]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm: multi-gen LRU: use macro for bitmap
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
dc90f084 56#include <linux/memremap.h>
b69408e8 57#include <linux/mm_inline.h>
5d1ea48b 58#include <linux/swap_cgroup.h>
cdec2e42 59#include <linux/cpu.h>
158e0a2d 60#include <linux/oom.h>
0056f4e6 61#include <linux/lockdep.h>
79bd9814 62#include <linux/file.h>
03248add 63#include <linux/resume_user_mode.h>
0e4b01df 64#include <linux/psi.h>
c8713d0b 65#include <linux/seq_buf.h>
6a792697 66#include <linux/sched/isolation.h>
08e552c6 67#include "internal.h"
d1a4c0b3 68#include <net/sock.h>
4bd2c1ee 69#include <net/ip.h>
f35c3a8e 70#include "slab.h"
014bb1de 71#include "swap.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
37d5985c
RG
82/* Active memory cgroup to use from an interrupt context */
83DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 84EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 85
f7e1cb6e 86/* Socket memory accounting disabled? */
0f0cace3 87static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 88
04823c83 89/* Kernel memory accounting disabled? */
17c17367 90static bool cgroup_memory_nokmem __ro_after_init;
04823c83 91
b6c1a8af
YS
92/* BPF memory accounting disabled? */
93static bool cgroup_memory_nobpf __ro_after_init;
94
97b27821
TH
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
7941d214
JW
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
b25806dc 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
7941d214
JW
103}
104
a0db00fc
KS
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
8c7c6e34 206/* for encoding cft->private value on file */
86ae53e1
GC
207enum res_type {
208 _MEM,
209 _MEMSWAP,
510fc4e1 210 _KMEM,
d55f90bf 211 _TCP,
86ae53e1
GC
212};
213
a0db00fc
KS
214#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34
KH
216#define MEMFILE_ATTR(val) ((val) & 0xffff)
217
b05706f1
KT
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
a4ebf1b6 233static inline bool task_is_dying(void)
7775face
TH
234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
70ddf637
AV
239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
9647875b 247struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 248{
9647875b 249 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
250}
251
84c07d11 252#ifdef CONFIG_MEMCG_KMEM
0764db9b 253static DEFINE_SPINLOCK(objcg_lock);
bf4f0599 254
4d5c8aed
RG
255bool mem_cgroup_kmem_disabled(void)
256{
257 return cgroup_memory_nokmem;
258}
259
f1286fae
MS
260static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261 unsigned int nr_pages);
c1a660de 262
bf4f0599
RG
263static void obj_cgroup_release(struct percpu_ref *ref)
264{
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
266 unsigned int nr_bytes;
267 unsigned int nr_pages;
268 unsigned long flags;
269
270 /*
271 * At this point all allocated objects are freed, and
272 * objcg->nr_charged_bytes can't have an arbitrary byte value.
273 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 *
275 * The following sequence can lead to it:
276 * 1) CPU0: objcg == stock->cached_objcg
277 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278 * PAGE_SIZE bytes are charged
279 * 3) CPU1: a process from another memcg is allocating something,
280 * the stock if flushed,
281 * objcg->nr_charged_bytes = PAGE_SIZE - 92
282 * 5) CPU0: we do release this object,
283 * 92 bytes are added to stock->nr_bytes
284 * 6) CPU0: stock is flushed,
285 * 92 bytes are added to objcg->nr_charged_bytes
286 *
287 * In the result, nr_charged_bytes == PAGE_SIZE.
288 * This page will be uncharged in obj_cgroup_release().
289 */
290 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292 nr_pages = nr_bytes >> PAGE_SHIFT;
293
bf4f0599 294 if (nr_pages)
f1286fae 295 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1 296
0764db9b 297 spin_lock_irqsave(&objcg_lock, flags);
bf4f0599 298 list_del(&objcg->list);
0764db9b 299 spin_unlock_irqrestore(&objcg_lock, flags);
bf4f0599
RG
300
301 percpu_ref_exit(ref);
302 kfree_rcu(objcg, rcu);
303}
304
305static struct obj_cgroup *obj_cgroup_alloc(void)
306{
307 struct obj_cgroup *objcg;
308 int ret;
309
310 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 if (!objcg)
312 return NULL;
313
314 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 GFP_KERNEL);
316 if (ret) {
317 kfree(objcg);
318 return NULL;
319 }
320 INIT_LIST_HEAD(&objcg->list);
321 return objcg;
322}
323
324static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 struct mem_cgroup *parent)
326{
327 struct obj_cgroup *objcg, *iter;
328
329 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
0764db9b 331 spin_lock_irq(&objcg_lock);
bf4f0599 332
9838354e
MS
333 /* 1) Ready to reparent active objcg. */
334 list_add(&objcg->list, &memcg->objcg_list);
335 /* 2) Reparent active objcg and already reparented objcgs to parent. */
336 list_for_each_entry(iter, &memcg->objcg_list, list)
337 WRITE_ONCE(iter->memcg, parent);
338 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
339 list_splice(&memcg->objcg_list, &parent->objcg_list);
340
0764db9b 341 spin_unlock_irq(&objcg_lock);
bf4f0599
RG
342
343 percpu_ref_kill(&objcg->refcnt);
344}
345
d7f25f8a
GC
346/*
347 * A lot of the calls to the cache allocation functions are expected to be
272911a4 348 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
349 * conditional to this static branch, we'll have to allow modules that does
350 * kmem_cache_alloc and the such to see this symbol as well
351 */
f7a449f7
RG
352DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353EXPORT_SYMBOL(memcg_kmem_online_key);
b6c1a8af
YS
354
355DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356EXPORT_SYMBOL(memcg_bpf_enabled_key);
0a432dcb 357#endif
17cc4dfe 358
ad7fa852 359/**
75376c6f
MWO
360 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361 * @folio: folio of interest
ad7fa852
TH
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
75376c6f 364 * with @folio is returned. The returned css remains associated with @folio
ad7fa852
TH
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
ad7fa852 369 */
75376c6f 370struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
ad7fa852 371{
75376c6f 372 struct mem_cgroup *memcg = folio_memcg(folio);
ad7fa852 373
9e10a130 374 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
375 memcg = root_mem_cgroup;
376
ad7fa852
TH
377 return &memcg->css;
378}
379
2fc04524
VD
380/**
381 * page_cgroup_ino - return inode number of the memcg a page is charged to
382 * @page: the page
383 *
384 * Look up the closest online ancestor of the memory cgroup @page is charged to
385 * and return its inode number or 0 if @page is not charged to any cgroup. It
386 * is safe to call this function without holding a reference to @page.
387 *
388 * Note, this function is inherently racy, because there is nothing to prevent
389 * the cgroup inode from getting torn down and potentially reallocated a moment
390 * after page_cgroup_ino() returns, so it only should be used by callers that
391 * do not care (such as procfs interfaces).
392 */
393ino_t page_cgroup_ino(struct page *page)
394{
395 struct mem_cgroup *memcg;
396 unsigned long ino = 0;
397
398 rcu_read_lock();
ec342603
YA
399 /* page_folio() is racy here, but the entire function is racy anyway */
400 memcg = folio_memcg_check(page_folio(page));
286e04b8 401
2fc04524
VD
402 while (memcg && !(memcg->css.flags & CSS_ONLINE))
403 memcg = parent_mem_cgroup(memcg);
404 if (memcg)
405 ino = cgroup_ino(memcg->css.cgroup);
406 rcu_read_unlock();
407 return ino;
408}
409
ef8f2327
MG
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 412 unsigned long new_usage_in_excess)
bb4cc1a8
AM
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
ef8f2327 416 struct mem_cgroup_per_node *mz_node;
fa90b2fd 417 bool rightmost = true;
bb4cc1a8
AM
418
419 if (mz->on_tree)
420 return;
421
422 mz->usage_in_excess = new_usage_in_excess;
423 if (!mz->usage_in_excess)
424 return;
425 while (*p) {
426 parent = *p;
ef8f2327 427 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 428 tree_node);
fa90b2fd 429 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 430 p = &(*p)->rb_left;
fa90b2fd 431 rightmost = false;
378876b0 432 } else {
bb4cc1a8 433 p = &(*p)->rb_right;
378876b0 434 }
bb4cc1a8 435 }
fa90b2fd
DB
436
437 if (rightmost)
438 mctz->rb_rightmost = &mz->tree_node;
439
bb4cc1a8
AM
440 rb_link_node(&mz->tree_node, parent, p);
441 rb_insert_color(&mz->tree_node, &mctz->rb_root);
442 mz->on_tree = true;
443}
444
ef8f2327
MG
445static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
447{
448 if (!mz->on_tree)
449 return;
fa90b2fd
DB
450
451 if (&mz->tree_node == mctz->rb_rightmost)
452 mctz->rb_rightmost = rb_prev(&mz->tree_node);
453
bb4cc1a8
AM
454 rb_erase(&mz->tree_node, &mctz->rb_root);
455 mz->on_tree = false;
456}
457
ef8f2327
MG
458static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 460{
0a31bc97
JW
461 unsigned long flags;
462
463 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 464 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 465 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
466}
467
3e32cb2e
JW
468static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469{
470 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 471 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
472 unsigned long excess = 0;
473
474 if (nr_pages > soft_limit)
475 excess = nr_pages - soft_limit;
476
477 return excess;
478}
bb4cc1a8 479
658b69c9 480static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
bb4cc1a8 481{
3e32cb2e 482 unsigned long excess;
ef8f2327
MG
483 struct mem_cgroup_per_node *mz;
484 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 485
e4dde56c 486 if (lru_gen_enabled()) {
36c7b4db
A
487 if (soft_limit_excess(memcg))
488 lru_gen_soft_reclaim(&memcg->nodeinfo[nid]->lruvec);
e4dde56c
YZ
489 return;
490 }
491
2ab082ba 492 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
493 if (!mctz)
494 return;
bb4cc1a8
AM
495 /*
496 * Necessary to update all ancestors when hierarchy is used.
497 * because their event counter is not touched.
498 */
499 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
658b69c9 500 mz = memcg->nodeinfo[nid];
3e32cb2e 501 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
502 /*
503 * We have to update the tree if mz is on RB-tree or
504 * mem is over its softlimit.
505 */
506 if (excess || mz->on_tree) {
0a31bc97
JW
507 unsigned long flags;
508
509 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
510 /* if on-tree, remove it */
511 if (mz->on_tree)
cf2c8127 512 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
513 /*
514 * Insert again. mz->usage_in_excess will be updated.
515 * If excess is 0, no tree ops.
516 */
cf2c8127 517 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 518 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
519 }
520 }
521}
522
523static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524{
ef8f2327
MG
525 struct mem_cgroup_tree_per_node *mctz;
526 struct mem_cgroup_per_node *mz;
527 int nid;
bb4cc1a8 528
e231875b 529 for_each_node(nid) {
a3747b53 530 mz = memcg->nodeinfo[nid];
2ab082ba 531 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
532 if (mctz)
533 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
534 }
535}
536
ef8f2327
MG
537static struct mem_cgroup_per_node *
538__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 539{
ef8f2327 540 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
541
542retry:
543 mz = NULL;
fa90b2fd 544 if (!mctz->rb_rightmost)
bb4cc1a8
AM
545 goto done; /* Nothing to reclaim from */
546
fa90b2fd
DB
547 mz = rb_entry(mctz->rb_rightmost,
548 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
549 /*
550 * Remove the node now but someone else can add it back,
551 * we will to add it back at the end of reclaim to its correct
552 * position in the tree.
553 */
cf2c8127 554 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 555 if (!soft_limit_excess(mz->memcg) ||
8965aa28 556 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
557 goto retry;
558done:
559 return mz;
560}
561
ef8f2327
MG
562static struct mem_cgroup_per_node *
563mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 564{
ef8f2327 565 struct mem_cgroup_per_node *mz;
bb4cc1a8 566
0a31bc97 567 spin_lock_irq(&mctz->lock);
bb4cc1a8 568 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 569 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
570 return mz;
571}
572
11192d9c
SB
573/*
574 * memcg and lruvec stats flushing
575 *
576 * Many codepaths leading to stats update or read are performance sensitive and
577 * adding stats flushing in such codepaths is not desirable. So, to optimize the
578 * flushing the kernel does:
579 *
580 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581 * rstat update tree grow unbounded.
582 *
583 * 2) Flush the stats synchronously on reader side only when there are more than
584 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586 * only for 2 seconds due to (1).
587 */
588static void flush_memcg_stats_dwork(struct work_struct *w);
589static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
11192d9c 590static DEFINE_PER_CPU(unsigned int, stats_updates);
3cd9992b 591static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
11192d9c 592static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
9b301615
SB
593static u64 flush_next_time;
594
595#define FLUSH_TIME (2UL*HZ)
11192d9c 596
be3e67b5
SAS
597/*
598 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599 * not rely on this as part of an acquired spinlock_t lock. These functions are
600 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601 * is sufficient.
602 */
603static void memcg_stats_lock(void)
604{
e575d401
TG
605 preempt_disable_nested();
606 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
607}
608
609static void __memcg_stats_lock(void)
610{
e575d401 611 preempt_disable_nested();
be3e67b5
SAS
612}
613
614static void memcg_stats_unlock(void)
615{
e575d401 616 preempt_enable_nested();
be3e67b5
SAS
617}
618
5b3be698 619static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
11192d9c 620{
5b3be698
SB
621 unsigned int x;
622
f9d911ca
YA
623 if (!val)
624 return;
625
11192d9c 626 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
5b3be698
SB
627
628 x = __this_cpu_add_return(stats_updates, abs(val));
629 if (x > MEMCG_CHARGE_BATCH) {
873f64b7
JS
630 /*
631 * If stats_flush_threshold exceeds the threshold
632 * (>num_online_cpus()), cgroup stats update will be triggered
633 * in __mem_cgroup_flush_stats(). Increasing this var further
634 * is redundant and simply adds overhead in atomic update.
635 */
636 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
5b3be698
SB
638 __this_cpu_write(stats_updates, 0);
639 }
11192d9c
SB
640}
641
35822fda 642static void do_flush_stats(void)
11192d9c 643{
3cd9992b
YA
644 /*
645 * We always flush the entire tree, so concurrent flushers can just
646 * skip. This avoids a thundering herd problem on the rstat global lock
647 * from memcg flushers (e.g. reclaim, refault, etc).
648 */
649 if (atomic_read(&stats_flush_ongoing) ||
650 atomic_xchg(&stats_flush_ongoing, 1))
11192d9c
SB
651 return;
652
3cd9992b 653 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
9fad9aee 654
35822fda 655 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
9fad9aee 656
11192d9c 657 atomic_set(&stats_flush_threshold, 0);
3cd9992b 658 atomic_set(&stats_flush_ongoing, 0);
11192d9c
SB
659}
660
661void mem_cgroup_flush_stats(void)
662{
35822fda
YA
663 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
664 do_flush_stats();
9fad9aee
YA
665}
666
4009b2f1 667void mem_cgroup_flush_stats_ratelimited(void)
9b301615 668{
3cd9992b 669 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
4009b2f1 670 mem_cgroup_flush_stats();
9b301615
SB
671}
672
11192d9c
SB
673static void flush_memcg_stats_dwork(struct work_struct *w)
674{
9fad9aee
YA
675 /*
676 * Always flush here so that flushing in latency-sensitive paths is
677 * as cheap as possible.
678 */
35822fda 679 do_flush_stats();
9b301615 680 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
11192d9c
SB
681}
682
d396def5
SB
683/* Subset of vm_event_item to report for memcg event stats */
684static const unsigned int memcg_vm_event_stat[] = {
8278f1c7
SB
685 PGPGIN,
686 PGPGOUT,
d396def5
SB
687 PGSCAN_KSWAPD,
688 PGSCAN_DIRECT,
57e9cc50 689 PGSCAN_KHUGEPAGED,
d396def5
SB
690 PGSTEAL_KSWAPD,
691 PGSTEAL_DIRECT,
57e9cc50 692 PGSTEAL_KHUGEPAGED,
d396def5
SB
693 PGFAULT,
694 PGMAJFAULT,
695 PGREFILL,
696 PGACTIVATE,
697 PGDEACTIVATE,
698 PGLAZYFREE,
699 PGLAZYFREED,
700#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
701 ZSWPIN,
702 ZSWPOUT,
703#endif
704#ifdef CONFIG_TRANSPARENT_HUGEPAGE
705 THP_FAULT_ALLOC,
706 THP_COLLAPSE_ALLOC,
707#endif
708};
709
8278f1c7
SB
710#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
711static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
712
713static void init_memcg_events(void)
714{
715 int i;
716
717 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
718 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
719}
720
721static inline int memcg_events_index(enum vm_event_item idx)
722{
723 return mem_cgroup_events_index[idx] - 1;
724}
725
410f8e82
SB
726struct memcg_vmstats_percpu {
727 /* Local (CPU and cgroup) page state & events */
728 long state[MEMCG_NR_STAT];
8278f1c7 729 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
730
731 /* Delta calculation for lockless upward propagation */
732 long state_prev[MEMCG_NR_STAT];
8278f1c7 733 unsigned long events_prev[NR_MEMCG_EVENTS];
410f8e82
SB
734
735 /* Cgroup1: threshold notifications & softlimit tree updates */
736 unsigned long nr_page_events;
737 unsigned long targets[MEM_CGROUP_NTARGETS];
738};
739
740struct memcg_vmstats {
741 /* Aggregated (CPU and subtree) page state & events */
742 long state[MEMCG_NR_STAT];
8278f1c7 743 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
744
745 /* Pending child counts during tree propagation */
746 long state_pending[MEMCG_NR_STAT];
8278f1c7 747 unsigned long events_pending[NR_MEMCG_EVENTS];
410f8e82
SB
748};
749
750unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
751{
752 long x = READ_ONCE(memcg->vmstats->state[idx]);
753#ifdef CONFIG_SMP
754 if (x < 0)
755 x = 0;
756#endif
757 return x;
758}
759
db9adbcb
JW
760/**
761 * __mod_memcg_state - update cgroup memory statistics
762 * @memcg: the memory cgroup
763 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
764 * @val: delta to add to the counter, can be negative
765 */
766void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
767{
db9adbcb
JW
768 if (mem_cgroup_disabled())
769 return;
770
2d146aa3 771 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
5b3be698 772 memcg_rstat_updated(memcg, val);
db9adbcb
JW
773}
774
2d146aa3 775/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
776static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
777{
778 long x = 0;
779 int cpu;
780
781 for_each_possible_cpu(cpu)
2d146aa3 782 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
783#ifdef CONFIG_SMP
784 if (x < 0)
785 x = 0;
786#endif
787 return x;
788}
789
eedc4e5a
RG
790void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
791 int val)
db9adbcb
JW
792{
793 struct mem_cgroup_per_node *pn;
42a30035 794 struct mem_cgroup *memcg;
db9adbcb 795
db9adbcb 796 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 797 memcg = pn->memcg;
db9adbcb 798
be3e67b5
SAS
799 /*
800 * The caller from rmap relay on disabled preemption becase they never
801 * update their counter from in-interrupt context. For these two
802 * counters we check that the update is never performed from an
803 * interrupt context while other caller need to have disabled interrupt.
804 */
805 __memcg_stats_lock();
e575d401 806 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
be3e67b5
SAS
807 switch (idx) {
808 case NR_ANON_MAPPED:
809 case NR_FILE_MAPPED:
810 case NR_ANON_THPS:
811 case NR_SHMEM_PMDMAPPED:
812 case NR_FILE_PMDMAPPED:
813 WARN_ON_ONCE(!in_task());
814 break;
815 default:
e575d401 816 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
817 }
818 }
819
db9adbcb 820 /* Update memcg */
11192d9c 821 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
db9adbcb 822
b4c46484 823 /* Update lruvec */
7e1c0d6f 824 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
11192d9c 825
5b3be698 826 memcg_rstat_updated(memcg, val);
be3e67b5 827 memcg_stats_unlock();
db9adbcb
JW
828}
829
eedc4e5a
RG
830/**
831 * __mod_lruvec_state - update lruvec memory statistics
832 * @lruvec: the lruvec
833 * @idx: the stat item
834 * @val: delta to add to the counter, can be negative
835 *
836 * The lruvec is the intersection of the NUMA node and a cgroup. This
837 * function updates the all three counters that are affected by a
838 * change of state at this level: per-node, per-cgroup, per-lruvec.
839 */
840void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
841 int val)
842{
843 /* Update node */
844 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
845
846 /* Update memcg and lruvec */
847 if (!mem_cgroup_disabled())
848 __mod_memcg_lruvec_state(lruvec, idx, val);
849}
850
c47d5032
SB
851void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
852 int val)
853{
854 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 855 struct mem_cgroup *memcg;
c47d5032
SB
856 pg_data_t *pgdat = page_pgdat(page);
857 struct lruvec *lruvec;
858
b4e0b68f
MS
859 rcu_read_lock();
860 memcg = page_memcg(head);
c47d5032 861 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 862 if (!memcg) {
b4e0b68f 863 rcu_read_unlock();
c47d5032
SB
864 __mod_node_page_state(pgdat, idx, val);
865 return;
866 }
867
d635a69d 868 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 869 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 870 rcu_read_unlock();
c47d5032 871}
f0c0c115 872EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 873
da3ceeff 874void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 875{
4f103c63 876 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
877 struct mem_cgroup *memcg;
878 struct lruvec *lruvec;
879
880 rcu_read_lock();
fc4db90f 881 memcg = mem_cgroup_from_slab_obj(p);
ec9f0238 882
8faeb1ff
MS
883 /*
884 * Untracked pages have no memcg, no lruvec. Update only the
885 * node. If we reparent the slab objects to the root memcg,
886 * when we free the slab object, we need to update the per-memcg
887 * vmstats to keep it correct for the root memcg.
888 */
889 if (!memcg) {
ec9f0238
RG
890 __mod_node_page_state(pgdat, idx, val);
891 } else {
867e5e1d 892 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
893 __mod_lruvec_state(lruvec, idx, val);
894 }
895 rcu_read_unlock();
896}
897
db9adbcb
JW
898/**
899 * __count_memcg_events - account VM events in a cgroup
900 * @memcg: the memory cgroup
901 * @idx: the event item
f0953a1b 902 * @count: the number of events that occurred
db9adbcb
JW
903 */
904void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
905 unsigned long count)
906{
8278f1c7
SB
907 int index = memcg_events_index(idx);
908
909 if (mem_cgroup_disabled() || index < 0)
db9adbcb
JW
910 return;
911
be3e67b5 912 memcg_stats_lock();
8278f1c7 913 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
5b3be698 914 memcg_rstat_updated(memcg, count);
be3e67b5 915 memcg_stats_unlock();
db9adbcb
JW
916}
917
42a30035 918static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 919{
8278f1c7
SB
920 int index = memcg_events_index(event);
921
922 if (index < 0)
923 return 0;
924 return READ_ONCE(memcg->vmstats->events[index]);
e9f8974f
JW
925}
926
42a30035
JW
927static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
928{
815744d7
JW
929 long x = 0;
930 int cpu;
8278f1c7
SB
931 int index = memcg_events_index(event);
932
933 if (index < 0)
934 return 0;
815744d7
JW
935
936 for_each_possible_cpu(cpu)
8278f1c7 937 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
815744d7 938 return x;
42a30035
JW
939}
940
c0ff4b85 941static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
3fba69a5 942 int nr_pages)
d52aa412 943{
e401f176
KH
944 /* pagein of a big page is an event. So, ignore page size */
945 if (nr_pages > 0)
c9019e9b 946 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 947 else {
c9019e9b 948 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
949 nr_pages = -nr_pages; /* for event */
950 }
e401f176 951
871789d4 952 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
953}
954
f53d7ce3
JW
955static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
956 enum mem_cgroup_events_target target)
7a159cc9
JW
957{
958 unsigned long val, next;
959
871789d4
CD
960 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
961 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 962 /* from time_after() in jiffies.h */
6a1a8b80 963 if ((long)(next - val) < 0) {
f53d7ce3
JW
964 switch (target) {
965 case MEM_CGROUP_TARGET_THRESH:
966 next = val + THRESHOLDS_EVENTS_TARGET;
967 break;
bb4cc1a8
AM
968 case MEM_CGROUP_TARGET_SOFTLIMIT:
969 next = val + SOFTLIMIT_EVENTS_TARGET;
970 break;
f53d7ce3
JW
971 default:
972 break;
973 }
871789d4 974 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 975 return true;
7a159cc9 976 }
f53d7ce3 977 return false;
d2265e6f
KH
978}
979
980/*
981 * Check events in order.
982 *
983 */
8e88bd2d 984static void memcg_check_events(struct mem_cgroup *memcg, int nid)
d2265e6f 985{
2343e88d
SAS
986 if (IS_ENABLED(CONFIG_PREEMPT_RT))
987 return;
988
d2265e6f 989 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
990 if (unlikely(mem_cgroup_event_ratelimit(memcg,
991 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 992 bool do_softlimit;
f53d7ce3 993
bb4cc1a8
AM
994 do_softlimit = mem_cgroup_event_ratelimit(memcg,
995 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 996 mem_cgroup_threshold(memcg);
bb4cc1a8 997 if (unlikely(do_softlimit))
8e88bd2d 998 mem_cgroup_update_tree(memcg, nid);
0a31bc97 999 }
d2265e6f
KH
1000}
1001
cf475ad2 1002struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1003{
31a78f23
BS
1004 /*
1005 * mm_update_next_owner() may clear mm->owner to NULL
1006 * if it races with swapoff, page migration, etc.
1007 * So this can be called with p == NULL.
1008 */
1009 if (unlikely(!p))
1010 return NULL;
1011
073219e9 1012 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1013}
33398cf2 1014EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1015
04f94e3f
DS
1016static __always_inline struct mem_cgroup *active_memcg(void)
1017{
55a68c82 1018 if (!in_task())
04f94e3f
DS
1019 return this_cpu_read(int_active_memcg);
1020 else
1021 return current->active_memcg;
1022}
1023
d46eb14b
SB
1024/**
1025 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1026 * @mm: mm from which memcg should be extracted. It can be NULL.
1027 *
04f94e3f
DS
1028 * Obtain a reference on mm->memcg and returns it if successful. If mm
1029 * is NULL, then the memcg is chosen as follows:
1030 * 1) The active memcg, if set.
1031 * 2) current->mm->memcg, if available
1032 * 3) root memcg
1033 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
1034 */
1035struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1036{
d46eb14b
SB
1037 struct mem_cgroup *memcg;
1038
1039 if (mem_cgroup_disabled())
1040 return NULL;
0b7f569e 1041
2884b6b7
MS
1042 /*
1043 * Page cache insertions can happen without an
1044 * actual mm context, e.g. during disk probing
1045 * on boot, loopback IO, acct() writes etc.
1046 *
1047 * No need to css_get on root memcg as the reference
1048 * counting is disabled on the root level in the
1049 * cgroup core. See CSS_NO_REF.
1050 */
04f94e3f
DS
1051 if (unlikely(!mm)) {
1052 memcg = active_memcg();
1053 if (unlikely(memcg)) {
1054 /* remote memcg must hold a ref */
1055 css_get(&memcg->css);
1056 return memcg;
1057 }
1058 mm = current->mm;
1059 if (unlikely(!mm))
1060 return root_mem_cgroup;
1061 }
2884b6b7 1062
54595fe2
KH
1063 rcu_read_lock();
1064 do {
2884b6b7
MS
1065 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1066 if (unlikely(!memcg))
df381975 1067 memcg = root_mem_cgroup;
00d484f3 1068 } while (!css_tryget(&memcg->css));
54595fe2 1069 rcu_read_unlock();
c0ff4b85 1070 return memcg;
54595fe2 1071}
d46eb14b
SB
1072EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1073
4127c650
RG
1074static __always_inline bool memcg_kmem_bypass(void)
1075{
1076 /* Allow remote memcg charging from any context. */
1077 if (unlikely(active_memcg()))
1078 return false;
1079
1080 /* Memcg to charge can't be determined. */
6126891c 1081 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
4127c650
RG
1082 return true;
1083
1084 return false;
1085}
1086
5660048c
JW
1087/**
1088 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1089 * @root: hierarchy root
1090 * @prev: previously returned memcg, NULL on first invocation
1091 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1092 *
1093 * Returns references to children of the hierarchy below @root, or
1094 * @root itself, or %NULL after a full round-trip.
1095 *
1096 * Caller must pass the return value in @prev on subsequent
1097 * invocations for reference counting, or use mem_cgroup_iter_break()
1098 * to cancel a hierarchy walk before the round-trip is complete.
1099 *
05bdc520
ML
1100 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1101 * in the hierarchy among all concurrent reclaimers operating on the
1102 * same node.
5660048c 1103 */
694fbc0f 1104struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1105 struct mem_cgroup *prev,
694fbc0f 1106 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1107{
3f649ab7 1108 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1109 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1110 struct mem_cgroup *memcg = NULL;
5ac8fb31 1111 struct mem_cgroup *pos = NULL;
711d3d2c 1112
694fbc0f
AM
1113 if (mem_cgroup_disabled())
1114 return NULL;
5660048c 1115
9f3a0d09
JW
1116 if (!root)
1117 root = root_mem_cgroup;
7d74b06f 1118
542f85f9 1119 rcu_read_lock();
5f578161 1120
5ac8fb31 1121 if (reclaim) {
ef8f2327 1122 struct mem_cgroup_per_node *mz;
5ac8fb31 1123
a3747b53 1124 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1125 iter = &mz->iter;
5ac8fb31 1126
a9320aae
WY
1127 /*
1128 * On start, join the current reclaim iteration cycle.
1129 * Exit when a concurrent walker completes it.
1130 */
1131 if (!prev)
1132 reclaim->generation = iter->generation;
1133 else if (reclaim->generation != iter->generation)
5ac8fb31
JW
1134 goto out_unlock;
1135
6df38689 1136 while (1) {
4db0c3c2 1137 pos = READ_ONCE(iter->position);
6df38689
VD
1138 if (!pos || css_tryget(&pos->css))
1139 break;
5ac8fb31 1140 /*
6df38689
VD
1141 * css reference reached zero, so iter->position will
1142 * be cleared by ->css_released. However, we should not
1143 * rely on this happening soon, because ->css_released
1144 * is called from a work queue, and by busy-waiting we
1145 * might block it. So we clear iter->position right
1146 * away.
5ac8fb31 1147 */
6df38689
VD
1148 (void)cmpxchg(&iter->position, pos, NULL);
1149 }
89d8330c
WY
1150 } else if (prev) {
1151 pos = prev;
5ac8fb31
JW
1152 }
1153
1154 if (pos)
1155 css = &pos->css;
1156
1157 for (;;) {
1158 css = css_next_descendant_pre(css, &root->css);
1159 if (!css) {
1160 /*
1161 * Reclaimers share the hierarchy walk, and a
1162 * new one might jump in right at the end of
1163 * the hierarchy - make sure they see at least
1164 * one group and restart from the beginning.
1165 */
1166 if (!prev)
1167 continue;
1168 break;
527a5ec9 1169 }
7d74b06f 1170
5ac8fb31
JW
1171 /*
1172 * Verify the css and acquire a reference. The root
1173 * is provided by the caller, so we know it's alive
1174 * and kicking, and don't take an extra reference.
