]> git.ipfire.org Git - people/ms/linux.git/blame - mm/memcontrol.c
mm: memcontrol: rearrange charging fast path
[people/ms/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0 359#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
2633d7a0 362 struct list_head memcg_slab_caches;
2633d7a0
GC
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365#endif
45cf7ebd
GC
366
367 int last_scanned_node;
368#if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372#endif
70ddf637 373
fba94807
TH
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
54f72fe0
JW
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
380};
381
510fc4e1
GC
382/* internal only representation about the status of kmem accounting. */
383enum {
6de64beb 384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
386};
387
510fc4e1
GC
388#ifdef CONFIG_MEMCG_KMEM
389static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390{
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392}
7de37682
GC
393
394static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395{
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397}
398
399static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400{
10d5ebf4
LZ
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
7de37682
GC
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408}
409
410static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411{
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414}
510fc4e1
GC
415#endif
416
7dc74be0
DN
417/* Stuffs for move charges at task migration. */
418/*
ee5e8472
GC
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
421 */
422enum move_type {
4ffef5fe 423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
425 NR_MOVE_TYPE,
426};
427
4ffef5fe
DN
428/* "mc" and its members are protected by cgroup_mutex */
429static struct move_charge_struct {
b1dd693e 430 spinlock_t lock; /* for from, to */
4ffef5fe
DN
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
ee5e8472 433 unsigned long immigrate_flags;
4ffef5fe 434 unsigned long precharge;
854ffa8d 435 unsigned long moved_charge;
483c30b5 436 unsigned long moved_swap;
8033b97c
DN
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439} mc = {
2bd9bb20 440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442};
4ffef5fe 443
90254a65
DN
444static bool move_anon(void)
445{
ee5e8472 446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
447}
448
87946a72
DN
449static bool move_file(void)
450{
ee5e8472 451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
452}
453
4e416953
BS
454/*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
a0db00fc 458#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 459#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 460
217bc319
KH
461enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 463 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
466 NR_CHARGE_TYPE,
467};
468
8c7c6e34 469/* for encoding cft->private value on file */
86ae53e1
GC
470enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
510fc4e1 474 _KMEM,
86ae53e1
GC
475};
476
a0db00fc
KS
477#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 479#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
480/* Used for OOM nofiier */
481#define OOM_CONTROL (0)
8c7c6e34 482
75822b44
BS
483/*
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
485 */
486#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490
0999821b
GC
491/*
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
495 */
496static DEFINE_MUTEX(memcg_create_mutex);
497
b2145145
WL
498struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499{
a7c6d554 500 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
501}
502
70ddf637
AV
503/* Some nice accessors for the vmpressure. */
504struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505{
506 if (!memcg)
507 memcg = root_mem_cgroup;
508 return &memcg->vmpressure;
509}
510
511struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512{
513 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514}
515
7ffc0edc
MH
516static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517{
518 return (memcg == root_mem_cgroup);
519}
520
4219b2da
LZ
521/*
522 * We restrict the id in the range of [1, 65535], so it can fit into
523 * an unsigned short.
524 */
525#define MEM_CGROUP_ID_MAX USHRT_MAX
526
34c00c31
LZ
527static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528{
15a4c835 529 return memcg->css.id;
34c00c31
LZ
530}
531
532static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
533{
534 struct cgroup_subsys_state *css;
535
7d699ddb 536 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
537 return mem_cgroup_from_css(css);
538}
539
e1aab161 540/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 541#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 542
e1aab161
GC
543void sock_update_memcg(struct sock *sk)
544{
376be5ff 545 if (mem_cgroup_sockets_enabled) {
e1aab161 546 struct mem_cgroup *memcg;
3f134619 547 struct cg_proto *cg_proto;
e1aab161
GC
548
549 BUG_ON(!sk->sk_prot->proto_cgroup);
550
f3f511e1
GC
551 /* Socket cloning can throw us here with sk_cgrp already
552 * filled. It won't however, necessarily happen from
553 * process context. So the test for root memcg given
554 * the current task's memcg won't help us in this case.
555 *
556 * Respecting the original socket's memcg is a better
557 * decision in this case.
558 */
559 if (sk->sk_cgrp) {
560 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 561 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
562 return;
563 }
564
e1aab161
GC
565 rcu_read_lock();
566 memcg = mem_cgroup_from_task(current);
3f134619 567 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 568 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
569 memcg_proto_active(cg_proto) &&
570 css_tryget_online(&memcg->css)) {
3f134619 571 sk->sk_cgrp = cg_proto;
e1aab161
GC
572 }
573 rcu_read_unlock();
574 }
575}
576EXPORT_SYMBOL(sock_update_memcg);
577
578void sock_release_memcg(struct sock *sk)
579{
376be5ff 580 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
581 struct mem_cgroup *memcg;
582 WARN_ON(!sk->sk_cgrp->memcg);
583 memcg = sk->sk_cgrp->memcg;
5347e5ae 584 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
585 }
586}
d1a4c0b3
GC
587
588struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589{
590 if (!memcg || mem_cgroup_is_root(memcg))
591 return NULL;
592
2e685cad 593 return &memcg->tcp_mem;
d1a4c0b3
GC
594}
595EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 596
3f134619
GC
597static void disarm_sock_keys(struct mem_cgroup *memcg)
598{
2e685cad 599 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
600 return;
601 static_key_slow_dec(&memcg_socket_limit_enabled);
602}
603#else
604static void disarm_sock_keys(struct mem_cgroup *memcg)
605{
606}
607#endif
608
a8964b9b 609#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
610/*
611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
612 * The main reason for not using cgroup id for this:
613 * this works better in sparse environments, where we have a lot of memcgs,
614 * but only a few kmem-limited. Or also, if we have, for instance, 200
615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
616 * 200 entry array for that.
55007d84
GC
617 *
618 * The current size of the caches array is stored in
619 * memcg_limited_groups_array_size. It will double each time we have to
620 * increase it.
621 */
622static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
623int memcg_limited_groups_array_size;
624
55007d84
GC
625/*
626 * MIN_SIZE is different than 1, because we would like to avoid going through
627 * the alloc/free process all the time. In a small machine, 4 kmem-limited
628 * cgroups is a reasonable guess. In the future, it could be a parameter or
629 * tunable, but that is strictly not necessary.
630 *
b8627835 631 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
632 * this constant directly from cgroup, but it is understandable that this is
633 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 634 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
635 * increase ours as well if it increases.
636 */
637#define MEMCG_CACHES_MIN_SIZE 4
b8627835 638#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 639
d7f25f8a
GC
640/*
641 * A lot of the calls to the cache allocation functions are expected to be
642 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
643 * conditional to this static branch, we'll have to allow modules that does
644 * kmem_cache_alloc and the such to see this symbol as well
645 */
a8964b9b 646struct static_key memcg_kmem_enabled_key;
d7f25f8a 647EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
648
649static void disarm_kmem_keys(struct mem_cgroup *memcg)
650{
55007d84 651 if (memcg_kmem_is_active(memcg)) {
a8964b9b 652 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
653 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
654 }
bea207c8
GC
655 /*
656 * This check can't live in kmem destruction function,
657 * since the charges will outlive the cgroup
658 */
659 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
660}
661#else
662static void disarm_kmem_keys(struct mem_cgroup *memcg)
663{
664}
665#endif /* CONFIG_MEMCG_KMEM */
666
667static void disarm_static_keys(struct mem_cgroup *memcg)
668{
669 disarm_sock_keys(memcg);
670 disarm_kmem_keys(memcg);
671}
672
c0ff4b85 673static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 674
f64c3f54 675static struct mem_cgroup_per_zone *
e231875b 676mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 677{
e231875b
JZ
678 int nid = zone_to_nid(zone);
679 int zid = zone_idx(zone);
680
54f72fe0 681 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
682}
683
c0ff4b85 684struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 685{
c0ff4b85 686 return &memcg->css;
d324236b
WF
687}
688
f64c3f54 689static struct mem_cgroup_per_zone *
e231875b 690mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 691{
97a6c37b
JW
692 int nid = page_to_nid(page);
693 int zid = page_zonenum(page);
f64c3f54 694
e231875b 695 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
696}
697
bb4cc1a8
AM
698static struct mem_cgroup_tree_per_zone *
699soft_limit_tree_node_zone(int nid, int zid)
700{
701 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
702}
703
704static struct mem_cgroup_tree_per_zone *
705soft_limit_tree_from_page(struct page *page)
706{
707 int nid = page_to_nid(page);
708 int zid = page_zonenum(page);
709
710 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
711}
712
cf2c8127
JW
713static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
714 struct mem_cgroup_tree_per_zone *mctz,
715 unsigned long long new_usage_in_excess)
bb4cc1a8
AM
716{
717 struct rb_node **p = &mctz->rb_root.rb_node;
718 struct rb_node *parent = NULL;
719 struct mem_cgroup_per_zone *mz_node;
720
721 if (mz->on_tree)
722 return;
723
724 mz->usage_in_excess = new_usage_in_excess;
725 if (!mz->usage_in_excess)
726 return;
727 while (*p) {
728 parent = *p;
729 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
730 tree_node);
731 if (mz->usage_in_excess < mz_node->usage_in_excess)
732 p = &(*p)->rb_left;
733 /*
734 * We can't avoid mem cgroups that are over their soft
735 * limit by the same amount
736 */
737 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
738 p = &(*p)->rb_right;
739 }
740 rb_link_node(&mz->tree_node, parent, p);
741 rb_insert_color(&mz->tree_node, &mctz->rb_root);
742 mz->on_tree = true;
743}
744
cf2c8127
JW
745static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
746 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
747{
748 if (!mz->on_tree)
749 return;
750 rb_erase(&mz->tree_node, &mctz->rb_root);
751 mz->on_tree = false;
752}
753
cf2c8127
JW
754static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
755 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
756{
757 spin_lock(&mctz->lock);
cf2c8127 758 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
759 spin_unlock(&mctz->lock);
760}
761
762
763static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
764{
765 unsigned long long excess;
766 struct mem_cgroup_per_zone *mz;
767 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 768
e231875b 769 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
770 /*
771 * Necessary to update all ancestors when hierarchy is used.
772 * because their event counter is not touched.
773 */
774 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 775 mz = mem_cgroup_page_zoneinfo(memcg, page);
bb4cc1a8
AM
776 excess = res_counter_soft_limit_excess(&memcg->res);
777 /*
778 * We have to update the tree if mz is on RB-tree or
779 * mem is over its softlimit.
780 */
781 if (excess || mz->on_tree) {
782 spin_lock(&mctz->lock);
783 /* if on-tree, remove it */
784 if (mz->on_tree)
cf2c8127 785 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
786 /*
787 * Insert again. mz->usage_in_excess will be updated.
788 * If excess is 0, no tree ops.
789 */
cf2c8127 790 __mem_cgroup_insert_exceeded(mz, mctz, excess);
bb4cc1a8
AM
791 spin_unlock(&mctz->lock);
792 }
793 }
794}
795
796static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
797{
bb4cc1a8 798 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
799 struct mem_cgroup_per_zone *mz;
800 int nid, zid;
bb4cc1a8 801
e231875b
JZ
802 for_each_node(nid) {
803 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
804 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
805 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 806 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
807 }
808 }
809}
810
811static struct mem_cgroup_per_zone *
812__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
813{
814 struct rb_node *rightmost = NULL;
815 struct mem_cgroup_per_zone *mz;
816
817retry:
818 mz = NULL;
819 rightmost = rb_last(&mctz->rb_root);
820 if (!rightmost)
821 goto done; /* Nothing to reclaim from */
822
823 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
824 /*
825 * Remove the node now but someone else can add it back,
826 * we will to add it back at the end of reclaim to its correct
827 * position in the tree.
828 */
cf2c8127 829 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8 830 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
ec903c0c 831 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
832 goto retry;
833done:
834 return mz;
835}
836
837static struct mem_cgroup_per_zone *
838mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
839{
840 struct mem_cgroup_per_zone *mz;
841
842 spin_lock(&mctz->lock);
843 mz = __mem_cgroup_largest_soft_limit_node(mctz);
844 spin_unlock(&mctz->lock);
845 return mz;
846}
847
711d3d2c
KH
848/*
849 * Implementation Note: reading percpu statistics for memcg.
850 *
851 * Both of vmstat[] and percpu_counter has threshold and do periodic
852 * synchronization to implement "quick" read. There are trade-off between
853 * reading cost and precision of value. Then, we may have a chance to implement
854 * a periodic synchronizion of counter in memcg's counter.
855 *
856 * But this _read() function is used for user interface now. The user accounts
857 * memory usage by memory cgroup and he _always_ requires exact value because
858 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
859 * have to visit all online cpus and make sum. So, for now, unnecessary
860 * synchronization is not implemented. (just implemented for cpu hotplug)
861 *
862 * If there are kernel internal actions which can make use of some not-exact
863 * value, and reading all cpu value can be performance bottleneck in some
864 * common workload, threashold and synchonization as vmstat[] should be
865 * implemented.
866 */
c0ff4b85 867static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 868 enum mem_cgroup_stat_index idx)
c62b1a3b 869{
7a159cc9 870 long val = 0;
c62b1a3b 871 int cpu;
c62b1a3b 872
711d3d2c
KH
873 get_online_cpus();
874 for_each_online_cpu(cpu)
c0ff4b85 875 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 876#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
877 spin_lock(&memcg->pcp_counter_lock);
878 val += memcg->nocpu_base.count[idx];
879 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
880#endif
881 put_online_cpus();
c62b1a3b
KH
882 return val;
883}
884
c0ff4b85 885static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
886 bool charge)
887{
888 int val = (charge) ? 1 : -1;
bff6bb83 889 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
890}
891
c0ff4b85 892static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
893 enum mem_cgroup_events_index idx)
894{
895 unsigned long val = 0;
896 int cpu;
897
9c567512 898 get_online_cpus();
e9f8974f 899 for_each_online_cpu(cpu)
c0ff4b85 900 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 901#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
902 spin_lock(&memcg->pcp_counter_lock);
903 val += memcg->nocpu_base.events[idx];
904 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 905#endif
9c567512 906 put_online_cpus();
e9f8974f
JW
907 return val;
908}
909
c0ff4b85 910static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 911 struct page *page,
b2402857 912 bool anon, int nr_pages)
d52aa412 913{
b2402857
KH
914 /*
915 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
916 * counted as CACHE even if it's on ANON LRU.
917 */
918 if (anon)
919 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 920 nr_pages);
d52aa412 921 else
b2402857 922 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 923 nr_pages);
55e462b0 924
b070e65c
DR
925 if (PageTransHuge(page))
926 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
927 nr_pages);
928
e401f176
KH
929 /* pagein of a big page is an event. So, ignore page size */
930 if (nr_pages > 0)
c0ff4b85 931 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 932 else {
c0ff4b85 933 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
934 nr_pages = -nr_pages; /* for event */
935 }
e401f176 936
13114716 937 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
938}
939
e231875b 940unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
941{
942 struct mem_cgroup_per_zone *mz;
943
944 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
945 return mz->lru_size[lru];
946}
947
e231875b
JZ
948static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
949 int nid,
950 unsigned int lru_mask)
bb2a0de9 951{
e231875b 952 unsigned long nr = 0;
889976db
YH
953 int zid;
954
e231875b 955 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 956
e231875b
JZ
957 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
958 struct mem_cgroup_per_zone *mz;
959 enum lru_list lru;
960
961 for_each_lru(lru) {
962 if (!(BIT(lru) & lru_mask))
963 continue;
964 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
965 nr += mz->lru_size[lru];
966 }
967 }
968 return nr;
889976db 969}
bb2a0de9 970
c0ff4b85 971static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 972 unsigned int lru_mask)
6d12e2d8 973{
e231875b 974 unsigned long nr = 0;
889976db 975 int nid;
6d12e2d8 976
31aaea4a 977 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
978 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
979 return nr;
d52aa412
KH
980}
981
f53d7ce3
JW
982static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
983 enum mem_cgroup_events_target target)
7a159cc9
JW
984{
985 unsigned long val, next;
986
13114716 987 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 988 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 989 /* from time_after() in jiffies.h */
f53d7ce3
JW
990 if ((long)next - (long)val < 0) {
991 switch (target) {
992 case MEM_CGROUP_TARGET_THRESH:
993 next = val + THRESHOLDS_EVENTS_TARGET;
994 break;
bb4cc1a8
AM
995 case MEM_CGROUP_TARGET_SOFTLIMIT:
996 next = val + SOFTLIMIT_EVENTS_TARGET;
997 break;
f53d7ce3
JW
998 case MEM_CGROUP_TARGET_NUMAINFO:
999 next = val + NUMAINFO_EVENTS_TARGET;
1000 break;
1001 default:
1002 break;
1003 }
1004 __this_cpu_write(memcg->stat->targets[target], next);
1005 return true;
7a159cc9 1006 }
f53d7ce3 1007 return false;
d2265e6f
KH
1008}
1009
1010/*
1011 * Check events in order.
1012 *
1013 */
c0ff4b85 1014static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1015{
4799401f 1016 preempt_disable();
d2265e6f 1017 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1018 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1019 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1020 bool do_softlimit;
82b3f2a7 1021 bool do_numainfo __maybe_unused;
f53d7ce3 1022
bb4cc1a8
AM
1023 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1024 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1025#if MAX_NUMNODES > 1
1026 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1027 MEM_CGROUP_TARGET_NUMAINFO);
1028#endif
1029 preempt_enable();
1030
c0ff4b85 1031 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1032 if (unlikely(do_softlimit))
1033 mem_cgroup_update_tree(memcg, page);
453a9bf3 1034#if MAX_NUMNODES > 1
f53d7ce3 1035 if (unlikely(do_numainfo))
c0ff4b85 1036 atomic_inc(&memcg->numainfo_events);
453a9bf3 1037#endif
f53d7ce3
JW
1038 } else
1039 preempt_enable();
d2265e6f
KH
1040}
1041
cf475ad2 1042struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1043{
31a78f23
BS
1044 /*
1045 * mm_update_next_owner() may clear mm->owner to NULL
1046 * if it races with swapoff, page migration, etc.
1047 * So this can be called with p == NULL.
1048 */
1049 if (unlikely(!p))
1050 return NULL;
1051
073219e9 1052 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1053}
1054
df381975 1055static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1056{
c0ff4b85 1057 struct mem_cgroup *memcg = NULL;
0b7f569e 1058
54595fe2
KH
1059 rcu_read_lock();
1060 do {
6f6acb00
MH
1061 /*
1062 * Page cache insertions can happen withou an
1063 * actual mm context, e.g. during disk probing
1064 * on boot, loopback IO, acct() writes etc.
1065 */
1066 if (unlikely(!mm))
df381975 1067 memcg = root_mem_cgroup;
6f6acb00
MH
1068 else {
1069 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1070 if (unlikely(!memcg))
1071 memcg = root_mem_cgroup;
1072 }
ec903c0c 1073 } while (!css_tryget_online(&memcg->css));
54595fe2 1074 rcu_read_unlock();
c0ff4b85 1075 return memcg;
54595fe2
KH
1076}
1077
16248d8f
MH
1078/*
1079 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1080 * ref. count) or NULL if the whole root's subtree has been visited.
1081 *
1082 * helper function to be used by mem_cgroup_iter
1083 */
1084static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1085 struct mem_cgroup *last_visited)
16248d8f 1086{
492eb21b 1087 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1088
bd8815a6 1089 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1090skip_node:
492eb21b 1091 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1092
1093 /*
1094 * Even if we found a group we have to make sure it is
1095 * alive. css && !memcg means that the groups should be
1096 * skipped and we should continue the tree walk.
1097 * last_visited css is safe to use because it is
1098 * protected by css_get and the tree walk is rcu safe.
0eef6156
MH
1099 *
1100 * We do not take a reference on the root of the tree walk
1101 * because we might race with the root removal when it would
1102 * be the only node in the iterated hierarchy and mem_cgroup_iter
1103 * would end up in an endless loop because it expects that at
1104 * least one valid node will be returned. Root cannot disappear
1105 * because caller of the iterator should hold it already so
1106 * skipping css reference should be safe.
16248d8f 1107 */
492eb21b 1108 if (next_css) {
ce48225f 1109 if ((next_css == &root->css) ||
ec903c0c
TH
1110 ((next_css->flags & CSS_ONLINE) &&
1111 css_tryget_online(next_css)))
d8ad3055 1112 return mem_cgroup_from_css(next_css);
0eef6156
MH
1113
1114 prev_css = next_css;
1115 goto skip_node;
16248d8f
MH
1116 }
1117
1118 return NULL;
1119}
1120
519ebea3
JW
1121static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1122{
1123 /*
1124 * When a group in the hierarchy below root is destroyed, the
1125 * hierarchy iterator can no longer be trusted since it might
1126 * have pointed to the destroyed group. Invalidate it.
1127 */
1128 atomic_inc(&root->dead_count);
1129}
1130
1131static struct mem_cgroup *
1132mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1133 struct mem_cgroup *root,
1134 int *sequence)
1135{
1136 struct mem_cgroup *position = NULL;
1137 /*
1138 * A cgroup destruction happens in two stages: offlining and
1139 * release. They are separated by a RCU grace period.
1140 *
1141 * If the iterator is valid, we may still race with an
1142 * offlining. The RCU lock ensures the object won't be
1143 * released, tryget will fail if we lost the race.
1144 */
1145 *sequence = atomic_read(&root->dead_count);
1146 if (iter->last_dead_count == *sequence) {
1147 smp_rmb();
1148 position = iter->last_visited;
ecc736fc
MH
1149
1150 /*
1151 * We cannot take a reference to root because we might race
1152 * with root removal and returning NULL would end up in
1153 * an endless loop on the iterator user level when root
1154 * would be returned all the time.
1155 */
1156 if (position && position != root &&
ec903c0c 1157 !css_tryget_online(&position->css))
519ebea3
JW
1158 position = NULL;
1159 }
1160 return position;
1161}
1162
1163static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1164 struct mem_cgroup *last_visited,
1165 struct mem_cgroup *new_position,
ecc736fc 1166 struct mem_cgroup *root,
519ebea3
JW
1167 int sequence)
1168{
ecc736fc
MH
1169 /* root reference counting symmetric to mem_cgroup_iter_load */
1170 if (last_visited && last_visited != root)
519ebea3
JW
1171 css_put(&last_visited->css);
1172 /*
1173 * We store the sequence count from the time @last_visited was
1174 * loaded successfully instead of rereading it here so that we
1175 * don't lose destruction events in between. We could have
1176 * raced with the destruction of @new_position after all.
1177 */
1178 iter->last_visited = new_position;
1179 smp_wmb();
1180 iter->last_dead_count = sequence;
1181}
1182
5660048c
JW
1183/**
1184 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1185 * @root: hierarchy root
1186 * @prev: previously returned memcg, NULL on first invocation
1187 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1188 *
1189 * Returns references to children of the hierarchy below @root, or
1190 * @root itself, or %NULL after a full round-trip.
1191 *
1192 * Caller must pass the return value in @prev on subsequent
1193 * invocations for reference counting, or use mem_cgroup_iter_break()
1194 * to cancel a hierarchy walk before the round-trip is complete.
1195 *
1196 * Reclaimers can specify a zone and a priority level in @reclaim to
1197 * divide up the memcgs in the hierarchy among all concurrent
1198 * reclaimers operating on the same zone and priority.
1199 */
694fbc0f 1200struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1201 struct mem_cgroup *prev,
694fbc0f 1202 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1203{
9f3a0d09 1204 struct mem_cgroup *memcg = NULL;
542f85f9 1205 struct mem_cgroup *last_visited = NULL;
711d3d2c 1206
694fbc0f
AM
1207 if (mem_cgroup_disabled())
1208 return NULL;
5660048c 1209
9f3a0d09
JW
1210 if (!root)
1211 root = root_mem_cgroup;
7d74b06f 1212
9f3a0d09 1213 if (prev && !reclaim)
542f85f9 1214 last_visited = prev;
14067bb3 1215
9f3a0d09
JW
1216 if (!root->use_hierarchy && root != root_mem_cgroup) {
1217 if (prev)
c40046f3 1218 goto out_css_put;
694fbc0f 1219 return root;
9f3a0d09 1220 }
14067bb3 1221
542f85f9 1222 rcu_read_lock();
9f3a0d09 1223 while (!memcg) {
527a5ec9 1224 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1225 int uninitialized_var(seq);
711d3d2c 1226
527a5ec9 1227 if (reclaim) {
527a5ec9
JW
1228 struct mem_cgroup_per_zone *mz;
1229
e231875b 1230 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
527a5ec9 1231 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1232 if (prev && reclaim->generation != iter->generation) {
5f578161 1233 iter->last_visited = NULL;
542f85f9
MH
1234 goto out_unlock;
1235 }
5f578161 1236
519ebea3 1237 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1238 }
7d74b06f 1239
694fbc0f 1240 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1241
527a5ec9 1242 if (reclaim) {
ecc736fc
MH
1243 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1244 seq);
542f85f9 1245
19f39402 1246 if (!memcg)
527a5ec9
JW
1247 iter->generation++;
1248 else if (!prev && memcg)
1249 reclaim->generation = iter->generation;
1250 }
9f3a0d09 1251
694fbc0f 1252 if (prev && !memcg)
542f85f9 1253 goto out_unlock;
9f3a0d09 1254 }
542f85f9
MH
1255out_unlock:
1256 rcu_read_unlock();
c40046f3
MH
1257out_css_put:
1258 if (prev && prev != root)
1259 css_put(&prev->css);
1260
9f3a0d09 1261 return memcg;
14067bb3 1262}
7d74b06f 1263
5660048c
JW
1264/**
1265 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1266 * @root: hierarchy root
1267 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1268 */
1269void mem_cgroup_iter_break(struct mem_cgroup *root,
1270 struct mem_cgroup *prev)
9f3a0d09
JW
1271{
1272 if (!root)
1273 root = root_mem_cgroup;
1274 if (prev && prev != root)
1275 css_put(&prev->css);
1276}
7d74b06f 1277
9f3a0d09
JW
1278/*
1279 * Iteration constructs for visiting all cgroups (under a tree). If
1280 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1281 * be used for reference counting.
