]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
cgroup: remove cgroup_rstat_flush_atomic()
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
dc90f084 56#include <linux/memremap.h>
b69408e8 57#include <linux/mm_inline.h>
5d1ea48b 58#include <linux/swap_cgroup.h>
cdec2e42 59#include <linux/cpu.h>
158e0a2d 60#include <linux/oom.h>
0056f4e6 61#include <linux/lockdep.h>
79bd9814 62#include <linux/file.h>
03248add 63#include <linux/resume_user_mode.h>
0e4b01df 64#include <linux/psi.h>
c8713d0b 65#include <linux/seq_buf.h>
6a792697 66#include <linux/sched/isolation.h>
08e552c6 67#include "internal.h"
d1a4c0b3 68#include <net/sock.h>
4bd2c1ee 69#include <net/ip.h>
f35c3a8e 70#include "slab.h"
014bb1de 71#include "swap.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
37d5985c
RG
82/* Active memory cgroup to use from an interrupt context */
83DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 84EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 85
f7e1cb6e 86/* Socket memory accounting disabled? */
0f0cace3 87static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 88
04823c83 89/* Kernel memory accounting disabled? */
17c17367 90static bool cgroup_memory_nokmem __ro_after_init;
04823c83 91
b6c1a8af
YS
92/* BPF memory accounting disabled? */
93static bool cgroup_memory_nobpf __ro_after_init;
94
97b27821
TH
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
7941d214
JW
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
b25806dc 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
7941d214
JW
103}
104
a0db00fc
KS
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
8c7c6e34 206/* for encoding cft->private value on file */
86ae53e1
GC
207enum res_type {
208 _MEM,
209 _MEMSWAP,
510fc4e1 210 _KMEM,
d55f90bf 211 _TCP,
86ae53e1
GC
212};
213
a0db00fc
KS
214#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34
KH
216#define MEMFILE_ATTR(val) ((val) & 0xffff)
217
b05706f1
KT
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
a4ebf1b6 233static inline bool task_is_dying(void)
7775face
TH
234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
70ddf637
AV
239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
9647875b 247struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 248{
9647875b 249 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
250}
251
84c07d11 252#ifdef CONFIG_MEMCG_KMEM
0764db9b 253static DEFINE_SPINLOCK(objcg_lock);
bf4f0599 254
4d5c8aed
RG
255bool mem_cgroup_kmem_disabled(void)
256{
257 return cgroup_memory_nokmem;
258}
259
f1286fae
MS
260static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261 unsigned int nr_pages);
c1a660de 262
bf4f0599
RG
263static void obj_cgroup_release(struct percpu_ref *ref)
264{
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
266 unsigned int nr_bytes;
267 unsigned int nr_pages;
268 unsigned long flags;
269
270 /*
271 * At this point all allocated objects are freed, and
272 * objcg->nr_charged_bytes can't have an arbitrary byte value.
273 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 *
275 * The following sequence can lead to it:
276 * 1) CPU0: objcg == stock->cached_objcg
277 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278 * PAGE_SIZE bytes are charged
279 * 3) CPU1: a process from another memcg is allocating something,
280 * the stock if flushed,
281 * objcg->nr_charged_bytes = PAGE_SIZE - 92
282 * 5) CPU0: we do release this object,
283 * 92 bytes are added to stock->nr_bytes
284 * 6) CPU0: stock is flushed,
285 * 92 bytes are added to objcg->nr_charged_bytes
286 *
287 * In the result, nr_charged_bytes == PAGE_SIZE.
288 * This page will be uncharged in obj_cgroup_release().
289 */
290 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292 nr_pages = nr_bytes >> PAGE_SHIFT;
293
bf4f0599 294 if (nr_pages)
f1286fae 295 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1 296
0764db9b 297 spin_lock_irqsave(&objcg_lock, flags);
bf4f0599 298 list_del(&objcg->list);
0764db9b 299 spin_unlock_irqrestore(&objcg_lock, flags);
bf4f0599
RG
300
301 percpu_ref_exit(ref);
302 kfree_rcu(objcg, rcu);
303}
304
305static struct obj_cgroup *obj_cgroup_alloc(void)
306{
307 struct obj_cgroup *objcg;
308 int ret;
309
310 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 if (!objcg)
312 return NULL;
313
314 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 GFP_KERNEL);
316 if (ret) {
317 kfree(objcg);
318 return NULL;
319 }
320 INIT_LIST_HEAD(&objcg->list);
321 return objcg;
322}
323
324static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 struct mem_cgroup *parent)
326{
327 struct obj_cgroup *objcg, *iter;
328
329 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
0764db9b 331 spin_lock_irq(&objcg_lock);
bf4f0599 332
9838354e
MS
333 /* 1) Ready to reparent active objcg. */
334 list_add(&objcg->list, &memcg->objcg_list);
335 /* 2) Reparent active objcg and already reparented objcgs to parent. */
336 list_for_each_entry(iter, &memcg->objcg_list, list)
337 WRITE_ONCE(iter->memcg, parent);
338 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
339 list_splice(&memcg->objcg_list, &parent->objcg_list);
340
0764db9b 341 spin_unlock_irq(&objcg_lock);
bf4f0599
RG
342
343 percpu_ref_kill(&objcg->refcnt);
344}
345
d7f25f8a
GC
346/*
347 * A lot of the calls to the cache allocation functions are expected to be
272911a4 348 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
349 * conditional to this static branch, we'll have to allow modules that does
350 * kmem_cache_alloc and the such to see this symbol as well
351 */
f7a449f7
RG
352DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353EXPORT_SYMBOL(memcg_kmem_online_key);
b6c1a8af
YS
354
355DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356EXPORT_SYMBOL(memcg_bpf_enabled_key);
0a432dcb 357#endif
17cc4dfe 358
ad7fa852 359/**
75376c6f
MWO
360 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361 * @folio: folio of interest
ad7fa852
TH
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
75376c6f 364 * with @folio is returned. The returned css remains associated with @folio
ad7fa852
TH
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
ad7fa852 369 */
75376c6f 370struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
ad7fa852 371{
75376c6f 372 struct mem_cgroup *memcg = folio_memcg(folio);
ad7fa852 373
9e10a130 374 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
375 memcg = root_mem_cgroup;
376
ad7fa852
TH
377 return &memcg->css;
378}
379
2fc04524
VD
380/**
381 * page_cgroup_ino - return inode number of the memcg a page is charged to
382 * @page: the page
383 *
384 * Look up the closest online ancestor of the memory cgroup @page is charged to
385 * and return its inode number or 0 if @page is not charged to any cgroup. It
386 * is safe to call this function without holding a reference to @page.
387 *
388 * Note, this function is inherently racy, because there is nothing to prevent
389 * the cgroup inode from getting torn down and potentially reallocated a moment
390 * after page_cgroup_ino() returns, so it only should be used by callers that
391 * do not care (such as procfs interfaces).
392 */
393ino_t page_cgroup_ino(struct page *page)
394{
395 struct mem_cgroup *memcg;
396 unsigned long ino = 0;
397
398 rcu_read_lock();
ec342603
YA
399 /* page_folio() is racy here, but the entire function is racy anyway */
400 memcg = folio_memcg_check(page_folio(page));
286e04b8 401
2fc04524
VD
402 while (memcg && !(memcg->css.flags & CSS_ONLINE))
403 memcg = parent_mem_cgroup(memcg);
404 if (memcg)
405 ino = cgroup_ino(memcg->css.cgroup);
406 rcu_read_unlock();
407 return ino;
408}
409
ef8f2327
MG
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 412 unsigned long new_usage_in_excess)
bb4cc1a8
AM
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
ef8f2327 416 struct mem_cgroup_per_node *mz_node;
fa90b2fd 417 bool rightmost = true;
bb4cc1a8
AM
418
419 if (mz->on_tree)
420 return;
421
422 mz->usage_in_excess = new_usage_in_excess;
423 if (!mz->usage_in_excess)
424 return;
425 while (*p) {
426 parent = *p;
ef8f2327 427 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 428 tree_node);
fa90b2fd 429 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 430 p = &(*p)->rb_left;
fa90b2fd 431 rightmost = false;
378876b0 432 } else {
bb4cc1a8 433 p = &(*p)->rb_right;
378876b0 434 }
bb4cc1a8 435 }
fa90b2fd
DB
436
437 if (rightmost)
438 mctz->rb_rightmost = &mz->tree_node;
439
bb4cc1a8
AM
440 rb_link_node(&mz->tree_node, parent, p);
441 rb_insert_color(&mz->tree_node, &mctz->rb_root);
442 mz->on_tree = true;
443}
444
ef8f2327
MG
445static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
447{
448 if (!mz->on_tree)
449 return;
fa90b2fd
DB
450
451 if (&mz->tree_node == mctz->rb_rightmost)
452 mctz->rb_rightmost = rb_prev(&mz->tree_node);
453
bb4cc1a8
AM
454 rb_erase(&mz->tree_node, &mctz->rb_root);
455 mz->on_tree = false;
456}
457
ef8f2327
MG
458static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 460{
0a31bc97
JW
461 unsigned long flags;
462
463 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 464 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 465 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
466}
467
3e32cb2e
JW
468static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469{
470 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 471 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
472 unsigned long excess = 0;
473
474 if (nr_pages > soft_limit)
475 excess = nr_pages - soft_limit;
476
477 return excess;
478}
bb4cc1a8 479
658b69c9 480static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
bb4cc1a8 481{
3e32cb2e 482 unsigned long excess;
ef8f2327
MG
483 struct mem_cgroup_per_node *mz;
484 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 485
e4dde56c 486 if (lru_gen_enabled()) {
36c7b4db
A
487 if (soft_limit_excess(memcg))
488 lru_gen_soft_reclaim(&memcg->nodeinfo[nid]->lruvec);
e4dde56c
YZ
489 return;
490 }
491
2ab082ba 492 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
493 if (!mctz)
494 return;
bb4cc1a8
AM
495 /*
496 * Necessary to update all ancestors when hierarchy is used.
497 * because their event counter is not touched.
498 */
499 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
658b69c9 500 mz = memcg->nodeinfo[nid];
3e32cb2e 501 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
502 /*
503 * We have to update the tree if mz is on RB-tree or
504 * mem is over its softlimit.
505 */
506 if (excess || mz->on_tree) {
0a31bc97
JW
507 unsigned long flags;
508
509 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
510 /* if on-tree, remove it */
511 if (mz->on_tree)
cf2c8127 512 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
513 /*
514 * Insert again. mz->usage_in_excess will be updated.
515 * If excess is 0, no tree ops.
516 */
cf2c8127 517 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 518 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
519 }
520 }
521}
522
523static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524{
ef8f2327
MG
525 struct mem_cgroup_tree_per_node *mctz;
526 struct mem_cgroup_per_node *mz;
527 int nid;
bb4cc1a8 528
e231875b 529 for_each_node(nid) {
a3747b53 530 mz = memcg->nodeinfo[nid];
2ab082ba 531 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
532 if (mctz)
533 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
534 }
535}
536
ef8f2327
MG
537static struct mem_cgroup_per_node *
538__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 539{
ef8f2327 540 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
541
542retry:
543 mz = NULL;
fa90b2fd 544 if (!mctz->rb_rightmost)
bb4cc1a8
AM
545 goto done; /* Nothing to reclaim from */
546
fa90b2fd
DB
547 mz = rb_entry(mctz->rb_rightmost,
548 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
549 /*
550 * Remove the node now but someone else can add it back,
551 * we will to add it back at the end of reclaim to its correct
552 * position in the tree.