1175 */
41555dad
WY
1176 if (css == &root->css || css_tryget(css)) {
1177 memcg = mem_cgroup_from_css(css);
0b8f73e1 1178 break;
41555dad 1179 }
9f3a0d09 1180 }
5ac8fb31
JW
1181
1182 if (reclaim) {
5ac8fb31 1183 /*
6df38689
VD
1184 * The position could have already been updated by a competing
1185 * thread, so check that the value hasn't changed since we read
1186 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1187 */
6df38689
VD
1188 (void)cmpxchg(&iter->position, pos, memcg);
1189
5ac8fb31
JW
1190 if (pos)
1191 css_put(&pos->css);
1192
1193 if (!memcg)
1194 iter->generation++;
9f3a0d09 1195 }
5ac8fb31 1196
542f85f9
MH
1197out_unlock:
1198 rcu_read_unlock();
c40046f3
MH
1199 if (prev && prev != root)
1200 css_put(&prev->css);
1201
9f3a0d09 1202 return memcg;
14067bb3 1203}
7d74b06f 1204
5660048c
JW
1205/**
1206 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1207 * @root: hierarchy root
1208 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1209 */
1210void mem_cgroup_iter_break(struct mem_cgroup *root,
1211 struct mem_cgroup *prev)
9f3a0d09
JW
1212{
1213 if (!root)
1214 root = root_mem_cgroup;
1215 if (prev && prev != root)
1216 css_put(&prev->css);
1217}
7d74b06f 1218
54a83d6b
MC
1219static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1220 struct mem_cgroup *dead_memcg)
6df38689 1221{
6df38689 1222 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1223 struct mem_cgroup_per_node *mz;
1224 int nid;
6df38689 1225
54a83d6b 1226 for_each_node(nid) {
a3747b53 1227 mz = from->nodeinfo[nid];
9da83f3f
YS
1228 iter = &mz->iter;
1229 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1230 }
1231}
1232
54a83d6b
MC
1233static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1234{
1235 struct mem_cgroup *memcg = dead_memcg;
1236 struct mem_cgroup *last;
1237
1238 do {
1239 __invalidate_reclaim_iterators(memcg, dead_memcg);
1240 last = memcg;
1241 } while ((memcg = parent_mem_cgroup(memcg)));
1242
1243 /*
b8dd3ee9 1244 * When cgroup1 non-hierarchy mode is used,
54a83d6b
MC
1245 * parent_mem_cgroup() does not walk all the way up to the
1246 * cgroup root (root_mem_cgroup). So we have to handle
1247 * dead_memcg from cgroup root separately.
1248 */
7848ed62 1249 if (!mem_cgroup_is_root(last))
54a83d6b
MC
1250 __invalidate_reclaim_iterators(root_mem_cgroup,
1251 dead_memcg);
1252}
1253
7c5f64f8
VD
1254/**
1255 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1256 * @memcg: hierarchy root
1257 * @fn: function to call for each task
1258 * @arg: argument passed to @fn
1259 *
1260 * This function iterates over tasks attached to @memcg or to any of its
1261 * descendants and calls @fn for each task. If @fn returns a non-zero
1262 * value, the function breaks the iteration loop and returns the value.
1263 * Otherwise, it will iterate over all tasks and return 0.
1264 *
1265 * This function must not be called for the root memory cgroup.
1266 */
1267int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1268 int (*fn)(struct task_struct *, void *), void *arg)
1269{
1270 struct mem_cgroup *iter;
1271 int ret = 0;
1272
7848ed62 1273 BUG_ON(mem_cgroup_is_root(memcg));
7c5f64f8
VD
1274
1275 for_each_mem_cgroup_tree(iter, memcg) {
1276 struct css_task_iter it;
1277 struct task_struct *task;
1278
f168a9a5 1279 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1280 while (!ret && (task = css_task_iter_next(&it)))
1281 ret = fn(task, arg);
1282 css_task_iter_end(&it);
1283 if (ret) {
1284 mem_cgroup_iter_break(memcg, iter);
1285 break;
1286 }
1287 }
1288 return ret;
1289}
1290
6168d0da 1291#ifdef CONFIG_DEBUG_VM
e809c3fe 1292void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
6168d0da
AS
1293{
1294 struct mem_cgroup *memcg;
1295
1296 if (mem_cgroup_disabled())
1297 return;
1298
e809c3fe 1299 memcg = folio_memcg(folio);
6168d0da
AS
1300
1301 if (!memcg)
7848ed62 1302 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
6168d0da 1303 else
e809c3fe 1304 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
6168d0da
AS
1305}
1306#endif
1307
6168d0da 1308/**
e809c3fe
MWO
1309 * folio_lruvec_lock - Lock the lruvec for a folio.
1310 * @folio: Pointer to the folio.
6168d0da 1311 *
d7e3aba5 1312 * These functions are safe to use under any of the following conditions:
e809c3fe
MWO
1313 * - folio locked
1314 * - folio_test_lru false
1315 * - folio_memcg_lock()
1316 * - folio frozen (refcount of 0)
1317 *
1318 * Return: The lruvec this folio is on with its lock held.
6168d0da 1319 */
e809c3fe 1320struct lruvec *folio_lruvec_lock(struct folio *folio)
6168d0da 1321{
e809c3fe 1322 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1323
6168d0da 1324 spin_lock(&lruvec->lru_lock);
e809c3fe 1325 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1326
1327 return lruvec;
1328}
1329
e809c3fe
MWO
1330/**
1331 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1332 * @folio: Pointer to the folio.
1333 *
1334 * These functions are safe to use under any of the following conditions:
1335 * - folio locked
1336 * - folio_test_lru false
1337 * - folio_memcg_lock()
1338 * - folio frozen (refcount of 0)
1339 *
1340 * Return: The lruvec this folio is on with its lock held and interrupts
1341 * disabled.
1342 */
1343struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
6168d0da 1344{
e809c3fe 1345 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1346
6168d0da 1347 spin_lock_irq(&lruvec->lru_lock);
e809c3fe 1348 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1349
1350 return lruvec;
1351}
1352
e809c3fe
MWO
1353/**
1354 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1355 * @folio: Pointer to the folio.
1356 * @flags: Pointer to irqsave flags.
1357 *
1358 * These functions are safe to use under any of the following conditions:
1359 * - folio locked
1360 * - folio_test_lru false
1361 * - folio_memcg_lock()
1362 * - folio frozen (refcount of 0)
1363 *
1364 * Return: The lruvec this folio is on with its lock held and interrupts
1365 * disabled.
1366 */
1367struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1368 unsigned long *flags)
6168d0da 1369{
e809c3fe 1370 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1371
6168d0da 1372 spin_lock_irqsave(&lruvec->lru_lock, *flags);
e809c3fe 1373 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1374
1375 return lruvec;
1376}
1377
925b7673 1378/**
fa9add64
HD
1379 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1380 * @lruvec: mem_cgroup per zone lru vector
1381 * @lru: index of lru list the page is sitting on
b4536f0c 1382 * @zid: zone id of the accounted pages
fa9add64 1383 * @nr_pages: positive when adding or negative when removing
925b7673 1384 *
ca707239 1385 * This function must be called under lru_lock, just before a page is added
07ca7606 1386 * to or just after a page is removed from an lru list.
3f58a829 1387 */
fa9add64 1388void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1389 int zid, int nr_pages)
3f58a829 1390{
ef8f2327 1391 struct mem_cgroup_per_node *mz;
fa9add64 1392 unsigned long *lru_size;
ca707239 1393 long size;
3f58a829
MK
1394
1395 if (mem_cgroup_disabled())
1396 return;
1397
ef8f2327 1398 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1399 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1400
1401 if (nr_pages < 0)
1402 *lru_size += nr_pages;
1403
1404 size = *lru_size;
b4536f0c
MH
1405 if (WARN_ONCE(size < 0,
1406 "%s(%p, %d, %d): lru_size %ld\n",
1407 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1408 VM_BUG_ON(1);
1409 *lru_size = 0;
1410 }
1411
1412 if (nr_pages > 0)
1413 *lru_size += nr_pages;
08e552c6 1414}
544122e5 1415
19942822 1416/**
9d11ea9f 1417 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1418 * @memcg: the memory cgroup
19942822 1419 *
9d11ea9f 1420 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1421 * pages.
19942822 1422 */
c0ff4b85 1423static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1424{
3e32cb2e
JW
1425 unsigned long margin = 0;
1426 unsigned long count;
1427 unsigned long limit;
9d11ea9f 1428
3e32cb2e 1429 count = page_counter_read(&memcg->memory);
bbec2e15 1430 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1431 if (count < limit)
1432 margin = limit - count;
1433
7941d214 1434 if (do_memsw_account()) {
3e32cb2e 1435 count = page_counter_read(&memcg->memsw);
bbec2e15 1436 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1437 if (count < limit)
3e32cb2e 1438 margin = min(margin, limit - count);
cbedbac3
LR
1439 else
1440 margin = 0;
3e32cb2e
JW
1441 }
1442
1443 return margin;
19942822
JW
1444}
1445
32047e2a 1446/*
bdcbb659 1447 * A routine for checking "mem" is under move_account() or not.
32047e2a 1448 *
bdcbb659
QH
1449 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1450 * moving cgroups. This is for waiting at high-memory pressure
1451 * caused by "move".
32047e2a 1452 */
c0ff4b85 1453static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1454{
2bd9bb20
KH
1455 struct mem_cgroup *from;
1456 struct mem_cgroup *to;
4b534334 1457 bool ret = false;
2bd9bb20
KH
1458 /*
1459 * Unlike task_move routines, we access mc.to, mc.from not under
1460 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1461 */
1462 spin_lock(&mc.lock);
1463 from = mc.from;
1464 to = mc.to;
1465 if (!from)
1466 goto unlock;
3e92041d 1467
2314b42d
JW
1468 ret = mem_cgroup_is_descendant(from, memcg) ||
1469 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1470unlock:
1471 spin_unlock(&mc.lock);
4b534334
KH
1472 return ret;
1473}
1474
c0ff4b85 1475static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1476{
1477 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1478 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1479 DEFINE_WAIT(wait);
1480 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1481 /* moving charge context might have finished. */
1482 if (mc.moving_task)
1483 schedule();
1484 finish_wait(&mc.waitq, &wait);
1485 return true;
1486 }
1487 }
1488 return false;
1489}
1490
5f9a4f4a
MS
1491struct memory_stat {
1492 const char *name;
5f9a4f4a
MS
1493 unsigned int idx;
1494};
1495
57b2847d 1496static const struct memory_stat memory_stats[] = {
fff66b79
MS
1497 { "anon", NR_ANON_MAPPED },
1498 { "file", NR_FILE_PAGES },
a8c49af3 1499 { "kernel", MEMCG_KMEM },
fff66b79
MS
1500 { "kernel_stack", NR_KERNEL_STACK_KB },
1501 { "pagetables", NR_PAGETABLE },
ebc97a52 1502 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
fff66b79
MS
1503 { "percpu", MEMCG_PERCPU_B },
1504 { "sock", MEMCG_SOCK },
4e5aa1f4 1505 { "vmalloc", MEMCG_VMALLOC },
fff66b79 1506 { "shmem", NR_SHMEM },
f4840ccf
JW
1507#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1508 { "zswap", MEMCG_ZSWAP_B },
1509 { "zswapped", MEMCG_ZSWAPPED },
1510#endif
fff66b79
MS
1511 { "file_mapped", NR_FILE_MAPPED },
1512 { "file_dirty", NR_FILE_DIRTY },
1513 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1514#ifdef CONFIG_SWAP
1515 { "swapcached", NR_SWAPCACHE },
1516#endif
5f9a4f4a 1517#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1518 { "anon_thp", NR_ANON_THPS },
1519 { "file_thp", NR_FILE_THPS },
1520 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1521#endif
fff66b79
MS
1522 { "inactive_anon", NR_INACTIVE_ANON },
1523 { "active_anon", NR_ACTIVE_ANON },
1524 { "inactive_file", NR_INACTIVE_FILE },
1525 { "active_file", NR_ACTIVE_FILE },
1526 { "unevictable", NR_UNEVICTABLE },
1527 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1528 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1529
1530 /* The memory events */
fff66b79
MS
1531 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1532 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1533 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1534 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1535 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1536 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1537 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1538};
1539
fff66b79
MS
1540/* Translate stat items to the correct unit for memory.stat output */
1541static int memcg_page_state_unit(int item)
1542{
1543 switch (item) {
1544 case MEMCG_PERCPU_B:
f4840ccf 1545 case MEMCG_ZSWAP_B:
fff66b79
MS
1546 case NR_SLAB_RECLAIMABLE_B:
1547 case NR_SLAB_UNRECLAIMABLE_B:
1548 case WORKINGSET_REFAULT_ANON:
1549 case WORKINGSET_REFAULT_FILE:
1550 case WORKINGSET_ACTIVATE_ANON:
1551 case WORKINGSET_ACTIVATE_FILE:
1552 case WORKINGSET_RESTORE_ANON:
1553 case WORKINGSET_RESTORE_FILE:
1554 case WORKINGSET_NODERECLAIM:
1555 return 1;
1556 case NR_KERNEL_STACK_KB:
1557 return SZ_1K;
1558 default:
1559 return PAGE_SIZE;
1560 }
1561}
1562
1563static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1564 int item)
1565{
1566 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1567}
1568
dddb44ff 1569static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
c8713d0b 1570{
c8713d0b 1571 int i;
71cd3113 1572
c8713d0b
JW
1573 /*
1574 * Provide statistics on the state of the memory subsystem as
1575 * well as cumulative event counters that show past behavior.
1576 *
1577 * This list is ordered following a combination of these gradients:
1578 * 1) generic big picture -> specifics and details
1579 * 2) reflecting userspace activity -> reflecting kernel heuristics
1580 *
1581 * Current memory state:
1582 */
fd25a9e0 1583 mem_cgroup_flush_stats();
c8713d0b 1584
5f9a4f4a
MS
1585 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1586 u64 size;
c8713d0b 1587
fff66b79 1588 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5b42360c 1589 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1590
5f9a4f4a 1591 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1592 size += memcg_page_state_output(memcg,
1593 NR_SLAB_RECLAIMABLE_B);
5b42360c 1594 seq_buf_printf(s, "slab %llu\n", size);
5f9a4f4a
MS
1595 }
1596 }
c8713d0b
JW
1597
1598 /* Accumulated memory events */
5b42360c 1599 seq_buf_printf(s, "pgscan %lu\n",
c8713d0b 1600 memcg_events(memcg, PGSCAN_KSWAPD) +
57e9cc50
JW
1601 memcg_events(memcg, PGSCAN_DIRECT) +
1602 memcg_events(memcg, PGSCAN_KHUGEPAGED));
5b42360c 1603 seq_buf_printf(s, "pgsteal %lu\n",
c8713d0b 1604 memcg_events(memcg, PGSTEAL_KSWAPD) +
57e9cc50
JW
1605 memcg_events(memcg, PGSTEAL_DIRECT) +
1606 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
c8713d0b 1607
8278f1c7
SB
1608 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1609 if (memcg_vm_event_stat[i] == PGPGIN ||
1610 memcg_vm_event_stat[i] == PGPGOUT)
1611 continue;
1612
5b42360c 1613 seq_buf_printf(s, "%s %lu\n",
673520f8
QZ
1614 vm_event_name(memcg_vm_event_stat[i]),
1615 memcg_events(memcg, memcg_vm_event_stat[i]));
8278f1c7 1616 }
c8713d0b
JW
1617
1618 /* The above should easily fit into one page */
5b42360c 1619 WARN_ON_ONCE(seq_buf_has_overflowed(s));
c8713d0b 1620}
71cd3113 1621
dddb44ff
YA
1622static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1623
1624static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1625{
1626 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1627 memcg_stat_format(memcg, s);
1628 else
1629 memcg1_stat_format(memcg, s);
1630 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1631}
1632
58cf188e 1633#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1634/**
f0c867d9 1635 * mem_cgroup_print_oom_context: Print OOM information relevant to
1636 * memory controller.
e222432b
BS
1637 * @memcg: The memory cgroup that went over limit
1638 * @p: Task that is going to be killed
1639 *
1640 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1641 * enabled
1642 */
f0c867d9 1643void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1644{
e222432b
BS
1645 rcu_read_lock();
1646
f0c867d9 1647 if (memcg) {
1648 pr_cont(",oom_memcg=");
1649 pr_cont_cgroup_path(memcg->css.cgroup);
1650 } else
1651 pr_cont(",global_oom");
2415b9f5 1652 if (p) {
f0c867d9 1653 pr_cont(",task_memcg=");
2415b9f5 1654 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1655 }
e222432b 1656 rcu_read_unlock();
f0c867d9 1657}
1658
1659/**
1660 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1661 * memory controller.
1662 * @memcg: The memory cgroup that went over limit
1663 */
1664void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1665{
68aaee14
TH
1666 /* Use static buffer, for the caller is holding oom_lock. */
1667 static char buf[PAGE_SIZE];
5b42360c 1668 struct seq_buf s;
68aaee14
TH
1669
1670 lockdep_assert_held(&oom_lock);
e222432b 1671
3e32cb2e
JW
1672 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1673 K((u64)page_counter_read(&memcg->memory)),
15b42562 1674 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1675 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1676 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1677 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1678 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1679 else {
1680 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1681 K((u64)page_counter_read(&memcg->memsw)),
1682 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1683 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1684 K((u64)page_counter_read(&memcg->kmem)),
1685 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1686 }
c8713d0b
JW
1687
1688 pr_info("Memory cgroup stats for ");
1689 pr_cont_cgroup_path(memcg->css.cgroup);
1690 pr_cont(":");
5b42360c
YA
1691 seq_buf_init(&s, buf, sizeof(buf));
1692 memory_stat_format(memcg, &s);
1693 seq_buf_do_printk(&s, KERN_INFO);
e222432b
BS
1694}
1695
a63d83f4
DR
1696/*
1697 * Return the memory (and swap, if configured) limit for a memcg.
1698 */
bbec2e15 1699unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1700{
8d387a5f
WL
1701 unsigned long max = READ_ONCE(memcg->memory.max);
1702
b94c4e94 1703 if (do_memsw_account()) {
8d387a5f
WL
1704 if (mem_cgroup_swappiness(memcg)) {
1705 /* Calculate swap excess capacity from memsw limit */
1706 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1707
1708 max += min(swap, (unsigned long)total_swap_pages);
1709 }
b94c4e94
JW
1710 } else {
1711 if (mem_cgroup_swappiness(memcg))
1712 max += min(READ_ONCE(memcg->swap.max),
1713 (unsigned long)total_swap_pages);
9a5a8f19 1714 }
bbec2e15 1715 return max;
a63d83f4
DR
1716}
1717
9783aa99
CD
1718unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1719{
1720 return page_counter_read(&memcg->memory);
1721}
1722
b6e6edcf 1723static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1724 int order)
9cbb78bb 1725{
6e0fc46d
DR
1726 struct oom_control oc = {
1727 .zonelist = NULL,
1728 .nodemask = NULL,
2a966b77 1729 .memcg = memcg,
6e0fc46d
DR
1730 .gfp_mask = gfp_mask,
1731 .order = order,
6e0fc46d 1732 };
1378b37d 1733 bool ret = true;
9cbb78bb 1734
7775face
TH
1735 if (mutex_lock_killable(&oom_lock))
1736 return true;
1378b37d
YS
1737
1738 if (mem_cgroup_margin(memcg) >= (1 << order))
1739 goto unlock;
1740
7775face
TH
1741 /*
1742 * A few threads which were not waiting at mutex_lock_killable() can
1743 * fail to bail out. Therefore, check again after holding oom_lock.
1744 */
a4ebf1b6 1745 ret = task_is_dying() || out_of_memory(&oc);
1378b37d
YS
1746
1747unlock:
dc56401f 1748 mutex_unlock(&oom_lock);
7c5f64f8 1749 return ret;
9cbb78bb
DR
1750}
1751
0608f43d 1752static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1753 pg_data_t *pgdat,
0608f43d
AM
1754 gfp_t gfp_mask,
1755 unsigned long *total_scanned)
1756{
1757 struct mem_cgroup *victim = NULL;
1758 int total = 0;
1759 int loop = 0;
1760 unsigned long excess;
1761 unsigned long nr_scanned;
1762 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1763 .pgdat = pgdat,
0608f43d
AM
1764 };
1765
3e32cb2e 1766 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1767
1768 while (1) {
1769 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1770 if (!victim) {
1771 loop++;
1772 if (loop >= 2) {
1773 /*
1774 * If we have not been able to reclaim
1775 * anything, it might because there are
1776 * no reclaimable pages under this hierarchy
1777 */
1778 if (!total)
1779 break;
1780 /*
1781 * We want to do more targeted reclaim.
1782 * excess >> 2 is not to excessive so as to
1783 * reclaim too much, nor too less that we keep
1784 * coming back to reclaim from this cgroup
1785 */
1786 if (total >= (excess >> 2) ||
1787 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1788 break;
1789 }
1790 continue;
1791 }
a9dd0a83 1792 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1793 pgdat, &nr_scanned);
0608f43d 1794 *total_scanned += nr_scanned;
3e32cb2e 1795 if (!soft_limit_excess(root_memcg))
0608f43d 1796 break;
6d61ef40 1797 }
0608f43d
AM
1798 mem_cgroup_iter_break(root_memcg, victim);
1799 return total;
6d61ef40
BS
1800}
1801
0056f4e6
JW
1802#ifdef CONFIG_LOCKDEP
1803static struct lockdep_map memcg_oom_lock_dep_map = {
1804 .name = "memcg_oom_lock",
1805};
1806#endif
1807
fb2a6fc5
JW
1808static DEFINE_SPINLOCK(memcg_oom_lock);
1809
867578cb
KH
1810/*
1811 * Check OOM-Killer is already running under our hierarchy.
1812 * If someone is running, return false.
1813 */
fb2a6fc5 1814static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1815{
79dfdacc 1816 struct mem_cgroup *iter, *failed = NULL;
a636b327 1817
fb2a6fc5
JW
1818 spin_lock(&memcg_oom_lock);
1819
9f3a0d09 1820 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1821 if (iter->oom_lock) {
79dfdacc
MH
1822 /*
1823 * this subtree of our hierarchy is already locked
1824 * so we cannot give a lock.
1825 */
79dfdacc 1826 failed = iter;
9f3a0d09
JW
1827 mem_cgroup_iter_break(memcg, iter);
1828 break;
23751be0
JW
1829 } else
1830 iter->oom_lock = true;
7d74b06f 1831 }
867578cb 1832
fb2a6fc5
JW
1833 if (failed) {
1834 /*
1835 * OK, we failed to lock the whole subtree so we have
1836 * to clean up what we set up to the failing subtree
1837 */
1838 for_each_mem_cgroup_tree(iter, memcg) {
1839 if (iter == failed) {
1840 mem_cgroup_iter_break(memcg, iter);
1841 break;
1842 }
1843 iter->oom_lock = false;
79dfdacc 1844 }
0056f4e6
JW
1845 } else
1846 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1847
1848 spin_unlock(&memcg_oom_lock);
1849
1850 return !failed;
a636b327 1851}
0b7f569e 1852
fb2a6fc5 1853static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1854{
7d74b06f
KH
1855 struct mem_cgroup *iter;
1856
fb2a6fc5 1857 spin_lock(&memcg_oom_lock);
5facae4f 1858 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1859 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1860 iter->oom_lock = false;
fb2a6fc5 1861 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1862}
1863
c0ff4b85 1864static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1865{
1866 struct mem_cgroup *iter;
1867
c2b42d3c 1868 spin_lock(&memcg_oom_lock);
c0ff4b85 1869 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1870 iter->under_oom++;
1871 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1872}
1873
c0ff4b85 1874static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1875{
1876 struct mem_cgroup *iter;
1877
867578cb 1878 /*
f0953a1b 1879 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1880 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1881 */
c2b42d3c 1882 spin_lock(&memcg_oom_lock);
c0ff4b85 1883 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1884 if (iter->under_oom > 0)
1885 iter->under_oom--;
1886 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1887}
1888
867578cb
KH
1889static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1890
dc98df5a 1891struct oom_wait_info {
d79154bb 1892 struct mem_cgroup *memcg;
ac6424b9 1893 wait_queue_entry_t wait;
dc98df5a
KH
1894};
1895
ac6424b9 1896static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1897 unsigned mode, int sync, void *arg)
1898{
d79154bb
HD
1899 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1900 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1901 struct oom_wait_info *oom_wait_info;
1902
1903 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1904 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1905
2314b42d
JW
1906 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1907 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1908 return 0;
dc98df5a
KH
1909 return autoremove_wake_function(wait, mode, sync, arg);
1910}
1911
c0ff4b85 1912static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1913{
c2b42d3c
TH
1914 /*
1915 * For the following lockless ->under_oom test, the only required
1916 * guarantee is that it must see the state asserted by an OOM when
1917 * this function is called as a result of userland actions
1918 * triggered by the notification of the OOM. This is trivially
1919 * achieved by invoking mem_cgroup_mark_under_oom() before
1920 * triggering notification.
1921 */
1922 if (memcg && memcg->under_oom)
f4b90b70 1923 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1924}
1925
becdf89d
SB
1926/*
1927 * Returns true if successfully killed one or more processes. Though in some
1928 * corner cases it can return true even without killing any process.
1929 */
1930static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1931{
becdf89d 1932 bool locked, ret;
7056d3a3 1933
29ef680a 1934 if (order > PAGE_ALLOC_COSTLY_ORDER)
becdf89d 1935 return false;
29ef680a 1936
7a1adfdd
RG
1937 memcg_memory_event(memcg, MEMCG_OOM);
1938
867578cb 1939 /*
49426420
JW
1940 * We are in the middle of the charge context here, so we
1941 * don't want to block when potentially sitting on a callstack
1942 * that holds all kinds of filesystem and mm locks.
1943 *
29ef680a
MH
1944 * cgroup1 allows disabling the OOM killer and waiting for outside
1945 * handling until the charge can succeed; remember the context and put
1946 * the task to sleep at the end of the page fault when all locks are
1947 * released.
49426420 1948 *
29ef680a
MH
1949 * On the other hand, in-kernel OOM killer allows for an async victim
1950 * memory reclaim (oom_reaper) and that means that we are not solely
1951 * relying on the oom victim to make a forward progress and we can
1952 * invoke the oom killer here.
1953 *
1954 * Please note that mem_cgroup_out_of_memory might fail to find a
1955 * victim and then we have to bail out from the charge path.
867578cb 1956 */
17c56de6 1957 if (READ_ONCE(memcg->oom_kill_disable)) {
becdf89d
SB
1958 if (current->in_user_fault) {
1959 css_get(&memcg->css);
1960 current->memcg_in_oom = memcg;
1961 current->memcg_oom_gfp_mask = mask;
1962 current->memcg_oom_order = order;
1963 }
1964 return false;
29ef680a
MH
1965 }
1966
7056d3a3
MH
1967 mem_cgroup_mark_under_oom(memcg);
1968
1969 locked = mem_cgroup_oom_trylock(memcg);
1970
1971 if (locked)
1972 mem_cgroup_oom_notify(memcg);
1973
1974 mem_cgroup_unmark_under_oom(memcg);
becdf89d 1975 ret = mem_cgroup_out_of_memory(memcg, mask, order);
7056d3a3
MH
1976
1977 if (locked)
1978 mem_cgroup_oom_unlock(memcg);
29ef680a 1979
7056d3a3 1980 return ret;
3812c8c8
JW
1981}
1982
1983/**
1984 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1985 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1986 *
49426420
JW
1987 * This has to be called at the end of a page fault if the memcg OOM
1988 * handler was enabled.
3812c8c8 1989 *
49426420 1990 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1991 * sleep on a waitqueue until the userspace task resolves the
1992 * situation. Sleeping directly in the charge context with all kinds
1993 * of locks held is not a good idea, instead we remember an OOM state
1994 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1995 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1996 *
1997 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1998 * completed, %false otherwise.
3812c8c8 1999 */
49426420 2000bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2001{
626ebc41 2002 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2003 struct oom_wait_info owait;
49426420 2004 bool locked;
3812c8c8
JW
2005
2006 /* OOM is global, do not handle */
3812c8c8 2007 if (!memcg)
49426420 2008 return false;
3812c8c8 2009
7c5f64f8 2010 if (!handle)
49426420 2011 goto cleanup;
3812c8c8
JW
2012
2013 owait.memcg = memcg;
2014 owait.wait.flags = 0;
2015 owait.wait.func = memcg_oom_wake_function;
2016 owait.wait.private = current;
2055da97 2017 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2018
3812c8c8 2019 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2020 mem_cgroup_mark_under_oom(memcg);
2021
2022 locked = mem_cgroup_oom_trylock(memcg);
2023
2024 if (locked)
2025 mem_cgroup_oom_notify(memcg);
2026
857f2139
HX
2027 schedule();
2028 mem_cgroup_unmark_under_oom(memcg);
2029 finish_wait(&memcg_oom_waitq, &owait.wait);
49426420 2030
18b1d18b 2031 if (locked)
fb2a6fc5 2032 mem_cgroup_oom_unlock(memcg);
49426420 2033cleanup:
626ebc41 2034 current->memcg_in_oom = NULL;
3812c8c8 2035 css_put(&memcg->css);
867578cb 2036 return true;
0b7f569e
KH
2037}
2038
3d8b38eb
RG
2039/**
2040 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2041 * @victim: task to be killed by the OOM killer
2042 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2043 *
2044 * Returns a pointer to a memory cgroup, which has to be cleaned up
2045 * by killing all belonging OOM-killable tasks.
2046 *
2047 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2048 */
2049struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2050 struct mem_cgroup *oom_domain)
2051{
2052 struct mem_cgroup *oom_group = NULL;
2053 struct mem_cgroup *memcg;
2054
2055 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2056 return NULL;
2057
2058 if (!oom_domain)
2059 oom_domain = root_mem_cgroup;
2060
2061 rcu_read_lock();
2062
2063 memcg = mem_cgroup_from_task(victim);
7848ed62 2064 if (mem_cgroup_is_root(memcg))
3d8b38eb
RG
2065 goto out;
2066
48fe267c
RG
2067 /*
2068 * If the victim task has been asynchronously moved to a different
2069 * memory cgroup, we might end up killing tasks outside oom_domain.
2070 * In this case it's better to ignore memory.group.oom.
2071 */
2072 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2073 goto out;
2074
3d8b38eb
RG
2075 /*
2076 * Traverse the memory cgroup hierarchy from the victim task's
2077 * cgroup up to the OOMing cgroup (or root) to find the
2078 * highest-level memory cgroup with oom.group set.
2079 */
2080 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
eaf7b66b 2081 if (READ_ONCE(memcg->oom_group))
3d8b38eb
RG
2082 oom_group = memcg;
2083
2084 if (memcg == oom_domain)
2085 break;
2086 }
2087
2088 if (oom_group)
2089 css_get(&oom_group->css);
2090out:
2091 rcu_read_unlock();
2092
2093 return oom_group;
2094}
2095
2096void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2097{
2098 pr_info("Tasks in ");
2099 pr_cont_cgroup_path(memcg->css.cgroup);
2100 pr_cont(" are going to be killed due to memory.oom.group set\n");
2101}
2102
d7365e78 2103/**
f70ad448
MWO
2104 * folio_memcg_lock - Bind a folio to its memcg.
2105 * @folio: The folio.
32047e2a 2106 *
f70ad448 2107 * This function prevents unlocked LRU folios from being moved to
739f79fc
JW
2108 * another cgroup.
2109 *
f70ad448
MWO
2110 * It ensures lifetime of the bound memcg. The caller is responsible
2111 * for the lifetime of the folio.
d69b042f 2112 */
f70ad448 2113void folio_memcg_lock(struct folio *folio)
89c06bd5
KH
2114{
2115 struct mem_cgroup *memcg;
6de22619 2116 unsigned long flags;
89c06bd5 2117
6de22619
JW
2118 /*
2119 * The RCU lock is held throughout the transaction. The fast
2120 * path can get away without acquiring the memcg->move_lock
2121 * because page moving starts with an RCU grace period.