1282 */
1283#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1284 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1285 iter != NULL; \
527a5ec9 1286 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1287
9f3a0d09 1288#define for_each_mem_cgroup(iter) \
527a5ec9 1289 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1290 iter != NULL; \
527a5ec9 1291 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1292
68ae564b 1293void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1294{
c0ff4b85 1295 struct mem_cgroup *memcg;
456f998e 1296
456f998e 1297 rcu_read_lock();
c0ff4b85
R
1298 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1299 if (unlikely(!memcg))
456f998e
YH
1300 goto out;
1301
1302 switch (idx) {
456f998e 1303 case PGFAULT:
0e574a93
JW
1304 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1305 break;
1306 case PGMAJFAULT:
1307 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1308 break;
1309 default:
1310 BUG();
1311 }
1312out:
1313 rcu_read_unlock();
1314}
68ae564b 1315EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1316
925b7673
JW
1317/**
1318 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1319 * @zone: zone of the wanted lruvec
fa9add64 1320 * @memcg: memcg of the wanted lruvec
925b7673
JW
1321 *
1322 * Returns the lru list vector holding pages for the given @zone and
1323 * @mem. This can be the global zone lruvec, if the memory controller
1324 * is disabled.
1325 */
1326struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1327 struct mem_cgroup *memcg)
1328{
1329 struct mem_cgroup_per_zone *mz;
bea8c150 1330 struct lruvec *lruvec;
925b7673 1331
bea8c150
HD
1332 if (mem_cgroup_disabled()) {
1333 lruvec = &zone->lruvec;
1334 goto out;
1335 }
925b7673 1336
e231875b 1337 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1338 lruvec = &mz->lruvec;
1339out:
1340 /*
1341 * Since a node can be onlined after the mem_cgroup was created,
1342 * we have to be prepared to initialize lruvec->zone here;
1343 * and if offlined then reonlined, we need to reinitialize it.
1344 */
1345 if (unlikely(lruvec->zone != zone))
1346 lruvec->zone = zone;
1347 return lruvec;
925b7673
JW
1348}
1349
08e552c6
KH
1350/*
1351 * Following LRU functions are allowed to be used without PCG_LOCK.
1352 * Operations are called by routine of global LRU independently from memcg.
1353 * What we have to take care of here is validness of pc->mem_cgroup.
1354 *
1355 * Changes to pc->mem_cgroup happens when
1356 * 1. charge
1357 * 2. moving account
1358 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1359 * It is added to LRU before charge.
1360 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1361 * When moving account, the page is not on LRU. It's isolated.
1362 */
4f98a2fe 1363
925b7673 1364/**
fa9add64 1365 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1366 * @page: the page
fa9add64 1367 * @zone: zone of the page
925b7673 1368 */
fa9add64 1369struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1370{
08e552c6 1371 struct mem_cgroup_per_zone *mz;
925b7673
JW
1372 struct mem_cgroup *memcg;
1373 struct page_cgroup *pc;
bea8c150 1374 struct lruvec *lruvec;
6d12e2d8 1375
bea8c150
HD
1376 if (mem_cgroup_disabled()) {
1377 lruvec = &zone->lruvec;
1378 goto out;
1379 }
925b7673 1380
08e552c6 1381 pc = lookup_page_cgroup(page);
38c5d72f 1382 memcg = pc->mem_cgroup;
7512102c
HD
1383
1384 /*
fa9add64 1385 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1386 * an uncharged page off lru does nothing to secure
1387 * its former mem_cgroup from sudden removal.
1388 *
1389 * Our caller holds lru_lock, and PageCgroupUsed is updated
1390 * under page_cgroup lock: between them, they make all uses
1391 * of pc->mem_cgroup safe.
1392 */
fa9add64 1393 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1394 pc->mem_cgroup = memcg = root_mem_cgroup;
1395
e231875b 1396 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1397 lruvec = &mz->lruvec;
1398out:
1399 /*
1400 * Since a node can be onlined after the mem_cgroup was created,
1401 * we have to be prepared to initialize lruvec->zone here;
1402 * and if offlined then reonlined, we need to reinitialize it.
1403 */
1404 if (unlikely(lruvec->zone != zone))
1405 lruvec->zone = zone;
1406 return lruvec;
08e552c6 1407}
b69408e8 1408
925b7673 1409/**
fa9add64
HD
1410 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1411 * @lruvec: mem_cgroup per zone lru vector
1412 * @lru: index of lru list the page is sitting on
1413 * @nr_pages: positive when adding or negative when removing
925b7673 1414 *
fa9add64
HD
1415 * This function must be called when a page is added to or removed from an
1416 * lru list.
3f58a829 1417 */
fa9add64
HD
1418void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1419 int nr_pages)
3f58a829
MK
1420{
1421 struct mem_cgroup_per_zone *mz;
fa9add64 1422 unsigned long *lru_size;
3f58a829
MK
1423
1424 if (mem_cgroup_disabled())
1425 return;
1426
fa9add64
HD
1427 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1428 lru_size = mz->lru_size + lru;
1429 *lru_size += nr_pages;
1430 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1431}
544122e5 1432
3e92041d 1433/*
c0ff4b85 1434 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1435 * hierarchy subtree
1436 */
c3ac9a8a
JW
1437bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1438 struct mem_cgroup *memcg)
3e92041d 1439{
91c63734
JW
1440 if (root_memcg == memcg)
1441 return true;
3a981f48 1442 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1443 return false;
b47f77b5 1444 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1445}
1446
1447static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1448 struct mem_cgroup *memcg)
1449{
1450 bool ret;
1451
91c63734 1452 rcu_read_lock();
c3ac9a8a 1453 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1454 rcu_read_unlock();
1455 return ret;
3e92041d
MH
1456}
1457
ffbdccf5
DR
1458bool task_in_mem_cgroup(struct task_struct *task,
1459 const struct mem_cgroup *memcg)
4c4a2214 1460{
0b7f569e 1461 struct mem_cgroup *curr = NULL;
158e0a2d 1462 struct task_struct *p;
ffbdccf5 1463 bool ret;
4c4a2214 1464
158e0a2d 1465 p = find_lock_task_mm(task);
de077d22 1466 if (p) {
df381975 1467 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1468 task_unlock(p);
1469 } else {
1470 /*
1471 * All threads may have already detached their mm's, but the oom
1472 * killer still needs to detect if they have already been oom
1473 * killed to prevent needlessly killing additional tasks.
1474 */
ffbdccf5 1475 rcu_read_lock();
de077d22
DR
1476 curr = mem_cgroup_from_task(task);
1477 if (curr)
1478 css_get(&curr->css);
ffbdccf5 1479 rcu_read_unlock();
de077d22 1480 }
d31f56db 1481 /*
c0ff4b85 1482 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1483 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1484 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1485 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1486 */
c0ff4b85 1487 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1488 css_put(&curr->css);
4c4a2214
DR
1489 return ret;
1490}
1491
c56d5c7d 1492int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1493{
9b272977 1494 unsigned long inactive_ratio;
14797e23 1495 unsigned long inactive;
9b272977 1496 unsigned long active;
c772be93 1497 unsigned long gb;
14797e23 1498
4d7dcca2
HD
1499 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1500 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1501
c772be93
KM
1502 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1503 if (gb)
1504 inactive_ratio = int_sqrt(10 * gb);
1505 else
1506 inactive_ratio = 1;
1507
9b272977 1508 return inactive * inactive_ratio < active;
14797e23
KM
1509}
1510
6d61ef40
BS
1511#define mem_cgroup_from_res_counter(counter, member) \
1512 container_of(counter, struct mem_cgroup, member)
1513
19942822 1514/**
9d11ea9f 1515 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1516 * @memcg: the memory cgroup
19942822 1517 *
9d11ea9f 1518 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1519 * pages.
19942822 1520 */
c0ff4b85 1521static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1522{
9d11ea9f
JW
1523 unsigned long long margin;
1524
c0ff4b85 1525 margin = res_counter_margin(&memcg->res);
9d11ea9f 1526 if (do_swap_account)
c0ff4b85 1527 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1528 return margin >> PAGE_SHIFT;
19942822
JW
1529}
1530
1f4c025b 1531int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1532{
a7885eb8 1533 /* root ? */
14208b0e 1534 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1535 return vm_swappiness;
1536
bf1ff263 1537 return memcg->swappiness;
a7885eb8
KM
1538}
1539
619d094b
KH
1540/*
1541 * memcg->moving_account is used for checking possibility that some thread is
1542 * calling move_account(). When a thread on CPU-A starts moving pages under
1543 * a memcg, other threads should check memcg->moving_account under
1544 * rcu_read_lock(), like this:
1545 *
1546 * CPU-A CPU-B
1547 * rcu_read_lock()
1548 * memcg->moving_account+1 if (memcg->mocing_account)
1549 * take heavy locks.
1550 * synchronize_rcu() update something.
1551 * rcu_read_unlock()
1552 * start move here.
1553 */
4331f7d3
KH
1554
1555/* for quick checking without looking up memcg */
1556atomic_t memcg_moving __read_mostly;
1557
c0ff4b85 1558static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1559{
4331f7d3 1560 atomic_inc(&memcg_moving);
619d094b 1561 atomic_inc(&memcg->moving_account);
32047e2a
KH
1562 synchronize_rcu();
1563}
1564
c0ff4b85 1565static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1566{
619d094b
KH
1567 /*
1568 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1569 * We check NULL in callee rather than caller.
1570 */
4331f7d3
KH
1571 if (memcg) {
1572 atomic_dec(&memcg_moving);
619d094b 1573 atomic_dec(&memcg->moving_account);
4331f7d3 1574 }
32047e2a 1575}
619d094b 1576
32047e2a 1577/*
bdcbb659 1578 * A routine for checking "mem" is under move_account() or not.
32047e2a 1579 *
bdcbb659
QH
1580 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1581 * moving cgroups. This is for waiting at high-memory pressure
1582 * caused by "move".
32047e2a 1583 */
c0ff4b85 1584static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1585{
2bd9bb20
KH
1586 struct mem_cgroup *from;
1587 struct mem_cgroup *to;
4b534334 1588 bool ret = false;
2bd9bb20
KH
1589 /*
1590 * Unlike task_move routines, we access mc.to, mc.from not under
1591 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1592 */
1593 spin_lock(&mc.lock);
1594 from = mc.from;
1595 to = mc.to;
1596 if (!from)
1597 goto unlock;
3e92041d 1598
c0ff4b85
R
1599 ret = mem_cgroup_same_or_subtree(memcg, from)
1600 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1601unlock:
1602 spin_unlock(&mc.lock);
4b534334
KH
1603 return ret;
1604}
1605
c0ff4b85 1606static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1607{
1608 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1609 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1610 DEFINE_WAIT(wait);
1611 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1612 /* moving charge context might have finished. */
1613 if (mc.moving_task)
1614 schedule();
1615 finish_wait(&mc.waitq, &wait);
1616 return true;
1617 }
1618 }
1619 return false;
1620}
1621
312734c0
KH
1622/*
1623 * Take this lock when
1624 * - a code tries to modify page's memcg while it's USED.
1625 * - a code tries to modify page state accounting in a memcg.
312734c0
KH
1626 */
1627static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1628 unsigned long *flags)
1629{
1630 spin_lock_irqsave(&memcg->move_lock, *flags);
1631}
1632
1633static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1634 unsigned long *flags)
1635{
1636 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1637}
1638
58cf188e 1639#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1640/**
58cf188e 1641 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1642 * @memcg: The memory cgroup that went over limit
1643 * @p: Task that is going to be killed
1644 *
1645 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1646 * enabled
1647 */
1648void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1649{
e61734c5 1650 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1651 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1652 struct mem_cgroup *iter;
1653 unsigned int i;
e222432b 1654
58cf188e 1655 if (!p)
e222432b
BS
1656 return;
1657
08088cb9 1658 mutex_lock(&oom_info_lock);
e222432b
BS
1659 rcu_read_lock();
1660
e61734c5
TH
1661 pr_info("Task in ");
1662 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1663 pr_info(" killed as a result of limit of ");
1664 pr_cont_cgroup_path(memcg->css.cgroup);
1665 pr_info("\n");
e222432b 1666
e222432b
BS
1667 rcu_read_unlock();
1668
d045197f 1669 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1670 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1671 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1672 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1673 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1674 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1675 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1676 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1677 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1678 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1679 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1680 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1681
1682 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1683 pr_info("Memory cgroup stats for ");
1684 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1685 pr_cont(":");
1686
1687 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1688 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1689 continue;
1690 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1691 K(mem_cgroup_read_stat(iter, i)));
1692 }
1693
1694 for (i = 0; i < NR_LRU_LISTS; i++)
1695 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1696 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1697
1698 pr_cont("\n");
1699 }
08088cb9 1700 mutex_unlock(&oom_info_lock);
e222432b
BS
1701}
1702
81d39c20
KH
1703/*
1704 * This function returns the number of memcg under hierarchy tree. Returns
1705 * 1(self count) if no children.
1706 */
c0ff4b85 1707static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1708{
1709 int num = 0;
7d74b06f
KH
1710 struct mem_cgroup *iter;
1711
c0ff4b85 1712 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1713 num++;
81d39c20
KH
1714 return num;
1715}
1716
a63d83f4
DR
1717/*
1718 * Return the memory (and swap, if configured) limit for a memcg.
1719 */
9cbb78bb 1720static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1721{
1722 u64 limit;
a63d83f4 1723
f3e8eb70 1724 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1725
a63d83f4 1726 /*
9a5a8f19 1727 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1728 */
9a5a8f19
MH
1729 if (mem_cgroup_swappiness(memcg)) {
1730 u64 memsw;
1731
1732 limit += total_swap_pages << PAGE_SHIFT;
1733 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1734
1735 /*
1736 * If memsw is finite and limits the amount of swap space
1737 * available to this memcg, return that limit.
1738 */
1739 limit = min(limit, memsw);
1740 }
1741
1742 return limit;
a63d83f4
DR
1743}
1744
19965460
DR
1745static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1746 int order)
9cbb78bb
DR
1747{
1748 struct mem_cgroup *iter;
1749 unsigned long chosen_points = 0;
1750 unsigned long totalpages;
1751 unsigned int points = 0;
1752 struct task_struct *chosen = NULL;
1753
876aafbf 1754 /*
465adcf1
DR
1755 * If current has a pending SIGKILL or is exiting, then automatically
1756 * select it. The goal is to allow it to allocate so that it may
1757 * quickly exit and free its memory.
876aafbf 1758 */
465adcf1 1759 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1760 set_thread_flag(TIF_MEMDIE);
1761 return;
1762 }
1763
1764 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1765 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1766 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1767 struct css_task_iter it;
9cbb78bb
DR
1768 struct task_struct *task;
1769
72ec7029
TH
1770 css_task_iter_start(&iter->css, &it);
1771 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1772 switch (oom_scan_process_thread(task, totalpages, NULL,
1773 false)) {
1774 case OOM_SCAN_SELECT:
1775 if (chosen)
1776 put_task_struct(chosen);
1777 chosen = task;
1778 chosen_points = ULONG_MAX;
1779 get_task_struct(chosen);
1780 /* fall through */
1781 case OOM_SCAN_CONTINUE:
1782 continue;
1783 case OOM_SCAN_ABORT:
72ec7029 1784 css_task_iter_end(&it);
9cbb78bb
DR
1785 mem_cgroup_iter_break(memcg, iter);
1786 if (chosen)
1787 put_task_struct(chosen);
1788 return;
1789 case OOM_SCAN_OK:
1790 break;
1791 };
1792 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1793 if (!points || points < chosen_points)
1794 continue;
1795 /* Prefer thread group leaders for display purposes */
1796 if (points == chosen_points &&
1797 thread_group_leader(chosen))
1798 continue;
1799
1800 if (chosen)
1801 put_task_struct(chosen);
1802 chosen = task;
1803 chosen_points = points;
1804 get_task_struct(chosen);
9cbb78bb 1805 }
72ec7029 1806 css_task_iter_end(&it);
9cbb78bb
DR
1807 }
1808
1809 if (!chosen)
1810 return;
1811 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1812 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1813 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1814}
1815
5660048c
JW
1816static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1817 gfp_t gfp_mask,
1818 unsigned long flags)
1819{
1820 unsigned long total = 0;
1821 bool noswap = false;
1822 int loop;
1823
1824 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1825 noswap = true;
1826 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1827 noswap = true;
1828
1829 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1830 if (loop)
1831 drain_all_stock_async(memcg);
1832 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1833 /*
1834 * Allow limit shrinkers, which are triggered directly
1835 * by userspace, to catch signals and stop reclaim
1836 * after minimal progress, regardless of the margin.
1837 */
1838 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1839 break;
1840 if (mem_cgroup_margin(memcg))
1841 break;
1842 /*
1843 * If nothing was reclaimed after two attempts, there
1844 * may be no reclaimable pages in this hierarchy.
1845 */
1846 if (loop && !total)
1847 break;
1848 }
1849 return total;
1850}
1851
4d0c066d
KH
1852/**
1853 * test_mem_cgroup_node_reclaimable
dad7557e 1854 * @memcg: the target memcg
4d0c066d
KH
1855 * @nid: the node ID to be checked.
1856 * @noswap : specify true here if the user wants flle only information.
1857 *
1858 * This function returns whether the specified memcg contains any
1859 * reclaimable pages on a node. Returns true if there are any reclaimable
1860 * pages in the node.
1861 */
c0ff4b85 1862static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1863 int nid, bool noswap)
1864{
c0ff4b85 1865 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1866 return true;
1867 if (noswap || !total_swap_pages)
1868 return false;
c0ff4b85 1869 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1870 return true;
1871 return false;
1872
1873}
bb4cc1a8 1874#if MAX_NUMNODES > 1
889976db
YH
1875
1876/*
1877 * Always updating the nodemask is not very good - even if we have an empty
1878 * list or the wrong list here, we can start from some node and traverse all
1879 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1880 *
1881 */
c0ff4b85 1882static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1883{
1884 int nid;
453a9bf3
KH
1885 /*
1886 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1887 * pagein/pageout changes since the last update.
1888 */
c0ff4b85 1889 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1890 return;
c0ff4b85 1891 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1892 return;
1893
889976db 1894 /* make a nodemask where this memcg uses memory from */
31aaea4a 1895 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1896
31aaea4a 1897 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1898
c0ff4b85
R
1899 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1900 node_clear(nid, memcg->scan_nodes);
889976db 1901 }
453a9bf3 1902
c0ff4b85
R
1903 atomic_set(&memcg->numainfo_events, 0);
1904 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1905}
1906
1907/*
1908 * Selecting a node where we start reclaim from. Because what we need is just
1909 * reducing usage counter, start from anywhere is O,K. Considering
1910 * memory reclaim from current node, there are pros. and cons.
1911 *
1912 * Freeing memory from current node means freeing memory from a node which
1913 * we'll use or we've used. So, it may make LRU bad. And if several threads
1914 * hit limits, it will see a contention on a node. But freeing from remote
1915 * node means more costs for memory reclaim because of memory latency.
1916 *
1917 * Now, we use round-robin. Better algorithm is welcomed.
1918 */
c0ff4b85 1919int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1920{
1921 int node;
1922
c0ff4b85
R
1923 mem_cgroup_may_update_nodemask(memcg);
1924 node = memcg->last_scanned_node;
889976db 1925
c0ff4b85 1926 node = next_node(node, memcg->scan_nodes);
889976db 1927 if (node == MAX_NUMNODES)
c0ff4b85 1928 node = first_node(memcg->scan_nodes);
889976db
YH
1929 /*
1930 * We call this when we hit limit, not when pages are added to LRU.
1931 * No LRU may hold pages because all pages are UNEVICTABLE or
1932 * memcg is too small and all pages are not on LRU. In that case,
1933 * we use curret node.
1934 */
1935 if (unlikely(node == MAX_NUMNODES))
1936 node = numa_node_id();
1937
c0ff4b85 1938 memcg->last_scanned_node = node;
889976db
YH
1939 return node;
1940}
1941
bb4cc1a8
AM
1942/*
1943 * Check all nodes whether it contains reclaimable pages or not.
1944 * For quick scan, we make use of scan_nodes. This will allow us to skip
1945 * unused nodes. But scan_nodes is lazily updated and may not cotain
1946 * enough new information. We need to do double check.
1947 */
1948static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1949{
1950 int nid;
1951
1952 /*
1953 * quick check...making use of scan_node.
1954 * We can skip unused nodes.
1955 */
1956 if (!nodes_empty(memcg->scan_nodes)) {
1957 for (nid = first_node(memcg->scan_nodes);
1958 nid < MAX_NUMNODES;
1959 nid = next_node(nid, memcg->scan_nodes)) {
1960
1961 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1962 return true;
1963 }
1964 }
1965 /*
1966 * Check rest of nodes.
1967 */
1968 for_each_node_state(nid, N_MEMORY) {
1969 if (node_isset(nid, memcg->scan_nodes))
1970 continue;
1971 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1972 return true;
1973 }
1974 return false;
1975}
1976
889976db 1977#else
c0ff4b85 1978int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1979{
1980 return 0;
1981}
4d0c066d 1982
bb4cc1a8
AM
1983static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1984{
1985 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1986}
889976db
YH
1987#endif
1988
0608f43d
AM
1989static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1990 struct zone *zone,
1991 gfp_t gfp_mask,
1992 unsigned long *total_scanned)
1993{
1994 struct mem_cgroup *victim = NULL;
1995 int total = 0;
1996 int loop = 0;
1997 unsigned long excess;
1998 unsigned long nr_scanned;
1999 struct mem_cgroup_reclaim_cookie reclaim = {
2000 .zone = zone,
2001 .priority = 0,
2002 };
2003
2004 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2005
2006 while (1) {
2007 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2008 if (!victim) {
2009 loop++;
2010 if (loop >= 2) {
2011 /*
2012 * If we have not been able to reclaim
2013 * anything, it might because there are
2014 * no reclaimable pages under this hierarchy
2015 */
2016 if (!total)
2017 break;
2018 /*
2019 * We want to do more targeted reclaim.
2020 * excess >> 2 is not to excessive so as to
2021 * reclaim too much, nor too less that we keep
2022 * coming back to reclaim from this cgroup
2023 */
2024 if (total >= (excess >> 2) ||
2025 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2026 break;
2027 }
2028 continue;
2029 }
2030 if (!mem_cgroup_reclaimable(victim, false))
2031 continue;
2032 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2033 zone, &nr_scanned);
2034 *total_scanned += nr_scanned;
2035 if (!res_counter_soft_limit_excess(&root_memcg->res))
2036 break;
6d61ef40 2037 }
0608f43d
AM
2038 mem_cgroup_iter_break(root_memcg, victim);
2039 return total;
6d61ef40
BS
2040}
2041
0056f4e6
JW
2042#ifdef CONFIG_LOCKDEP
2043static struct lockdep_map memcg_oom_lock_dep_map = {
2044 .name = "memcg_oom_lock",
2045};
2046#endif
2047
fb2a6fc5
JW
2048static DEFINE_SPINLOCK(memcg_oom_lock);
2049
867578cb
KH
2050/*
2051 * Check OOM-Killer is already running under our hierarchy.
2052 * If someone is running, return false.
2053 */
fb2a6fc5 2054static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2055{
79dfdacc 2056 struct mem_cgroup *iter, *failed = NULL;
a636b327 2057
fb2a6fc5
JW
2058 spin_lock(&memcg_oom_lock);
2059
9f3a0d09 2060 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2061 if (iter->oom_lock) {
79dfdacc
MH
2062 /*
2063 * this subtree of our hierarchy is already locked
2064 * so we cannot give a lock.
2065 */
79dfdacc 2066 failed = iter;
9f3a0d09
JW
2067 mem_cgroup_iter_break(memcg, iter);
2068 break;
23751be0
JW
2069 } else
2070 iter->oom_lock = true;
7d74b06f 2071 }
867578cb 2072
fb2a6fc5
JW
2073 if (failed) {
2074 /*
2075 * OK, we failed to lock the whole subtree so we have
2076 * to clean up what we set up to the failing subtree
2077 */
2078 for_each_mem_cgroup_tree(iter, memcg) {
2079 if (iter == failed) {
2080 mem_cgroup_iter_break(memcg, iter);
2081 break;
2082 }
2083 iter->oom_lock = false;
79dfdacc 2084 }
0056f4e6
JW
2085 } else
2086 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2087
2088 spin_unlock(&memcg_oom_lock);
2089
2090 return !failed;
a636b327 2091}
0b7f569e 2092
fb2a6fc5 2093static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2094{
7d74b06f
KH
2095 struct mem_cgroup *iter;
2096
fb2a6fc5 2097 spin_lock(&memcg_oom_lock);
0056f4e6 2098 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2099 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2100 iter->oom_lock = false;
fb2a6fc5 2101 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2102}
2103
c0ff4b85 2104static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2105{
2106 struct mem_cgroup *iter;
2107
c0ff4b85 2108 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2109 atomic_inc(&iter->under_oom);
2110}
2111
c0ff4b85 2112static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2113{
2114 struct mem_cgroup *iter;
2115
867578cb
KH
2116 /*
2117 * When a new child is created while the hierarchy is under oom,
2118 * mem_cgroup_oom_lock() may not be called. We have to use
2119 * atomic_add_unless() here.
2120 */
c0ff4b85 2121 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2122 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2123}
2124
867578cb
KH
2125static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2126
dc98df5a 2127struct oom_wait_info {
d79154bb 2128 struct mem_cgroup *memcg;
dc98df5a
KH
2129 wait_queue_t wait;
2130};
2131
2132static int memcg_oom_wake_function(wait_queue_t *wait,
2133 unsigned mode, int sync, void *arg)
2134{
d79154bb
HD
2135 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2136 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2137 struct oom_wait_info *oom_wait_info;
2138
2139 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2140 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2141
dc98df5a 2142 /*
d79154bb 2143 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2144 * Then we can use css_is_ancestor without taking care of RCU.
2145 */
c0ff4b85
R
2146 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2147 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2148 return 0;
dc98df5a
KH
2149 return autoremove_wake_function(wait, mode, sync, arg);
2150}
2151
c0ff4b85 2152static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2153{
3812c8c8 2154 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2155 /* for filtering, pass "memcg" as argument. */
2156 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2157}
2158
c0ff4b85 2159static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2160{
c0ff4b85
R
2161 if (memcg && atomic_read(&memcg->under_oom))
2162 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2163}
2164
3812c8c8 2165static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2166{
3812c8c8
JW
2167 if (!current->memcg_oom.may_oom)
2168 return;
867578cb 2169 /*
49426420
JW
2170 * We are in the middle of the charge context here, so we
2171 * don't want to block when potentially sitting on a callstack
2172 * that holds all kinds of filesystem and mm locks.
2173 *
2174 * Also, the caller may handle a failed allocation gracefully
2175 * (like optional page cache readahead) and so an OOM killer
2176 * invocation might not even be necessary.
2177 *
2178 * That's why we don't do anything here except remember the
2179 * OOM context and then deal with it at the end of the page
2180 * fault when the stack is unwound, the locks are released,
2181 * and when we know whether the fault was overall successful.
867578cb 2182 */
49426420
JW
2183 css_get(&memcg->css);
2184 current->memcg_oom.memcg = memcg;
2185 current->memcg_oom.gfp_mask = mask;
2186 current->memcg_oom.order = order;
3812c8c8
JW
2187}
2188
2189/**
2190 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2191 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2192 *
49426420
JW
2193 * This has to be called at the end of a page fault if the memcg OOM
2194 * handler was enabled.
