
af36f906 4068
3e32cb2e 4069 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 4070 case RES_MAX_USAGE:
3e32cb2e 4071 page_counter_reset_watermark(counter);
29f2a4da
PE
4072 break;
4073 case RES_FAILCNT:
3e32cb2e 4074 counter->failcnt = 0;
29f2a4da 4075 break;
3e32cb2e
JW
4076 default:
4077 BUG();
29f2a4da 4078 }
f64c3f54 4079
6770c64e 4080 return nbytes;
c84872e1
PE
4081}
4082
182446d0 4083static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
4084 struct cftype *cft)
4085{
182446d0 4086 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
4087}
4088
02491447 4089#ifdef CONFIG_MMU
182446d0 4090static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
4091 struct cftype *cft, u64 val)
4092{
182446d0 4093 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 4094
da34a848
JW
4095 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
4096 "Please report your usecase to linux-mm@kvack.org if you "
4097 "depend on this functionality.\n");
4098
1dfab5ab 4099 if (val & ~MOVE_MASK)
7dc74be0 4100 return -EINVAL;
ee5e8472 4101
7dc74be0 4102 /*
ee5e8472
GC
4103 * No kind of locking is needed in here, because ->can_attach() will
4104 * check this value once in the beginning of the process, and then carry
4105 * on with stale data. This means that changes to this value will only
4106 * affect task migrations starting after the change.
7dc74be0 4107 */
c0ff4b85 4108 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4109 return 0;
4110}
02491447 4111#else
182446d0 4112static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
4113 struct cftype *cft, u64 val)
4114{
4115 return -ENOSYS;
4116}
4117#endif
7dc74be0 4118
406eb0c9 4119#ifdef CONFIG_NUMA
113b7dfd
JW
4120
4121#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4122#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4123#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
4124
4125static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 4126 int nid, unsigned int lru_mask, bool tree)
113b7dfd 4127{
867e5e1d 4128 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
4129 unsigned long nr = 0;
4130 enum lru_list lru;
4131
4132 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4133
4134 for_each_lru(lru) {
4135 if (!(BIT(lru) & lru_mask))
4136 continue;
dd8657b6
SB
4137 if (tree)
4138 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4139 else
4140 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
4141 }
4142 return nr;
4143}
4144
4145static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
4146 unsigned int lru_mask,
4147 bool tree)
113b7dfd
JW
4148{
4149 unsigned long nr = 0;
4150 enum lru_list lru;
4151
4152 for_each_lru(lru) {
4153 if (!(BIT(lru) & lru_mask))
4154 continue;
dd8657b6
SB
4155 if (tree)
4156 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4157 else
4158 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
4159 }
4160 return nr;
4161}
4162
2da8ca82 4163static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4164{
25485de6
GT
4165 struct numa_stat {
4166 const char *name;
4167 unsigned int lru_mask;
4168 };
4169
4170 static const struct numa_stat stats[] = {
4171 { "total", LRU_ALL },
4172 { "file", LRU_ALL_FILE },
4173 { "anon", LRU_ALL_ANON },
4174 { "unevictable", BIT(LRU_UNEVICTABLE) },
4175 };
4176 const struct numa_stat *stat;
406eb0c9 4177 int nid;
aa9694bb 4178 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 4179
fd25a9e0 4180 mem_cgroup_flush_stats();
2d146aa3 4181
25485de6 4182 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4183 seq_printf(m, "%s=%lu", stat->name,
4184 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4185 false));
4186 for_each_node_state(nid, N_MEMORY)
4187 seq_printf(m, " N%d=%lu", nid,
4188 mem_cgroup_node_nr_lru_pages(memcg, nid,
4189 stat->lru_mask, false));
25485de6 4190 seq_putc(m, '\n');
406eb0c9 4191 }
406eb0c9 4192
071aee13 4193 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4194
4195 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4196 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4197 true));
4198 for_each_node_state(nid, N_MEMORY)
4199 seq_printf(m, " N%d=%lu", nid,
4200 mem_cgroup_node_nr_lru_pages(memcg, nid,
4201 stat->lru_mask, true));
071aee13 4202 seq_putc(m, '\n');
406eb0c9 4203 }
406eb0c9 4204
406eb0c9
YH
4205 return 0;
4206}
4207#endif /* CONFIG_NUMA */
4208
c8713d0b 4209static const unsigned int memcg1_stats[] = {
0d1c2072 4210 NR_FILE_PAGES,
be5d0a74 4211 NR_ANON_MAPPED,
468c3982
JW
4212#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4213 NR_ANON_THPS,
4214#endif
c8713d0b
JW
4215 NR_SHMEM,
4216 NR_FILE_MAPPED,
4217 NR_FILE_DIRTY,
4218 NR_WRITEBACK,
e09b0b61
YS
4219 WORKINGSET_REFAULT_ANON,
4220 WORKINGSET_REFAULT_FILE,
72a14e82 4221#ifdef CONFIG_SWAP
c8713d0b 4222 MEMCG_SWAP,
72a14e82
LS
4223 NR_SWAPCACHE,
4224#endif
c8713d0b
JW
4225};
4226
4227static const char *const memcg1_stat_names[] = {
4228 "cache",
4229 "rss",
468c3982 4230#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4231 "rss_huge",
468c3982 4232#endif
c8713d0b
JW
4233 "shmem",
4234 "mapped_file",
4235 "dirty",
4236 "writeback",
e09b0b61
YS
4237 "workingset_refault_anon",
4238 "workingset_refault_file",
72a14e82 4239#ifdef CONFIG_SWAP
c8713d0b 4240 "swap",
72a14e82
LS
4241 "swapcached",
4242#endif
c8713d0b
JW
4243};
4244
df0e53d0 4245/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4246static const unsigned int memcg1_events[] = {
df0e53d0
JW
4247 PGPGIN,
4248 PGPGOUT,
4249 PGFAULT,
4250 PGMAJFAULT,
4251};
4252
dddb44ff 4253static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
d2ceb9b7 4254{
3e32cb2e 4255 unsigned long memory, memsw;
af7c4b0e
JW
4256 struct mem_cgroup *mi;
4257 unsigned int i;
406eb0c9 4258
71cd3113 4259 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4260
fd25a9e0 4261 mem_cgroup_flush_stats();
2d146aa3 4262
71cd3113 4263 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4264 unsigned long nr;
4265
ff841a06
YA
4266 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
4267 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
1dd3a273 4268 }
7b854121 4269
df0e53d0 4270 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
dddb44ff
YA
4271 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4272 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4273
4274 for (i = 0; i < NR_LRU_LISTS; i++)
dddb44ff
YA
4275 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4276 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4277 PAGE_SIZE);
af7c4b0e 4278
14067bb3 4279 /* Hierarchical information */
3e32cb2e
JW
4280 memory = memsw = PAGE_COUNTER_MAX;
4281 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4282 memory = min(memory, READ_ONCE(mi->memory.max));
4283 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4284 }
dddb44ff
YA
4285 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4286 (u64)memory * PAGE_SIZE);
840ea53a
LS
4287 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4288 (u64)memsw * PAGE_SIZE);
7f016ee8 4289
8de7ecc6 4290 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4291 unsigned long nr;
4292
ff841a06 4293 nr = memcg_page_state_output(memcg, memcg1_stats[i]);
dddb44ff 4294 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
ff841a06 4295 (u64)nr);
af7c4b0e
JW
4296 }
4297
8de7ecc6 4298 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
dddb44ff
YA
4299 seq_buf_printf(s, "total_%s %llu\n",
4300 vm_event_name(memcg1_events[i]),
4301 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4302
8de7ecc6 4303 for (i = 0; i < NR_LRU_LISTS; i++)
dddb44ff
YA
4304 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4305 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4306 PAGE_SIZE);
14067bb3 4307
7f016ee8 4308#ifdef CONFIG_DEBUG_VM
7f016ee8 4309 {
ef8f2327
MG
4310 pg_data_t *pgdat;
4311 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4312 unsigned long anon_cost = 0;
4313 unsigned long file_cost = 0;
7f016ee8 4314
ef8f2327 4315 for_each_online_pgdat(pgdat) {
a3747b53 4316 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4317
1431d4d1
JW
4318 anon_cost += mz->lruvec.anon_cost;
4319 file_cost += mz->lruvec.file_cost;
ef8f2327 4320 }
dddb44ff
YA
4321 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4322 seq_buf_printf(s, "file_cost %lu\n", file_cost);
7f016ee8
KM
4323 }
4324#endif
d2ceb9b7
KH
4325}
4326
182446d0
TH
4327static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4328 struct cftype *cft)
a7885eb8 4329{
182446d0 4330 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4331
1f4c025b 4332 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4333}
4334
182446d0
TH
4335static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4336 struct cftype *cft, u64 val)
a7885eb8 4337{
182446d0 4338 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4339
37bc3cb9 4340 if (val > 200)
a7885eb8
KM
4341 return -EINVAL;
4342
a4792030 4343 if (!mem_cgroup_is_root(memcg))
82b3aa26 4344 WRITE_ONCE(memcg->swappiness, val);
3dae7fec 4345 else
82b3aa26 4346 WRITE_ONCE(vm_swappiness, val);
068b38c1 4347
a7885eb8
KM
4348 return 0;
4349}
4350
2e72b634
KS
4351static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4352{
4353 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4354 unsigned long usage;
2e72b634
KS
4355 int i;
4356
4357 rcu_read_lock();
4358 if (!swap)
2c488db2 4359 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4360 else
2c488db2 4361 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4362
4363 if (!t)
4364 goto unlock;
4365
ce00a967 4366 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4367
4368 /*
748dad36 4369 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4370 * If it's not true, a threshold was crossed after last
4371 * call of __mem_cgroup_threshold().
4372 */
5407a562 4373 i = t->current_threshold;
2e72b634
KS
4374
4375 /*
4376 * Iterate backward over array of thresholds starting from
4377 * current_threshold and check if a threshold is crossed.
4378 * If none of thresholds below usage is crossed, we read
4379 * only one element of the array here.
4380 */
4381 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4382 eventfd_signal(t->entries[i].eventfd, 1);
4383
4384 /* i = current_threshold + 1 */
4385 i++;
4386
4387 /*
4388 * Iterate forward over array of thresholds starting from
4389 * current_threshold+1 and check if a threshold is crossed.
4390 * If none of thresholds above usage is crossed, we read
4391 * only one element of the array here.
4392 */
4393 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4394 eventfd_signal(t->entries[i].eventfd, 1);
4395
4396 /* Update current_threshold */
5407a562 4397 t->current_threshold = i - 1;
2e72b634
KS
4398unlock:
4399 rcu_read_unlock();
4400}
4401
4402static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4403{
ad4ca5f4
KS
4404 while (memcg) {
4405 __mem_cgroup_threshold(memcg, false);
7941d214 4406 if (do_memsw_account())
ad4ca5f4
KS
4407 __mem_cgroup_threshold(memcg, true);
4408
4409 memcg = parent_mem_cgroup(memcg);
4410 }
2e72b634
KS
4411}
4412
4413static int compare_thresholds(const void *a, const void *b)
4414{
4415 const struct mem_cgroup_threshold *_a = a;
4416 const struct mem_cgroup_threshold *_b = b;
4417
2bff24a3
GT
4418 if (_a->threshold > _b->threshold)
4419 return 1;
4420
4421 if (_a->threshold < _b->threshold)
4422 return -1;
4423
4424 return 0;
2e72b634
KS
4425}
4426
c0ff4b85 4427static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4428{
4429 struct mem_cgroup_eventfd_list *ev;
4430
2bcf2e92
MH
4431 spin_lock(&memcg_oom_lock);
4432
c0ff4b85 4433 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4434 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4435
4436 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4437 return 0;
4438}
4439
c0ff4b85 4440static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4441{
7d74b06f
KH
4442 struct mem_cgroup *iter;
4443
c0ff4b85 4444 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4445 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4446}
4447
59b6f873 4448static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4449 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4450{
2c488db2
KS
4451 struct mem_cgroup_thresholds *thresholds;
4452 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4453 unsigned long threshold;
4454 unsigned long usage;
2c488db2 4455 int i, size, ret;
2e72b634 4456
650c5e56 4457 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4458 if (ret)
4459 return ret;
4460
4461 mutex_lock(&memcg->thresholds_lock);
2c488db2 4462
05b84301 4463 if (type == _MEM) {
2c488db2 4464 thresholds = &memcg->thresholds;
ce00a967 4465 usage = mem_cgroup_usage(memcg, false);
05b84301 4466 } else if (type == _MEMSWAP) {
2c488db2 4467 thresholds = &memcg->memsw_thresholds;
ce00a967 4468 usage = mem_cgroup_usage(memcg, true);
05b84301 4469 } else
2e72b634
KS
4470 BUG();
4471
2e72b634 4472 /* Check if a threshold crossed before adding a new one */
2c488db2 4473 if (thresholds->primary)
2e72b634
KS
4474 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4475
2c488db2 4476 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4477
4478 /* Allocate memory for new array of thresholds */
67b8046f 4479 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4480 if (!new) {
2e72b634
KS
4481 ret = -ENOMEM;
4482 goto unlock;
4483 }
2c488db2 4484 new->size = size;
2e72b634
KS
4485
4486 /* Copy thresholds (if any) to new array */
e90342e6
GS
4487 if (thresholds->primary)
4488 memcpy(new->entries, thresholds->primary->entries,
4489 flex_array_size(new, entries, size - 1));
2c488db2 4490
2e72b634 4491 /* Add new threshold */
2c488db2
KS
4492 new->entries[size - 1].eventfd = eventfd;
4493 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4494
4495 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4496 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4497 compare_thresholds, NULL);
4498
4499 /* Find current threshold */
2c488db2 4500 new->current_threshold = -1;
2e72b634 4501 for (i = 0; i < size; i++) {
748dad36 4502 if (new->entries[i].threshold <= usage) {
2e72b634 4503 /*
2c488db2
KS
4504 * new->current_threshold will not be used until
4505 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4506 * it here.
4507 */
2c488db2 4508 ++new->current_threshold;
748dad36
SZ
4509 } else
4510 break;
2e72b634
KS
4511 }
4512
2c488db2
KS
4513 /* Free old spare buffer and save old primary buffer as spare */
4514 kfree(thresholds->spare);
4515 thresholds->spare = thresholds->primary;
4516
4517 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4518
907860ed 4519 /* To be sure that nobody uses thresholds */
2e72b634
KS
4520 synchronize_rcu();
4521
2e72b634
KS
4522unlock:
4523 mutex_unlock(&memcg->thresholds_lock);
4524
4525 return ret;
4526}
4527
59b6f873 4528static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4529 struct eventfd_ctx *eventfd, const char *args)
4530{
59b6f873 4531 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4532}
4533
59b6f873 4534static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4535 struct eventfd_ctx *eventfd, const char *args)
4536{
59b6f873 4537 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4538}
4539
59b6f873 4540static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4541 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4542{
2c488db2
KS
4543 struct mem_cgroup_thresholds *thresholds;
4544 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4545 unsigned long usage;
7d36665a 4546 int i, j, size, entries;
2e72b634
KS
4547
4548 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4549
4550 if (type == _MEM) {
2c488db2 4551 thresholds = &memcg->thresholds;
ce00a967 4552 usage = mem_cgroup_usage(memcg, false);
05b84301 4553 } else if (type == _MEMSWAP) {
2c488db2 4554 thresholds = &memcg->memsw_thresholds;
ce00a967 4555 usage = mem_cgroup_usage(memcg, true);
05b84301 4556 } else
2e72b634
KS
4557 BUG();
4558
371528ca
AV
4559 if (!thresholds->primary)
4560 goto unlock;
4561
2e72b634
KS
4562 /* Check if a threshold crossed before removing */
4563 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4564
4565 /* Calculate new number of threshold */
7d36665a 4566 size = entries = 0;
2c488db2
KS
4567 for (i = 0; i < thresholds->primary->size; i++) {
4568 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4569 size++;
7d36665a
CX
4570 else
4571 entries++;
2e72b634
KS
4572 }
4573
2c488db2 4574 new = thresholds->spare;
907860ed 4575
7d36665a
CX
4576 /* If no items related to eventfd have been cleared, nothing to do */
4577 if (!entries)
4578 goto unlock;
4579
2e72b634
KS
4580 /* Set thresholds array to NULL if we don't have thresholds */
4581 if (!size) {
2c488db2
KS
4582 kfree(new);
4583 new = NULL;
907860ed 4584 goto swap_buffers;
2e72b634
KS
4585 }
4586
2c488db2 4587 new->size = size;
2e72b634
KS
4588
4589 /* Copy thresholds and find current threshold */
2c488db2
KS
4590 new->current_threshold = -1;
4591 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4592 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4593 continue;
4594
2c488db2 4595 new->entries[j] = thresholds->primary->entries[i];
748dad36 4596 if (new->entries[j].threshold <= usage) {
2e72b634 4597 /*
2c488db2 4598 * new->current_threshold will not be used
2e72b634
KS
4599 * until rcu_assign_pointer(), so it's safe to increment
4600 * it here.