739f79fc 2122 */
d7365e78
JW
2123 rcu_read_lock();
2124
2125 if (mem_cgroup_disabled())
1c824a68 2126 return;
89c06bd5 2127again:
f70ad448 2128 memcg = folio_memcg(folio);
29833315 2129 if (unlikely(!memcg))
1c824a68 2130 return;
d7365e78 2131
20ad50d6
AS
2132#ifdef CONFIG_PROVE_LOCKING
2133 local_irq_save(flags);
2134 might_lock(&memcg->move_lock);
2135 local_irq_restore(flags);
2136#endif
2137
bdcbb659 2138 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2139 return;
89c06bd5 2140
6de22619 2141 spin_lock_irqsave(&memcg->move_lock, flags);
f70ad448 2142 if (memcg != folio_memcg(folio)) {
6de22619 2143 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2144 goto again;
2145 }
6de22619
JW
2146
2147 /*
1c824a68
JW
2148 * When charge migration first begins, we can have multiple
2149 * critical sections holding the fast-path RCU lock and one
2150 * holding the slowpath move_lock. Track the task who has the
2151 * move_lock for unlock_page_memcg().
6de22619
JW
2152 */
2153 memcg->move_lock_task = current;
2154 memcg->move_lock_flags = flags;
89c06bd5 2155}
f70ad448
MWO
2156
2157void lock_page_memcg(struct page *page)
2158{
2159 folio_memcg_lock(page_folio(page));
2160}
89c06bd5 2161
f70ad448 2162static void __folio_memcg_unlock(struct mem_cgroup *memcg)
89c06bd5 2163{
6de22619
JW
2164 if (memcg && memcg->move_lock_task == current) {
2165 unsigned long flags = memcg->move_lock_flags;
2166
2167 memcg->move_lock_task = NULL;
2168 memcg->move_lock_flags = 0;
2169
2170 spin_unlock_irqrestore(&memcg->move_lock, flags);
2171 }
89c06bd5 2172
d7365e78 2173 rcu_read_unlock();
89c06bd5 2174}
739f79fc
JW
2175
2176/**
f70ad448
MWO
2177 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2178 * @folio: The folio.
2179 *
2180 * This releases the binding created by folio_memcg_lock(). This does
2181 * not change the accounting of this folio to its memcg, but it does
2182 * permit others to change it.
739f79fc 2183 */
f70ad448 2184void folio_memcg_unlock(struct folio *folio)
739f79fc 2185{
f70ad448
MWO
2186 __folio_memcg_unlock(folio_memcg(folio));
2187}
9da7b521 2188
f70ad448
MWO
2189void unlock_page_memcg(struct page *page)
2190{
2191 folio_memcg_unlock(page_folio(page));
739f79fc 2192}
89c06bd5 2193
fead2b86 2194struct memcg_stock_pcp {
56751146 2195 local_lock_t stock_lock;
fead2b86
MH
2196 struct mem_cgroup *cached; /* this never be root cgroup */
2197 unsigned int nr_pages;
2198
bf4f0599
RG
2199#ifdef CONFIG_MEMCG_KMEM
2200 struct obj_cgroup *cached_objcg;
68ac5b3c 2201 struct pglist_data *cached_pgdat;
bf4f0599 2202 unsigned int nr_bytes;
68ac5b3c
WL
2203 int nr_slab_reclaimable_b;
2204 int nr_slab_unreclaimable_b;
bf4f0599
RG
2205#endif
2206
cdec2e42 2207 struct work_struct work;
26fe6168 2208 unsigned long flags;
a0db00fc 2209#define FLUSHING_CACHED_CHARGE 0
cdec2e42 2210};
56751146
SAS
2211static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2212 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2213};
9f50fad6 2214static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2215
bf4f0599 2216#ifdef CONFIG_MEMCG_KMEM
56751146 2217static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
bf4f0599
RG
2218static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2219 struct mem_cgroup *root_memcg);
a8c49af3 2220static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
bf4f0599
RG
2221
2222#else
56751146 2223static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 2224{
56751146 2225 return NULL;
bf4f0599
RG
2226}
2227static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2228 struct mem_cgroup *root_memcg)
2229{
2230 return false;
2231}
a8c49af3
YA
2232static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2233{
2234}
bf4f0599
RG
2235#endif
2236
a0956d54
SS
2237/**
2238 * consume_stock: Try to consume stocked charge on this cpu.
2239 * @memcg: memcg to consume from.
2240 * @nr_pages: how many pages to charge.
2241 *
2242 * The charges will only happen if @memcg matches the current cpu's memcg
2243 * stock, and at least @nr_pages are available in that stock. Failure to
2244 * service an allocation will refill the stock.
2245 *
2246 * returns true if successful, false otherwise.
cdec2e42 2247 */
a0956d54 2248static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2249{
2250 struct memcg_stock_pcp *stock;
db2ba40c 2251 unsigned long flags;
3e32cb2e 2252 bool ret = false;
cdec2e42 2253
a983b5eb 2254 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2255 return ret;
a0956d54 2256
56751146 2257 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2258
2259 stock = this_cpu_ptr(&memcg_stock);
f785a8f2 2260 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
a0956d54 2261 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2262 ret = true;
2263 }
db2ba40c 2264
56751146 2265 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
db2ba40c 2266
cdec2e42
KH
2267 return ret;
2268}
2269
2270/*
3e32cb2e 2271 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2272 */
2273static void drain_stock(struct memcg_stock_pcp *stock)
2274{
f785a8f2 2275 struct mem_cgroup *old = READ_ONCE(stock->cached);
cdec2e42 2276
1a3e1f40
JW
2277 if (!old)
2278 return;
2279
11c9ea4e 2280 if (stock->nr_pages) {
3e32cb2e 2281 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2282 if (do_memsw_account())
3e32cb2e 2283 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2284 stock->nr_pages = 0;
cdec2e42 2285 }
1a3e1f40
JW
2286
2287 css_put(&old->css);
f785a8f2 2288 WRITE_ONCE(stock->cached, NULL);
cdec2e42
KH
2289}
2290
cdec2e42
KH
2291static void drain_local_stock(struct work_struct *dummy)
2292{
db2ba40c 2293 struct memcg_stock_pcp *stock;
56751146 2294 struct obj_cgroup *old = NULL;
db2ba40c
JW
2295 unsigned long flags;
2296
72f0184c 2297 /*
5c49cf9a
MH
2298 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2299 * drain_stock races is that we always operate on local CPU stock
2300 * here with IRQ disabled
72f0184c 2301 */
56751146 2302 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2303
2304 stock = this_cpu_ptr(&memcg_stock);
56751146 2305 old = drain_obj_stock(stock);
cdec2e42 2306 drain_stock(stock);
26fe6168 2307 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c 2308
56751146
SAS
2309 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2310 if (old)
2311 obj_cgroup_put(old);
cdec2e42
KH
2312}
2313
2314/*
3e32cb2e 2315 * Cache charges(val) to local per_cpu area.
320cc51d 2316 * This will be consumed by consume_stock() function, later.
cdec2e42 2317 */
af9a3b69 2318static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2319{
db2ba40c 2320 struct memcg_stock_pcp *stock;
cdec2e42 2321
db2ba40c 2322 stock = this_cpu_ptr(&memcg_stock);
f785a8f2 2323 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
cdec2e42 2324 drain_stock(stock);
1a3e1f40 2325 css_get(&memcg->css);
f785a8f2 2326 WRITE_ONCE(stock->cached, memcg);
cdec2e42 2327 }
11c9ea4e 2328 stock->nr_pages += nr_pages;
db2ba40c 2329
a983b5eb 2330 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487 2331 drain_stock(stock);
af9a3b69
JW
2332}
2333
2334static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2335{
2336 unsigned long flags;
475d0487 2337
56751146 2338 local_lock_irqsave(&memcg_stock.stock_lock, flags);
af9a3b69 2339 __refill_stock(memcg, nr_pages);
56751146 2340 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
cdec2e42
KH
2341}
2342
2343/*
c0ff4b85 2344 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2345 * of the hierarchy under it.
cdec2e42 2346 */
6d3d6aa2 2347static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2348{
26fe6168 2349 int cpu, curcpu;
d38144b7 2350
6d3d6aa2
JW
2351 /* If someone's already draining, avoid adding running more workers. */
2352 if (!mutex_trylock(&percpu_charge_mutex))
2353 return;
72f0184c
MH
2354 /*
2355 * Notify other cpus that system-wide "drain" is running
2356 * We do not care about races with the cpu hotplug because cpu down
2357 * as well as workers from this path always operate on the local
2358 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2359 */
0790ed62
SAS
2360 migrate_disable();
2361 curcpu = smp_processor_id();
cdec2e42
KH
2362 for_each_online_cpu(cpu) {
2363 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2364 struct mem_cgroup *memcg;
e1a366be 2365 bool flush = false;
26fe6168 2366
e1a366be 2367 rcu_read_lock();
f785a8f2 2368 memcg = READ_ONCE(stock->cached);
e1a366be
RG
2369 if (memcg && stock->nr_pages &&
2370 mem_cgroup_is_descendant(memcg, root_memcg))
2371 flush = true;
27fb0956 2372 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2373 flush = true;
e1a366be
RG
2374 rcu_read_unlock();
2375
2376 if (flush &&
2377 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2378 if (cpu == curcpu)
2379 drain_local_stock(&stock->work);
6a792697 2380 else if (!cpu_is_isolated(cpu))
d1a05b69
MH
2381 schedule_work_on(cpu, &stock->work);
2382 }
cdec2e42 2383 }
0790ed62 2384 migrate_enable();
9f50fad6 2385 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2386}
2387
2cd21c89
JW
2388static int memcg_hotplug_cpu_dead(unsigned int cpu)
2389{
2390 struct memcg_stock_pcp *stock;
a3d4c05a 2391
2cd21c89
JW
2392 stock = &per_cpu(memcg_stock, cpu);
2393 drain_stock(stock);
a3d4c05a 2394
308167fc 2395 return 0;
cdec2e42
KH
2396}
2397
b3ff9291
CD
2398static unsigned long reclaim_high(struct mem_cgroup *memcg,
2399 unsigned int nr_pages,
2400 gfp_t gfp_mask)
f7e1cb6e 2401{
b3ff9291
CD
2402 unsigned long nr_reclaimed = 0;
2403
f7e1cb6e 2404 do {
e22c6ed9
JW
2405 unsigned long pflags;
2406
d1663a90
JK
2407 if (page_counter_read(&memcg->memory) <=
2408 READ_ONCE(memcg->memory.high))
f7e1cb6e 2409 continue;
e22c6ed9 2410
e27be240 2411 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2412
2413 psi_memstall_enter(&pflags);
b3ff9291 2414 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
73b73bac 2415 gfp_mask,
55ab834a 2416 MEMCG_RECLAIM_MAY_SWAP);
e22c6ed9 2417 psi_memstall_leave(&pflags);
4bf17307
CD
2418 } while ((memcg = parent_mem_cgroup(memcg)) &&
2419 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2420
2421 return nr_reclaimed;
f7e1cb6e
JW
2422}
2423
2424static void high_work_func(struct work_struct *work)
2425{
2426 struct mem_cgroup *memcg;
2427
2428 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2429 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2430}
2431
0e4b01df
CD
2432/*
2433 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2434 * enough to still cause a significant slowdown in most cases, while still
2435 * allowing diagnostics and tracing to proceed without becoming stuck.
2436 */
2437#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2438
2439/*
2440 * When calculating the delay, we use these either side of the exponentiation to
2441 * maintain precision and scale to a reasonable number of jiffies (see the table
2442 * below.
2443 *
2444 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2445 * overage ratio to a delay.
ac5ddd0f 2446 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2447 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2448 * to produce a reasonable delay curve.
2449 *
2450 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2451 * reasonable delay curve compared to precision-adjusted overage, not
2452 * penalising heavily at first, but still making sure that growth beyond the
2453 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2454 * example, with a high of 100 megabytes:
2455 *
2456 * +-------+------------------------+
2457 * | usage | time to allocate in ms |
2458 * +-------+------------------------+
2459 * | 100M | 0 |
2460 * | 101M | 6 |
2461 * | 102M | 25 |
2462 * | 103M | 57 |
2463 * | 104M | 102 |
2464 * | 105M | 159 |
2465 * | 106M | 230 |
2466 * | 107M | 313 |
2467 * | 108M | 409 |
2468 * | 109M | 518 |
2469 * | 110M | 639 |
2470 * | 111M | 774 |
2471 * | 112M | 921 |
2472 * | 113M | 1081 |
2473 * | 114M | 1254 |
2474 * | 115M | 1439 |
2475 * | 116M | 1638 |
2476 * | 117M | 1849 |
2477 * | 118M | 2000 |
2478 * | 119M | 2000 |
2479 * | 120M | 2000 |
2480 * +-------+------------------------+
2481 */
2482 #define MEMCG_DELAY_PRECISION_SHIFT 20
2483 #define MEMCG_DELAY_SCALING_SHIFT 14
2484
8a5dbc65 2485static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2486{
8a5dbc65 2487 u64 overage;
b23afb93 2488
8a5dbc65
JK
2489 if (usage <= high)
2490 return 0;
e26733e0 2491
8a5dbc65
JK
2492 /*
2493 * Prevent division by 0 in overage calculation by acting as if
2494 * it was a threshold of 1 page
2495 */
2496 high = max(high, 1UL);
9b8b1754 2497
8a5dbc65
JK
2498 overage = usage - high;
2499 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2500 return div64_u64(overage, high);
2501}
e26733e0 2502
8a5dbc65
JK
2503static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2504{
2505 u64 overage, max_overage = 0;
e26733e0 2506
8a5dbc65
JK
2507 do {
2508 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2509 READ_ONCE(memcg->memory.high));
8a5dbc65 2510 max_overage = max(overage, max_overage);
e26733e0
CD
2511 } while ((memcg = parent_mem_cgroup(memcg)) &&
2512 !mem_cgroup_is_root(memcg));
2513
8a5dbc65
JK
2514 return max_overage;
2515}
2516
4b82ab4f
JK
2517static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2518{
2519 u64 overage, max_overage = 0;
2520
2521 do {
2522 overage = calculate_overage(page_counter_read(&memcg->swap),
2523 READ_ONCE(memcg->swap.high));
2524 if (overage)
2525 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2526 max_overage = max(overage, max_overage);
2527 } while ((memcg = parent_mem_cgroup(memcg)) &&
2528 !mem_cgroup_is_root(memcg));
2529
2530 return max_overage;
2531}
2532
8a5dbc65
JK
2533/*
2534 * Get the number of jiffies that we should penalise a mischievous cgroup which
2535 * is exceeding its memory.high by checking both it and its ancestors.
2536 */
2537static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2538 unsigned int nr_pages,
2539 u64 max_overage)
2540{
2541 unsigned long penalty_jiffies;
2542
e26733e0
CD
2543 if (!max_overage)
2544 return 0;
0e4b01df
CD
2545
2546 /*
0e4b01df
CD
2547 * We use overage compared to memory.high to calculate the number of
2548 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2549 * fairly lenient on small overages, and increasingly harsh when the
2550 * memcg in question makes it clear that it has no intention of stopping
2551 * its crazy behaviour, so we exponentially increase the delay based on
2552 * overage amount.
2553 */
e26733e0
CD
2554 penalty_jiffies = max_overage * max_overage * HZ;
2555 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2556 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2557
2558 /*
2559 * Factor in the task's own contribution to the overage, such that four
2560 * N-sized allocations are throttled approximately the same as one
2561 * 4N-sized allocation.
2562 *
2563 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2564 * larger the current charge patch is than that.
2565 */
ff144e69 2566 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2567}
2568
2569/*
2570 * Scheduled by try_charge() to be executed from the userland return path
2571 * and reclaims memory over the high limit.
2572 */
2573void mem_cgroup_handle_over_high(void)
2574{
2575 unsigned long penalty_jiffies;
2576 unsigned long pflags;
b3ff9291 2577 unsigned long nr_reclaimed;
e26733e0 2578 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2579 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2580 struct mem_cgroup *memcg;
b3ff9291 2581 bool in_retry = false;
e26733e0
CD
2582
2583 if (likely(!nr_pages))
2584 return;
2585
2586 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2587 current->memcg_nr_pages_over_high = 0;
2588
b3ff9291
CD
2589retry_reclaim:
2590 /*
2591 * The allocating task should reclaim at least the batch size, but for
2592 * subsequent retries we only want to do what's necessary to prevent oom
2593 * or breaching resource isolation.
2594 *
2595 * This is distinct from memory.max or page allocator behaviour because
2596 * memory.high is currently batched, whereas memory.max and the page
2597 * allocator run every time an allocation is made.
2598 */
2599 nr_reclaimed = reclaim_high(memcg,
2600 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2601 GFP_KERNEL);
2602
e26733e0
CD
2603 /*
2604 * memory.high is breached and reclaim is unable to keep up. Throttle
2605 * allocators proactively to slow down excessive growth.
2606 */
8a5dbc65
JK
2607 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2608 mem_find_max_overage(memcg));
0e4b01df 2609
4b82ab4f
JK
2610 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2611 swap_find_max_overage(memcg));
2612
ff144e69
JK
2613 /*
2614 * Clamp the max delay per usermode return so as to still keep the
2615 * application moving forwards and also permit diagnostics, albeit
2616 * extremely slowly.
2617 */
2618 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2619
0e4b01df
CD
2620 /*
2621 * Don't sleep if the amount of jiffies this memcg owes us is so low
2622 * that it's not even worth doing, in an attempt to be nice to those who
2623 * go only a small amount over their memory.high value and maybe haven't
2624 * been aggressively reclaimed enough yet.
2625 */
2626 if (penalty_jiffies <= HZ / 100)
2627 goto out;
2628
b3ff9291
CD
2629 /*
2630 * If reclaim is making forward progress but we're still over
2631 * memory.high, we want to encourage that rather than doing allocator
2632 * throttling.
2633 */
2634 if (nr_reclaimed || nr_retries--) {
2635 in_retry = true;
2636 goto retry_reclaim;
2637 }
2638
0e4b01df
CD
2639 /*
2640 * If we exit early, we're guaranteed to die (since
2641 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2642 * need to account for any ill-begotten jiffies to pay them off later.
2643 */
2644 psi_memstall_enter(&pflags);
2645 schedule_timeout_killable(penalty_jiffies);
2646 psi_memstall_leave(&pflags);
2647
2648out:
2649 css_put(&memcg->css);
b23afb93
TH
2650}
2651
c5c8b16b
MS
2652static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2653 unsigned int nr_pages)
8a9f3ccd 2654{
a983b5eb 2655 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2656 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2657 struct mem_cgroup *mem_over_limit;
3e32cb2e 2658 struct page_counter *counter;
6539cc05 2659 unsigned long nr_reclaimed;
a4ebf1b6 2660 bool passed_oom = false;
73b73bac 2661 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
b70a2a21 2662 bool drained = false;
d6e103a7 2663 bool raised_max_event = false;
e22c6ed9 2664 unsigned long pflags;
a636b327 2665
6539cc05 2666retry:
b6b6cc72 2667 if (consume_stock(memcg, nr_pages))
10d53c74 2668 return 0;
8a9f3ccd 2669
7941d214 2670 if (!do_memsw_account() ||
6071ca52
JW
2671 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2672 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2673 goto done_restock;
7941d214 2674 if (do_memsw_account())
3e32cb2e
JW
2675 page_counter_uncharge(&memcg->memsw, batch);
2676 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2677 } else {
3e32cb2e 2678 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
73b73bac 2679 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
3fbe7244 2680 }
7a81b88c 2681
6539cc05
JW
2682 if (batch > nr_pages) {
2683 batch = nr_pages;
2684 goto retry;
2685 }
6d61ef40 2686
89a28483
JW
2687 /*
2688 * Prevent unbounded recursion when reclaim operations need to
2689 * allocate memory. This might exceed the limits temporarily,
2690 * but we prefer facilitating memory reclaim and getting back
2691 * under the limit over triggering OOM kills in these cases.
2692 */
2693 if (unlikely(current->flags & PF_MEMALLOC))
2694 goto force;
2695
06b078fc
JW
2696 if (unlikely(task_in_memcg_oom(current)))
2697 goto nomem;
2698
d0164adc 2699 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2700 goto nomem;
4b534334 2701
e27be240 2702 memcg_memory_event(mem_over_limit, MEMCG_MAX);
d6e103a7 2703 raised_max_event = true;
241994ed 2704
e22c6ed9 2705 psi_memstall_enter(&pflags);
b70a2a21 2706 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
55ab834a 2707 gfp_mask, reclaim_options);
e22c6ed9 2708 psi_memstall_leave(&pflags);
6539cc05 2709
61e02c74 2710 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2711 goto retry;
28c34c29 2712
b70a2a21 2713 if (!drained) {
6d3d6aa2 2714 drain_all_stock(mem_over_limit);
b70a2a21
JW
2715 drained = true;
2716 goto retry;
2717 }
2718
28c34c29
JW
2719 if (gfp_mask & __GFP_NORETRY)
2720 goto nomem;
6539cc05
JW
2721 /*
2722 * Even though the limit is exceeded at this point, reclaim
2723 * may have been able to free some pages. Retry the charge
2724 * before killing the task.
2725 *
2726 * Only for regular pages, though: huge pages are rather
2727 * unlikely to succeed so close to the limit, and we fall back
2728 * to regular pages anyway in case of failure.
2729 */
61e02c74 2730 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2731 goto retry;
2732 /*
2733 * At task move, charge accounts can be doubly counted. So, it's
2734 * better to wait until the end of task_move if something is going on.
2735 */
2736 if (mem_cgroup_wait_acct_move(mem_over_limit))
2737 goto retry;
2738
9b130619
JW
2739 if (nr_retries--)
2740 goto retry;
2741
38d38493 2742 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2743 goto nomem;
2744
a4ebf1b6
VA
2745 /* Avoid endless loop for tasks bypassed by the oom killer */
2746 if (passed_oom && task_is_dying())
2747 goto nomem;
6539cc05 2748
29ef680a
MH
2749 /*
2750 * keep retrying as long as the memcg oom killer is able to make
2751 * a forward progress or bypass the charge if the oom killer
2752 * couldn't make any progress.
2753 */
becdf89d
SB
2754 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2755 get_order(nr_pages * PAGE_SIZE))) {
a4ebf1b6 2756 passed_oom = true;
d977aa93 2757 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a 2758 goto retry;
29ef680a 2759 }
7a81b88c 2760nomem:
1461e8c2
SB
2761 /*
2762 * Memcg doesn't have a dedicated reserve for atomic
2763 * allocations. But like the global atomic pool, we need to
2764 * put the burden of reclaim on regular allocation requests
2765 * and let these go through as privileged allocations.
2766 */
2767 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
3168ecbe 2768 return -ENOMEM;
10d53c74 2769force:
d6e103a7
RG
2770 /*
2771 * If the allocation has to be enforced, don't forget to raise
2772 * a MEMCG_MAX event.
2773 */
2774 if (!raised_max_event)
2775 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2776
10d53c74
TH
2777 /*
2778 * The allocation either can't fail or will lead to more memory
2779 * being freed very soon. Allow memory usage go over the limit
2780 * temporarily by force charging it.
2781 */
2782 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2783 if (do_memsw_account())
10d53c74 2784 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2785
2786 return 0;
6539cc05
JW
2787
2788done_restock:
2789 if (batch > nr_pages)
2790 refill_stock(memcg, batch - nr_pages);
b23afb93 2791
241994ed 2792 /*
b23afb93
TH
2793 * If the hierarchy is above the normal consumption range, schedule
2794 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2795 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2796 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2797 * not recorded as it most likely matches current's and won't
2798 * change in the meantime. As high limit is checked again before
2799 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2800 */
2801 do {
4b82ab4f
JK
2802 bool mem_high, swap_high;
2803
2804 mem_high = page_counter_read(&memcg->memory) >
2805 READ_ONCE(memcg->memory.high);
2806 swap_high = page_counter_read(&memcg->swap) >
2807 READ_ONCE(memcg->swap.high);
2808
2809 /* Don't bother a random interrupted task */
086f694a 2810 if (!in_task()) {
4b82ab4f 2811 if (mem_high) {
f7e1cb6e
JW
2812 schedule_work(&memcg->high_work);
2813 break;
2814 }
4b82ab4f
JK
2815 continue;
2816 }
2817
2818 if (mem_high || swap_high) {
2819 /*
2820 * The allocating tasks in this cgroup will need to do
2821 * reclaim or be throttled to prevent further growth
2822 * of the memory or swap footprints.
2823 *
2824 * Target some best-effort fairness between the tasks,
2825 * and distribute reclaim work and delay penalties
2826 * based on how much each task is actually allocating.
2827 */
9516a18a 2828 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2829 set_notify_resume(current);
2830 break;
2831 }
241994ed 2832 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74 2833
c9afe31e
SB
2834 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2835 !(current->flags & PF_MEMALLOC) &&
2836 gfpflags_allow_blocking(gfp_mask)) {
2837 mem_cgroup_handle_over_high();
2838 }
10d53c74 2839 return 0;
7a81b88c 2840}
8a9f3ccd 2841
c5c8b16b
MS
2842static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2843 unsigned int nr_pages)
2844{
2845 if (mem_cgroup_is_root(memcg))
2846 return 0;
2847
2848 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2849}
2850
58056f77 2851static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2852{
ce00a967
JW
2853 if (mem_cgroup_is_root(memcg))
2854 return;
2855
3e32cb2e 2856 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2857 if (do_memsw_account())
3e32cb2e 2858 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
2859}
2860
118f2875 2861static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
0a31bc97 2862{
118f2875 2863 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
0a31bc97 2864 /*
a5eb011a 2865 * Any of the following ensures page's memcg stability:
0a31bc97 2866 *
a0b5b414
JW
2867 * - the page lock
2868 * - LRU isolation
2869 * - lock_page_memcg()
2870 * - exclusive reference
018ee47f 2871 * - mem_cgroup_trylock_pages()
0a31bc97 2872 */
118f2875 2873 folio->memcg_data = (unsigned long)memcg;
7a81b88c 2874}
66e1707b 2875
84c07d11 2876#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2877/*
2878 * The allocated objcg pointers array is not accounted directly.
2879 * Moreover, it should not come from DMA buffer and is not readily
2880 * reclaimable. So those GFP bits should be masked off.
2881 */
2882#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2883
a7ebf564
WL
2884/*
2885 * mod_objcg_mlstate() may be called with irq enabled, so
2886 * mod_memcg_lruvec_state() should be used.
2887 */
2888static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2889 struct pglist_data *pgdat,
2890 enum node_stat_item idx, int nr)
2891{
2892 struct mem_cgroup *memcg;
2893 struct lruvec *lruvec;
2894
2895 rcu_read_lock();
2896 memcg = obj_cgroup_memcg(objcg);
2897 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2898 mod_memcg_lruvec_state(lruvec, idx, nr);
2899 rcu_read_unlock();
2900}
2901
4b5f8d9a
VB
2902int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2903 gfp_t gfp, bool new_slab)
10befea9 2904{
4b5f8d9a 2905 unsigned int objects = objs_per_slab(s, slab);
2e9bd483 2906 unsigned long memcg_data;
10befea9
RG
2907 void *vec;
2908
41eb5df1 2909 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9 2910 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
4b5f8d9a 2911 slab_nid(slab));
10befea9
RG
2912 if (!vec)
2913 return -ENOMEM;
2914
2e9bd483 2915 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
4b5f8d9a 2916 if (new_slab) {
2e9bd483 2917 /*
4b5f8d9a
VB
2918 * If the slab is brand new and nobody can yet access its
2919 * memcg_data, no synchronization is required and memcg_data can
2920 * be simply assigned.
2e9bd483 2921 */
4b5f8d9a
VB
2922 slab->memcg_data = memcg_data;
2923 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2e9bd483 2924 /*
4b5f8d9a
VB
2925 * If the slab is already in use, somebody can allocate and
2926 * assign obj_cgroups in parallel. In this case the existing
2e9bd483
RG
2927 * objcg vector should be reused.
2928 */
10befea9 2929 kfree(vec);
2e9bd483
RG
2930 return 0;
2931 }
10befea9 2932
2e9bd483 2933 kmemleak_not_leak(vec);
10befea9
RG
2934 return 0;
2935}
2936
fc4db90f
RG
2937static __always_inline
2938struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
8380ce47 2939{
8380ce47 2940 /*
9855609b
RG
2941 * Slab objects are accounted individually, not per-page.
2942 * Memcg membership data for each individual object is saved in
4b5f8d9a 2943 * slab->memcg_data.
8380ce47 2944 */
4b5f8d9a
VB
2945 if (folio_test_slab(folio)) {
2946 struct obj_cgroup **objcgs;
2947 struct slab *slab;
9855609b
RG
2948 unsigned int off;
2949
4b5f8d9a
VB
2950 slab = folio_slab(folio);
2951 objcgs = slab_objcgs(slab);
2952 if (!objcgs)
2953 return NULL;
2954
2955 off = obj_to_index(slab->slab_cache, slab, p);
2956 if (objcgs[off])
2957 return obj_cgroup_memcg(objcgs[off]);
10befea9
RG
2958
2959 return NULL;
9855609b 2960 }
8380ce47 2961
bcfe06bf 2962 /*
becacb04 2963 * folio_memcg_check() is used here, because in theory we can encounter
4b5f8d9a
VB
2964 * a folio where the slab flag has been cleared already, but
2965 * slab->memcg_data has not been freed yet
becacb04 2966 * folio_memcg_check() will guarantee that a proper memory
bcfe06bf
RG
2967 * cgroup pointer or NULL will be returned.
2968 */
becacb04 2969 return folio_memcg_check(folio);
8380ce47
RG
2970}
2971
fc4db90f
RG
2972/*
2973 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2974 *
2975 * A passed kernel object can be a slab object, vmalloc object or a generic
2976 * kernel page, so different mechanisms for getting the memory cgroup pointer
2977 * should be used.
2978 *
2979 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2980 * can not know for sure how the kernel object is implemented.
2981 * mem_cgroup_from_obj() can be safely used in such cases.
2982 *
2983 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2984 * cgroup_mutex, etc.
2985 */
2986struct mem_cgroup *mem_cgroup_from_obj(void *p)
2987{
2988 struct folio *folio;
2989
2990 if (mem_cgroup_disabled())
2991 return NULL;
2992
2993 if (unlikely(is_vmalloc_addr(p)))
2994 folio = page_folio(vmalloc_to_page(p));
2995 else
2996 folio = virt_to_folio(p);
2997
2998 return mem_cgroup_from_obj_folio(folio, p);
2999}
3000
3001/*
3002 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3003 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3004 * allocated using vmalloc().
3005 *
3006 * A passed kernel object must be a slab object or a generic kernel page.
3007 *
3008 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3009 * cgroup_mutex, etc.