553 */
cf2c8127 554 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 555 if (!soft_limit_excess(mz->memcg) ||
8965aa28 556 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
557 goto retry;
558done:
559 return mz;
560}
561
ef8f2327
MG
562static struct mem_cgroup_per_node *
563mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 564{
ef8f2327 565 struct mem_cgroup_per_node *mz;
bb4cc1a8 566
0a31bc97 567 spin_lock_irq(&mctz->lock);
bb4cc1a8 568 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 569 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
570 return mz;
571}
572
11192d9c
SB
573/*
574 * memcg and lruvec stats flushing
575 *
576 * Many codepaths leading to stats update or read are performance sensitive and
577 * adding stats flushing in such codepaths is not desirable. So, to optimize the
578 * flushing the kernel does:
579 *
580 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581 * rstat update tree grow unbounded.
582 *
583 * 2) Flush the stats synchronously on reader side only when there are more than
584 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586 * only for 2 seconds due to (1).
587 */
588static void flush_memcg_stats_dwork(struct work_struct *w);
589static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
11192d9c 590static DEFINE_PER_CPU(unsigned int, stats_updates);
3cd9992b 591static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
11192d9c 592static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
9b301615
SB
593static u64 flush_next_time;
594
595#define FLUSH_TIME (2UL*HZ)
11192d9c 596
be3e67b5
SAS
597/*
598 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599 * not rely on this as part of an acquired spinlock_t lock. These functions are
600 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601 * is sufficient.
602 */
603static void memcg_stats_lock(void)
604{
e575d401
TG
605 preempt_disable_nested();
606 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
607}
608
609static void __memcg_stats_lock(void)
610{
e575d401 611 preempt_disable_nested();
be3e67b5
SAS
612}
613
614static void memcg_stats_unlock(void)
615{
e575d401 616 preempt_enable_nested();
be3e67b5
SAS
617}
618
5b3be698 619static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
11192d9c 620{
5b3be698
SB
621 unsigned int x;
622
f9d911ca
YA
623 if (!val)
624 return;
625
11192d9c 626 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
5b3be698
SB
627
628 x = __this_cpu_add_return(stats_updates, abs(val));
629 if (x > MEMCG_CHARGE_BATCH) {
873f64b7
JS
630 /*
631 * If stats_flush_threshold exceeds the threshold
632 * (>num_online_cpus()), cgroup stats update will be triggered
633 * in __mem_cgroup_flush_stats(). Increasing this var further
634 * is redundant and simply adds overhead in atomic update.
635 */
636 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
5b3be698
SB
638 __this_cpu_write(stats_updates, 0);
639 }
11192d9c
SB
640}
641
35822fda 642static void do_flush_stats(void)
11192d9c 643{
3cd9992b
YA
644 /*
645 * We always flush the entire tree, so concurrent flushers can just
646 * skip. This avoids a thundering herd problem on the rstat global lock
647 * from memcg flushers (e.g. reclaim, refault, etc).
648 */
649 if (atomic_read(&stats_flush_ongoing) ||
650 atomic_xchg(&stats_flush_ongoing, 1))
11192d9c
SB
651 return;
652
3cd9992b 653 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
9fad9aee 654
35822fda 655 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
9fad9aee 656
11192d9c 657 atomic_set(&stats_flush_threshold, 0);
3cd9992b 658 atomic_set(&stats_flush_ongoing, 0);
11192d9c
SB
659}
660
661void mem_cgroup_flush_stats(void)
662{
35822fda
YA
663 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
664 do_flush_stats();
9fad9aee
YA
665}
666
4009b2f1 667void mem_cgroup_flush_stats_ratelimited(void)
9b301615 668{
3cd9992b 669 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
4009b2f1 670 mem_cgroup_flush_stats();
9b301615
SB
671}
672
11192d9c
SB
673static void flush_memcg_stats_dwork(struct work_struct *w)
674{
9fad9aee
YA
675 /*
676 * Always flush here so that flushing in latency-sensitive paths is
677 * as cheap as possible.
678 */
35822fda 679 do_flush_stats();
9b301615 680 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
11192d9c
SB
681}
682
d396def5
SB
683/* Subset of vm_event_item to report for memcg event stats */
684static const unsigned int memcg_vm_event_stat[] = {
8278f1c7
SB
685 PGPGIN,
686 PGPGOUT,
d396def5
SB
687 PGSCAN_KSWAPD,
688 PGSCAN_DIRECT,
57e9cc50 689 PGSCAN_KHUGEPAGED,
d396def5
SB
690 PGSTEAL_KSWAPD,
691 PGSTEAL_DIRECT,
57e9cc50 692 PGSTEAL_KHUGEPAGED,
d396def5
SB
693 PGFAULT,
694 PGMAJFAULT,
695 PGREFILL,
696 PGACTIVATE,
697 PGDEACTIVATE,
698 PGLAZYFREE,
699 PGLAZYFREED,
700#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
701 ZSWPIN,
702 ZSWPOUT,
703#endif
704#ifdef CONFIG_TRANSPARENT_HUGEPAGE
705 THP_FAULT_ALLOC,
706 THP_COLLAPSE_ALLOC,
707#endif
708};
709
8278f1c7
SB
710#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
711static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
712
713static void init_memcg_events(void)
714{
715 int i;
716
717 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
718 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
719}
720
721static inline int memcg_events_index(enum vm_event_item idx)
722{
723 return mem_cgroup_events_index[idx] - 1;
724}
725
410f8e82
SB
726struct memcg_vmstats_percpu {
727 /* Local (CPU and cgroup) page state & events */
728 long state[MEMCG_NR_STAT];
8278f1c7 729 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
730
731 /* Delta calculation for lockless upward propagation */
732 long state_prev[MEMCG_NR_STAT];
8278f1c7 733 unsigned long events_prev[NR_MEMCG_EVENTS];
410f8e82
SB
734
735 /* Cgroup1: threshold notifications & softlimit tree updates */
736 unsigned long nr_page_events;
737 unsigned long targets[MEM_CGROUP_NTARGETS];
738};
739
740struct memcg_vmstats {
741 /* Aggregated (CPU and subtree) page state & events */
742 long state[MEMCG_NR_STAT];
8278f1c7 743 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
744
745 /* Pending child counts during tree propagation */
746 long state_pending[MEMCG_NR_STAT];
8278f1c7 747 unsigned long events_pending[NR_MEMCG_EVENTS];
410f8e82
SB
748};
749
750unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
751{
752 long x = READ_ONCE(memcg->vmstats->state[idx]);
753#ifdef CONFIG_SMP
754 if (x < 0)
755 x = 0;
756#endif
757 return x;
758}
759
db9adbcb
JW
760/**
761 * __mod_memcg_state - update cgroup memory statistics
762 * @memcg: the memory cgroup
763 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
764 * @val: delta to add to the counter, can be negative
765 */
766void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
767{
db9adbcb
JW
768 if (mem_cgroup_disabled())
769 return;
770
2d146aa3 771 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
5b3be698 772 memcg_rstat_updated(memcg, val);
db9adbcb
JW
773}
774
2d146aa3 775/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
776static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
777{
778 long x = 0;
779 int cpu;
780
781 for_each_possible_cpu(cpu)
2d146aa3 782 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
783#ifdef CONFIG_SMP
784 if (x < 0)
785 x = 0;
786#endif
787 return x;
788}
789
eedc4e5a
RG
790void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
791 int val)
db9adbcb
JW
792{
793 struct mem_cgroup_per_node *pn;
42a30035 794 struct mem_cgroup *memcg;
db9adbcb 795
db9adbcb 796 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 797 memcg = pn->memcg;
db9adbcb 798
be3e67b5
SAS
799 /*
800 * The caller from rmap relay on disabled preemption becase they never
801 * update their counter from in-interrupt context. For these two
802 * counters we check that the update is never performed from an
803 * interrupt context while other caller need to have disabled interrupt.
804 */
805 __memcg_stats_lock();
e575d401 806 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
be3e67b5
SAS
807 switch (idx) {
808 case NR_ANON_MAPPED:
809 case NR_FILE_MAPPED:
810 case NR_ANON_THPS:
811 case NR_SHMEM_PMDMAPPED:
812 case NR_FILE_PMDMAPPED:
813 WARN_ON_ONCE(!in_task());
814 break;
815 default:
e575d401 816 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
817 }
818 }
819
db9adbcb 820 /* Update memcg */
11192d9c 821 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
db9adbcb 822
b4c46484 823 /* Update lruvec */
7e1c0d6f 824 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
11192d9c 825
5b3be698 826 memcg_rstat_updated(memcg, val);
be3e67b5 827 memcg_stats_unlock();
db9adbcb
JW
828}
829
eedc4e5a
RG
830/**
831 * __mod_lruvec_state - update lruvec memory statistics
832 * @lruvec: the lruvec
833 * @idx: the stat item
834 * @val: delta to add to the counter, can be negative
835 *
836 * The lruvec is the intersection of the NUMA node and a cgroup. This
837 * function updates the all three counters that are affected by a
838 * change of state at this level: per-node, per-cgroup, per-lruvec.
839 */
840void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
841 int val)
842{
843 /* Update node */
844 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
845
846 /* Update memcg and lruvec */
847 if (!mem_cgroup_disabled())
848 __mod_memcg_lruvec_state(lruvec, idx, val);
849}
850
c47d5032
SB
851void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
852 int val)
853{
854 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 855 struct mem_cgroup *memcg;
c47d5032
SB
856 pg_data_t *pgdat = page_pgdat(page);
857 struct lruvec *lruvec;
858
b4e0b68f
MS
859 rcu_read_lock();
860 memcg = page_memcg(head);
c47d5032 861 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 862 if (!memcg) {
b4e0b68f 863 rcu_read_unlock();
c47d5032
SB
864 __mod_node_page_state(pgdat, idx, val);
865 return;
866 }
867
d635a69d 868 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 869 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 870 rcu_read_unlock();
c47d5032 871}
f0c0c115 872EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 873
da3ceeff 874void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 875{
4f103c63 876 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
877 struct mem_cgroup *memcg;
878 struct lruvec *lruvec;
879
880 rcu_read_lock();
fc4db90f 881 memcg = mem_cgroup_from_slab_obj(p);
ec9f0238 882
8faeb1ff
MS
883 /*
884 * Untracked pages have no memcg, no lruvec. Update only the
885 * node. If we reparent the slab objects to the root memcg,
886 * when we free the slab object, we need to update the per-memcg
887 * vmstats to keep it correct for the root memcg.
888 */
889 if (!memcg) {
ec9f0238
RG
890 __mod_node_page_state(pgdat, idx, val);
891 } else {
867e5e1d 892 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
893 __mod_lruvec_state(lruvec, idx, val);
894 }
895 rcu_read_unlock();
896}
897
db9adbcb
JW
898/**
899 * __count_memcg_events - account VM events in a cgroup
900 * @memcg: the memory cgroup
901 * @idx: the event item
f0953a1b 902 * @count: the number of events that occurred
db9adbcb
JW
903 */
904void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
905 unsigned long count)
906{
8278f1c7
SB
907 int index = memcg_events_index(idx);
908
909 if (mem_cgroup_disabled() || index < 0)
db9adbcb
JW
910 return;
911
be3e67b5 912 memcg_stats_lock();
8278f1c7 913 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
5b3be698 914 memcg_rstat_updated(memcg, count);
be3e67b5 915 memcg_stats_unlock();
db9adbcb
JW
916}
917
42a30035 918static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 919{
8278f1c7
SB
920 int index = memcg_events_index(event);
921
922 if (index < 0)
923 return 0;
924 return READ_ONCE(memcg->vmstats->events[index]);
e9f8974f
JW
925}
926
42a30035
JW
927static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
928{
815744d7
JW
929 long x = 0;
930 int cpu;
8278f1c7
SB
931 int index = memcg_events_index(event);
932
933 if (index < 0)
934 return 0;
815744d7
JW
935
936 for_each_possible_cpu(cpu)
8278f1c7 937 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
815744d7 938 return x;
42a30035
JW
939}
940
c0ff4b85 941static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
3fba69a5 942 int nr_pages)
d52aa412 943{
e401f176
KH
944 /* pagein of a big page is an event. So, ignore page size */
945 if (nr_pages > 0)
c9019e9b 946 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 947 else {
c9019e9b 948 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
949 nr_pages = -nr_pages; /* for event */
950 }
e401f176 951
871789d4 952 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
953}
954
f53d7ce3
JW
955static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
956 enum mem_cgroup_events_target target)
7a159cc9
JW
957{
958 unsigned long val, next;
959
871789d4
CD
960 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
961 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 962 /* from time_after() in jiffies.h */
6a1a8b80 963 if ((long)(next - val) < 0) {
f53d7ce3
JW
964 switch (target) {
965 case MEM_CGROUP_TARGET_THRESH:
966 next = val + THRESHOLDS_EVENTS_TARGET;
967 break;
bb4cc1a8
AM
968 case MEM_CGROUP_TARGET_SOFTLIMIT:
969 next = val + SOFTLIMIT_EVENTS_TARGET;
970 break;
f53d7ce3
JW
971 default:
972 break;
973 }
871789d4 974 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 975 return true;
7a159cc9 976 }
f53d7ce3 977 return false;
d2265e6f
KH
978}
979
980/*
981 * Check events in order.