4601 */
2c488db2 4602 ++new->current_threshold;
2e72b634
KS
4603 }
4604 j++;
4605 }
4606
907860ed 4607swap_buffers:
2c488db2
KS
4608 /* Swap primary and spare array */
4609 thresholds->spare = thresholds->primary;
8c757763 4610
2c488db2 4611 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4612
907860ed 4613 /* To be sure that nobody uses thresholds */
2e72b634 4614 synchronize_rcu();
6611d8d7
MC
4615
4616 /* If all events are unregistered, free the spare array */
4617 if (!new) {
4618 kfree(thresholds->spare);
4619 thresholds->spare = NULL;
4620 }
371528ca 4621unlock:
2e72b634 4622 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4623}
c1e862c1 4624
59b6f873 4625static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4626 struct eventfd_ctx *eventfd)
4627{
59b6f873 4628 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4629}
4630
59b6f873 4631static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4632 struct eventfd_ctx *eventfd)
4633{
59b6f873 4634 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4635}
4636
59b6f873 4637static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4638 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4639{
9490ff27 4640 struct mem_cgroup_eventfd_list *event;
9490ff27 4641
9490ff27
KH
4642 event = kmalloc(sizeof(*event), GFP_KERNEL);
4643 if (!event)
4644 return -ENOMEM;
4645
1af8efe9 4646 spin_lock(&memcg_oom_lock);
9490ff27
KH
4647
4648 event->eventfd = eventfd;
4649 list_add(&event->list, &memcg->oom_notify);
4650
4651 /* already in OOM ? */
c2b42d3c 4652 if (memcg->under_oom)
9490ff27 4653 eventfd_signal(eventfd, 1);
1af8efe9 4654 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4655
4656 return 0;
4657}
4658
59b6f873 4659static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4660 struct eventfd_ctx *eventfd)
9490ff27 4661{
9490ff27 4662 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4663
1af8efe9 4664 spin_lock(&memcg_oom_lock);
9490ff27 4665
c0ff4b85 4666 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4667 if (ev->eventfd == eventfd) {
4668 list_del(&ev->list);
4669 kfree(ev);
4670 }
4671 }
4672
1af8efe9 4673 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4674}
4675
2da8ca82 4676static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4677{
aa9694bb 4678 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4679
17c56de6 4680 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
c2b42d3c 4681 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4682 seq_printf(sf, "oom_kill %lu\n",
4683 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4684 return 0;
4685}
4686
182446d0 4687static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4688 struct cftype *cft, u64 val)
4689{
182446d0 4690 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4691
4692 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4693 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4694 return -EINVAL;
4695
17c56de6 4696 WRITE_ONCE(memcg->oom_kill_disable, val);
4d845ebf 4697 if (!val)
c0ff4b85 4698 memcg_oom_recover(memcg);
3dae7fec 4699
3c11ecf4
KH
4700 return 0;
4701}
4702
52ebea74
TH
4703#ifdef CONFIG_CGROUP_WRITEBACK
4704
3a8e9ac8
TH
4705#include <trace/events/writeback.h>
4706
841710aa
TH
4707static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4708{
4709 return wb_domain_init(&memcg->cgwb_domain, gfp);
4710}
4711
4712static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4713{
4714 wb_domain_exit(&memcg->cgwb_domain);
4715}
4716
2529bb3a
TH
4717static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4718{
4719 wb_domain_size_changed(&memcg->cgwb_domain);
4720}
4721
841710aa
TH
4722struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4723{
4724 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4725
4726 if (!memcg->css.parent)
4727 return NULL;
4728
4729 return &memcg->cgwb_domain;
4730}
4731
c2aa723a
TH
4732/**
4733 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4734 * @wb: bdi_writeback in question
c5edf9cd
TH
4735 * @pfilepages: out parameter for number of file pages
4736 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4737 * @pdirty: out parameter for number of dirty pages
4738 * @pwriteback: out parameter for number of pages under writeback
4739 *
c5edf9cd
TH
4740 * Determine the numbers of file, headroom, dirty, and writeback pages in
4741 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4742 * is a bit more involved.
c2aa723a 4743 *
c5edf9cd
TH
4744 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4745 * headroom is calculated as the lowest headroom of itself and the
4746 * ancestors. Note that this doesn't consider the actual amount of
4747 * available memory in the system. The caller should further cap
4748 * *@pheadroom accordingly.
c2aa723a 4749 */
c5edf9cd
TH
4750void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4751 unsigned long *pheadroom, unsigned long *pdirty,
4752 unsigned long *pwriteback)
c2aa723a
TH
4753{
4754 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4755 struct mem_cgroup *parent;
c2aa723a 4756
190409ca 4757 mem_cgroup_flush_stats();
c2aa723a 4758
2d146aa3
JW
4759 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4760 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4761 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4762 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4763
2d146aa3 4764 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4765 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4766 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4767 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4768 unsigned long used = page_counter_read(&memcg->memory);
4769
c5edf9cd 4770 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4771 memcg = parent;
4772 }
c2aa723a
TH
4773}
4774
97b27821
TH
4775/*
4776 * Foreign dirty flushing
4777 *
4778 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4779 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4780 * deliberate design decision because honoring per-page ownership in the
4781 * writeback path is complicated, may lead to higher CPU and IO overheads
4782 * and deemed unnecessary given that write-sharing an inode across
4783 * different cgroups isn't a common use-case.
4784 *
4785 * Combined with inode majority-writer ownership switching, this works well
4786 * enough in most cases but there are some pathological cases. For
4787 * example, let's say there are two cgroups A and B which keep writing to
4788 * different but confined parts of the same inode. B owns the inode and
4789 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4790 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4791 * triggering background writeback. A will be slowed down without a way to
4792 * make writeback of the dirty pages happen.
4793 *
f0953a1b 4794 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4795 * severely throttled after making some progress after each
f0953a1b 4796 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4797 * completely idle.
4798 *
4799 * Solving this problem completely requires matching the ownership tracking
4800 * granularities between memcg and writeback in either direction. However,
4801 * the more egregious behaviors can be avoided by simply remembering the
4802 * most recent foreign dirtying events and initiating remote flushes on
4803 * them when local writeback isn't enough to keep the memory clean enough.
4804 *
4805 * The following two functions implement such mechanism. When a foreign
4806 * page - a page whose memcg and writeback ownerships don't match - is
4807 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4808 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4809 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4810 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4811 * foreign bdi_writebacks which haven't expired. Both the numbers of
4812 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4813 * limited to MEMCG_CGWB_FRN_CNT.
4814 *
4815 * The mechanism only remembers IDs and doesn't hold any object references.
4816 * As being wrong occasionally doesn't matter, updates and accesses to the
4817 * records are lockless and racy.
4818 */
9d8053fc 4819void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
97b27821
TH
4820 struct bdi_writeback *wb)
4821{
9d8053fc 4822 struct mem_cgroup *memcg = folio_memcg(folio);
97b27821
TH
4823 struct memcg_cgwb_frn *frn;
4824 u64 now = get_jiffies_64();
4825 u64 oldest_at = now;
4826 int oldest = -1;
4827 int i;
4828
9d8053fc 4829 trace_track_foreign_dirty(folio, wb);
3a8e9ac8 4830
97b27821
TH
4831 /*
4832 * Pick the slot to use. If there is already a slot for @wb, keep
4833 * using it. If not replace the oldest one which isn't being
4834 * written out.
4835 */
4836 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4837 frn = &memcg->cgwb_frn[i];
4838 if (frn->bdi_id == wb->bdi->id &&
4839 frn->memcg_id == wb->memcg_css->id)
4840 break;
4841 if (time_before64(frn->at, oldest_at) &&
4842 atomic_read(&frn->done.cnt) == 1) {
4843 oldest = i;
4844 oldest_at = frn->at;
4845 }
4846 }
4847
4848 if (i < MEMCG_CGWB_FRN_CNT) {
4849 /*
4850 * Re-using an existing one. Update timestamp lazily to
4851 * avoid making the cacheline hot. We want them to be
4852 * reasonably up-to-date and significantly shorter than
4853 * dirty_expire_interval as that's what expires the record.
4854 * Use the shorter of 1s and dirty_expire_interval / 8.
4855 */
4856 unsigned long update_intv =
4857 min_t(unsigned long, HZ,
4858 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4859
4860 if (time_before64(frn->at, now - update_intv))
4861 frn->at = now;
4862 } else if (oldest >= 0) {
4863 /* replace the oldest free one */
4864 frn = &memcg->cgwb_frn[oldest];
4865 frn->bdi_id = wb->bdi->id;
4866 frn->memcg_id = wb->memcg_css->id;
4867 frn->at = now;
4868 }
4869}
4870
4871/* issue foreign writeback flushes for recorded foreign dirtying events */
4872void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4873{
4874 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4875 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4876 u64 now = jiffies_64;
4877 int i;
4878
4879 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4880 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4881
4882 /*
4883 * If the record is older than dirty_expire_interval,
4884 * writeback on it has already started. No need to kick it
4885 * off again. Also, don't start a new one if there's
4886 * already one in flight.
4887 */
4888 if (time_after64(frn->at, now - intv) &&
4889 atomic_read(&frn->done.cnt) == 1) {
4890 frn->at = 0;
3a8e9ac8 4891 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4892 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4893 WB_REASON_FOREIGN_FLUSH,
4894 &frn->done);
4895 }
4896 }
4897}
4898
841710aa
TH
4899#else /* CONFIG_CGROUP_WRITEBACK */
4900
4901static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4902{
4903 return 0;
4904}
4905
4906static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4907{
4908}
4909
2529bb3a
TH
4910static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4911{
4912}
4913
52ebea74
TH
4914#endif /* CONFIG_CGROUP_WRITEBACK */
4915
3bc942f3
TH
4916/*
4917 * DO NOT USE IN NEW FILES.
4918 *
4919 * "cgroup.event_control" implementation.
4920 *
4921 * This is way over-engineered. It tries to support fully configurable
4922 * events for each user. Such level of flexibility is completely
4923 * unnecessary especially in the light of the planned unified hierarchy.
4924 *
4925 * Please deprecate this and replace with something simpler if at all
4926 * possible.
4927 */
4928
79bd9814
TH
4929/*
4930 * Unregister event and free resources.
4931 *
4932 * Gets called from workqueue.
4933 */
3bc942f3 4934static void memcg_event_remove(struct work_struct *work)
79bd9814 4935{
3bc942f3
TH
4936 struct mem_cgroup_event *event =
4937 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4938 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4939
4940 remove_wait_queue(event->wqh, &event->wait);
4941
59b6f873 4942 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4943
4944 /* Notify userspace the event is going away. */
4945 eventfd_signal(event->eventfd, 1);
4946
4947 eventfd_ctx_put(event->eventfd);
4948 kfree(event);
59b6f873 4949 css_put(&memcg->css);
79bd9814
TH
4950}
4951
4952/*
a9a08845 4953 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4954 *
4955 * Called with wqh->lock held and interrupts disabled.
4956 */
ac6424b9 4957static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4958 int sync, void *key)
79bd9814 4959{
3bc942f3
TH
4960 struct mem_cgroup_event *event =
4961 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4962 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4963 __poll_t flags = key_to_poll(key);
79bd9814 4964
a9a08845 4965 if (flags & EPOLLHUP) {
79bd9814
TH
4966 /*
4967 * If the event has been detached at cgroup removal, we
4968 * can simply return knowing the other side will cleanup
4969 * for us.
4970 *
4971 * We can't race against event freeing since the other
4972 * side will require wqh->lock via remove_wait_queue(),
4973 * which we hold.
4974 */
fba94807 4975 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4976 if (!list_empty(&event->list)) {
4977 list_del_init(&event->list);
4978 /*
4979 * We are in atomic context, but cgroup_event_remove()
4980 * may sleep, so we have to call it in workqueue.
4981 */
4982 schedule_work(&event->remove);
4983 }
fba94807 4984 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4985 }
4986
4987 return 0;
4988}
4989
3bc942f3 4990static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4991 wait_queue_head_t *wqh, poll_table *pt)
4992{
3bc942f3
TH
4993 struct mem_cgroup_event *event =
4994 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4995
4996 event->wqh = wqh;
4997 add_wait_queue(wqh, &event->wait);
4998}
4999
5000/*
3bc942f3
TH
5001 * DO NOT USE IN NEW FILES.
5002 *
79bd9814
TH
5003 * Parse input and register new cgroup event handler.
5004 *
5005 * Input must be in format '<event_fd> <control_fd> <args>'.
5006 * Interpretation of args is defined by control file implementation.
5007 */
451af504
TH
5008static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5009 char *buf, size_t nbytes, loff_t off)
79bd9814 5010{
451af504 5011 struct cgroup_subsys_state *css = of_css(of);
fba94807 5012 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5013 struct mem_cgroup_event *event;
79bd9814
TH
5014 struct cgroup_subsys_state *cfile_css;
5015 unsigned int efd, cfd;
5016 struct fd efile;
5017 struct fd cfile;
4a7ba45b 5018 struct dentry *cdentry;
fba94807 5019 const char *name;
79bd9814
TH
5020 char *endp;
5021 int ret;
5022
2343e88d
SAS
5023 if (IS_ENABLED(CONFIG_PREEMPT_RT))
5024 return -EOPNOTSUPP;
5025
451af504
TH
5026 buf = strstrip(buf);
5027
5028 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5029 if (*endp != ' ')
5030 return -EINVAL;
451af504 5031 buf = endp + 1;
79bd9814 5032
451af504 5033 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5034 if ((*endp != ' ') && (*endp != '\0'))
5035 return -EINVAL;
451af504 5036 buf = endp + 1;
79bd9814
TH
5037
5038 event = kzalloc(sizeof(*event), GFP_KERNEL);
5039 if (!event)
5040 return -ENOMEM;
5041
59b6f873 5042 event->memcg = memcg;
79bd9814 5043 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
5044 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5045 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5046 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
5047
5048 efile = fdget(efd);
5049 if (!efile.file) {
5050 ret = -EBADF;
5051 goto out_kfree;
5052 }
5053
5054 event->eventfd = eventfd_ctx_fileget(efile.file);
5055 if (IS_ERR(event->eventfd)) {
5056 ret = PTR_ERR(event->eventfd);
5057 goto out_put_efile;
5058 }
5059
5060 cfile = fdget(cfd);
5061 if (!cfile.file) {
5062 ret = -EBADF;
5063 goto out_put_eventfd;
5064 }
5065
5066 /* the process need read permission on control file */
5067 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 5068 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
5069 if (ret < 0)
5070 goto out_put_cfile;
5071
4a7ba45b
TH
5072 /*
5073 * The control file must be a regular cgroup1 file. As a regular cgroup
5074 * file can't be renamed, it's safe to access its name afterwards.
5075 */
5076 cdentry = cfile.file->f_path.dentry;
5077 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
5078 ret = -EINVAL;
5079 goto out_put_cfile;
5080 }
5081
fba94807
TH
5082 /*
5083 * Determine the event callbacks and set them in @event. This used
5084 * to be done via struct cftype but cgroup core no longer knows
5085 * about these events. The following is crude but the whole thing
5086 * is for compatibility anyway.
3bc942f3
TH
5087 *
5088 * DO NOT ADD NEW FILES.
fba94807 5089 */
4a7ba45b 5090 name = cdentry->d_name.name;
fba94807
TH
5091
5092 if (!strcmp(name, "memory.usage_in_bytes")) {
5093 event->register_event = mem_cgroup_usage_register_event;
5094 event->unregister_event = mem_cgroup_usage_unregister_event;
5095 } else if (!strcmp(name, "memory.oom_control")) {
5096 event->register_event = mem_cgroup_oom_register_event;
5097 event->unregister_event = mem_cgroup_oom_unregister_event;
5098 } else if (!strcmp(name, "memory.pressure_level")) {
5099 event->register_event = vmpressure_register_event;
5100 event->unregister_event = vmpressure_unregister_event;
5101 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
5102 event->register_event = memsw_cgroup_usage_register_event;
5103 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
5104 } else {
5105 ret = -EINVAL;
5106 goto out_put_cfile;
5107 }
5108
79bd9814 5109 /*
b5557c4c
TH
5110 * Verify @cfile should belong to @css. Also, remaining events are
5111 * automatically removed on cgroup destruction but the removal is
5112 * asynchronous, so take an extra ref on @css.