3010 */
3011struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3012{
3013 if (mem_cgroup_disabled())
3014 return NULL;
3015
3016 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3017}
3018
f4840ccf
JW
3019static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3020{
3021 struct obj_cgroup *objcg = NULL;
3022
7848ed62 3023 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
f4840ccf
JW
3024 objcg = rcu_dereference(memcg->objcg);
3025 if (objcg && obj_cgroup_tryget(objcg))
3026 break;
3027 objcg = NULL;
3028 }
3029 return objcg;
3030}
3031
bf4f0599
RG
3032__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3033{
3034 struct obj_cgroup *objcg = NULL;
3035 struct mem_cgroup *memcg;
3036
279c3393
RG
3037 if (memcg_kmem_bypass())
3038 return NULL;
3039
bf4f0599 3040 rcu_read_lock();
37d5985c
RG
3041 if (unlikely(active_memcg()))
3042 memcg = active_memcg();
bf4f0599
RG
3043 else
3044 memcg = mem_cgroup_from_task(current);
f4840ccf 3045 objcg = __get_obj_cgroup_from_memcg(memcg);
bf4f0599 3046 rcu_read_unlock();
f4840ccf
JW
3047 return objcg;
3048}
3049
3050struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3051{
3052 struct obj_cgroup *objcg;
3053
f7a449f7 3054 if (!memcg_kmem_online())
f4840ccf
JW
3055 return NULL;
3056
3057 if (PageMemcgKmem(page)) {
3058 objcg = __folio_objcg(page_folio(page));
3059 obj_cgroup_get(objcg);
3060 } else {
3061 struct mem_cgroup *memcg;
bf4f0599 3062
f4840ccf
JW
3063 rcu_read_lock();
3064 memcg = __folio_memcg(page_folio(page));
3065 if (memcg)
3066 objcg = __get_obj_cgroup_from_memcg(memcg);
3067 else
3068 objcg = NULL;
3069 rcu_read_unlock();
3070 }
bf4f0599
RG
3071 return objcg;
3072}
3073
a8c49af3
YA
3074static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3075{
3076 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3077 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3078 if (nr_pages > 0)
3079 page_counter_charge(&memcg->kmem, nr_pages);
3080 else
3081 page_counter_uncharge(&memcg->kmem, -nr_pages);
3082 }
3083}
3084
3085
f1286fae
MS
3086/*
3087 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3088 * @objcg: object cgroup to uncharge
3089 * @nr_pages: number of pages to uncharge
3090 */
e74d2259
MS
3091static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3092 unsigned int nr_pages)
3093{
3094 struct mem_cgroup *memcg;
3095
3096 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 3097
a8c49af3 3098 memcg_account_kmem(memcg, -nr_pages);
f1286fae 3099 refill_stock(memcg, nr_pages);
e74d2259 3100
e74d2259 3101 css_put(&memcg->css);
e74d2259
MS
3102}
3103
f1286fae
MS
3104/*
3105 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3106 * @objcg: object cgroup to charge
45264778 3107 * @gfp: reclaim mode
92d0510c 3108 * @nr_pages: number of pages to charge
45264778
VD
3109 *
3110 * Returns 0 on success, an error code on failure.
3111 */
f1286fae
MS
3112static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3113 unsigned int nr_pages)
7ae1e1d0 3114{
f1286fae 3115 struct mem_cgroup *memcg;
7ae1e1d0
GC
3116 int ret;
3117
f1286fae
MS
3118 memcg = get_mem_cgroup_from_objcg(objcg);
3119
c5c8b16b 3120 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 3121 if (ret)
f1286fae 3122 goto out;
52c29b04 3123
a8c49af3 3124 memcg_account_kmem(memcg, nr_pages);
f1286fae
MS
3125out:
3126 css_put(&memcg->css);
4b13f64d 3127
f1286fae 3128 return ret;
4b13f64d
RG
3129}
3130
45264778 3131/**
f4b00eab 3132 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3133 * @page: page to charge
3134 * @gfp: reclaim mode
3135 * @order: allocation order
3136 *
3137 * Returns 0 on success, an error code on failure.
3138 */
f4b00eab 3139int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3140{
b4e0b68f 3141 struct obj_cgroup *objcg;
fcff7d7e 3142 int ret = 0;
7ae1e1d0 3143
b4e0b68f
MS
3144 objcg = get_obj_cgroup_from_current();
3145 if (objcg) {
3146 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3147 if (!ret) {
b4e0b68f 3148 page->memcg_data = (unsigned long)objcg |
18b2db3b 3149 MEMCG_DATA_KMEM;
1a3e1f40 3150 return 0;
4d96ba35 3151 }
b4e0b68f 3152 obj_cgroup_put(objcg);
c4159a75 3153 }
d05e83a6 3154 return ret;
7ae1e1d0 3155}
49a18eae 3156
45264778 3157/**
f4b00eab 3158 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3159 * @page: page to uncharge
3160 * @order: allocation order
3161 */
f4b00eab 3162void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3163{
1b7e4464 3164 struct folio *folio = page_folio(page);
b4e0b68f 3165 struct obj_cgroup *objcg;
f3ccb2c4 3166 unsigned int nr_pages = 1 << order;
7ae1e1d0 3167
1b7e4464 3168 if (!folio_memcg_kmem(folio))
7ae1e1d0
GC
3169 return;
3170
1b7e4464 3171 objcg = __folio_objcg(folio);
b4e0b68f 3172 obj_cgroup_uncharge_pages(objcg, nr_pages);
1b7e4464 3173 folio->memcg_data = 0;
b4e0b68f 3174 obj_cgroup_put(objcg);
60d3fd32 3175}
bf4f0599 3176
68ac5b3c
WL
3177void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3178 enum node_stat_item idx, int nr)
3179{
fead2b86 3180 struct memcg_stock_pcp *stock;
56751146 3181 struct obj_cgroup *old = NULL;
68ac5b3c
WL
3182 unsigned long flags;
3183 int *bytes;
3184
56751146 3185 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3186 stock = this_cpu_ptr(&memcg_stock);
3187
68ac5b3c
WL
3188 /*
3189 * Save vmstat data in stock and skip vmstat array update unless
3190 * accumulating over a page of vmstat data or when pgdat or idx
3191 * changes.
3192 */
3b8abb32 3193 if (READ_ONCE(stock->cached_objcg) != objcg) {
56751146 3194 old = drain_obj_stock(stock);
68ac5b3c
WL
3195 obj_cgroup_get(objcg);
3196 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3197 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3b8abb32 3198 WRITE_ONCE(stock->cached_objcg, objcg);
68ac5b3c
WL
3199 stock->cached_pgdat = pgdat;
3200 } else if (stock->cached_pgdat != pgdat) {
3201 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3202 struct pglist_data *oldpg = stock->cached_pgdat;
3203
68ac5b3c 3204 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3205 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3206 stock->nr_slab_reclaimable_b);
3207 stock->nr_slab_reclaimable_b = 0;
3208 }
3209 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3210 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3211 stock->nr_slab_unreclaimable_b);
3212 stock->nr_slab_unreclaimable_b = 0;
3213 }
3214 stock->cached_pgdat = pgdat;
3215 }
3216
3217 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3218 : &stock->nr_slab_unreclaimable_b;
3219 /*
3220 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3221 * cached locally at least once before pushing it out.
3222 */
3223 if (!*bytes) {
3224 *bytes = nr;
3225 nr = 0;
3226 } else {
3227 *bytes += nr;
3228 if (abs(*bytes) > PAGE_SIZE) {
3229 nr = *bytes;
3230 *bytes = 0;
3231 } else {
3232 nr = 0;
3233 }
3234 }
3235 if (nr)
3236 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3237
56751146
SAS
3238 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3239 if (old)
3240 obj_cgroup_put(old);
68ac5b3c
WL
3241}
3242
bf4f0599
RG
3243static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3244{
fead2b86 3245 struct memcg_stock_pcp *stock;
bf4f0599
RG
3246 unsigned long flags;
3247 bool ret = false;
3248
56751146 3249 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3250
3251 stock = this_cpu_ptr(&memcg_stock);
3b8abb32 3252 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
bf4f0599
RG
3253 stock->nr_bytes -= nr_bytes;
3254 ret = true;
3255 }
3256
56751146 3257 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
bf4f0599
RG
3258
3259 return ret;
3260}
3261
56751146 3262static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 3263{
3b8abb32 3264 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
bf4f0599
RG
3265
3266 if (!old)
56751146 3267 return NULL;
bf4f0599
RG
3268
3269 if (stock->nr_bytes) {
3270 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3271 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3272
af9a3b69
JW
3273 if (nr_pages) {
3274 struct mem_cgroup *memcg;
3275
3276 memcg = get_mem_cgroup_from_objcg(old);
3277
3278 memcg_account_kmem(memcg, -nr_pages);
3279 __refill_stock(memcg, nr_pages);
3280
3281 css_put(&memcg->css);
3282 }
bf4f0599
RG
3283
3284 /*
3285 * The leftover is flushed to the centralized per-memcg value.
3286 * On the next attempt to refill obj stock it will be moved
3287 * to a per-cpu stock (probably, on an other CPU), see
3288 * refill_obj_stock().
3289 *
3290 * How often it's flushed is a trade-off between the memory
3291 * limit enforcement accuracy and potential CPU contention,
3292 * so it might be changed in the future.
3293 */
3294 atomic_add(nr_bytes, &old->nr_charged_bytes);
3295 stock->nr_bytes = 0;
3296 }
3297
68ac5b3c
WL
3298 /*
3299 * Flush the vmstat data in current stock
3300 */
3301 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3302 if (stock->nr_slab_reclaimable_b) {
3303 mod_objcg_mlstate(old, stock->cached_pgdat,
3304 NR_SLAB_RECLAIMABLE_B,
3305 stock->nr_slab_reclaimable_b);
3306 stock->nr_slab_reclaimable_b = 0;
3307 }
3308 if (stock->nr_slab_unreclaimable_b) {
3309 mod_objcg_mlstate(old, stock->cached_pgdat,
3310 NR_SLAB_UNRECLAIMABLE_B,
3311 stock->nr_slab_unreclaimable_b);
3312 stock->nr_slab_unreclaimable_b = 0;
3313 }
3314 stock->cached_pgdat = NULL;
3315 }
3316
3b8abb32 3317 WRITE_ONCE(stock->cached_objcg, NULL);
56751146
SAS
3318 /*
3319 * The `old' objects needs to be released by the caller via
3320 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3321 */
3322 return old;
bf4f0599
RG
3323}
3324
3325static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3326 struct mem_cgroup *root_memcg)
3327{
3b8abb32 3328 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
bf4f0599
RG
3329 struct mem_cgroup *memcg;
3330
3b8abb32
RG
3331 if (objcg) {
3332 memcg = obj_cgroup_memcg(objcg);
bf4f0599
RG
3333 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3334 return true;
3335 }
3336
3337 return false;
3338}
3339
5387c904
WL
3340static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3341 bool allow_uncharge)
bf4f0599 3342{
fead2b86 3343 struct memcg_stock_pcp *stock;
56751146 3344 struct obj_cgroup *old = NULL;
bf4f0599 3345 unsigned long flags;
5387c904 3346 unsigned int nr_pages = 0;
bf4f0599 3347
56751146 3348 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3349
3350 stock = this_cpu_ptr(&memcg_stock);
3b8abb32 3351 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
56751146 3352 old = drain_obj_stock(stock);
bf4f0599 3353 obj_cgroup_get(objcg);
3b8abb32 3354 WRITE_ONCE(stock->cached_objcg, objcg);
5387c904
WL
3355 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3356 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3357 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3358 }
3359 stock->nr_bytes += nr_bytes;
3360
5387c904
WL
3361 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3362 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3363 stock->nr_bytes &= (PAGE_SIZE - 1);
3364 }
bf4f0599 3365
56751146
SAS
3366 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3367 if (old)
3368 obj_cgroup_put(old);
5387c904
WL
3369
3370 if (nr_pages)
3371 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3372}
3373
3374int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3375{
bf4f0599
RG
3376 unsigned int nr_pages, nr_bytes;
3377 int ret;
3378
3379 if (consume_obj_stock(objcg, size))
3380 return 0;
3381
3382 /*
5387c904 3383 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3384 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3385 * flushing objcg->nr_charged_bytes requires two atomic
3386 * operations, and objcg->nr_charged_bytes can't be big.
3387 * The shared objcg->nr_charged_bytes can also become a
3388 * performance bottleneck if all tasks of the same memcg are
3389 * trying to update it. So it's better to ignore it and try
3390 * grab some new pages. The stock's nr_bytes will be flushed to
3391 * objcg->nr_charged_bytes later on when objcg changes.
3392 *
3393 * The stock's nr_bytes may contain enough pre-charged bytes
3394 * to allow one less page from being charged, but we can't rely
3395 * on the pre-charged bytes not being changed outside of
3396 * consume_obj_stock() or refill_obj_stock(). So ignore those
3397 * pre-charged bytes as well when charging pages. To avoid a
3398 * page uncharge right after a page charge, we set the
3399 * allow_uncharge flag to false when calling refill_obj_stock()
3400 * to temporarily allow the pre-charged bytes to exceed the page
3401 * size limit. The maximum reachable value of the pre-charged
3402 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3403 * race.
bf4f0599 3404 */
bf4f0599
RG
3405 nr_pages = size >> PAGE_SHIFT;
3406 nr_bytes = size & (PAGE_SIZE - 1);
3407
3408 if (nr_bytes)
3409 nr_pages += 1;
3410
e74d2259 3411 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3412 if (!ret && nr_bytes)
5387c904 3413 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3414
bf4f0599
RG
3415 return ret;
3416}
3417
3418void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3419{
5387c904 3420 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3421}
3422
84c07d11 3423#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3424
ca3e0214 3425/*
be6c8982 3426 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3427 */
be6c8982 3428void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3429{
1b7e4464
MWO
3430 struct folio *folio = page_folio(head);
3431 struct mem_cgroup *memcg = folio_memcg(folio);
e94c8a9c 3432 int i;
ca3e0214 3433
be6c8982 3434 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3435 return;
b070e65c 3436
be6c8982 3437 for (i = 1; i < nr; i++)
1b7e4464 3438 folio_page(folio, i)->memcg_data = folio->memcg_data;
b4e0b68f 3439
1b7e4464
MWO
3440 if (folio_memcg_kmem(folio))
3441 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
b4e0b68f
MS
3442 else
3443 css_get_many(&memcg->css, nr - 1);
ca3e0214 3444}
ca3e0214 3445
e55b9f96 3446#ifdef CONFIG_SWAP
02491447
DN
3447/**
3448 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3449 * @entry: swap entry to be moved
3450 * @from: mem_cgroup which the entry is moved from
3451 * @to: mem_cgroup which the entry is moved to
3452 *
3453 * It succeeds only when the swap_cgroup's record for this entry is the same
3454 * as the mem_cgroup's id of @from.
3455 *
3456 * Returns 0 on success, -EINVAL on failure.
3457 *
3e32cb2e 3458 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3459 * both res and memsw, and called css_get().
3460 */
3461static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3462 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3463{
3464 unsigned short old_id, new_id;
3465
34c00c31
LZ
3466 old_id = mem_cgroup_id(from);
3467 new_id = mem_cgroup_id(to);
02491447
DN
3468
3469 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3470 mod_memcg_state(from, MEMCG_SWAP, -1);
3471 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3472 return 0;
3473 }
3474 return -EINVAL;
3475}
3476#else
3477static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3478 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3479{
3480 return -EINVAL;
3481}
8c7c6e34 3482#endif
d13d1443 3483
bbec2e15 3484static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3485
bbec2e15
RG
3486static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3487 unsigned long max, bool memsw)
628f4235 3488{
3e32cb2e 3489 bool enlarge = false;
bb4a7ea2 3490 bool drained = false;
3e32cb2e 3491 int ret;
c054a78c
YZ
3492 bool limits_invariant;
3493 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3494
3e32cb2e 3495 do {
628f4235
KH
3496 if (signal_pending(current)) {
3497 ret = -EINTR;
3498 break;
3499 }
3e32cb2e 3500
bbec2e15 3501 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3502 /*
3503 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3504 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3505 */
15b42562 3506 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3507 max <= memcg->memsw.max;
c054a78c 3508 if (!limits_invariant) {
bbec2e15 3509 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3510 ret = -EINVAL;
8c7c6e34
KH
3511 break;
3512 }
bbec2e15 3513 if (max > counter->max)
3e32cb2e 3514 enlarge = true;
bbec2e15
RG
3515 ret = page_counter_set_max(counter, max);
3516 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3517
3518 if (!ret)
3519 break;
3520
bb4a7ea2
SB
3521 if (!drained) {
3522 drain_all_stock(memcg);
3523 drained = true;
3524 continue;
3525 }
3526
73b73bac 3527 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3528 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
1ab5c056
AR
3529 ret = -EBUSY;
3530 break;
3531 }
3532 } while (true);
3e32cb2e 3533
3c11ecf4
KH
3534 if (!ret && enlarge)
3535 memcg_oom_recover(memcg);
3e32cb2e 3536
628f4235
KH
3537 return ret;
3538}
3539
ef8f2327 3540unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3541 gfp_t gfp_mask,
3542 unsigned long *total_scanned)
3543{
3544 unsigned long nr_reclaimed = 0;
ef8f2327 3545 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3546 unsigned long reclaimed;
3547 int loop = 0;
ef8f2327 3548 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3549 unsigned long excess;
0608f43d 3550
e4dde56c
YZ
3551 if (lru_gen_enabled())
3552 return 0;
3553
0608f43d
AM
3554 if (order > 0)
3555 return 0;
3556
2ab082ba 3557 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
d6507ff5
MH
3558
3559 /*
3560 * Do not even bother to check the largest node if the root
3561 * is empty. Do it lockless to prevent lock bouncing. Races
3562 * are acceptable as soft limit is best effort anyway.
3563 */
bfc7228b 3564 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3565 return 0;
3566
0608f43d
AM
3567 /*
3568 * This loop can run a while, specially if mem_cgroup's continuously
3569 * keep exceeding their soft limit and putting the system under
3570 * pressure
3571 */
3572 do {
3573 if (next_mz)
3574 mz = next_mz;
3575 else
3576 mz = mem_cgroup_largest_soft_limit_node(mctz);
3577 if (!mz)
3578 break;
3579
ef8f2327 3580 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
d8f65338 3581 gfp_mask, total_scanned);
0608f43d 3582 nr_reclaimed += reclaimed;
0a31bc97 3583 spin_lock_irq(&mctz->lock);
0608f43d
AM
3584
3585 /*
3586 * If we failed to reclaim anything from this memory cgroup
3587 * it is time to move on to the next cgroup
3588 */
3589 next_mz = NULL;
bc2f2e7f
VD
3590 if (!reclaimed)
3591 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3592
3e32cb2e 3593 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3594 /*
3595 * One school of thought says that we should not add
3596 * back the node to the tree if reclaim returns 0.
3597 * But our reclaim could return 0, simply because due
3598 * to priority we are exposing a smaller subset of
3599 * memory to reclaim from. Consider this as a longer
3600 * term TODO.
3601 */
3602 /* If excess == 0, no tree ops */
cf2c8127 3603 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3604 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3605 css_put(&mz->memcg->css);
3606 loop++;
3607 /*
3608 * Could not reclaim anything and there are no more
3609 * mem cgroups to try or we seem to be looping without
3610 * reclaiming anything.
3611 */
3612 if (!nr_reclaimed &&
3613 (next_mz == NULL ||
3614 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3615 break;
3616 } while (!nr_reclaimed);
3617 if (next_mz)
3618 css_put(&next_mz->memcg->css);
3619 return nr_reclaimed;
3620}
3621
c26251f9 3622/*
51038171 3623 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3624 *
3625 * Caller is responsible for holding css reference for memcg.
3626 */
3627static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3628{
d977aa93 3629 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3630
c1e862c1
KH
3631 /* we call try-to-free pages for make this cgroup empty */
3632 lru_add_drain_all();
d12c60f6
JS
3633
3634 drain_all_stock(memcg);
3635
f817ed48 3636 /* try to free all pages in this cgroup */
3e32cb2e 3637 while (nr_retries && page_counter_read(&memcg->memory)) {
c26251f9
MH
3638 if (signal_pending(current))
3639 return -EINTR;
3640
73b73bac 3641 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3642 MEMCG_RECLAIM_MAY_SWAP))
f817ed48 3643 nr_retries--;
f817ed48 3644 }
ab5196c2
MH
3645
3646 return 0;
cc847582
KH
3647}
3648
6770c64e
TH
3649static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3650 char *buf, size_t nbytes,
3651 loff_t off)
c1e862c1 3652{
6770c64e 3653 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3654
d8423011
MH
3655 if (mem_cgroup_is_root(memcg))
3656 return -EINVAL;
6770c64e 3657 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3658}
3659
182446d0
TH
3660static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3661 struct cftype *cft)
18f59ea7 3662{
bef8620c 3663 return 1;
18f59ea7
BS
3664}
3665
182446d0
TH
3666static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3667 struct cftype *cft, u64 val)
18f59ea7 3668{
bef8620c 3669 if (val == 1)
0b8f73e1 3670 return 0;
567fb435 3671
bef8620c
RG
3672 pr_warn_once("Non-hierarchical mode is deprecated. "
3673 "Please report your usecase to linux-mm@kvack.org if you "
3674 "depend on this functionality.\n");
567fb435 3675
bef8620c 3676 return -EINVAL;
18f59ea7
BS
3677}
3678
6f646156 3679static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3680{
42a30035 3681 unsigned long val;
ce00a967 3682
3e32cb2e 3683 if (mem_cgroup_is_root(memcg)) {
a2174e95 3684 /*
f82a7a86
YA
3685 * Approximate root's usage from global state. This isn't
3686 * perfect, but the root usage was always an approximation.
a2174e95 3687 */
f82a7a86
YA
3688 val = global_node_page_state(NR_FILE_PAGES) +
3689 global_node_page_state(NR_ANON_MAPPED);
42a30035 3690 if (swap)
f82a7a86 3691 val += total_swap_pages - get_nr_swap_pages();
3e32cb2e 3692 } else {
ce00a967 3693 if (!swap)
3e32cb2e 3694 val = page_counter_read(&memcg->memory);
ce00a967 3695 else
3e32cb2e 3696 val = page_counter_read(&memcg->memsw);
ce00a967 3697 }
c12176d3 3698 return val;
ce00a967
JW
3699}
3700
3e32cb2e
JW
3701enum {
3702 RES_USAGE,
3703 RES_LIMIT,
3704 RES_MAX_USAGE,
3705 RES_FAILCNT,
3706 RES_SOFT_LIMIT,
3707};
ce00a967 3708
791badbd 3709static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3710 struct cftype *cft)
8cdea7c0 3711{
182446d0 3712 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3713 struct page_counter *counter;
af36f906 3714
3e32cb2e 3715 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3716 case _MEM:
3e32cb2e
JW
3717 counter = &memcg->memory;
3718 break;
8c7c6e34 3719 case _MEMSWAP:
3e32cb2e
JW
3720 counter = &memcg->memsw;
3721 break;
510fc4e1 3722 case _KMEM:
3e32cb2e 3723 counter = &memcg->kmem;
510fc4e1 3724 break;
d55f90bf 3725 case _TCP:
0db15298 3726 counter = &memcg->tcpmem;
d55f90bf 3727 break;
8c7c6e34
KH
3728 default:
3729 BUG();
8c7c6e34 3730 }
3e32cb2e
JW
3731
3732 switch (MEMFILE_ATTR(cft->private)) {
3733 case RES_USAGE:
3734 if (counter == &memcg->memory)
c12176d3 3735 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3736 if (counter == &memcg->memsw)
c12176d3 3737 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3738 return (u64)page_counter_read(counter) * PAGE_SIZE;
3739 case RES_LIMIT:
bbec2e15 3740 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3741 case RES_MAX_USAGE:
3742 return (u64)counter->watermark * PAGE_SIZE;
3743 case RES_FAILCNT:
3744 return counter->failcnt;
3745 case RES_SOFT_LIMIT:
2178e20c 3746 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3e32cb2e
JW
3747 default:
3748 BUG();
3749 }
8cdea7c0 3750}
510fc4e1 3751
6b0ba2ab
FS
3752/*
3753 * This function doesn't do anything useful. Its only job is to provide a read
3754 * handler for a file so that cgroup_file_mode() will add read permissions.
3755 */
3756static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3757 __always_unused void *v)
3758{
3759 return -EINVAL;
3760}
3761
84c07d11 3762#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3763static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3764{
bf4f0599 3765 struct obj_cgroup *objcg;
d6441637 3766
9c94bef9 3767 if (mem_cgroup_kmem_disabled())
b313aeee
VD
3768 return 0;
3769
da0efe30
MS
3770 if (unlikely(mem_cgroup_is_root(memcg)))
3771 return 0;
d6441637 3772
bf4f0599 3773 objcg = obj_cgroup_alloc();
f9c69d63 3774 if (!objcg)
bf4f0599 3775 return -ENOMEM;
f9c69d63 3776
bf4f0599
RG
3777 objcg->memcg = memcg;
3778 rcu_assign_pointer(memcg->objcg, objcg);
3779
f7a449f7 3780 static_branch_enable(&memcg_kmem_online_key);
d648bcc7 3781
f9c69d63 3782 memcg->kmemcg_id = memcg->id.id;
0b8f73e1
JW
3783
3784 return 0;
d6441637
VD
3785}
3786
8e0a8912
JW
3787static void memcg_offline_kmem(struct mem_cgroup *memcg)
3788{
64268868 3789 struct mem_cgroup *parent;
8e0a8912 3790
9c94bef9 3791 if (mem_cgroup_kmem_disabled())
da0efe30
MS
3792 return;
3793
3794 if (unlikely(mem_cgroup_is_root(memcg)))
8e0a8912 3795 return;
9855609b 3796
8e0a8912
JW
3797 parent = parent_mem_cgroup(memcg);
3798 if (!parent)
3799 parent = root_mem_cgroup;
3800
bf4f0599 3801 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a 3802
8e0a8912 3803 /*
64268868
MS
3804 * After we have finished memcg_reparent_objcgs(), all list_lrus
3805 * corresponding to this cgroup are guaranteed to remain empty.
3806 * The ordering is imposed by list_lru_node->lock taken by
1f391eb2 3807 * memcg_reparent_list_lrus().
8e0a8912 3808 */
1f391eb2 3809 memcg_reparent_list_lrus(memcg, parent);
8e0a8912 3810}
d6441637 3811#else
0b8f73e1 3812static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3813{
3814 return 0;
3815}
3816static void memcg_offline_kmem(struct mem_cgroup *memcg)
3817{
3818}
84c07d11 3819#endif /* CONFIG_MEMCG_KMEM */
127424c8 3820
bbec2e15 3821static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3822{
3823 int ret;
3824
bbec2e15 3825 mutex_lock(&memcg_max_mutex);
d55f90bf 3826
bbec2e15 3827 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3828 if (ret)
3829 goto out;
3830
0db15298 3831 if (!memcg->tcpmem_active) {
d55f90bf
VD
3832 /*
3833 * The active flag needs to be written after the static_key
3834 * update. This is what guarantees that the socket activation
2d758073
JW
3835 * function is the last one to run. See mem_cgroup_sk_alloc()
3836 * for details, and note that we don't mark any socket as
3837 * belonging to this memcg until that flag is up.
d55f90bf
VD
3838 *
3839 * We need to do this, because static_keys will span multiple
3840 * sites, but we can't control their order. If we mark a socket
3841 * as accounted, but the accounting functions are not patched in
3842 * yet, we'll lose accounting.
3843 *
2d758073 3844 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3845 * because when this value change, the code to process it is not
3846 * patched in yet.
3847 */
3848 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3849 memcg->tcpmem_active = true;
d55f90bf
VD
3850 }
3851out:
bbec2e15 3852 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3853 return ret;
3854}
d55f90bf 3855
628f4235
KH
3856/*
3857 * The user of this function is...
3858 * RES_LIMIT.
3859 */
451af504
TH
3860static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3861 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3862{
451af504 3863 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3864 unsigned long nr_pages;
628f4235
KH
3865 int ret;
3866
451af504 3867 buf = strstrip(buf);
650c5e56 3868 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3869 if (ret)
3870 return ret;
af36f906 3871
3e32cb2e 3872 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3873 case RES_LIMIT:
4b3bde4c
BS
3874 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3875 ret = -EINVAL;
3876 break;
3877 }
3e32cb2e
JW
3878 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3879 case _MEM:
bbec2e15 3880 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3881 break;
3e32cb2e 3882 case _MEMSWAP:
bbec2e15 3883 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3884 break;
3e32cb2e 3885 case _KMEM:
58056f77
SB
3886 /* kmem.limit_in_bytes is deprecated. */
3887 ret = -EOPNOTSUPP;
3e32cb2e 3888 break;
d55f90bf 3889 case _TCP:
bbec2e15 3890 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3891 break;
3e32cb2e 3892 }
296c81d8 3893 break;
3e32cb2e 3894 case RES_SOFT_LIMIT:
2343e88d
SAS
3895 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3896 ret = -EOPNOTSUPP;
3897 } else {
2178e20c 3898 WRITE_ONCE(memcg->soft_limit, nr_pages);
2343e88d
SAS
3899 ret = 0;
3900 }
628f4235
KH
3901 break;
3902 }
451af504 3903 return ret ?: nbytes;
8cdea7c0
BS
3904}
3905
6770c64e
TH
3906static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3907 size_t nbytes, loff_t off)
c84872e1 3908{
6770c64e 3909 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3910 struct page_counter *counter;
c84872e1 3911
3e32cb2e
JW
3912 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3913 case _MEM:
3914 counter = &memcg->memory;
3915 break;
3916 case _MEMSWAP:
3917 counter = &memcg->memsw;
3918 break;
3919 case _KMEM:
3920 counter = &memcg->kmem;
3921 break;
d55f90bf 3922 case _TCP:
0db15298 3923 counter = &memcg->tcpmem;
d55f90bf 3924 break;
3e32cb2e
JW
3925 default:
3926 BUG();
3927 }
af36f906 3928
3e32cb2e 3929 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3930 case RES_MAX_USAGE:
3e32cb2e 3931 page_counter_reset_watermark(counter);
29f2a4da
PE
3932 break;
3933 case RES_FAILCNT:
3e32cb2e 3934 counter->failcnt = 0;
29f2a4da 3935 break;
3e32cb2e
JW
3936 default:
3937 BUG();
29f2a4da 3938 }
f64c3f54 3939
6770c64e 3940 return nbytes;
c84872e1
PE
3941}
3942
182446d0 3943static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3944 struct cftype *cft)
3945{
182446d0 3946 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3947}
3948
02491447 3949#ifdef CONFIG_MMU
182446d0 3950static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3951 struct cftype *cft, u64 val)
3952{
182446d0 3953 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3954
da34a848
JW
3955 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3956 "Please report your usecase to linux-mm@kvack.org if you "
3957 "depend on this functionality.\n");
3958
1dfab5ab 3959 if (val & ~MOVE_MASK)
7dc74be0 3960 return -EINVAL;
ee5e8472 3961
7dc74be0 3962 /*
ee5e8472
GC
3963 * No kind of locking is needed in here, because ->can_attach() will
3964 * check this value once in the beginning of the process, and then carry
3965 * on with stale data. This means that changes to this value will only
3966 * affect task migrations starting after the change.