3812c8c8 2195 *
49426420 2196 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2197 * sleep on a waitqueue until the userspace task resolves the
2198 * situation. Sleeping directly in the charge context with all kinds
2199 * of locks held is not a good idea, instead we remember an OOM state
2200 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2201 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2202 *
2203 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2204 * completed, %false otherwise.
3812c8c8 2205 */
49426420 2206bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2207{
49426420 2208 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2209 struct oom_wait_info owait;
49426420 2210 bool locked;
3812c8c8
JW
2211
2212 /* OOM is global, do not handle */
3812c8c8 2213 if (!memcg)
49426420 2214 return false;
3812c8c8 2215
49426420
JW
2216 if (!handle)
2217 goto cleanup;
3812c8c8
JW
2218
2219 owait.memcg = memcg;
2220 owait.wait.flags = 0;
2221 owait.wait.func = memcg_oom_wake_function;
2222 owait.wait.private = current;
2223 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2224
3812c8c8 2225 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2226 mem_cgroup_mark_under_oom(memcg);
2227
2228 locked = mem_cgroup_oom_trylock(memcg);
2229
2230 if (locked)
2231 mem_cgroup_oom_notify(memcg);
2232
2233 if (locked && !memcg->oom_kill_disable) {
2234 mem_cgroup_unmark_under_oom(memcg);
2235 finish_wait(&memcg_oom_waitq, &owait.wait);
2236 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2237 current->memcg_oom.order);
2238 } else {
3812c8c8 2239 schedule();
49426420
JW
2240 mem_cgroup_unmark_under_oom(memcg);
2241 finish_wait(&memcg_oom_waitq, &owait.wait);
2242 }
2243
2244 if (locked) {
fb2a6fc5
JW
2245 mem_cgroup_oom_unlock(memcg);
2246 /*
2247 * There is no guarantee that an OOM-lock contender
2248 * sees the wakeups triggered by the OOM kill
2249 * uncharges. Wake any sleepers explicitely.
2250 */
2251 memcg_oom_recover(memcg);
2252 }
49426420
JW
2253cleanup:
2254 current->memcg_oom.memcg = NULL;
3812c8c8 2255 css_put(&memcg->css);
867578cb 2256 return true;
0b7f569e
KH
2257}
2258
d69b042f 2259/*
b5ffc856 2260 * Used to update mapped file or writeback or other statistics.
32047e2a
KH
2261 *
2262 * Notes: Race condition
2263 *
b5ffc856 2264 * We usually use lock_page_cgroup() for accessing page_cgroup member but
32047e2a
KH
2265 * it tends to be costly. But considering some conditions, we doesn't need
2266 * to do so _always_.
2267 *
2268 * Considering "charge", lock_page_cgroup() is not required because all
2269 * file-stat operations happen after a page is attached to radix-tree. There
2270 * are no race with "charge".
2271 *
2272 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2273 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2274 * if there are race with "uncharge". Statistics itself is properly handled
2275 * by flags.
2276 *
2277 * Considering "move", this is an only case we see a race. To make the race
b5ffc856
QH
2278 * small, we check memcg->moving_account and detect there are possibility
2279 * of race or not. If there is, we take a lock.
d69b042f 2280 */
26174efd 2281
89c06bd5
KH
2282void __mem_cgroup_begin_update_page_stat(struct page *page,
2283 bool *locked, unsigned long *flags)
2284{
2285 struct mem_cgroup *memcg;
2286 struct page_cgroup *pc;
2287
2288 pc = lookup_page_cgroup(page);
2289again:
2290 memcg = pc->mem_cgroup;
2291 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2292 return;
2293 /*
2294 * If this memory cgroup is not under account moving, we don't
da92c47d 2295 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2296 * rcu_read_lock(), any calls to move_account will be delayed until
bdcbb659 2297 * rcu_read_unlock().
89c06bd5 2298 */
bdcbb659
QH
2299 VM_BUG_ON(!rcu_read_lock_held());
2300 if (atomic_read(&memcg->moving_account) <= 0)
89c06bd5
KH
2301 return;
2302
2303 move_lock_mem_cgroup(memcg, flags);
2304 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2305 move_unlock_mem_cgroup(memcg, flags);
2306 goto again;
2307 }
2308 *locked = true;
2309}
2310
2311void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2312{
2313 struct page_cgroup *pc = lookup_page_cgroup(page);
2314
2315 /*
2316 * It's guaranteed that pc->mem_cgroup never changes while
2317 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2318 * should take move_lock_mem_cgroup().
89c06bd5
KH
2319 */
2320 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2321}
2322
2a7106f2 2323void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2324 enum mem_cgroup_stat_index idx, int val)
d69b042f 2325{
c0ff4b85 2326 struct mem_cgroup *memcg;
32047e2a 2327 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2328 unsigned long uninitialized_var(flags);
d69b042f 2329
cfa44946 2330 if (mem_cgroup_disabled())
d69b042f 2331 return;
89c06bd5 2332
658b72c5 2333 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2334 memcg = pc->mem_cgroup;
2335 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2336 return;
26174efd 2337
c0ff4b85 2338 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2339}
26174efd 2340
cdec2e42
KH
2341/*
2342 * size of first charge trial. "32" comes from vmscan.c's magic value.
2343 * TODO: maybe necessary to use big numbers in big irons.
2344 */
7ec99d62 2345#define CHARGE_BATCH 32U
cdec2e42
KH
2346struct memcg_stock_pcp {
2347 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2348 unsigned int nr_pages;
cdec2e42 2349 struct work_struct work;
26fe6168 2350 unsigned long flags;
a0db00fc 2351#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2352};
2353static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2354static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2355
a0956d54
SS
2356/**
2357 * consume_stock: Try to consume stocked charge on this cpu.
2358 * @memcg: memcg to consume from.
2359 * @nr_pages: how many pages to charge.
2360 *
2361 * The charges will only happen if @memcg matches the current cpu's memcg
2362 * stock, and at least @nr_pages are available in that stock. Failure to
2363 * service an allocation will refill the stock.
2364 *
2365 * returns true if successful, false otherwise.
cdec2e42 2366 */
a0956d54 2367static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2368{
2369 struct memcg_stock_pcp *stock;
2370 bool ret = true;
2371
a0956d54
SS
2372 if (nr_pages > CHARGE_BATCH)
2373 return false;
2374
cdec2e42 2375 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2376 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2377 stock->nr_pages -= nr_pages;
cdec2e42
KH
2378 else /* need to call res_counter_charge */
2379 ret = false;
2380 put_cpu_var(memcg_stock);
2381 return ret;
2382}
2383
2384/*
2385 * Returns stocks cached in percpu to res_counter and reset cached information.
2386 */
2387static void drain_stock(struct memcg_stock_pcp *stock)
2388{
2389 struct mem_cgroup *old = stock->cached;
2390
11c9ea4e
JW
2391 if (stock->nr_pages) {
2392 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2393
2394 res_counter_uncharge(&old->res, bytes);
cdec2e42 2395 if (do_swap_account)
11c9ea4e
JW
2396 res_counter_uncharge(&old->memsw, bytes);
2397 stock->nr_pages = 0;
cdec2e42
KH
2398 }
2399 stock->cached = NULL;
cdec2e42
KH
2400}
2401
2402/*
2403 * This must be called under preempt disabled or must be called by
2404 * a thread which is pinned to local cpu.
2405 */
2406static void drain_local_stock(struct work_struct *dummy)
2407{
7c8e0181 2408 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2409 drain_stock(stock);
26fe6168 2410 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2411}
2412
e4777496
MH
2413static void __init memcg_stock_init(void)
2414{
2415 int cpu;
2416
2417 for_each_possible_cpu(cpu) {
2418 struct memcg_stock_pcp *stock =
2419 &per_cpu(memcg_stock, cpu);
2420 INIT_WORK(&stock->work, drain_local_stock);
2421 }
2422}
2423
cdec2e42
KH
2424/*
2425 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2426 * This will be consumed by consume_stock() function, later.
cdec2e42 2427 */
c0ff4b85 2428static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2429{
2430 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2431
c0ff4b85 2432 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2433 drain_stock(stock);
c0ff4b85 2434 stock->cached = memcg;
cdec2e42 2435 }
11c9ea4e 2436 stock->nr_pages += nr_pages;
cdec2e42
KH
2437 put_cpu_var(memcg_stock);
2438}
2439
2440/*
c0ff4b85 2441 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2442 * of the hierarchy under it. sync flag says whether we should block
2443 * until the work is done.
cdec2e42 2444 */
c0ff4b85 2445static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2446{
26fe6168 2447 int cpu, curcpu;
d38144b7 2448
cdec2e42 2449 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2450 get_online_cpus();
5af12d0e 2451 curcpu = get_cpu();
cdec2e42
KH
2452 for_each_online_cpu(cpu) {
2453 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2454 struct mem_cgroup *memcg;
26fe6168 2455
c0ff4b85
R
2456 memcg = stock->cached;
2457 if (!memcg || !stock->nr_pages)
26fe6168 2458 continue;
c0ff4b85 2459 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2460 continue;
d1a05b69
MH
2461 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2462 if (cpu == curcpu)
2463 drain_local_stock(&stock->work);
2464 else
2465 schedule_work_on(cpu, &stock->work);
2466 }
cdec2e42 2467 }
5af12d0e 2468 put_cpu();
d38144b7
MH
2469
2470 if (!sync)
2471 goto out;
2472
2473 for_each_online_cpu(cpu) {
2474 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2475 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2476 flush_work(&stock->work);
2477 }
2478out:
f894ffa8 2479 put_online_cpus();
d38144b7
MH
2480}
2481
2482/*
2483 * Tries to drain stocked charges in other cpus. This function is asynchronous
2484 * and just put a work per cpu for draining localy on each cpu. Caller can
2485 * expects some charges will be back to res_counter later but cannot wait for
2486 * it.
2487 */
c0ff4b85 2488static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2489{
9f50fad6
MH
2490 /*
2491 * If someone calls draining, avoid adding more kworker runs.
2492 */
2493 if (!mutex_trylock(&percpu_charge_mutex))
2494 return;
c0ff4b85 2495 drain_all_stock(root_memcg, false);
9f50fad6 2496 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2497}
2498
2499/* This is a synchronous drain interface. */
c0ff4b85 2500static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2501{
2502 /* called when force_empty is called */
9f50fad6 2503 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2504 drain_all_stock(root_memcg, true);
9f50fad6 2505 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2506}
2507
711d3d2c
KH
2508/*
2509 * This function drains percpu counter value from DEAD cpu and
2510 * move it to local cpu. Note that this function can be preempted.
2511 */
c0ff4b85 2512static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2513{
2514 int i;
2515
c0ff4b85 2516 spin_lock(&memcg->pcp_counter_lock);
6104621d 2517 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2518 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2519
c0ff4b85
R
2520 per_cpu(memcg->stat->count[i], cpu) = 0;
2521 memcg->nocpu_base.count[i] += x;
711d3d2c 2522 }
e9f8974f 2523 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2524 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2525
c0ff4b85
R
2526 per_cpu(memcg->stat->events[i], cpu) = 0;
2527 memcg->nocpu_base.events[i] += x;
e9f8974f 2528 }
c0ff4b85 2529 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2530}
2531
0db0628d 2532static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2533 unsigned long action,
2534 void *hcpu)
2535{
2536 int cpu = (unsigned long)hcpu;
2537 struct memcg_stock_pcp *stock;
711d3d2c 2538 struct mem_cgroup *iter;
cdec2e42 2539
619d094b 2540 if (action == CPU_ONLINE)
1489ebad 2541 return NOTIFY_OK;
1489ebad 2542
d833049b 2543 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2544 return NOTIFY_OK;
711d3d2c 2545
9f3a0d09 2546 for_each_mem_cgroup(iter)
711d3d2c
KH
2547 mem_cgroup_drain_pcp_counter(iter, cpu);
2548
cdec2e42
KH
2549 stock = &per_cpu(memcg_stock, cpu);
2550 drain_stock(stock);
2551 return NOTIFY_OK;
2552}
2553
6d1fdc48
JW
2554/**
2555 * mem_cgroup_try_charge - try charging a memcg
2556 * @memcg: memcg to charge
2557 * @nr_pages: number of pages to charge
2558 * @oom: trigger OOM if reclaim fails
38c5d72f 2559 *
6d1fdc48
JW
2560 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2561 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
8a9f3ccd 2562 */
6d1fdc48
JW
2563static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2564 gfp_t gfp_mask,
2565 unsigned int nr_pages,
2566 bool oom)
8a9f3ccd 2567{
7ec99d62 2568 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2569 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05
JW
2570 struct mem_cgroup *mem_over_limit;
2571 struct res_counter *fail_res;
2572 unsigned long nr_reclaimed;
2573 unsigned long flags = 0;
2574 unsigned long long size;
a636b327 2575
6d1fdc48
JW
2576 if (mem_cgroup_is_root(memcg))
2577 goto done;
6539cc05 2578retry:
b6b6cc72
MH
2579 if (consume_stock(memcg, nr_pages))
2580 goto done;
8a9f3ccd 2581
6539cc05
JW
2582 size = batch * PAGE_SIZE;
2583 if (!res_counter_charge(&memcg->res, size, &fail_res)) {
2584 if (!do_swap_account)
2585 goto done_restock;
2586 if (!res_counter_charge(&memcg->memsw, size, &fail_res))
2587 goto done_restock;
2588 res_counter_uncharge(&memcg->res, size);
2589 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2590 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2591 } else
2592 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
7a81b88c 2593
6539cc05
JW
2594 if (batch > nr_pages) {
2595 batch = nr_pages;
2596 goto retry;
2597 }
6d61ef40 2598
06b078fc
JW
2599 /*
2600 * Unlike in global OOM situations, memcg is not in a physical
2601 * memory shortage. Allow dying and OOM-killed tasks to
2602 * bypass the last charges so that they can exit quickly and
2603 * free their memory.
2604 */
2605 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2606 fatal_signal_pending(current) ||
2607 current->flags & PF_EXITING))
2608 goto bypass;
2609
2610 if (unlikely(task_in_memcg_oom(current)))
2611 goto nomem;
2612
6539cc05
JW
2613 if (!(gfp_mask & __GFP_WAIT))
2614 goto nomem;
4b534334 2615
6539cc05
JW
2616 if (gfp_mask & __GFP_NORETRY)
2617 goto nomem;
2618
2619 nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2620
2621 if (mem_cgroup_margin(mem_over_limit) >= batch)
2622 goto retry;
2623 /*
2624 * Even though the limit is exceeded at this point, reclaim
2625 * may have been able to free some pages. Retry the charge
2626 * before killing the task.
2627 *
2628 * Only for regular pages, though: huge pages are rather
2629 * unlikely to succeed so close to the limit, and we fall back
2630 * to regular pages anyway in case of failure.
2631 */
2632 if (nr_reclaimed && batch <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2633 goto retry;
2634 /*
2635 * At task move, charge accounts can be doubly counted. So, it's
2636 * better to wait until the end of task_move if something is going on.
2637 */
2638 if (mem_cgroup_wait_acct_move(mem_over_limit))
2639 goto retry;
2640
06b078fc
JW
2641 if (gfp_mask & __GFP_NOFAIL)
2642 goto bypass;
2643
6539cc05
JW
2644 if (fatal_signal_pending(current))
2645 goto bypass;
2646
2647 if (!oom)
2648 goto nomem;
2649
2650 if (nr_oom_retries--)
2651 goto retry;
2652
2653 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(batch));
7a81b88c 2654nomem:
6d1fdc48 2655 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2656 return -ENOMEM;
867578cb 2657bypass:
38c5d72f 2658 return -EINTR;
6539cc05
JW
2659
2660done_restock:
2661 if (batch > nr_pages)
2662 refill_stock(memcg, batch - nr_pages);
2663done:
2664 return 0;
7a81b88c 2665}
8a9f3ccd 2666
6d1fdc48
JW
2667/**
2668 * mem_cgroup_try_charge_mm - try charging a mm
2669 * @mm: mm_struct to charge
2670 * @nr_pages: number of pages to charge
2671 * @oom: trigger OOM if reclaim fails
2672 *
2673 * Returns the charged mem_cgroup associated with the given mm_struct or
2674 * NULL the charge failed.
2675 */
2676static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2677 gfp_t gfp_mask,
2678 unsigned int nr_pages,
2679 bool oom)
2680
2681{
2682 struct mem_cgroup *memcg;
2683 int ret;
2684
2685 memcg = get_mem_cgroup_from_mm(mm);
2686 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
2687 css_put(&memcg->css);
2688 if (ret == -EINTR)
2689 memcg = root_mem_cgroup;
2690 else if (ret)
2691 memcg = NULL;
2692
2693 return memcg;
2694}
2695
a3032a2c
DN
2696/*
2697 * Somemtimes we have to undo a charge we got by try_charge().
2698 * This function is for that and do uncharge, put css's refcnt.
2699 * gotten by try_charge().
2700 */
c0ff4b85 2701static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2702 unsigned int nr_pages)
a3032a2c 2703{
c0ff4b85 2704 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2705 unsigned long bytes = nr_pages * PAGE_SIZE;
2706
c0ff4b85 2707 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2708 if (do_swap_account)
c0ff4b85 2709 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2710 }
854ffa8d
DN
2711}
2712
d01dd17f
KH
2713/*
2714 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2715 * This is useful when moving usage to parent cgroup.
2716 */
2717static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2718 unsigned int nr_pages)
2719{
2720 unsigned long bytes = nr_pages * PAGE_SIZE;
2721
2722 if (mem_cgroup_is_root(memcg))
2723 return;
2724
2725 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2726 if (do_swap_account)
2727 res_counter_uncharge_until(&memcg->memsw,
2728 memcg->memsw.parent, bytes);
2729}
2730
a3b2d692
KH
2731/*
2732 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2733 * rcu_read_lock(). The caller is responsible for calling
2734 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2735 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2736 */
2737static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2738{
a3b2d692
KH
2739 /* ID 0 is unused ID */
2740 if (!id)
2741 return NULL;
34c00c31 2742 return mem_cgroup_from_id(id);
a3b2d692
KH
2743}
2744
e42d9d5d 2745struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2746{
c0ff4b85 2747 struct mem_cgroup *memcg = NULL;
3c776e64 2748 struct page_cgroup *pc;
a3b2d692 2749 unsigned short id;
b5a84319
KH
2750 swp_entry_t ent;
2751
309381fe 2752 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2753
3c776e64 2754 pc = lookup_page_cgroup(page);
c0bd3f63 2755 lock_page_cgroup(pc);
a3b2d692 2756 if (PageCgroupUsed(pc)) {
c0ff4b85 2757 memcg = pc->mem_cgroup;
ec903c0c 2758 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2759 memcg = NULL;
e42d9d5d 2760 } else if (PageSwapCache(page)) {
3c776e64 2761 ent.val = page_private(page);
9fb4b7cc 2762 id = lookup_swap_cgroup_id(ent);
a3b2d692 2763 rcu_read_lock();
c0ff4b85 2764 memcg = mem_cgroup_lookup(id);
ec903c0c 2765 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2766 memcg = NULL;
a3b2d692 2767 rcu_read_unlock();
3c776e64 2768 }
c0bd3f63 2769 unlock_page_cgroup(pc);
c0ff4b85 2770 return memcg;
b5a84319
KH
2771}
2772
c0ff4b85 2773static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2774 struct page *page,
7ec99d62 2775 unsigned int nr_pages,
9ce70c02
HD
2776 enum charge_type ctype,
2777 bool lrucare)
7a81b88c 2778{
ce587e65 2779 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2780 struct zone *uninitialized_var(zone);
fa9add64 2781 struct lruvec *lruvec;
9ce70c02 2782 bool was_on_lru = false;
b2402857 2783 bool anon;
9ce70c02 2784
ca3e0214 2785 lock_page_cgroup(pc);
309381fe 2786 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2787 /*
2788 * we don't need page_cgroup_lock about tail pages, becase they are not
2789 * accessed by any other context at this point.
2790 */
9ce70c02
HD
2791
2792 /*
2793 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2794 * may already be on some other mem_cgroup's LRU. Take care of it.
2795 */
2796 if (lrucare) {
2797 zone = page_zone(page);
2798 spin_lock_irq(&zone->lru_lock);
2799 if (PageLRU(page)) {
fa9add64 2800 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2801 ClearPageLRU(page);
fa9add64 2802 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2803 was_on_lru = true;
2804 }
2805 }
2806
c0ff4b85 2807 pc->mem_cgroup = memcg;
261fb61a
KH
2808 /*
2809 * We access a page_cgroup asynchronously without lock_page_cgroup().
2810 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2811 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2812 * before USED bit, we need memory barrier here.
2813 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2814 */
08e552c6 2815 smp_wmb();
b2402857 2816 SetPageCgroupUsed(pc);
3be91277 2817
9ce70c02
HD
2818 if (lrucare) {
2819 if (was_on_lru) {
fa9add64 2820 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
309381fe 2821 VM_BUG_ON_PAGE(PageLRU(page), page);
9ce70c02 2822 SetPageLRU(page);
fa9add64 2823 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2824 }
2825 spin_unlock_irq(&zone->lru_lock);
2826 }
2827
41326c17 2828 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2829 anon = true;
2830 else
2831 anon = false;
2832
b070e65c 2833 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2834 unlock_page_cgroup(pc);
9ce70c02 2835
430e4863 2836 /*
bb4cc1a8
AM
2837 * "charge_statistics" updated event counter. Then, check it.
2838 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2839 * if they exceeds softlimit.
430e4863 2840 */
c0ff4b85 2841 memcg_check_events(memcg, page);
7a81b88c 2842}
66e1707b 2843
7cf27982
GC
2844static DEFINE_MUTEX(set_limit_mutex);
2845
7ae1e1d0 2846#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2847/*
2848 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2849 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2850 */
2851static DEFINE_MUTEX(memcg_slab_mutex);
2852
d6441637
VD
2853static DEFINE_MUTEX(activate_kmem_mutex);
2854
7ae1e1d0
GC
2855static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2856{
2857 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 2858 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
2859}
2860
1f458cbf
GC
2861/*
2862 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2863 * in the memcg_cache_params struct.
2864 */
2865static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2866{
2867 struct kmem_cache *cachep;
2868
2869 VM_BUG_ON(p->is_root_cache);
2870 cachep = p->root_cache;
7a67d7ab 2871 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2872}
2873
749c5415 2874#ifdef CONFIG_SLABINFO
2da8ca82 2875static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2876{
2da8ca82 2877 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2878 struct memcg_cache_params *params;
2879
2880 if (!memcg_can_account_kmem(memcg))
2881 return -EIO;
2882
2883 print_slabinfo_header(m);
2884
bd673145 2885 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2886 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2887 cache_show(memcg_params_to_cache(params), m);
bd673145 2888 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2889
2890 return 0;
2891}
2892#endif
2893
c67a8a68 2894static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
7ae1e1d0
GC
2895{
2896 struct res_counter *fail_res;
7ae1e1d0 2897 int ret = 0;
7ae1e1d0
GC
2898
2899 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2900 if (ret)
2901 return ret;
2902
6d1fdc48
JW
2903 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
2904 oom_gfp_allowed(gfp));
7ae1e1d0
GC
2905 if (ret == -EINTR) {
2906 /*
6d1fdc48 2907 * mem_cgroup_try_charge() chosed to bypass to root due to
7ae1e1d0
GC
2908 * OOM kill or fatal signal. Since our only options are to
2909 * either fail the allocation or charge it to this cgroup, do
2910 * it as a temporary condition. But we can't fail. From a
2911 * kmem/slab perspective, the cache has already been selected,
2912 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2913 * our minds.
2914 *
2915 * This condition will only trigger if the task entered
2916 * memcg_charge_kmem in a sane state, but was OOM-killed during
6d1fdc48 2917 * mem_cgroup_try_charge() above. Tasks that were already
7ae1e1d0
GC
2918 * dying when the allocation triggers should have been already
2919 * directed to the root cgroup in memcontrol.h
2920 */
2921 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2922 if (do_swap_account)
2923 res_counter_charge_nofail(&memcg->memsw, size,
2924 &fail_res);
2925 ret = 0;
2926 } else if (ret)
2927 res_counter_uncharge(&memcg->kmem, size);
2928
2929 return ret;
2930}
2931
c67a8a68 2932static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
7ae1e1d0 2933{
7ae1e1d0
GC
2934 res_counter_uncharge(&memcg->res, size);
2935 if (do_swap_account)
2936 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2937
2938 /* Not down to 0 */
2939 if (res_counter_uncharge(&memcg->kmem, size))
2940 return;
2941
10d5ebf4
LZ
2942 /*
2943 * Releases a reference taken in kmem_cgroup_css_offline in case
2944 * this last uncharge is racing with the offlining code or it is
2945 * outliving the memcg existence.
2946 *
2947 * The memory barrier imposed by test&clear is paired with the
2948 * explicit one in memcg_kmem_mark_dead().
2949 */
7de37682 2950 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 2951 css_put(&memcg->css);
7ae1e1d0
GC
2952}
2953
2633d7a0
GC
2954/*
2955 * helper for acessing a memcg's index. It will be used as an index in the
2956 * child cache array in kmem_cache, and also to derive its name. This function
2957 * will return -1 when this is not a kmem-limited memcg.
2958 */
2959int memcg_cache_id(struct mem_cgroup *memcg)
2960{
2961 return memcg ? memcg->kmemcg_id : -1;
2962}
2963
55007d84
GC
2964static size_t memcg_caches_array_size(int num_groups)
2965{
2966 ssize_t size;
2967 if (num_groups <= 0)
2968 return 0;
2969
2970 size = 2 * num_groups;
2971 if (size < MEMCG_CACHES_MIN_SIZE)
2972 size = MEMCG_CACHES_MIN_SIZE;
2973 else if (size > MEMCG_CACHES_MAX_SIZE)
2974 size = MEMCG_CACHES_MAX_SIZE;
2975
2976 return size;
2977}
2978
2979/*
2980 * We should update the current array size iff all caches updates succeed. This
2981 * can only be done from the slab side. The slab mutex needs to be held when
2982 * calling this.