79bd9814 5113 */
4a7ba45b 5114 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
ec903c0c 5115 &memory_cgrp_subsys);
79bd9814 5116 ret = -EINVAL;
5a17f543 5117 if (IS_ERR(cfile_css))
79bd9814 5118 goto out_put_cfile;
5a17f543
TH
5119 if (cfile_css != css) {
5120 css_put(cfile_css);
79bd9814 5121 goto out_put_cfile;
5a17f543 5122 }
79bd9814 5123
451af504 5124 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
5125 if (ret)
5126 goto out_put_css;
5127
9965ed17 5128 vfs_poll(efile.file, &event->pt);
79bd9814 5129
4ba9515d 5130 spin_lock_irq(&memcg->event_list_lock);
fba94807 5131 list_add(&event->list, &memcg->event_list);
4ba9515d 5132 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
5133
5134 fdput(cfile);
5135 fdput(efile);
5136
451af504 5137 return nbytes;
79bd9814
TH
5138
5139out_put_css:
b5557c4c 5140 css_put(css);
79bd9814
TH
5141out_put_cfile:
5142 fdput(cfile);
5143out_put_eventfd:
5144 eventfd_ctx_put(event->eventfd);
5145out_put_efile:
5146 fdput(efile);
5147out_kfree:
5148 kfree(event);
5149
5150 return ret;
5151}
5152
c29b5b3d
MS
5153#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5154static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5155{
5156 /*
5157 * Deprecated.
df4ae285 5158 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
c29b5b3d
MS
5159 */
5160 return 0;
5161}
5162#endif
5163
dddb44ff
YA
5164static int memory_stat_show(struct seq_file *m, void *v);
5165
241994ed 5166static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 5167 {
0eea1030 5168 .name = "usage_in_bytes",
8c7c6e34 5169 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5170 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5171 },
c84872e1
PE
5172 {
5173 .name = "max_usage_in_bytes",
8c7c6e34 5174 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5175 .write = mem_cgroup_reset,
791badbd 5176 .read_u64 = mem_cgroup_read_u64,
c84872e1 5177 },
8cdea7c0 5178 {
0eea1030 5179 .name = "limit_in_bytes",
8c7c6e34 5180 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5181 .write = mem_cgroup_write,
791badbd 5182 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5183 },
296c81d8
BS
5184 {
5185 .name = "soft_limit_in_bytes",
5186 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5187 .write = mem_cgroup_write,
791badbd 5188 .read_u64 = mem_cgroup_read_u64,
296c81d8 5189 },
8cdea7c0
BS
5190 {
5191 .name = "failcnt",
8c7c6e34 5192 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5193 .write = mem_cgroup_reset,
791badbd 5194 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5195 },
d2ceb9b7
KH
5196 {
5197 .name = "stat",
dddb44ff 5198 .seq_show = memory_stat_show,
d2ceb9b7 5199 },
c1e862c1
KH
5200 {
5201 .name = "force_empty",
6770c64e 5202 .write = mem_cgroup_force_empty_write,
c1e862c1 5203 },
18f59ea7
BS
5204 {
5205 .name = "use_hierarchy",
5206 .write_u64 = mem_cgroup_hierarchy_write,
5207 .read_u64 = mem_cgroup_hierarchy_read,
5208 },
79bd9814 5209 {
3bc942f3 5210 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5211 .write = memcg_write_event_control,
7dbdb199 5212 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5213 },
a7885eb8
KM
5214 {
5215 .name = "swappiness",
5216 .read_u64 = mem_cgroup_swappiness_read,
5217 .write_u64 = mem_cgroup_swappiness_write,
5218 },
7dc74be0
DN
5219 {
5220 .name = "move_charge_at_immigrate",
5221 .read_u64 = mem_cgroup_move_charge_read,
5222 .write_u64 = mem_cgroup_move_charge_write,
5223 },
9490ff27
KH
5224 {
5225 .name = "oom_control",
2da8ca82 5226 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5227 .write_u64 = mem_cgroup_oom_control_write,
9490ff27 5228 },
70ddf637
AV
5229 {
5230 .name = "pressure_level",
6b0ba2ab 5231 .seq_show = mem_cgroup_dummy_seq_show,
70ddf637 5232 },
406eb0c9
YH
5233#ifdef CONFIG_NUMA
5234 {
5235 .name = "numa_stat",
2da8ca82 5236 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5237 },
5238#endif
4597648f
MH
5239 {
5240 .name = "kmem.limit_in_bytes",
5241 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5242 .write = mem_cgroup_write,
5243 .read_u64 = mem_cgroup_read_u64,
5244 },
510fc4e1
GC
5245 {
5246 .name = "kmem.usage_in_bytes",
5247 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5248 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5249 },
5250 {
5251 .name = "kmem.failcnt",
5252 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5253 .write = mem_cgroup_reset,
791badbd 5254 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5255 },
5256 {
5257 .name = "kmem.max_usage_in_bytes",
5258 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5259 .write = mem_cgroup_reset,
791badbd 5260 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5261 },
a87425a3
YS
5262#if defined(CONFIG_MEMCG_KMEM) && \
5263 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5264 {
5265 .name = "kmem.slabinfo",
c29b5b3d 5266 .seq_show = mem_cgroup_slab_show,
749c5415
GC
5267 },
5268#endif
d55f90bf
VD
5269 {
5270 .name = "kmem.tcp.limit_in_bytes",
5271 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5272 .write = mem_cgroup_write,
5273 .read_u64 = mem_cgroup_read_u64,
5274 },
5275 {
5276 .name = "kmem.tcp.usage_in_bytes",
5277 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5278 .read_u64 = mem_cgroup_read_u64,
5279 },
5280 {
5281 .name = "kmem.tcp.failcnt",
5282 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5283 .write = mem_cgroup_reset,
5284 .read_u64 = mem_cgroup_read_u64,
5285 },
5286 {
5287 .name = "kmem.tcp.max_usage_in_bytes",
5288 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5289 .write = mem_cgroup_reset,
5290 .read_u64 = mem_cgroup_read_u64,
5291 },
6bc10349 5292 { }, /* terminate */
af36f906 5293};
8c7c6e34 5294
73f576c0
JW
5295/*
5296 * Private memory cgroup IDR
5297 *
5298 * Swap-out records and page cache shadow entries need to store memcg
5299 * references in constrained space, so we maintain an ID space that is
5300 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5301 * memory-controlled cgroups to 64k.
5302 *
b8f2935f 5303 * However, there usually are many references to the offline CSS after
73f576c0
JW
5304 * the cgroup has been destroyed, such as page cache or reclaimable
5305 * slab objects, that don't need to hang on to the ID. We want to keep
5306 * those dead CSS from occupying IDs, or we might quickly exhaust the
5307 * relatively small ID space and prevent the creation of new cgroups
5308 * even when there are much fewer than 64k cgroups - possibly none.
5309 *
5310 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5311 * be freed and recycled when it's no longer needed, which is usually
5312 * when the CSS is offlined.
5313 *
5314 * The only exception to that are records of swapped out tmpfs/shmem
5315 * pages that need to be attributed to live ancestors on swapin. But
5316 * those references are manageable from userspace.
5317 */
5318
60b1e24c 5319#define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
73f576c0
JW
5320static DEFINE_IDR(mem_cgroup_idr);
5321
7e97de0b
KT
5322static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5323{
5324 if (memcg->id.id > 0) {
5325 idr_remove(&mem_cgroup_idr, memcg->id.id);
5326 memcg->id.id = 0;
5327 }
5328}
5329
c1514c0a
VF
5330static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5331 unsigned int n)
73f576c0 5332{
1c2d479a 5333 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5334}
5335
615d66c3 5336static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5337{
1c2d479a 5338 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5339 mem_cgroup_id_remove(memcg);
73f576c0
JW
5340
5341 /* Memcg ID pins CSS */
5342 css_put(&memcg->css);
5343 }
5344}
5345
615d66c3
VD
5346static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5347{
5348 mem_cgroup_id_put_many(memcg, 1);
5349}
5350
73f576c0
JW
5351/**
5352 * mem_cgroup_from_id - look up a memcg from a memcg id
5353 * @id: the memcg id to look up
5354 *
5355 * Caller must hold rcu_read_lock().
5356 */
5357struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5358{
5359 WARN_ON_ONCE(!rcu_read_lock_held());
5360 return idr_find(&mem_cgroup_idr, id);
5361}
5362
c15187a4
RG
5363#ifdef CONFIG_SHRINKER_DEBUG
5364struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5365{
5366 struct cgroup *cgrp;
5367 struct cgroup_subsys_state *css;
5368 struct mem_cgroup *memcg;
5369
5370 cgrp = cgroup_get_from_id(ino);
fa7e439c 5371 if (IS_ERR(cgrp))
c0f2df49 5372 return ERR_CAST(cgrp);
c15187a4
RG
5373
5374 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5375 if (css)
5376 memcg = container_of(css, struct mem_cgroup, css);
5377 else
5378 memcg = ERR_PTR(-ENOENT);
5379
5380 cgroup_put(cgrp);
5381
5382 return memcg;
5383}
5384#endif
5385
ef8f2327 5386static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5387{
5388 struct mem_cgroup_per_node *pn;
8c9bb398
WY
5389
5390 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
6d12e2d8
KH
5391 if (!pn)
5392 return 1;
1ecaab2b 5393
7e1c0d6f
SB
5394 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5395 GFP_KERNEL_ACCOUNT);
5396 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5397 kfree(pn);
5398 return 1;
5399 }
5400
ef8f2327 5401 lruvec_init(&pn->lruvec);
ef8f2327
MG
5402 pn->memcg = memcg;
5403
54f72fe0 5404 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5405 return 0;
5406}
5407
ef8f2327 5408static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5409{
00f3ca2c
JW
5410 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5411
4eaf431f
MH
5412 if (!pn)
5413 return;
5414
7e1c0d6f 5415 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5416 kfree(pn);
1ecaab2b
KH
5417}
5418
40e952f9 5419static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5420{
c8b2a36f 5421 int node;
59927fb9 5422
675d6c9b
RG
5423 if (memcg->orig_objcg)
5424 obj_cgroup_put(memcg->orig_objcg);
5425
c8b2a36f 5426 for_each_node(node)
ef8f2327 5427 free_mem_cgroup_per_node_info(memcg, node);
410f8e82 5428 kfree(memcg->vmstats);
871789d4 5429 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5430 kfree(memcg);
59927fb9 5431}
3afe36b1 5432
40e952f9
TE
5433static void mem_cgroup_free(struct mem_cgroup *memcg)
5434{
ec1c86b2 5435 lru_gen_exit_memcg(memcg);
40e952f9
TE
5436 memcg_wb_domain_exit(memcg);
5437 __mem_cgroup_free(memcg);
5438}
5439
0b8f73e1 5440static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5441{
d142e3e6 5442 struct mem_cgroup *memcg;
6d12e2d8 5443 int node;
97b27821 5444 int __maybe_unused i;
11d67612 5445 long error = -ENOMEM;
8cdea7c0 5446
06b2c3b0 5447 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
c0ff4b85 5448 if (!memcg)
11d67612 5449 return ERR_PTR(error);
0b8f73e1 5450
73f576c0 5451 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
be740503 5452 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
11d67612
YS
5453 if (memcg->id.id < 0) {
5454 error = memcg->id.id;
73f576c0 5455 goto fail;
11d67612 5456 }
73f576c0 5457
410f8e82
SB
5458 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5459 if (!memcg->vmstats)
5460 goto fail;
5461
3e38e0aa
RG
5462 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5463 GFP_KERNEL_ACCOUNT);
871789d4 5464 if (!memcg->vmstats_percpu)
0b8f73e1 5465 goto fail;
78fb7466 5466
3ed28fa1 5467 for_each_node(node)
ef8f2327 5468 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5469 goto fail;
f64c3f54 5470
0b8f73e1
JW
5471 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5472 goto fail;
28dbc4b6 5473
f7e1cb6e 5474 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5475 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5476 mutex_init(&memcg->thresholds_lock);
5477 spin_lock_init(&memcg->move_lock);
70ddf637 5478 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5479 INIT_LIST_HEAD(&memcg->event_list);
5480 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5481 memcg->socket_pressure = jiffies;
84c07d11 5482#ifdef CONFIG_MEMCG_KMEM
900a38f0 5483 memcg->kmemcg_id = -1;
bf4f0599 5484 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5485#endif
52ebea74
TH
5486#ifdef CONFIG_CGROUP_WRITEBACK
5487 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5488 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5489 memcg->cgwb_frn[i].done =
5490 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5491#endif
5492#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5493 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5494 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5495 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5496#endif
ec1c86b2 5497 lru_gen_init_memcg(memcg);
0b8f73e1
JW
5498 return memcg;
5499fail:
7e97de0b 5500 mem_cgroup_id_remove(memcg);
40e952f9 5501 __mem_cgroup_free(memcg);
11d67612 5502 return ERR_PTR(error);
d142e3e6
GC
5503}
5504
0b8f73e1
JW
5505static struct cgroup_subsys_state * __ref
5506mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5507{
0b8f73e1 5508 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5509 struct mem_cgroup *memcg, *old_memcg;
d142e3e6 5510
b87d8cef 5511 old_memcg = set_active_memcg(parent);
0b8f73e1 5512 memcg = mem_cgroup_alloc();
b87d8cef 5513 set_active_memcg(old_memcg);
11d67612
YS
5514 if (IS_ERR(memcg))
5515 return ERR_CAST(memcg);
d142e3e6 5516
d1663a90 5517 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5518 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
f4840ccf
JW
5519#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5520 memcg->zswap_max = PAGE_COUNTER_MAX;
5521#endif
4b82ab4f 5522 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1 5523 if (parent) {
82b3aa26 5524 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
17c56de6 5525 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
bef8620c 5526
3e32cb2e 5527 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5528 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5529 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5530 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5531 } else {
8278f1c7 5532 init_memcg_events();
bef8620c
RG
5533 page_counter_init(&memcg->memory, NULL);
5534 page_counter_init(&memcg->swap, NULL);
5535 page_counter_init(&memcg->kmem, NULL);
5536 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5537
0b8f73e1
JW
5538 root_mem_cgroup = memcg;
5539 return &memcg->css;
5540 }
5541
f7e1cb6e 5542 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5543 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5544
b6c1a8af
YS
5545#if defined(CONFIG_MEMCG_KMEM)
5546 if (!cgroup_memory_nobpf)
5547 static_branch_inc(&memcg_bpf_enabled_key);
5548#endif
5549
0b8f73e1 5550 return &memcg->css;
0b8f73e1
JW
5551}
5552
73f576c0 5553static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5554{
58fa2a55
VD
5555 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5556
da0efe30
MS
5557 if (memcg_online_kmem(memcg))
5558 goto remove_id;
5559
0a4465d3 5560 /*
e4262c4f 5561 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5562 * by the time the maps are allocated. So, we allocate maps
5563 * here, when for_each_mem_cgroup() can't skip it.
5564 */
da0efe30
MS
5565 if (alloc_shrinker_info(memcg))
5566 goto offline_kmem;
0a4465d3 5567
aa48e47e
SB
5568 if (unlikely(mem_cgroup_is_root(memcg)))
5569 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
396faf88 5570 FLUSH_TIME);
e4dde56c 5571 lru_gen_online_memcg(memcg);
6f0df8e1
JW
5572
5573 /* Online state pins memcg ID, memcg ID pins CSS */
5574 refcount_set(&memcg->id.ref, 1);
5575 css_get(css);
5576
5577 /*
5578 * Ensure mem_cgroup_from_id() works once we're fully online.
5579 *
5580 * We could do this earlier and require callers to filter with
5581 * css_tryget_online(). But right now there are no users that
5582 * need earlier access, and the workingset code relies on the
5583 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5584 * publish it here at the end of onlining. This matches the
5585 * regular ID destruction during offlining.
5586 */
5587 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5588
2f7dd7a4 5589 return 0;
da0efe30
MS
5590offline_kmem:
5591 memcg_offline_kmem(memcg);
5592remove_id:
5593 mem_cgroup_id_remove(memcg);
5594 return -ENOMEM;
8cdea7c0
BS
5595}
5596
eb95419b 5597static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5598{
eb95419b 5599 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5600 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5601
5602 /*
5603 * Unregister events and notify userspace.
5604 * Notify userspace about cgroup removing only after rmdir of cgroup
5605 * directory to avoid race between userspace and kernelspace.
5606 */
4ba9515d 5607 spin_lock_irq(&memcg->event_list_lock);
fba94807 5608 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5609 list_del_init(&event->list);
5610 schedule_work(&event->remove);
5611 }
4ba9515d 5612 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5613
bf8d5d52 5614 page_counter_set_min(&memcg->memory, 0);
23067153 5615 page_counter_set_low(&memcg->memory, 0);
63677c74 5616
567e9ab2 5617 memcg_offline_kmem(memcg);
a178015c 5618 reparent_shrinker_deferred(memcg);
52ebea74 5619 wb_memcg_offline(memcg);
e4dde56c 5620 lru_gen_offline_memcg(memcg);
73f576c0 5621
591edfb1
RG
5622 drain_all_stock(memcg);
5623
73f576c0 5624 mem_cgroup_id_put(memcg);
df878fb0
KH
5625}
5626
6df38689
VD
5627static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5628{
5629 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5630
5631 invalidate_reclaim_iterators(memcg);
e4dde56c 5632 lru_gen_release_memcg(memcg);
6df38689
VD
5633}
5634
eb95419b 5635static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5636{
eb95419b 5637 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5638 int __maybe_unused i;
c268e994 5639
97b27821
TH
5640#ifdef CONFIG_CGROUP_WRITEBACK
5641 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5642 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5643#endif
f7e1cb6e 5644 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5645 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5646
0db15298 5647 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5648 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5649
b6c1a8af
YS
5650#if defined(CONFIG_MEMCG_KMEM)
5651 if (!cgroup_memory_nobpf)
5652 static_branch_dec(&memcg_bpf_enabled_key);
5653#endif
5654
0b8f73e1
JW
5655 vmpressure_cleanup(&memcg->vmpressure);
5656 cancel_work_sync(&memcg->high_work);
5657 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5658 free_shrinker_info(memcg);
0b8f73e1 5659 mem_cgroup_free(memcg);
8cdea7c0
BS
5660}
5661
1ced953b
TH
5662/**
5663 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5664 * @css: the target css
5665 *
5666 * Reset the states of the mem_cgroup associated with @css. This is
5667 * invoked when the userland requests disabling on the default hierarchy
5668 * but the memcg is pinned through dependency. The memcg should stop
5669 * applying policies and should revert to the vanilla state as it may be
5670 * made visible again.