982 *
983 */
8e88bd2d 984static void memcg_check_events(struct mem_cgroup *memcg, int nid)
d2265e6f 985{
2343e88d
SAS
986 if (IS_ENABLED(CONFIG_PREEMPT_RT))
987 return;
988
d2265e6f 989 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
990 if (unlikely(mem_cgroup_event_ratelimit(memcg,
991 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 992 bool do_softlimit;
f53d7ce3 993
bb4cc1a8
AM
994 do_softlimit = mem_cgroup_event_ratelimit(memcg,
995 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 996 mem_cgroup_threshold(memcg);
bb4cc1a8 997 if (unlikely(do_softlimit))
8e88bd2d 998 mem_cgroup_update_tree(memcg, nid);
0a31bc97 999 }
d2265e6f
KH
1000}
1001
cf475ad2 1002struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1003{
31a78f23
BS
1004 /*
1005 * mm_update_next_owner() may clear mm->owner to NULL
1006 * if it races with swapoff, page migration, etc.
1007 * So this can be called with p == NULL.
1008 */
1009 if (unlikely(!p))
1010 return NULL;
1011
073219e9 1012 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1013}
33398cf2 1014EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1015
04f94e3f
DS
1016static __always_inline struct mem_cgroup *active_memcg(void)
1017{
55a68c82 1018 if (!in_task())
04f94e3f
DS
1019 return this_cpu_read(int_active_memcg);
1020 else
1021 return current->active_memcg;
1022}
1023
d46eb14b
SB
1024/**
1025 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1026 * @mm: mm from which memcg should be extracted. It can be NULL.
1027 *
04f94e3f
DS
1028 * Obtain a reference on mm->memcg and returns it if successful. If mm
1029 * is NULL, then the memcg is chosen as follows:
1030 * 1) The active memcg, if set.
1031 * 2) current->mm->memcg, if available
1032 * 3) root memcg
1033 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
1034 */
1035struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1036{
d46eb14b
SB
1037 struct mem_cgroup *memcg;
1038
1039 if (mem_cgroup_disabled())
1040 return NULL;
0b7f569e 1041
2884b6b7
MS
1042 /*
1043 * Page cache insertions can happen without an
1044 * actual mm context, e.g. during disk probing
1045 * on boot, loopback IO, acct() writes etc.
1046 *
1047 * No need to css_get on root memcg as the reference
1048 * counting is disabled on the root level in the
1049 * cgroup core. See CSS_NO_REF.
1050 */
04f94e3f
DS
1051 if (unlikely(!mm)) {
1052 memcg = active_memcg();
1053 if (unlikely(memcg)) {
1054 /* remote memcg must hold a ref */
1055 css_get(&memcg->css);
1056 return memcg;
1057 }
1058 mm = current->mm;
1059 if (unlikely(!mm))
1060 return root_mem_cgroup;
1061 }
2884b6b7 1062
54595fe2
KH
1063 rcu_read_lock();
1064 do {
2884b6b7
MS
1065 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1066 if (unlikely(!memcg))
df381975 1067 memcg = root_mem_cgroup;
00d484f3 1068 } while (!css_tryget(&memcg->css));
54595fe2 1069 rcu_read_unlock();
c0ff4b85 1070 return memcg;
54595fe2 1071}
d46eb14b
SB
1072EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1073
4127c650
RG
1074static __always_inline bool memcg_kmem_bypass(void)
1075{
1076 /* Allow remote memcg charging from any context. */
1077 if (unlikely(active_memcg()))
1078 return false;
1079
1080 /* Memcg to charge can't be determined. */
6126891c 1081 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
4127c650
RG
1082 return true;
1083
1084 return false;
1085}
1086
5660048c
JW
1087/**
1088 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1089 * @root: hierarchy root
1090 * @prev: previously returned memcg, NULL on first invocation
1091 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1092 *
1093 * Returns references to children of the hierarchy below @root, or
1094 * @root itself, or %NULL after a full round-trip.
1095 *
1096 * Caller must pass the return value in @prev on subsequent
1097 * invocations for reference counting, or use mem_cgroup_iter_break()
1098 * to cancel a hierarchy walk before the round-trip is complete.
1099 *
05bdc520
ML
1100 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1101 * in the hierarchy among all concurrent reclaimers operating on the
1102 * same node.
5660048c 1103 */
694fbc0f 1104struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1105 struct mem_cgroup *prev,
694fbc0f 1106 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1107{
3f649ab7 1108 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1109 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1110 struct mem_cgroup *memcg = NULL;
5ac8fb31 1111 struct mem_cgroup *pos = NULL;
711d3d2c 1112
694fbc0f
AM
1113 if (mem_cgroup_disabled())
1114 return NULL;
5660048c 1115
9f3a0d09
JW
1116 if (!root)
1117 root = root_mem_cgroup;
7d74b06f 1118
542f85f9 1119 rcu_read_lock();
5f578161 1120
5ac8fb31 1121 if (reclaim) {
ef8f2327 1122 struct mem_cgroup_per_node *mz;
5ac8fb31 1123
a3747b53 1124 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1125 iter = &mz->iter;
5ac8fb31 1126
a9320aae
WY
1127 /*
1128 * On start, join the current reclaim iteration cycle.
1129 * Exit when a concurrent walker completes it.
1130 */
1131 if (!prev)
1132 reclaim->generation = iter->generation;
1133 else if (reclaim->generation != iter->generation)
5ac8fb31
JW
1134 goto out_unlock;
1135
6df38689 1136 while (1) {
4db0c3c2 1137 pos = READ_ONCE(iter->position);
6df38689
VD
1138 if (!pos || css_tryget(&pos->css))
1139 break;
5ac8fb31 1140 /*
6df38689
VD
1141 * css reference reached zero, so iter->position will
1142 * be cleared by ->css_released. However, we should not
1143 * rely on this happening soon, because ->css_released
1144 * is called from a work queue, and by busy-waiting we
1145 * might block it. So we clear iter->position right
1146 * away.
5ac8fb31 1147 */
6df38689
VD
1148 (void)cmpxchg(&iter->position, pos, NULL);
1149 }
89d8330c
WY
1150 } else if (prev) {
1151 pos = prev;
5ac8fb31
JW
1152 }
1153
1154 if (pos)
1155 css = &pos->css;
1156
1157 for (;;) {
1158 css = css_next_descendant_pre(css, &root->css);
1159 if (!css) {
1160 /*
1161 * Reclaimers share the hierarchy walk, and a
1162 * new one might jump in right at the end of
1163 * the hierarchy - make sure they see at least
1164 * one group and restart from the beginning.
1165 */
1166 if (!prev)
1167 continue;
1168 break;
527a5ec9 1169 }
7d74b06f 1170
5ac8fb31
JW
1171 /*
1172 * Verify the css and acquire a reference. The root
1173 * is provided by the caller, so we know it's alive
1174 * and kicking, and don't take an extra reference.
1175 */
41555dad
WY
1176 if (css == &root->css || css_tryget(css)) {
1177 memcg = mem_cgroup_from_css(css);
0b8f73e1 1178 break;
41555dad 1179 }
9f3a0d09 1180 }
5ac8fb31
JW
1181
1182 if (reclaim) {
5ac8fb31 1183 /*
6df38689
VD
1184 * The position could have already been updated by a competing
1185 * thread, so check that the value hasn't changed since we read
1186 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1187 */
6df38689
VD
1188 (void)cmpxchg(&iter->position, pos, memcg);
1189
5ac8fb31
JW
1190 if (pos)
1191 css_put(&pos->css);
1192
1193 if (!memcg)
1194 iter->generation++;
9f3a0d09 1195 }
5ac8fb31 1196
542f85f9
MH
1197out_unlock:
1198 rcu_read_unlock();
c40046f3
MH
1199 if (prev && prev != root)
1200 css_put(&prev->css);
1201
9f3a0d09 1202 return memcg;
14067bb3 1203}
7d74b06f 1204
5660048c
JW
1205/**
1206 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1207 * @root: hierarchy root
1208 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1209 */
1210void mem_cgroup_iter_break(struct mem_cgroup *root,
1211 struct mem_cgroup *prev)
9f3a0d09
JW
1212{
1213 if (!root)
1214 root = root_mem_cgroup;
1215 if (prev && prev != root)
1216 css_put(&prev->css);
1217}
7d74b06f 1218
54a83d6b
MC
1219static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1220 struct mem_cgroup *dead_memcg)
6df38689 1221{
6df38689 1222 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1223 struct mem_cgroup_per_node *mz;
1224 int nid;
6df38689 1225
54a83d6b 1226 for_each_node(nid) {
a3747b53 1227 mz = from->nodeinfo[nid];
9da83f3f
YS
1228 iter = &mz->iter;
1229 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1230 }
1231}
1232
54a83d6b
MC
1233static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1234{
1235 struct mem_cgroup *memcg = dead_memcg;
1236 struct mem_cgroup *last;
1237
1238 do {
1239 __invalidate_reclaim_iterators(memcg, dead_memcg);
1240 last = memcg;
1241 } while ((memcg = parent_mem_cgroup(memcg)));
1242
1243 /*
b8dd3ee9 1244 * When cgroup1 non-hierarchy mode is used,
54a83d6b
MC
1245 * parent_mem_cgroup() does not walk all the way up to the
1246 * cgroup root (root_mem_cgroup). So we have to handle
1247 * dead_memcg from cgroup root separately.
1248 */
7848ed62 1249 if (!mem_cgroup_is_root(last))
54a83d6b
MC
1250 __invalidate_reclaim_iterators(root_mem_cgroup,
1251 dead_memcg);
1252}
1253
7c5f64f8
VD
1254/**
1255 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1256 * @memcg: hierarchy root
1257 * @fn: function to call for each task
1258 * @arg: argument passed to @fn
1259 *
1260 * This function iterates over tasks attached to @memcg or to any of its
1261 * descendants and calls @fn for each task. If @fn returns a non-zero
1262 * value, the function breaks the iteration loop and returns the value.
1263 * Otherwise, it will iterate over all tasks and return 0.
1264 *
1265 * This function must not be called for the root memory cgroup.