2983 */
2984void memcg_update_array_size(int num)
2985{
2986 if (num > memcg_limited_groups_array_size)
2987 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2988}
2989
2990int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2991{
2992 struct memcg_cache_params *cur_params = s->memcg_params;
2993
f35c3a8e 2994 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
2995
2996 if (num_groups > memcg_limited_groups_array_size) {
2997 int i;
f8570263 2998 struct memcg_cache_params *new_params;
55007d84
GC
2999 ssize_t size = memcg_caches_array_size(num_groups);
3000
3001 size *= sizeof(void *);
90c7a79c 3002 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3003
f8570263
VD
3004 new_params = kzalloc(size, GFP_KERNEL);
3005 if (!new_params)
55007d84 3006 return -ENOMEM;
55007d84 3007
f8570263 3008 new_params->is_root_cache = true;
55007d84
GC
3009
3010 /*
3011 * There is the chance it will be bigger than
3012 * memcg_limited_groups_array_size, if we failed an allocation
3013 * in a cache, in which case all caches updated before it, will
3014 * have a bigger array.
3015 *
3016 * But if that is the case, the data after
3017 * memcg_limited_groups_array_size is certainly unused
3018 */
3019 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3020 if (!cur_params->memcg_caches[i])
3021 continue;
f8570263 3022 new_params->memcg_caches[i] =
55007d84
GC
3023 cur_params->memcg_caches[i];
3024 }
3025
3026 /*
3027 * Ideally, we would wait until all caches succeed, and only
3028 * then free the old one. But this is not worth the extra
3029 * pointer per-cache we'd have to have for this.
3030 *
3031 * It is not a big deal if some caches are left with a size
3032 * bigger than the others. And all updates will reset this
3033 * anyway.
3034 */
f8570263
VD
3035 rcu_assign_pointer(s->memcg_params, new_params);
3036 if (cur_params)
3037 kfree_rcu(cur_params, rcu_head);
55007d84
GC
3038 }
3039 return 0;
3040}
3041
363a044f
VD
3042int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3043 struct kmem_cache *root_cache)
2633d7a0 3044{
90c7a79c 3045 size_t size;
2633d7a0
GC
3046
3047 if (!memcg_kmem_enabled())
3048 return 0;
3049
90c7a79c
AV
3050 if (!memcg) {
3051 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3052 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3053 } else
3054 size = sizeof(struct memcg_cache_params);
55007d84 3055
2633d7a0
GC
3056 s->memcg_params = kzalloc(size, GFP_KERNEL);
3057 if (!s->memcg_params)
3058 return -ENOMEM;
3059
943a451a 3060 if (memcg) {
2633d7a0 3061 s->memcg_params->memcg = memcg;
943a451a 3062 s->memcg_params->root_cache = root_cache;
051dd460 3063 css_get(&memcg->css);
4ba902b5
GC
3064 } else
3065 s->memcg_params->is_root_cache = true;
3066
2633d7a0
GC
3067 return 0;
3068}
3069
363a044f
VD
3070void memcg_free_cache_params(struct kmem_cache *s)
3071{
051dd460
VD
3072 if (!s->memcg_params)
3073 return;
3074 if (!s->memcg_params->is_root_cache)
3075 css_put(&s->memcg_params->memcg->css);
363a044f
VD
3076 kfree(s->memcg_params);
3077}
3078
776ed0f0
VD
3079static void memcg_register_cache(struct mem_cgroup *memcg,
3080 struct kmem_cache *root_cache)
2633d7a0 3081{
93f39eea
VD
3082 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
3083 memcg_slab_mutex */
bd673145 3084 struct kmem_cache *cachep;
d7f25f8a
GC
3085 int id;
3086
bd673145
VD
3087 lockdep_assert_held(&memcg_slab_mutex);
3088
3089 id = memcg_cache_id(memcg);
3090
3091 /*
3092 * Since per-memcg caches are created asynchronously on first
3093 * allocation (see memcg_kmem_get_cache()), several threads can try to
3094 * create the same cache, but only one of them may succeed.
3095 */
3096 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
3097 return;
3098
073ee1c6 3099 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 3100 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 3101 /*
bd673145
VD
3102 * If we could not create a memcg cache, do not complain, because
3103 * that's not critical at all as we can always proceed with the root
3104 * cache.
2edefe11 3105 */
bd673145
VD
3106 if (!cachep)
3107 return;
2edefe11 3108
bd673145 3109 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 3110
d7f25f8a 3111 /*
959c8963
VD
3112 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3113 * barrier here to ensure nobody will see the kmem_cache partially
3114 * initialized.
d7f25f8a 3115 */
959c8963
VD
3116 smp_wmb();
3117
bd673145
VD
3118 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3119 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 3120}
d7f25f8a 3121
776ed0f0 3122static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 3123{
bd673145 3124 struct kmem_cache *root_cache;
1aa13254
VD
3125 struct mem_cgroup *memcg;
3126 int id;
3127
bd673145 3128 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 3129
bd673145 3130 BUG_ON(is_root_cache(cachep));
2edefe11 3131
bd673145
VD
3132 root_cache = cachep->memcg_params->root_cache;
3133 memcg = cachep->memcg_params->memcg;
96403da2 3134 id = memcg_cache_id(memcg);
d7f25f8a 3135
bd673145
VD
3136 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3137 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 3138
bd673145
VD
3139 list_del(&cachep->memcg_params->list);
3140
3141 kmem_cache_destroy(cachep);
2633d7a0
GC
3142}
3143
0e9d92f2
GC
3144/*
3145 * During the creation a new cache, we need to disable our accounting mechanism
3146 * altogether. This is true even if we are not creating, but rather just
3147 * enqueing new caches to be created.
3148 *
3149 * This is because that process will trigger allocations; some visible, like
3150 * explicit kmallocs to auxiliary data structures, name strings and internal
3151 * cache structures; some well concealed, like INIT_WORK() that can allocate
3152 * objects during debug.
3153 *
3154 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3155 * to it. This may not be a bounded recursion: since the first cache creation
3156 * failed to complete (waiting on the allocation), we'll just try to create the
3157 * cache again, failing at the same point.
3158 *
3159 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3160 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3161 * inside the following two functions.
3162 */
3163static inline void memcg_stop_kmem_account(void)
3164{
3165 VM_BUG_ON(!current->mm);
3166 current->memcg_kmem_skip_account++;
3167}
3168
3169static inline void memcg_resume_kmem_account(void)
3170{
3171 VM_BUG_ON(!current->mm);
3172 current->memcg_kmem_skip_account--;
3173}
3174
776ed0f0 3175int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
3176{
3177 struct kmem_cache *c;
b8529907 3178 int i, failed = 0;
7cf27982 3179
bd673145 3180 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
3181 for_each_memcg_cache_index(i) {
3182 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3183 if (!c)
3184 continue;
3185
776ed0f0 3186 memcg_unregister_cache(c);
b8529907
VD
3187
3188 if (cache_from_memcg_idx(s, i))
3189 failed++;
7cf27982 3190 }
bd673145 3191 mutex_unlock(&memcg_slab_mutex);
b8529907 3192 return failed;
7cf27982
GC
3193}
3194
776ed0f0 3195static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3196{
3197 struct kmem_cache *cachep;
bd673145 3198 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
3199
3200 if (!memcg_kmem_is_active(memcg))
3201 return;
3202
bd673145
VD
3203 mutex_lock(&memcg_slab_mutex);
3204 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 3205 cachep = memcg_params_to_cache(params);
bd673145
VD
3206 kmem_cache_shrink(cachep);
3207 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 3208 memcg_unregister_cache(cachep);
1f458cbf 3209 }
bd673145 3210 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
3211}
3212
776ed0f0 3213struct memcg_register_cache_work {
5722d094
VD
3214 struct mem_cgroup *memcg;
3215 struct kmem_cache *cachep;
3216 struct work_struct work;
3217};
3218
776ed0f0 3219static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 3220{
776ed0f0
VD
3221 struct memcg_register_cache_work *cw =
3222 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
3223 struct mem_cgroup *memcg = cw->memcg;
3224 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 3225
bd673145 3226 mutex_lock(&memcg_slab_mutex);
776ed0f0 3227 memcg_register_cache(memcg, cachep);
bd673145
VD
3228 mutex_unlock(&memcg_slab_mutex);
3229
5722d094 3230 css_put(&memcg->css);
d7f25f8a
GC
3231 kfree(cw);
3232}
3233
3234/*
3235 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3236 */
776ed0f0
VD
3237static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3238 struct kmem_cache *cachep)
d7f25f8a 3239{
776ed0f0 3240 struct memcg_register_cache_work *cw;
d7f25f8a 3241
776ed0f0 3242 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
3243 if (cw == NULL) {
3244 css_put(&memcg->css);
d7f25f8a
GC
3245 return;
3246 }
3247
3248 cw->memcg = memcg;
3249 cw->cachep = cachep;
3250
776ed0f0 3251 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
3252 schedule_work(&cw->work);
3253}
3254
776ed0f0
VD
3255static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3256 struct kmem_cache *cachep)
0e9d92f2
GC
3257{
3258 /*
3259 * We need to stop accounting when we kmalloc, because if the
3260 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 3261 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
3262 *
3263 * However, it is better to enclose the whole function. Depending on
3264 * the debugging options enabled, INIT_WORK(), for instance, can
3265 * trigger an allocation. This too, will make us recurse. Because at
3266 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3267 * the safest choice is to do it like this, wrapping the whole function.
3268 */
3269 memcg_stop_kmem_account();
776ed0f0 3270 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
3271 memcg_resume_kmem_account();
3272}
c67a8a68
VD
3273
3274int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3275{
3276 int res;
3277
3278 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3279 PAGE_SIZE << order);
3280 if (!res)
3281 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3282 return res;
3283}
3284
3285void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3286{
3287 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3288 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3289}
3290
d7f25f8a
GC
3291/*
3292 * Return the kmem_cache we're supposed to use for a slab allocation.
3293 * We try to use the current memcg's version of the cache.
3294 *
3295 * If the cache does not exist yet, if we are the first user of it,
3296 * we either create it immediately, if possible, or create it asynchronously
3297 * in a workqueue.
3298 * In the latter case, we will let the current allocation go through with
3299 * the original cache.
3300 *
3301 * Can't be called in interrupt context or from kernel threads.
3302 * This function needs to be called with rcu_read_lock() held.
3303 */
3304struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3305 gfp_t gfp)
3306{
3307 struct mem_cgroup *memcg;
959c8963 3308 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3309
3310 VM_BUG_ON(!cachep->memcg_params);
3311 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3312
0e9d92f2
GC
3313 if (!current->mm || current->memcg_kmem_skip_account)
3314 return cachep;
3315
d7f25f8a
GC
3316 rcu_read_lock();
3317 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3318
3319 if (!memcg_can_account_kmem(memcg))
ca0dde97 3320 goto out;
d7f25f8a 3321
959c8963
VD
3322 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3323 if (likely(memcg_cachep)) {
3324 cachep = memcg_cachep;
ca0dde97 3325 goto out;
d7f25f8a
GC
3326 }
3327
ca0dde97 3328 /* The corresponding put will be done in the workqueue. */
ec903c0c 3329 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
3330 goto out;
3331 rcu_read_unlock();
3332
3333 /*
3334 * If we are in a safe context (can wait, and not in interrupt
3335 * context), we could be be predictable and return right away.
3336 * This would guarantee that the allocation being performed
3337 * already belongs in the new cache.
3338 *
3339 * However, there are some clashes that can arrive from locking.
3340 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
3341 * memcg_create_kmem_cache, this means no further allocation
3342 * could happen with the slab_mutex held. So it's better to
3343 * defer everything.
ca0dde97 3344 */
776ed0f0 3345 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
3346 return cachep;
3347out:
3348 rcu_read_unlock();
3349 return cachep;
d7f25f8a 3350}
d7f25f8a 3351
7ae1e1d0
GC
3352/*
3353 * We need to verify if the allocation against current->mm->owner's memcg is
3354 * possible for the given order. But the page is not allocated yet, so we'll
3355 * need a further commit step to do the final arrangements.
3356 *
3357 * It is possible for the task to switch cgroups in this mean time, so at
3358 * commit time, we can't rely on task conversion any longer. We'll then use
3359 * the handle argument to return to the caller which cgroup we should commit
3360 * against. We could also return the memcg directly and avoid the pointer
3361 * passing, but a boolean return value gives better semantics considering
3362 * the compiled-out case as well.
3363 *
3364 * Returning true means the allocation is possible.
3365 */
3366bool
3367__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3368{
3369 struct mem_cgroup *memcg;
3370 int ret;
3371
3372 *_memcg = NULL;
6d42c232
GC
3373
3374 /*
3375 * Disabling accounting is only relevant for some specific memcg
3376 * internal allocations. Therefore we would initially not have such
52383431
VD
3377 * check here, since direct calls to the page allocator that are
3378 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3379 * outside memcg core. We are mostly concerned with cache allocations,
3380 * and by having this test at memcg_kmem_get_cache, we are already able
3381 * to relay the allocation to the root cache and bypass the memcg cache
3382 * altogether.
6d42c232
GC
3383 *
3384 * There is one exception, though: the SLUB allocator does not create
3385 * large order caches, but rather service large kmallocs directly from
3386 * the page allocator. Therefore, the following sequence when backed by
3387 * the SLUB allocator:
3388 *
f894ffa8
AM
3389 * memcg_stop_kmem_account();
3390 * kmalloc(<large_number>)
3391 * memcg_resume_kmem_account();
6d42c232
GC
3392 *
3393 * would effectively ignore the fact that we should skip accounting,
3394 * since it will drive us directly to this function without passing
3395 * through the cache selector memcg_kmem_get_cache. Such large
3396 * allocations are extremely rare but can happen, for instance, for the
3397 * cache arrays. We bring this test here.
3398 */
3399 if (!current->mm || current->memcg_kmem_skip_account)
3400 return true;
3401
df381975 3402 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0
GC
3403
3404 if (!memcg_can_account_kmem(memcg)) {
3405 css_put(&memcg->css);
3406 return true;
3407 }
3408
7ae1e1d0
GC
3409 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3410 if (!ret)
3411 *_memcg = memcg;
7ae1e1d0
GC
3412
3413 css_put(&memcg->css);
3414 return (ret == 0);
3415}
3416
3417void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3418 int order)
3419{
3420 struct page_cgroup *pc;
3421
3422 VM_BUG_ON(mem_cgroup_is_root(memcg));
3423
3424 /* The page allocation failed. Revert */
3425 if (!page) {
3426 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3427 return;
3428 }
3429
3430 pc = lookup_page_cgroup(page);
3431 lock_page_cgroup(pc);
3432 pc->mem_cgroup = memcg;
3433 SetPageCgroupUsed(pc);
3434 unlock_page_cgroup(pc);
3435}
3436
3437void __memcg_kmem_uncharge_pages(struct page *page, int order)
3438{
3439 struct mem_cgroup *memcg = NULL;
3440 struct page_cgroup *pc;
3441
3442
3443 pc = lookup_page_cgroup(page);
3444 /*
3445 * Fast unlocked return. Theoretically might have changed, have to
3446 * check again after locking.
3447 */
3448 if (!PageCgroupUsed(pc))
3449 return;
3450
3451 lock_page_cgroup(pc);
3452 if (PageCgroupUsed(pc)) {
3453 memcg = pc->mem_cgroup;
3454 ClearPageCgroupUsed(pc);
3455 }
3456 unlock_page_cgroup(pc);
3457
3458 /*
3459 * We trust that only if there is a memcg associated with the page, it
3460 * is a valid allocation
3461 */
3462 if (!memcg)
3463 return;
3464
309381fe 3465 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3466 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3467}
1f458cbf 3468#else
776ed0f0 3469static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3470{
3471}
7ae1e1d0
GC
3472#endif /* CONFIG_MEMCG_KMEM */
3473
ca3e0214
KH
3474#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3475
a0db00fc 3476#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3477/*
3478 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3479 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3480 * charge/uncharge will be never happen and move_account() is done under
3481 * compound_lock(), so we don't have to take care of races.
ca3e0214 3482 */
e94c8a9c 3483void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3484{
3485 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3486 struct page_cgroup *pc;
b070e65c 3487 struct mem_cgroup *memcg;
e94c8a9c 3488 int i;
ca3e0214 3489
3d37c4a9
KH
3490 if (mem_cgroup_disabled())
3491 return;
b070e65c
DR
3492
3493 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3494 for (i = 1; i < HPAGE_PMD_NR; i++) {
3495 pc = head_pc + i;
b070e65c 3496 pc->mem_cgroup = memcg;
e94c8a9c 3497 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3498 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3499 }
b070e65c
DR
3500 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3501 HPAGE_PMD_NR);
ca3e0214 3502}
12d27107 3503#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3504
f817ed48 3505/**
de3638d9 3506 * mem_cgroup_move_account - move account of the page
5564e88b 3507 * @page: the page
7ec99d62 3508 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3509 * @pc: page_cgroup of the page.
3510 * @from: mem_cgroup which the page is moved from.
3511 * @to: mem_cgroup which the page is moved to. @from != @to.
3512 *
3513 * The caller must confirm following.
08e552c6 3514 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3515 * - compound_lock is held when nr_pages > 1
f817ed48 3516 *
2f3479b1
KH
3517 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3518 * from old cgroup.
f817ed48 3519 */
7ec99d62
JW
3520static int mem_cgroup_move_account(struct page *page,
3521 unsigned int nr_pages,
3522 struct page_cgroup *pc,
3523 struct mem_cgroup *from,
2f3479b1 3524 struct mem_cgroup *to)
f817ed48 3525{
de3638d9
JW
3526 unsigned long flags;
3527 int ret;
b2402857 3528 bool anon = PageAnon(page);
987eba66 3529
f817ed48 3530 VM_BUG_ON(from == to);
309381fe 3531 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3532 /*
3533 * The page is isolated from LRU. So, collapse function
3534 * will not handle this page. But page splitting can happen.
3535 * Do this check under compound_page_lock(). The caller should
3536 * hold it.
3537 */
3538 ret = -EBUSY;
7ec99d62 3539 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3540 goto out;
3541
3542 lock_page_cgroup(pc);
3543
3544 ret = -EINVAL;
3545 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3546 goto unlock;
3547
312734c0 3548 move_lock_mem_cgroup(from, &flags);
f817ed48 3549
59d1d256
JW
3550 if (!anon && page_mapped(page)) {
3551 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3552 nr_pages);
3553 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3554 nr_pages);
3555 }
3ea67d06 3556
59d1d256
JW
3557 if (PageWriteback(page)) {
3558 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3559 nr_pages);
3560 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3561 nr_pages);
3562 }
3ea67d06 3563
b070e65c 3564 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3565
854ffa8d 3566 /* caller should have done css_get */
08e552c6 3567 pc->mem_cgroup = to;
b070e65c 3568 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3569 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3570 ret = 0;
3571unlock:
57f9fd7d 3572 unlock_page_cgroup(pc);
d2265e6f
KH
3573 /*
3574 * check events
3575 */
5564e88b
JW
3576 memcg_check_events(to, page);
3577 memcg_check_events(from, page);
de3638d9 3578out:
f817ed48
KH
3579 return ret;
3580}
3581
2ef37d3f
MH
3582/**
3583 * mem_cgroup_move_parent - moves page to the parent group
3584 * @page: the page to move
3585 * @pc: page_cgroup of the page
3586 * @child: page's cgroup
3587 *
3588 * move charges to its parent or the root cgroup if the group has no
3589 * parent (aka use_hierarchy==0).
3590 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3591 * mem_cgroup_move_account fails) the failure is always temporary and
3592 * it signals a race with a page removal/uncharge or migration. In the
3593 * first case the page is on the way out and it will vanish from the LRU
3594 * on the next attempt and the call should be retried later.
3595 * Isolation from the LRU fails only if page has been isolated from
3596 * the LRU since we looked at it and that usually means either global
3597 * reclaim or migration going on. The page will either get back to the
3598 * LRU or vanish.
3599 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3600 * (!PageCgroupUsed) or moved to a different group. The page will
3601 * disappear in the next attempt.
f817ed48 3602 */
5564e88b
JW
3603static int mem_cgroup_move_parent(struct page *page,
3604 struct page_cgroup *pc,
6068bf01 3605 struct mem_cgroup *child)
f817ed48 3606{
f817ed48 3607 struct mem_cgroup *parent;
7ec99d62 3608 unsigned int nr_pages;
4be4489f 3609 unsigned long uninitialized_var(flags);
f817ed48
KH
3610 int ret;
3611
d8423011 3612 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3613
57f9fd7d
DN
3614 ret = -EBUSY;
3615 if (!get_page_unless_zero(page))
3616 goto out;
3617 if (isolate_lru_page(page))
3618 goto put;
52dbb905 3619
7ec99d62 3620 nr_pages = hpage_nr_pages(page);
08e552c6 3621
cc926f78
KH
3622 parent = parent_mem_cgroup(child);
3623 /*
3624 * If no parent, move charges to root cgroup.
3625 */
3626 if (!parent)
3627 parent = root_mem_cgroup;
f817ed48 3628
2ef37d3f 3629 if (nr_pages > 1) {
309381fe 3630 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3631 flags = compound_lock_irqsave(page);
2ef37d3f 3632 }
987eba66 3633
cc926f78 3634 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3635 pc, child, parent);
cc926f78
KH
3636 if (!ret)
3637 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3638
7ec99d62 3639 if (nr_pages > 1)
987eba66 3640 compound_unlock_irqrestore(page, flags);
08e552c6 3641 putback_lru_page(page);
57f9fd7d 3642put:
40d58138 3643 put_page(page);
57f9fd7d 3644out:
f817ed48
KH
3645 return ret;
3646}
3647
d715ae08 3648int mem_cgroup_charge_anon(struct page *page,
1bec6b33 3649 struct mm_struct *mm, gfp_t gfp_mask)
7a81b88c 3650{
7ec99d62 3651 unsigned int nr_pages = 1;
6d1fdc48 3652 struct mem_cgroup *memcg;
8493ae43 3653 bool oom = true;
ec168510 3654
1bec6b33
JW
3655 if (mem_cgroup_disabled())
3656 return 0;
3657
3658 VM_BUG_ON_PAGE(page_mapped(page), page);
3659 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3660 VM_BUG_ON(!mm);
3661
37c2ac78 3662 if (PageTransHuge(page)) {
7ec99d62 3663 nr_pages <<= compound_order(page);
309381fe 3664 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
8493ae43
JW
3665 /*
3666 * Never OOM-kill a process for a huge page. The
3667 * fault handler will fall back to regular pages.
3668 */
3669 oom = false;
37c2ac78 3670 }
7a81b88c 3671
6d1fdc48
JW
3672 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
3673 if (!memcg)
3674 return -ENOMEM;
1bec6b33
JW
3675 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3676 MEM_CGROUP_CHARGE_TYPE_ANON, false);
8a9f3ccd 3677 return 0;
8a9f3ccd
BS
3678}
3679
54595fe2
KH
3680/*
3681 * While swap-in, try_charge -> commit or cancel, the page is locked.
3682 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3683 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3684 * "commit()" or removed by "cancel()"
3685 */
0435a2fd
JW
3686static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3687 struct page *page,
3688 gfp_t mask,
3689 struct mem_cgroup **memcgp)
8c7c6e34 3690{
6d1fdc48 3691 struct mem_cgroup *memcg = NULL;
90deb788 3692 struct page_cgroup *pc;
54595fe2 3693 int ret;
8c7c6e34 3694
90deb788
JW
3695 pc = lookup_page_cgroup(page);
3696 /*
3697 * Every swap fault against a single page tries to charge the
3698 * page, bail as early as possible. shmem_unuse() encounters
3699 * already charged pages, too. The USED bit is protected by
3700 * the page lock, which serializes swap cache removal, which
3701 * in turn serializes uncharging.
3702 */
3703 if (PageCgroupUsed(pc))
6d1fdc48
JW
3704 goto out;
3705 if (do_swap_account)
3706 memcg = try_get_mem_cgroup_from_page(page);
c0ff4b85 3707 if (!memcg)
6d1fdc48
JW
3708 memcg = get_mem_cgroup_from_mm(mm);
3709 ret = mem_cgroup_try_charge(memcg, mask, 1, true);
c0ff4b85 3710 css_put(&memcg->css);
38c5d72f 3711 if (ret == -EINTR)
6d1fdc48
JW
3712 memcg = root_mem_cgroup;
3713 else if (ret)
3714 return ret;
3715out:
3716 *memcgp = memcg;
3717 return 0;
8c7c6e34
KH
3718}
3719
0435a2fd
JW
3720int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3721 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3722{
6d1fdc48
JW
3723 if (mem_cgroup_disabled()) {
3724 *memcgp = NULL;
0435a2fd 3725 return 0;
6d1fdc48 3726 }
bdf4f4d2
JW
3727 /*
3728 * A racing thread's fault, or swapoff, may have already
3729 * updated the pte, and even removed page from swap cache: in
3730 * those cases unuse_pte()'s pte_same() test will fail; but
3731 * there's also a KSM case which does need to charge the page.
3732 */
3733 if (!PageSwapCache(page)) {
6d1fdc48 3734 struct mem_cgroup *memcg;
bdf4f4d2 3735
6d1fdc48
JW
3736 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3737 if (!memcg)
3738 return -ENOMEM;
3739 *memcgp = memcg;
3740 return 0;
bdf4f4d2 3741 }
0435a2fd
JW
3742 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3743}
3744
827a03d2
JW
3745void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3746{
3747 if (mem_cgroup_disabled())
3748 return;
3749 if (!memcg)
3750 return;
3751 __mem_cgroup_cancel_charge(memcg, 1);
3752}
3753
83aae4c7 3754static void
72835c86 3755__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3756 enum charge_type ctype)
7a81b88c 3757{
f8d66542 3758 if (mem_cgroup_disabled())
7a81b88c 3759 return;
72835c86 3760 if (!memcg)
7a81b88c 3761 return;
5a6475a4 3762
ce587e65 3763 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3764 /*
3765 * Now swap is on-memory. This means this page may be
3766 * counted both as mem and swap....double count.
03f3c433
KH
3767 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3768 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3769 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3770 */
03f3c433 3771 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3772 swp_entry_t ent = {.val = page_private(page)};
86493009 3773 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3774 }
7a81b88c
KH
3775}
3776
72835c86
JW
3777void mem_cgroup_commit_charge_swapin(struct page *page,
3778 struct mem_cgroup *memcg)
83aae4c7 3779{
72835c86 3780 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3781 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3782}
3783
d715ae08 3784int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
827a03d2 3785 gfp_t gfp_mask)
7a81b88c 3786{
827a03d2 3787 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
6d1fdc48 3788 struct mem_cgroup *memcg;
827a03d2
JW
3789 int ret;
3790
f8d66542 3791 if (mem_cgroup_disabled())
827a03d2
JW
3792 return 0;
3793 if (PageCompound(page))
3794 return 0;
3795
6d1fdc48 3796 if (PageSwapCache(page)) { /* shmem */
0435a2fd
JW
3797 ret = __mem_cgroup_try_charge_swapin(mm, page,
3798 gfp_mask, &memcg);
6d1fdc48
JW
3799 if (ret)
3800 return ret;
3801 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3802 return 0;
827a03d2 3803 }
6d1fdc48 3804
6f6acb00
MH
3805 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3806 if (!memcg)
3807 return -ENOMEM;
6d1fdc48
JW
3808 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3809 return 0;
7a81b88c
KH
3810}
3811
c0ff4b85 3812static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3813 unsigned int nr_pages,
3814 const enum charge_type ctype)
569b846d
KH
3815{
3816 struct memcg_batch_info *batch = NULL;
3817 bool uncharge_memsw = true;
7ec99d62 3818
569b846d
KH
3819 /* If swapout, usage of swap doesn't decrease */
3820 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3821 uncharge_memsw = false;
569b846d
KH
3822
3823 batch = &current->memcg_batch;
3824 /*
3825 * In usual, we do css_get() when we remember memcg pointer.