5671 *
5672 * The current implementation only resets the essential configurations.
5673 * This needs to be expanded to cover all the visible parts.
5674 */
5675static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5676{
5677 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5678
bbec2e15
RG
5679 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5680 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5681 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5682 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5683 page_counter_set_min(&memcg->memory, 0);
23067153 5684 page_counter_set_low(&memcg->memory, 0);
d1663a90 5685 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5686 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
4b82ab4f 5687 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5688 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5689}
5690
2d146aa3
JW
5691static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5692{
5693 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5694 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5695 struct memcg_vmstats_percpu *statc;
f82e6bf9 5696 long delta, delta_cpu, v;
7e1c0d6f 5697 int i, nid;
2d146aa3
JW
5698
5699 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5700
5701 for (i = 0; i < MEMCG_NR_STAT; i++) {
5702 /*
5703 * Collect the aggregated propagation counts of groups
5704 * below us. We're in a per-cpu loop here and this is
5705 * a global counter, so the first cycle will get them.
5706 */
410f8e82 5707 delta = memcg->vmstats->state_pending[i];
2d146aa3 5708 if (delta)
410f8e82 5709 memcg->vmstats->state_pending[i] = 0;
2d146aa3
JW
5710
5711 /* Add CPU changes on this level since the last flush */
f82e6bf9 5712 delta_cpu = 0;
2d146aa3
JW
5713 v = READ_ONCE(statc->state[i]);
5714 if (v != statc->state_prev[i]) {
f82e6bf9
YA
5715 delta_cpu = v - statc->state_prev[i];
5716 delta += delta_cpu;
2d146aa3
JW
5717 statc->state_prev[i] = v;
5718 }
5719
2d146aa3 5720 /* Aggregate counts on this level and propagate upwards */
f82e6bf9
YA
5721 if (delta_cpu)
5722 memcg->vmstats->state_local[i] += delta_cpu;
5723
5724 if (delta) {
5725 memcg->vmstats->state[i] += delta;
5726 if (parent)
5727 parent->vmstats->state_pending[i] += delta;
5728 }
2d146aa3
JW
5729 }
5730
8278f1c7 5731 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
410f8e82 5732 delta = memcg->vmstats->events_pending[i];
2d146aa3 5733 if (delta)
410f8e82 5734 memcg->vmstats->events_pending[i] = 0;
2d146aa3 5735
f82e6bf9 5736 delta_cpu = 0;
2d146aa3
JW
5737 v = READ_ONCE(statc->events[i]);
5738 if (v != statc->events_prev[i]) {
f82e6bf9
YA
5739 delta_cpu = v - statc->events_prev[i];
5740 delta += delta_cpu;
2d146aa3
JW
5741 statc->events_prev[i] = v;
5742 }
5743
f82e6bf9
YA
5744 if (delta_cpu)
5745 memcg->vmstats->events_local[i] += delta_cpu;
2d146aa3 5746
f82e6bf9
YA
5747 if (delta) {
5748 memcg->vmstats->events[i] += delta;
5749 if (parent)
5750 parent->vmstats->events_pending[i] += delta;
5751 }
2d146aa3 5752 }
7e1c0d6f
SB
5753
5754 for_each_node_state(nid, N_MEMORY) {
5755 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5756 struct mem_cgroup_per_node *ppn = NULL;
5757 struct lruvec_stats_percpu *lstatc;
5758
5759 if (parent)
5760 ppn = parent->nodeinfo[nid];
5761
5762 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5763
5764 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5765 delta = pn->lruvec_stats.state_pending[i];
5766 if (delta)
5767 pn->lruvec_stats.state_pending[i] = 0;
5768
f82e6bf9 5769 delta_cpu = 0;
7e1c0d6f
SB
5770 v = READ_ONCE(lstatc->state[i]);
5771 if (v != lstatc->state_prev[i]) {
f82e6bf9
YA
5772 delta_cpu = v - lstatc->state_prev[i];
5773 delta += delta_cpu;
7e1c0d6f
SB
5774 lstatc->state_prev[i] = v;
5775 }
5776
f82e6bf9
YA
5777 if (delta_cpu)
5778 pn->lruvec_stats.state_local[i] += delta_cpu;
7e1c0d6f 5779
f82e6bf9
YA
5780 if (delta) {
5781 pn->lruvec_stats.state[i] += delta;
5782 if (ppn)
5783 ppn->lruvec_stats.state_pending[i] += delta;
5784 }
7e1c0d6f
SB
5785 }
5786 }
2d146aa3
JW
5787}
5788
02491447 5789#ifdef CONFIG_MMU
7dc74be0 5790/* Handlers for move charge at task migration. */
854ffa8d 5791static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5792{
05b84301 5793 int ret;
9476db97 5794
d0164adc
MG
5795 /* Try a single bulk charge without reclaim first, kswapd may wake */
5796 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5797 if (!ret) {
854ffa8d 5798 mc.precharge += count;
854ffa8d
DN
5799 return ret;
5800 }
9476db97 5801
3674534b 5802 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5803 while (count--) {
3674534b 5804 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5805 if (ret)
38c5d72f 5806 return ret;
854ffa8d 5807 mc.precharge++;
9476db97 5808 cond_resched();
854ffa8d 5809 }
9476db97 5810 return 0;
4ffef5fe
DN
5811}
5812
4ffef5fe
DN
5813union mc_target {
5814 struct page *page;
02491447 5815 swp_entry_t ent;
4ffef5fe
DN
5816};
5817
4ffef5fe 5818enum mc_target_type {
8d32ff84 5819 MC_TARGET_NONE = 0,
4ffef5fe 5820 MC_TARGET_PAGE,
02491447 5821 MC_TARGET_SWAP,
c733a828 5822 MC_TARGET_DEVICE,
4ffef5fe
DN
5823};
5824
90254a65
DN
5825static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5826 unsigned long addr, pte_t ptent)
4ffef5fe 5827{
25b2995a 5828 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5829
58f341f7 5830 if (!page)
90254a65
DN
5831 return NULL;
5832 if (PageAnon(page)) {
1dfab5ab 5833 if (!(mc.flags & MOVE_ANON))
90254a65 5834 return NULL;
1dfab5ab
JW
5835 } else {
5836 if (!(mc.flags & MOVE_FILE))
5837 return NULL;
5838 }
58f341f7 5839 get_page(page);
90254a65
DN
5840
5841 return page;
5842}
5843
c733a828 5844#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5845static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5846 pte_t ptent, swp_entry_t *entry)
90254a65 5847{
90254a65
DN
5848 struct page *page = NULL;
5849 swp_entry_t ent = pte_to_swp_entry(ptent);
5850
9a137153 5851 if (!(mc.flags & MOVE_ANON))
90254a65 5852 return NULL;
c733a828
JG
5853
5854 /*
27674ef6
CH
5855 * Handle device private pages that are not accessible by the CPU, but
5856 * stored as special swap entries in the page table.
c733a828
JG
5857 */
5858 if (is_device_private_entry(ent)) {
af5cdaf8 5859 page = pfn_swap_entry_to_page(ent);
27674ef6 5860 if (!get_page_unless_zero(page))
c733a828
JG
5861 return NULL;
5862 return page;
5863 }
5864
9a137153
RC
5865 if (non_swap_entry(ent))
5866 return NULL;
5867
4b91355e 5868 /*
cb691e2f 5869 * Because swap_cache_get_folio() updates some statistics counter,
4b91355e
KH
5870 * we call find_get_page() with swapper_space directly.
5871 */
f6ab1f7f 5872 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5873 entry->val = ent.val;
90254a65
DN
5874
5875 return page;
5876}
4b91355e
KH
5877#else
5878static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5879 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5880{
5881 return NULL;
5882}
5883#endif
90254a65 5884
87946a72 5885static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
48384b0b 5886 unsigned long addr, pte_t ptent)
87946a72 5887{
524984ff
MWO
5888 unsigned long index;
5889 struct folio *folio;
5890
87946a72
DN
5891 if (!vma->vm_file) /* anonymous vma */
5892 return NULL;
1dfab5ab 5893 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5894 return NULL;
5895
524984ff 5896 /* folio is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5897 /* shmem/tmpfs may report page out on swap: account for that too. */
524984ff
MWO
5898 index = linear_page_index(vma, addr);
5899 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
66dabbb6 5900 if (IS_ERR(folio))
524984ff
MWO
5901 return NULL;
5902 return folio_file_page(folio, index);
87946a72
DN
5903}
5904
b1b0deab
CG
5905/**
5906 * mem_cgroup_move_account - move account of the page
5907 * @page: the page
25843c2b 5908 * @compound: charge the page as compound or small page
b1b0deab
CG
5909 * @from: mem_cgroup which the page is moved from.
5910 * @to: mem_cgroup which the page is moved to. @from != @to.
5911 *
4e0cf05f 5912 * The page must be locked and not on the LRU.
b1b0deab
CG
5913 *
5914 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5915 * from old cgroup.
5916 */
5917static int mem_cgroup_move_account(struct page *page,
f627c2f5 5918 bool compound,
b1b0deab
CG
5919 struct mem_cgroup *from,
5920 struct mem_cgroup *to)
5921{
fcce4672 5922 struct folio *folio = page_folio(page);
ae8af438
KK
5923 struct lruvec *from_vec, *to_vec;
5924 struct pglist_data *pgdat;
fcce4672 5925 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
8e88bd2d 5926 int nid, ret;
b1b0deab
CG
5927
5928 VM_BUG_ON(from == to);
4e0cf05f 5929 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fcce4672 5930 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
9c325215 5931 VM_BUG_ON(compound && !folio_test_large(folio));
b1b0deab 5932
b1b0deab 5933 ret = -EINVAL;
fcce4672 5934 if (folio_memcg(folio) != from)
4e0cf05f 5935 goto out;
b1b0deab 5936
fcce4672 5937 pgdat = folio_pgdat(folio);
867e5e1d
JW
5938 from_vec = mem_cgroup_lruvec(from, pgdat);
5939 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5940
fcce4672 5941 folio_memcg_lock(folio);
b1b0deab 5942
fcce4672
MWO
5943 if (folio_test_anon(folio)) {
5944 if (folio_mapped(folio)) {
be5d0a74
JW
5945 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5946 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
6199277b 5947 if (folio_test_pmd_mappable(folio)) {
69473e5d
MS
5948 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5949 -nr_pages);
5950 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5951 nr_pages);
468c3982 5952 }
be5d0a74
JW
5953 }
5954 } else {
0d1c2072
JW
5955 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5956 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5957
fcce4672 5958 if (folio_test_swapbacked(folio)) {
0d1c2072
JW
5959 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5960 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5961 }
5962
fcce4672 5963 if (folio_mapped(folio)) {
49e50d27
JW
5964 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5965 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5966 }
b1b0deab 5967
fcce4672
MWO
5968 if (folio_test_dirty(folio)) {
5969 struct address_space *mapping = folio_mapping(folio);
c4843a75 5970
f56753ac 5971 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5972 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5973 -nr_pages);
5974 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5975 nr_pages);
5976 }
c4843a75
GT
5977 }
5978 }
5979
c449deb2
HD
5980#ifdef CONFIG_SWAP
5981 if (folio_test_swapcache(folio)) {
5982 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5983 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5984 }
5985#endif
fcce4672 5986 if (folio_test_writeback(folio)) {
ae8af438
KK
5987 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5988 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5989 }
5990
5991 /*
abb242f5
JW
5992 * All state has been migrated, let's switch to the new memcg.
5993 *
bcfe06bf 5994 * It is safe to change page's memcg here because the page
abb242f5
JW
5995 * is referenced, charged, isolated, and locked: we can't race
5996 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5997 * that would rely on a stable page's memory cgroup.
abb242f5 5998 *
6c77b607 5999 * Note that folio_memcg_lock is a memcg lock, not a page lock,
bcfe06bf 6000 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
6001 * new memcg that isn't locked, the above state can change
6002 * concurrently again. Make sure we're truly done with it.
b1b0deab 6003 */
abb242f5 6004 smp_mb();
b1b0deab 6005
1a3e1f40
JW
6006 css_get(&to->css);
6007 css_put(&from->css);
6008
fcce4672 6009 folio->memcg_data = (unsigned long)to;
87eaceb3 6010
f70ad448 6011 __folio_memcg_unlock(from);
b1b0deab
CG
6012
6013 ret = 0;
fcce4672 6014 nid = folio_nid(folio);
b1b0deab
CG
6015
6016 local_irq_disable();
6e0110c2 6017 mem_cgroup_charge_statistics(to, nr_pages);
8e88bd2d 6018 memcg_check_events(to, nid);
6e0110c2 6019 mem_cgroup_charge_statistics(from, -nr_pages);
8e88bd2d 6020 memcg_check_events(from, nid);
b1b0deab 6021 local_irq_enable();
b1b0deab
CG
6022out:
6023 return ret;
6024}
6025
7cf7806c
LR
6026/**
6027 * get_mctgt_type - get target type of moving charge
6028 * @vma: the vma the pte to be checked belongs
6029 * @addr: the address corresponding to the pte to be checked
6030 * @ptent: the pte to be checked
6031 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6032 *
853f62a3
MWO
6033 * Context: Called with pte lock held.
6034 * Return:
6035 * * MC_TARGET_NONE - If the pte is not a target for move charge.
6036 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
6037 * move charge. If @target is not NULL, the page is stored in target->page
6038 * with extra refcnt taken (Caller should release it).
6039 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
6040 * target for charge migration. If @target is not NULL, the entry is
6041 * stored in target->ent.
6042 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
6043 * thus not on the lru. For now such page is charged like a regular page
6044 * would be as it is just special memory taking the place of a regular page.
6045 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c 6046 */
8d32ff84 6047static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6048 unsigned long addr, pte_t ptent, union mc_target *target)
6049{
6050 struct page *page = NULL;
8d32ff84 6051 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6052 swp_entry_t ent = { .val = 0 };
6053
6054 if (pte_present(ptent))
6055 page = mc_handle_present_pte(vma, addr, ptent);
5c041f5d
PX
6056 else if (pte_none_mostly(ptent))
6057 /*
6058 * PTE markers should be treated as a none pte here, separated
6059 * from other swap handling below.
6060 */
6061 page = mc_handle_file_pte(vma, addr, ptent);
90254a65 6062 else if (is_swap_pte(ptent))
48406ef8 6063 page = mc_handle_swap_pte(vma, ptent, &ent);
90254a65 6064
4e0cf05f
JW
6065 if (target && page) {
6066 if (!trylock_page(page)) {
6067 put_page(page);
6068 return ret;
6069 }
6070 /*
6071 * page_mapped() must be stable during the move. This
6072 * pte is locked, so if it's present, the page cannot
6073 * become unmapped. If it isn't, we have only partial
6074 * control over the mapped state: the page lock will
6075 * prevent new faults against pagecache and swapcache,
6076 * so an unmapped page cannot become mapped. However,
6077 * if the page is already mapped elsewhere, it can
6078 * unmap, and there is nothing we can do about it.
6079 * Alas, skip moving the page in this case.
6080 */
6081 if (!pte_present(ptent) && page_mapped(page)) {
6082 unlock_page(page);
6083 put_page(page);
6084 return ret;
6085 }
6086 }
6087
90254a65 6088 if (!page && !ent.val)
8d32ff84 6089 return ret;
02491447 6090 if (page) {
02491447 6091 /*
0a31bc97 6092 * Do only loose check w/o serialization.
1306a85a 6093 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 6094 * not under LRU exclusion.
02491447 6095 */
bcfe06bf 6096 if (page_memcg(page) == mc.from) {
02491447 6097 ret = MC_TARGET_PAGE;
f25cbb7a
AS
6098 if (is_device_private_page(page) ||
6099 is_device_coherent_page(page))
c733a828 6100 ret = MC_TARGET_DEVICE;
02491447
DN
6101 if (target)
6102 target->page = page;
6103 }
4e0cf05f
JW
6104 if (!ret || !target) {
6105 if (target)
6106 unlock_page(page);
02491447 6107 put_page(page);
4e0cf05f 6108 }
02491447 6109 }
3e14a57b
HY
6110 /*
6111 * There is a swap entry and a page doesn't exist or isn't charged.
6112 * But we cannot move a tail-page in a THP.
6113 */
6114 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 6115 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6116 ret = MC_TARGET_SWAP;
6117 if (target)
6118 target->ent = ent;
4ffef5fe 6119 }
4ffef5fe
DN
6120 return ret;
6121}
6122
12724850
NH
6123#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6124/*
d6810d73
HY
6125 * We don't consider PMD mapped swapping or file mapped pages because THP does
6126 * not support them for now.
12724850
NH
6127 * Caller should make sure that pmd_trans_huge(pmd) is true.