7dc74be0 3967 */
c0ff4b85 3968 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3969 return 0;
3970}
02491447 3971#else
182446d0 3972static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3973 struct cftype *cft, u64 val)
3974{
3975 return -ENOSYS;
3976}
3977#endif
7dc74be0 3978
406eb0c9 3979#ifdef CONFIG_NUMA
113b7dfd
JW
3980
3981#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3982#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3983#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3984
3985static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3986 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3987{
867e5e1d 3988 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3989 unsigned long nr = 0;
3990 enum lru_list lru;
3991
3992 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3993
3994 for_each_lru(lru) {
3995 if (!(BIT(lru) & lru_mask))
3996 continue;
dd8657b6
SB
3997 if (tree)
3998 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3999 else
4000 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
4001 }
4002 return nr;
4003}
4004
4005static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
4006 unsigned int lru_mask,
4007 bool tree)
113b7dfd
JW
4008{
4009 unsigned long nr = 0;
4010 enum lru_list lru;
4011
4012 for_each_lru(lru) {
4013 if (!(BIT(lru) & lru_mask))
4014 continue;
dd8657b6
SB
4015 if (tree)
4016 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4017 else
4018 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
4019 }
4020 return nr;
4021}
4022
2da8ca82 4023static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4024{
25485de6
GT
4025 struct numa_stat {
4026 const char *name;
4027 unsigned int lru_mask;
4028 };
4029
4030 static const struct numa_stat stats[] = {
4031 { "total", LRU_ALL },
4032 { "file", LRU_ALL_FILE },
4033 { "anon", LRU_ALL_ANON },
4034 { "unevictable", BIT(LRU_UNEVICTABLE) },
4035 };
4036 const struct numa_stat *stat;
406eb0c9 4037 int nid;
aa9694bb 4038 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 4039
fd25a9e0 4040 mem_cgroup_flush_stats();
2d146aa3 4041
25485de6 4042 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4043 seq_printf(m, "%s=%lu", stat->name,
4044 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4045 false));
4046 for_each_node_state(nid, N_MEMORY)
4047 seq_printf(m, " N%d=%lu", nid,
4048 mem_cgroup_node_nr_lru_pages(memcg, nid,
4049 stat->lru_mask, false));
25485de6 4050 seq_putc(m, '\n');
406eb0c9 4051 }
406eb0c9 4052
071aee13 4053 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4054
4055 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4056 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4057 true));
4058 for_each_node_state(nid, N_MEMORY)
4059 seq_printf(m, " N%d=%lu", nid,
4060 mem_cgroup_node_nr_lru_pages(memcg, nid,
4061 stat->lru_mask, true));
071aee13 4062 seq_putc(m, '\n');
406eb0c9 4063 }
406eb0c9 4064
406eb0c9
YH
4065 return 0;
4066}
4067#endif /* CONFIG_NUMA */
4068
c8713d0b 4069static const unsigned int memcg1_stats[] = {
0d1c2072 4070 NR_FILE_PAGES,
be5d0a74 4071 NR_ANON_MAPPED,
468c3982
JW
4072#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4073 NR_ANON_THPS,
4074#endif
c8713d0b
JW
4075 NR_SHMEM,
4076 NR_FILE_MAPPED,
4077 NR_FILE_DIRTY,
4078 NR_WRITEBACK,
e09b0b61
YS
4079 WORKINGSET_REFAULT_ANON,
4080 WORKINGSET_REFAULT_FILE,
c8713d0b
JW
4081 MEMCG_SWAP,
4082};
4083
4084static const char *const memcg1_stat_names[] = {
4085 "cache",
4086 "rss",
468c3982 4087#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4088 "rss_huge",
468c3982 4089#endif
c8713d0b
JW
4090 "shmem",
4091 "mapped_file",
4092 "dirty",
4093 "writeback",
e09b0b61
YS
4094 "workingset_refault_anon",
4095 "workingset_refault_file",
c8713d0b
JW
4096 "swap",
4097};
4098
df0e53d0 4099/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4100static const unsigned int memcg1_events[] = {
df0e53d0
JW
4101 PGPGIN,
4102 PGPGOUT,
4103 PGFAULT,
4104 PGMAJFAULT,
4105};
4106
dddb44ff 4107static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
d2ceb9b7 4108{
3e32cb2e 4109 unsigned long memory, memsw;
af7c4b0e
JW
4110 struct mem_cgroup *mi;
4111 unsigned int i;
406eb0c9 4112
71cd3113 4113 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4114
fd25a9e0 4115 mem_cgroup_flush_stats();
2d146aa3 4116
71cd3113 4117 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4118 unsigned long nr;
4119
71cd3113 4120 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4121 continue;
468c3982 4122 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
dddb44ff 4123 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
e09b0b61 4124 nr * memcg_page_state_unit(memcg1_stats[i]));
1dd3a273 4125 }
7b854121 4126
df0e53d0 4127 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
dddb44ff
YA
4128 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4129 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4130
4131 for (i = 0; i < NR_LRU_LISTS; i++)
dddb44ff
YA
4132 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4133 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4134 PAGE_SIZE);
af7c4b0e 4135
14067bb3 4136 /* Hierarchical information */
3e32cb2e
JW
4137 memory = memsw = PAGE_COUNTER_MAX;
4138 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4139 memory = min(memory, READ_ONCE(mi->memory.max));
4140 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4141 }
dddb44ff
YA
4142 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4143 (u64)memory * PAGE_SIZE);
7941d214 4144 if (do_memsw_account())
dddb44ff
YA
4145 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4146 (u64)memsw * PAGE_SIZE);
7f016ee8 4147
8de7ecc6 4148 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4149 unsigned long nr;
4150
71cd3113 4151 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4152 continue;
7de2e9f1 4153 nr = memcg_page_state(memcg, memcg1_stats[i]);
dddb44ff 4154 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
e09b0b61 4155 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
af7c4b0e
JW
4156 }
4157
8de7ecc6 4158 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
dddb44ff
YA
4159 seq_buf_printf(s, "total_%s %llu\n",
4160 vm_event_name(memcg1_events[i]),
4161 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4162
8de7ecc6 4163 for (i = 0; i < NR_LRU_LISTS; i++)
dddb44ff
YA
4164 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4165 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4166 PAGE_SIZE);
14067bb3 4167
7f016ee8 4168#ifdef CONFIG_DEBUG_VM
7f016ee8 4169 {
ef8f2327
MG
4170 pg_data_t *pgdat;
4171 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4172 unsigned long anon_cost = 0;
4173 unsigned long file_cost = 0;
7f016ee8 4174
ef8f2327 4175 for_each_online_pgdat(pgdat) {
a3747b53 4176 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4177
1431d4d1
JW
4178 anon_cost += mz->lruvec.anon_cost;
4179 file_cost += mz->lruvec.file_cost;
ef8f2327 4180 }
dddb44ff
YA
4181 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4182 seq_buf_printf(s, "file_cost %lu\n", file_cost);
7f016ee8
KM
4183 }
4184#endif
d2ceb9b7
KH
4185}
4186
182446d0
TH
4187static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4188 struct cftype *cft)
a7885eb8 4189{
182446d0 4190 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4191
1f4c025b 4192 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4193}
4194
182446d0
TH
4195static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4196 struct cftype *cft, u64 val)
a7885eb8 4197{
182446d0 4198 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4199
37bc3cb9 4200 if (val > 200)
a7885eb8
KM
4201 return -EINVAL;
4202
a4792030 4203 if (!mem_cgroup_is_root(memcg))
82b3aa26 4204 WRITE_ONCE(memcg->swappiness, val);
3dae7fec 4205 else
82b3aa26 4206 WRITE_ONCE(vm_swappiness, val);
068b38c1 4207
a7885eb8
KM
4208 return 0;
4209}
4210
2e72b634
KS
4211static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4212{
4213 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4214 unsigned long usage;
2e72b634
KS
4215 int i;
4216
4217 rcu_read_lock();
4218 if (!swap)
2c488db2 4219 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4220 else
2c488db2 4221 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4222
4223 if (!t)
4224 goto unlock;
4225
ce00a967 4226 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4227
4228 /*
748dad36 4229 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4230 * If it's not true, a threshold was crossed after last
4231 * call of __mem_cgroup_threshold().
4232 */
5407a562 4233 i = t->current_threshold;
2e72b634
KS
4234
4235 /*
4236 * Iterate backward over array of thresholds starting from
4237 * current_threshold and check if a threshold is crossed.
4238 * If none of thresholds below usage is crossed, we read
4239 * only one element of the array here.
4240 */
4241 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4242 eventfd_signal(t->entries[i].eventfd, 1);
4243
4244 /* i = current_threshold + 1 */
4245 i++;
4246
4247 /*
4248 * Iterate forward over array of thresholds starting from
4249 * current_threshold+1 and check if a threshold is crossed.
4250 * If none of thresholds above usage is crossed, we read
4251 * only one element of the array here.
4252 */
4253 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4254 eventfd_signal(t->entries[i].eventfd, 1);
4255
4256 /* Update current_threshold */
5407a562 4257 t->current_threshold = i - 1;
2e72b634
KS
4258unlock:
4259 rcu_read_unlock();
4260}
4261
4262static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4263{
ad4ca5f4
KS
4264 while (memcg) {
4265 __mem_cgroup_threshold(memcg, false);
7941d214 4266 if (do_memsw_account())
ad4ca5f4
KS
4267 __mem_cgroup_threshold(memcg, true);
4268
4269 memcg = parent_mem_cgroup(memcg);
4270 }
2e72b634
KS
4271}
4272
4273static int compare_thresholds(const void *a, const void *b)
4274{
4275 const struct mem_cgroup_threshold *_a = a;
4276 const struct mem_cgroup_threshold *_b = b;
4277
2bff24a3
GT
4278 if (_a->threshold > _b->threshold)
4279 return 1;
4280
4281 if (_a->threshold < _b->threshold)
4282 return -1;
4283
4284 return 0;
2e72b634
KS
4285}
4286
c0ff4b85 4287static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4288{
4289 struct mem_cgroup_eventfd_list *ev;
4290
2bcf2e92
MH
4291 spin_lock(&memcg_oom_lock);
4292
c0ff4b85 4293 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4294 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4295
4296 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4297 return 0;
4298}
4299
c0ff4b85 4300static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4301{
7d74b06f
KH
4302 struct mem_cgroup *iter;
4303
c0ff4b85 4304 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4305 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4306}
4307
59b6f873 4308static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4309 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4310{
2c488db2
KS
4311 struct mem_cgroup_thresholds *thresholds;
4312 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4313 unsigned long threshold;
4314 unsigned long usage;
2c488db2 4315 int i, size, ret;
2e72b634 4316
650c5e56 4317 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4318 if (ret)
4319 return ret;
4320
4321 mutex_lock(&memcg->thresholds_lock);
2c488db2 4322
05b84301 4323 if (type == _MEM) {
2c488db2 4324 thresholds = &memcg->thresholds;
ce00a967 4325 usage = mem_cgroup_usage(memcg, false);
05b84301 4326 } else if (type == _MEMSWAP) {
2c488db2 4327 thresholds = &memcg->memsw_thresholds;
ce00a967 4328 usage = mem_cgroup_usage(memcg, true);
05b84301 4329 } else
2e72b634
KS
4330 BUG();
4331
2e72b634 4332 /* Check if a threshold crossed before adding a new one */
2c488db2 4333 if (thresholds->primary)
2e72b634
KS
4334 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4335
2c488db2 4336 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4337
4338 /* Allocate memory for new array of thresholds */
67b8046f 4339 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4340 if (!new) {
2e72b634
KS
4341 ret = -ENOMEM;
4342 goto unlock;
4343 }
2c488db2 4344 new->size = size;
2e72b634
KS
4345
4346 /* Copy thresholds (if any) to new array */
e90342e6
GS
4347 if (thresholds->primary)
4348 memcpy(new->entries, thresholds->primary->entries,
4349 flex_array_size(new, entries, size - 1));
2c488db2 4350
2e72b634 4351 /* Add new threshold */
2c488db2
KS
4352 new->entries[size - 1].eventfd = eventfd;
4353 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4354
4355 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4356 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4357 compare_thresholds, NULL);
4358
4359 /* Find current threshold */
2c488db2 4360 new->current_threshold = -1;
2e72b634 4361 for (i = 0; i < size; i++) {
748dad36 4362 if (new->entries[i].threshold <= usage) {
2e72b634 4363 /*
2c488db2
KS
4364 * new->current_threshold will not be used until
4365 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4366 * it here.
4367 */
2c488db2 4368 ++new->current_threshold;
748dad36
SZ
4369 } else
4370 break;
2e72b634
KS
4371 }
4372
2c488db2
KS
4373 /* Free old spare buffer and save old primary buffer as spare */
4374 kfree(thresholds->spare);
4375 thresholds->spare = thresholds->primary;
4376
4377 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4378
907860ed 4379 /* To be sure that nobody uses thresholds */
2e72b634
KS
4380 synchronize_rcu();
4381
2e72b634
KS
4382unlock:
4383 mutex_unlock(&memcg->thresholds_lock);
4384
4385 return ret;
4386}
4387
59b6f873 4388static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4389 struct eventfd_ctx *eventfd, const char *args)
4390{
59b6f873 4391 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4392}
4393
59b6f873 4394static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4395 struct eventfd_ctx *eventfd, const char *args)
4396{
59b6f873 4397 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4398}
4399
59b6f873 4400static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4401 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4402{
2c488db2
KS
4403 struct mem_cgroup_thresholds *thresholds;
4404 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4405 unsigned long usage;
7d36665a 4406 int i, j, size, entries;
2e72b634
KS
4407
4408 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4409
4410 if (type == _MEM) {
2c488db2 4411 thresholds = &memcg->thresholds;
ce00a967 4412 usage = mem_cgroup_usage(memcg, false);
05b84301 4413 } else if (type == _MEMSWAP) {
2c488db2 4414 thresholds = &memcg->memsw_thresholds;
ce00a967 4415 usage = mem_cgroup_usage(memcg, true);
05b84301 4416 } else
2e72b634
KS
4417 BUG();
4418
371528ca
AV
4419 if (!thresholds->primary)
4420 goto unlock;
4421
2e72b634
KS
4422 /* Check if a threshold crossed before removing */
4423 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4424
4425 /* Calculate new number of threshold */
7d36665a 4426 size = entries = 0;
2c488db2
KS
4427 for (i = 0; i < thresholds->primary->size; i++) {
4428 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4429 size++;
7d36665a
CX
4430 else
4431 entries++;
2e72b634
KS
4432 }
4433
2c488db2 4434 new = thresholds->spare;
907860ed 4435
7d36665a
CX
4436 /* If no items related to eventfd have been cleared, nothing to do */
4437 if (!entries)
4438 goto unlock;
4439
2e72b634
KS
4440 /* Set thresholds array to NULL if we don't have thresholds */
4441 if (!size) {
2c488db2
KS
4442 kfree(new);
4443 new = NULL;
907860ed 4444 goto swap_buffers;
2e72b634
KS
4445 }
4446
2c488db2 4447 new->size = size;
2e72b634
KS
4448
4449 /* Copy thresholds and find current threshold */
2c488db2
KS
4450 new->current_threshold = -1;
4451 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4452 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4453 continue;
4454
2c488db2 4455 new->entries[j] = thresholds->primary->entries[i];
748dad36 4456 if (new->entries[j].threshold <= usage) {
2e72b634 4457 /*
2c488db2 4458 * new->current_threshold will not be used
2e72b634
KS
4459 * until rcu_assign_pointer(), so it's safe to increment
4460 * it here.
4461 */
2c488db2 4462 ++new->current_threshold;
2e72b634
KS
4463 }
4464 j++;
4465 }
4466
907860ed 4467swap_buffers:
2c488db2
KS
4468 /* Swap primary and spare array */
4469 thresholds->spare = thresholds->primary;
8c757763 4470
2c488db2 4471 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4472
907860ed 4473 /* To be sure that nobody uses thresholds */
2e72b634 4474 synchronize_rcu();
6611d8d7
MC
4475
4476 /* If all events are unregistered, free the spare array */
4477 if (!new) {
4478 kfree(thresholds->spare);
4479 thresholds->spare = NULL;
4480 }
371528ca 4481unlock:
2e72b634 4482 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4483}
c1e862c1 4484
59b6f873 4485static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4486 struct eventfd_ctx *eventfd)
4487{
59b6f873 4488 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4489}
4490
59b6f873 4491static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4492 struct eventfd_ctx *eventfd)
4493{
59b6f873 4494 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4495}
4496
59b6f873 4497static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4498 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4499{
9490ff27 4500 struct mem_cgroup_eventfd_list *event;
9490ff27 4501
9490ff27
KH
4502 event = kmalloc(sizeof(*event), GFP_KERNEL);
4503 if (!event)
4504 return -ENOMEM;
4505
1af8efe9 4506 spin_lock(&memcg_oom_lock);
9490ff27
KH
4507
4508 event->eventfd = eventfd;
4509 list_add(&event->list, &memcg->oom_notify);
4510
4511 /* already in OOM ? */
c2b42d3c 4512 if (memcg->under_oom)
9490ff27 4513 eventfd_signal(eventfd, 1);
1af8efe9 4514 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4515
4516 return 0;
4517}
4518
59b6f873 4519static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4520 struct eventfd_ctx *eventfd)
9490ff27 4521{
9490ff27 4522 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4523
1af8efe9 4524 spin_lock(&memcg_oom_lock);
9490ff27 4525
c0ff4b85 4526 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4527 if (ev->eventfd == eventfd) {
4528 list_del(&ev->list);
4529 kfree(ev);
4530 }
4531 }
4532
1af8efe9 4533 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4534}
4535
2da8ca82 4536static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4537{
aa9694bb 4538 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4539
17c56de6 4540 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
c2b42d3c 4541 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4542 seq_printf(sf, "oom_kill %lu\n",
4543 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4544 return 0;
4545}
4546
182446d0 4547static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4548 struct cftype *cft, u64 val)
4549{
182446d0 4550 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4551
4552 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4553 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4554 return -EINVAL;
4555
17c56de6 4556 WRITE_ONCE(memcg->oom_kill_disable, val);
4d845ebf 4557 if (!val)
c0ff4b85 4558 memcg_oom_recover(memcg);
3dae7fec 4559
3c11ecf4
KH
4560 return 0;
4561}
4562
52ebea74
TH
4563#ifdef CONFIG_CGROUP_WRITEBACK
4564
3a8e9ac8
TH
4565#include <trace/events/writeback.h>
4566
841710aa
TH
4567static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4568{
4569 return wb_domain_init(&memcg->cgwb_domain, gfp);
4570}
4571
4572static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4573{
4574 wb_domain_exit(&memcg->cgwb_domain);
4575}
4576
2529bb3a
TH
4577static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4578{
4579 wb_domain_size_changed(&memcg->cgwb_domain);
4580}
4581
841710aa
TH
4582struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4583{
4584 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4585
4586 if (!memcg->css.parent)
4587 return NULL;
4588
4589 return &memcg->cgwb_domain;
4590}
4591
c2aa723a
TH
4592/**
4593 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4594 * @wb: bdi_writeback in question
c5edf9cd
TH
4595 * @pfilepages: out parameter for number of file pages
4596 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4597 * @pdirty: out parameter for number of dirty pages
4598 * @pwriteback: out parameter for number of pages under writeback
4599 *
c5edf9cd
TH
4600 * Determine the numbers of file, headroom, dirty, and writeback pages in
4601 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4602 * is a bit more involved.
c2aa723a 4603 *
c5edf9cd
TH
4604 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4605 * headroom is calculated as the lowest headroom of itself and the
4606 * ancestors. Note that this doesn't consider the actual amount of
4607 * available memory in the system. The caller should further cap
4608 * *@pheadroom accordingly.
c2aa723a 4609 */
c5edf9cd
TH
4610void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4611 unsigned long *pheadroom, unsigned long *pdirty,
4612 unsigned long *pwriteback)
c2aa723a
TH
4613{
4614 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4615 struct mem_cgroup *parent;
c2aa723a 4616
190409ca 4617 mem_cgroup_flush_stats();
c2aa723a 4618
2d146aa3
JW
4619 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4620 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4621 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4622 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4623
2d146aa3 4624 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4625 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4626 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4627 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4628 unsigned long used = page_counter_read(&memcg->memory);
4629
c5edf9cd 4630 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4631 memcg = parent;
4632 }
c2aa723a
TH
4633}
4634
97b27821
TH
4635/*
4636 * Foreign dirty flushing
4637 *
4638 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4639 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4640 * deliberate design decision because honoring per-page ownership in the
4641 * writeback path is complicated, may lead to higher CPU and IO overheads
4642 * and deemed unnecessary given that write-sharing an inode across
4643 * different cgroups isn't a common use-case.
4644 *
4645 * Combined with inode majority-writer ownership switching, this works well
4646 * enough in most cases but there are some pathological cases. For
4647 * example, let's say there are two cgroups A and B which keep writing to
4648 * different but confined parts of the same inode. B owns the inode and
4649 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4650 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4651 * triggering background writeback. A will be slowed down without a way to
4652 * make writeback of the dirty pages happen.
4653 *
f0953a1b 4654 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4655 * severely throttled after making some progress after each
f0953a1b 4656 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4657 * completely idle.
4658 *
4659 * Solving this problem completely requires matching the ownership tracking
4660 * granularities between memcg and writeback in either direction. However,
4661 * the more egregious behaviors can be avoided by simply remembering the
4662 * most recent foreign dirtying events and initiating remote flushes on
4663 * them when local writeback isn't enough to keep the memory clean enough.
4664 *
4665 * The following two functions implement such mechanism. When a foreign
4666 * page - a page whose memcg and writeback ownerships don't match - is
4667 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4668 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4669 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4670 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4671 * foreign bdi_writebacks which haven't expired. Both the numbers of
4672 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4673 * limited to MEMCG_CGWB_FRN_CNT.
4674 *
4675 * The mechanism only remembers IDs and doesn't hold any object references.
4676 * As being wrong occasionally doesn't matter, updates and accesses to the
4677 * records are lockless and racy.
4678 */
9d8053fc 4679void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
97b27821
TH
4680 struct bdi_writeback *wb)
4681{
9d8053fc 4682 struct mem_cgroup *memcg = folio_memcg(folio);
97b27821
TH
4683 struct memcg_cgwb_frn *frn;
4684 u64 now = get_jiffies_64();
4685 u64 oldest_at = now;
4686 int oldest = -1;
4687 int i;
4688
9d8053fc 4689 trace_track_foreign_dirty(folio, wb);
3a8e9ac8 4690
97b27821
TH
4691 /*
4692 * Pick the slot to use. If there is already a slot for @wb, keep
4693 * using it. If not replace the oldest one which isn't being
4694 * written out.
4695 */
4696 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4697 frn = &memcg->cgwb_frn[i];
4698 if (frn->bdi_id == wb->bdi->id &&
4699 frn->memcg_id == wb->memcg_css->id)
4700 break;
4701 if (time_before64(frn->at, oldest_at) &&
4702 atomic_read(&frn->done.cnt) == 1) {
4703 oldest = i;
4704 oldest_at = frn->at;
4705 }
4706 }
4707
4708 if (i < MEMCG_CGWB_FRN_CNT) {
4709 /*
4710 * Re-using an existing one. Update timestamp lazily to
4711 * avoid making the cacheline hot. We want them to be
4712 * reasonably up-to-date and significantly shorter than
4713 * dirty_expire_interval as that's what expires the record.
4714 * Use the shorter of 1s and dirty_expire_interval / 8.
4715 */
4716 unsigned long update_intv =
4717 min_t(unsigned long, HZ,
4718 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4719
4720 if (time_before64(frn->at, now - update_intv))
4721 frn->at = now;
4722 } else if (oldest >= 0) {
4723 /* replace the oldest free one */
4724 frn = &memcg->cgwb_frn[oldest];
4725 frn->bdi_id = wb->bdi->id;
4726 frn->memcg_id = wb->memcg_css->id;
4727 frn->at = now;
4728 }
4729}
4730
4731/* issue foreign writeback flushes for recorded foreign dirtying events */
4732void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4733{
4734 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4735 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4736 u64 now = jiffies_64;
4737 int i;
4738
4739 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4740 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4741
4742 /*
4743 * If the record is older than dirty_expire_interval,
4744 * writeback on it has already started. No need to kick it
4745 * off again. Also, don't start a new one if there's
4746 * already one in flight.
4747 */
4748 if (time_after64(frn->at, now - intv) &&
4749 atomic_read(&frn->done.cnt) == 1) {
4750 frn->at = 0;
3a8e9ac8 4751 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4752 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4753 WB_REASON_FOREIGN_FLUSH,
4754 &frn->done);
4755 }
4756 }
4757}
4758
841710aa
TH
4759#else /* CONFIG_CGROUP_WRITEBACK */
4760
4761static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4762{
4763 return 0;
4764}
4765
4766static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4767{
4768}
4769
2529bb3a
TH
4770static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4771{
4772}
4773
52ebea74
TH
4774#endif /* CONFIG_CGROUP_WRITEBACK */
4775
3bc942f3
TH
4776/*
4777 * DO NOT USE IN NEW FILES.
4778 *
4779 * "cgroup.event_control" implementation.
4780 *
4781 * This is way over-engineered. It tries to support fully configurable
4782 * events for each user. Such level of flexibility is completely
4783 * unnecessary especially in the light of the planned unified hierarchy.
4784 *
4785 * Please deprecate this and replace with something simpler if at all
4786 * possible.
4787 */
4788
79bd9814
TH
4789/*
4790 * Unregister event and free resources.
4791 *
4792 * Gets called from workqueue.
4793 */
3bc942f3 4794static void memcg_event_remove(struct work_struct *work)
79bd9814 4795{
3bc942f3
TH
4796 struct mem_cgroup_event *event =
4797 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4798 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4799
4800 remove_wait_queue(event->wqh, &event->wait);
4801
59b6f873 4802 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4803
4804 /* Notify userspace the event is going away. */
4805 eventfd_signal(event->eventfd, 1);
4806
4807 eventfd_ctx_put(event->eventfd);
4808 kfree(event);
59b6f873 4809 css_put(&memcg->css);
79bd9814
TH
4810}
4811
4812/*
a9a08845 4813 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4814 *
4815 * Called with wqh->lock held and interrupts disabled.
4816 */
ac6424b9 4817static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4818 int sync, void *key)
79bd9814 4819{
3bc942f3
TH
4820 struct mem_cgroup_event *event =
4821 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4822 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4823 __poll_t flags = key_to_poll(key);
79bd9814 4824
a9a08845 4825 if (flags & EPOLLHUP) {
79bd9814
TH
4826 /*
4827 * If the event has been detached at cgroup removal, we
4828 * can simply return knowing the other side will cleanup
4829 * for us.
4830 *
4831 * We can't race against event freeing since the other
4832 * side will require wqh->lock via remove_wait_queue(),
4833 * which we hold.
4834 */
fba94807 4835 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4836 if (!list_empty(&event->list)) {
4837 list_del_init(&event->list);
4838 /*
4839 * We are in atomic context, but cgroup_event_remove()
4840 * may sleep, so we have to call it in workqueue.
4841 */
4842 schedule_work(&event->remove);
4843 }
fba94807 4844 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4845 }
4846
4847 return 0;
4848}
4849
3bc942f3 4850static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4851 wait_queue_head_t *wqh, poll_table *pt)
4852{
3bc942f3
TH
4853 struct mem_cgroup_event *event =
4854 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4855
4856 event->wqh = wqh;
4857 add_wait_queue(wqh, &event->wait);
4858}
4859
4860/*
3bc942f3
TH
4861 * DO NOT USE IN NEW FILES.
4862 *
79bd9814
TH
4863 * Parse input and register new cgroup event handler.
4864 *
4865 * Input must be in format '<event_fd> <control_fd> <args>'.
4866 * Interpretation of args is defined by control file implementation.
4867 */
451af504
TH
4868static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4869 char *buf, size_t nbytes, loff_t off)
79bd9814 4870{
451af504 4871 struct cgroup_subsys_state *css = of_css(of);
fba94807 4872 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4873 struct mem_cgroup_event *event;
79bd9814
TH
4874 struct cgroup_subsys_state *cfile_css;
4875 unsigned int efd, cfd;
4876 struct fd efile;
4877 struct fd cfile;
4a7ba45b 4878 struct dentry *cdentry;
fba94807 4879 const char *name;
79bd9814
TH
4880 char *endp;
4881 int ret;
4882
2343e88d
SAS
4883 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4884 return -EOPNOTSUPP;
4885
451af504
TH
4886 buf = strstrip(buf);
4887
4888 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4889 if (*endp != ' ')
4890 return -EINVAL;
451af504 4891 buf = endp + 1;
79bd9814 4892
451af504 4893 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4894 if ((*endp != ' ') && (*endp != '\0'))
4895 return -EINVAL;
451af504 4896 buf = endp + 1;
79bd9814
TH
4897
4898 event = kzalloc(sizeof(*event), GFP_KERNEL);
4899 if (!event)
4900 return -ENOMEM;
4901
59b6f873 4902 event->memcg = memcg;
79bd9814 4903 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4904 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4905 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4906 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4907
4908 efile = fdget(efd);
4909 if (!efile.file) {
4910 ret = -EBADF;
4911 goto out_kfree;
4912 }
4913
4914 event->eventfd = eventfd_ctx_fileget(efile.file);
4915 if (IS_ERR(event->eventfd)) {
4916 ret = PTR_ERR(event->eventfd);
4917 goto out_put_efile;
4918 }
4919
4920 cfile = fdget(cfd);
4921 if (!cfile.file) {
4922 ret = -EBADF;
4923 goto out_put_eventfd;
4924 }
4925
4926 /* the process need read permission on control file */
4927 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4928 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4929 if (ret < 0)
4930 goto out_put_cfile;
4931
4a7ba45b
TH
4932 /*
4933 * The control file must be a regular cgroup1 file. As a regular cgroup
4934 * file can't be renamed, it's safe to access its name afterwards.
4935 */
4936 cdentry = cfile.file->f_path.dentry;
4937 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4938 ret = -EINVAL;
4939 goto out_put_cfile;
4940 }
4941
fba94807
TH
4942 /*
4943 * Determine the event callbacks and set them in @event. This used
4944 * to be done via struct cftype but cgroup core no longer knows
4945 * about these events. The following is crude but the whole thing
4946 * is for compatibility anyway.
3bc942f3
TH
4947 *
4948 * DO NOT ADD NEW FILES.
fba94807 4949 */
4a7ba45b 4950 name = cdentry->d_name.name;
fba94807
TH
4951
4952 if (!strcmp(name, "memory.usage_in_bytes")) {
4953 event->register_event = mem_cgroup_usage_register_event;
4954 event->unregister_event = mem_cgroup_usage_unregister_event;
4955 } else if (!strcmp(name, "memory.oom_control")) {
4956 event->register_event = mem_cgroup_oom_register_event;
4957 event->unregister_event = mem_cgroup_oom_unregister_event;
4958 } else if (!strcmp(name, "memory.pressure_level")) {
4959 event->register_event = vmpressure_register_event;
4960 event->unregister_event = vmpressure_unregister_event;
4961 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4962 event->register_event = memsw_cgroup_usage_register_event;
4963 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4964 } else {
4965 ret = -EINVAL;
4966 goto out_put_cfile;
4967 }
4968
79bd9814 4969 /*
b5557c4c
TH
4970 * Verify @cfile should belong to @css. Also, remaining events are
4971 * automatically removed on cgroup destruction but the removal is
4972 * asynchronous, so take an extra ref on @css.