3826 * But in this case, we keep res->usage until end of a series of
3827 * uncharges. Then, it's ok to ignore memcg's refcnt.
3828 */
3829 if (!batch->memcg)
c0ff4b85 3830 batch->memcg = memcg;
3c11ecf4
KH
3831 /*
3832 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3833 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3834 * the same cgroup and we have chance to coalesce uncharges.
3835 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3836 * because we want to do uncharge as soon as possible.
3837 */
3838
3839 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3840 goto direct_uncharge;
3841
7ec99d62 3842 if (nr_pages > 1)
ec168510
AA
3843 goto direct_uncharge;
3844
569b846d
KH
3845 /*
3846 * In typical case, batch->memcg == mem. This means we can
3847 * merge a series of uncharges to an uncharge of res_counter.
3848 * If not, we uncharge res_counter ony by one.
3849 */
c0ff4b85 3850 if (batch->memcg != memcg)
569b846d
KH
3851 goto direct_uncharge;
3852 /* remember freed charge and uncharge it later */
7ffd4ca7 3853 batch->nr_pages++;
569b846d 3854 if (uncharge_memsw)
7ffd4ca7 3855 batch->memsw_nr_pages++;
569b846d
KH
3856 return;
3857direct_uncharge:
c0ff4b85 3858 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3859 if (uncharge_memsw)
c0ff4b85
R
3860 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3861 if (unlikely(batch->memcg != memcg))
3862 memcg_oom_recover(memcg);
569b846d 3863}
7a81b88c 3864
8a9f3ccd 3865/*
69029cd5 3866 * uncharge if !page_mapped(page)
8a9f3ccd 3867 */
8c7c6e34 3868static struct mem_cgroup *
0030f535
JW
3869__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3870 bool end_migration)
8a9f3ccd 3871{
c0ff4b85 3872 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3873 unsigned int nr_pages = 1;
3874 struct page_cgroup *pc;
b2402857 3875 bool anon;
8a9f3ccd 3876
f8d66542 3877 if (mem_cgroup_disabled())
8c7c6e34 3878 return NULL;
4077960e 3879
37c2ac78 3880 if (PageTransHuge(page)) {
7ec99d62 3881 nr_pages <<= compound_order(page);
309381fe 3882 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
37c2ac78 3883 }
8697d331 3884 /*
3c541e14 3885 * Check if our page_cgroup is valid
8697d331 3886 */
52d4b9ac 3887 pc = lookup_page_cgroup(page);
cfa44946 3888 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3889 return NULL;
b9c565d5 3890
52d4b9ac 3891 lock_page_cgroup(pc);
d13d1443 3892
c0ff4b85 3893 memcg = pc->mem_cgroup;
8c7c6e34 3894
d13d1443
KH
3895 if (!PageCgroupUsed(pc))
3896 goto unlock_out;
3897
b2402857
KH
3898 anon = PageAnon(page);
3899
d13d1443 3900 switch (ctype) {
41326c17 3901 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3902 /*
3903 * Generally PageAnon tells if it's the anon statistics to be
3904 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3905 * used before page reached the stage of being marked PageAnon.
3906 */
b2402857
KH
3907 anon = true;
3908 /* fallthrough */
8a9478ca 3909 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3910 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3911 if (page_mapped(page))
3912 goto unlock_out;
3913 /*
3914 * Pages under migration may not be uncharged. But
3915 * end_migration() /must/ be the one uncharging the
3916 * unused post-migration page and so it has to call
3917 * here with the migration bit still set. See the
3918 * res_counter handling below.
3919 */
3920 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3921 goto unlock_out;
3922 break;
3923 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3924 if (!PageAnon(page)) { /* Shared memory */
3925 if (page->mapping && !page_is_file_cache(page))
3926 goto unlock_out;
3927 } else if (page_mapped(page)) /* Anon */
3928 goto unlock_out;
3929 break;
3930 default:
3931 break;
52d4b9ac 3932 }
d13d1443 3933
b070e65c 3934 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 3935
52d4b9ac 3936 ClearPageCgroupUsed(pc);
544122e5
KH
3937 /*
3938 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3939 * freed from LRU. This is safe because uncharged page is expected not
3940 * to be reused (freed soon). Exception is SwapCache, it's handled by
3941 * special functions.
3942 */
b9c565d5 3943
52d4b9ac 3944 unlock_page_cgroup(pc);
f75ca962 3945 /*
c0ff4b85 3946 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 3947 * will never be freed, so it's safe to call css_get().
f75ca962 3948 */
c0ff4b85 3949 memcg_check_events(memcg, page);
f75ca962 3950 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 3951 mem_cgroup_swap_statistics(memcg, true);
4050377b 3952 css_get(&memcg->css);
f75ca962 3953 }
0030f535
JW
3954 /*
3955 * Migration does not charge the res_counter for the
3956 * replacement page, so leave it alone when phasing out the
3957 * page that is unused after the migration.
3958 */
3959 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 3960 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3961
c0ff4b85 3962 return memcg;
d13d1443
KH
3963
3964unlock_out:
3965 unlock_page_cgroup(pc);
8c7c6e34 3966 return NULL;
3c541e14
BS
3967}
3968
69029cd5
KH
3969void mem_cgroup_uncharge_page(struct page *page)
3970{
52d4b9ac
KH
3971 /* early check. */
3972 if (page_mapped(page))
3973 return;
309381fe 3974 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
28ccddf7
JW
3975 /*
3976 * If the page is in swap cache, uncharge should be deferred
3977 * to the swap path, which also properly accounts swap usage
3978 * and handles memcg lifetime.
3979 *
3980 * Note that this check is not stable and reclaim may add the
3981 * page to swap cache at any time after this. However, if the
3982 * page is not in swap cache by the time page->mapcount hits
3983 * 0, there won't be any page table references to the swap
3984 * slot, and reclaim will free it and not actually write the
3985 * page to disk.
3986 */
0c59b89c
JW
3987 if (PageSwapCache(page))
3988 return;
0030f535 3989 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
3990}
3991
3992void mem_cgroup_uncharge_cache_page(struct page *page)
3993{
309381fe
SL
3994 VM_BUG_ON_PAGE(page_mapped(page), page);
3995 VM_BUG_ON_PAGE(page->mapping, page);
0030f535 3996 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
3997}
3998
569b846d
KH
3999/*
4000 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4001 * In that cases, pages are freed continuously and we can expect pages
4002 * are in the same memcg. All these calls itself limits the number of
4003 * pages freed at once, then uncharge_start/end() is called properly.
4004 * This may be called prural(2) times in a context,
4005 */
4006
4007void mem_cgroup_uncharge_start(void)
4008{
4009 current->memcg_batch.do_batch++;
4010 /* We can do nest. */
4011 if (current->memcg_batch.do_batch == 1) {
4012 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4013 current->memcg_batch.nr_pages = 0;
4014 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4015 }
4016}
4017
4018void mem_cgroup_uncharge_end(void)
4019{
4020 struct memcg_batch_info *batch = &current->memcg_batch;
4021
4022 if (!batch->do_batch)
4023 return;
4024
4025 batch->do_batch--;
4026 if (batch->do_batch) /* If stacked, do nothing. */
4027 return;
4028
4029 if (!batch->memcg)
4030 return;
4031 /*
4032 * This "batch->memcg" is valid without any css_get/put etc...
4033 * bacause we hide charges behind us.
4034 */
7ffd4ca7
JW
4035 if (batch->nr_pages)
4036 res_counter_uncharge(&batch->memcg->res,
4037 batch->nr_pages * PAGE_SIZE);
4038 if (batch->memsw_nr_pages)
4039 res_counter_uncharge(&batch->memcg->memsw,
4040 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4041 memcg_oom_recover(batch->memcg);
569b846d
KH
4042 /* forget this pointer (for sanity check) */
4043 batch->memcg = NULL;
4044}
4045
e767e056 4046#ifdef CONFIG_SWAP
8c7c6e34 4047/*
e767e056 4048 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4049 * memcg information is recorded to swap_cgroup of "ent"
4050 */
8a9478ca
KH
4051void
4052mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4053{
4054 struct mem_cgroup *memcg;
8a9478ca
KH
4055 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4056
4057 if (!swapout) /* this was a swap cache but the swap is unused ! */
4058 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4059
0030f535 4060 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4061
f75ca962
KH
4062 /*
4063 * record memcg information, if swapout && memcg != NULL,
4050377b 4064 * css_get() was called in uncharge().
f75ca962
KH
4065 */
4066 if (do_swap_account && swapout && memcg)
34c00c31 4067 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4068}
e767e056 4069#endif
8c7c6e34 4070
c255a458 4071#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4072/*
4073 * called from swap_entry_free(). remove record in swap_cgroup and
4074 * uncharge "memsw" account.
4075 */
4076void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4077{
8c7c6e34 4078 struct mem_cgroup *memcg;
a3b2d692 4079 unsigned short id;
8c7c6e34
KH
4080
4081 if (!do_swap_account)
4082 return;
4083
a3b2d692
KH
4084 id = swap_cgroup_record(ent, 0);
4085 rcu_read_lock();
4086 memcg = mem_cgroup_lookup(id);
8c7c6e34 4087 if (memcg) {
a3b2d692 4088 /*
ec903c0c
TH
4089 * We uncharge this because swap is freed. This memcg can
4090 * be obsolete one. We avoid calling css_tryget_online().
a3b2d692 4091 */
0c3e73e8 4092 if (!mem_cgroup_is_root(memcg))
4e649152 4093 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4094 mem_cgroup_swap_statistics(memcg, false);
4050377b 4095 css_put(&memcg->css);
8c7c6e34 4096 }
a3b2d692 4097 rcu_read_unlock();
d13d1443 4098}
02491447
DN
4099
4100/**
4101 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4102 * @entry: swap entry to be moved
4103 * @from: mem_cgroup which the entry is moved from
4104 * @to: mem_cgroup which the entry is moved to
4105 *
4106 * It succeeds only when the swap_cgroup's record for this entry is the same
4107 * as the mem_cgroup's id of @from.
4108 *
4109 * Returns 0 on success, -EINVAL on failure.
4110 *
4111 * The caller must have charged to @to, IOW, called res_counter_charge() about
4112 * both res and memsw, and called css_get().
4113 */
4114static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4115 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4116{
4117 unsigned short old_id, new_id;
4118
34c00c31
LZ
4119 old_id = mem_cgroup_id(from);
4120 new_id = mem_cgroup_id(to);
02491447
DN
4121
4122 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4123 mem_cgroup_swap_statistics(from, false);
483c30b5 4124 mem_cgroup_swap_statistics(to, true);
02491447 4125 /*
483c30b5
DN
4126 * This function is only called from task migration context now.
4127 * It postpones res_counter and refcount handling till the end
4128 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4129 * improvement. But we cannot postpone css_get(to) because if
4130 * the process that has been moved to @to does swap-in, the
4131 * refcount of @to might be decreased to 0.
4132 *
4133 * We are in attach() phase, so the cgroup is guaranteed to be
4134 * alive, so we can just call css_get().
02491447 4135 */
4050377b 4136 css_get(&to->css);
02491447
DN
4137 return 0;
4138 }
4139 return -EINVAL;
4140}
4141#else
4142static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4143 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4144{
4145 return -EINVAL;
4146}
8c7c6e34 4147#endif
d13d1443 4148
ae41be37 4149/*
01b1ae63
KH
4150 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4151 * page belongs to.
ae41be37 4152 */
0030f535
JW
4153void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4154 struct mem_cgroup **memcgp)
ae41be37 4155{
c0ff4b85 4156 struct mem_cgroup *memcg = NULL;
b32967ff 4157 unsigned int nr_pages = 1;
7ec99d62 4158 struct page_cgroup *pc;
ac39cf8c 4159 enum charge_type ctype;
8869b8f6 4160
72835c86 4161 *memcgp = NULL;
56039efa 4162
f8d66542 4163 if (mem_cgroup_disabled())
0030f535 4164 return;
4077960e 4165
b32967ff
MG
4166 if (PageTransHuge(page))
4167 nr_pages <<= compound_order(page);
4168
52d4b9ac
KH
4169 pc = lookup_page_cgroup(page);
4170 lock_page_cgroup(pc);
4171 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4172 memcg = pc->mem_cgroup;
4173 css_get(&memcg->css);
ac39cf8c
AM
4174 /*
4175 * At migrating an anonymous page, its mapcount goes down
4176 * to 0 and uncharge() will be called. But, even if it's fully
4177 * unmapped, migration may fail and this page has to be
4178 * charged again. We set MIGRATION flag here and delay uncharge
4179 * until end_migration() is called
4180 *
4181 * Corner Case Thinking
4182 * A)
4183 * When the old page was mapped as Anon and it's unmap-and-freed
4184 * while migration was ongoing.
4185 * If unmap finds the old page, uncharge() of it will be delayed
4186 * until end_migration(). If unmap finds a new page, it's
4187 * uncharged when it make mapcount to be 1->0. If unmap code
4188 * finds swap_migration_entry, the new page will not be mapped
4189 * and end_migration() will find it(mapcount==0).
4190 *
4191 * B)
4192 * When the old page was mapped but migraion fails, the kernel
4193 * remaps it. A charge for it is kept by MIGRATION flag even
4194 * if mapcount goes down to 0. We can do remap successfully
4195 * without charging it again.
4196 *
4197 * C)
4198 * The "old" page is under lock_page() until the end of
4199 * migration, so, the old page itself will not be swapped-out.
4200 * If the new page is swapped out before end_migraton, our
4201 * hook to usual swap-out path will catch the event.
4202 */
4203 if (PageAnon(page))
4204 SetPageCgroupMigration(pc);
e8589cc1 4205 }
52d4b9ac 4206 unlock_page_cgroup(pc);
ac39cf8c
AM
4207 /*
4208 * If the page is not charged at this point,
4209 * we return here.
4210 */
c0ff4b85 4211 if (!memcg)
0030f535 4212 return;
01b1ae63 4213
72835c86 4214 *memcgp = memcg;
ac39cf8c
AM
4215 /*
4216 * We charge new page before it's used/mapped. So, even if unlock_page()
4217 * is called before end_migration, we can catch all events on this new
4218 * page. In the case new page is migrated but not remapped, new page's
4219 * mapcount will be finally 0 and we call uncharge in end_migration().
4220 */
ac39cf8c 4221 if (PageAnon(page))
41326c17 4222 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4223 else
62ba7442 4224 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4225 /*
4226 * The page is committed to the memcg, but it's not actually
4227 * charged to the res_counter since we plan on replacing the
4228 * old one and only one page is going to be left afterwards.
4229 */
b32967ff 4230 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4231}
8869b8f6 4232
69029cd5 4233/* remove redundant charge if migration failed*/
c0ff4b85 4234void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4235 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4236{
ac39cf8c 4237 struct page *used, *unused;
01b1ae63 4238 struct page_cgroup *pc;
b2402857 4239 bool anon;
01b1ae63 4240
c0ff4b85 4241 if (!memcg)
01b1ae63 4242 return;
b25ed609 4243
50de1dd9 4244 if (!migration_ok) {
ac39cf8c
AM
4245 used = oldpage;
4246 unused = newpage;
01b1ae63 4247 } else {
ac39cf8c 4248 used = newpage;
01b1ae63
KH
4249 unused = oldpage;
4250 }
0030f535 4251 anon = PageAnon(used);
7d188958
JW
4252 __mem_cgroup_uncharge_common(unused,
4253 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4254 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4255 true);
0030f535 4256 css_put(&memcg->css);
69029cd5 4257 /*
ac39cf8c
AM
4258 * We disallowed uncharge of pages under migration because mapcount
4259 * of the page goes down to zero, temporarly.
4260 * Clear the flag and check the page should be charged.
01b1ae63 4261 */
ac39cf8c
AM
4262 pc = lookup_page_cgroup(oldpage);
4263 lock_page_cgroup(pc);
4264 ClearPageCgroupMigration(pc);
4265 unlock_page_cgroup(pc);
ac39cf8c 4266
01b1ae63 4267 /*
ac39cf8c
AM
4268 * If a page is a file cache, radix-tree replacement is very atomic
4269 * and we can skip this check. When it was an Anon page, its mapcount
4270 * goes down to 0. But because we added MIGRATION flage, it's not
4271 * uncharged yet. There are several case but page->mapcount check
4272 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4273 * check. (see prepare_charge() also)
69029cd5 4274 */
b2402857 4275 if (anon)
ac39cf8c 4276 mem_cgroup_uncharge_page(used);
ae41be37 4277}
78fb7466 4278
ab936cbc
KH
4279/*
4280 * At replace page cache, newpage is not under any memcg but it's on
4281 * LRU. So, this function doesn't touch res_counter but handles LRU
4282 * in correct way. Both pages are locked so we cannot race with uncharge.
4283 */
4284void mem_cgroup_replace_page_cache(struct page *oldpage,
4285 struct page *newpage)
4286{
bde05d1c 4287 struct mem_cgroup *memcg = NULL;
ab936cbc 4288 struct page_cgroup *pc;
ab936cbc 4289 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4290
4291 if (mem_cgroup_disabled())
4292 return;
4293
4294 pc = lookup_page_cgroup(oldpage);
4295 /* fix accounting on old pages */
4296 lock_page_cgroup(pc);
bde05d1c
HD
4297 if (PageCgroupUsed(pc)) {
4298 memcg = pc->mem_cgroup;
b070e65c 4299 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4300 ClearPageCgroupUsed(pc);
4301 }
ab936cbc
KH
4302 unlock_page_cgroup(pc);
4303
bde05d1c
HD
4304 /*
4305 * When called from shmem_replace_page(), in some cases the
4306 * oldpage has already been charged, and in some cases not.
4307 */
4308 if (!memcg)
4309 return;
ab936cbc
KH
4310 /*
4311 * Even if newpage->mapping was NULL before starting replacement,
4312 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4313 * LRU while we overwrite pc->mem_cgroup.
4314 */
ce587e65 4315 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4316}
4317
f212ad7c
DN
4318#ifdef CONFIG_DEBUG_VM
4319static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4320{
4321 struct page_cgroup *pc;
4322
4323 pc = lookup_page_cgroup(page);
cfa44946
JW
4324 /*
4325 * Can be NULL while feeding pages into the page allocator for
4326 * the first time, i.e. during boot or memory hotplug;
4327 * or when mem_cgroup_disabled().
4328 */
f212ad7c
DN
4329 if (likely(pc) && PageCgroupUsed(pc))
4330 return pc;
4331 return NULL;
4332}
4333
4334bool mem_cgroup_bad_page_check(struct page *page)
4335{
4336 if (mem_cgroup_disabled())
4337 return false;
4338
4339 return lookup_page_cgroup_used(page) != NULL;
4340}
4341
4342void mem_cgroup_print_bad_page(struct page *page)
4343{
4344 struct page_cgroup *pc;
4345
4346 pc = lookup_page_cgroup_used(page);
4347 if (pc) {
d045197f
AM
4348 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4349 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4350 }
4351}
4352#endif
4353
d38d2a75 4354static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4355 unsigned long long val)
628f4235 4356{
81d39c20 4357 int retry_count;
3c11ecf4 4358 u64 memswlimit, memlimit;
628f4235 4359 int ret = 0;
81d39c20
KH
4360 int children = mem_cgroup_count_children(memcg);
4361 u64 curusage, oldusage;
3c11ecf4 4362 int enlarge;
81d39c20
KH
4363
4364 /*
4365 * For keeping hierarchical_reclaim simple, how long we should retry
4366 * is depends on callers. We set our retry-count to be function
4367 * of # of children which we should visit in this loop.
4368 */
4369 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4370
4371 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4372
3c11ecf4 4373 enlarge = 0;
8c7c6e34 4374 while (retry_count) {
628f4235
KH
4375 if (signal_pending(current)) {
4376 ret = -EINTR;
4377 break;
4378 }
8c7c6e34
KH
4379 /*
4380 * Rather than hide all in some function, I do this in
4381 * open coded manner. You see what this really does.
aaad153e 4382 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4383 */
4384 mutex_lock(&set_limit_mutex);
4385 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4386 if (memswlimit < val) {
4387 ret = -EINVAL;
4388 mutex_unlock(&set_limit_mutex);
628f4235
KH
4389 break;
4390 }
3c11ecf4
KH
4391
4392 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4393 if (memlimit < val)
4394 enlarge = 1;
4395
8c7c6e34 4396 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4397 if (!ret) {
4398 if (memswlimit == val)
4399 memcg->memsw_is_minimum = true;
4400 else
4401 memcg->memsw_is_minimum = false;
4402 }
8c7c6e34
KH
4403 mutex_unlock(&set_limit_mutex);
4404
4405 if (!ret)
4406 break;
4407
5660048c
JW
4408 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4409 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4410 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4411 /* Usage is reduced ? */
f894ffa8 4412 if (curusage >= oldusage)
81d39c20
KH
4413 retry_count--;
4414 else
4415 oldusage = curusage;
8c7c6e34 4416 }
3c11ecf4
KH
4417 if (!ret && enlarge)
4418 memcg_oom_recover(memcg);
14797e23 4419
8c7c6e34
KH
4420 return ret;
4421}
4422
338c8431
LZ
4423static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4424 unsigned long long val)
8c7c6e34 4425{
81d39c20 4426 int retry_count;
3c11ecf4 4427 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4428 int children = mem_cgroup_count_children(memcg);
4429 int ret = -EBUSY;
3c11ecf4 4430 int enlarge = 0;
8c7c6e34 4431
81d39c20 4432 /* see mem_cgroup_resize_res_limit */
f894ffa8 4433 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4434 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4435 while (retry_count) {
4436 if (signal_pending(current)) {
4437 ret = -EINTR;
4438 break;
4439 }
4440 /*
4441 * Rather than hide all in some function, I do this in
4442 * open coded manner. You see what this really does.
aaad153e 4443 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4444 */
4445 mutex_lock(&set_limit_mutex);
4446 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4447 if (memlimit > val) {
4448 ret = -EINVAL;
4449 mutex_unlock(&set_limit_mutex);
4450 break;
4451 }
3c11ecf4
KH
4452 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4453 if (memswlimit < val)
4454 enlarge = 1;
8c7c6e34 4455 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4456 if (!ret) {
4457 if (memlimit == val)
4458 memcg->memsw_is_minimum = true;
4459 else
4460 memcg->memsw_is_minimum = false;
4461 }
8c7c6e34
KH
4462 mutex_unlock(&set_limit_mutex);
4463
4464 if (!ret)
4465 break;
4466
5660048c
JW
4467 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4468 MEM_CGROUP_RECLAIM_NOSWAP |
4469 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4470 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4471 /* Usage is reduced ? */
8c7c6e34 4472 if (curusage >= oldusage)
628f4235 4473 retry_count--;
81d39c20
KH
4474 else
4475 oldusage = curusage;
628f4235 4476 }
3c11ecf4
KH
4477 if (!ret && enlarge)
4478 memcg_oom_recover(memcg);
628f4235
KH
4479 return ret;
4480}
4481
0608f43d
AM
4482unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4483 gfp_t gfp_mask,
4484 unsigned long *total_scanned)
4485{
4486 unsigned long nr_reclaimed = 0;
4487 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4488 unsigned long reclaimed;
4489 int loop = 0;
4490 struct mem_cgroup_tree_per_zone *mctz;
4491 unsigned long long excess;
4492 unsigned long nr_scanned;
4493
4494 if (order > 0)
4495 return 0;
4496
4497 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4498 /*
4499 * This loop can run a while, specially if mem_cgroup's continuously
4500 * keep exceeding their soft limit and putting the system under
4501 * pressure
4502 */
4503 do {
4504 if (next_mz)
4505 mz = next_mz;
4506 else
4507 mz = mem_cgroup_largest_soft_limit_node(mctz);
4508 if (!mz)
4509 break;
4510
4511 nr_scanned = 0;
4512 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4513 gfp_mask, &nr_scanned);
4514 nr_reclaimed += reclaimed;
4515 *total_scanned += nr_scanned;
4516 spin_lock(&mctz->lock);
4517
4518 /*
4519 * If we failed to reclaim anything from this memory cgroup
4520 * it is time to move on to the next cgroup
4521 */
4522 next_mz = NULL;
4523 if (!reclaimed) {
4524 do {
4525 /*
4526 * Loop until we find yet another one.
4527 *
4528 * By the time we get the soft_limit lock
4529 * again, someone might have aded the
4530 * group back on the RB tree. Iterate to
4531 * make sure we get a different mem.
4532 * mem_cgroup_largest_soft_limit_node returns
4533 * NULL if no other cgroup is present on
4534 * the tree
4535 */
4536 next_mz =
4537 __mem_cgroup_largest_soft_limit_node(mctz);
4538 if (next_mz == mz)
4539 css_put(&next_mz->memcg->css);
4540 else /* next_mz == NULL or other memcg */
4541 break;
4542 } while (1);
4543 }
cf2c8127 4544 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
4545 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4546 /*
4547 * One school of thought says that we should not add
4548 * back the node to the tree if reclaim returns 0.
4549 * But our reclaim could return 0, simply because due
4550 * to priority we are exposing a smaller subset of
4551 * memory to reclaim from. Consider this as a longer
4552 * term TODO.
4553 */
4554 /* If excess == 0, no tree ops */
cf2c8127 4555 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0608f43d
AM
4556 spin_unlock(&mctz->lock);
4557 css_put(&mz->memcg->css);
4558 loop++;
4559 /*
4560 * Could not reclaim anything and there are no more
4561 * mem cgroups to try or we seem to be looping without
4562 * reclaiming anything.