6128 */
6129static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6130 unsigned long addr, pmd_t pmd, union mc_target *target)
6131{
6132 struct page *page = NULL;
12724850
NH
6133 enum mc_target_type ret = MC_TARGET_NONE;
6134
84c3fc4e
ZY
6135 if (unlikely(is_swap_pmd(pmd))) {
6136 VM_BUG_ON(thp_migration_supported() &&
6137 !is_pmd_migration_entry(pmd));
6138 return ret;
6139 }
12724850 6140 page = pmd_page(pmd);
309381fe 6141 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 6142 if (!(mc.flags & MOVE_ANON))
12724850 6143 return ret;
bcfe06bf 6144 if (page_memcg(page) == mc.from) {
12724850
NH
6145 ret = MC_TARGET_PAGE;
6146 if (target) {
6147 get_page(page);
4e0cf05f
JW
6148 if (!trylock_page(page)) {
6149 put_page(page);
6150 return MC_TARGET_NONE;
6151 }
12724850
NH
6152 target->page = page;
6153 }
6154 }
6155 return ret;
6156}
6157#else
6158static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6159 unsigned long addr, pmd_t pmd, union mc_target *target)
6160{
6161 return MC_TARGET_NONE;
6162}
6163#endif
6164
4ffef5fe
DN
6165static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6166 unsigned long addr, unsigned long end,
6167 struct mm_walk *walk)
6168{
26bcd64a 6169 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6170 pte_t *pte;
6171 spinlock_t *ptl;
6172
b6ec57f4
KS
6173 ptl = pmd_trans_huge_lock(pmd, vma);
6174 if (ptl) {
c733a828
JG
6175 /*
6176 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
6177 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6178 * this might change.
c733a828 6179 */
12724850
NH
6180 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6181 mc.precharge += HPAGE_PMD_NR;
bf929152 6182 spin_unlock(ptl);
1a5a9906 6183 return 0;
12724850 6184 }
03319327 6185
4ffef5fe 6186 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
04dee9e8
HD
6187 if (!pte)
6188 return 0;
4ffef5fe 6189 for (; addr != end; pte++, addr += PAGE_SIZE)
c33c7948 6190 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
4ffef5fe
DN
6191 mc.precharge++; /* increment precharge temporarily */
6192 pte_unmap_unlock(pte - 1, ptl);
6193 cond_resched();
6194
7dc74be0
DN
6195 return 0;
6196}
6197
7b86ac33
CH
6198static const struct mm_walk_ops precharge_walk_ops = {
6199 .pmd_entry = mem_cgroup_count_precharge_pte_range,
49b06385 6200 .walk_lock = PGWALK_RDLOCK,
7b86ac33
CH
6201};
6202
4ffef5fe
DN
6203static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6204{
6205 unsigned long precharge;
4ffef5fe 6206
d8ed45c5 6207 mmap_read_lock(mm);
ba0aff8e 6208 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
d8ed45c5 6209 mmap_read_unlock(mm);
4ffef5fe
DN
6210
6211 precharge = mc.precharge;
6212 mc.precharge = 0;
6213
6214 return precharge;
6215}
6216
4ffef5fe
DN
6217static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6218{
dfe076b0
DN
6219 unsigned long precharge = mem_cgroup_count_precharge(mm);
6220
6221 VM_BUG_ON(mc.moving_task);
6222 mc.moving_task = current;
6223 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6224}
6225
dfe076b0
DN
6226/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6227static void __mem_cgroup_clear_mc(void)
4ffef5fe 6228{
2bd9bb20
KH
6229 struct mem_cgroup *from = mc.from;
6230 struct mem_cgroup *to = mc.to;
6231
4ffef5fe 6232 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 6233 if (mc.precharge) {
4b569387 6234 mem_cgroup_cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
6235 mc.precharge = 0;
6236 }
6237 /*
6238 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6239 * we must uncharge here.
6240 */
6241 if (mc.moved_charge) {
4b569387 6242 mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
854ffa8d 6243 mc.moved_charge = 0;
4ffef5fe 6244 }
483c30b5
DN
6245 /* we must fixup refcnts and charges */
6246 if (mc.moved_swap) {
483c30b5 6247 /* uncharge swap account from the old cgroup */
ce00a967 6248 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 6249 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 6250
615d66c3
VD
6251 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6252
05b84301 6253 /*
3e32cb2e
JW
6254 * we charged both to->memory and to->memsw, so we
6255 * should uncharge to->memory.
05b84301 6256 */
ce00a967 6257 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
6258 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6259
483c30b5
DN
6260 mc.moved_swap = 0;
6261 }
dfe076b0
DN
6262 memcg_oom_recover(from);
6263 memcg_oom_recover(to);
6264 wake_up_all(&mc.waitq);
6265}
6266
6267static void mem_cgroup_clear_mc(void)
6268{
264a0ae1
TH
6269 struct mm_struct *mm = mc.mm;
6270
dfe076b0
DN
6271 /*
6272 * we must clear moving_task before waking up waiters at the end of
6273 * task migration.
6274 */
6275 mc.moving_task = NULL;
6276 __mem_cgroup_clear_mc();
2bd9bb20 6277 spin_lock(&mc.lock);
4ffef5fe
DN
6278 mc.from = NULL;
6279 mc.to = NULL;
264a0ae1 6280 mc.mm = NULL;
2bd9bb20 6281 spin_unlock(&mc.lock);
264a0ae1
TH
6282
6283 mmput(mm);
4ffef5fe
DN
6284}
6285
1f7dd3e5 6286static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 6287{
1f7dd3e5 6288 struct cgroup_subsys_state *css;
eed67d75 6289 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 6290 struct mem_cgroup *from;
4530eddb 6291 struct task_struct *leader, *p;
9f2115f9 6292 struct mm_struct *mm;
1dfab5ab 6293 unsigned long move_flags;
9f2115f9 6294 int ret = 0;
7dc74be0 6295
1f7dd3e5
TH
6296 /* charge immigration isn't supported on the default hierarchy */
6297 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
6298 return 0;
6299
4530eddb
TH
6300 /*
6301 * Multi-process migrations only happen on the default hierarchy
6302 * where charge immigration is not used. Perform charge
6303 * immigration if @tset contains a leader and whine if there are
6304 * multiple.
6305 */
6306 p = NULL;
1f7dd3e5 6307 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
6308 WARN_ON_ONCE(p);
6309 p = leader;
1f7dd3e5 6310 memcg = mem_cgroup_from_css(css);
4530eddb
TH
6311 }
6312 if (!p)
6313 return 0;
6314
1f7dd3e5 6315 /*
f0953a1b 6316 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
6317 * tunable will only affect upcoming migrations, not the current one.
6318 * So we need to save it, and keep it going.
6319 */
6320 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6321 if (!move_flags)
6322 return 0;
6323
9f2115f9
TH
6324 from = mem_cgroup_from_task(p);
6325
6326 VM_BUG_ON(from == memcg);
6327
6328 mm = get_task_mm(p);
6329 if (!mm)
6330 return 0;
6331 /* We move charges only when we move a owner of the mm */
6332 if (mm->owner == p) {
6333 VM_BUG_ON(mc.from);
6334 VM_BUG_ON(mc.to);
6335 VM_BUG_ON(mc.precharge);
6336 VM_BUG_ON(mc.moved_charge);
6337 VM_BUG_ON(mc.moved_swap);
6338
6339 spin_lock(&mc.lock);
264a0ae1 6340 mc.mm = mm;
9f2115f9
TH
6341 mc.from = from;
6342 mc.to = memcg;
6343 mc.flags = move_flags;
6344 spin_unlock(&mc.lock);
6345 /* We set mc.moving_task later */
6346
6347 ret = mem_cgroup_precharge_mc(mm);
6348 if (ret)
6349 mem_cgroup_clear_mc();
264a0ae1
TH
6350 } else {
6351 mmput(mm);
7dc74be0
DN
6352 }
6353 return ret;
6354}
6355
1f7dd3e5 6356static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6357{
4e2f245d
JW
6358 if (mc.to)
6359 mem_cgroup_clear_mc();
7dc74be0
DN
6360}
6361
4ffef5fe
DN
6362static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6363 unsigned long addr, unsigned long end,
6364 struct mm_walk *walk)
7dc74be0 6365{
4ffef5fe 6366 int ret = 0;
26bcd64a 6367 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6368 pte_t *pte;
6369 spinlock_t *ptl;
12724850
NH
6370 enum mc_target_type target_type;
6371 union mc_target target;
6372 struct page *page;
4ffef5fe 6373
b6ec57f4
KS
6374 ptl = pmd_trans_huge_lock(pmd, vma);
6375 if (ptl) {
62ade86a 6376 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6377 spin_unlock(ptl);
12724850
NH
6378 return 0;
6379 }
6380 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6381 if (target_type == MC_TARGET_PAGE) {
6382 page = target.page;
f7f9c00d 6383 if (isolate_lru_page(page)) {
f627c2f5 6384 if (!mem_cgroup_move_account(page, true,
1306a85a 6385 mc.from, mc.to)) {
12724850
NH
6386 mc.precharge -= HPAGE_PMD_NR;
6387 mc.moved_charge += HPAGE_PMD_NR;
6388 }
6389 putback_lru_page(page);
6390 }
4e0cf05f 6391 unlock_page(page);
12724850 6392 put_page(page);
c733a828
JG
6393 } else if (target_type == MC_TARGET_DEVICE) {
6394 page = target.page;
6395 if (!mem_cgroup_move_account(page, true,
6396 mc.from, mc.to)) {
6397 mc.precharge -= HPAGE_PMD_NR;
6398 mc.moved_charge += HPAGE_PMD_NR;
6399 }
4e0cf05f 6400 unlock_page(page);
c733a828 6401 put_page(page);
12724850 6402 }
bf929152 6403 spin_unlock(ptl);
1a5a9906 6404 return 0;
12724850
NH
6405 }
6406
4ffef5fe
DN
6407retry:
6408 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
04dee9e8
HD
6409 if (!pte)
6410 return 0;
4ffef5fe 6411 for (; addr != end; addr += PAGE_SIZE) {
c33c7948 6412 pte_t ptent = ptep_get(pte++);
c733a828 6413 bool device = false;
02491447 6414 swp_entry_t ent;
4ffef5fe
DN
6415
6416 if (!mc.precharge)
6417 break;
6418
8d32ff84 6419 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6420 case MC_TARGET_DEVICE:
6421 device = true;
e4a9bc58 6422 fallthrough;
4ffef5fe
DN
6423 case MC_TARGET_PAGE:
6424 page = target.page;
53f9263b
KS
6425 /*
6426 * We can have a part of the split pmd here. Moving it
6427 * can be done but it would be too convoluted so simply
6428 * ignore such a partial THP and keep it in original
6429 * memcg. There should be somebody mapping the head.
6430 */
6431 if (PageTransCompound(page))
6432 goto put;
f7f9c00d 6433 if (!device && !isolate_lru_page(page))
4ffef5fe 6434 goto put;
f627c2f5
KS
6435 if (!mem_cgroup_move_account(page, false,
6436 mc.from, mc.to)) {
4ffef5fe 6437 mc.precharge--;
854ffa8d
DN
6438 /* we uncharge from mc.from later. */
6439 mc.moved_charge++;
4ffef5fe 6440 }
c733a828
JG
6441 if (!device)
6442 putback_lru_page(page);
4e0cf05f
JW
6443put: /* get_mctgt_type() gets & locks the page */
6444 unlock_page(page);
4ffef5fe
DN
6445 put_page(page);
6446 break;
02491447
DN
6447 case MC_TARGET_SWAP:
6448 ent = target.ent;
e91cbb42 6449 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6450 mc.precharge--;
8d22a935
HD
6451 mem_cgroup_id_get_many(mc.to, 1);
6452 /* we fixup other refcnts and charges later. */
483c30b5
DN
6453 mc.moved_swap++;
6454 }
02491447 6455 break;
4ffef5fe
DN
6456 default:
6457 break;
6458 }
6459 }
6460 pte_unmap_unlock(pte - 1, ptl);
6461 cond_resched();
6462
6463 if (addr != end) {
6464 /*
6465 * We have consumed all precharges we got in can_attach().
6466 * We try charge one by one, but don't do any additional
6467 * charges to mc.to if we have failed in charge once in attach()
6468 * phase.
6469 */
854ffa8d 6470 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6471 if (!ret)
6472 goto retry;
6473 }
6474
6475 return ret;
6476}
6477
7b86ac33
CH
6478static const struct mm_walk_ops charge_walk_ops = {
6479 .pmd_entry = mem_cgroup_move_charge_pte_range,
49b06385 6480 .walk_lock = PGWALK_RDLOCK,
7b86ac33
CH
6481};
6482
264a0ae1 6483static void mem_cgroup_move_charge(void)
4ffef5fe 6484{
4ffef5fe 6485 lru_add_drain_all();
312722cb 6486 /*
6c77b607 6487 * Signal folio_memcg_lock() to take the memcg's move_lock
81f8c3a4
JW
6488 * while we're moving its pages to another memcg. Then wait
6489 * for already started RCU-only updates to finish.
312722cb
JW
6490 */
6491 atomic_inc(&mc.from->moving_account);
6492 synchronize_rcu();
dfe076b0 6493retry:
d8ed45c5 6494 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6495 /*
c1e8d7c6 6496 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6497 * waitq. So we cancel all extra charges, wake up all waiters,
6498 * and retry. Because we cancel precharges, we might not be able
6499 * to move enough charges, but moving charge is a best-effort
6500 * feature anyway, so it wouldn't be a big problem.
6501 */
6502 __mem_cgroup_clear_mc();
6503 cond_resched();
6504 goto retry;
6505 }
26bcd64a
NH
6506 /*
6507 * When we have consumed all precharges and failed in doing
6508 * additional charge, the page walk just aborts.
6509 */
ba0aff8e 6510 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
d8ed45c5 6511 mmap_read_unlock(mc.mm);
312722cb 6512 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6513}
6514
264a0ae1 6515static void mem_cgroup_move_task(void)
67e465a7 6516{
264a0ae1
TH
6517 if (mc.to) {
6518 mem_cgroup_move_charge();
a433658c 6519 mem_cgroup_clear_mc();
264a0ae1 6520 }
67e465a7 6521}
1aacbd35 6522
5cfb80a7 6523#else /* !CONFIG_MMU */
1f7dd3e5 6524static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6525{
6526 return 0;
6527}
1f7dd3e5 6528static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6529{
6530}
264a0ae1 6531static void mem_cgroup_move_task(void)
5cfb80a7
DN
6532{
6533}
6534#endif
67e465a7 6535
1aacbd35
RG
6536#ifdef CONFIG_MEMCG_KMEM
6537static void mem_cgroup_fork(struct task_struct *task)
6538{
6539 /*
6540 * Set the update flag to cause task->objcg to be initialized lazily
6541 * on the first allocation. It can be done without any synchronization
6542 * because it's always performed on the current task, so does
6543 * current_objcg_update().
6544 */
6545 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
6546}
6547
6548static void mem_cgroup_exit(struct task_struct *task)
6549{
6550 struct obj_cgroup *objcg = task->objcg;
6551
6552 objcg = (struct obj_cgroup *)
6553 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
6554 if (objcg)
6555 obj_cgroup_put(objcg);
6556
6557 /*
6558 * Some kernel allocations can happen after this point,
6559 * but let's ignore them. It can be done without any synchronization
6560 * because it's always performed on the current task, so does
6561 * current_objcg_update().