1266 */
1267int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1268 int (*fn)(struct task_struct *, void *), void *arg)
1269{
1270 struct mem_cgroup *iter;
1271 int ret = 0;
1272
7848ed62 1273 BUG_ON(mem_cgroup_is_root(memcg));
7c5f64f8
VD
1274
1275 for_each_mem_cgroup_tree(iter, memcg) {
1276 struct css_task_iter it;
1277 struct task_struct *task;
1278
f168a9a5 1279 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1280 while (!ret && (task = css_task_iter_next(&it)))
1281 ret = fn(task, arg);
1282 css_task_iter_end(&it);
1283 if (ret) {
1284 mem_cgroup_iter_break(memcg, iter);
1285 break;
1286 }
1287 }
1288 return ret;
1289}
1290
6168d0da 1291#ifdef CONFIG_DEBUG_VM
e809c3fe 1292void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
6168d0da
AS
1293{
1294 struct mem_cgroup *memcg;
1295
1296 if (mem_cgroup_disabled())
1297 return;
1298
e809c3fe 1299 memcg = folio_memcg(folio);
6168d0da
AS
1300
1301 if (!memcg)
7848ed62 1302 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
6168d0da 1303 else
e809c3fe 1304 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
6168d0da
AS
1305}
1306#endif
1307
6168d0da 1308/**
e809c3fe
MWO
1309 * folio_lruvec_lock - Lock the lruvec for a folio.
1310 * @folio: Pointer to the folio.
6168d0da 1311 *
d7e3aba5 1312 * These functions are safe to use under any of the following conditions:
e809c3fe
MWO
1313 * - folio locked
1314 * - folio_test_lru false
1315 * - folio_memcg_lock()
1316 * - folio frozen (refcount of 0)
1317 *
1318 * Return: The lruvec this folio is on with its lock held.
6168d0da 1319 */
e809c3fe 1320struct lruvec *folio_lruvec_lock(struct folio *folio)
6168d0da 1321{
e809c3fe 1322 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1323
6168d0da 1324 spin_lock(&lruvec->lru_lock);
e809c3fe 1325 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1326
1327 return lruvec;
1328}
1329
e809c3fe
MWO
1330/**
1331 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1332 * @folio: Pointer to the folio.
1333 *
1334 * These functions are safe to use under any of the following conditions:
1335 * - folio locked
1336 * - folio_test_lru false
1337 * - folio_memcg_lock()
1338 * - folio frozen (refcount of 0)
1339 *
1340 * Return: The lruvec this folio is on with its lock held and interrupts
1341 * disabled.
1342 */
1343struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
6168d0da 1344{
e809c3fe 1345 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1346
6168d0da 1347 spin_lock_irq(&lruvec->lru_lock);
e809c3fe 1348 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1349
1350 return lruvec;
1351}
1352
e809c3fe
MWO
1353/**
1354 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1355 * @folio: Pointer to the folio.
1356 * @flags: Pointer to irqsave flags.
1357 *
1358 * These functions are safe to use under any of the following conditions:
1359 * - folio locked
1360 * - folio_test_lru false
1361 * - folio_memcg_lock()
1362 * - folio frozen (refcount of 0)
1363 *
1364 * Return: The lruvec this folio is on with its lock held and interrupts
1365 * disabled.
1366 */
1367struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1368 unsigned long *flags)
6168d0da 1369{
e809c3fe 1370 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1371
6168d0da 1372 spin_lock_irqsave(&lruvec->lru_lock, *flags);
e809c3fe 1373 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1374
1375 return lruvec;
1376}
1377
925b7673 1378/**
fa9add64
HD
1379 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1380 * @lruvec: mem_cgroup per zone lru vector
1381 * @lru: index of lru list the page is sitting on
b4536f0c 1382 * @zid: zone id of the accounted pages
fa9add64 1383 * @nr_pages: positive when adding or negative when removing
925b7673 1384 *
ca707239 1385 * This function must be called under lru_lock, just before a page is added
07ca7606 1386 * to or just after a page is removed from an lru list.
3f58a829 1387 */
fa9add64 1388void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1389 int zid, int nr_pages)
3f58a829 1390{
ef8f2327 1391 struct mem_cgroup_per_node *mz;
fa9add64 1392 unsigned long *lru_size;
ca707239 1393 long size;
3f58a829
MK
1394
1395 if (mem_cgroup_disabled())
1396 return;
1397
ef8f2327 1398 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1399 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1400
1401 if (nr_pages < 0)
1402 *lru_size += nr_pages;
1403
1404 size = *lru_size;
b4536f0c
MH
1405 if (WARN_ONCE(size < 0,
1406 "%s(%p, %d, %d): lru_size %ld\n",
1407 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1408 VM_BUG_ON(1);
1409 *lru_size = 0;
1410 }
1411
1412 if (nr_pages > 0)
1413 *lru_size += nr_pages;
08e552c6 1414}
544122e5 1415
19942822 1416/**
9d11ea9f 1417 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1418 * @memcg: the memory cgroup
19942822 1419 *
9d11ea9f 1420 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1421 * pages.
19942822 1422 */
c0ff4b85 1423static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1424{
3e32cb2e
JW
1425 unsigned long margin = 0;
1426 unsigned long count;
1427 unsigned long limit;
9d11ea9f 1428
3e32cb2e 1429 count = page_counter_read(&memcg->memory);
bbec2e15 1430 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1431 if (count < limit)
1432 margin = limit - count;
1433
7941d214 1434 if (do_memsw_account()) {
3e32cb2e 1435 count = page_counter_read(&memcg->memsw);
bbec2e15 1436 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1437 if (count < limit)
3e32cb2e 1438 margin = min(margin, limit - count);
cbedbac3
LR
1439 else
1440 margin = 0;
3e32cb2e
JW
1441 }
1442
1443 return margin;
19942822
JW
1444}
1445
32047e2a 1446/*
bdcbb659 1447 * A routine for checking "mem" is under move_account() or not.
32047e2a 1448 *
bdcbb659
QH
1449 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1450 * moving cgroups. This is for waiting at high-memory pressure
1451 * caused by "move".
32047e2a 1452 */
c0ff4b85 1453static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1454{
2bd9bb20
KH
1455 struct mem_cgroup *from;
1456 struct mem_cgroup *to;
4b534334 1457 bool ret = false;
2bd9bb20
KH
1458 /*
1459 * Unlike task_move routines, we access mc.to, mc.from not under
1460 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1461 */
1462 spin_lock(&mc.lock);
1463 from = mc.from;
1464 to = mc.to;
1465 if (!from)
1466 goto unlock;
3e92041d 1467
2314b42d
JW
1468 ret = mem_cgroup_is_descendant(from, memcg) ||
1469 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1470unlock:
1471 spin_unlock(&mc.lock);
4b534334
KH
1472 return ret;
1473}
1474
c0ff4b85 1475static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1476{
1477 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1478 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1479 DEFINE_WAIT(wait);
1480 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1481 /* moving charge context might have finished. */
1482 if (mc.moving_task)
1483 schedule();
1484 finish_wait(&mc.waitq, &wait);
1485 return true;
1486 }
1487 }
1488 return false;
1489}
1490
5f9a4f4a
MS
1491struct memory_stat {
1492 const char *name;
5f9a4f4a
MS
1493 unsigned int idx;
1494};
1495
57b2847d 1496static const struct memory_stat memory_stats[] = {
fff66b79
MS
1497 { "anon", NR_ANON_MAPPED },
1498 { "file", NR_FILE_PAGES },
a8c49af3 1499 { "kernel", MEMCG_KMEM },
fff66b79
MS
1500 { "kernel_stack", NR_KERNEL_STACK_KB },
1501 { "pagetables", NR_PAGETABLE },
ebc97a52 1502 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
fff66b79
MS
1503 { "percpu", MEMCG_PERCPU_B },
1504 { "sock", MEMCG_SOCK },
4e5aa1f4 1505 { "vmalloc", MEMCG_VMALLOC },
fff66b79 1506 { "shmem", NR_SHMEM },
f4840ccf
JW
1507#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1508 { "zswap", MEMCG_ZSWAP_B },
1509 { "zswapped", MEMCG_ZSWAPPED },
1510#endif
fff66b79
MS
1511 { "file_mapped", NR_FILE_MAPPED },
1512 { "file_dirty", NR_FILE_DIRTY },
1513 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1514#ifdef CONFIG_SWAP
1515 { "swapcached", NR_SWAPCACHE },
1516#endif
5f9a4f4a 1517#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1518 { "anon_thp", NR_ANON_THPS },
1519 { "file_thp", NR_FILE_THPS },
1520 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1521#endif
fff66b79
MS
1522 { "inactive_anon", NR_INACTIVE_ANON },
1523 { "active_anon", NR_ACTIVE_ANON },
1524 { "inactive_file", NR_INACTIVE_FILE },
1525 { "active_file", NR_ACTIVE_FILE },
1526 { "unevictable", NR_UNEVICTABLE },
1527 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1528 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1529
1530 /* The memory events */
fff66b79
MS
1531 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1532 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1533 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1534 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1535 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1536 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1537 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1538};
1539
fff66b79
MS
1540/* Translate stat items to the correct unit for memory.stat output */
1541static int memcg_page_state_unit(int item)
1542{
1543 switch (item) {
1544 case MEMCG_PERCPU_B:
f4840ccf 1545 case MEMCG_ZSWAP_B:
fff66b79
MS
1546 case NR_SLAB_RECLAIMABLE_B:
1547 case NR_SLAB_UNRECLAIMABLE_B:
1548 case WORKINGSET_REFAULT_ANON:
1549 case WORKINGSET_REFAULT_FILE:
1550 case WORKINGSET_ACTIVATE_ANON:
1551 case WORKINGSET_ACTIVATE_FILE:
1552 case WORKINGSET_RESTORE_ANON:
1553 case WORKINGSET_RESTORE_FILE:
1554 case WORKINGSET_NODERECLAIM:
1555 return 1;
1556 case NR_KERNEL_STACK_KB:
1557 return SZ_1K;
1558 default:
1559 return PAGE_SIZE;
1560 }
1561}
1562
1563static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1564 int item)
1565{
1566 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1567}
1568
dddb44ff 1569static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
c8713d0b 1570{
c8713d0b 1571 int i;
71cd3113 1572
c8713d0b
JW
1573 /*
1574 * Provide statistics on the state of the memory subsystem as
1575 * well as cumulative event counters that show past behavior.
1576 *
1577 * This list is ordered following a combination of these gradients:
1578 * 1) generic big picture -> specifics and details
1579 * 2) reflecting userspace activity -> reflecting kernel heuristics
1580 *
1581 * Current memory state:
1582 */
fd25a9e0 1583 mem_cgroup_flush_stats();
c8713d0b 1584
5f9a4f4a
MS
1585 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1586 u64 size;
c8713d0b 1587
fff66b79 1588 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5b42360c 1589 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1590
5f9a4f4a 1591 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1592 size += memcg_page_state_output(memcg,
1593 NR_SLAB_RECLAIMABLE_B);
5b42360c 1594 seq_buf_printf(s, "slab %llu\n", size);
5f9a4f4a
MS
1595 }
1596 }
c8713d0b
JW
1597
1598 /* Accumulated memory events */
5b42360c 1599 seq_buf_printf(s, "pgscan %lu\n",
c8713d0b 1600 memcg_events(memcg, PGSCAN_KSWAPD) +
57e9cc50
JW
1601 memcg_events(memcg, PGSCAN_DIRECT) +
1602 memcg_events(memcg, PGSCAN_KHUGEPAGED));
5b42360c 1603 seq_buf_printf(s, "pgsteal %lu\n",
c8713d0b 1604 memcg_events(memcg, PGSTEAL_KSWAPD) +
57e9cc50
JW
1605 memcg_events(memcg, PGSTEAL_DIRECT) +
1606 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
c8713d0b 1607
8278f1c7
SB
1608 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1609 if (memcg_vm_event_stat[i] == PGPGIN ||
1610 memcg_vm_event_stat[i] == PGPGOUT)
1611 continue;
1612
5b42360c 1613 seq_buf_printf(s, "%s %lu\n",
673520f8
QZ
1614 vm_event_name(memcg_vm_event_stat[i]),
1615 memcg_events(memcg, memcg_vm_event_stat[i]));
8278f1c7 1616 }
c8713d0b
JW
1617
1618 /* The above should easily fit into one page */
5b42360c 1619 WARN_ON_ONCE(seq_buf_has_overflowed(s));
c8713d0b 1620}
71cd3113 1621
dddb44ff
YA
1622static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1623
1624static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1625{
1626 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1627 memcg_stat_format(memcg, s);
1628 else
1629 memcg1_stat_format(memcg, s);
1630 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1631}
1632
58cf188e 1633#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1634/**
f0c867d9 1635 * mem_cgroup_print_oom_context: Print OOM information relevant to
1636 * memory controller.
e222432b
BS
1637 * @memcg: The memory cgroup that went over limit
1638 * @p: Task that is going to be killed
1639 *
1640 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1641 * enabled
1642 */
f0c867d9 1643void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1644{
e222432b
BS
1645 rcu_read_lock();
1646
f0c867d9 1647 if (memcg) {
1648 pr_cont(",oom_memcg=");
1649 pr_cont_cgroup_path(memcg->css.cgroup);
1650 } else
1651 pr_cont(",global_oom");
2415b9f5 1652 if (p) {
f0c867d9 1653 pr_cont(",task_memcg=");
2415b9f5 1654 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1655 }
e222432b 1656 rcu_read_unlock();
f0c867d9 1657}
1658
1659/**
1660 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1661 * memory controller.