4563 */
4564 if (!nr_reclaimed &&
4565 (next_mz == NULL ||
4566 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4567 break;
4568 } while (!nr_reclaimed);
4569 if (next_mz)
4570 css_put(&next_mz->memcg->css);
4571 return nr_reclaimed;
4572}
4573
2ef37d3f
MH
4574/**
4575 * mem_cgroup_force_empty_list - clears LRU of a group
4576 * @memcg: group to clear
4577 * @node: NUMA node
4578 * @zid: zone id
4579 * @lru: lru to to clear
4580 *
3c935d18 4581 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4582 * reclaim the pages page themselves - pages are moved to the parent (or root)
4583 * group.
cc847582 4584 */
2ef37d3f 4585static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4586 int node, int zid, enum lru_list lru)
cc847582 4587{
bea8c150 4588 struct lruvec *lruvec;
2ef37d3f 4589 unsigned long flags;
072c56c1 4590 struct list_head *list;
925b7673
JW
4591 struct page *busy;
4592 struct zone *zone;
072c56c1 4593
08e552c6 4594 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4595 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4596 list = &lruvec->lists[lru];
cc847582 4597
f817ed48 4598 busy = NULL;
2ef37d3f 4599 do {
925b7673 4600 struct page_cgroup *pc;
5564e88b
JW
4601 struct page *page;
4602
08e552c6 4603 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4604 if (list_empty(list)) {
08e552c6 4605 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4606 break;
f817ed48 4607 }
925b7673
JW
4608 page = list_entry(list->prev, struct page, lru);
4609 if (busy == page) {
4610 list_move(&page->lru, list);
648bcc77 4611 busy = NULL;
08e552c6 4612 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4613 continue;
4614 }
08e552c6 4615 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4616
925b7673 4617 pc = lookup_page_cgroup(page);
5564e88b 4618
3c935d18 4619 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4620 /* found lock contention or "pc" is obsolete. */
925b7673 4621 busy = page;
f817ed48
KH
4622 } else
4623 busy = NULL;
2a7a0e0f 4624 cond_resched();
2ef37d3f 4625 } while (!list_empty(list));
cc847582
KH
4626}
4627
4628/*
c26251f9
MH
4629 * make mem_cgroup's charge to be 0 if there is no task by moving
4630 * all the charges and pages to the parent.
cc847582 4631 * This enables deleting this mem_cgroup.
c26251f9
MH
4632 *
4633 * Caller is responsible for holding css reference on the memcg.
cc847582 4634 */
ab5196c2 4635static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4636{
c26251f9 4637 int node, zid;
bea207c8 4638 u64 usage;
f817ed48 4639
fce66477 4640 do {
52d4b9ac
KH
4641 /* This is for making all *used* pages to be on LRU. */
4642 lru_add_drain_all();
c0ff4b85 4643 drain_all_stock_sync(memcg);
c0ff4b85 4644 mem_cgroup_start_move(memcg);
31aaea4a 4645 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4646 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4647 enum lru_list lru;
4648 for_each_lru(lru) {
2ef37d3f 4649 mem_cgroup_force_empty_list(memcg,
f156ab93 4650 node, zid, lru);
f817ed48 4651 }
1ecaab2b 4652 }
f817ed48 4653 }
c0ff4b85
R
4654 mem_cgroup_end_move(memcg);
4655 memcg_oom_recover(memcg);
52d4b9ac 4656 cond_resched();
f817ed48 4657
2ef37d3f 4658 /*
bea207c8
GC
4659 * Kernel memory may not necessarily be trackable to a specific
4660 * process. So they are not migrated, and therefore we can't
4661 * expect their value to drop to 0 here.
4662 * Having res filled up with kmem only is enough.
4663 *
2ef37d3f
MH
4664 * This is a safety check because mem_cgroup_force_empty_list
4665 * could have raced with mem_cgroup_replace_page_cache callers
4666 * so the lru seemed empty but the page could have been added
4667 * right after the check. RES_USAGE should be safe as we always
4668 * charge before adding to the LRU.
4669 */
bea207c8
GC
4670 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4671 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4672 } while (usage > 0);
c26251f9
MH
4673}
4674
ea280e7b
TH
4675/*
4676 * Test whether @memcg has children, dead or alive. Note that this
4677 * function doesn't care whether @memcg has use_hierarchy enabled and
4678 * returns %true if there are child csses according to the cgroup
4679 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
4680 */
b5f99b53
GC
4681static inline bool memcg_has_children(struct mem_cgroup *memcg)
4682{
ea280e7b
TH
4683 bool ret;
4684
696ac172 4685 /*
ea280e7b
TH
4686 * The lock does not prevent addition or deletion of children, but
4687 * it prevents a new child from being initialized based on this
4688 * parent in css_online(), so it's enough to decide whether
4689 * hierarchically inherited attributes can still be changed or not.
696ac172 4690 */
ea280e7b
TH
4691 lockdep_assert_held(&memcg_create_mutex);
4692
4693 rcu_read_lock();
4694 ret = css_next_child(NULL, &memcg->css);
4695 rcu_read_unlock();
4696 return ret;
b5f99b53
GC
4697}
4698
c26251f9
MH
4699/*
4700 * Reclaims as many pages from the given memcg as possible and moves
4701 * the rest to the parent.
4702 *
4703 * Caller is responsible for holding css reference for memcg.
4704 */
4705static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4706{
4707 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 4708
c1e862c1
KH
4709 /* we call try-to-free pages for make this cgroup empty */
4710 lru_add_drain_all();
f817ed48 4711 /* try to free all pages in this cgroup */
569530fb 4712 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4713 int progress;
c1e862c1 4714
c26251f9
MH
4715 if (signal_pending(current))
4716 return -EINTR;
4717
c0ff4b85 4718 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4719 false);
c1e862c1 4720 if (!progress) {
f817ed48 4721 nr_retries--;
c1e862c1 4722 /* maybe some writeback is necessary */
8aa7e847 4723 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4724 }
f817ed48
KH
4725
4726 }
ab5196c2
MH
4727
4728 return 0;
cc847582
KH
4729}
4730
6770c64e
TH
4731static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4732 char *buf, size_t nbytes,
4733 loff_t off)
c1e862c1 4734{
6770c64e 4735 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 4736
d8423011
MH
4737 if (mem_cgroup_is_root(memcg))
4738 return -EINVAL;
6770c64e 4739 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
4740}
4741
182446d0
TH
4742static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4743 struct cftype *cft)
18f59ea7 4744{
182446d0 4745 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4746}
4747
182446d0
TH
4748static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4749 struct cftype *cft, u64 val)
18f59ea7
BS
4750{
4751 int retval = 0;
182446d0 4752 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4753 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 4754
0999821b 4755 mutex_lock(&memcg_create_mutex);
567fb435
GC
4756
4757 if (memcg->use_hierarchy == val)
4758 goto out;
4759
18f59ea7 4760 /*
af901ca1 4761 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4762 * in the child subtrees. If it is unset, then the change can
4763 * occur, provided the current cgroup has no children.
4764 *
4765 * For the root cgroup, parent_mem is NULL, we allow value to be
4766 * set if there are no children.
4767 */
c0ff4b85 4768 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4769 (val == 1 || val == 0)) {
ea280e7b 4770 if (!memcg_has_children(memcg))
c0ff4b85 4771 memcg->use_hierarchy = val;
18f59ea7
BS
4772 else
4773 retval = -EBUSY;
4774 } else
4775 retval = -EINVAL;
567fb435
GC
4776
4777out:
0999821b 4778 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4779
4780 return retval;
4781}
4782
0c3e73e8 4783
c0ff4b85 4784static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4785 enum mem_cgroup_stat_index idx)
0c3e73e8 4786{
7d74b06f 4787 struct mem_cgroup *iter;
7a159cc9 4788 long val = 0;
0c3e73e8 4789
7a159cc9 4790 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4791 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4792 val += mem_cgroup_read_stat(iter, idx);
4793
4794 if (val < 0) /* race ? */
4795 val = 0;
4796 return val;
0c3e73e8
BS
4797}
4798
c0ff4b85 4799static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4800{
7d74b06f 4801 u64 val;
104f3928 4802
c0ff4b85 4803 if (!mem_cgroup_is_root(memcg)) {
104f3928 4804 if (!swap)
65c64ce8 4805 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4806 else
65c64ce8 4807 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4808 }
4809
b070e65c
DR
4810 /*
4811 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4812 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4813 */
c0ff4b85
R
4814 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4815 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4816
7d74b06f 4817 if (swap)
bff6bb83 4818 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4819
4820 return val << PAGE_SHIFT;
4821}
4822
791badbd
TH
4823static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4824 struct cftype *cft)
8cdea7c0 4825{
182446d0 4826 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
104f3928 4827 u64 val;
791badbd 4828 int name;
86ae53e1 4829 enum res_type type;
8c7c6e34
KH
4830
4831 type = MEMFILE_TYPE(cft->private);
4832 name = MEMFILE_ATTR(cft->private);
af36f906 4833
8c7c6e34
KH
4834 switch (type) {
4835 case _MEM:
104f3928 4836 if (name == RES_USAGE)
c0ff4b85 4837 val = mem_cgroup_usage(memcg, false);
104f3928 4838 else
c0ff4b85 4839 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
4840 break;
4841 case _MEMSWAP:
104f3928 4842 if (name == RES_USAGE)
c0ff4b85 4843 val = mem_cgroup_usage(memcg, true);
104f3928 4844 else
c0ff4b85 4845 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 4846 break;
510fc4e1
GC
4847 case _KMEM:
4848 val = res_counter_read_u64(&memcg->kmem, name);
4849 break;
8c7c6e34
KH
4850 default:
4851 BUG();
8c7c6e34 4852 }
af36f906 4853
791badbd 4854 return val;
8cdea7c0 4855}
510fc4e1 4856
510fc4e1 4857#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
4858/* should be called with activate_kmem_mutex held */
4859static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4860 unsigned long long limit)
4861{
4862 int err = 0;
4863 int memcg_id;
4864
4865 if (memcg_kmem_is_active(memcg))
4866 return 0;
4867
4868 /*
4869 * We are going to allocate memory for data shared by all memory
4870 * cgroups so let's stop accounting here.
4871 */
4872 memcg_stop_kmem_account();
4873
510fc4e1
GC
4874 /*
4875 * For simplicity, we won't allow this to be disabled. It also can't
4876 * be changed if the cgroup has children already, or if tasks had
4877 * already joined.
4878 *
4879 * If tasks join before we set the limit, a person looking at
4880 * kmem.usage_in_bytes will have no way to determine when it took
4881 * place, which makes the value quite meaningless.
4882 *
4883 * After it first became limited, changes in the value of the limit are
4884 * of course permitted.
510fc4e1 4885 */
0999821b 4886 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
4887 if (cgroup_has_tasks(memcg->css.cgroup) ||
4888 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
4889 err = -EBUSY;
4890 mutex_unlock(&memcg_create_mutex);
4891 if (err)
4892 goto out;
510fc4e1 4893
d6441637
VD
4894 memcg_id = ida_simple_get(&kmem_limited_groups,
4895 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4896 if (memcg_id < 0) {
4897 err = memcg_id;
4898 goto out;
4899 }
4900
4901 /*
4902 * Make sure we have enough space for this cgroup in each root cache's
4903 * memcg_params.
4904 */
bd673145 4905 mutex_lock(&memcg_slab_mutex);
d6441637 4906 err = memcg_update_all_caches(memcg_id + 1);
bd673145 4907 mutex_unlock(&memcg_slab_mutex);
d6441637
VD
4908 if (err)
4909 goto out_rmid;
4910
4911 memcg->kmemcg_id = memcg_id;
4912 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
4913
4914 /*
4915 * We couldn't have accounted to this cgroup, because it hasn't got the
4916 * active bit set yet, so this should succeed.
4917 */
4918 err = res_counter_set_limit(&memcg->kmem, limit);
4919 VM_BUG_ON(err);
4920
4921 static_key_slow_inc(&memcg_kmem_enabled_key);
4922 /*
4923 * Setting the active bit after enabling static branching will
4924 * guarantee no one starts accounting before all call sites are
4925 * patched.
4926 */
4927 memcg_kmem_set_active(memcg);
510fc4e1 4928out:
d6441637
VD
4929 memcg_resume_kmem_account();
4930 return err;
4931
4932out_rmid:
4933 ida_simple_remove(&kmem_limited_groups, memcg_id);
4934 goto out;
4935}
4936
4937static int memcg_activate_kmem(struct mem_cgroup *memcg,
4938 unsigned long long limit)
4939{
4940 int ret;
4941
4942 mutex_lock(&activate_kmem_mutex);
4943 ret = __memcg_activate_kmem(memcg, limit);
4944 mutex_unlock(&activate_kmem_mutex);
4945 return ret;
4946}
4947
4948static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4949 unsigned long long val)
4950{
4951 int ret;
4952
4953 if (!memcg_kmem_is_active(memcg))
4954 ret = memcg_activate_kmem(memcg, val);
4955 else
4956 ret = res_counter_set_limit(&memcg->kmem, val);
510fc4e1
GC
4957 return ret;
4958}
4959
55007d84 4960static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 4961{
55007d84 4962 int ret = 0;
510fc4e1 4963 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 4964
d6441637
VD
4965 if (!parent)
4966 return 0;
55007d84 4967
d6441637 4968 mutex_lock(&activate_kmem_mutex);
55007d84 4969 /*
d6441637
VD
4970 * If the parent cgroup is not kmem-active now, it cannot be activated
4971 * after this point, because it has at least one child already.
55007d84 4972 */
d6441637
VD
4973 if (memcg_kmem_is_active(parent))
4974 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4975 mutex_unlock(&activate_kmem_mutex);
55007d84 4976 return ret;
510fc4e1 4977}
d6441637
VD
4978#else
4979static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4980 unsigned long long val)
4981{
4982 return -EINVAL;
4983}
6d043990 4984#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 4985
628f4235
KH
4986/*
4987 * The user of this function is...
4988 * RES_LIMIT.
4989 */
451af504
TH
4990static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4991 char *buf, size_t nbytes, loff_t off)
8cdea7c0 4992{
451af504 4993 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
86ae53e1
GC
4994 enum res_type type;
4995 int name;
628f4235
KH
4996 unsigned long long val;
4997 int ret;
4998
451af504
TH
4999 buf = strstrip(buf);
5000 type = MEMFILE_TYPE(of_cft(of)->private);
5001 name = MEMFILE_ATTR(of_cft(of)->private);
af36f906 5002
8c7c6e34 5003 switch (name) {
628f4235 5004 case RES_LIMIT:
4b3bde4c
BS
5005 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5006 ret = -EINVAL;
5007 break;
5008 }
628f4235 5009 /* This function does all necessary parse...reuse it */
451af504 5010 ret = res_counter_memparse_write_strategy(buf, &val);
8c7c6e34
KH
5011 if (ret)
5012 break;
5013 if (type == _MEM)
628f4235 5014 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5015 else if (type == _MEMSWAP)
8c7c6e34 5016 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5017 else if (type == _KMEM)
d6441637 5018 ret = memcg_update_kmem_limit(memcg, val);
510fc4e1
GC
5019 else
5020 return -EINVAL;
628f4235 5021 break;
296c81d8 5022 case RES_SOFT_LIMIT:
451af504 5023 ret = res_counter_memparse_write_strategy(buf, &val);
296c81d8
BS
5024 if (ret)
5025 break;
5026 /*
5027 * For memsw, soft limits are hard to implement in terms
5028 * of semantics, for now, we support soft limits for
5029 * control without swap
5030 */
5031 if (type == _MEM)
5032 ret = res_counter_set_soft_limit(&memcg->res, val);
5033 else
5034 ret = -EINVAL;
5035 break;
628f4235
KH
5036 default:
5037 ret = -EINVAL; /* should be BUG() ? */
5038 break;
5039 }
451af504 5040 return ret ?: nbytes;
8cdea7c0
BS
5041}
5042
fee7b548
KH
5043static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5044 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5045{
fee7b548
KH
5046 unsigned long long min_limit, min_memsw_limit, tmp;
5047
5048 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5049 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5050 if (!memcg->use_hierarchy)
5051 goto out;
5052
5c9d535b
TH
5053 while (memcg->css.parent) {
5054 memcg = mem_cgroup_from_css(memcg->css.parent);
fee7b548
KH
5055 if (!memcg->use_hierarchy)
5056 break;
5057 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5058 min_limit = min(min_limit, tmp);
5059 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5060 min_memsw_limit = min(min_memsw_limit, tmp);
5061 }
5062out:
5063 *mem_limit = min_limit;
5064 *memsw_limit = min_memsw_limit;
fee7b548
KH
5065}
5066
6770c64e
TH
5067static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
5068 size_t nbytes, loff_t off)
c84872e1 5069{
6770c64e 5070 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
86ae53e1
GC
5071 int name;
5072 enum res_type type;
c84872e1 5073
6770c64e
TH
5074 type = MEMFILE_TYPE(of_cft(of)->private);
5075 name = MEMFILE_ATTR(of_cft(of)->private);
af36f906 5076
8c7c6e34 5077 switch (name) {
29f2a4da 5078 case RES_MAX_USAGE:
8c7c6e34 5079 if (type == _MEM)
c0ff4b85 5080 res_counter_reset_max(&memcg->res);
510fc4e1 5081 else if (type == _MEMSWAP)
c0ff4b85 5082 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5083 else if (type == _KMEM)
5084 res_counter_reset_max(&memcg->kmem);
5085 else
5086 return -EINVAL;
29f2a4da
PE
5087 break;
5088 case RES_FAILCNT:
8c7c6e34 5089 if (type == _MEM)
c0ff4b85 5090 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5091 else if (type == _MEMSWAP)
c0ff4b85 5092 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5093 else if (type == _KMEM)
5094 res_counter_reset_failcnt(&memcg->kmem);
5095 else
5096 return -EINVAL;
29f2a4da
PE
5097 break;
5098 }
f64c3f54 5099
6770c64e 5100 return nbytes;
c84872e1
PE
5101}
5102
182446d0 5103static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5104 struct cftype *cft)
5105{
182446d0 5106 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5107}
5108
02491447 5109#ifdef CONFIG_MMU
182446d0 5110static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5111 struct cftype *cft, u64 val)
5112{
182446d0 5113 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5114
5115 if (val >= (1 << NR_MOVE_TYPE))
5116 return -EINVAL;
ee5e8472 5117
7dc74be0 5118 /*
ee5e8472
GC
5119 * No kind of locking is needed in here, because ->can_attach() will
5120 * check this value once in the beginning of the process, and then carry
5121 * on with stale data. This means that changes to this value will only
5122 * affect task migrations starting after the change.
7dc74be0 5123 */
c0ff4b85 5124 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5125 return 0;
5126}
02491447 5127#else
182446d0 5128static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5129 struct cftype *cft, u64 val)
5130{
5131 return -ENOSYS;
5132}
5133#endif
7dc74be0 5134
406eb0c9 5135#ifdef CONFIG_NUMA
2da8ca82 5136static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 5137{
25485de6
GT
5138 struct numa_stat {
5139 const char *name;
5140 unsigned int lru_mask;
5141 };
5142
5143 static const struct numa_stat stats[] = {
5144 { "total", LRU_ALL },
5145 { "file", LRU_ALL_FILE },
5146 { "anon", LRU_ALL_ANON },
5147 { "unevictable", BIT(LRU_UNEVICTABLE) },
5148 };
5149 const struct numa_stat *stat;
406eb0c9 5150 int nid;
25485de6 5151 unsigned long nr;
2da8ca82 5152 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 5153
25485de6
GT
5154 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5155 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5156 seq_printf(m, "%s=%lu", stat->name, nr);
5157 for_each_node_state(nid, N_MEMORY) {
5158 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5159 stat->lru_mask);
5160 seq_printf(m, " N%d=%lu", nid, nr);
5161 }
5162 seq_putc(m, '\n');
406eb0c9 5163 }
406eb0c9 5164
071aee13
YH
5165 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5166 struct mem_cgroup *iter;
5167
5168 nr = 0;
5169 for_each_mem_cgroup_tree(iter, memcg)
5170 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5171 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5172 for_each_node_state(nid, N_MEMORY) {
5173 nr = 0;
5174 for_each_mem_cgroup_tree(iter, memcg)
5175 nr += mem_cgroup_node_nr_lru_pages(
5176 iter, nid, stat->lru_mask);
5177 seq_printf(m, " N%d=%lu", nid, nr);
5178 }
5179 seq_putc(m, '\n');
406eb0c9 5180 }
406eb0c9 5181
406eb0c9
YH
5182 return 0;
5183}
5184#endif /* CONFIG_NUMA */
5185
af7c4b0e
JW
5186static inline void mem_cgroup_lru_names_not_uptodate(void)
5187{
5188 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5189}
5190
2da8ca82 5191static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 5192{
2da8ca82 5193 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
5194 struct mem_cgroup *mi;
5195 unsigned int i;
406eb0c9 5196
af7c4b0e 5197 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5198 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5199 continue;
af7c4b0e
JW
5200 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5201 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5202 }
7b854121 5203
af7c4b0e
JW
5204 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5205 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5206 mem_cgroup_read_events(memcg, i));
5207
5208 for (i = 0; i < NR_LRU_LISTS; i++)
5209 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5210 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5211
14067bb3 5212 /* Hierarchical information */
fee7b548
KH
5213 {
5214 unsigned long long limit, memsw_limit;
d79154bb 5215 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5216 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5217 if (do_swap_account)
78ccf5b5
JW
5218 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5219 memsw_limit);
fee7b548 5220 }
7f016ee8 5221
af7c4b0e
JW
5222 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5223 long long val = 0;
5224
bff6bb83 5225 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5226 continue;
af7c4b0e
JW
5227 for_each_mem_cgroup_tree(mi, memcg)
5228 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5229 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5230 }
5231
5232 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5233 unsigned long long val = 0;
5234
5235 for_each_mem_cgroup_tree(mi, memcg)
5236 val += mem_cgroup_read_events(mi, i);
5237 seq_printf(m, "total_%s %llu\n",
5238 mem_cgroup_events_names[i], val);
5239 }
5240
5241 for (i = 0; i < NR_LRU_LISTS; i++) {
5242 unsigned long long val = 0;
5243
5244 for_each_mem_cgroup_tree(mi, memcg)
5245 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5246 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5247 }
14067bb3 5248
7f016ee8 5249#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5250 {
5251 int nid, zid;
5252 struct mem_cgroup_per_zone *mz;
89abfab1 5253 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5254 unsigned long recent_rotated[2] = {0, 0};
5255 unsigned long recent_scanned[2] = {0, 0};
5256
5257 for_each_online_node(nid)
5258 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 5259 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 5260 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5261
89abfab1
HD
5262 recent_rotated[0] += rstat->recent_rotated[0];
5263 recent_rotated[1] += rstat->recent_rotated[1];
5264 recent_scanned[0] += rstat->recent_scanned[0];
5265 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5266 }
78ccf5b5
JW
5267 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5268 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5269 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5270 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5271 }
5272#endif
5273
d2ceb9b7
KH
5274 return 0;
5275}
5276
182446d0
TH
5277static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5278 struct cftype *cft)
a7885eb8 5279{
182446d0 5280 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5281
1f4c025b 5282 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5283}
5284
182446d0
TH
5285static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5286 struct cftype *cft, u64 val)
a7885eb8 5287{
182446d0 5288 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5289
3dae7fec 5290 if (val > 100)
a7885eb8
KM
5291 return -EINVAL;
5292
14208b0e 5293 if (css->parent)
3dae7fec
JW
5294 memcg->swappiness = val;
5295 else
5296 vm_swappiness = val;
068b38c1 5297
a7885eb8
KM
5298 return 0;
5299}
5300
2e72b634
KS
5301static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5302{
5303 struct mem_cgroup_threshold_ary *t;
5304 u64 usage;
5305 int i;
5306
5307 rcu_read_lock();
5308 if (!swap)
2c488db2 5309 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5310 else
2c488db2 5311 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5312
5313 if (!t)
5314 goto unlock;
5315
5316 usage = mem_cgroup_usage(memcg, swap);
5317
5318 /*
748dad36 5319 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5320 * If it's not true, a threshold was crossed after last
5321 * call of __mem_cgroup_threshold().
5322 */
5407a562 5323 i = t->current_threshold;
2e72b634
KS
5324
5325 /*
5326 * Iterate backward over array of thresholds starting from
5327 * current_threshold and check if a threshold is crossed.
5328 * If none of thresholds below usage is crossed, we read
5329 * only one element of the array here.
5330 */
5331 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5332 eventfd_signal(t->entries[i].eventfd, 1);
5333
5334 /* i = current_threshold + 1 */
5335 i++;
5336
5337 /*
5338 * Iterate forward over array of thresholds starting from
5339 * current_threshold+1 and check if a threshold is crossed.
5340 * If none of thresholds above usage is crossed, we read
5341 * only one element of the array here.
5342 */
5343 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5344 eventfd_signal(t->entries[i].eventfd, 1);
5345
5346 /* Update current_threshold */
5407a562 5347 t->current_threshold = i - 1;
2e72b634
KS
5348unlock:
5349 rcu_read_unlock();
5350}
5351
5352static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5353{
ad4ca5f4
KS
5354 while (memcg) {
5355 __mem_cgroup_threshold(memcg, false);
5356 if (do_swap_account)
5357 __mem_cgroup_threshold(memcg, true);
5358
5359 memcg = parent_mem_cgroup(memcg);
5360 }
2e72b634
KS
5361}
5362
5363static int compare_thresholds(const void *a, const void *b)
5364{
5365 const struct mem_cgroup_threshold *_a = a;
5366 const struct mem_cgroup_threshold *_b = b;
5367
2bff24a3
GT
5368 if (_a->threshold > _b->threshold)
5369 return 1;
5370
5371 if (_a->threshold < _b->threshold)
5372 return -1;
5373
5374 return 0;
2e72b634
KS
5375}
5376
c0ff4b85 5377static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5378{
5379 struct mem_cgroup_eventfd_list *ev;
5380
2bcf2e92
MH
5381 spin_lock(&memcg_oom_lock);
5382
c0ff4b85 5383 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 5384 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
5385
5386 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5387 return 0;
5388}
5389
c0ff4b85 5390static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5391{
7d74b06f
KH
5392 struct mem_cgroup *iter;
5393
c0ff4b85 5394 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5395 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5396}
5397
59b6f873 5398static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5399 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5400{
2c488db2
KS
5401 struct mem_cgroup_thresholds *thresholds;
5402 struct mem_cgroup_threshold_ary *new;
2e72b634 5403 u64 threshold, usage;
2c488db2 5404 int i, size, ret;
2e72b634
KS
5405
5406 ret = res_counter_memparse_write_strategy(args, &threshold);
5407 if (ret)
5408 return ret;
5409
5410 mutex_lock(&memcg->thresholds_lock);
2c488db2 5411
2e72b634 5412 if (type == _MEM)
2c488db2 5413 thresholds = &memcg->thresholds;
2e72b634 5414 else if (type == _MEMSWAP)
2c488db2 5415 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5416 else
5417 BUG();
5418
5419 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5420
5421 /* Check if a threshold crossed before adding a new one */
2c488db2 5422 if (thresholds->primary)
2e72b634
KS
5423 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5424
2c488db2 5425 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5426
5427 /* Allocate memory for new array of thresholds */
2c488db2 5428 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5429 GFP_KERNEL);
2c488db2 5430 if (!new) {
2e72b634
KS
5431 ret = -ENOMEM;
5432 goto unlock;
5433 }
2c488db2 5434 new->size = size;
2e72b634
KS
5435
5436 /* Copy thresholds (if any) to new array */
2c488db2
KS
5437 if (thresholds->primary) {
5438 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5439 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5440 }
5441
2e72b634 5442 /* Add new threshold */
2c488db2
KS
5443 new->entries[size - 1].eventfd = eventfd;
5444 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5445
5446 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5447 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5448 compare_thresholds, NULL);
5449
5450 /* Find current threshold */
2c488db2 5451 new->current_threshold = -1;
2e72b634 5452 for (i = 0; i < size; i++) {
748dad36 5453 if (new->entries[i].threshold <= usage) {
2e72b634 5454 /*
2c488db2
KS
5455 * new->current_threshold will not be used until
5456 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5457 * it here.