6562 */
6563 task->objcg = NULL;
6564}
6565#endif
6566
bd74fdae 6567#ifdef CONFIG_LRU_GEN
1aacbd35 6568static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
bd74fdae
YZ
6569{
6570 struct task_struct *task;
6571 struct cgroup_subsys_state *css;
6572
6573 /* find the first leader if there is any */
6574 cgroup_taskset_for_each_leader(task, css, tset)
6575 break;
6576
6577 if (!task)
6578 return;
6579
6580 task_lock(task);
6581 if (task->mm && READ_ONCE(task->mm->owner) == task)
6582 lru_gen_migrate_mm(task->mm);
6583 task_unlock(task);
6584}
6585#else
1aacbd35
RG
6586static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
6587#endif /* CONFIG_LRU_GEN */
6588
6589#ifdef CONFIG_MEMCG_KMEM
6590static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
6591{
6592 struct task_struct *task;
6593 struct cgroup_subsys_state *css;
6594
6595 cgroup_taskset_for_each(task, css, tset) {
6596 /* atomically set the update bit */
6597 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
6598 }
6599}
6600#else
6601static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {}
6602#endif /* CONFIG_MEMCG_KMEM */
6603
6604#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
bd74fdae
YZ
6605static void mem_cgroup_attach(struct cgroup_taskset *tset)
6606{
1aacbd35
RG
6607 mem_cgroup_lru_gen_attach(tset);
6608 mem_cgroup_kmem_attach(tset);
bd74fdae 6609}
1aacbd35 6610#endif
bd74fdae 6611
677dc973
CD
6612static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6613{
6614 if (value == PAGE_COUNTER_MAX)
6615 seq_puts(m, "max\n");
6616 else
6617 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6618
6619 return 0;
6620}
6621
241994ed
JW
6622static u64 memory_current_read(struct cgroup_subsys_state *css,
6623 struct cftype *cft)
6624{
f5fc3c5d
JW
6625 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6626
6627 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6628}
6629
8e20d4b3
GR
6630static u64 memory_peak_read(struct cgroup_subsys_state *css,
6631 struct cftype *cft)
6632{
6633 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6634
6635 return (u64)memcg->memory.watermark * PAGE_SIZE;
6636}
6637
bf8d5d52
RG
6638static int memory_min_show(struct seq_file *m, void *v)
6639{
677dc973
CD
6640 return seq_puts_memcg_tunable(m,
6641 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6642}
6643
6644static ssize_t memory_min_write(struct kernfs_open_file *of,
6645 char *buf, size_t nbytes, loff_t off)
6646{
6647 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6648 unsigned long min;
6649 int err;
6650
6651 buf = strstrip(buf);
6652 err = page_counter_memparse(buf, "max", &min);
6653 if (err)
6654 return err;
6655
6656 page_counter_set_min(&memcg->memory, min);
6657
6658 return nbytes;
6659}
6660
241994ed
JW
6661static int memory_low_show(struct seq_file *m, void *v)
6662{
677dc973
CD
6663 return seq_puts_memcg_tunable(m,
6664 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6665}
6666
6667static ssize_t memory_low_write(struct kernfs_open_file *of,
6668 char *buf, size_t nbytes, loff_t off)
6669{
6670 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6671 unsigned long low;
6672 int err;
6673
6674 buf = strstrip(buf);
d2973697 6675 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6676 if (err)
6677 return err;
6678
23067153 6679 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6680
6681 return nbytes;
6682}
6683
6684static int memory_high_show(struct seq_file *m, void *v)
6685{
d1663a90
JK
6686 return seq_puts_memcg_tunable(m,
6687 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6688}
6689
6690static ssize_t memory_high_write(struct kernfs_open_file *of,
6691 char *buf, size_t nbytes, loff_t off)
6692{
6693 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6694 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6695 bool drained = false;
241994ed
JW
6696 unsigned long high;
6697 int err;
6698
6699 buf = strstrip(buf);
d2973697 6700 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6701 if (err)
6702 return err;
6703
e82553c1
JW
6704 page_counter_set_high(&memcg->memory, high);
6705
8c8c383c
JW
6706 for (;;) {
6707 unsigned long nr_pages = page_counter_read(&memcg->memory);
6708 unsigned long reclaimed;
6709
6710 if (nr_pages <= high)
6711 break;
6712
6713 if (signal_pending(current))
6714 break;
6715
6716 if (!drained) {
6717 drain_all_stock(memcg);
6718 drained = true;
6719 continue;
6720 }
6721
6722 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
55ab834a 6723 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
8c8c383c
JW
6724
6725 if (!reclaimed && !nr_retries--)
6726 break;
6727 }
588083bb 6728
19ce33ac 6729 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6730 return nbytes;
6731}
6732
6733static int memory_max_show(struct seq_file *m, void *v)
6734{
677dc973
CD
6735 return seq_puts_memcg_tunable(m,
6736 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6737}
6738
6739static ssize_t memory_max_write(struct kernfs_open_file *of,
6740 char *buf, size_t nbytes, loff_t off)
6741{
6742 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6743 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6744 bool drained = false;
241994ed
JW
6745 unsigned long max;
6746 int err;
6747
6748 buf = strstrip(buf);
d2973697 6749 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6750 if (err)
6751 return err;
6752
bbec2e15 6753 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6754
6755 for (;;) {
6756 unsigned long nr_pages = page_counter_read(&memcg->memory);
6757
6758 if (nr_pages <= max)
6759 break;
6760
7249c9f0 6761 if (signal_pending(current))
b6e6edcf 6762 break;
b6e6edcf
JW
6763
6764 if (!drained) {
6765 drain_all_stock(memcg);
6766 drained = true;
6767 continue;
6768 }
6769
6770 if (nr_reclaims) {
6771 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
55ab834a 6772 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
b6e6edcf
JW
6773 nr_reclaims--;
6774 continue;
6775 }
6776
e27be240 6777 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6778 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6779 break;
6780 }
241994ed 6781
2529bb3a 6782 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6783 return nbytes;
6784}
6785
1e577f97
SB
6786static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6787{
6788 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6789 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6790 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6791 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6792 seq_printf(m, "oom_kill %lu\n",
6793 atomic_long_read(&events[MEMCG_OOM_KILL]));
b6bf9abb
DS
6794 seq_printf(m, "oom_group_kill %lu\n",
6795 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
1e577f97
SB
6796}
6797
241994ed
JW
6798static int memory_events_show(struct seq_file *m, void *v)
6799{
aa9694bb 6800 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6801
1e577f97
SB
6802 __memory_events_show(m, memcg->memory_events);
6803 return 0;
6804}
6805
6806static int memory_events_local_show(struct seq_file *m, void *v)
6807{
6808 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6809
1e577f97 6810 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6811 return 0;
6812}
6813
587d9f72
JW
6814static int memory_stat_show(struct seq_file *m, void *v)
6815{
aa9694bb 6816 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
68aaee14 6817 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5b42360c 6818 struct seq_buf s;
1ff9e6e1 6819
c8713d0b
JW
6820 if (!buf)
6821 return -ENOMEM;
5b42360c
YA
6822 seq_buf_init(&s, buf, PAGE_SIZE);
6823 memory_stat_format(memcg, &s);
c8713d0b
JW
6824 seq_puts(m, buf);
6825 kfree(buf);
587d9f72
JW
6826 return 0;
6827}
6828
5f9a4f4a 6829#ifdef CONFIG_NUMA
fff66b79
MS
6830static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6831 int item)
6832{
ff841a06
YA
6833 return lruvec_page_state(lruvec, item) *
6834 memcg_page_state_output_unit(item);
fff66b79
MS
6835}
6836
5f9a4f4a
MS
6837static int memory_numa_stat_show(struct seq_file *m, void *v)
6838{
6839 int i;
6840 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6841
fd25a9e0 6842 mem_cgroup_flush_stats();
7e1c0d6f 6843
5f9a4f4a
MS
6844 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6845 int nid;
6846
6847 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6848 continue;
6849
6850 seq_printf(m, "%s", memory_stats[i].name);
6851 for_each_node_state(nid, N_MEMORY) {
6852 u64 size;
6853 struct lruvec *lruvec;
6854
6855 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6856 size = lruvec_page_state_output(lruvec,
6857 memory_stats[i].idx);
5f9a4f4a
MS
6858 seq_printf(m, " N%d=%llu", nid, size);
6859 }
6860 seq_putc(m, '\n');
6861 }
6862
6863 return 0;
6864}
6865#endif
6866
3d8b38eb
RG
6867static int memory_oom_group_show(struct seq_file *m, void *v)
6868{
aa9694bb 6869 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb 6870
eaf7b66b 6871 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
3d8b38eb
RG
6872
6873 return 0;
6874}
6875
6876static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6877 char *buf, size_t nbytes, loff_t off)
6878{
6879 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6880 int ret, oom_group;
6881
6882 buf = strstrip(buf);
6883 if (!buf)
6884 return -EINVAL;
6885
6886 ret = kstrtoint(buf, 0, &oom_group);
6887 if (ret)
6888 return ret;
6889
6890 if (oom_group != 0 && oom_group != 1)
6891 return -EINVAL;
6892
eaf7b66b 6893 WRITE_ONCE(memcg->oom_group, oom_group);
3d8b38eb
RG
6894
6895 return nbytes;
6896}
6897
94968384
SB
6898static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6899 size_t nbytes, loff_t off)
6900{
6901 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6902 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6903 unsigned long nr_to_reclaim, nr_reclaimed = 0;
55ab834a
MH
6904 unsigned int reclaim_options;
6905 int err;
12a5d395
MA
6906
6907 buf = strstrip(buf);
55ab834a
MH
6908 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6909 if (err)
6910 return err;
12a5d395 6911
55ab834a 6912 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
94968384
SB
6913 while (nr_reclaimed < nr_to_reclaim) {
6914 unsigned long reclaimed;
6915
6916 if (signal_pending(current))
6917 return -EINTR;
6918
6919 /*
6920 * This is the final attempt, drain percpu lru caches in the
6921 * hope of introducing more evictable pages for
6922 * try_to_free_mem_cgroup_pages().
6923 */
6924 if (!nr_retries)
6925 lru_add_drain_all();
6926
6927 reclaimed = try_to_free_mem_cgroup_pages(memcg,
0388536a
EY
6928 min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6929 GFP_KERNEL, reclaim_options);
94968384
SB
6930
6931 if (!reclaimed && !nr_retries--)
6932 return -EAGAIN;
6933
6934 nr_reclaimed += reclaimed;
6935 }
6936
6937 return nbytes;
6938}
6939
241994ed
JW
6940static struct cftype memory_files[] = {
6941 {
6942 .name = "current",
f5fc3c5d 6943 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6944 .read_u64 = memory_current_read,
6945 },
8e20d4b3
GR
6946 {
6947 .name = "peak",
6948 .flags = CFTYPE_NOT_ON_ROOT,
6949 .read_u64 = memory_peak_read,
6950 },
bf8d5d52
RG
6951 {
6952 .name = "min",
6953 .flags = CFTYPE_NOT_ON_ROOT,
6954 .seq_show = memory_min_show,
6955 .write = memory_min_write,
6956 },
241994ed
JW
6957 {
6958 .name = "low",
6959 .flags = CFTYPE_NOT_ON_ROOT,
6960 .seq_show = memory_low_show,
6961 .write = memory_low_write,
6962 },
6963 {
6964 .name = "high",
6965 .flags = CFTYPE_NOT_ON_ROOT,
6966 .seq_show = memory_high_show,
6967 .write = memory_high_write,
6968 },
6969 {
6970 .name = "max",
6971 .flags = CFTYPE_NOT_ON_ROOT,
6972 .seq_show = memory_max_show,
6973 .write = memory_max_write,
6974 },
6975 {
6976 .name = "events",
6977 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6978 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6979 .seq_show = memory_events_show,
6980 },
1e577f97
SB
6981 {
6982 .name = "events.local",
6983 .flags = CFTYPE_NOT_ON_ROOT,
6984 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6985 .seq_show = memory_events_local_show,
6986 },
587d9f72
JW
6987 {
6988 .name = "stat",
587d9f72
JW
6989 .seq_show = memory_stat_show,
6990 },
5f9a4f4a
MS
6991#ifdef CONFIG_NUMA
6992 {
6993 .name = "numa_stat",
6994 .seq_show = memory_numa_stat_show,
6995 },
6996#endif
3d8b38eb
RG
6997 {
6998 .name = "oom.group",
6999 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
7000 .seq_show = memory_oom_group_show,
7001 .write = memory_oom_group_write,
7002 },
94968384
SB
7003 {
7004 .name = "reclaim",
7005 .flags = CFTYPE_NS_DELEGATABLE,
7006 .write = memory_reclaim,
7007 },
241994ed
JW
7008 { } /* terminate */
7009};
7010
073219e9 7011struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 7012 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7013 .css_online = mem_cgroup_css_online,
92fb9748 7014 .css_offline = mem_cgroup_css_offline,
6df38689 7015 .css_released = mem_cgroup_css_released,
92fb9748 7016 .css_free = mem_cgroup_css_free,
1ced953b 7017 .css_reset = mem_cgroup_css_reset,
2d146aa3 7018 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0 7019 .can_attach = mem_cgroup_can_attach,
1aacbd35 7020#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
bd74fdae 7021 .attach = mem_cgroup_attach,
1aacbd35 7022#endif
7dc74be0 7023 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 7024 .post_attach = mem_cgroup_move_task,
1aacbd35
RG
7025#ifdef CONFIG_MEMCG_KMEM
7026 .fork = mem_cgroup_fork,
7027 .exit = mem_cgroup_exit,
7028#endif
241994ed
JW
7029 .dfl_cftypes = memory_files,
7030 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 7031 .early_init = 0,
8cdea7c0 7032};
c077719b 7033
bc50bcc6
JW
7034/*
7035 * This function calculates an individual cgroup's effective
7036 * protection which is derived from its own memory.min/low, its
7037 * parent's and siblings' settings, as well as the actual memory
7038 * distribution in the tree.
7039 *
7040 * The following rules apply to the effective protection values:
7041 *
7042 * 1. At the first level of reclaim, effective protection is equal to
7043 * the declared protection in memory.min and memory.low.
7044 *
7045 * 2. To enable safe delegation of the protection configuration, at
7046 * subsequent levels the effective protection is capped to the
7047 * parent's effective protection.
7048 *
7049 * 3. To make complex and dynamic subtrees easier to configure, the
7050 * user is allowed to overcommit the declared protection at a given
7051 * level. If that is the case, the parent's effective protection is
7052 * distributed to the children in proportion to how much protection
7053 * they have declared and how much of it they are utilizing.
7054 *
7055 * This makes distribution proportional, but also work-conserving:
7056 * if one cgroup claims much more protection than it uses memory,
7057 * the unused remainder is available to its siblings.
7058 *
7059 * 4. Conversely, when the declared protection is undercommitted at a
7060 * given level, the distribution of the larger parental protection
7061 * budget is NOT proportional. A cgroup's protection from a sibling
7062 * is capped to its own memory.min/low setting.
7063 *
8a931f80
JW
7064 * 5. However, to allow protecting recursive subtrees from each other
7065 * without having to declare each individual cgroup's fixed share
7066 * of the ancestor's claim to protection, any unutilized -
7067 * "floating" - protection from up the tree is distributed in
7068 * proportion to each cgroup's *usage*. This makes the protection
7069 * neutral wrt sibling cgroups and lets them compete freely over
7070 * the shared parental protection budget, but it protects the
7071 * subtree as a whole from neighboring subtrees.
7072 *
7073 * Note that 4. and 5. are not in conflict: 4. is about protecting
7074 * against immediate siblings whereas 5. is about protecting against
7075 * neighboring subtrees.
bc50bcc6
JW
7076 */
7077static unsigned long effective_protection(unsigned long usage,
8a931f80 7078 unsigned long parent_usage,
bc50bcc6
JW
7079 unsigned long setting,
7080 unsigned long parent_effective,
7081 unsigned long siblings_protected)
7082{
7083 unsigned long protected;
8a931f80 7084 unsigned long ep;
bc50bcc6
JW
7085
7086 protected = min(usage, setting);
7087 /*
7088 * If all cgroups at this level combined claim and use more
08e0f49e 7089 * protection than what the parent affords them, distribute
bc50bcc6
JW
7090 * shares in proportion to utilization.
7091 *
7092 * We are using actual utilization rather than the statically
7093 * claimed protection in order to be work-conserving: claimed
7094 * but unused protection is available to siblings that would
7095 * otherwise get a smaller chunk than what they claimed.
7096 */
7097 if (siblings_protected > parent_effective)
7098 return protected * parent_effective / siblings_protected;
7099
7100 /*
7101 * Ok, utilized protection of all children is within what the
7102 * parent affords them, so we know whatever this child claims
7103 * and utilizes is effectively protected.
7104 *
7105 * If there is unprotected usage beyond this value, reclaim
7106 * will apply pressure in proportion to that amount.
7107 *
7108 * If there is unutilized protection, the cgroup will be fully
7109 * shielded from reclaim, but we do return a smaller value for
7110 * protection than what the group could enjoy in theory. This
7111 * is okay. With the overcommit distribution above, effective
7112 * protection is always dependent on how memory is actually
7113 * consumed among the siblings anyway.
7114 */
8a931f80
JW
7115 ep = protected;
7116
7117 /*
7118 * If the children aren't claiming (all of) the protection
7119 * afforded to them by the parent, distribute the remainder in
7120 * proportion to the (unprotected) memory of each cgroup. That
7121 * way, cgroups that aren't explicitly prioritized wrt each
7122 * other compete freely over the allowance, but they are
7123 * collectively protected from neighboring trees.
7124 *
7125 * We're using unprotected memory for the weight so that if
7126 * some cgroups DO claim explicit protection, we don't protect
7127 * the same bytes twice.
cd324edc
JW
7128 *
7129 * Check both usage and parent_usage against the respective
7130 * protected values. One should imply the other, but they
7131 * aren't read atomically - make sure the division is sane.
8a931f80
JW
7132 */
7133 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
7134 return ep;
cd324edc
JW
7135 if (parent_effective > siblings_protected &&
7136 parent_usage > siblings_protected &&
7137 usage > protected) {
8a931f80
JW
7138 unsigned long unclaimed;
7139
7140 unclaimed = parent_effective - siblings_protected;
7141 unclaimed *= usage - protected;
7142 unclaimed /= parent_usage - siblings_protected;
7143
7144 ep += unclaimed;
7145 }
7146
7147 return ep;
bc50bcc6
JW
7148}
7149
241994ed 7150/**
05395718 7151 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 7152 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
7153 * @memcg: the memory cgroup to check
7154 *
23067153
RG
7155 * WARNING: This function is not stateless! It can only be used as part
7156 * of a top-down tree iteration, not for isolated queries.
241994ed 7157 */
45c7f7e1
CD
7158void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7159 struct mem_cgroup *memcg)
241994ed 7160{
8a931f80 7161 unsigned long usage, parent_usage;
23067153
RG
7162 struct mem_cgroup *parent;
7163
241994ed 7164 if (mem_cgroup_disabled())
45c7f7e1 7165 return;
241994ed 7166
34c81057
SC
7167 if (!root)
7168 root = root_mem_cgroup;
22f7496f
YS
7169
7170 /*
7171 * Effective values of the reclaim targets are ignored so they
7172 * can be stale. Have a look at mem_cgroup_protection for more
7173 * details.
7174 * TODO: calculation should be more robust so that we do not need
7175 * that special casing.