1662 * @memcg: The memory cgroup that went over limit
1663 */
1664void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1665{
68aaee14
TH
1666 /* Use static buffer, for the caller is holding oom_lock. */
1667 static char buf[PAGE_SIZE];
5b42360c 1668 struct seq_buf s;
68aaee14
TH
1669
1670 lockdep_assert_held(&oom_lock);
e222432b 1671
3e32cb2e
JW
1672 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1673 K((u64)page_counter_read(&memcg->memory)),
15b42562 1674 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1675 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1676 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1677 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1678 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1679 else {
1680 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1681 K((u64)page_counter_read(&memcg->memsw)),
1682 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1683 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1684 K((u64)page_counter_read(&memcg->kmem)),
1685 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1686 }
c8713d0b
JW
1687
1688 pr_info("Memory cgroup stats for ");
1689 pr_cont_cgroup_path(memcg->css.cgroup);
1690 pr_cont(":");
5b42360c
YA
1691 seq_buf_init(&s, buf, sizeof(buf));
1692 memory_stat_format(memcg, &s);
1693 seq_buf_do_printk(&s, KERN_INFO);
e222432b
BS
1694}
1695
a63d83f4
DR
1696/*
1697 * Return the memory (and swap, if configured) limit for a memcg.
1698 */
bbec2e15 1699unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1700{
8d387a5f
WL
1701 unsigned long max = READ_ONCE(memcg->memory.max);
1702
b94c4e94 1703 if (do_memsw_account()) {
8d387a5f
WL
1704 if (mem_cgroup_swappiness(memcg)) {
1705 /* Calculate swap excess capacity from memsw limit */
1706 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1707
1708 max += min(swap, (unsigned long)total_swap_pages);
1709 }
b94c4e94
JW
1710 } else {
1711 if (mem_cgroup_swappiness(memcg))
1712 max += min(READ_ONCE(memcg->swap.max),
1713 (unsigned long)total_swap_pages);
9a5a8f19 1714 }
bbec2e15 1715 return max;
a63d83f4
DR
1716}
1717
9783aa99
CD
1718unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1719{
1720 return page_counter_read(&memcg->memory);
1721}
1722
b6e6edcf 1723static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1724 int order)
9cbb78bb 1725{
6e0fc46d
DR
1726 struct oom_control oc = {
1727 .zonelist = NULL,
1728 .nodemask = NULL,
2a966b77 1729 .memcg = memcg,
6e0fc46d
DR
1730 .gfp_mask = gfp_mask,
1731 .order = order,
6e0fc46d 1732 };
1378b37d 1733 bool ret = true;
9cbb78bb 1734
7775face
TH
1735 if (mutex_lock_killable(&oom_lock))
1736 return true;
1378b37d
YS
1737
1738 if (mem_cgroup_margin(memcg) >= (1 << order))
1739 goto unlock;
1740
7775face
TH
1741 /*
1742 * A few threads which were not waiting at mutex_lock_killable() can
1743 * fail to bail out. Therefore, check again after holding oom_lock.
1744 */
a4ebf1b6 1745 ret = task_is_dying() || out_of_memory(&oc);
1378b37d
YS
1746
1747unlock:
dc56401f 1748 mutex_unlock(&oom_lock);
7c5f64f8 1749 return ret;
9cbb78bb
DR
1750}
1751
0608f43d 1752static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1753 pg_data_t *pgdat,
0608f43d
AM
1754 gfp_t gfp_mask,
1755 unsigned long *total_scanned)
1756{
1757 struct mem_cgroup *victim = NULL;
1758 int total = 0;
1759 int loop = 0;
1760 unsigned long excess;
1761 unsigned long nr_scanned;
1762 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1763 .pgdat = pgdat,
0608f43d
AM
1764 };
1765
3e32cb2e 1766 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1767
1768 while (1) {
1769 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1770 if (!victim) {
1771 loop++;
1772 if (loop >= 2) {
1773 /*
1774 * If we have not been able to reclaim
1775 * anything, it might because there are
1776 * no reclaimable pages under this hierarchy
1777 */
1778 if (!total)
1779 break;
1780 /*
1781 * We want to do more targeted reclaim.
1782 * excess >> 2 is not to excessive so as to
1783 * reclaim too much, nor too less that we keep
1784 * coming back to reclaim from this cgroup
1785 */
1786 if (total >= (excess >> 2) ||
1787 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1788 break;
1789 }
1790 continue;
1791 }
a9dd0a83 1792 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1793 pgdat, &nr_scanned);
0608f43d 1794 *total_scanned += nr_scanned;
3e32cb2e 1795 if (!soft_limit_excess(root_memcg))
0608f43d 1796 break;
6d61ef40 1797 }
0608f43d
AM
1798 mem_cgroup_iter_break(root_memcg, victim);
1799 return total;
6d61ef40
BS
1800}
1801
0056f4e6
JW
1802#ifdef CONFIG_LOCKDEP
1803static struct lockdep_map memcg_oom_lock_dep_map = {
1804 .name = "memcg_oom_lock",
1805};
1806#endif
1807
fb2a6fc5
JW
1808static DEFINE_SPINLOCK(memcg_oom_lock);
1809
867578cb
KH
1810/*
1811 * Check OOM-Killer is already running under our hierarchy.
1812 * If someone is running, return false.
1813 */
fb2a6fc5 1814static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1815{
79dfdacc 1816 struct mem_cgroup *iter, *failed = NULL;
a636b327 1817
fb2a6fc5
JW
1818 spin_lock(&memcg_oom_lock);
1819
9f3a0d09 1820 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1821 if (iter->oom_lock) {
79dfdacc
MH
1822 /*
1823 * this subtree of our hierarchy is already locked
1824 * so we cannot give a lock.
1825 */
79dfdacc 1826 failed = iter;
9f3a0d09
JW
1827 mem_cgroup_iter_break(memcg, iter);
1828 break;
23751be0
JW
1829 } else
1830 iter->oom_lock = true;
7d74b06f 1831 }
867578cb 1832
fb2a6fc5
JW
1833 if (failed) {
1834 /*
1835 * OK, we failed to lock the whole subtree so we have
1836 * to clean up what we set up to the failing subtree
1837 */
1838 for_each_mem_cgroup_tree(iter, memcg) {
1839 if (iter == failed) {
1840 mem_cgroup_iter_break(memcg, iter);
1841 break;
1842 }
1843 iter->oom_lock = false;
79dfdacc 1844 }
0056f4e6
JW
1845 } else
1846 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1847
1848 spin_unlock(&memcg_oom_lock);
1849
1850 return !failed;
a636b327 1851}
0b7f569e 1852
fb2a6fc5 1853static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1854{
7d74b06f
KH
1855 struct mem_cgroup *iter;
1856
fb2a6fc5 1857 spin_lock(&memcg_oom_lock);
5facae4f 1858 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1859 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1860 iter->oom_lock = false;
fb2a6fc5 1861 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1862}
1863
c0ff4b85 1864static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1865{
1866 struct mem_cgroup *iter;
1867
c2b42d3c 1868 spin_lock(&memcg_oom_lock);
c0ff4b85 1869 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1870 iter->under_oom++;
1871 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1872}
1873
c0ff4b85 1874static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1875{
1876 struct mem_cgroup *iter;
1877
867578cb 1878 /*
f0953a1b 1879 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1880 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1881 */
c2b42d3c 1882 spin_lock(&memcg_oom_lock);
c0ff4b85 1883 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1884 if (iter->under_oom > 0)
1885 iter->under_oom--;
1886 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1887}
1888
867578cb
KH
1889static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1890
dc98df5a 1891struct oom_wait_info {
d79154bb 1892 struct mem_cgroup *memcg;
ac6424b9 1893 wait_queue_entry_t wait;
dc98df5a
KH
1894};
1895
ac6424b9 1896static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1897 unsigned mode, int sync, void *arg)
1898{
d79154bb
HD
1899 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1900 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1901 struct oom_wait_info *oom_wait_info;
1902
1903 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1904 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1905
2314b42d
JW
1906 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1907 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1908 return 0;
dc98df5a
KH
1909 return autoremove_wake_function(wait, mode, sync, arg);
1910}
1911
c0ff4b85 1912static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1913{
c2b42d3c
TH
1914 /*
1915 * For the following lockless ->under_oom test, the only required
1916 * guarantee is that it must see the state asserted by an OOM when
1917 * this function is called as a result of userland actions
1918 * triggered by the notification of the OOM. This is trivially
1919 * achieved by invoking mem_cgroup_mark_under_oom() before
1920 * triggering notification.
1921 */
1922 if (memcg && memcg->under_oom)
f4b90b70 1923 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1924}
1925
becdf89d
SB
1926/*
1927 * Returns true if successfully killed one or more processes. Though in some
1928 * corner cases it can return true even without killing any process.
1929 */
1930static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1931{
becdf89d 1932 bool locked, ret;
7056d3a3 1933
29ef680a 1934 if (order > PAGE_ALLOC_COSTLY_ORDER)
becdf89d 1935 return false;
29ef680a 1936
7a1adfdd
RG
1937 memcg_memory_event(memcg, MEMCG_OOM);
1938
867578cb 1939 /*
49426420
JW
1940 * We are in the middle of the charge context here, so we
1941 * don't want to block when potentially sitting on a callstack
1942 * that holds all kinds of filesystem and mm locks.
1943 *
29ef680a
MH
1944 * cgroup1 allows disabling the OOM killer and waiting for outside
1945 * handling until the charge can succeed; remember the context and put
1946 * the task to sleep at the end of the page fault when all locks are
1947 * released.
49426420 1948 *
29ef680a
MH
1949 * On the other hand, in-kernel OOM killer allows for an async victim
1950 * memory reclaim (oom_reaper) and that means that we are not solely
1951 * relying on the oom victim to make a forward progress and we can
1952 * invoke the oom killer here.
1953 *
1954 * Please note that mem_cgroup_out_of_memory might fail to find a
1955 * victim and then we have to bail out from the charge path.