5458 */
2c488db2 5459 ++new->current_threshold;
748dad36
SZ
5460 } else
5461 break;
2e72b634
KS
5462 }
5463
2c488db2
KS
5464 /* Free old spare buffer and save old primary buffer as spare */
5465 kfree(thresholds->spare);
5466 thresholds->spare = thresholds->primary;
5467
5468 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5469
907860ed 5470 /* To be sure that nobody uses thresholds */
2e72b634
KS
5471 synchronize_rcu();
5472
2e72b634
KS
5473unlock:
5474 mutex_unlock(&memcg->thresholds_lock);
5475
5476 return ret;
5477}
5478
59b6f873 5479static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5480 struct eventfd_ctx *eventfd, const char *args)
5481{
59b6f873 5482 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5483}
5484
59b6f873 5485static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5486 struct eventfd_ctx *eventfd, const char *args)
5487{
59b6f873 5488 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5489}
5490
59b6f873 5491static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5492 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5493{
2c488db2
KS
5494 struct mem_cgroup_thresholds *thresholds;
5495 struct mem_cgroup_threshold_ary *new;
2e72b634 5496 u64 usage;
2c488db2 5497 int i, j, size;
2e72b634
KS
5498
5499 mutex_lock(&memcg->thresholds_lock);
5500 if (type == _MEM)
2c488db2 5501 thresholds = &memcg->thresholds;
2e72b634 5502 else if (type == _MEMSWAP)
2c488db2 5503 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5504 else
5505 BUG();
5506
371528ca
AV
5507 if (!thresholds->primary)
5508 goto unlock;
5509
2e72b634
KS
5510 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5511
5512 /* Check if a threshold crossed before removing */
5513 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5514
5515 /* Calculate new number of threshold */
2c488db2
KS
5516 size = 0;
5517 for (i = 0; i < thresholds->primary->size; i++) {
5518 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5519 size++;
5520 }
5521
2c488db2 5522 new = thresholds->spare;
907860ed 5523
2e72b634
KS
5524 /* Set thresholds array to NULL if we don't have thresholds */
5525 if (!size) {
2c488db2
KS
5526 kfree(new);
5527 new = NULL;
907860ed 5528 goto swap_buffers;
2e72b634
KS
5529 }
5530
2c488db2 5531 new->size = size;
2e72b634
KS
5532
5533 /* Copy thresholds and find current threshold */
2c488db2
KS
5534 new->current_threshold = -1;
5535 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5536 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5537 continue;
5538
2c488db2 5539 new->entries[j] = thresholds->primary->entries[i];
748dad36 5540 if (new->entries[j].threshold <= usage) {
2e72b634 5541 /*
2c488db2 5542 * new->current_threshold will not be used
2e72b634
KS
5543 * until rcu_assign_pointer(), so it's safe to increment
5544 * it here.
5545 */
2c488db2 5546 ++new->current_threshold;
2e72b634
KS
5547 }
5548 j++;
5549 }
5550
907860ed 5551swap_buffers:
2c488db2
KS
5552 /* Swap primary and spare array */
5553 thresholds->spare = thresholds->primary;
8c757763
SZ
5554 /* If all events are unregistered, free the spare array */
5555 if (!new) {
5556 kfree(thresholds->spare);
5557 thresholds->spare = NULL;
5558 }
5559
2c488db2 5560 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5561
907860ed 5562 /* To be sure that nobody uses thresholds */
2e72b634 5563 synchronize_rcu();
371528ca 5564unlock:
2e72b634 5565 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5566}
c1e862c1 5567
59b6f873 5568static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5569 struct eventfd_ctx *eventfd)
5570{
59b6f873 5571 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5572}
5573
59b6f873 5574static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5575 struct eventfd_ctx *eventfd)
5576{
59b6f873 5577 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5578}
5579
59b6f873 5580static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5581 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5582{
9490ff27 5583 struct mem_cgroup_eventfd_list *event;
9490ff27 5584
9490ff27
KH
5585 event = kmalloc(sizeof(*event), GFP_KERNEL);
5586 if (!event)
5587 return -ENOMEM;
5588
1af8efe9 5589 spin_lock(&memcg_oom_lock);
9490ff27
KH
5590
5591 event->eventfd = eventfd;
5592 list_add(&event->list, &memcg->oom_notify);
5593
5594 /* already in OOM ? */
79dfdacc 5595 if (atomic_read(&memcg->under_oom))
9490ff27 5596 eventfd_signal(eventfd, 1);
1af8efe9 5597 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5598
5599 return 0;
5600}
5601
59b6f873 5602static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5603 struct eventfd_ctx *eventfd)
9490ff27 5604{
9490ff27 5605 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5606
1af8efe9 5607 spin_lock(&memcg_oom_lock);
9490ff27 5608
c0ff4b85 5609 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5610 if (ev->eventfd == eventfd) {
5611 list_del(&ev->list);
5612 kfree(ev);
5613 }
5614 }
5615
1af8efe9 5616 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5617}
5618
2da8ca82 5619static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 5620{
2da8ca82 5621 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 5622
791badbd
TH
5623 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5624 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
5625 return 0;
5626}
5627
182446d0 5628static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5629 struct cftype *cft, u64 val)
5630{
182446d0 5631 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
5632
5633 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 5634 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5635 return -EINVAL;
5636
c0ff4b85 5637 memcg->oom_kill_disable = val;
4d845ebf 5638 if (!val)
c0ff4b85 5639 memcg_oom_recover(memcg);
3dae7fec 5640
3c11ecf4
KH
5641 return 0;
5642}
5643
c255a458 5644#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5645static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5646{
55007d84
GC
5647 int ret;
5648
2633d7a0 5649 memcg->kmemcg_id = -1;
55007d84
GC
5650 ret = memcg_propagate_kmem(memcg);
5651 if (ret)
5652 return ret;
2633d7a0 5653
1d62e436 5654 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5655}
e5671dfa 5656
10d5ebf4 5657static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5658{
1d62e436 5659 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5660}
5661
5662static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5663{
5664 if (!memcg_kmem_is_active(memcg))
5665 return;
5666
5667 /*
5668 * kmem charges can outlive the cgroup. In the case of slab
5669 * pages, for instance, a page contain objects from various
5670 * processes. As we prevent from taking a reference for every
5671 * such allocation we have to be careful when doing uncharge
5672 * (see memcg_uncharge_kmem) and here during offlining.
5673 *
5674 * The idea is that that only the _last_ uncharge which sees
5675 * the dead memcg will drop the last reference. An additional
5676 * reference is taken here before the group is marked dead
5677 * which is then paired with css_put during uncharge resp. here.
5678 *
5679 * Although this might sound strange as this path is called from
ec903c0c
TH
5680 * css_offline() when the referencemight have dropped down to 0 and
5681 * shouldn't be incremented anymore (css_tryget_online() would
5682 * fail) we do not have other options because of the kmem
5683 * allocations lifetime.
10d5ebf4
LZ
5684 */
5685 css_get(&memcg->css);
7de37682
GC
5686
5687 memcg_kmem_mark_dead(memcg);
5688
5689 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5690 return;
5691
7de37682 5692 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5693 css_put(&memcg->css);
d1a4c0b3 5694}
e5671dfa 5695#else
cbe128e3 5696static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5697{
5698 return 0;
5699}
d1a4c0b3 5700
10d5ebf4
LZ
5701static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5702{
5703}
5704
5705static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5706{
5707}
e5671dfa
GC
5708#endif
5709
3bc942f3
TH
5710/*
5711 * DO NOT USE IN NEW FILES.
5712 *
5713 * "cgroup.event_control" implementation.
5714 *
5715 * This is way over-engineered. It tries to support fully configurable
5716 * events for each user. Such level of flexibility is completely
5717 * unnecessary especially in the light of the planned unified hierarchy.
5718 *
5719 * Please deprecate this and replace with something simpler if at all
5720 * possible.
5721 */
5722
79bd9814
TH
5723/*
5724 * Unregister event and free resources.
5725 *
5726 * Gets called from workqueue.
5727 */
3bc942f3 5728static void memcg_event_remove(struct work_struct *work)
79bd9814 5729{
3bc942f3
TH
5730 struct mem_cgroup_event *event =
5731 container_of(work, struct mem_cgroup_event, remove);
59b6f873 5732 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5733
5734 remove_wait_queue(event->wqh, &event->wait);
5735
59b6f873 5736 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
5737
5738 /* Notify userspace the event is going away. */
5739 eventfd_signal(event->eventfd, 1);
5740
5741 eventfd_ctx_put(event->eventfd);
5742 kfree(event);
59b6f873 5743 css_put(&memcg->css);
79bd9814
TH
5744}
5745
5746/*
5747 * Gets called on POLLHUP on eventfd when user closes it.
5748 *
5749 * Called with wqh->lock held and interrupts disabled.
5750 */
3bc942f3
TH
5751static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5752 int sync, void *key)
79bd9814 5753{
3bc942f3
TH
5754 struct mem_cgroup_event *event =
5755 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 5756 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5757 unsigned long flags = (unsigned long)key;
5758
5759 if (flags & POLLHUP) {
5760 /*
5761 * If the event has been detached at cgroup removal, we
5762 * can simply return knowing the other side will cleanup
5763 * for us.
5764 *
5765 * We can't race against event freeing since the other
5766 * side will require wqh->lock via remove_wait_queue(),
5767 * which we hold.
5768 */
fba94807 5769 spin_lock(&memcg->event_list_lock);
79bd9814
TH
5770 if (!list_empty(&event->list)) {
5771 list_del_init(&event->list);
5772 /*
5773 * We are in atomic context, but cgroup_event_remove()
5774 * may sleep, so we have to call it in workqueue.
5775 */
5776 schedule_work(&event->remove);
5777 }
fba94807 5778 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5779 }
5780
5781 return 0;
5782}
5783
3bc942f3 5784static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
5785 wait_queue_head_t *wqh, poll_table *pt)
5786{
3bc942f3
TH
5787 struct mem_cgroup_event *event =
5788 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
5789
5790 event->wqh = wqh;
5791 add_wait_queue(wqh, &event->wait);
5792}
5793
5794/*
3bc942f3
TH
5795 * DO NOT USE IN NEW FILES.
5796 *
79bd9814
TH
5797 * Parse input and register new cgroup event handler.
5798 *
5799 * Input must be in format '<event_fd> <control_fd> <args>'.
5800 * Interpretation of args is defined by control file implementation.
5801 */
451af504
TH
5802static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5803 char *buf, size_t nbytes, loff_t off)
79bd9814 5804{
451af504 5805 struct cgroup_subsys_state *css = of_css(of);
fba94807 5806 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5807 struct mem_cgroup_event *event;
79bd9814
TH
5808 struct cgroup_subsys_state *cfile_css;
5809 unsigned int efd, cfd;
5810 struct fd efile;
5811 struct fd cfile;
fba94807 5812 const char *name;
79bd9814
TH
5813 char *endp;
5814 int ret;
5815
451af504
TH
5816 buf = strstrip(buf);
5817
5818 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5819 if (*endp != ' ')
5820 return -EINVAL;
451af504 5821 buf = endp + 1;
79bd9814 5822
451af504 5823 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5824 if ((*endp != ' ') && (*endp != '\0'))
5825 return -EINVAL;
451af504 5826 buf = endp + 1;
79bd9814
TH
5827
5828 event = kzalloc(sizeof(*event), GFP_KERNEL);
5829 if (!event)
5830 return -ENOMEM;
5831
59b6f873 5832 event->memcg = memcg;
79bd9814 5833 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
5834 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5835 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5836 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
5837
5838 efile = fdget(efd);
5839 if (!efile.file) {
5840 ret = -EBADF;
5841 goto out_kfree;
5842 }
5843
5844 event->eventfd = eventfd_ctx_fileget(efile.file);
5845 if (IS_ERR(event->eventfd)) {
5846 ret = PTR_ERR(event->eventfd);
5847 goto out_put_efile;
5848 }
5849
5850 cfile = fdget(cfd);
5851 if (!cfile.file) {
5852 ret = -EBADF;
5853 goto out_put_eventfd;
5854 }
5855
5856 /* the process need read permission on control file */
5857 /* AV: shouldn't we check that it's been opened for read instead? */
5858 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5859 if (ret < 0)
5860 goto out_put_cfile;
5861
fba94807
TH
5862 /*
5863 * Determine the event callbacks and set them in @event. This used
5864 * to be done via struct cftype but cgroup core no longer knows
5865 * about these events. The following is crude but the whole thing
5866 * is for compatibility anyway.
3bc942f3
TH
5867 *
5868 * DO NOT ADD NEW FILES.
fba94807
TH
5869 */
5870 name = cfile.file->f_dentry->d_name.name;
5871
5872 if (!strcmp(name, "memory.usage_in_bytes")) {
5873 event->register_event = mem_cgroup_usage_register_event;
5874 event->unregister_event = mem_cgroup_usage_unregister_event;
5875 } else if (!strcmp(name, "memory.oom_control")) {
5876 event->register_event = mem_cgroup_oom_register_event;
5877 event->unregister_event = mem_cgroup_oom_unregister_event;
5878 } else if (!strcmp(name, "memory.pressure_level")) {
5879 event->register_event = vmpressure_register_event;
5880 event->unregister_event = vmpressure_unregister_event;
5881 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
5882 event->register_event = memsw_cgroup_usage_register_event;
5883 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
5884 } else {
5885 ret = -EINVAL;
5886 goto out_put_cfile;
5887 }
5888
79bd9814 5889 /*
b5557c4c
TH
5890 * Verify @cfile should belong to @css. Also, remaining events are
5891 * automatically removed on cgroup destruction but the removal is
5892 * asynchronous, so take an extra ref on @css.
79bd9814 5893 */
ec903c0c
TH
5894 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5895 &memory_cgrp_subsys);
79bd9814 5896 ret = -EINVAL;
5a17f543 5897 if (IS_ERR(cfile_css))
79bd9814 5898 goto out_put_cfile;
5a17f543
TH
5899 if (cfile_css != css) {
5900 css_put(cfile_css);
79bd9814 5901 goto out_put_cfile;
5a17f543 5902 }
79bd9814 5903
451af504 5904 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
5905 if (ret)
5906 goto out_put_css;
5907
5908 efile.file->f_op->poll(efile.file, &event->pt);
5909
fba94807
TH
5910 spin_lock(&memcg->event_list_lock);
5911 list_add(&event->list, &memcg->event_list);
5912 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5913
5914 fdput(cfile);
5915 fdput(efile);
5916
451af504 5917 return nbytes;
79bd9814
TH
5918
5919out_put_css:
b5557c4c 5920 css_put(css);
79bd9814
TH
5921out_put_cfile:
5922 fdput(cfile);
5923out_put_eventfd:
5924 eventfd_ctx_put(event->eventfd);
5925out_put_efile:
5926 fdput(efile);
5927out_kfree:
5928 kfree(event);
5929
5930 return ret;
5931}
5932
8cdea7c0
BS
5933static struct cftype mem_cgroup_files[] = {
5934 {
0eea1030 5935 .name = "usage_in_bytes",
8c7c6e34 5936 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5937 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5938 },
c84872e1
PE
5939 {
5940 .name = "max_usage_in_bytes",
8c7c6e34 5941 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5942 .write = mem_cgroup_reset,
791badbd 5943 .read_u64 = mem_cgroup_read_u64,
c84872e1 5944 },
8cdea7c0 5945 {
0eea1030 5946 .name = "limit_in_bytes",
8c7c6e34 5947 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5948 .write = mem_cgroup_write,
791badbd 5949 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5950 },
296c81d8
BS
5951 {
5952 .name = "soft_limit_in_bytes",
5953 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5954 .write = mem_cgroup_write,
791badbd 5955 .read_u64 = mem_cgroup_read_u64,
296c81d8 5956 },
8cdea7c0
BS
5957 {
5958 .name = "failcnt",
8c7c6e34 5959 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5960 .write = mem_cgroup_reset,
791badbd 5961 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5962 },
d2ceb9b7
KH
5963 {
5964 .name = "stat",
2da8ca82 5965 .seq_show = memcg_stat_show,
d2ceb9b7 5966 },
c1e862c1
KH
5967 {
5968 .name = "force_empty",
6770c64e 5969 .write = mem_cgroup_force_empty_write,
c1e862c1 5970 },
18f59ea7
BS
5971 {
5972 .name = "use_hierarchy",
5973 .write_u64 = mem_cgroup_hierarchy_write,
5974 .read_u64 = mem_cgroup_hierarchy_read,
5975 },
79bd9814 5976 {
3bc942f3 5977 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5978 .write = memcg_write_event_control,
79bd9814
TH
5979 .flags = CFTYPE_NO_PREFIX,
5980 .mode = S_IWUGO,
5981 },
a7885eb8
KM
5982 {
5983 .name = "swappiness",
5984 .read_u64 = mem_cgroup_swappiness_read,
5985 .write_u64 = mem_cgroup_swappiness_write,
5986 },
7dc74be0
DN
5987 {
5988 .name = "move_charge_at_immigrate",
5989 .read_u64 = mem_cgroup_move_charge_read,
5990 .write_u64 = mem_cgroup_move_charge_write,
5991 },
9490ff27
KH
5992 {
5993 .name = "oom_control",
2da8ca82 5994 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5995 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5996 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5997 },
70ddf637
AV
5998 {
5999 .name = "pressure_level",
70ddf637 6000 },
406eb0c9
YH
6001#ifdef CONFIG_NUMA
6002 {
6003 .name = "numa_stat",
2da8ca82 6004 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
6005 },
6006#endif
510fc4e1
GC
6007#ifdef CONFIG_MEMCG_KMEM
6008 {
6009 .name = "kmem.limit_in_bytes",
6010 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 6011 .write = mem_cgroup_write,
791badbd 6012 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6013 },
6014 {
6015 .name = "kmem.usage_in_bytes",
6016 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 6017 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6018 },
6019 {
6020 .name = "kmem.failcnt",
6021 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 6022 .write = mem_cgroup_reset,
791badbd 6023 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6024 },
6025 {
6026 .name = "kmem.max_usage_in_bytes",
6027 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 6028 .write = mem_cgroup_reset,
791badbd 6029 .read_u64 = mem_cgroup_read_u64,
510fc4e1 6030 },
749c5415
GC
6031#ifdef CONFIG_SLABINFO
6032 {
6033 .name = "kmem.slabinfo",
2da8ca82 6034 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
6035 },
6036#endif
8c7c6e34 6037#endif
6bc10349 6038 { }, /* terminate */
af36f906 6039};
8c7c6e34 6040
2d11085e
MH
6041#ifdef CONFIG_MEMCG_SWAP
6042static struct cftype memsw_cgroup_files[] = {
6043 {
6044 .name = "memsw.usage_in_bytes",
6045 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 6046 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6047 },
6048 {
6049 .name = "memsw.max_usage_in_bytes",
6050 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 6051 .write = mem_cgroup_reset,
791badbd 6052 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6053 },
6054 {
6055 .name = "memsw.limit_in_bytes",
6056 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 6057 .write = mem_cgroup_write,
791badbd 6058 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6059 },
6060 {
6061 .name = "memsw.failcnt",
6062 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 6063 .write = mem_cgroup_reset,
791badbd 6064 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6065 },
6066 { }, /* terminate */
6067};
6068#endif
c0ff4b85 6069static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6070{
6071 struct mem_cgroup_per_node *pn;
1ecaab2b 6072 struct mem_cgroup_per_zone *mz;
41e3355d 6073 int zone, tmp = node;
1ecaab2b
KH
6074 /*
6075 * This routine is called against possible nodes.
6076 * But it's BUG to call kmalloc() against offline node.
6077 *
6078 * TODO: this routine can waste much memory for nodes which will
6079 * never be onlined. It's better to use memory hotplug callback
6080 * function.
6081 */
41e3355d
KH
6082 if (!node_state(node, N_NORMAL_MEMORY))
6083 tmp = -1;
17295c88 6084 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6085 if (!pn)
6086 return 1;
1ecaab2b 6087
1ecaab2b
KH
6088 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6089 mz = &pn->zoneinfo[zone];
bea8c150 6090 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6091 mz->usage_in_excess = 0;
6092 mz->on_tree = false;
d79154bb 6093 mz->memcg = memcg;
1ecaab2b 6094 }
54f72fe0 6095 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6096 return 0;
6097}
6098
c0ff4b85 6099static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6100{
54f72fe0 6101 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6102}
6103
33327948
KH
6104static struct mem_cgroup *mem_cgroup_alloc(void)
6105{
d79154bb 6106 struct mem_cgroup *memcg;
8ff69e2c 6107 size_t size;
33327948 6108
8ff69e2c
VD
6109 size = sizeof(struct mem_cgroup);
6110 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 6111
8ff69e2c 6112 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 6113 if (!memcg)
e7bbcdf3
DC
6114 return NULL;
6115
d79154bb
HD
6116 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6117 if (!memcg->stat)
d2e61b8d 6118 goto out_free;
d79154bb
HD
6119 spin_lock_init(&memcg->pcp_counter_lock);
6120 return memcg;
d2e61b8d
DC
6121
6122out_free:
8ff69e2c 6123 kfree(memcg);
d2e61b8d 6124 return NULL;
33327948
KH
6125}
6126
59927fb9 6127/*
c8b2a36f
GC
6128 * At destroying mem_cgroup, references from swap_cgroup can remain.
6129 * (scanning all at force_empty is too costly...)
6130 *
6131 * Instead of clearing all references at force_empty, we remember
6132 * the number of reference from swap_cgroup and free mem_cgroup when
6133 * it goes down to 0.
6134 *
6135 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6136 */
c8b2a36f
GC
6137
6138static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6139{
c8b2a36f 6140 int node;
59927fb9 6141
bb4cc1a8 6142 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6143
6144 for_each_node(node)
6145 free_mem_cgroup_per_zone_info(memcg, node);
6146
6147 free_percpu(memcg->stat);
6148
3f134619
GC
6149 /*
6150 * We need to make sure that (at least for now), the jump label
6151 * destruction code runs outside of the cgroup lock. This is because
6152 * get_online_cpus(), which is called from the static_branch update,
6153 * can't be called inside the cgroup_lock. cpusets are the ones
6154 * enforcing this dependency, so if they ever change, we might as well.
6155 *
6156 * schedule_work() will guarantee this happens. Be careful if you need
6157 * to move this code around, and make sure it is outside
6158 * the cgroup_lock.
6159 */
a8964b9b 6160 disarm_static_keys(memcg);
8ff69e2c 6161 kfree(memcg);
59927fb9 6162}
3afe36b1 6163
7bcc1bb1
DN
6164/*
6165 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6166 */
e1aab161 6167struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6168{
c0ff4b85 6169 if (!memcg->res.parent)
7bcc1bb1 6170 return NULL;
c0ff4b85 6171 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6172}
e1aab161 6173EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6174
bb4cc1a8
AM
6175static void __init mem_cgroup_soft_limit_tree_init(void)
6176{
6177 struct mem_cgroup_tree_per_node *rtpn;
6178 struct mem_cgroup_tree_per_zone *rtpz;
6179 int tmp, node, zone;
6180
6181 for_each_node(node) {
6182 tmp = node;
6183 if (!node_state(node, N_NORMAL_MEMORY))
6184 tmp = -1;
6185 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6186 BUG_ON(!rtpn);
6187
6188 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6189
6190 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6191 rtpz = &rtpn->rb_tree_per_zone[zone];
6192 rtpz->rb_root = RB_ROOT;
6193 spin_lock_init(&rtpz->lock);
6194 }
6195 }
6196}
6197
0eb253e2 6198static struct cgroup_subsys_state * __ref
eb95419b 6199mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6200{
d142e3e6 6201 struct mem_cgroup *memcg;
04046e1a 6202 long error = -ENOMEM;
6d12e2d8 6203 int node;
8cdea7c0 6204
c0ff4b85
R
6205 memcg = mem_cgroup_alloc();
6206 if (!memcg)
04046e1a 6207 return ERR_PTR(error);
78fb7466 6208
3ed28fa1 6209 for_each_node(node)
c0ff4b85 6210 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6211 goto free_out;
f64c3f54 6212
c077719b 6213 /* root ? */
eb95419b 6214 if (parent_css == NULL) {
a41c58a6 6215 root_mem_cgroup = memcg;
d142e3e6
GC
6216 res_counter_init(&memcg->res, NULL);
6217 res_counter_init(&memcg->memsw, NULL);
6218 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6219 }
28dbc4b6 6220
d142e3e6
GC
6221 memcg->last_scanned_node = MAX_NUMNODES;
6222 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6223 memcg->move_charge_at_immigrate = 0;
6224 mutex_init(&memcg->thresholds_lock);
6225 spin_lock_init(&memcg->move_lock);
70ddf637 6226 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6227 INIT_LIST_HEAD(&memcg->event_list);
6228 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6229
6230 return &memcg->css;
6231
6232free_out:
6233 __mem_cgroup_free(memcg);
6234 return ERR_PTR(error);
6235}
6236
6237static int
eb95419b 6238mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6239{
eb95419b 6240 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 6241 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
d142e3e6 6242
15a4c835 6243 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
6244 return -ENOSPC;
6245
63876986 6246 if (!parent)
d142e3e6
GC
6247 return 0;
6248
0999821b 6249 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6250
6251 memcg->use_hierarchy = parent->use_hierarchy;
6252 memcg->oom_kill_disable = parent->oom_kill_disable;
6253 memcg->swappiness = mem_cgroup_swappiness(parent);
6254
6255 if (parent->use_hierarchy) {
c0ff4b85
R
6256 res_counter_init(&memcg->res, &parent->res);
6257 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6258 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6259
7bcc1bb1 6260 /*
8d76a979
LZ
6261 * No need to take a reference to the parent because cgroup
6262 * core guarantees its existence.