7176 */
34c81057 7177 if (memcg == root)
45c7f7e1 7178 return;
241994ed 7179
23067153 7180 usage = page_counter_read(&memcg->memory);
bf8d5d52 7181 if (!usage)
45c7f7e1 7182 return;
bf8d5d52 7183
bf8d5d52 7184 parent = parent_mem_cgroup(memcg);
df2a4196 7185
bc50bcc6 7186 if (parent == root) {
c3d53200 7187 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 7188 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 7189 return;
bf8d5d52
RG
7190 }
7191
8a931f80
JW
7192 parent_usage = page_counter_read(&parent->memory);
7193
b3a7822e 7194 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
7195 READ_ONCE(memcg->memory.min),
7196 READ_ONCE(parent->memory.emin),
b3a7822e 7197 atomic_long_read(&parent->memory.children_min_usage)));
23067153 7198
b3a7822e 7199 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
7200 READ_ONCE(memcg->memory.low),
7201 READ_ONCE(parent->memory.elow),
b3a7822e 7202 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
7203}
7204
8f425e4e
MWO
7205static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7206 gfp_t gfp)
0add0c77 7207{
0add0c77
SB
7208 int ret;
7209
4b569387 7210 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
0add0c77
SB
7211 if (ret)
7212 goto out;
7213
4b569387 7214 mem_cgroup_commit_charge(folio, memcg);
0add0c77
SB
7215out:
7216 return ret;
7217}
7218
8f425e4e 7219int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
00501b53 7220{
0add0c77
SB
7221 struct mem_cgroup *memcg;
7222 int ret;
00501b53 7223
0add0c77 7224 memcg = get_mem_cgroup_from_mm(mm);
8f425e4e 7225 ret = charge_memcg(folio, memcg, gfp);
0add0c77 7226 css_put(&memcg->css);
2d1c4980 7227
0add0c77
SB
7228 return ret;
7229}
e993d905 7230
8cba9576
NP
7231/**
7232 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
7233 * @memcg: memcg to charge.
7234 * @gfp: reclaim mode.
7235 * @nr_pages: number of pages to charge.
7236 *
7237 * This function is called when allocating a huge page folio to determine if
7238 * the memcg has the capacity for it. It does not commit the charge yet,
7239 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
7240 *
7241 * Once we have obtained the hugetlb folio, we can call
7242 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
7243 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
7244 * of try_charge().
7245 *
7246 * Returns 0 on success. Otherwise, an error code is returned.
7247 */
7248int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
7249 long nr_pages)
7250{
7251 /*
7252 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
7253 * but do not attempt to commit charge later (or cancel on error) either.
7254 */
7255 if (mem_cgroup_disabled() || !memcg ||
7256 !cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
7257 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
7258 return -EOPNOTSUPP;
7259
7260 if (try_charge(memcg, gfp, nr_pages))
7261 return -ENOMEM;
7262
7263 return 0;
7264}
7265
0add0c77 7266/**
65995918
MWO
7267 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7268 * @folio: folio to charge.
0add0c77
SB
7269 * @mm: mm context of the victim
7270 * @gfp: reclaim mode
65995918 7271 * @entry: swap entry for which the folio is allocated
0add0c77 7272 *
65995918
MWO
7273 * This function charges a folio allocated for swapin. Please call this before
7274 * adding the folio to the swapcache.
0add0c77
SB
7275 *
7276 * Returns 0 on success. Otherwise, an error code is returned.
7277 */
65995918 7278int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
0add0c77
SB
7279 gfp_t gfp, swp_entry_t entry)
7280{
7281 struct mem_cgroup *memcg;
7282 unsigned short id;
7283 int ret;
00501b53 7284
0add0c77
SB
7285 if (mem_cgroup_disabled())
7286 return 0;
00501b53 7287
0add0c77
SB
7288 id = lookup_swap_cgroup_id(entry);
7289 rcu_read_lock();
7290 memcg = mem_cgroup_from_id(id);
7291 if (!memcg || !css_tryget_online(&memcg->css))
7292 memcg = get_mem_cgroup_from_mm(mm);
7293 rcu_read_unlock();
00501b53 7294
8f425e4e 7295 ret = charge_memcg(folio, memcg, gfp);
6abb5a86 7296
0add0c77
SB
7297 css_put(&memcg->css);
7298 return ret;
7299}
00501b53 7300
0add0c77
SB
7301/*
7302 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7303 * @entry: swap entry for which the page is charged
7304 *
7305 * Call this function after successfully adding the charged page to swapcache.
7306 *
7307 * Note: This function assumes the page for which swap slot is being uncharged
7308 * is order 0 page.
7309 */
7310void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7311{
cae3af62
MS
7312 /*
7313 * Cgroup1's unified memory+swap counter has been charged with the
7314 * new swapcache page, finish the transfer by uncharging the swap
7315 * slot. The swap slot would also get uncharged when it dies, but
7316 * it can stick around indefinitely and we'd count the page twice
7317 * the entire time.
7318 *
7319 * Cgroup2 has separate resource counters for memory and swap,
7320 * so this is a non-issue here. Memory and swap charge lifetimes
7321 * correspond 1:1 to page and swap slot lifetimes: we charge the
7322 * page to memory here, and uncharge swap when the slot is freed.
7323 */
0add0c77 7324 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
7325 /*
7326 * The swap entry might not get freed for a long time,
7327 * let's not wait for it. The page already received a
7328 * memory+swap charge, drop the swap entry duplicate.
7329 */
0add0c77 7330 mem_cgroup_uncharge_swap(entry, 1);
00501b53 7331 }
3fea5a49
JW
7332}
7333
a9d5adee
JG
7334struct uncharge_gather {
7335 struct mem_cgroup *memcg;
b4e0b68f 7336 unsigned long nr_memory;
a9d5adee 7337 unsigned long pgpgout;
a9d5adee 7338 unsigned long nr_kmem;
8e88bd2d 7339 int nid;
a9d5adee
JG
7340};
7341
7342static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 7343{
a9d5adee
JG
7344 memset(ug, 0, sizeof(*ug));
7345}
7346
7347static void uncharge_batch(const struct uncharge_gather *ug)
7348{
747db954
JW
7349 unsigned long flags;
7350
b4e0b68f
MS
7351 if (ug->nr_memory) {
7352 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 7353 if (do_memsw_account())
b4e0b68f 7354 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a8c49af3
YA
7355 if (ug->nr_kmem)
7356 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
a9d5adee 7357 memcg_oom_recover(ug->memcg);
ce00a967 7358 }
747db954
JW
7359
7360 local_irq_save(flags);
c9019e9b 7361 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 7362 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
8e88bd2d 7363 memcg_check_events(ug->memcg, ug->nid);
747db954 7364 local_irq_restore(flags);
f1796544 7365
c4ed6ebf 7366 /* drop reference from uncharge_folio */
f1796544 7367 css_put(&ug->memcg->css);
a9d5adee
JG
7368}
7369
c4ed6ebf 7370static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
a9d5adee 7371{
c4ed6ebf 7372 long nr_pages;
b4e0b68f
MS
7373 struct mem_cgroup *memcg;
7374 struct obj_cgroup *objcg;
9f762dbe 7375
c4ed6ebf 7376 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
a9d5adee 7377
a9d5adee
JG
7378 /*
7379 * Nobody should be changing or seriously looking at
c4ed6ebf
MWO
7380 * folio memcg or objcg at this point, we have fully
7381 * exclusive access to the folio.
a9d5adee 7382 */
fead2b86 7383 if (folio_memcg_kmem(folio)) {
1b7e4464 7384 objcg = __folio_objcg(folio);
b4e0b68f
MS
7385 /*
7386 * This get matches the put at the end of the function and
7387 * kmem pages do not hold memcg references anymore.
7388 */
7389 memcg = get_mem_cgroup_from_objcg(objcg);
7390 } else {
1b7e4464 7391 memcg = __folio_memcg(folio);
b4e0b68f 7392 }
a9d5adee 7393
b4e0b68f
MS
7394 if (!memcg)
7395 return;
7396
7397 if (ug->memcg != memcg) {
a9d5adee
JG
7398 if (ug->memcg) {
7399 uncharge_batch(ug);
7400 uncharge_gather_clear(ug);
7401 }
b4e0b68f 7402 ug->memcg = memcg;
c4ed6ebf 7403 ug->nid = folio_nid(folio);
f1796544
MH
7404
7405 /* pairs with css_put in uncharge_batch */
b4e0b68f 7406 css_get(&memcg->css);
a9d5adee
JG
7407 }
7408
c4ed6ebf 7409 nr_pages = folio_nr_pages(folio);
a9d5adee 7410
fead2b86 7411 if (folio_memcg_kmem(folio)) {
b4e0b68f 7412 ug->nr_memory += nr_pages;
9f762dbe 7413 ug->nr_kmem += nr_pages;
b4e0b68f 7414
c4ed6ebf 7415 folio->memcg_data = 0;
b4e0b68f
MS
7416 obj_cgroup_put(objcg);
7417 } else {
7418 /* LRU pages aren't accounted at the root level */
7419 if (!mem_cgroup_is_root(memcg))
7420 ug->nr_memory += nr_pages;
18b2db3b 7421 ug->pgpgout++;
a9d5adee 7422
c4ed6ebf 7423 folio->memcg_data = 0;
b4e0b68f
MS
7424 }
7425
7426 css_put(&memcg->css);
747db954
JW
7427}
7428
bbc6b703 7429void __mem_cgroup_uncharge(struct folio *folio)
0a31bc97 7430{
a9d5adee
JG
7431 struct uncharge_gather ug;
7432
bbc6b703
MWO
7433 /* Don't touch folio->lru of any random page, pre-check: */
7434 if (!folio_memcg(folio))
0a31bc97
JW
7435 return;
7436
a9d5adee 7437 uncharge_gather_clear(&ug);
bbc6b703 7438 uncharge_folio(folio, &ug);
a9d5adee 7439 uncharge_batch(&ug);
747db954 7440}
0a31bc97 7441
747db954 7442/**
2c8d8f97 7443 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
7444 * @page_list: list of pages to uncharge
7445 *
7446 * Uncharge a list of pages previously charged with
2c8d8f97 7447 * __mem_cgroup_charge().
747db954 7448 */
2c8d8f97 7449void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 7450{
c41a40b6 7451 struct uncharge_gather ug;
c4ed6ebf 7452 struct folio *folio;
c41a40b6 7453
c41a40b6 7454 uncharge_gather_clear(&ug);
c4ed6ebf
MWO
7455 list_for_each_entry(folio, page_list, lru)
7456 uncharge_folio(folio, &ug);
c41a40b6
MS
7457 if (ug.memcg)
7458 uncharge_batch(&ug);
0a31bc97
JW
7459}
7460
7461/**
85ce2c51 7462 * mem_cgroup_replace_folio - Charge a folio's replacement.
d21bba2b
MWO
7463 * @old: Currently circulating folio.
7464 * @new: Replacement folio.
0a31bc97 7465 *
d21bba2b 7466 * Charge @new as a replacement folio for @old. @old will
85ce2c51
NP
7467 * be uncharged upon free. This is only used by the page cache
7468 * (in replace_page_cache_folio()).
0a31bc97 7469 *
d21bba2b 7470 * Both folios must be locked, @new->mapping must be set up.
0a31bc97 7471 */
85ce2c51 7472void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
0a31bc97 7473{
29833315 7474 struct mem_cgroup *memcg;
d21bba2b 7475 long nr_pages = folio_nr_pages(new);
d93c4130 7476 unsigned long flags;
0a31bc97 7477
d21bba2b
MWO
7478 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7479 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7480 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7481 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
0a31bc97
JW
7482
7483 if (mem_cgroup_disabled())
7484 return;
7485
d21bba2b
MWO
7486 /* Page cache replacement: new folio already charged? */
7487 if (folio_memcg(new))
0a31bc97
JW
7488 return;
7489
d21bba2b
MWO
7490 memcg = folio_memcg(old);
7491 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
29833315 7492 if (!memcg)
0a31bc97
JW
7493 return;
7494
44b7a8d3 7495 /* Force-charge the new page. The old one will be freed soon */
8dc87c7d
MS
7496 if (!mem_cgroup_is_root(memcg)) {
7497 page_counter_charge(&memcg->memory, nr_pages);
7498 if (do_memsw_account())
7499 page_counter_charge(&memcg->memsw, nr_pages);
7500 }
0a31bc97 7501
1a3e1f40 7502 css_get(&memcg->css);
d21bba2b 7503 commit_charge(new, memcg);
44b7a8d3 7504
d93c4130 7505 local_irq_save(flags);
6e0110c2 7506 mem_cgroup_charge_statistics(memcg, nr_pages);
d21bba2b 7507 memcg_check_events(memcg, folio_nid(new));
d93c4130 7508 local_irq_restore(flags);
0a31bc97
JW
7509}
7510
85ce2c51
NP
7511/**
7512 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
7513 * @old: Currently circulating folio.
7514 * @new: Replacement folio.
7515 *
7516 * Transfer the memcg data from the old folio to the new folio for migration.
7517 * The old folio's data info will be cleared. Note that the memory counters
7518 * will remain unchanged throughout the process.
7519 *
7520 * Both folios must be locked, @new->mapping must be set up.
7521 */
7522void mem_cgroup_migrate(struct folio *old, struct folio *new)
7523{
7524 struct mem_cgroup *memcg;
7525
7526 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7527 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7528 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7529 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
7530
7531 if (mem_cgroup_disabled())
7532 return;
7533
7534 memcg = folio_memcg(old);
8cba9576
NP
7535 /*
7536 * Note that it is normal to see !memcg for a hugetlb folio.
7537 * For e.g, itt could have been allocated when memory_hugetlb_accounting
7538 * was not selected.
7539 */
7540 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
85ce2c51
NP
7541 if (!memcg)
7542 return;
7543
7544 /* Transfer the charge and the css ref */
7545 commit_charge(new, memcg);
7546 old->memcg_data = 0;
7547}
7548
ef12947c 7549DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
7550EXPORT_SYMBOL(memcg_sockets_enabled_key);
7551
2d758073 7552void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
7553{
7554 struct mem_cgroup *memcg;
7555
2d758073
JW
7556 if (!mem_cgroup_sockets_enabled)
7557 return;
7558
e876ecc6 7559 /* Do not associate the sock with unrelated interrupted task's memcg. */
086f694a 7560 if (!in_task())
e876ecc6
SB
7561 return;
7562
11092087
JW
7563 rcu_read_lock();
7564 memcg = mem_cgroup_from_task(current);
7848ed62 7565 if (mem_cgroup_is_root(memcg))
f7e1cb6e 7566 goto out;
0db15298 7567 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7568 goto out;
8965aa28 7569 if (css_tryget(&memcg->css))
11092087 7570 sk->sk_memcg = memcg;
f7e1cb6e 7571out:
11092087
JW
7572 rcu_read_unlock();
7573}
11092087 7574
2d758073 7575void mem_cgroup_sk_free(struct sock *sk)
11092087 7576{
2d758073
JW
7577 if (sk->sk_memcg)
7578 css_put(&sk->sk_memcg->css);
11092087
JW
7579}
7580
7581/**
7582 * mem_cgroup_charge_skmem - charge socket memory
7583 * @memcg: memcg to charge
7584 * @nr_pages: number of pages to charge
4b1327be 7585 * @gfp_mask: reclaim mode
11092087
JW
7586 *
7587 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 7588 * @memcg's configured limit, %false if it doesn't.
11092087 7589 */
4b1327be
WW
7590bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7591 gfp_t gfp_mask)
11092087 7592{
f7e1cb6e 7593 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7594 struct page_counter *fail;
f7e1cb6e 7595
0db15298
JW
7596 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7597 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7598 return true;
7599 }
0db15298 7600 memcg->tcpmem_pressure = 1;
4b1327be
WW
7601 if (gfp_mask & __GFP_NOFAIL) {
7602 page_counter_charge(&memcg->tcpmem, nr_pages);
7603 return true;
7604 }
f7e1cb6e 7605 return false;
11092087 7606 }
d886f4e4 7607
4b1327be
WW
7608 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7609 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7610 return true;
4b1327be 7611 }
f7e1cb6e 7612
11092087
JW
7613 return false;
7614}
7615
7616/**
7617 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7618 * @memcg: memcg to uncharge
7619 * @nr_pages: number of pages to uncharge
11092087
JW
7620 */
7621void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7622{
f7e1cb6e 7623 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7624 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7625 return;
7626 }
d886f4e4 7627
c9019e9b 7628 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7629
475d0487 7630 refill_stock(memcg, nr_pages);
11092087
JW
7631}
7632
f7e1cb6e
JW
7633static int __init cgroup_memory(char *s)
7634{
7635 char *token;
7636
7637 while ((token = strsep(&s, ",")) != NULL) {
7638 if (!*token)
7639 continue;
7640 if (!strcmp(token, "nosocket"))
7641 cgroup_memory_nosocket = true;
04823c83
VD
7642 if (!strcmp(token, "nokmem"))
7643 cgroup_memory_nokmem = true;
b6c1a8af
YS
7644 if (!strcmp(token, "nobpf"))
7645 cgroup_memory_nobpf = true;
f7e1cb6e 7646 }
460a79e1 7647 return 1;
f7e1cb6e
JW
7648}
7649__setup("cgroup.memory=", cgroup_memory);
11092087 7650
2d11085e 7651/*
1081312f
MH
7652 * subsys_initcall() for memory controller.