867578cb 1956 */
17c56de6 1957 if (READ_ONCE(memcg->oom_kill_disable)) {
becdf89d
SB
1958 if (current->in_user_fault) {
1959 css_get(&memcg->css);
1960 current->memcg_in_oom = memcg;
1961 current->memcg_oom_gfp_mask = mask;
1962 current->memcg_oom_order = order;
1963 }
1964 return false;
29ef680a
MH
1965 }
1966
7056d3a3
MH
1967 mem_cgroup_mark_under_oom(memcg);
1968
1969 locked = mem_cgroup_oom_trylock(memcg);
1970
1971 if (locked)
1972 mem_cgroup_oom_notify(memcg);
1973
1974 mem_cgroup_unmark_under_oom(memcg);
becdf89d 1975 ret = mem_cgroup_out_of_memory(memcg, mask, order);
7056d3a3
MH
1976
1977 if (locked)
1978 mem_cgroup_oom_unlock(memcg);
29ef680a 1979
7056d3a3 1980 return ret;
3812c8c8
JW
1981}
1982
1983/**
1984 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1985 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1986 *
49426420
JW
1987 * This has to be called at the end of a page fault if the memcg OOM
1988 * handler was enabled.
3812c8c8 1989 *
49426420 1990 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1991 * sleep on a waitqueue until the userspace task resolves the
1992 * situation. Sleeping directly in the charge context with all kinds
1993 * of locks held is not a good idea, instead we remember an OOM state
1994 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1995 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1996 *
1997 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1998 * completed, %false otherwise.
3812c8c8 1999 */
49426420 2000bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2001{
626ebc41 2002 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2003 struct oom_wait_info owait;
49426420 2004 bool locked;
3812c8c8
JW
2005
2006 /* OOM is global, do not handle */
3812c8c8 2007 if (!memcg)
49426420 2008 return false;
3812c8c8 2009
7c5f64f8 2010 if (!handle)
49426420 2011 goto cleanup;
3812c8c8
JW
2012
2013 owait.memcg = memcg;
2014 owait.wait.flags = 0;
2015 owait.wait.func = memcg_oom_wake_function;
2016 owait.wait.private = current;
2055da97 2017 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2018
3812c8c8 2019 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2020 mem_cgroup_mark_under_oom(memcg);
2021
2022 locked = mem_cgroup_oom_trylock(memcg);
2023
2024 if (locked)
2025 mem_cgroup_oom_notify(memcg);
2026
17c56de6 2027 if (locked && !READ_ONCE(memcg->oom_kill_disable)) {
49426420
JW
2028 mem_cgroup_unmark_under_oom(memcg);
2029 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
2030 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2031 current->memcg_oom_order);
49426420 2032 } else {
3812c8c8 2033 schedule();
49426420
JW
2034 mem_cgroup_unmark_under_oom(memcg);
2035 finish_wait(&memcg_oom_waitq, &owait.wait);
2036 }
2037
2038 if (locked) {
fb2a6fc5
JW
2039 mem_cgroup_oom_unlock(memcg);
2040 /*
2041 * There is no guarantee that an OOM-lock contender
2042 * sees the wakeups triggered by the OOM kill
f0953a1b 2043 * uncharges. Wake any sleepers explicitly.
fb2a6fc5
JW
2044 */
2045 memcg_oom_recover(memcg);
2046 }
49426420 2047cleanup:
626ebc41 2048 current->memcg_in_oom = NULL;
3812c8c8 2049 css_put(&memcg->css);
867578cb 2050 return true;
0b7f569e
KH
2051}
2052
3d8b38eb
RG
2053/**
2054 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2055 * @victim: task to be killed by the OOM killer
2056 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2057 *
2058 * Returns a pointer to a memory cgroup, which has to be cleaned up
2059 * by killing all belonging OOM-killable tasks.
2060 *
2061 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2062 */
2063struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2064 struct mem_cgroup *oom_domain)
2065{
2066 struct mem_cgroup *oom_group = NULL;
2067 struct mem_cgroup *memcg;
2068
2069 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2070 return NULL;
2071
2072 if (!oom_domain)
2073 oom_domain = root_mem_cgroup;
2074
2075 rcu_read_lock();
2076
2077 memcg = mem_cgroup_from_task(victim);
7848ed62 2078 if (mem_cgroup_is_root(memcg))
3d8b38eb
RG
2079 goto out;
2080
48fe267c
RG
2081 /*
2082 * If the victim task has been asynchronously moved to a different
2083 * memory cgroup, we might end up killing tasks outside oom_domain.
2084 * In this case it's better to ignore memory.group.oom.
2085 */
2086 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2087 goto out;
2088
3d8b38eb
RG
2089 /*
2090 * Traverse the memory cgroup hierarchy from the victim task's
2091 * cgroup up to the OOMing cgroup (or root) to find the
2092 * highest-level memory cgroup with oom.group set.
2093 */
2094 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
eaf7b66b 2095 if (READ_ONCE(memcg->oom_group))
3d8b38eb
RG
2096 oom_group = memcg;
2097
2098 if (memcg == oom_domain)
2099 break;
2100 }
2101
2102 if (oom_group)
2103 css_get(&oom_group->css);
2104out:
2105 rcu_read_unlock();
2106
2107 return oom_group;
2108}
2109
2110void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2111{
2112 pr_info("Tasks in ");
2113 pr_cont_cgroup_path(memcg->css.cgroup);
2114 pr_cont(" are going to be killed due to memory.oom.group set\n");
2115}
2116
d7365e78 2117/**
f70ad448
MWO
2118 * folio_memcg_lock - Bind a folio to its memcg.
2119 * @folio: The folio.
32047e2a 2120 *
f70ad448 2121 * This function prevents unlocked LRU folios from being moved to
739f79fc
JW
2122 * another cgroup.
2123 *
f70ad448
MWO
2124 * It ensures lifetime of the bound memcg. The caller is responsible
2125 * for the lifetime of the folio.
d69b042f 2126 */
f70ad448 2127void folio_memcg_lock(struct folio *folio)
89c06bd5
KH
2128{
2129 struct mem_cgroup *memcg;
6de22619 2130 unsigned long flags;
89c06bd5 2131
6de22619
JW
2132 /*
2133 * The RCU lock is held throughout the transaction. The fast
2134 * path can get away without acquiring the memcg->move_lock
2135 * because page moving starts with an RCU grace period.
739f79fc 2136 */
d7365e78
JW
2137 rcu_read_lock();
2138
2139 if (mem_cgroup_disabled())
1c824a68 2140 return;
89c06bd5 2141again:
f70ad448 2142 memcg = folio_memcg(folio);
29833315 2143 if (unlikely(!memcg))
1c824a68 2144 return;
d7365e78 2145
20ad50d6
AS
2146#ifdef CONFIG_PROVE_LOCKING
2147 local_irq_save(flags);
2148 might_lock(&memcg->move_lock);
2149 local_irq_restore(flags);
2150#endif
2151
bdcbb659 2152 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2153 return;
89c06bd5 2154
6de22619 2155 spin_lock_irqsave(&memcg->move_lock, flags);
f70ad448 2156 if (memcg != folio_memcg(folio)) {
6de22619 2157 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2158 goto again;
2159 }
6de22619
JW
2160
2161 /*
1c824a68
JW
2162 * When charge migration first begins, we can have multiple
2163 * critical sections holding the fast-path RCU lock and one
2164 * holding the slowpath move_lock. Track the task who has the
2165 * move_lock for unlock_page_memcg().
6de22619
JW
2166 */
2167 memcg->move_lock_task = current;
2168 memcg->move_lock_flags = flags;
89c06bd5 2169}
f70ad448
MWO
2170
2171void lock_page_memcg(struct page *page)
2172{
2173 folio_memcg_lock(page_folio(page));
2174}
89c06bd5 2175
f70ad448 2176static void __folio_memcg_unlock(struct mem_cgroup *memcg)
89c06bd5 2177{
6de22619
JW
2178 if (memcg && memcg->move_lock_task == current) {
2179 unsigned long flags = memcg->move_lock_flags;
2180
2181 memcg->move_lock_task = NULL;
2182 memcg->move_lock_flags = 0;
2183
2184 spin_unlock_irqrestore(&memcg->move_lock, flags);
2185 }
89c06bd5 2186
d7365e78 2187 rcu_read_unlock();
89c06bd5 2188}
739f79fc
JW
2189
2190/**
f70ad448
MWO
2191 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2192 * @folio: The folio.
2193 *
2194 * This releases the binding created by folio_memcg_lock(). This does
2195 * not change the accounting of this folio to its memcg, but it does
2196 * permit others to change it.
739f79fc 2197 */
f70ad448 2198void folio_memcg_unlock(struct folio *folio)
739f79fc 2199{
f70ad448
MWO
2200 __folio_memcg_unlock(folio_memcg(folio));
2201}
9da7b521 2202
f70ad448
MWO
2203void unlock_page_memcg(struct page *page)
2204{
2205 folio_memcg_unlock(page_folio(page));
739f79fc 2206}
89c06bd5 2207
fead2b86 2208struct memcg_stock_pcp {
56751146 2209 local_lock_t stock_lock;
fead2b86
MH
2210 struct mem_cgroup *cached; /* this never be root cgroup */
2211 unsigned int nr_pages;
2212
bf4f0599
RG
2213#ifdef CONFIG_MEMCG_KMEM
2214 struct obj_cgroup *cached_objcg;
68ac5b3c 2215 struct pglist_data *cached_pgdat;
bf4f0599 2216 unsigned int nr_bytes;
68ac5b3c
WL
2217 int nr_slab_reclaimable_b;
2218 int nr_slab_unreclaimable_b;
bf4f0599
RG
2219#endif
2220
cdec2e42 2221 struct work_struct work;
26fe6168 2222 unsigned long flags;
a0db00fc 2223#define FLUSHING_CACHED_CHARGE 0
cdec2e42 2224};
56751146
SAS
2225static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2226 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2227};
9f50fad6 2228static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2229
bf4f0599 2230#ifdef CONFIG_MEMCG_KMEM
56751146 2231static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
bf4f0599
RG
2232static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2233 struct mem_cgroup *root_memcg);
a8c49af3 2234static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
bf4f0599
RG
2235
2236#else
56751146 2237static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 2238{
56751146 2239 return NULL;
bf4f0599
RG
2240}
2241static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2242 struct mem_cgroup *root_memcg)
2243{
2244 return false;
2245}
a8c49af3
YA
2246static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2247{
2248}
bf4f0599
RG
2249#endif
2250
a0956d54
SS
2251/**
2252 * consume_stock: Try to consume stocked charge on this cpu.
2253 * @memcg: memcg to consume from.
2254 * @nr_pages: how many pages to charge.
2255 *
2256 * The charges will only happen if @memcg matches the current cpu's memcg
2257 * stock, and at least @nr_pages are available in that stock. Failure to
2258 * service an allocation will refill the stock.