79bd9814 4973 */
4a7ba45b 4974 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
ec903c0c 4975 &memory_cgrp_subsys);
79bd9814 4976 ret = -EINVAL;
5a17f543 4977 if (IS_ERR(cfile_css))
79bd9814 4978 goto out_put_cfile;
5a17f543
TH
4979 if (cfile_css != css) {
4980 css_put(cfile_css);
79bd9814 4981 goto out_put_cfile;
5a17f543 4982 }
79bd9814 4983
451af504 4984 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4985 if (ret)
4986 goto out_put_css;
4987
9965ed17 4988 vfs_poll(efile.file, &event->pt);
79bd9814 4989
4ba9515d 4990 spin_lock_irq(&memcg->event_list_lock);
fba94807 4991 list_add(&event->list, &memcg->event_list);
4ba9515d 4992 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
4993
4994 fdput(cfile);
4995 fdput(efile);
4996
451af504 4997 return nbytes;
79bd9814
TH
4998
4999out_put_css:
b5557c4c 5000 css_put(css);
79bd9814
TH
5001out_put_cfile:
5002 fdput(cfile);
5003out_put_eventfd:
5004 eventfd_ctx_put(event->eventfd);
5005out_put_efile:
5006 fdput(efile);
5007out_kfree:
5008 kfree(event);
5009
5010 return ret;
5011}
5012
c29b5b3d
MS
5013#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5014static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5015{
5016 /*
5017 * Deprecated.
df4ae285 5018 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
c29b5b3d
MS
5019 */
5020 return 0;
5021}
5022#endif
5023
dddb44ff
YA
5024static int memory_stat_show(struct seq_file *m, void *v);
5025
241994ed 5026static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 5027 {
0eea1030 5028 .name = "usage_in_bytes",
8c7c6e34 5029 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5030 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5031 },
c84872e1
PE
5032 {
5033 .name = "max_usage_in_bytes",
8c7c6e34 5034 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5035 .write = mem_cgroup_reset,
791badbd 5036 .read_u64 = mem_cgroup_read_u64,
c84872e1 5037 },
8cdea7c0 5038 {
0eea1030 5039 .name = "limit_in_bytes",
8c7c6e34 5040 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5041 .write = mem_cgroup_write,
791badbd 5042 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5043 },
296c81d8
BS
5044 {
5045 .name = "soft_limit_in_bytes",
5046 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5047 .write = mem_cgroup_write,
791badbd 5048 .read_u64 = mem_cgroup_read_u64,
296c81d8 5049 },
8cdea7c0
BS
5050 {
5051 .name = "failcnt",
8c7c6e34 5052 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5053 .write = mem_cgroup_reset,
791badbd 5054 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5055 },
d2ceb9b7
KH
5056 {
5057 .name = "stat",
dddb44ff 5058 .seq_show = memory_stat_show,
d2ceb9b7 5059 },
c1e862c1
KH
5060 {
5061 .name = "force_empty",
6770c64e 5062 .write = mem_cgroup_force_empty_write,
c1e862c1 5063 },
18f59ea7
BS
5064 {
5065 .name = "use_hierarchy",
5066 .write_u64 = mem_cgroup_hierarchy_write,
5067 .read_u64 = mem_cgroup_hierarchy_read,
5068 },
79bd9814 5069 {
3bc942f3 5070 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5071 .write = memcg_write_event_control,
7dbdb199 5072 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5073 },
a7885eb8
KM
5074 {
5075 .name = "swappiness",
5076 .read_u64 = mem_cgroup_swappiness_read,
5077 .write_u64 = mem_cgroup_swappiness_write,
5078 },
7dc74be0
DN
5079 {
5080 .name = "move_charge_at_immigrate",
5081 .read_u64 = mem_cgroup_move_charge_read,
5082 .write_u64 = mem_cgroup_move_charge_write,
5083 },
9490ff27
KH
5084 {
5085 .name = "oom_control",
2da8ca82 5086 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5087 .write_u64 = mem_cgroup_oom_control_write,
9490ff27 5088 },
70ddf637
AV
5089 {
5090 .name = "pressure_level",
6b0ba2ab 5091 .seq_show = mem_cgroup_dummy_seq_show,
70ddf637 5092 },
406eb0c9
YH
5093#ifdef CONFIG_NUMA
5094 {
5095 .name = "numa_stat",
2da8ca82 5096 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5097 },
5098#endif
510fc4e1
GC
5099 {
5100 .name = "kmem.limit_in_bytes",
5101 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5102 .write = mem_cgroup_write,
791badbd 5103 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5104 },
5105 {
5106 .name = "kmem.usage_in_bytes",
5107 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5108 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5109 },
5110 {
5111 .name = "kmem.failcnt",
5112 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5113 .write = mem_cgroup_reset,
791badbd 5114 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5115 },
5116 {
5117 .name = "kmem.max_usage_in_bytes",
5118 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5119 .write = mem_cgroup_reset,
791badbd 5120 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5121 },
a87425a3
YS
5122#if defined(CONFIG_MEMCG_KMEM) && \
5123 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5124 {
5125 .name = "kmem.slabinfo",
c29b5b3d 5126 .seq_show = mem_cgroup_slab_show,
749c5415
GC
5127 },
5128#endif
d55f90bf
VD
5129 {
5130 .name = "kmem.tcp.limit_in_bytes",
5131 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5132 .write = mem_cgroup_write,
5133 .read_u64 = mem_cgroup_read_u64,
5134 },
5135 {
5136 .name = "kmem.tcp.usage_in_bytes",
5137 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5138 .read_u64 = mem_cgroup_read_u64,
5139 },
5140 {
5141 .name = "kmem.tcp.failcnt",
5142 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5143 .write = mem_cgroup_reset,
5144 .read_u64 = mem_cgroup_read_u64,
5145 },
5146 {
5147 .name = "kmem.tcp.max_usage_in_bytes",
5148 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5149 .write = mem_cgroup_reset,
5150 .read_u64 = mem_cgroup_read_u64,
5151 },
6bc10349 5152 { }, /* terminate */
af36f906 5153};
8c7c6e34 5154
73f576c0
JW
5155/*
5156 * Private memory cgroup IDR
5157 *
5158 * Swap-out records and page cache shadow entries need to store memcg
5159 * references in constrained space, so we maintain an ID space that is
5160 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5161 * memory-controlled cgroups to 64k.
5162 *
b8f2935f 5163 * However, there usually are many references to the offline CSS after
73f576c0
JW
5164 * the cgroup has been destroyed, such as page cache or reclaimable
5165 * slab objects, that don't need to hang on to the ID. We want to keep
5166 * those dead CSS from occupying IDs, or we might quickly exhaust the
5167 * relatively small ID space and prevent the creation of new cgroups
5168 * even when there are much fewer than 64k cgroups - possibly none.
5169 *
5170 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5171 * be freed and recycled when it's no longer needed, which is usually
5172 * when the CSS is offlined.
5173 *
5174 * The only exception to that are records of swapped out tmpfs/shmem
5175 * pages that need to be attributed to live ancestors on swapin. But
5176 * those references are manageable from userspace.
5177 */
5178
5179static DEFINE_IDR(mem_cgroup_idr);
5180
7e97de0b
KT
5181static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5182{
5183 if (memcg->id.id > 0) {
5184 idr_remove(&mem_cgroup_idr, memcg->id.id);
5185 memcg->id.id = 0;
5186 }
5187}
5188
c1514c0a
VF
5189static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5190 unsigned int n)
73f576c0 5191{
1c2d479a 5192 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5193}
5194
615d66c3 5195static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5196{
1c2d479a 5197 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5198 mem_cgroup_id_remove(memcg);
73f576c0
JW
5199
5200 /* Memcg ID pins CSS */
5201 css_put(&memcg->css);
5202 }
5203}
5204
615d66c3
VD
5205static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5206{
5207 mem_cgroup_id_put_many(memcg, 1);
5208}
5209
73f576c0
JW
5210/**
5211 * mem_cgroup_from_id - look up a memcg from a memcg id
5212 * @id: the memcg id to look up
5213 *
5214 * Caller must hold rcu_read_lock().
5215 */
5216struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5217{
5218 WARN_ON_ONCE(!rcu_read_lock_held());
5219 return idr_find(&mem_cgroup_idr, id);
5220}
5221
c15187a4
RG
5222#ifdef CONFIG_SHRINKER_DEBUG
5223struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5224{
5225 struct cgroup *cgrp;
5226 struct cgroup_subsys_state *css;
5227 struct mem_cgroup *memcg;
5228
5229 cgrp = cgroup_get_from_id(ino);
fa7e439c 5230 if (IS_ERR(cgrp))
c0f2df49 5231 return ERR_CAST(cgrp);
c15187a4
RG
5232
5233 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5234 if (css)
5235 memcg = container_of(css, struct mem_cgroup, css);
5236 else
5237 memcg = ERR_PTR(-ENOENT);
5238
5239 cgroup_put(cgrp);
5240
5241 return memcg;
5242}
5243#endif
5244
ef8f2327 5245static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5246{
5247 struct mem_cgroup_per_node *pn;
8c9bb398
WY
5248
5249 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
6d12e2d8
KH
5250 if (!pn)
5251 return 1;
1ecaab2b 5252
7e1c0d6f
SB
5253 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5254 GFP_KERNEL_ACCOUNT);
5255 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5256 kfree(pn);
5257 return 1;
5258 }
5259
ef8f2327 5260 lruvec_init(&pn->lruvec);
ef8f2327
MG
5261 pn->memcg = memcg;
5262
54f72fe0 5263 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5264 return 0;
5265}
5266
ef8f2327 5267static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5268{
00f3ca2c
JW
5269 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5270
4eaf431f
MH
5271 if (!pn)
5272 return;
5273
7e1c0d6f 5274 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5275 kfree(pn);
1ecaab2b
KH
5276}
5277
40e952f9 5278static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5279{
c8b2a36f 5280 int node;
59927fb9 5281
c8b2a36f 5282 for_each_node(node)
ef8f2327 5283 free_mem_cgroup_per_node_info(memcg, node);
410f8e82 5284 kfree(memcg->vmstats);
871789d4 5285 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5286 kfree(memcg);
59927fb9 5287}
3afe36b1 5288
40e952f9
TE
5289static void mem_cgroup_free(struct mem_cgroup *memcg)
5290{
ec1c86b2 5291 lru_gen_exit_memcg(memcg);
40e952f9
TE
5292 memcg_wb_domain_exit(memcg);
5293 __mem_cgroup_free(memcg);
5294}
5295
0b8f73e1 5296static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5297{
d142e3e6 5298 struct mem_cgroup *memcg;
6d12e2d8 5299 int node;
97b27821 5300 int __maybe_unused i;
11d67612 5301 long error = -ENOMEM;
8cdea7c0 5302
06b2c3b0 5303 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
c0ff4b85 5304 if (!memcg)
11d67612 5305 return ERR_PTR(error);
0b8f73e1 5306
73f576c0 5307 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
be740503 5308 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
11d67612
YS
5309 if (memcg->id.id < 0) {
5310 error = memcg->id.id;
73f576c0 5311 goto fail;
11d67612 5312 }
73f576c0 5313
410f8e82
SB
5314 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5315 if (!memcg->vmstats)
5316 goto fail;
5317
3e38e0aa
RG
5318 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5319 GFP_KERNEL_ACCOUNT);
871789d4 5320 if (!memcg->vmstats_percpu)
0b8f73e1 5321 goto fail;
78fb7466 5322
3ed28fa1 5323 for_each_node(node)
ef8f2327 5324 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5325 goto fail;
f64c3f54 5326
0b8f73e1
JW
5327 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5328 goto fail;
28dbc4b6 5329
f7e1cb6e 5330 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5331 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5332 mutex_init(&memcg->thresholds_lock);
5333 spin_lock_init(&memcg->move_lock);
70ddf637 5334 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5335 INIT_LIST_HEAD(&memcg->event_list);
5336 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5337 memcg->socket_pressure = jiffies;
84c07d11 5338#ifdef CONFIG_MEMCG_KMEM
900a38f0 5339 memcg->kmemcg_id = -1;
bf4f0599 5340 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5341#endif
52ebea74
TH
5342#ifdef CONFIG_CGROUP_WRITEBACK
5343 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5344 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5345 memcg->cgwb_frn[i].done =
5346 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5347#endif
5348#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5349 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5350 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5351 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5352#endif
73f576c0 5353 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
ec1c86b2 5354 lru_gen_init_memcg(memcg);
0b8f73e1
JW
5355 return memcg;
5356fail:
7e97de0b 5357 mem_cgroup_id_remove(memcg);
40e952f9 5358 __mem_cgroup_free(memcg);
11d67612 5359 return ERR_PTR(error);
d142e3e6
GC
5360}
5361
0b8f73e1
JW
5362static struct cgroup_subsys_state * __ref
5363mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5364{
0b8f73e1 5365 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5366 struct mem_cgroup *memcg, *old_memcg;
d142e3e6 5367
b87d8cef 5368 old_memcg = set_active_memcg(parent);
0b8f73e1 5369 memcg = mem_cgroup_alloc();
b87d8cef 5370 set_active_memcg(old_memcg);
11d67612
YS
5371 if (IS_ERR(memcg))
5372 return ERR_CAST(memcg);
d142e3e6 5373
d1663a90 5374 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5375 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
f4840ccf
JW
5376#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5377 memcg->zswap_max = PAGE_COUNTER_MAX;
5378#endif
4b82ab4f 5379 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1 5380 if (parent) {
82b3aa26 5381 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
17c56de6 5382 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
bef8620c 5383
3e32cb2e 5384 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5385 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5386 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5387 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5388 } else {
8278f1c7 5389 init_memcg_events();
bef8620c
RG
5390 page_counter_init(&memcg->memory, NULL);
5391 page_counter_init(&memcg->swap, NULL);
5392 page_counter_init(&memcg->kmem, NULL);
5393 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5394
0b8f73e1
JW
5395 root_mem_cgroup = memcg;
5396 return &memcg->css;
5397 }
5398
f7e1cb6e 5399 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5400 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5401
b6c1a8af
YS
5402#if defined(CONFIG_MEMCG_KMEM)
5403 if (!cgroup_memory_nobpf)
5404 static_branch_inc(&memcg_bpf_enabled_key);
5405#endif
5406
0b8f73e1 5407 return &memcg->css;
0b8f73e1
JW
5408}
5409
73f576c0 5410static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5411{
58fa2a55
VD
5412 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5413
da0efe30
MS
5414 if (memcg_online_kmem(memcg))
5415 goto remove_id;
5416
0a4465d3 5417 /*
e4262c4f 5418 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5419 * by the time the maps are allocated. So, we allocate maps
5420 * here, when for_each_mem_cgroup() can't skip it.
5421 */
da0efe30
MS
5422 if (alloc_shrinker_info(memcg))
5423 goto offline_kmem;
0a4465d3 5424
73f576c0 5425 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5426 refcount_set(&memcg->id.ref, 1);
73f576c0 5427 css_get(css);
aa48e47e
SB
5428
5429 if (unlikely(mem_cgroup_is_root(memcg)))
5430 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5431 2UL*HZ);
e4dde56c 5432 lru_gen_online_memcg(memcg);
2f7dd7a4 5433 return 0;
da0efe30
MS
5434offline_kmem:
5435 memcg_offline_kmem(memcg);
5436remove_id:
5437 mem_cgroup_id_remove(memcg);
5438 return -ENOMEM;
8cdea7c0
BS
5439}
5440
eb95419b 5441static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5442{
eb95419b 5443 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5444 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5445
5446 /*
5447 * Unregister events and notify userspace.
5448 * Notify userspace about cgroup removing only after rmdir of cgroup
5449 * directory to avoid race between userspace and kernelspace.
5450 */
4ba9515d 5451 spin_lock_irq(&memcg->event_list_lock);
fba94807 5452 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5453 list_del_init(&event->list);
5454 schedule_work(&event->remove);
5455 }
4ba9515d 5456 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5457
bf8d5d52 5458 page_counter_set_min(&memcg->memory, 0);
23067153 5459 page_counter_set_low(&memcg->memory, 0);
63677c74 5460
567e9ab2 5461 memcg_offline_kmem(memcg);
a178015c 5462 reparent_shrinker_deferred(memcg);
52ebea74 5463 wb_memcg_offline(memcg);
e4dde56c 5464 lru_gen_offline_memcg(memcg);
73f576c0 5465
591edfb1
RG
5466 drain_all_stock(memcg);
5467
73f576c0 5468 mem_cgroup_id_put(memcg);
df878fb0
KH
5469}
5470
6df38689
VD
5471static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5472{
5473 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5474
5475 invalidate_reclaim_iterators(memcg);
e4dde56c 5476 lru_gen_release_memcg(memcg);
6df38689
VD
5477}
5478
eb95419b 5479static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5480{
eb95419b 5481 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5482 int __maybe_unused i;
c268e994 5483
97b27821
TH
5484#ifdef CONFIG_CGROUP_WRITEBACK
5485 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5486 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5487#endif
f7e1cb6e 5488 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5489 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5490
0db15298 5491 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5492 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5493
b6c1a8af
YS
5494#if defined(CONFIG_MEMCG_KMEM)
5495 if (!cgroup_memory_nobpf)
5496 static_branch_dec(&memcg_bpf_enabled_key);
5497#endif
5498
0b8f73e1
JW
5499 vmpressure_cleanup(&memcg->vmpressure);
5500 cancel_work_sync(&memcg->high_work);
5501 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5502 free_shrinker_info(memcg);
0b8f73e1 5503 mem_cgroup_free(memcg);
8cdea7c0
BS
5504}
5505
1ced953b
TH
5506/**
5507 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5508 * @css: the target css
5509 *
5510 * Reset the states of the mem_cgroup associated with @css. This is
5511 * invoked when the userland requests disabling on the default hierarchy
5512 * but the memcg is pinned through dependency. The memcg should stop
5513 * applying policies and should revert to the vanilla state as it may be
5514 * made visible again.
5515 *
5516 * The current implementation only resets the essential configurations.
5517 * This needs to be expanded to cover all the visible parts.
5518 */
5519static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5520{
5521 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5522
bbec2e15
RG
5523 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5524 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5525 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5526 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5527 page_counter_set_min(&memcg->memory, 0);
23067153 5528 page_counter_set_low(&memcg->memory, 0);
d1663a90 5529 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5530 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
4b82ab4f 5531 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5532 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5533}
5534
2d146aa3
JW
5535static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5536{
5537 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5538 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5539 struct memcg_vmstats_percpu *statc;
5540 long delta, v;
7e1c0d6f 5541 int i, nid;
2d146aa3
JW
5542
5543 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5544
5545 for (i = 0; i < MEMCG_NR_STAT; i++) {
5546 /*
5547 * Collect the aggregated propagation counts of groups
5548 * below us. We're in a per-cpu loop here and this is
5549 * a global counter, so the first cycle will get them.
5550 */
410f8e82 5551 delta = memcg->vmstats->state_pending[i];
2d146aa3 5552 if (delta)
410f8e82 5553 memcg->vmstats->state_pending[i] = 0;
2d146aa3
JW
5554
5555 /* Add CPU changes on this level since the last flush */
5556 v = READ_ONCE(statc->state[i]);
5557 if (v != statc->state_prev[i]) {
5558 delta += v - statc->state_prev[i];
5559 statc->state_prev[i] = v;
5560 }
5561
5562 if (!delta)
5563 continue;
5564
5565 /* Aggregate counts on this level and propagate upwards */
410f8e82 5566 memcg->vmstats->state[i] += delta;
2d146aa3 5567 if (parent)
410f8e82 5568 parent->vmstats->state_pending[i] += delta;
2d146aa3
JW
5569 }
5570
8278f1c7 5571 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
410f8e82 5572 delta = memcg->vmstats->events_pending[i];
2d146aa3 5573 if (delta)
410f8e82 5574 memcg->vmstats->events_pending[i] = 0;
2d146aa3
JW
5575
5576 v = READ_ONCE(statc->events[i]);
5577 if (v != statc->events_prev[i]) {
5578 delta += v - statc->events_prev[i];
5579 statc->events_prev[i] = v;
5580 }
5581
5582 if (!delta)
5583 continue;
5584
410f8e82 5585 memcg->vmstats->events[i] += delta;
2d146aa3 5586 if (parent)
410f8e82 5587 parent->vmstats->events_pending[i] += delta;
2d146aa3 5588 }
7e1c0d6f
SB
5589
5590 for_each_node_state(nid, N_MEMORY) {
5591 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5592 struct mem_cgroup_per_node *ppn = NULL;
5593 struct lruvec_stats_percpu *lstatc;
5594
5595 if (parent)
5596 ppn = parent->nodeinfo[nid];
5597
5598 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5599
5600 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5601 delta = pn->lruvec_stats.state_pending[i];
5602 if (delta)
5603 pn->lruvec_stats.state_pending[i] = 0;
5604
5605 v = READ_ONCE(lstatc->state[i]);
5606 if (v != lstatc->state_prev[i]) {
5607 delta += v - lstatc->state_prev[i];
5608 lstatc->state_prev[i] = v;
5609 }
5610
5611 if (!delta)
5612 continue;
5613
5614 pn->lruvec_stats.state[i] += delta;
5615 if (ppn)
5616 ppn->lruvec_stats.state_pending[i] += delta;
5617 }
5618 }
2d146aa3
JW
5619}
5620
02491447 5621#ifdef CONFIG_MMU
7dc74be0 5622/* Handlers for move charge at task migration. */
854ffa8d 5623static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5624{
05b84301 5625 int ret;
9476db97 5626
d0164adc
MG
5627 /* Try a single bulk charge without reclaim first, kswapd may wake */
5628 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5629 if (!ret) {
854ffa8d 5630 mc.precharge += count;
854ffa8d
DN
5631 return ret;
5632 }
9476db97 5633
3674534b 5634 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5635 while (count--) {
3674534b 5636 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5637 if (ret)
38c5d72f 5638 return ret;
854ffa8d 5639 mc.precharge++;
9476db97 5640 cond_resched();
854ffa8d 5641 }
9476db97 5642 return 0;
4ffef5fe
DN
5643}
5644
4ffef5fe
DN
5645union mc_target {
5646 struct page *page;
02491447 5647 swp_entry_t ent;
4ffef5fe
DN
5648};
5649
4ffef5fe 5650enum mc_target_type {
8d32ff84 5651 MC_TARGET_NONE = 0,
4ffef5fe 5652 MC_TARGET_PAGE,
02491447 5653 MC_TARGET_SWAP,
c733a828 5654 MC_TARGET_DEVICE,
4ffef5fe
DN
5655};
5656
90254a65
DN
5657static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5658 unsigned long addr, pte_t ptent)
4ffef5fe 5659{
25b2995a 5660 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5661
90254a65
DN
5662 if (!page || !page_mapped(page))
5663 return NULL;
5664 if (PageAnon(page)) {
1dfab5ab 5665 if (!(mc.flags & MOVE_ANON))
90254a65 5666 return NULL;
1dfab5ab
JW
5667 } else {
5668 if (!(mc.flags & MOVE_FILE))
5669 return NULL;
5670 }
90254a65
DN
5671 if (!get_page_unless_zero(page))
5672 return NULL;
5673
5674 return page;
5675}
5676
c733a828 5677#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5678static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5679 pte_t ptent, swp_entry_t *entry)
90254a65 5680{
90254a65
DN
5681 struct page *page = NULL;
5682 swp_entry_t ent = pte_to_swp_entry(ptent);
5683
9a137153 5684 if (!(mc.flags & MOVE_ANON))
90254a65 5685 return NULL;
c733a828
JG
5686
5687 /*
27674ef6
CH
5688 * Handle device private pages that are not accessible by the CPU, but
5689 * stored as special swap entries in the page table.
c733a828
JG
5690 */
5691 if (is_device_private_entry(ent)) {
af5cdaf8 5692 page = pfn_swap_entry_to_page(ent);
27674ef6 5693 if (!get_page_unless_zero(page))
c733a828
JG
5694 return NULL;
5695 return page;
5696 }
5697
9a137153
RC
5698 if (non_swap_entry(ent))
5699 return NULL;
5700
4b91355e 5701 /*
cb691e2f 5702 * Because swap_cache_get_folio() updates some statistics counter,
4b91355e
KH
5703 * we call find_get_page() with swapper_space directly.
5704 */
f6ab1f7f 5705 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5706 entry->val = ent.val;
90254a65
DN
5707
5708 return page;
5709}
4b91355e
KH
5710#else
5711static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5712 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5713{
5714 return NULL;
5715}
5716#endif
90254a65 5717
87946a72 5718static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
48384b0b 5719 unsigned long addr, pte_t ptent)
87946a72 5720{
524984ff
MWO
5721 unsigned long index;
5722 struct folio *folio;
5723
87946a72
DN
5724 if (!vma->vm_file) /* anonymous vma */
5725 return NULL;
1dfab5ab 5726 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5727 return NULL;
5728
524984ff 5729 /* folio is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5730 /* shmem/tmpfs may report page out on swap: account for that too. */
524984ff
MWO
5731 index = linear_page_index(vma, addr);
5732 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
66dabbb6 5733 if (IS_ERR(folio))
524984ff
MWO
5734 return NULL;
5735 return folio_file_page(folio, index);
87946a72
DN
5736}
5737
b1b0deab
CG
5738/**
5739 * mem_cgroup_move_account - move account of the page
5740 * @page: the page
25843c2b 5741 * @compound: charge the page as compound or small page
b1b0deab
CG
5742 * @from: mem_cgroup which the page is moved from.
5743 * @to: mem_cgroup which the page is moved to. @from != @to.
5744 *
4e0cf05f 5745 * The page must be locked and not on the LRU.
b1b0deab
CG
5746 *
5747 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5748 * from old cgroup.
5749 */
5750static int mem_cgroup_move_account(struct page *page,
f627c2f5 5751 bool compound,
b1b0deab
CG
5752 struct mem_cgroup *from,
5753 struct mem_cgroup *to)
5754{
fcce4672 5755 struct folio *folio = page_folio(page);
ae8af438
KK
5756 struct lruvec *from_vec, *to_vec;
5757 struct pglist_data *pgdat;
fcce4672 5758 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
8e88bd2d 5759 int nid, ret;
b1b0deab
CG
5760
5761 VM_BUG_ON(from == to);
4e0cf05f 5762 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fcce4672 5763 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
9c325215 5764 VM_BUG_ON(compound && !folio_test_large(folio));
b1b0deab 5765
b1b0deab 5766 ret = -EINVAL;
fcce4672 5767 if (folio_memcg(folio) != from)
4e0cf05f 5768 goto out;
b1b0deab 5769
fcce4672 5770 pgdat = folio_pgdat(folio);
867e5e1d
JW
5771 from_vec = mem_cgroup_lruvec(from, pgdat);
5772 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5773
fcce4672 5774 folio_memcg_lock(folio);
b1b0deab 5775
fcce4672
MWO
5776 if (folio_test_anon(folio)) {
5777 if (folio_mapped(folio)) {
be5d0a74
JW
5778 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5779 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
fcce4672 5780 if (folio_test_transhuge(folio)) {
69473e5d
MS
5781 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5782 -nr_pages);
5783 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5784 nr_pages);
468c3982 5785 }
be5d0a74
JW
5786 }
5787 } else {
0d1c2072
JW
5788 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5789 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5790
fcce4672 5791 if (folio_test_swapbacked(folio)) {
0d1c2072
JW
5792 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5793 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5794 }
5795
fcce4672 5796 if (folio_mapped(folio)) {
49e50d27
JW
5797 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5798 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5799 }
b1b0deab 5800
fcce4672
MWO
5801 if (folio_test_dirty(folio)) {
5802 struct address_space *mapping = folio_mapping(folio);
c4843a75 5803
f56753ac 5804 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5805 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5806 -nr_pages);
5807 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5808 nr_pages);
5809 }
c4843a75
GT
5810 }
5811 }
5812
c449deb2
HD
5813#ifdef CONFIG_SWAP
5814 if (folio_test_swapcache(folio)) {
5815 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5816 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5817 }
5818#endif
fcce4672 5819 if (folio_test_writeback(folio)) {
ae8af438
KK
5820 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5821 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5822 }
5823
5824 /*
abb242f5
JW
5825 * All state has been migrated, let's switch to the new memcg.
5826 *
bcfe06bf 5827 * It is safe to change page's memcg here because the page
abb242f5
JW
5828 * is referenced, charged, isolated, and locked: we can't race
5829 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5830 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5831 *
5832 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5833 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5834 * new memcg that isn't locked, the above state can change
5835 * concurrently again. Make sure we're truly done with it.
b1b0deab 5836 */
abb242f5 5837 smp_mb();
b1b0deab 5838
1a3e1f40
JW
5839 css_get(&to->css);
5840 css_put(&from->css);
5841
fcce4672 5842 folio->memcg_data = (unsigned long)to;
87eaceb3 5843
f70ad448 5844 __folio_memcg_unlock(from);
b1b0deab
CG
5845
5846 ret = 0;
fcce4672 5847 nid = folio_nid(folio);
b1b0deab
CG
5848
5849 local_irq_disable();
6e0110c2 5850 mem_cgroup_charge_statistics(to, nr_pages);
8e88bd2d 5851 memcg_check_events(to, nid);
6e0110c2 5852 mem_cgroup_charge_statistics(from, -nr_pages);
8e88bd2d 5853 memcg_check_events(from, nid);
b1b0deab 5854 local_irq_enable();
b1b0deab
CG
5855out:
5856 return ret;
5857}
5858
7cf7806c
LR
5859/**
5860 * get_mctgt_type - get target type of moving charge
5861 * @vma: the vma the pte to be checked belongs
5862 * @addr: the address corresponding to the pte to be checked
5863 * @ptent: the pte to be checked
5864 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5865 *
5866 * Returns
5867 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5868 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5869 * move charge. if @target is not NULL, the page is stored in target->page
5870 * with extra refcnt got(Callers should handle it).
5871 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5872 * target for charge migration. if @target is not NULL, the entry is stored
5873 * in target->ent.
f25cbb7a
AS
5874 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5875 * thus not on the lru.
df6ad698
JG
5876 * For now we such page is charge like a regular page would be as for all
5877 * intent and purposes it is just special memory taking the place of a
5878 * regular page.
c733a828
JG
5879 *
5880 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5881 *
5882 * Called with pte lock held.
5883 */
5884
8d32ff84 5885static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5886 unsigned long addr, pte_t ptent, union mc_target *target)
5887{
5888 struct page *page = NULL;
8d32ff84 5889 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5890 swp_entry_t ent = { .val = 0 };
5891
5892 if (pte_present(ptent))
5893 page = mc_handle_present_pte(vma, addr, ptent);
5c041f5d
PX
5894 else if (pte_none_mostly(ptent))
5895 /*
5896 * PTE markers should be treated as a none pte here, separated
5897 * from other swap handling below.
5898 */
5899 page = mc_handle_file_pte(vma, addr, ptent);
90254a65 5900 else if (is_swap_pte(ptent))
48406ef8 5901 page = mc_handle_swap_pte(vma, ptent, &ent);
90254a65 5902
4e0cf05f
JW
5903 if (target && page) {
5904 if (!trylock_page(page)) {
5905 put_page(page);
5906 return ret;
5907 }
5908 /*
5909 * page_mapped() must be stable during the move. This
5910 * pte is locked, so if it's present, the page cannot
5911 * become unmapped. If it isn't, we have only partial
5912 * control over the mapped state: the page lock will
5913 * prevent new faults against pagecache and swapcache,
5914 * so an unmapped page cannot become mapped. However,
5915 * if the page is already mapped elsewhere, it can
5916 * unmap, and there is nothing we can do about it.
5917 * Alas, skip moving the page in this case.
5918 */
5919 if (!pte_present(ptent) && page_mapped(page)) {
5920 unlock_page(page);
5921 put_page(page);
5922 return ret;
5923 }
5924 }
5925
90254a65 5926 if (!page && !ent.val)
8d32ff84 5927 return ret;
02491447 5928 if (page) {
02491447 5929 /*
0a31bc97 5930 * Do only loose check w/o serialization.
1306a85a 5931 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5932 * not under LRU exclusion.
02491447 5933 */
bcfe06bf 5934 if (page_memcg(page) == mc.from) {
02491447 5935 ret = MC_TARGET_PAGE;
f25cbb7a
AS
5936 if (is_device_private_page(page) ||
5937 is_device_coherent_page(page))
c733a828 5938 ret = MC_TARGET_DEVICE;
02491447
DN
5939 if (target)
5940 target->page = page;
5941 }
4e0cf05f
JW
5942 if (!ret || !target) {
5943 if (target)
5944 unlock_page(page);
02491447 5945 put_page(page);
4e0cf05f 5946 }
02491447 5947 }
3e14a57b
HY
5948 /*
5949 * There is a swap entry and a page doesn't exist or isn't charged.
5950 * But we cannot move a tail-page in a THP.
5951 */
5952 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5953 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5954 ret = MC_TARGET_SWAP;
5955 if (target)
5956 target->ent = ent;
4ffef5fe 5957 }
4ffef5fe
DN
5958 return ret;
5959}
5960
12724850
NH
5961#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5962/*
d6810d73
HY
5963 * We don't consider PMD mapped swapping or file mapped pages because THP does
5964 * not support them for now.
12724850
NH
5965 * Caller should make sure that pmd_trans_huge(pmd) is true.