7bcc1bb1 6263 */
18f59ea7 6264 } else {
c0ff4b85
R
6265 res_counter_init(&memcg->res, NULL);
6266 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6267 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6268 /*
6269 * Deeper hierachy with use_hierarchy == false doesn't make
6270 * much sense so let cgroup subsystem know about this
6271 * unfortunate state in our controller.
6272 */
d142e3e6 6273 if (parent != root_mem_cgroup)
073219e9 6274 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 6275 }
0999821b 6276 mutex_unlock(&memcg_create_mutex);
d6441637 6277
073219e9 6278 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
8cdea7c0
BS
6279}
6280
5f578161
MH
6281/*
6282 * Announce all parents that a group from their hierarchy is gone.
6283 */
6284static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6285{
6286 struct mem_cgroup *parent = memcg;
6287
6288 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6289 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6290
6291 /*
6292 * if the root memcg is not hierarchical we have to check it
6293 * explicitely.
6294 */
6295 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6296 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6297}
6298
eb95419b 6299static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6300{
eb95419b 6301 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6302 struct mem_cgroup_event *event, *tmp;
4fb1a86f 6303 struct cgroup_subsys_state *iter;
79bd9814
TH
6304
6305 /*
6306 * Unregister events and notify userspace.
6307 * Notify userspace about cgroup removing only after rmdir of cgroup
6308 * directory to avoid race between userspace and kernelspace.
6309 */
fba94807
TH
6310 spin_lock(&memcg->event_list_lock);
6311 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6312 list_del_init(&event->list);
6313 schedule_work(&event->remove);
6314 }
fba94807 6315 spin_unlock(&memcg->event_list_lock);
ec64f515 6316
10d5ebf4
LZ
6317 kmem_cgroup_css_offline(memcg);
6318
5f578161 6319 mem_cgroup_invalidate_reclaim_iterators(memcg);
4fb1a86f
FB
6320
6321 /*
6322 * This requires that offlining is serialized. Right now that is
6323 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6324 */
6325 css_for_each_descendant_post(iter, css)
6326 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6327
776ed0f0 6328 memcg_unregister_all_caches(memcg);
33cb876e 6329 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6330}
6331
eb95419b 6332static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6333{
eb95419b 6334 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
6335 /*
6336 * XXX: css_offline() would be where we should reparent all
6337 * memory to prepare the cgroup for destruction. However,
ec903c0c 6338 * memcg does not do css_tryget_online() and res_counter charging
96f1c58d
JW
6339 * under the same RCU lock region, which means that charging
6340 * could race with offlining. Offlining only happens to
6341 * cgroups with no tasks in them but charges can show up
6342 * without any tasks from the swapin path when the target
6343 * memcg is looked up from the swapout record and not from the
6344 * current task as it usually is. A race like this can leak
6345 * charges and put pages with stale cgroup pointers into
6346 * circulation:
6347 *
6348 * #0 #1
6349 * lookup_swap_cgroup_id()
6350 * rcu_read_lock()
6351 * mem_cgroup_lookup()
ec903c0c 6352 * css_tryget_online()
96f1c58d 6353 * rcu_read_unlock()
ec903c0c 6354 * disable css_tryget_online()
96f1c58d
JW
6355 * call_rcu()
6356 * offline_css()
6357 * reparent_charges()
6358 * res_counter_charge()
6359 * css_put()
6360 * css_free()
6361 * pc->mem_cgroup = dead memcg
6362 * add page to lru
6363 *
6364 * The bulk of the charges are still moved in offline_css() to
6365 * avoid pinning a lot of pages in case a long-term reference
6366 * like a swapout record is deferring the css_free() to long
6367 * after offlining. But this makes sure we catch any charges
6368 * made after offlining:
6369 */
6370 mem_cgroup_reparent_charges(memcg);
c268e994 6371
10d5ebf4 6372 memcg_destroy_kmem(memcg);
465939a1 6373 __mem_cgroup_free(memcg);
8cdea7c0
BS
6374}
6375
1ced953b
TH
6376/**
6377 * mem_cgroup_css_reset - reset the states of a mem_cgroup
6378 * @css: the target css
6379 *
6380 * Reset the states of the mem_cgroup associated with @css. This is
6381 * invoked when the userland requests disabling on the default hierarchy
6382 * but the memcg is pinned through dependency. The memcg should stop
6383 * applying policies and should revert to the vanilla state as it may be
6384 * made visible again.
6385 *
6386 * The current implementation only resets the essential configurations.
6387 * This needs to be expanded to cover all the visible parts.
6388 */
6389static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
6390{
6391 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6392
6393 mem_cgroup_resize_limit(memcg, ULLONG_MAX);
6394 mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
6395 memcg_update_kmem_limit(memcg, ULLONG_MAX);
6396 res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
6397}
6398
02491447 6399#ifdef CONFIG_MMU
7dc74be0 6400/* Handlers for move charge at task migration. */
854ffa8d
DN
6401#define PRECHARGE_COUNT_AT_ONCE 256
6402static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6403{
854ffa8d
DN
6404 int ret = 0;
6405 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6406 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6407
c0ff4b85 6408 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6409 mc.precharge += count;
6410 /* we don't need css_get for root */
6411 return ret;
6412 }
6413 /* try to charge at once */
6414 if (count > 1) {
6415 struct res_counter *dummy;
6416 /*
c0ff4b85 6417 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6418 * by cgroup_lock_live_cgroup() that it is not removed and we
6419 * are still under the same cgroup_mutex. So we can postpone
6420 * css_get().
6421 */
c0ff4b85 6422 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6423 goto one_by_one;
c0ff4b85 6424 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6425 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6426 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6427 goto one_by_one;
6428 }
6429 mc.precharge += count;
854ffa8d
DN
6430 return ret;
6431 }
6432one_by_one:
6433 /* fall back to one by one charge */
6434 while (count--) {
6435 if (signal_pending(current)) {
6436 ret = -EINTR;
6437 break;
6438 }
6439 if (!batch_count--) {
6440 batch_count = PRECHARGE_COUNT_AT_ONCE;
6441 cond_resched();
6442 }
6d1fdc48 6443 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
38c5d72f 6444 if (ret)
854ffa8d 6445 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6446 return ret;
854ffa8d
DN
6447 mc.precharge++;
6448 }
4ffef5fe
DN
6449 return ret;
6450}
6451
6452/**
8d32ff84 6453 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6454 * @vma: the vma the pte to be checked belongs
6455 * @addr: the address corresponding to the pte to be checked
6456 * @ptent: the pte to be checked
02491447 6457 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6458 *
6459 * Returns
6460 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6461 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6462 * move charge. if @target is not NULL, the page is stored in target->page
6463 * with extra refcnt got(Callers should handle it).
02491447
DN
6464 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6465 * target for charge migration. if @target is not NULL, the entry is stored
6466 * in target->ent.
4ffef5fe
DN
6467 *
6468 * Called with pte lock held.
6469 */
4ffef5fe
DN
6470union mc_target {
6471 struct page *page;
02491447 6472 swp_entry_t ent;
4ffef5fe
DN
6473};
6474
4ffef5fe 6475enum mc_target_type {
8d32ff84 6476 MC_TARGET_NONE = 0,
4ffef5fe 6477 MC_TARGET_PAGE,
02491447 6478 MC_TARGET_SWAP,
4ffef5fe
DN
6479};
6480
90254a65
DN
6481static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6482 unsigned long addr, pte_t ptent)
4ffef5fe 6483{
90254a65 6484 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6485
90254a65
DN
6486 if (!page || !page_mapped(page))
6487 return NULL;
6488 if (PageAnon(page)) {
6489 /* we don't move shared anon */
4b91355e 6490 if (!move_anon())
90254a65 6491 return NULL;
87946a72
DN
6492 } else if (!move_file())
6493 /* we ignore mapcount for file pages */
90254a65
DN
6494 return NULL;
6495 if (!get_page_unless_zero(page))
6496 return NULL;
6497
6498 return page;
6499}
6500
4b91355e 6501#ifdef CONFIG_SWAP
90254a65
DN
6502static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6503 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6504{
90254a65
DN
6505 struct page *page = NULL;
6506 swp_entry_t ent = pte_to_swp_entry(ptent);
6507
6508 if (!move_anon() || non_swap_entry(ent))
6509 return NULL;
4b91355e
KH
6510 /*
6511 * Because lookup_swap_cache() updates some statistics counter,
6512 * we call find_get_page() with swapper_space directly.
6513 */
33806f06 6514 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6515 if (do_swap_account)
6516 entry->val = ent.val;
6517
6518 return page;
6519}
4b91355e
KH
6520#else
6521static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6522 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6523{
6524 return NULL;
6525}
6526#endif
90254a65 6527
87946a72
DN
6528static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6529 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6530{
6531 struct page *page = NULL;
87946a72
DN
6532 struct address_space *mapping;
6533 pgoff_t pgoff;
6534
6535 if (!vma->vm_file) /* anonymous vma */
6536 return NULL;
6537 if (!move_file())
6538 return NULL;
6539
87946a72
DN
6540 mapping = vma->vm_file->f_mapping;
6541 if (pte_none(ptent))
6542 pgoff = linear_page_index(vma, addr);
6543 else /* pte_file(ptent) is true */
6544 pgoff = pte_to_pgoff(ptent);
6545
6546 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6547#ifdef CONFIG_SWAP
6548 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
6549 if (shmem_mapping(mapping)) {
6550 page = find_get_entry(mapping, pgoff);
6551 if (radix_tree_exceptional_entry(page)) {
6552 swp_entry_t swp = radix_to_swp_entry(page);
6553 if (do_swap_account)
6554 *entry = swp;
6555 page = find_get_page(swap_address_space(swp), swp.val);
6556 }
6557 } else
6558 page = find_get_page(mapping, pgoff);
6559#else
6560 page = find_get_page(mapping, pgoff);
aa3b1895 6561#endif
87946a72
DN
6562 return page;
6563}
6564
8d32ff84 6565static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6566 unsigned long addr, pte_t ptent, union mc_target *target)
6567{
6568 struct page *page = NULL;
6569 struct page_cgroup *pc;
8d32ff84 6570 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6571 swp_entry_t ent = { .val = 0 };
6572
6573 if (pte_present(ptent))
6574 page = mc_handle_present_pte(vma, addr, ptent);
6575 else if (is_swap_pte(ptent))
6576 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6577 else if (pte_none(ptent) || pte_file(ptent))
6578 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6579
6580 if (!page && !ent.val)
8d32ff84 6581 return ret;
02491447
DN
6582 if (page) {
6583 pc = lookup_page_cgroup(page);
6584 /*
6585 * Do only loose check w/o page_cgroup lock.
6586 * mem_cgroup_move_account() checks the pc is valid or not under
6587 * the lock.
6588 */
6589 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6590 ret = MC_TARGET_PAGE;
6591 if (target)
6592 target->page = page;
6593 }
6594 if (!ret || !target)
6595 put_page(page);
6596 }
90254a65
DN
6597 /* There is a swap entry and a page doesn't exist or isn't charged */
6598 if (ent.val && !ret &&
34c00c31 6599 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6600 ret = MC_TARGET_SWAP;
6601 if (target)
6602 target->ent = ent;
4ffef5fe 6603 }
4ffef5fe
DN
6604 return ret;
6605}
6606
12724850
NH
6607#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6608/*
6609 * We don't consider swapping or file mapped pages because THP does not
6610 * support them for now.
6611 * Caller should make sure that pmd_trans_huge(pmd) is true.
6612 */
6613static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6614 unsigned long addr, pmd_t pmd, union mc_target *target)
6615{
6616 struct page *page = NULL;
6617 struct page_cgroup *pc;
6618 enum mc_target_type ret = MC_TARGET_NONE;
6619
6620 page = pmd_page(pmd);
309381fe 6621 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
6622 if (!move_anon())
6623 return ret;
6624 pc = lookup_page_cgroup(page);
6625 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6626 ret = MC_TARGET_PAGE;
6627 if (target) {
6628 get_page(page);
6629 target->page = page;
6630 }
6631 }
6632 return ret;
6633}
6634#else
6635static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6636 unsigned long addr, pmd_t pmd, union mc_target *target)
6637{
6638 return MC_TARGET_NONE;
6639}
6640#endif
6641
4ffef5fe
DN
6642static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6643 unsigned long addr, unsigned long end,
6644 struct mm_walk *walk)
6645{
6646 struct vm_area_struct *vma = walk->private;
6647 pte_t *pte;
6648 spinlock_t *ptl;
6649
bf929152 6650 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6651 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6652 mc.precharge += HPAGE_PMD_NR;
bf929152 6653 spin_unlock(ptl);
1a5a9906 6654 return 0;
12724850 6655 }
03319327 6656
45f83cef
AA
6657 if (pmd_trans_unstable(pmd))
6658 return 0;
4ffef5fe
DN
6659 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6660 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6661 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6662 mc.precharge++; /* increment precharge temporarily */
6663 pte_unmap_unlock(pte - 1, ptl);
6664 cond_resched();
6665
7dc74be0
DN
6666 return 0;
6667}
6668
4ffef5fe
DN
6669static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6670{
6671 unsigned long precharge;
6672 struct vm_area_struct *vma;
6673
dfe076b0 6674 down_read(&mm->mmap_sem);
4ffef5fe
DN
6675 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6676 struct mm_walk mem_cgroup_count_precharge_walk = {
6677 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6678 .mm = mm,
6679 .private = vma,
6680 };
6681 if (is_vm_hugetlb_page(vma))
6682 continue;
4ffef5fe
DN
6683 walk_page_range(vma->vm_start, vma->vm_end,
6684 &mem_cgroup_count_precharge_walk);
6685 }
dfe076b0 6686 up_read(&mm->mmap_sem);
4ffef5fe
DN
6687
6688 precharge = mc.precharge;
6689 mc.precharge = 0;
6690
6691 return precharge;
6692}
6693
4ffef5fe
DN
6694static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6695{
dfe076b0
DN
6696 unsigned long precharge = mem_cgroup_count_precharge(mm);
6697
6698 VM_BUG_ON(mc.moving_task);
6699 mc.moving_task = current;
6700 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6701}
6702
dfe076b0
DN
6703/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6704static void __mem_cgroup_clear_mc(void)
4ffef5fe 6705{
2bd9bb20
KH
6706 struct mem_cgroup *from = mc.from;
6707 struct mem_cgroup *to = mc.to;
4050377b 6708 int i;
2bd9bb20 6709
4ffef5fe 6710 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6711 if (mc.precharge) {
6712 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6713 mc.precharge = 0;
6714 }
6715 /*
6716 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6717 * we must uncharge here.
6718 */
6719 if (mc.moved_charge) {
6720 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6721 mc.moved_charge = 0;
4ffef5fe 6722 }
483c30b5
DN
6723 /* we must fixup refcnts and charges */
6724 if (mc.moved_swap) {
483c30b5
DN
6725 /* uncharge swap account from the old cgroup */
6726 if (!mem_cgroup_is_root(mc.from))
6727 res_counter_uncharge(&mc.from->memsw,
6728 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6729
6730 for (i = 0; i < mc.moved_swap; i++)
6731 css_put(&mc.from->css);
483c30b5
DN
6732
6733 if (!mem_cgroup_is_root(mc.to)) {
6734 /*
6735 * we charged both to->res and to->memsw, so we should
6736 * uncharge to->res.
6737 */
6738 res_counter_uncharge(&mc.to->res,
6739 PAGE_SIZE * mc.moved_swap);
483c30b5 6740 }
4050377b 6741 /* we've already done css_get(mc.to) */
483c30b5
DN
6742 mc.moved_swap = 0;
6743 }
dfe076b0
DN
6744 memcg_oom_recover(from);
6745 memcg_oom_recover(to);
6746 wake_up_all(&mc.waitq);
6747}
6748
6749static void mem_cgroup_clear_mc(void)
6750{
6751 struct mem_cgroup *from = mc.from;
6752
6753 /*
6754 * we must clear moving_task before waking up waiters at the end of
6755 * task migration.
6756 */
6757 mc.moving_task = NULL;
6758 __mem_cgroup_clear_mc();
2bd9bb20 6759 spin_lock(&mc.lock);
4ffef5fe
DN
6760 mc.from = NULL;
6761 mc.to = NULL;
2bd9bb20 6762 spin_unlock(&mc.lock);
32047e2a 6763 mem_cgroup_end_move(from);
4ffef5fe
DN
6764}
6765
eb95419b 6766static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6767 struct cgroup_taskset *tset)
7dc74be0 6768{
2f7ee569 6769 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6770 int ret = 0;
eb95419b 6771 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6772 unsigned long move_charge_at_immigrate;
7dc74be0 6773
ee5e8472
GC
6774 /*
6775 * We are now commited to this value whatever it is. Changes in this
6776 * tunable will only affect upcoming migrations, not the current one.
6777 * So we need to save it, and keep it going.
6778 */
6779 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6780 if (move_charge_at_immigrate) {
7dc74be0
DN
6781 struct mm_struct *mm;
6782 struct mem_cgroup *from = mem_cgroup_from_task(p);
6783
c0ff4b85 6784 VM_BUG_ON(from == memcg);
7dc74be0
DN
6785
6786 mm = get_task_mm(p);
6787 if (!mm)
6788 return 0;
7dc74be0 6789 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6790 if (mm->owner == p) {
6791 VM_BUG_ON(mc.from);
6792 VM_BUG_ON(mc.to);
6793 VM_BUG_ON(mc.precharge);
854ffa8d 6794 VM_BUG_ON(mc.moved_charge);
483c30b5 6795 VM_BUG_ON(mc.moved_swap);
32047e2a 6796 mem_cgroup_start_move(from);
2bd9bb20 6797 spin_lock(&mc.lock);
4ffef5fe 6798 mc.from = from;
c0ff4b85 6799 mc.to = memcg;
ee5e8472 6800 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6801 spin_unlock(&mc.lock);
dfe076b0 6802 /* We set mc.moving_task later */
4ffef5fe
DN
6803
6804 ret = mem_cgroup_precharge_mc(mm);
6805 if (ret)
6806 mem_cgroup_clear_mc();
dfe076b0
DN
6807 }
6808 mmput(mm);
7dc74be0
DN
6809 }
6810 return ret;
6811}
6812
eb95419b 6813static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6814 struct cgroup_taskset *tset)
7dc74be0 6815{
4ffef5fe 6816 mem_cgroup_clear_mc();
7dc74be0
DN
6817}
6818
4ffef5fe
DN
6819static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6820 unsigned long addr, unsigned long end,
6821 struct mm_walk *walk)
7dc74be0 6822{
4ffef5fe
DN
6823 int ret = 0;
6824 struct vm_area_struct *vma = walk->private;
6825 pte_t *pte;
6826 spinlock_t *ptl;
12724850
NH
6827 enum mc_target_type target_type;
6828 union mc_target target;
6829 struct page *page;
6830 struct page_cgroup *pc;
4ffef5fe 6831
12724850
NH
6832 /*
6833 * We don't take compound_lock() here but no race with splitting thp
6834 * happens because:
6835 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6836 * under splitting, which means there's no concurrent thp split,
6837 * - if another thread runs into split_huge_page() just after we
6838 * entered this if-block, the thread must wait for page table lock
6839 * to be unlocked in __split_huge_page_splitting(), where the main
6840 * part of thp split is not executed yet.
6841 */
bf929152 6842 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 6843 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6844 spin_unlock(ptl);
12724850
NH
6845 return 0;
6846 }
6847 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6848 if (target_type == MC_TARGET_PAGE) {
6849 page = target.page;
6850 if (!isolate_lru_page(page)) {
6851 pc = lookup_page_cgroup(page);
6852 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6853 pc, mc.from, mc.to)) {
12724850
NH
6854 mc.precharge -= HPAGE_PMD_NR;
6855 mc.moved_charge += HPAGE_PMD_NR;
6856 }
6857 putback_lru_page(page);
6858 }
6859 put_page(page);
6860 }
bf929152 6861 spin_unlock(ptl);
1a5a9906 6862 return 0;
12724850
NH
6863 }
6864
45f83cef
AA
6865 if (pmd_trans_unstable(pmd))
6866 return 0;
4ffef5fe
DN
6867retry:
6868 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6869 for (; addr != end; addr += PAGE_SIZE) {
6870 pte_t ptent = *(pte++);
02491447 6871 swp_entry_t ent;
4ffef5fe
DN
6872
6873 if (!mc.precharge)
6874 break;
6875
8d32ff84 6876 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6877 case MC_TARGET_PAGE:
6878 page = target.page;
6879 if (isolate_lru_page(page))
6880 goto put;
6881 pc = lookup_page_cgroup(page);
7ec99d62 6882 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6883 mc.from, mc.to)) {
4ffef5fe 6884 mc.precharge--;
854ffa8d
DN
6885 /* we uncharge from mc.from later. */
6886 mc.moved_charge++;
4ffef5fe
DN
6887 }
6888 putback_lru_page(page);
8d32ff84 6889put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6890 put_page(page);
6891 break;
02491447
DN
6892 case MC_TARGET_SWAP:
6893 ent = target.ent;
e91cbb42 6894 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6895 mc.precharge--;
483c30b5
DN
6896 /* we fixup refcnts and charges later. */
6897 mc.moved_swap++;
6898 }
02491447 6899 break;
4ffef5fe
DN
6900 default:
6901 break;
6902 }
6903 }
6904 pte_unmap_unlock(pte - 1, ptl);
6905 cond_resched();
6906
6907 if (addr != end) {
6908 /*
6909 * We have consumed all precharges we got in can_attach().
6910 * We try charge one by one, but don't do any additional
6911 * charges to mc.to if we have failed in charge once in attach()
6912 * phase.
6913 */
854ffa8d 6914 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6915 if (!ret)
6916 goto retry;
6917 }
6918
6919 return ret;
6920}
6921
6922static void mem_cgroup_move_charge(struct mm_struct *mm)
6923{
6924 struct vm_area_struct *vma;
6925
6926 lru_add_drain_all();
dfe076b0
DN
6927retry:
6928 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6929 /*
6930 * Someone who are holding the mmap_sem might be waiting in
6931 * waitq. So we cancel all extra charges, wake up all waiters,
6932 * and retry. Because we cancel precharges, we might not be able
6933 * to move enough charges, but moving charge is a best-effort
6934 * feature anyway, so it wouldn't be a big problem.
6935 */
6936 __mem_cgroup_clear_mc();
6937 cond_resched();
6938 goto retry;
6939 }
4ffef5fe
DN
6940 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6941 int ret;
6942 struct mm_walk mem_cgroup_move_charge_walk = {
6943 .pmd_entry = mem_cgroup_move_charge_pte_range,
6944 .mm = mm,
6945 .private = vma,
6946 };
6947 if (is_vm_hugetlb_page(vma))
6948 continue;
4ffef5fe
DN
6949 ret = walk_page_range(vma->vm_start, vma->vm_end,
6950 &mem_cgroup_move_charge_walk);
6951 if (ret)
6952 /*
6953 * means we have consumed all precharges and failed in
6954 * doing additional charge. Just abandon here.
6955 */
6956 break;
6957 }
dfe076b0 6958 up_read(&mm->mmap_sem);
7dc74be0
DN
6959}
6960
eb95419b 6961static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6962 struct cgroup_taskset *tset)
67e465a7 6963{
2f7ee569 6964 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6965 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6966
dfe076b0 6967 if (mm) {
a433658c
KM
6968 if (mc.to)
6969 mem_cgroup_move_charge(mm);
dfe076b0
DN
6970 mmput(mm);
6971 }
a433658c
KM
6972 if (mc.to)
6973 mem_cgroup_clear_mc();
67e465a7 6974}
5cfb80a7 6975#else /* !CONFIG_MMU */
eb95419b 6976static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6977 struct cgroup_taskset *tset)
5cfb80a7
DN
6978{
6979 return 0;
6980}
eb95419b 6981static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6982 struct cgroup_taskset *tset)
5cfb80a7
DN
6983{
6984}
eb95419b 6985static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6986 struct cgroup_taskset *tset)
5cfb80a7
DN
6987{
6988}
6989#endif
67e465a7 6990
f00baae7
TH
6991/*
6992 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6993 * to verify whether we're attached to the default hierarchy on each mount
6994 * attempt.
f00baae7 6995 */
eb95419b 6996static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6997{
6998 /*
aa6ec29b 6999 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
7000 * guarantees that @root doesn't have any children, so turning it
7001 * on for the root memcg is enough.
7002 */
aa6ec29b 7003 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 7004 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7005}
7006
073219e9 7007struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 7008 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7009 .css_online = mem_cgroup_css_online,
92fb9748
TH
7010 .css_offline = mem_cgroup_css_offline,
7011 .css_free = mem_cgroup_css_free,
1ced953b 7012 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
7013 .can_attach = mem_cgroup_can_attach,
7014 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7015 .attach = mem_cgroup_move_task,
f00baae7 7016 .bind = mem_cgroup_bind,
5577964e 7017 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 7018 .early_init = 0,
8cdea7c0 7019};
c077719b 7020
c255a458 7021#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7022static int __init enable_swap_account(char *s)
7023{
a2c8990a 7024 if (!strcmp(s, "1"))
a42c390c 7025 really_do_swap_account = 1;
a2c8990a 7026 else if (!strcmp(s, "0"))
a42c390c
MH
7027 really_do_swap_account = 0;
7028 return 1;
7029}
a2c8990a 7030__setup("swapaccount=", enable_swap_account);
c077719b 7031
2d11085e
MH
7032static void __init memsw_file_init(void)
7033{
2cf669a5
TH
7034 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7035 memsw_cgroup_files));
6acc8b02
MH
7036}
7037
7038static void __init enable_swap_cgroup(void)
7039{
7040 if (!mem_cgroup_disabled() && really_do_swap_account) {
7041 do_swap_account = 1;
7042 memsw_file_init();
7043 }
2d11085e 7044}
6acc8b02 7045
2d11085e 7046#else
6acc8b02 7047static void __init enable_swap_cgroup(void)
2d11085e
MH
7048{
7049}
c077719b 7050#endif
2d11085e
MH
7051
7052/*
1081312f
MH
7053 * subsys_initcall() for memory controller.
7054 *
7055 * Some parts like hotcpu_notifier() have to be initialized from this context
7056 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7057 * everything that doesn't depend on a specific mem_cgroup structure should
7058 * be initialized from here.
2d11085e
MH
7059 */
7060static int __init mem_cgroup_init(void)
7061{
7062 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7063 enable_swap_cgroup();
bb4cc1a8 7064 mem_cgroup_soft_limit_tree_init();
e4777496 7065 memcg_stock_init();
2d11085e
MH
7066 return 0;
7067}
7068subsys_initcall(mem_cgroup_init);