2259 *
2260 * returns true if successful, false otherwise.
cdec2e42 2261 */
a0956d54 2262static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2263{
2264 struct memcg_stock_pcp *stock;
db2ba40c 2265 unsigned long flags;
3e32cb2e 2266 bool ret = false;
cdec2e42 2267
a983b5eb 2268 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2269 return ret;
a0956d54 2270
56751146 2271 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2272
2273 stock = this_cpu_ptr(&memcg_stock);
f785a8f2 2274 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
a0956d54 2275 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2276 ret = true;
2277 }
db2ba40c 2278
56751146 2279 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
db2ba40c 2280
cdec2e42
KH
2281 return ret;
2282}
2283
2284/*
3e32cb2e 2285 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2286 */
2287static void drain_stock(struct memcg_stock_pcp *stock)
2288{
f785a8f2 2289 struct mem_cgroup *old = READ_ONCE(stock->cached);
cdec2e42 2290
1a3e1f40
JW
2291 if (!old)
2292 return;
2293
11c9ea4e 2294 if (stock->nr_pages) {
3e32cb2e 2295 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2296 if (do_memsw_account())
3e32cb2e 2297 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2298 stock->nr_pages = 0;
cdec2e42 2299 }
1a3e1f40
JW
2300
2301 css_put(&old->css);
f785a8f2 2302 WRITE_ONCE(stock->cached, NULL);
cdec2e42
KH
2303}
2304
cdec2e42
KH
2305static void drain_local_stock(struct work_struct *dummy)
2306{
db2ba40c 2307 struct memcg_stock_pcp *stock;
56751146 2308 struct obj_cgroup *old = NULL;
db2ba40c
JW
2309 unsigned long flags;
2310
72f0184c 2311 /*
5c49cf9a
MH
2312 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2313 * drain_stock races is that we always operate on local CPU stock
2314 * here with IRQ disabled
72f0184c 2315 */
56751146 2316 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2317
2318 stock = this_cpu_ptr(&memcg_stock);
56751146 2319 old = drain_obj_stock(stock);
cdec2e42 2320 drain_stock(stock);
26fe6168 2321 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c 2322
56751146
SAS
2323 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2324 if (old)
2325 obj_cgroup_put(old);
cdec2e42
KH
2326}
2327
2328/*
3e32cb2e 2329 * Cache charges(val) to local per_cpu area.
320cc51d 2330 * This will be consumed by consume_stock() function, later.
cdec2e42 2331 */
af9a3b69 2332static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2333{
db2ba40c 2334 struct memcg_stock_pcp *stock;
cdec2e42 2335
db2ba40c 2336 stock = this_cpu_ptr(&memcg_stock);
f785a8f2 2337 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
cdec2e42 2338 drain_stock(stock);
1a3e1f40 2339 css_get(&memcg->css);
f785a8f2 2340 WRITE_ONCE(stock->cached, memcg);
cdec2e42 2341 }
11c9ea4e 2342 stock->nr_pages += nr_pages;
db2ba40c 2343
a983b5eb 2344 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487 2345 drain_stock(stock);
af9a3b69
JW
2346}
2347
2348static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2349{
2350 unsigned long flags;
475d0487 2351
56751146 2352 local_lock_irqsave(&memcg_stock.stock_lock, flags);
af9a3b69 2353 __refill_stock(memcg, nr_pages);
56751146 2354 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
cdec2e42
KH
2355}
2356
2357/*
c0ff4b85 2358 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2359 * of the hierarchy under it.
cdec2e42 2360 */
6d3d6aa2 2361static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2362{
26fe6168 2363 int cpu, curcpu;
d38144b7 2364
6d3d6aa2
JW
2365 /* If someone's already draining, avoid adding running more workers. */
2366 if (!mutex_trylock(&percpu_charge_mutex))
2367 return;
72f0184c
MH
2368 /*
2369 * Notify other cpus that system-wide "drain" is running
2370 * We do not care about races with the cpu hotplug because cpu down
2371 * as well as workers from this path always operate on the local
2372 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2373 */
0790ed62
SAS
2374 migrate_disable();
2375 curcpu = smp_processor_id();
cdec2e42
KH
2376 for_each_online_cpu(cpu) {
2377 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2378 struct mem_cgroup *memcg;
e1a366be 2379 bool flush = false;
26fe6168 2380
e1a366be 2381 rcu_read_lock();
f785a8f2 2382 memcg = READ_ONCE(stock->cached);
e1a366be
RG
2383 if (memcg && stock->nr_pages &&
2384 mem_cgroup_is_descendant(memcg, root_memcg))
2385 flush = true;
27fb0956 2386 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2387 flush = true;
e1a366be
RG
2388 rcu_read_unlock();
2389
2390 if (flush &&
2391 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2392 if (cpu == curcpu)
2393 drain_local_stock(&stock->work);
6a792697 2394 else if (!cpu_is_isolated(cpu))
d1a05b69
MH
2395 schedule_work_on(cpu, &stock->work);
2396 }
cdec2e42 2397 }
0790ed62 2398 migrate_enable();
9f50fad6 2399 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2400}
2401
2cd21c89
JW
2402static int memcg_hotplug_cpu_dead(unsigned int cpu)
2403{
2404 struct memcg_stock_pcp *stock;
a3d4c05a 2405
2cd21c89
JW
2406 stock = &per_cpu(memcg_stock, cpu);
2407 drain_stock(stock);
a3d4c05a 2408
308167fc 2409 return 0;
cdec2e42
KH
2410}
2411
b3ff9291
CD
2412static unsigned long reclaim_high(struct mem_cgroup *memcg,
2413 unsigned int nr_pages,
2414 gfp_t gfp_mask)
f7e1cb6e 2415{
b3ff9291
CD
2416 unsigned long nr_reclaimed = 0;
2417
f7e1cb6e 2418 do {
e22c6ed9
JW
2419 unsigned long pflags;
2420
d1663a90
JK
2421 if (page_counter_read(&memcg->memory) <=
2422 READ_ONCE(memcg->memory.high))
f7e1cb6e 2423 continue;
e22c6ed9 2424
e27be240 2425 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2426
2427 psi_memstall_enter(&pflags);
b3ff9291 2428 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
73b73bac 2429 gfp_mask,
55ab834a 2430 MEMCG_RECLAIM_MAY_SWAP);
e22c6ed9 2431 psi_memstall_leave(&pflags);
4bf17307
CD
2432 } while ((memcg = parent_mem_cgroup(memcg)) &&
2433 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2434
2435 return nr_reclaimed;
f7e1cb6e
JW
2436}
2437
2438static void high_work_func(struct work_struct *work)
2439{
2440 struct mem_cgroup *memcg;
2441
2442 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2443 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2444}
2445
0e4b01df
CD
2446/*
2447 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2448 * enough to still cause a significant slowdown in most cases, while still
2449 * allowing diagnostics and tracing to proceed without becoming stuck.
2450 */
2451#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2452
2453/*
2454 * When calculating the delay, we use these either side of the exponentiation to
2455 * maintain precision and scale to a reasonable number of jiffies (see the table
2456 * below.
2457 *
2458 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2459 * overage ratio to a delay.
ac5ddd0f 2460 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2461 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2462 * to produce a reasonable delay curve.
2463 *
2464 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2465 * reasonable delay curve compared to precision-adjusted overage, not
2466 * penalising heavily at first, but still making sure that growth beyond the
2467 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2468 * example, with a high of 100 megabytes:
2469 *
2470 * +-------+------------------------+
2471 * | usage | time to allocate in ms |
2472 * +-------+------------------------+
2473 * | 100M | 0 |
2474 * | 101M | 6 |
2475 * | 102M | 25 |
2476 * | 103M | 57 |
2477 * | 104M | 102 |
2478 * | 105M | 159 |
2479 * | 106M | 230 |
2480 * | 107M | 313 |
2481 * | 108M | 409 |
2482 * | 109M | 518 |
2483 * | 110M | 639 |
2484 * | 111M | 774 |
2485 * | 112M | 921 |
2486 * | 113M | 1081 |
2487 * | 114M | 1254 |
2488 * | 115M | 1439 |
2489 * | 116M | 1638 |
2490 * | 117M | 1849 |
2491 * | 118M | 2000 |
2492 * | 119M | 2000 |
2493 * | 120M | 2000 |
2494 * +-------+------------------------+
2495 */
2496 #define MEMCG_DELAY_PRECISION_SHIFT 20
2497 #define MEMCG_DELAY_SCALING_SHIFT 14
2498
8a5dbc65 2499static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2500{
8a5dbc65 2501 u64 overage;
b23afb93 2502
8a5dbc65
JK
2503 if (usage <= high)
2504 return 0;
e26733e0 2505
8a5dbc65
JK
2506 /*
2507 * Prevent division by 0 in overage calculation by acting as if
2508 * it was a threshold of 1 page
2509 */
2510 high = max(high, 1UL);
9b8b1754 2511
8a5dbc65
JK
2512 overage = usage - high;
2513 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2514 return div64_u64(overage, high);
2515}
e26733e0 2516
8a5dbc65
JK
2517static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2518{
2519 u64 overage, max_overage = 0;
e26733e0 2520
8a5dbc65
JK
2521 do {
2522 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2523 READ_ONCE(memcg->memory.high));
8a5dbc65 2524 max_overage = max(overage, max_overage);
e26733e0
CD
2525 } while ((memcg = parent_mem_cgroup(memcg)) &&
2526 !mem_cgroup_is_root(memcg));
2527
8a5dbc65
JK
2528 return max_overage;
2529}
2530
4b82ab4f
JK
2531static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2532{
2533 u64 overage, max_overage = 0;
2534
2535 do {
2536 overage = calculate_overage(page_counter_read(&memcg->swap),
2537 READ_ONCE(memcg->swap.high));
2538 if (overage)
2539 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2540 max_overage = max(overage, max_overage);
2541 } while ((memcg = parent_mem_cgroup(memcg)) &&
2542 !mem_cgroup_is_root(memcg));
2543
2544 return max_overage;
2545}
2546
8a5dbc65
JK
2547/*
2548 * Get the number of jiffies that we should penalise a mischievous cgroup which
2549 * is exceeding its memory.high by checking both it and its ancestors.
2550 */
2551static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2552 unsigned int nr_pages,
2553 u64 max_overage)
2554{
2555 unsigned long penalty_jiffies;
2556
e26733e0
CD
2557 if (!max_overage)
2558 return 0;
0e4b01df
CD
2559
2560 /*
0e4b01df
CD
2561 * We use overage compared to memory.high to calculate the number of
2562 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2563 * fairly lenient on small overages, and increasingly harsh when the
2564 * memcg in question makes it clear that it has no intention of stopping
2565 * its crazy behaviour, so we exponentially increase the delay based on
2566 * overage amount.
2567 */
e26733e0
CD
2568 penalty_jiffies = max_overage * max_overage * HZ;
2569 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2570 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2571
2572 /*
2573 * Factor in the task's own contribution to the overage, such that four
2574 * N-sized allocations are throttled approximately the same as one
2575 * 4N-sized allocation.
2576 *
2577 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2578 * larger the current charge patch is than that.
2579 */
ff144e69 2580 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2581}
2582
2583/*
2584 * Scheduled by try_charge() to be executed from the userland return path
2585 * and reclaims memory over the high limit.
2586 */
2587void mem_cgroup_handle_over_high(void)
2588{
2589 unsigned long penalty_jiffies;
2590 unsigned long pflags;
b3ff9291 2591 unsigned long nr_reclaimed;
e26733e0 2592 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2593 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2594 struct mem_cgroup *memcg;
b3ff9291 2595 bool in_retry = false;
e26733e0
CD
2596
2597 if (likely(!nr_pages))
2598 return;
2599
2600 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2601 current->memcg_nr_pages_over_high = 0;
2602
b3ff9291
CD
2603retry_reclaim:
2604 /*
2605 * The allocating task should reclaim at least the batch size, but for
2606 * subsequent retries we only want to do what's necessary to prevent oom
2607 * or breaching resource isolation.
2608 *
2609 * This is distinct from memory.max or page allocator behaviour because
2610 * memory.high is currently batched, whereas memory.max and the page
2611 * allocator run every time an allocation is made.
2612 */
2613 nr_reclaimed = reclaim_high(memcg,
2614 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2615 GFP_KERNEL);
2616
e26733e0
CD
2617 /*
2618 * memory.high is breached and reclaim is unable to keep up. Throttle
2619 * allocators proactively to slow down excessive growth.
2620 */
8a5dbc65
JK
2621 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2622 mem_find_max_overage(memcg));
0e4b01df 2623
4b82ab4f
JK
2624 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2625 swap_find_max_overage(memcg));
2626
ff144e69
JK
2627 /*
2628 * Clamp the max delay per usermode return so as to still keep the
2629 * application moving forwards and also permit diagnostics, albeit
2630 * extremely slowly.