5966 */
5967static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5968 unsigned long addr, pmd_t pmd, union mc_target *target)
5969{
5970 struct page *page = NULL;
12724850
NH
5971 enum mc_target_type ret = MC_TARGET_NONE;
5972
84c3fc4e
ZY
5973 if (unlikely(is_swap_pmd(pmd))) {
5974 VM_BUG_ON(thp_migration_supported() &&
5975 !is_pmd_migration_entry(pmd));
5976 return ret;
5977 }
12724850 5978 page = pmd_page(pmd);
309381fe 5979 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5980 if (!(mc.flags & MOVE_ANON))
12724850 5981 return ret;
bcfe06bf 5982 if (page_memcg(page) == mc.from) {
12724850
NH
5983 ret = MC_TARGET_PAGE;
5984 if (target) {
5985 get_page(page);
4e0cf05f
JW
5986 if (!trylock_page(page)) {
5987 put_page(page);
5988 return MC_TARGET_NONE;
5989 }
12724850
NH
5990 target->page = page;
5991 }
5992 }
5993 return ret;
5994}
5995#else
5996static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5997 unsigned long addr, pmd_t pmd, union mc_target *target)
5998{
5999 return MC_TARGET_NONE;
6000}
6001#endif
6002
4ffef5fe
DN
6003static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6004 unsigned long addr, unsigned long end,
6005 struct mm_walk *walk)
6006{
26bcd64a 6007 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6008 pte_t *pte;
6009 spinlock_t *ptl;
6010
b6ec57f4
KS
6011 ptl = pmd_trans_huge_lock(pmd, vma);
6012 if (ptl) {
c733a828
JG
6013 /*
6014 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
6015 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6016 * this might change.
c733a828 6017 */
12724850
NH
6018 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6019 mc.precharge += HPAGE_PMD_NR;
bf929152 6020 spin_unlock(ptl);
1a5a9906 6021 return 0;
12724850 6022 }
03319327 6023
45f83cef
AA
6024 if (pmd_trans_unstable(pmd))
6025 return 0;
4ffef5fe
DN
6026 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6027 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6028 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6029 mc.precharge++; /* increment precharge temporarily */
6030 pte_unmap_unlock(pte - 1, ptl);
6031 cond_resched();
6032
7dc74be0
DN
6033 return 0;
6034}
6035
7b86ac33
CH
6036static const struct mm_walk_ops precharge_walk_ops = {
6037 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6038};
6039
4ffef5fe
DN
6040static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6041{
6042 unsigned long precharge;
4ffef5fe 6043
d8ed45c5 6044 mmap_read_lock(mm);
ba0aff8e 6045 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
d8ed45c5 6046 mmap_read_unlock(mm);
4ffef5fe
DN
6047
6048 precharge = mc.precharge;
6049 mc.precharge = 0;
6050
6051 return precharge;
6052}
6053
4ffef5fe
DN
6054static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6055{
dfe076b0
DN
6056 unsigned long precharge = mem_cgroup_count_precharge(mm);
6057
6058 VM_BUG_ON(mc.moving_task);
6059 mc.moving_task = current;
6060 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6061}
6062
dfe076b0
DN
6063/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6064static void __mem_cgroup_clear_mc(void)
4ffef5fe 6065{
2bd9bb20
KH
6066 struct mem_cgroup *from = mc.from;
6067 struct mem_cgroup *to = mc.to;
6068
4ffef5fe 6069 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 6070 if (mc.precharge) {
00501b53 6071 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
6072 mc.precharge = 0;
6073 }
6074 /*
6075 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6076 * we must uncharge here.
6077 */
6078 if (mc.moved_charge) {
00501b53 6079 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 6080 mc.moved_charge = 0;
4ffef5fe 6081 }
483c30b5
DN
6082 /* we must fixup refcnts and charges */
6083 if (mc.moved_swap) {
483c30b5 6084 /* uncharge swap account from the old cgroup */
ce00a967 6085 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 6086 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 6087
615d66c3
VD
6088 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6089
05b84301 6090 /*
3e32cb2e
JW
6091 * we charged both to->memory and to->memsw, so we
6092 * should uncharge to->memory.
05b84301 6093 */
ce00a967 6094 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
6095 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6096
483c30b5
DN
6097 mc.moved_swap = 0;
6098 }
dfe076b0
DN
6099 memcg_oom_recover(from);
6100 memcg_oom_recover(to);
6101 wake_up_all(&mc.waitq);
6102}
6103
6104static void mem_cgroup_clear_mc(void)
6105{
264a0ae1
TH
6106 struct mm_struct *mm = mc.mm;
6107
dfe076b0
DN
6108 /*
6109 * we must clear moving_task before waking up waiters at the end of
6110 * task migration.
6111 */
6112 mc.moving_task = NULL;
6113 __mem_cgroup_clear_mc();
2bd9bb20 6114 spin_lock(&mc.lock);
4ffef5fe
DN
6115 mc.from = NULL;
6116 mc.to = NULL;
264a0ae1 6117 mc.mm = NULL;
2bd9bb20 6118 spin_unlock(&mc.lock);
264a0ae1
TH
6119
6120 mmput(mm);
4ffef5fe
DN
6121}
6122
1f7dd3e5 6123static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 6124{
1f7dd3e5 6125 struct cgroup_subsys_state *css;
eed67d75 6126 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 6127 struct mem_cgroup *from;
4530eddb 6128 struct task_struct *leader, *p;
9f2115f9 6129 struct mm_struct *mm;
1dfab5ab 6130 unsigned long move_flags;
9f2115f9 6131 int ret = 0;
7dc74be0 6132
1f7dd3e5
TH
6133 /* charge immigration isn't supported on the default hierarchy */
6134 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
6135 return 0;
6136
4530eddb
TH
6137 /*
6138 * Multi-process migrations only happen on the default hierarchy
6139 * where charge immigration is not used. Perform charge
6140 * immigration if @tset contains a leader and whine if there are
6141 * multiple.
6142 */
6143 p = NULL;
1f7dd3e5 6144 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
6145 WARN_ON_ONCE(p);
6146 p = leader;
1f7dd3e5 6147 memcg = mem_cgroup_from_css(css);
4530eddb
TH
6148 }
6149 if (!p)
6150 return 0;
6151
1f7dd3e5 6152 /*
f0953a1b 6153 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
6154 * tunable will only affect upcoming migrations, not the current one.
6155 * So we need to save it, and keep it going.
6156 */
6157 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6158 if (!move_flags)
6159 return 0;
6160
9f2115f9
TH
6161 from = mem_cgroup_from_task(p);
6162
6163 VM_BUG_ON(from == memcg);
6164
6165 mm = get_task_mm(p);
6166 if (!mm)
6167 return 0;
6168 /* We move charges only when we move a owner of the mm */
6169 if (mm->owner == p) {
6170 VM_BUG_ON(mc.from);
6171 VM_BUG_ON(mc.to);
6172 VM_BUG_ON(mc.precharge);
6173 VM_BUG_ON(mc.moved_charge);
6174 VM_BUG_ON(mc.moved_swap);
6175
6176 spin_lock(&mc.lock);
264a0ae1 6177 mc.mm = mm;
9f2115f9
TH
6178 mc.from = from;
6179 mc.to = memcg;
6180 mc.flags = move_flags;
6181 spin_unlock(&mc.lock);
6182 /* We set mc.moving_task later */
6183
6184 ret = mem_cgroup_precharge_mc(mm);
6185 if (ret)
6186 mem_cgroup_clear_mc();
264a0ae1
TH
6187 } else {
6188 mmput(mm);
7dc74be0
DN
6189 }
6190 return ret;
6191}
6192
1f7dd3e5 6193static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6194{
4e2f245d
JW
6195 if (mc.to)
6196 mem_cgroup_clear_mc();
7dc74be0
DN
6197}
6198
4ffef5fe
DN
6199static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6200 unsigned long addr, unsigned long end,
6201 struct mm_walk *walk)
7dc74be0 6202{
4ffef5fe 6203 int ret = 0;
26bcd64a 6204 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6205 pte_t *pte;
6206 spinlock_t *ptl;
12724850
NH
6207 enum mc_target_type target_type;
6208 union mc_target target;
6209 struct page *page;
4ffef5fe 6210
b6ec57f4
KS
6211 ptl = pmd_trans_huge_lock(pmd, vma);
6212 if (ptl) {
62ade86a 6213 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6214 spin_unlock(ptl);
12724850
NH
6215 return 0;
6216 }
6217 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6218 if (target_type == MC_TARGET_PAGE) {
6219 page = target.page;
f7f9c00d 6220 if (isolate_lru_page(page)) {
f627c2f5 6221 if (!mem_cgroup_move_account(page, true,
1306a85a 6222 mc.from, mc.to)) {
12724850
NH
6223 mc.precharge -= HPAGE_PMD_NR;
6224 mc.moved_charge += HPAGE_PMD_NR;
6225 }
6226 putback_lru_page(page);
6227 }
4e0cf05f 6228 unlock_page(page);
12724850 6229 put_page(page);
c733a828
JG
6230 } else if (target_type == MC_TARGET_DEVICE) {
6231 page = target.page;
6232 if (!mem_cgroup_move_account(page, true,
6233 mc.from, mc.to)) {
6234 mc.precharge -= HPAGE_PMD_NR;
6235 mc.moved_charge += HPAGE_PMD_NR;
6236 }
4e0cf05f 6237 unlock_page(page);
c733a828 6238 put_page(page);
12724850 6239 }
bf929152 6240 spin_unlock(ptl);
1a5a9906 6241 return 0;
12724850
NH
6242 }
6243
45f83cef
AA
6244 if (pmd_trans_unstable(pmd))
6245 return 0;
4ffef5fe
DN
6246retry:
6247 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6248 for (; addr != end; addr += PAGE_SIZE) {
6249 pte_t ptent = *(pte++);
c733a828 6250 bool device = false;
02491447 6251 swp_entry_t ent;
4ffef5fe
DN
6252
6253 if (!mc.precharge)
6254 break;
6255
8d32ff84 6256 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6257 case MC_TARGET_DEVICE:
6258 device = true;
e4a9bc58 6259 fallthrough;
4ffef5fe
DN
6260 case MC_TARGET_PAGE:
6261 page = target.page;
53f9263b
KS
6262 /*
6263 * We can have a part of the split pmd here. Moving it
6264 * can be done but it would be too convoluted so simply
6265 * ignore such a partial THP and keep it in original
6266 * memcg. There should be somebody mapping the head.
6267 */
6268 if (PageTransCompound(page))
6269 goto put;
f7f9c00d 6270 if (!device && !isolate_lru_page(page))
4ffef5fe 6271 goto put;
f627c2f5
KS
6272 if (!mem_cgroup_move_account(page, false,
6273 mc.from, mc.to)) {
4ffef5fe 6274 mc.precharge--;
854ffa8d
DN
6275 /* we uncharge from mc.from later. */
6276 mc.moved_charge++;
4ffef5fe 6277 }
c733a828
JG
6278 if (!device)
6279 putback_lru_page(page);
4e0cf05f
JW
6280put: /* get_mctgt_type() gets & locks the page */
6281 unlock_page(page);
4ffef5fe
DN
6282 put_page(page);
6283 break;
02491447
DN
6284 case MC_TARGET_SWAP:
6285 ent = target.ent;
e91cbb42 6286 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6287 mc.precharge--;
8d22a935
HD
6288 mem_cgroup_id_get_many(mc.to, 1);
6289 /* we fixup other refcnts and charges later. */
483c30b5
DN
6290 mc.moved_swap++;
6291 }
02491447 6292 break;
4ffef5fe
DN
6293 default:
6294 break;
6295 }
6296 }
6297 pte_unmap_unlock(pte - 1, ptl);
6298 cond_resched();
6299
6300 if (addr != end) {
6301 /*
6302 * We have consumed all precharges we got in can_attach().
6303 * We try charge one by one, but don't do any additional
6304 * charges to mc.to if we have failed in charge once in attach()
6305 * phase.
6306 */
854ffa8d 6307 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6308 if (!ret)
6309 goto retry;
6310 }
6311
6312 return ret;
6313}
6314
7b86ac33
CH
6315static const struct mm_walk_ops charge_walk_ops = {
6316 .pmd_entry = mem_cgroup_move_charge_pte_range,
6317};
6318
264a0ae1 6319static void mem_cgroup_move_charge(void)
4ffef5fe 6320{
4ffef5fe 6321 lru_add_drain_all();
312722cb 6322 /*
81f8c3a4
JW
6323 * Signal lock_page_memcg() to take the memcg's move_lock
6324 * while we're moving its pages to another memcg. Then wait
6325 * for already started RCU-only updates to finish.
312722cb
JW
6326 */
6327 atomic_inc(&mc.from->moving_account);
6328 synchronize_rcu();
dfe076b0 6329retry:
d8ed45c5 6330 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6331 /*
c1e8d7c6 6332 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6333 * waitq. So we cancel all extra charges, wake up all waiters,
6334 * and retry. Because we cancel precharges, we might not be able
6335 * to move enough charges, but moving charge is a best-effort
6336 * feature anyway, so it wouldn't be a big problem.
6337 */
6338 __mem_cgroup_clear_mc();
6339 cond_resched();
6340 goto retry;
6341 }
26bcd64a
NH
6342 /*
6343 * When we have consumed all precharges and failed in doing
6344 * additional charge, the page walk just aborts.
6345 */
ba0aff8e 6346 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
d8ed45c5 6347 mmap_read_unlock(mc.mm);
312722cb 6348 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6349}
6350
264a0ae1 6351static void mem_cgroup_move_task(void)
67e465a7 6352{
264a0ae1
TH
6353 if (mc.to) {
6354 mem_cgroup_move_charge();
a433658c 6355 mem_cgroup_clear_mc();
264a0ae1 6356 }
67e465a7 6357}
5cfb80a7 6358#else /* !CONFIG_MMU */
1f7dd3e5 6359static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6360{
6361 return 0;
6362}
1f7dd3e5 6363static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6364{
6365}
264a0ae1 6366static void mem_cgroup_move_task(void)
5cfb80a7
DN
6367{
6368}
6369#endif
67e465a7 6370
bd74fdae
YZ
6371#ifdef CONFIG_LRU_GEN
6372static void mem_cgroup_attach(struct cgroup_taskset *tset)
6373{
6374 struct task_struct *task;
6375 struct cgroup_subsys_state *css;
6376
6377 /* find the first leader if there is any */
6378 cgroup_taskset_for_each_leader(task, css, tset)
6379 break;
6380
6381 if (!task)
6382 return;
6383
6384 task_lock(task);
6385 if (task->mm && READ_ONCE(task->mm->owner) == task)
6386 lru_gen_migrate_mm(task->mm);
6387 task_unlock(task);
6388}
6389#else
6390static void mem_cgroup_attach(struct cgroup_taskset *tset)
6391{
6392}
6393#endif /* CONFIG_LRU_GEN */
6394
677dc973
CD
6395static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6396{
6397 if (value == PAGE_COUNTER_MAX)
6398 seq_puts(m, "max\n");
6399 else
6400 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6401
6402 return 0;
6403}
6404
241994ed
JW
6405static u64 memory_current_read(struct cgroup_subsys_state *css,
6406 struct cftype *cft)
6407{
f5fc3c5d
JW
6408 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6409
6410 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6411}
6412
8e20d4b3
GR
6413static u64 memory_peak_read(struct cgroup_subsys_state *css,
6414 struct cftype *cft)
6415{
6416 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6417
6418 return (u64)memcg->memory.watermark * PAGE_SIZE;
6419}
6420
bf8d5d52
RG
6421static int memory_min_show(struct seq_file *m, void *v)
6422{
677dc973
CD
6423 return seq_puts_memcg_tunable(m,
6424 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6425}
6426
6427static ssize_t memory_min_write(struct kernfs_open_file *of,
6428 char *buf, size_t nbytes, loff_t off)
6429{
6430 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6431 unsigned long min;
6432 int err;
6433
6434 buf = strstrip(buf);
6435 err = page_counter_memparse(buf, "max", &min);
6436 if (err)
6437 return err;
6438
6439 page_counter_set_min(&memcg->memory, min);
6440
6441 return nbytes;
6442}
6443
241994ed
JW
6444static int memory_low_show(struct seq_file *m, void *v)
6445{
677dc973
CD
6446 return seq_puts_memcg_tunable(m,
6447 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6448}
6449
6450static ssize_t memory_low_write(struct kernfs_open_file *of,
6451 char *buf, size_t nbytes, loff_t off)
6452{
6453 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6454 unsigned long low;
6455 int err;
6456
6457 buf = strstrip(buf);
d2973697 6458 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6459 if (err)
6460 return err;
6461
23067153 6462 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6463
6464 return nbytes;
6465}
6466
6467static int memory_high_show(struct seq_file *m, void *v)
6468{
d1663a90
JK
6469 return seq_puts_memcg_tunable(m,
6470 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6471}
6472
6473static ssize_t memory_high_write(struct kernfs_open_file *of,
6474 char *buf, size_t nbytes, loff_t off)
6475{
6476 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6477 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6478 bool drained = false;
241994ed
JW
6479 unsigned long high;
6480 int err;
6481
6482 buf = strstrip(buf);
d2973697 6483 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6484 if (err)
6485 return err;
6486
e82553c1
JW
6487 page_counter_set_high(&memcg->memory, high);
6488
8c8c383c
JW
6489 for (;;) {
6490 unsigned long nr_pages = page_counter_read(&memcg->memory);
6491 unsigned long reclaimed;
6492
6493 if (nr_pages <= high)
6494 break;
6495
6496 if (signal_pending(current))
6497 break;
6498
6499 if (!drained) {
6500 drain_all_stock(memcg);
6501 drained = true;
6502 continue;
6503 }
6504
6505 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
55ab834a 6506 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
8c8c383c
JW
6507
6508 if (!reclaimed && !nr_retries--)
6509 break;
6510 }
588083bb 6511
19ce33ac 6512 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6513 return nbytes;
6514}
6515
6516static int memory_max_show(struct seq_file *m, void *v)
6517{
677dc973
CD
6518 return seq_puts_memcg_tunable(m,
6519 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6520}
6521
6522static ssize_t memory_max_write(struct kernfs_open_file *of,
6523 char *buf, size_t nbytes, loff_t off)
6524{
6525 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6526 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6527 bool drained = false;
241994ed
JW
6528 unsigned long max;
6529 int err;
6530
6531 buf = strstrip(buf);
d2973697 6532 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6533 if (err)
6534 return err;
6535
bbec2e15 6536 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6537
6538 for (;;) {
6539 unsigned long nr_pages = page_counter_read(&memcg->memory);
6540
6541 if (nr_pages <= max)
6542 break;
6543
7249c9f0 6544 if (signal_pending(current))
b6e6edcf 6545 break;
b6e6edcf
JW
6546
6547 if (!drained) {
6548 drain_all_stock(memcg);
6549 drained = true;
6550 continue;
6551 }
6552
6553 if (nr_reclaims) {
6554 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
55ab834a 6555 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
b6e6edcf
JW
6556 nr_reclaims--;
6557 continue;
6558 }
6559
e27be240 6560 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6561 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6562 break;
6563 }
241994ed 6564
2529bb3a 6565 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6566 return nbytes;
6567}
6568
1e577f97
SB
6569static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6570{
6571 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6572 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6573 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6574 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6575 seq_printf(m, "oom_kill %lu\n",
6576 atomic_long_read(&events[MEMCG_OOM_KILL]));
b6bf9abb
DS
6577 seq_printf(m, "oom_group_kill %lu\n",
6578 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
1e577f97
SB
6579}
6580
241994ed
JW
6581static int memory_events_show(struct seq_file *m, void *v)
6582{
aa9694bb 6583 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6584
1e577f97
SB
6585 __memory_events_show(m, memcg->memory_events);
6586 return 0;
6587}
6588
6589static int memory_events_local_show(struct seq_file *m, void *v)
6590{
6591 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6592
1e577f97 6593 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6594 return 0;
6595}
6596
587d9f72
JW
6597static int memory_stat_show(struct seq_file *m, void *v)
6598{
aa9694bb 6599 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
68aaee14 6600 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5b42360c 6601 struct seq_buf s;
1ff9e6e1 6602
c8713d0b
JW
6603 if (!buf)
6604 return -ENOMEM;
5b42360c
YA
6605 seq_buf_init(&s, buf, PAGE_SIZE);
6606 memory_stat_format(memcg, &s);
c8713d0b
JW
6607 seq_puts(m, buf);
6608 kfree(buf);
587d9f72
JW
6609 return 0;
6610}
6611
5f9a4f4a 6612#ifdef CONFIG_NUMA
fff66b79
MS
6613static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6614 int item)
6615{
6616 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6617}
6618
5f9a4f4a
MS
6619static int memory_numa_stat_show(struct seq_file *m, void *v)
6620{
6621 int i;
6622 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6623
fd25a9e0 6624 mem_cgroup_flush_stats();
7e1c0d6f 6625
5f9a4f4a
MS
6626 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6627 int nid;
6628
6629 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6630 continue;
6631
6632 seq_printf(m, "%s", memory_stats[i].name);
6633 for_each_node_state(nid, N_MEMORY) {
6634 u64 size;
6635 struct lruvec *lruvec;
6636
6637 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6638 size = lruvec_page_state_output(lruvec,
6639 memory_stats[i].idx);
5f9a4f4a
MS
6640 seq_printf(m, " N%d=%llu", nid, size);
6641 }
6642 seq_putc(m, '\n');
6643 }
6644
6645 return 0;
6646}
6647#endif
6648
3d8b38eb
RG
6649static int memory_oom_group_show(struct seq_file *m, void *v)
6650{
aa9694bb 6651 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb 6652
eaf7b66b 6653 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
3d8b38eb
RG
6654
6655 return 0;
6656}
6657
6658static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6659 char *buf, size_t nbytes, loff_t off)
6660{
6661 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6662 int ret, oom_group;
6663
6664 buf = strstrip(buf);
6665 if (!buf)
6666 return -EINVAL;
6667
6668 ret = kstrtoint(buf, 0, &oom_group);
6669 if (ret)
6670 return ret;
6671
6672 if (oom_group != 0 && oom_group != 1)
6673 return -EINVAL;
6674
eaf7b66b 6675 WRITE_ONCE(memcg->oom_group, oom_group);
3d8b38eb
RG
6676
6677 return nbytes;
6678}
6679
94968384
SB
6680static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6681 size_t nbytes, loff_t off)
6682{
6683 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6684 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6685 unsigned long nr_to_reclaim, nr_reclaimed = 0;
55ab834a
MH
6686 unsigned int reclaim_options;
6687 int err;
12a5d395
MA
6688
6689 buf = strstrip(buf);
55ab834a
MH
6690 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6691 if (err)
6692 return err;
12a5d395 6693
55ab834a 6694 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
94968384
SB
6695 while (nr_reclaimed < nr_to_reclaim) {
6696 unsigned long reclaimed;
6697
6698 if (signal_pending(current))
6699 return -EINTR;
6700
6701 /*
6702 * This is the final attempt, drain percpu lru caches in the
6703 * hope of introducing more evictable pages for
6704 * try_to_free_mem_cgroup_pages().
6705 */
6706 if (!nr_retries)
6707 lru_add_drain_all();
6708
6709 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6710 nr_to_reclaim - nr_reclaimed,
55ab834a 6711 GFP_KERNEL, reclaim_options);
94968384
SB
6712
6713 if (!reclaimed && !nr_retries--)
6714 return -EAGAIN;
6715
6716 nr_reclaimed += reclaimed;
6717 }
6718
6719 return nbytes;
6720}
6721
241994ed
JW
6722static struct cftype memory_files[] = {
6723 {
6724 .name = "current",
f5fc3c5d 6725 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6726 .read_u64 = memory_current_read,
6727 },
8e20d4b3
GR
6728 {
6729 .name = "peak",
6730 .flags = CFTYPE_NOT_ON_ROOT,
6731 .read_u64 = memory_peak_read,
6732 },
bf8d5d52
RG
6733 {
6734 .name = "min",
6735 .flags = CFTYPE_NOT_ON_ROOT,
6736 .seq_show = memory_min_show,
6737 .write = memory_min_write,
6738 },
241994ed
JW
6739 {
6740 .name = "low",
6741 .flags = CFTYPE_NOT_ON_ROOT,
6742 .seq_show = memory_low_show,
6743 .write = memory_low_write,
6744 },
6745 {
6746 .name = "high",
6747 .flags = CFTYPE_NOT_ON_ROOT,
6748 .seq_show = memory_high_show,
6749 .write = memory_high_write,
6750 },
6751 {
6752 .name = "max",
6753 .flags = CFTYPE_NOT_ON_ROOT,
6754 .seq_show = memory_max_show,
6755 .write = memory_max_write,
6756 },
6757 {
6758 .name = "events",
6759 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6760 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6761 .seq_show = memory_events_show,
6762 },
1e577f97
SB
6763 {
6764 .name = "events.local",
6765 .flags = CFTYPE_NOT_ON_ROOT,
6766 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6767 .seq_show = memory_events_local_show,
6768 },
587d9f72
JW
6769 {
6770 .name = "stat",
587d9f72
JW
6771 .seq_show = memory_stat_show,
6772 },
5f9a4f4a
MS
6773#ifdef CONFIG_NUMA
6774 {
6775 .name = "numa_stat",
6776 .seq_show = memory_numa_stat_show,
6777 },
6778#endif
3d8b38eb
RG
6779 {
6780 .name = "oom.group",
6781 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6782 .seq_show = memory_oom_group_show,
6783 .write = memory_oom_group_write,
6784 },
94968384
SB
6785 {
6786 .name = "reclaim",
6787 .flags = CFTYPE_NS_DELEGATABLE,
6788 .write = memory_reclaim,
6789 },
241994ed
JW
6790 { } /* terminate */
6791};
6792
073219e9 6793struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6794 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6795 .css_online = mem_cgroup_css_online,
92fb9748 6796 .css_offline = mem_cgroup_css_offline,
6df38689 6797 .css_released = mem_cgroup_css_released,
92fb9748 6798 .css_free = mem_cgroup_css_free,
1ced953b 6799 .css_reset = mem_cgroup_css_reset,
2d146aa3 6800 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0 6801 .can_attach = mem_cgroup_can_attach,
bd74fdae 6802 .attach = mem_cgroup_attach,
7dc74be0 6803 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6804 .post_attach = mem_cgroup_move_task,
241994ed
JW
6805 .dfl_cftypes = memory_files,
6806 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6807 .early_init = 0,
8cdea7c0 6808};
c077719b 6809
bc50bcc6
JW
6810/*
6811 * This function calculates an individual cgroup's effective
6812 * protection which is derived from its own memory.min/low, its
6813 * parent's and siblings' settings, as well as the actual memory
6814 * distribution in the tree.
6815 *
6816 * The following rules apply to the effective protection values:
6817 *
6818 * 1. At the first level of reclaim, effective protection is equal to
6819 * the declared protection in memory.min and memory.low.
6820 *
6821 * 2. To enable safe delegation of the protection configuration, at
6822 * subsequent levels the effective protection is capped to the
6823 * parent's effective protection.
6824 *
6825 * 3. To make complex and dynamic subtrees easier to configure, the
6826 * user is allowed to overcommit the declared protection at a given
6827 * level. If that is the case, the parent's effective protection is
6828 * distributed to the children in proportion to how much protection
6829 * they have declared and how much of it they are utilizing.
6830 *
6831 * This makes distribution proportional, but also work-conserving:
6832 * if one cgroup claims much more protection than it uses memory,
6833 * the unused remainder is available to its siblings.
6834 *
6835 * 4. Conversely, when the declared protection is undercommitted at a
6836 * given level, the distribution of the larger parental protection
6837 * budget is NOT proportional. A cgroup's protection from a sibling
6838 * is capped to its own memory.min/low setting.
6839 *
8a931f80
JW
6840 * 5. However, to allow protecting recursive subtrees from each other
6841 * without having to declare each individual cgroup's fixed share
6842 * of the ancestor's claim to protection, any unutilized -
6843 * "floating" - protection from up the tree is distributed in
6844 * proportion to each cgroup's *usage*. This makes the protection
6845 * neutral wrt sibling cgroups and lets them compete freely over
6846 * the shared parental protection budget, but it protects the
6847 * subtree as a whole from neighboring subtrees.
6848 *
6849 * Note that 4. and 5. are not in conflict: 4. is about protecting
6850 * against immediate siblings whereas 5. is about protecting against
6851 * neighboring subtrees.
bc50bcc6
JW
6852 */
6853static unsigned long effective_protection(unsigned long usage,
8a931f80 6854 unsigned long parent_usage,
bc50bcc6
JW
6855 unsigned long setting,
6856 unsigned long parent_effective,
6857 unsigned long siblings_protected)
6858{
6859 unsigned long protected;
8a931f80 6860 unsigned long ep;
bc50bcc6
JW
6861
6862 protected = min(usage, setting);
6863 /*
6864 * If all cgroups at this level combined claim and use more
08e0f49e 6865 * protection than what the parent affords them, distribute
bc50bcc6
JW
6866 * shares in proportion to utilization.
6867 *
6868 * We are using actual utilization rather than the statically
6869 * claimed protection in order to be work-conserving: claimed
6870 * but unused protection is available to siblings that would
6871 * otherwise get a smaller chunk than what they claimed.
6872 */
6873 if (siblings_protected > parent_effective)
6874 return protected * parent_effective / siblings_protected;
6875
6876 /*
6877 * Ok, utilized protection of all children is within what the
6878 * parent affords them, so we know whatever this child claims
6879 * and utilizes is effectively protected.
6880 *
6881 * If there is unprotected usage beyond this value, reclaim
6882 * will apply pressure in proportion to that amount.
6883 *
6884 * If there is unutilized protection, the cgroup will be fully
6885 * shielded from reclaim, but we do return a smaller value for
6886 * protection than what the group could enjoy in theory. This
6887 * is okay. With the overcommit distribution above, effective
6888 * protection is always dependent on how memory is actually
6889 * consumed among the siblings anyway.
6890 */
8a931f80
JW
6891 ep = protected;
6892
6893 /*
6894 * If the children aren't claiming (all of) the protection
6895 * afforded to them by the parent, distribute the remainder in
6896 * proportion to the (unprotected) memory of each cgroup. That
6897 * way, cgroups that aren't explicitly prioritized wrt each
6898 * other compete freely over the allowance, but they are
6899 * collectively protected from neighboring trees.
6900 *
6901 * We're using unprotected memory for the weight so that if
6902 * some cgroups DO claim explicit protection, we don't protect
6903 * the same bytes twice.
cd324edc
JW
6904 *
6905 * Check both usage and parent_usage against the respective
6906 * protected values. One should imply the other, but they
6907 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6908 */
6909 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6910 return ep;
cd324edc
JW
6911 if (parent_effective > siblings_protected &&
6912 parent_usage > siblings_protected &&
6913 usage > protected) {
8a931f80
JW
6914 unsigned long unclaimed;
6915
6916 unclaimed = parent_effective - siblings_protected;
6917 unclaimed *= usage - protected;
6918 unclaimed /= parent_usage - siblings_protected;
6919
6920 ep += unclaimed;
6921 }
6922
6923 return ep;
bc50bcc6
JW
6924}
6925
241994ed 6926/**
05395718 6927 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 6928 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6929 * @memcg: the memory cgroup to check
6930 *
23067153
RG
6931 * WARNING: This function is not stateless! It can only be used as part
6932 * of a top-down tree iteration, not for isolated queries.
241994ed 6933 */
45c7f7e1
CD
6934void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6935 struct mem_cgroup *memcg)
241994ed 6936{
8a931f80 6937 unsigned long usage, parent_usage;
23067153
RG
6938 struct mem_cgroup *parent;
6939
241994ed 6940 if (mem_cgroup_disabled())
45c7f7e1 6941 return;
241994ed 6942
34c81057
SC
6943 if (!root)
6944 root = root_mem_cgroup;
22f7496f
YS
6945
6946 /*
6947 * Effective values of the reclaim targets are ignored so they
6948 * can be stale. Have a look at mem_cgroup_protection for more
6949 * details.
6950 * TODO: calculation should be more robust so that we do not need
6951 * that special casing.