7653 *
308167fc
SAS
7654 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7655 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7656 * basically everything that doesn't depend on a specific mem_cgroup structure
7657 * should be initialized from here.
2d11085e
MH
7658 */
7659static int __init mem_cgroup_init(void)
7660{
95a045f6
JW
7661 int cpu, node;
7662
f3344adf
MS
7663 /*
7664 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7665 * used for per-memcg-per-cpu caching of per-node statistics. In order
7666 * to work fine, we should make sure that the overfill threshold can't
7667 * exceed S32_MAX / PAGE_SIZE.
7668 */
7669 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7670
308167fc
SAS
7671 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7672 memcg_hotplug_cpu_dead);
95a045f6
JW
7673
7674 for_each_possible_cpu(cpu)
7675 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7676 drain_local_stock);
7677
7678 for_each_node(node) {
7679 struct mem_cgroup_tree_per_node *rtpn;
95a045f6 7680
91f0dcce 7681 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
95a045f6 7682
ef8f2327 7683 rtpn->rb_root = RB_ROOT;
fa90b2fd 7684 rtpn->rb_rightmost = NULL;
ef8f2327 7685 spin_lock_init(&rtpn->lock);
95a045f6
JW
7686 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7687 }
7688
2d11085e
MH
7689 return 0;
7690}
7691subsys_initcall(mem_cgroup_init);
21afa38e 7692
e55b9f96 7693#ifdef CONFIG_SWAP
358c07fc
AB
7694static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7695{
1c2d479a 7696 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7697 /*
7698 * The root cgroup cannot be destroyed, so it's refcount must
7699 * always be >= 1.
7700 */
7848ed62 7701 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
358c07fc
AB
7702 VM_BUG_ON(1);
7703 break;
7704 }
7705 memcg = parent_mem_cgroup(memcg);
7706 if (!memcg)
7707 memcg = root_mem_cgroup;
7708 }
7709 return memcg;
7710}
7711
21afa38e
JW
7712/**
7713 * mem_cgroup_swapout - transfer a memsw charge to swap
3ecb0087 7714 * @folio: folio whose memsw charge to transfer
21afa38e
JW
7715 * @entry: swap entry to move the charge to
7716 *
3ecb0087 7717 * Transfer the memsw charge of @folio to @entry.
21afa38e 7718 */
3ecb0087 7719void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
21afa38e 7720{
1f47b61f 7721 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7722 unsigned int nr_entries;
21afa38e
JW
7723 unsigned short oldid;
7724
3ecb0087
MWO
7725 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7726 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
21afa38e 7727
76358ab5
AS
7728 if (mem_cgroup_disabled())
7729 return;
7730
b94c4e94 7731 if (!do_memsw_account())
21afa38e
JW
7732 return;
7733
3ecb0087 7734 memcg = folio_memcg(folio);
21afa38e 7735
3ecb0087 7736 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
21afa38e
JW
7737 if (!memcg)
7738 return;
7739
1f47b61f
VD
7740 /*
7741 * In case the memcg owning these pages has been offlined and doesn't
7742 * have an ID allocated to it anymore, charge the closest online
7743 * ancestor for the swap instead and transfer the memory+swap charge.
7744 */
7745 swap_memcg = mem_cgroup_id_get_online(memcg);
3ecb0087 7746 nr_entries = folio_nr_pages(folio);
d6810d73
HY
7747 /* Get references for the tail pages, too */
7748 if (nr_entries > 1)
7749 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7750 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7751 nr_entries);
3ecb0087 7752 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7753 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7754
3ecb0087 7755 folio->memcg_data = 0;
21afa38e
JW
7756
7757 if (!mem_cgroup_is_root(memcg))
d6810d73 7758 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7759
b25806dc 7760 if (memcg != swap_memcg) {
1f47b61f 7761 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7762 page_counter_charge(&swap_memcg->memsw, nr_entries);
7763 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7764 }
7765
ce9ce665
SAS
7766 /*
7767 * Interrupts should be disabled here because the caller holds the
b93b0163 7768 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7769 * important here to have the interrupts disabled because it is the
b93b0163 7770 * only synchronisation we have for updating the per-CPU variables.
ce9ce665 7771 */
be3e67b5 7772 memcg_stats_lock();
6e0110c2 7773 mem_cgroup_charge_statistics(memcg, -nr_entries);
be3e67b5 7774 memcg_stats_unlock();
3ecb0087 7775 memcg_check_events(memcg, folio_nid(folio));
73f576c0 7776
1a3e1f40 7777 css_put(&memcg->css);
21afa38e
JW
7778}
7779
38d8b4e6 7780/**
e2e3fdc7
MWO
7781 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7782 * @folio: folio being added to swap
37e84351
VD
7783 * @entry: swap entry to charge
7784 *
e2e3fdc7 7785 * Try to charge @folio's memcg for the swap space at @entry.
37e84351
VD
7786 *
7787 * Returns 0 on success, -ENOMEM on failure.
7788 */
e2e3fdc7 7789int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
37e84351 7790{
e2e3fdc7 7791 unsigned int nr_pages = folio_nr_pages(folio);
37e84351 7792 struct page_counter *counter;
38d8b4e6 7793 struct mem_cgroup *memcg;
37e84351
VD
7794 unsigned short oldid;
7795
b94c4e94 7796 if (do_memsw_account())
37e84351
VD
7797 return 0;
7798
e2e3fdc7 7799 memcg = folio_memcg(folio);
37e84351 7800
e2e3fdc7 7801 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
37e84351
VD
7802 if (!memcg)
7803 return 0;
7804
f3a53a3a
TH
7805 if (!entry.val) {
7806 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7807 return 0;
f3a53a3a 7808 }
bb98f2c5 7809
1f47b61f
VD
7810 memcg = mem_cgroup_id_get_online(memcg);
7811
b25806dc 7812 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7813 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7814 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7815 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7816 mem_cgroup_id_put(memcg);
37e84351 7817 return -ENOMEM;
1f47b61f 7818 }
37e84351 7819
38d8b4e6
HY
7820 /* Get references for the tail pages, too */
7821 if (nr_pages > 1)
7822 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7823 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
e2e3fdc7 7824 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7825 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7826
37e84351
VD
7827 return 0;
7828}
7829
21afa38e 7830/**
01c4b28c 7831 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7832 * @entry: swap entry to uncharge
38d8b4e6 7833 * @nr_pages: the amount of swap space to uncharge
21afa38e 7834 */
01c4b28c 7835void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7836{
7837 struct mem_cgroup *memcg;
7838 unsigned short id;
7839
38d8b4e6 7840 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7841 rcu_read_lock();
adbe427b 7842 memcg = mem_cgroup_from_id(id);
21afa38e 7843 if (memcg) {
b25806dc 7844 if (!mem_cgroup_is_root(memcg)) {
b94c4e94 7845 if (do_memsw_account())
38d8b4e6 7846 page_counter_uncharge(&memcg->memsw, nr_pages);
b94c4e94
JW
7847 else
7848 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7849 }
c9019e9b 7850 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7851 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7852 }
7853 rcu_read_unlock();
7854}
7855
d8b38438
VD
7856long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7857{
7858 long nr_swap_pages = get_nr_swap_pages();
7859
b25806dc 7860 if (mem_cgroup_disabled() || do_memsw_account())
d8b38438 7861 return nr_swap_pages;
7848ed62 7862 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
d8b38438 7863 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7864 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7865 page_counter_read(&memcg->swap));
7866 return nr_swap_pages;
7867}
7868
9202d527 7869bool mem_cgroup_swap_full(struct folio *folio)
5ccc5aba
VD
7870{
7871 struct mem_cgroup *memcg;
7872
9202d527 7873 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5ccc5aba
VD
7874
7875 if (vm_swap_full())
7876 return true;
b25806dc 7877 if (do_memsw_account())
5ccc5aba
VD
7878 return false;
7879
9202d527 7880 memcg = folio_memcg(folio);
5ccc5aba
VD
7881 if (!memcg)
7882 return false;
7883
7848ed62 7884 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
4b82ab4f
JK
7885 unsigned long usage = page_counter_read(&memcg->swap);
7886
7887 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7888 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7889 return true;
4b82ab4f 7890 }
5ccc5aba
VD
7891
7892 return false;
7893}
7894
eccb52e7 7895static int __init setup_swap_account(char *s)
21afa38e 7896{
b25806dc
JW
7897 pr_warn_once("The swapaccount= commandline option is deprecated. "
7898 "Please report your usecase to linux-mm@kvack.org if you "
7899 "depend on this functionality.\n");
21afa38e
JW
7900 return 1;
7901}
eccb52e7 7902__setup("swapaccount=", setup_swap_account);
21afa38e 7903
37e84351
VD
7904static u64 swap_current_read(struct cgroup_subsys_state *css,
7905 struct cftype *cft)
7906{
7907 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7908
7909 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7910}
7911
e0e0b412
LD
7912static u64 swap_peak_read(struct cgroup_subsys_state *css,
7913 struct cftype *cft)
7914{
7915 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7916
7917 return (u64)memcg->swap.watermark * PAGE_SIZE;
7918}
7919
4b82ab4f
JK
7920static int swap_high_show(struct seq_file *m, void *v)
7921{
7922 return seq_puts_memcg_tunable(m,
7923 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7924}
7925
7926static ssize_t swap_high_write(struct kernfs_open_file *of,
7927 char *buf, size_t nbytes, loff_t off)
7928{
7929 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7930 unsigned long high;
7931 int err;
7932
7933 buf = strstrip(buf);
7934 err = page_counter_memparse(buf, "max", &high);
7935 if (err)
7936 return err;
7937
7938 page_counter_set_high(&memcg->swap, high);
7939
7940 return nbytes;
7941}
7942
37e84351
VD
7943static int swap_max_show(struct seq_file *m, void *v)
7944{
677dc973
CD
7945 return seq_puts_memcg_tunable(m,
7946 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7947}
7948
7949static ssize_t swap_max_write(struct kernfs_open_file *of,
7950 char *buf, size_t nbytes, loff_t off)
7951{
7952 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7953 unsigned long max;
7954 int err;
7955
7956 buf = strstrip(buf);
7957 err = page_counter_memparse(buf, "max", &max);
7958 if (err)
7959 return err;
7960
be09102b 7961 xchg(&memcg->swap.max, max);
37e84351
VD
7962
7963 return nbytes;
7964}
7965
f3a53a3a
TH
7966static int swap_events_show(struct seq_file *m, void *v)
7967{
aa9694bb 7968 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7969
4b82ab4f
JK
7970 seq_printf(m, "high %lu\n",
7971 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7972 seq_printf(m, "max %lu\n",
7973 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7974 seq_printf(m, "fail %lu\n",
7975 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7976
7977 return 0;
7978}
7979
37e84351
VD
7980static struct cftype swap_files[] = {
7981 {
7982 .name = "swap.current",
7983 .flags = CFTYPE_NOT_ON_ROOT,
7984 .read_u64 = swap_current_read,
7985 },
4b82ab4f
JK
7986 {
7987 .name = "swap.high",
7988 .flags = CFTYPE_NOT_ON_ROOT,
7989 .seq_show = swap_high_show,
7990 .write = swap_high_write,
7991 },
37e84351
VD
7992 {
7993 .name = "swap.max",
7994 .flags = CFTYPE_NOT_ON_ROOT,
7995 .seq_show = swap_max_show,
7996 .write = swap_max_write,
7997 },
e0e0b412
LD
7998 {
7999 .name = "swap.peak",
8000 .flags = CFTYPE_NOT_ON_ROOT,
8001 .read_u64 = swap_peak_read,
8002 },
f3a53a3a
TH
8003 {
8004 .name = "swap.events",
8005 .flags = CFTYPE_NOT_ON_ROOT,
8006 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
8007 .seq_show = swap_events_show,
8008 },
37e84351
VD
8009 { } /* terminate */
8010};
8011
eccb52e7 8012static struct cftype memsw_files[] = {
21afa38e
JW
8013 {
8014 .name = "memsw.usage_in_bytes",
8015 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
8016 .read_u64 = mem_cgroup_read_u64,
8017 },
8018 {
8019 .name = "memsw.max_usage_in_bytes",
8020 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
8021 .write = mem_cgroup_reset,
8022 .read_u64 = mem_cgroup_read_u64,
8023 },
8024 {
8025 .name = "memsw.limit_in_bytes",
8026 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
8027 .write = mem_cgroup_write,
8028 .read_u64 = mem_cgroup_read_u64,
8029 },
8030 {
8031 .name = "memsw.failcnt",
8032 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
8033 .write = mem_cgroup_reset,
8034 .read_u64 = mem_cgroup_read_u64,
8035 },
8036 { }, /* terminate */
8037};
8038
f4840ccf
JW
8039#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8040/**
8041 * obj_cgroup_may_zswap - check if this cgroup can zswap
8042 * @objcg: the object cgroup
8043 *
8044 * Check if the hierarchical zswap limit has been reached.
8045 *
8046 * This doesn't check for specific headroom, and it is not atomic
8047 * either. But with zswap, the size of the allocation is only known
be16dd76 8048 * once compression has occurred, and this optimistic pre-check avoids
f4840ccf
JW
8049 * spending cycles on compression when there is already no room left
8050 * or zswap is disabled altogether somewhere in the hierarchy.
8051 */
8052bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
8053{
8054 struct mem_cgroup *memcg, *original_memcg;
8055 bool ret = true;
8056
8057 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8058 return true;
8059
8060 original_memcg = get_mem_cgroup_from_objcg(objcg);
7848ed62 8061 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
f4840ccf
JW
8062 memcg = parent_mem_cgroup(memcg)) {
8063 unsigned long max = READ_ONCE(memcg->zswap_max);
8064 unsigned long pages;
8065
8066 if (max == PAGE_COUNTER_MAX)
8067 continue;
8068 if (max == 0) {
8069 ret = false;
8070 break;
8071 }
8072
8073 cgroup_rstat_flush(memcg->css.cgroup);
8074 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
8075 if (pages < max)
8076 continue;
8077 ret = false;
8078 break;
8079 }
8080 mem_cgroup_put(original_memcg);
8081 return ret;
8082}
8083
8084/**
8085 * obj_cgroup_charge_zswap - charge compression backend memory
8086 * @objcg: the object cgroup
8087 * @size: size of compressed object
8088 *
3a1060c2 8089 * This forces the charge after obj_cgroup_may_zswap() allowed
f4840ccf
JW
8090 * compression and storage in zwap for this cgroup to go ahead.
8091 */
8092void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
8093{
8094 struct mem_cgroup *memcg;
8095
8096 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8097 return;
8098
8099 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
8100
8101 /* PF_MEMALLOC context, charging must succeed */
8102 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
8103 VM_WARN_ON_ONCE(1);
8104
8105 rcu_read_lock();
8106 memcg = obj_cgroup_memcg(objcg);
8107 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
8108 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
8109 rcu_read_unlock();
8110}
8111
8112/**
8113 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
8114 * @objcg: the object cgroup
8115 * @size: size of compressed object
8116 *
8117 * Uncharges zswap memory on page in.
8118 */
8119void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
8120{
8121 struct mem_cgroup *memcg;
8122
8123 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8124 return;
8125
8126 obj_cgroup_uncharge(objcg, size);
8127
8128 rcu_read_lock();
8129 memcg = obj_cgroup_memcg(objcg);
8130 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
8131 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
8132 rcu_read_unlock();
8133}
8134
8135static u64 zswap_current_read(struct cgroup_subsys_state *css,
8136 struct cftype *cft)
8137{
8138 cgroup_rstat_flush(css->cgroup);
8139 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
8140}
8141
8142static int zswap_max_show(struct seq_file *m, void *v)
8143{
8144 return seq_puts_memcg_tunable(m,
8145 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
8146}
8147
8148static ssize_t zswap_max_write(struct kernfs_open_file *of,
8149 char *buf, size_t nbytes, loff_t off)
8150{
8151 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8152 unsigned long max;
8153 int err;
8154
8155 buf = strstrip(buf);
8156 err = page_counter_memparse(buf, "max", &max);
8157 if (err)
8158 return err;
8159
8160 xchg(&memcg->zswap_max, max);
8161
8162 return nbytes;
8163}
8164
8165static struct cftype zswap_files[] = {
8166 {
8167 .name = "zswap.current",
8168 .flags = CFTYPE_NOT_ON_ROOT,
8169 .read_u64 = zswap_current_read,
8170 },
8171 {
8172 .name = "zswap.max",
8173 .flags = CFTYPE_NOT_ON_ROOT,
8174 .seq_show = zswap_max_show,
8175 .write = zswap_max_write,
8176 },
8177 { } /* terminate */
8178};
8179#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
8180
21afa38e
JW
8181static int __init mem_cgroup_swap_init(void)
8182{
2d1c4980 8183 if (mem_cgroup_disabled())
eccb52e7
JW
8184 return 0;
8185
8186 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
8187 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
f4840ccf
JW
8188#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8189 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
8190#endif
21afa38e
JW
8191 return 0;
8192}
b25806dc 8193subsys_initcall(mem_cgroup_swap_init);
21afa38e 8194
e55b9f96 8195#endif /* CONFIG_SWAP */