6952 */
34c81057 6953 if (memcg == root)
45c7f7e1 6954 return;
241994ed 6955
23067153 6956 usage = page_counter_read(&memcg->memory);
bf8d5d52 6957 if (!usage)
45c7f7e1 6958 return;
bf8d5d52 6959
bf8d5d52 6960 parent = parent_mem_cgroup(memcg);
df2a4196 6961
bc50bcc6 6962 if (parent == root) {
c3d53200 6963 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6964 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6965 return;
bf8d5d52
RG
6966 }
6967
8a931f80
JW
6968 parent_usage = page_counter_read(&parent->memory);
6969
b3a7822e 6970 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6971 READ_ONCE(memcg->memory.min),
6972 READ_ONCE(parent->memory.emin),
b3a7822e 6973 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6974
b3a7822e 6975 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6976 READ_ONCE(memcg->memory.low),
6977 READ_ONCE(parent->memory.elow),
b3a7822e 6978 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6979}
6980
8f425e4e
MWO
6981static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6982 gfp_t gfp)
0add0c77 6983{
118f2875 6984 long nr_pages = folio_nr_pages(folio);
0add0c77
SB
6985 int ret;
6986
6987 ret = try_charge(memcg, gfp, nr_pages);
6988 if (ret)
6989 goto out;
6990
6991 css_get(&memcg->css);
118f2875 6992 commit_charge(folio, memcg);
0add0c77
SB
6993
6994 local_irq_disable();
6e0110c2 6995 mem_cgroup_charge_statistics(memcg, nr_pages);
8f425e4e 6996 memcg_check_events(memcg, folio_nid(folio));
0add0c77
SB
6997 local_irq_enable();
6998out:
6999 return ret;
7000}
7001
8f425e4e 7002int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
00501b53 7003{
0add0c77
SB
7004 struct mem_cgroup *memcg;
7005 int ret;
00501b53 7006
0add0c77 7007 memcg = get_mem_cgroup_from_mm(mm);
8f425e4e 7008 ret = charge_memcg(folio, memcg, gfp);
0add0c77 7009 css_put(&memcg->css);
2d1c4980 7010
0add0c77
SB
7011 return ret;
7012}
e993d905 7013
0add0c77 7014/**
65995918
MWO
7015 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7016 * @folio: folio to charge.
0add0c77
SB
7017 * @mm: mm context of the victim
7018 * @gfp: reclaim mode
65995918 7019 * @entry: swap entry for which the folio is allocated
0add0c77 7020 *
65995918
MWO
7021 * This function charges a folio allocated for swapin. Please call this before
7022 * adding the folio to the swapcache.
0add0c77
SB
7023 *
7024 * Returns 0 on success. Otherwise, an error code is returned.
7025 */
65995918 7026int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
0add0c77
SB
7027 gfp_t gfp, swp_entry_t entry)
7028{
7029 struct mem_cgroup *memcg;
7030 unsigned short id;
7031 int ret;
00501b53 7032
0add0c77
SB
7033 if (mem_cgroup_disabled())
7034 return 0;
00501b53 7035
0add0c77
SB
7036 id = lookup_swap_cgroup_id(entry);
7037 rcu_read_lock();
7038 memcg = mem_cgroup_from_id(id);
7039 if (!memcg || !css_tryget_online(&memcg->css))
7040 memcg = get_mem_cgroup_from_mm(mm);
7041 rcu_read_unlock();
00501b53 7042
8f425e4e 7043 ret = charge_memcg(folio, memcg, gfp);
6abb5a86 7044
0add0c77
SB
7045 css_put(&memcg->css);
7046 return ret;
7047}
00501b53 7048
0add0c77
SB
7049/*
7050 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7051 * @entry: swap entry for which the page is charged
7052 *
7053 * Call this function after successfully adding the charged page to swapcache.
7054 *
7055 * Note: This function assumes the page for which swap slot is being uncharged
7056 * is order 0 page.
7057 */
7058void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7059{
cae3af62
MS
7060 /*
7061 * Cgroup1's unified memory+swap counter has been charged with the
7062 * new swapcache page, finish the transfer by uncharging the swap
7063 * slot. The swap slot would also get uncharged when it dies, but
7064 * it can stick around indefinitely and we'd count the page twice
7065 * the entire time.
7066 *
7067 * Cgroup2 has separate resource counters for memory and swap,
7068 * so this is a non-issue here. Memory and swap charge lifetimes
7069 * correspond 1:1 to page and swap slot lifetimes: we charge the
7070 * page to memory here, and uncharge swap when the slot is freed.
7071 */
0add0c77 7072 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
7073 /*
7074 * The swap entry might not get freed for a long time,
7075 * let's not wait for it. The page already received a
7076 * memory+swap charge, drop the swap entry duplicate.
7077 */
0add0c77 7078 mem_cgroup_uncharge_swap(entry, 1);
00501b53 7079 }
3fea5a49
JW
7080}
7081
a9d5adee
JG
7082struct uncharge_gather {
7083 struct mem_cgroup *memcg;
b4e0b68f 7084 unsigned long nr_memory;
a9d5adee 7085 unsigned long pgpgout;
a9d5adee 7086 unsigned long nr_kmem;
8e88bd2d 7087 int nid;
a9d5adee
JG
7088};
7089
7090static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 7091{
a9d5adee
JG
7092 memset(ug, 0, sizeof(*ug));
7093}
7094
7095static void uncharge_batch(const struct uncharge_gather *ug)
7096{
747db954
JW
7097 unsigned long flags;
7098
b4e0b68f
MS
7099 if (ug->nr_memory) {
7100 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 7101 if (do_memsw_account())
b4e0b68f 7102 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a8c49af3
YA
7103 if (ug->nr_kmem)
7104 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
a9d5adee 7105 memcg_oom_recover(ug->memcg);
ce00a967 7106 }
747db954
JW
7107
7108 local_irq_save(flags);
c9019e9b 7109 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 7110 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
8e88bd2d 7111 memcg_check_events(ug->memcg, ug->nid);
747db954 7112 local_irq_restore(flags);
f1796544 7113
c4ed6ebf 7114 /* drop reference from uncharge_folio */
f1796544 7115 css_put(&ug->memcg->css);
a9d5adee
JG
7116}
7117
c4ed6ebf 7118static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
a9d5adee 7119{
c4ed6ebf 7120 long nr_pages;
b4e0b68f
MS
7121 struct mem_cgroup *memcg;
7122 struct obj_cgroup *objcg;
9f762dbe 7123
c4ed6ebf 7124 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
a9d5adee 7125
a9d5adee
JG
7126 /*
7127 * Nobody should be changing or seriously looking at
c4ed6ebf
MWO
7128 * folio memcg or objcg at this point, we have fully
7129 * exclusive access to the folio.
a9d5adee 7130 */
fead2b86 7131 if (folio_memcg_kmem(folio)) {
1b7e4464 7132 objcg = __folio_objcg(folio);
b4e0b68f
MS
7133 /*
7134 * This get matches the put at the end of the function and
7135 * kmem pages do not hold memcg references anymore.
7136 */
7137 memcg = get_mem_cgroup_from_objcg(objcg);
7138 } else {
1b7e4464 7139 memcg = __folio_memcg(folio);
b4e0b68f 7140 }
a9d5adee 7141
b4e0b68f
MS
7142 if (!memcg)
7143 return;
7144
7145 if (ug->memcg != memcg) {
a9d5adee
JG
7146 if (ug->memcg) {
7147 uncharge_batch(ug);
7148 uncharge_gather_clear(ug);
7149 }
b4e0b68f 7150 ug->memcg = memcg;
c4ed6ebf 7151 ug->nid = folio_nid(folio);
f1796544
MH
7152
7153 /* pairs with css_put in uncharge_batch */
b4e0b68f 7154 css_get(&memcg->css);
a9d5adee
JG
7155 }
7156
c4ed6ebf 7157 nr_pages = folio_nr_pages(folio);
a9d5adee 7158
fead2b86 7159 if (folio_memcg_kmem(folio)) {
b4e0b68f 7160 ug->nr_memory += nr_pages;
9f762dbe 7161 ug->nr_kmem += nr_pages;
b4e0b68f 7162
c4ed6ebf 7163 folio->memcg_data = 0;
b4e0b68f
MS
7164 obj_cgroup_put(objcg);
7165 } else {
7166 /* LRU pages aren't accounted at the root level */
7167 if (!mem_cgroup_is_root(memcg))
7168 ug->nr_memory += nr_pages;
18b2db3b 7169 ug->pgpgout++;
a9d5adee 7170
c4ed6ebf 7171 folio->memcg_data = 0;
b4e0b68f
MS
7172 }
7173
7174 css_put(&memcg->css);
747db954
JW
7175}
7176
bbc6b703 7177void __mem_cgroup_uncharge(struct folio *folio)
0a31bc97 7178{
a9d5adee
JG
7179 struct uncharge_gather ug;
7180
bbc6b703
MWO
7181 /* Don't touch folio->lru of any random page, pre-check: */
7182 if (!folio_memcg(folio))
0a31bc97
JW
7183 return;
7184
a9d5adee 7185 uncharge_gather_clear(&ug);
bbc6b703 7186 uncharge_folio(folio, &ug);
a9d5adee 7187 uncharge_batch(&ug);
747db954 7188}
0a31bc97 7189
747db954 7190/**
2c8d8f97 7191 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
7192 * @page_list: list of pages to uncharge
7193 *
7194 * Uncharge a list of pages previously charged with
2c8d8f97 7195 * __mem_cgroup_charge().
747db954 7196 */
2c8d8f97 7197void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 7198{
c41a40b6 7199 struct uncharge_gather ug;
c4ed6ebf 7200 struct folio *folio;
c41a40b6 7201
c41a40b6 7202 uncharge_gather_clear(&ug);
c4ed6ebf
MWO
7203 list_for_each_entry(folio, page_list, lru)
7204 uncharge_folio(folio, &ug);
c41a40b6
MS
7205 if (ug.memcg)
7206 uncharge_batch(&ug);
0a31bc97
JW
7207}
7208
7209/**
d21bba2b
MWO
7210 * mem_cgroup_migrate - Charge a folio's replacement.
7211 * @old: Currently circulating folio.
7212 * @new: Replacement folio.
0a31bc97 7213 *
d21bba2b 7214 * Charge @new as a replacement folio for @old. @old will
6a93ca8f 7215 * be uncharged upon free.
0a31bc97 7216 *
d21bba2b 7217 * Both folios must be locked, @new->mapping must be set up.
0a31bc97 7218 */
d21bba2b 7219void mem_cgroup_migrate(struct folio *old, struct folio *new)
0a31bc97 7220{
29833315 7221 struct mem_cgroup *memcg;
d21bba2b 7222 long nr_pages = folio_nr_pages(new);
d93c4130 7223 unsigned long flags;
0a31bc97 7224
d21bba2b
MWO
7225 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7226 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7227 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7228 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
0a31bc97
JW
7229
7230 if (mem_cgroup_disabled())
7231 return;
7232
d21bba2b
MWO
7233 /* Page cache replacement: new folio already charged? */
7234 if (folio_memcg(new))
0a31bc97
JW
7235 return;
7236
d21bba2b
MWO
7237 memcg = folio_memcg(old);
7238 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
29833315 7239 if (!memcg)
0a31bc97
JW
7240 return;
7241
44b7a8d3 7242 /* Force-charge the new page. The old one will be freed soon */
8dc87c7d
MS
7243 if (!mem_cgroup_is_root(memcg)) {
7244 page_counter_charge(&memcg->memory, nr_pages);
7245 if (do_memsw_account())
7246 page_counter_charge(&memcg->memsw, nr_pages);
7247 }
0a31bc97 7248
1a3e1f40 7249 css_get(&memcg->css);
d21bba2b 7250 commit_charge(new, memcg);
44b7a8d3 7251
d93c4130 7252 local_irq_save(flags);
6e0110c2 7253 mem_cgroup_charge_statistics(memcg, nr_pages);
d21bba2b 7254 memcg_check_events(memcg, folio_nid(new));
d93c4130 7255 local_irq_restore(flags);
0a31bc97
JW
7256}
7257
ef12947c 7258DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
7259EXPORT_SYMBOL(memcg_sockets_enabled_key);
7260
2d758073 7261void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
7262{
7263 struct mem_cgroup *memcg;
7264
2d758073
JW
7265 if (!mem_cgroup_sockets_enabled)
7266 return;
7267
e876ecc6 7268 /* Do not associate the sock with unrelated interrupted task's memcg. */
086f694a 7269 if (!in_task())
e876ecc6
SB
7270 return;
7271
11092087
JW
7272 rcu_read_lock();
7273 memcg = mem_cgroup_from_task(current);
7848ed62 7274 if (mem_cgroup_is_root(memcg))
f7e1cb6e 7275 goto out;
0db15298 7276 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7277 goto out;
8965aa28 7278 if (css_tryget(&memcg->css))
11092087 7279 sk->sk_memcg = memcg;
f7e1cb6e 7280out:
11092087
JW
7281 rcu_read_unlock();
7282}
11092087 7283
2d758073 7284void mem_cgroup_sk_free(struct sock *sk)
11092087 7285{
2d758073
JW
7286 if (sk->sk_memcg)
7287 css_put(&sk->sk_memcg->css);
11092087
JW
7288}
7289
7290/**
7291 * mem_cgroup_charge_skmem - charge socket memory
7292 * @memcg: memcg to charge
7293 * @nr_pages: number of pages to charge
4b1327be 7294 * @gfp_mask: reclaim mode
11092087
JW
7295 *
7296 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 7297 * @memcg's configured limit, %false if it doesn't.
11092087 7298 */
4b1327be
WW
7299bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7300 gfp_t gfp_mask)
11092087 7301{
f7e1cb6e 7302 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7303 struct page_counter *fail;
f7e1cb6e 7304
0db15298
JW
7305 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7306 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7307 return true;
7308 }
0db15298 7309 memcg->tcpmem_pressure = 1;
4b1327be
WW
7310 if (gfp_mask & __GFP_NOFAIL) {
7311 page_counter_charge(&memcg->tcpmem, nr_pages);
7312 return true;
7313 }
f7e1cb6e 7314 return false;
11092087 7315 }
d886f4e4 7316
4b1327be
WW
7317 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7318 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7319 return true;
4b1327be 7320 }
f7e1cb6e 7321
11092087
JW
7322 return false;
7323}
7324
7325/**
7326 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7327 * @memcg: memcg to uncharge
7328 * @nr_pages: number of pages to uncharge
11092087
JW
7329 */
7330void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7331{
f7e1cb6e 7332 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7333 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7334 return;
7335 }
d886f4e4 7336
c9019e9b 7337 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7338
475d0487 7339 refill_stock(memcg, nr_pages);
11092087
JW
7340}
7341
f7e1cb6e
JW
7342static int __init cgroup_memory(char *s)
7343{
7344 char *token;
7345
7346 while ((token = strsep(&s, ",")) != NULL) {
7347 if (!*token)
7348 continue;
7349 if (!strcmp(token, "nosocket"))
7350 cgroup_memory_nosocket = true;
04823c83
VD
7351 if (!strcmp(token, "nokmem"))
7352 cgroup_memory_nokmem = true;
b6c1a8af
YS
7353 if (!strcmp(token, "nobpf"))
7354 cgroup_memory_nobpf = true;
f7e1cb6e 7355 }
460a79e1 7356 return 1;
f7e1cb6e
JW
7357}
7358__setup("cgroup.memory=", cgroup_memory);
11092087 7359
2d11085e 7360/*
1081312f
MH
7361 * subsys_initcall() for memory controller.
7362 *
308167fc
SAS
7363 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7364 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7365 * basically everything that doesn't depend on a specific mem_cgroup structure
7366 * should be initialized from here.
2d11085e
MH
7367 */
7368static int __init mem_cgroup_init(void)
7369{
95a045f6
JW
7370 int cpu, node;
7371
f3344adf
MS
7372 /*
7373 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7374 * used for per-memcg-per-cpu caching of per-node statistics. In order
7375 * to work fine, we should make sure that the overfill threshold can't
7376 * exceed S32_MAX / PAGE_SIZE.
7377 */
7378 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7379
308167fc
SAS
7380 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7381 memcg_hotplug_cpu_dead);
95a045f6
JW
7382
7383 for_each_possible_cpu(cpu)
7384 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7385 drain_local_stock);
7386
7387 for_each_node(node) {
7388 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7389
7390 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7391 node_online(node) ? node : NUMA_NO_NODE);
7392
ef8f2327 7393 rtpn->rb_root = RB_ROOT;
fa90b2fd 7394 rtpn->rb_rightmost = NULL;
ef8f2327 7395 spin_lock_init(&rtpn->lock);
95a045f6
JW
7396 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7397 }
7398
2d11085e
MH
7399 return 0;
7400}
7401subsys_initcall(mem_cgroup_init);
21afa38e 7402
e55b9f96 7403#ifdef CONFIG_SWAP
358c07fc
AB
7404static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7405{
1c2d479a 7406 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7407 /*
7408 * The root cgroup cannot be destroyed, so it's refcount must
7409 * always be >= 1.
7410 */
7848ed62 7411 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
358c07fc
AB
7412 VM_BUG_ON(1);
7413 break;
7414 }
7415 memcg = parent_mem_cgroup(memcg);
7416 if (!memcg)
7417 memcg = root_mem_cgroup;
7418 }
7419 return memcg;
7420}
7421
21afa38e
JW
7422/**
7423 * mem_cgroup_swapout - transfer a memsw charge to swap
3ecb0087 7424 * @folio: folio whose memsw charge to transfer
21afa38e
JW
7425 * @entry: swap entry to move the charge to
7426 *
3ecb0087 7427 * Transfer the memsw charge of @folio to @entry.
21afa38e 7428 */
3ecb0087 7429void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
21afa38e 7430{
1f47b61f 7431 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7432 unsigned int nr_entries;
21afa38e
JW
7433 unsigned short oldid;
7434
3ecb0087
MWO
7435 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7436 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
21afa38e 7437
76358ab5
AS
7438 if (mem_cgroup_disabled())
7439 return;
7440
b94c4e94 7441 if (!do_memsw_account())
21afa38e
JW
7442 return;
7443
3ecb0087 7444 memcg = folio_memcg(folio);
21afa38e 7445
3ecb0087 7446 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
21afa38e
JW
7447 if (!memcg)
7448 return;
7449
1f47b61f
VD
7450 /*
7451 * In case the memcg owning these pages has been offlined and doesn't
7452 * have an ID allocated to it anymore, charge the closest online
7453 * ancestor for the swap instead and transfer the memory+swap charge.
7454 */
7455 swap_memcg = mem_cgroup_id_get_online(memcg);
3ecb0087 7456 nr_entries = folio_nr_pages(folio);
d6810d73
HY
7457 /* Get references for the tail pages, too */
7458 if (nr_entries > 1)
7459 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7460 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7461 nr_entries);
3ecb0087 7462 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7463 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7464
3ecb0087 7465 folio->memcg_data = 0;
21afa38e
JW
7466
7467 if (!mem_cgroup_is_root(memcg))
d6810d73 7468 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7469
b25806dc 7470 if (memcg != swap_memcg) {
1f47b61f 7471 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7472 page_counter_charge(&swap_memcg->memsw, nr_entries);
7473 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7474 }
7475
ce9ce665
SAS
7476 /*
7477 * Interrupts should be disabled here because the caller holds the
b93b0163 7478 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7479 * important here to have the interrupts disabled because it is the
b93b0163 7480 * only synchronisation we have for updating the per-CPU variables.
ce9ce665 7481 */
be3e67b5 7482 memcg_stats_lock();
6e0110c2 7483 mem_cgroup_charge_statistics(memcg, -nr_entries);
be3e67b5 7484 memcg_stats_unlock();
3ecb0087 7485 memcg_check_events(memcg, folio_nid(folio));
73f576c0 7486
1a3e1f40 7487 css_put(&memcg->css);
21afa38e
JW
7488}
7489
38d8b4e6 7490/**
e2e3fdc7
MWO
7491 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7492 * @folio: folio being added to swap
37e84351
VD
7493 * @entry: swap entry to charge
7494 *
e2e3fdc7 7495 * Try to charge @folio's memcg for the swap space at @entry.
37e84351
VD
7496 *
7497 * Returns 0 on success, -ENOMEM on failure.
7498 */
e2e3fdc7 7499int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
37e84351 7500{
e2e3fdc7 7501 unsigned int nr_pages = folio_nr_pages(folio);
37e84351 7502 struct page_counter *counter;
38d8b4e6 7503 struct mem_cgroup *memcg;
37e84351
VD
7504 unsigned short oldid;
7505
b94c4e94 7506 if (do_memsw_account())
37e84351
VD
7507 return 0;
7508
e2e3fdc7 7509 memcg = folio_memcg(folio);
37e84351 7510
e2e3fdc7 7511 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
37e84351
VD
7512 if (!memcg)
7513 return 0;
7514
f3a53a3a
TH
7515 if (!entry.val) {
7516 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7517 return 0;
f3a53a3a 7518 }
bb98f2c5 7519
1f47b61f
VD
7520 memcg = mem_cgroup_id_get_online(memcg);
7521
b25806dc 7522 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7523 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7524 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7525 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7526 mem_cgroup_id_put(memcg);
37e84351 7527 return -ENOMEM;
1f47b61f 7528 }
37e84351 7529
38d8b4e6
HY
7530 /* Get references for the tail pages, too */
7531 if (nr_pages > 1)
7532 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7533 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
e2e3fdc7 7534 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7535 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7536
37e84351
VD
7537 return 0;
7538}
7539
21afa38e 7540/**
01c4b28c 7541 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7542 * @entry: swap entry to uncharge
38d8b4e6 7543 * @nr_pages: the amount of swap space to uncharge
21afa38e 7544 */
01c4b28c 7545void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7546{
7547 struct mem_cgroup *memcg;
7548 unsigned short id;
7549
c91bdc93
JW
7550 if (mem_cgroup_disabled())
7551 return;
7552
38d8b4e6 7553 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7554 rcu_read_lock();
adbe427b 7555 memcg = mem_cgroup_from_id(id);
21afa38e 7556 if (memcg) {
b25806dc 7557 if (!mem_cgroup_is_root(memcg)) {
b94c4e94 7558 if (do_memsw_account())
38d8b4e6 7559 page_counter_uncharge(&memcg->memsw, nr_pages);
b94c4e94
JW
7560 else
7561 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7562 }
c9019e9b 7563 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7564 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7565 }
7566 rcu_read_unlock();
7567}
7568
d8b38438
VD
7569long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7570{
7571 long nr_swap_pages = get_nr_swap_pages();
7572
b25806dc 7573 if (mem_cgroup_disabled() || do_memsw_account())
d8b38438 7574 return nr_swap_pages;
7848ed62 7575 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
d8b38438 7576 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7577 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7578 page_counter_read(&memcg->swap));
7579 return nr_swap_pages;
7580}
7581
9202d527 7582bool mem_cgroup_swap_full(struct folio *folio)
5ccc5aba
VD
7583{
7584 struct mem_cgroup *memcg;
7585
9202d527 7586 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5ccc5aba
VD
7587
7588 if (vm_swap_full())
7589 return true;
b25806dc 7590 if (do_memsw_account())
5ccc5aba
VD
7591 return false;
7592
9202d527 7593 memcg = folio_memcg(folio);
5ccc5aba
VD
7594 if (!memcg)
7595 return false;
7596
7848ed62 7597 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
4b82ab4f
JK
7598 unsigned long usage = page_counter_read(&memcg->swap);
7599
7600 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7601 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7602 return true;
4b82ab4f 7603 }
5ccc5aba
VD
7604
7605 return false;
7606}
7607
eccb52e7 7608static int __init setup_swap_account(char *s)
21afa38e 7609{
b25806dc
JW
7610 pr_warn_once("The swapaccount= commandline option is deprecated. "
7611 "Please report your usecase to linux-mm@kvack.org if you "
7612 "depend on this functionality.\n");
21afa38e
JW
7613 return 1;
7614}
eccb52e7 7615__setup("swapaccount=", setup_swap_account);
21afa38e 7616
37e84351
VD
7617static u64 swap_current_read(struct cgroup_subsys_state *css,
7618 struct cftype *cft)
7619{
7620 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7621
7622 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7623}
7624
4b82ab4f
JK
7625static int swap_high_show(struct seq_file *m, void *v)
7626{
7627 return seq_puts_memcg_tunable(m,
7628 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7629}
7630
7631static ssize_t swap_high_write(struct kernfs_open_file *of,
7632 char *buf, size_t nbytes, loff_t off)
7633{
7634 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7635 unsigned long high;
7636 int err;
7637
7638 buf = strstrip(buf);
7639 err = page_counter_memparse(buf, "max", &high);
7640 if (err)
7641 return err;
7642
7643 page_counter_set_high(&memcg->swap, high);
7644
7645 return nbytes;
7646}
7647
37e84351
VD
7648static int swap_max_show(struct seq_file *m, void *v)
7649{
677dc973
CD
7650 return seq_puts_memcg_tunable(m,
7651 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7652}
7653
7654static ssize_t swap_max_write(struct kernfs_open_file *of,
7655 char *buf, size_t nbytes, loff_t off)
7656{
7657 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7658 unsigned long max;
7659 int err;
7660
7661 buf = strstrip(buf);
7662 err = page_counter_memparse(buf, "max", &max);
7663 if (err)
7664 return err;
7665
be09102b 7666 xchg(&memcg->swap.max, max);
37e84351
VD
7667
7668 return nbytes;
7669}
7670
f3a53a3a
TH
7671static int swap_events_show(struct seq_file *m, void *v)
7672{
aa9694bb 7673 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7674
4b82ab4f
JK
7675 seq_printf(m, "high %lu\n",
7676 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7677 seq_printf(m, "max %lu\n",
7678 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7679 seq_printf(m, "fail %lu\n",
7680 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7681
7682 return 0;
7683}
7684
37e84351
VD
7685static struct cftype swap_files[] = {
7686 {
7687 .name = "swap.current",
7688 .flags = CFTYPE_NOT_ON_ROOT,
7689 .read_u64 = swap_current_read,
7690 },
4b82ab4f
JK
7691 {
7692 .name = "swap.high",
7693 .flags = CFTYPE_NOT_ON_ROOT,
7694 .seq_show = swap_high_show,
7695 .write = swap_high_write,
7696 },
37e84351
VD
7697 {
7698 .name = "swap.max",
7699 .flags = CFTYPE_NOT_ON_ROOT,
7700 .seq_show = swap_max_show,
7701 .write = swap_max_write,
7702 },
f3a53a3a
TH
7703 {
7704 .name = "swap.events",
7705 .flags = CFTYPE_NOT_ON_ROOT,
7706 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7707 .seq_show = swap_events_show,
7708 },
37e84351
VD
7709 { } /* terminate */
7710};
7711
eccb52e7 7712static struct cftype memsw_files[] = {
21afa38e
JW
7713 {
7714 .name = "memsw.usage_in_bytes",
7715 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7716 .read_u64 = mem_cgroup_read_u64,
7717 },
7718 {
7719 .name = "memsw.max_usage_in_bytes",
7720 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7721 .write = mem_cgroup_reset,
7722 .read_u64 = mem_cgroup_read_u64,
7723 },
7724 {
7725 .name = "memsw.limit_in_bytes",
7726 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7727 .write = mem_cgroup_write,
7728 .read_u64 = mem_cgroup_read_u64,
7729 },
7730 {
7731 .name = "memsw.failcnt",
7732 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7733 .write = mem_cgroup_reset,
7734 .read_u64 = mem_cgroup_read_u64,
7735 },
7736 { }, /* terminate */
7737};
7738
f4840ccf
JW
7739#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7740/**
7741 * obj_cgroup_may_zswap - check if this cgroup can zswap
7742 * @objcg: the object cgroup
7743 *
7744 * Check if the hierarchical zswap limit has been reached.
7745 *
7746 * This doesn't check for specific headroom, and it is not atomic
7747 * either. But with zswap, the size of the allocation is only known
7748 * once compression has occured, and this optimistic pre-check avoids
7749 * spending cycles on compression when there is already no room left
7750 * or zswap is disabled altogether somewhere in the hierarchy.
7751 */
7752bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7753{
7754 struct mem_cgroup *memcg, *original_memcg;
7755 bool ret = true;
7756
7757 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7758 return true;
7759
7760 original_memcg = get_mem_cgroup_from_objcg(objcg);
7848ed62 7761 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
f4840ccf
JW
7762 memcg = parent_mem_cgroup(memcg)) {
7763 unsigned long max = READ_ONCE(memcg->zswap_max);
7764 unsigned long pages;
7765
7766 if (max == PAGE_COUNTER_MAX)
7767 continue;
7768 if (max == 0) {
7769 ret = false;
7770 break;
7771 }
7772
7773 cgroup_rstat_flush(memcg->css.cgroup);
7774 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7775 if (pages < max)
7776 continue;
7777 ret = false;
7778 break;
7779 }
7780 mem_cgroup_put(original_memcg);
7781 return ret;
7782}
7783
7784/**
7785 * obj_cgroup_charge_zswap - charge compression backend memory
7786 * @objcg: the object cgroup
7787 * @size: size of compressed object
7788 *
7789 * This forces the charge after obj_cgroup_may_swap() allowed
7790 * compression and storage in zwap for this cgroup to go ahead.
7791 */
7792void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7793{
7794 struct mem_cgroup *memcg;
7795
7796 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7797 return;
7798
7799 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7800
7801 /* PF_MEMALLOC context, charging must succeed */
7802 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7803 VM_WARN_ON_ONCE(1);
7804
7805 rcu_read_lock();
7806 memcg = obj_cgroup_memcg(objcg);
7807 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7808 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7809 rcu_read_unlock();
7810}
7811
7812/**
7813 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7814 * @objcg: the object cgroup
7815 * @size: size of compressed object
7816 *
7817 * Uncharges zswap memory on page in.
7818 */
7819void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7820{
7821 struct mem_cgroup *memcg;
7822
7823 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7824 return;
7825
7826 obj_cgroup_uncharge(objcg, size);
7827
7828 rcu_read_lock();
7829 memcg = obj_cgroup_memcg(objcg);
7830 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7831 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7832 rcu_read_unlock();
7833}
7834
7835static u64 zswap_current_read(struct cgroup_subsys_state *css,
7836 struct cftype *cft)
7837{
7838 cgroup_rstat_flush(css->cgroup);
7839 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7840}
7841
7842static int zswap_max_show(struct seq_file *m, void *v)
7843{
7844 return seq_puts_memcg_tunable(m,
7845 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7846}
7847
7848static ssize_t zswap_max_write(struct kernfs_open_file *of,
7849 char *buf, size_t nbytes, loff_t off)
7850{
7851 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7852 unsigned long max;
7853 int err;
7854
7855 buf = strstrip(buf);
7856 err = page_counter_memparse(buf, "max", &max);
7857 if (err)
7858 return err;
7859
7860 xchg(&memcg->zswap_max, max);
7861
7862 return nbytes;
7863}
7864
7865static struct cftype zswap_files[] = {
7866 {
7867 .name = "zswap.current",
7868 .flags = CFTYPE_NOT_ON_ROOT,
7869 .read_u64 = zswap_current_read,
7870 },
7871 {
7872 .name = "zswap.max",
7873 .flags = CFTYPE_NOT_ON_ROOT,
7874 .seq_show = zswap_max_show,
7875 .write = zswap_max_write,
7876 },
7877 { } /* terminate */
7878};
7879#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7880
21afa38e
JW
7881static int __init mem_cgroup_swap_init(void)
7882{
2d1c4980 7883 if (mem_cgroup_disabled())
eccb52e7
JW
7884 return 0;
7885
7886 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7887 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
f4840ccf
JW
7888#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7889 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7890#endif
21afa38e
JW
7891 return 0;
7892}
b25806dc 7893subsys_initcall(mem_cgroup_swap_init);
21afa38e 7894
e55b9f96 7895#endif /* CONFIG_SWAP */