2631 */
2632 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2633
0e4b01df
CD
2634 /*
2635 * Don't sleep if the amount of jiffies this memcg owes us is so low
2636 * that it's not even worth doing, in an attempt to be nice to those who
2637 * go only a small amount over their memory.high value and maybe haven't
2638 * been aggressively reclaimed enough yet.
2639 */
2640 if (penalty_jiffies <= HZ / 100)
2641 goto out;
2642
b3ff9291
CD
2643 /*
2644 * If reclaim is making forward progress but we're still over
2645 * memory.high, we want to encourage that rather than doing allocator
2646 * throttling.
2647 */
2648 if (nr_reclaimed || nr_retries--) {
2649 in_retry = true;
2650 goto retry_reclaim;
2651 }
2652
0e4b01df
CD
2653 /*
2654 * If we exit early, we're guaranteed to die (since
2655 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2656 * need to account for any ill-begotten jiffies to pay them off later.
2657 */
2658 psi_memstall_enter(&pflags);
2659 schedule_timeout_killable(penalty_jiffies);
2660 psi_memstall_leave(&pflags);
2661
2662out:
2663 css_put(&memcg->css);
b23afb93
TH
2664}
2665
c5c8b16b
MS
2666static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2667 unsigned int nr_pages)
8a9f3ccd 2668{
a983b5eb 2669 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2670 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2671 struct mem_cgroup *mem_over_limit;
3e32cb2e 2672 struct page_counter *counter;
6539cc05 2673 unsigned long nr_reclaimed;
a4ebf1b6 2674 bool passed_oom = false;
73b73bac 2675 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
b70a2a21 2676 bool drained = false;
d6e103a7 2677 bool raised_max_event = false;
e22c6ed9 2678 unsigned long pflags;
a636b327 2679
6539cc05 2680retry:
b6b6cc72 2681 if (consume_stock(memcg, nr_pages))
10d53c74 2682 return 0;
8a9f3ccd 2683
7941d214 2684 if (!do_memsw_account() ||
6071ca52
JW
2685 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2686 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2687 goto done_restock;
7941d214 2688 if (do_memsw_account())
3e32cb2e
JW
2689 page_counter_uncharge(&memcg->memsw, batch);
2690 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2691 } else {
3e32cb2e 2692 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
73b73bac 2693 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
3fbe7244 2694 }
7a81b88c 2695
6539cc05
JW
2696 if (batch > nr_pages) {
2697 batch = nr_pages;
2698 goto retry;
2699 }
6d61ef40 2700
89a28483
JW
2701 /*
2702 * Prevent unbounded recursion when reclaim operations need to
2703 * allocate memory. This might exceed the limits temporarily,
2704 * but we prefer facilitating memory reclaim and getting back
2705 * under the limit over triggering OOM kills in these cases.
2706 */
2707 if (unlikely(current->flags & PF_MEMALLOC))
2708 goto force;
2709
06b078fc
JW
2710 if (unlikely(task_in_memcg_oom(current)))
2711 goto nomem;
2712
d0164adc 2713 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2714 goto nomem;
4b534334 2715
e27be240 2716 memcg_memory_event(mem_over_limit, MEMCG_MAX);
d6e103a7 2717 raised_max_event = true;
241994ed 2718
e22c6ed9 2719 psi_memstall_enter(&pflags);
b70a2a21 2720 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
55ab834a 2721 gfp_mask, reclaim_options);
e22c6ed9 2722 psi_memstall_leave(&pflags);
6539cc05 2723
61e02c74 2724 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2725 goto retry;
28c34c29 2726
b70a2a21 2727 if (!drained) {
6d3d6aa2 2728 drain_all_stock(mem_over_limit);
b70a2a21
JW
2729 drained = true;
2730 goto retry;
2731 }
2732
28c34c29
JW
2733 if (gfp_mask & __GFP_NORETRY)
2734 goto nomem;
6539cc05
JW
2735 /*
2736 * Even though the limit is exceeded at this point, reclaim
2737 * may have been able to free some pages. Retry the charge
2738 * before killing the task.
2739 *
2740 * Only for regular pages, though: huge pages are rather
2741 * unlikely to succeed so close to the limit, and we fall back
2742 * to regular pages anyway in case of failure.
2743 */
61e02c74 2744 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2745 goto retry;
2746 /*
2747 * At task move, charge accounts can be doubly counted. So, it's
2748 * better to wait until the end of task_move if something is going on.
2749 */
2750 if (mem_cgroup_wait_acct_move(mem_over_limit))
2751 goto retry;
2752
9b130619
JW
2753 if (nr_retries--)
2754 goto retry;
2755
38d38493 2756 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2757 goto nomem;
2758
a4ebf1b6
VA
2759 /* Avoid endless loop for tasks bypassed by the oom killer */
2760 if (passed_oom && task_is_dying())
2761 goto nomem;
6539cc05 2762
29ef680a
MH
2763 /*
2764 * keep retrying as long as the memcg oom killer is able to make
2765 * a forward progress or bypass the charge if the oom killer
2766 * couldn't make any progress.
2767 */
becdf89d
SB
2768 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2769 get_order(nr_pages * PAGE_SIZE))) {
a4ebf1b6 2770 passed_oom = true;
d977aa93 2771 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a 2772 goto retry;
29ef680a 2773 }
7a81b88c 2774nomem:
1461e8c2
SB
2775 /*
2776 * Memcg doesn't have a dedicated reserve for atomic
2777 * allocations. But like the global atomic pool, we need to
2778 * put the burden of reclaim on regular allocation requests
2779 * and let these go through as privileged allocations.
2780 */
2781 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
3168ecbe 2782 return -ENOMEM;
10d53c74 2783force:
d6e103a7
RG
2784 /*
2785 * If the allocation has to be enforced, don't forget to raise
2786 * a MEMCG_MAX event.
2787 */
2788 if (!raised_max_event)
2789 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2790
10d53c74
TH
2791 /*
2792 * The allocation either can't fail or will lead to more memory
2793 * being freed very soon. Allow memory usage go over the limit
2794 * temporarily by force charging it.
2795 */
2796 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2797 if (do_memsw_account())
10d53c74 2798 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2799
2800 return 0;
6539cc05
JW
2801
2802done_restock:
2803 if (batch > nr_pages)
2804 refill_stock(memcg, batch - nr_pages);
b23afb93 2805
241994ed 2806 /*
b23afb93
TH
2807 * If the hierarchy is above the normal consumption range, schedule
2808 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2809 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2810 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2811 * not recorded as it most likely matches current's and won't
2812 * change in the meantime. As high limit is checked again before
2813 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2814 */
2815 do {
4b82ab4f
JK
2816 bool mem_high, swap_high;
2817
2818 mem_high = page_counter_read(&memcg->memory) >
2819 READ_ONCE(memcg->memory.high);
2820 swap_high = page_counter_read(&memcg->swap) >
2821 READ_ONCE(memcg->swap.high);
2822
2823 /* Don't bother a random interrupted task */
086f694a 2824 if (!in_task()) {
4b82ab4f 2825 if (mem_high) {
f7e1cb6e
JW
2826 schedule_work(&memcg->high_work);
2827 break;
2828 }
4b82ab4f
JK
2829 continue;
2830 }
2831
2832 if (mem_high || swap_high) {
2833 /*
2834 * The allocating tasks in this cgroup will need to do
2835 * reclaim or be throttled to prevent further growth
2836 * of the memory or swap footprints.
2837 *
2838 * Target some best-effort fairness between the tasks,
2839 * and distribute reclaim work and delay penalties
2840 * based on how much each task is actually allocating.
2841 */
9516a18a 2842 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2843 set_notify_resume(current);
2844 break;
2845 }
241994ed 2846 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74 2847
c9afe31e
SB
2848 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2849 !(current->flags & PF_MEMALLOC) &&
2850 gfpflags_allow_blocking(gfp_mask)) {
2851 mem_cgroup_handle_over_high();
2852 }
10d53c74 2853 return 0;
7a81b88c 2854}
8a9f3ccd 2855
c5c8b16b
MS
2856static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2857 unsigned int nr_pages)
2858{
2859 if (mem_cgroup_is_root(memcg))
2860 return 0;
2861
2862 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2863}
2864
58056f77 2865static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2866{
ce00a967
JW
2867 if (mem_cgroup_is_root(memcg))
2868 return;
2869
3e32cb2e 2870 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2871 if (do_memsw_account())
3e32cb2e 2872 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
2873}
2874
118f2875 2875static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
0a31bc97 2876{
118f2875 2877 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
0a31bc97 2878 /*
a5eb011a 2879 * Any of the following ensures page's memcg stability:
0a31bc97 2880 *
a0b5b414
JW
2881 * - the page lock
2882 * - LRU isolation
2883 * - lock_page_memcg()
2884 * - exclusive reference
018ee47f 2885 * - mem_cgroup_trylock_pages()
0a31bc97 2886 */
118f2875 2887 folio->memcg_data = (unsigned long)memcg;
7a81b88c 2888}
66e1707b 2889
84c07d11 2890#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2891/*
2892 * The allocated objcg pointers array is not accounted directly.
2893 * Moreover, it should not come from DMA buffer and is not readily
2894 * reclaimable. So those GFP bits should be masked off.
2895 */
2896#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2897
a7ebf564
WL
2898/*
2899 * mod_objcg_mlstate() may be called with irq enabled, so
2900 * mod_memcg_lruvec_state() should be used.
2901 */
2902static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2903 struct pglist_data *pgdat,
2904 enum node_stat_item idx, int nr)
2905{
2906 struct mem_cgroup *memcg;
2907 struct lruvec *lruvec;
2908
2909 rcu_read_lock();
2910 memcg = obj_cgroup_memcg(objcg);
2911 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2912 mod_memcg_lruvec_state(lruvec, idx, nr);
2913 rcu_read_unlock();
2914}
2915
4b5f8d9a
VB
2916int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2917 gfp_t gfp, bool new_slab)
10befea9 2918{
4b5f8d9a 2919 unsigned int objects = objs_per_slab(s, slab);
2e9bd483 2920 unsigned long memcg_data;
10befea9
RG
2921 void *vec;
2922
41eb5df1 2923 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9 2924 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
4b5f8d9a 2925 slab_nid(slab));
10befea9
RG
2926 if (!vec)
2927 return -ENOMEM;
2928
2e9bd483 2929 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
4b5f8d9a 2930 if (new_slab) {
2e9bd483 2931 /*
4b5f8d9a
VB
2932 * If the slab is brand new and nobody can yet access its
2933 * memcg_data, no synchronization is required and memcg_data can
2934 * be simply assigned.
2e9bd483 2935 */
4b5f8d9a
VB
2936 slab->memcg_data = memcg_data;
2937 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2e9bd483 2938 /*
4b5f8d9a
VB
2939 * If the slab is already in use, somebody can allocate and
2940 * assign obj_cgroups in parallel. In this case the existing
2e9bd483
RG
2941 * objcg vector should be reused.
2942 */
10befea9 2943 kfree(vec);
2e9bd483
RG
2944 return 0;
2945 }
10befea9 2946
2e9bd483 2947 kmemleak_not_leak(vec);
10befea9
RG
2948 return 0;
2949}
2950
fc4db90f
RG
2951static __always_inline
2952struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
8380ce47 2953{
8380ce47 2954 /*
9855609b
RG
2955 * Slab objects are accounted individually, not per-page.
2956 * Memcg membership data for each individual object is saved in
4b5f8d9a 2957 * slab->memcg_data.
8380ce47 2958 */
4b5f8d9a
VB
2959 if (folio_test_slab(folio)) {
2960 struct obj_cgroup **objcgs;
2961 struct slab *slab;
9855609b
RG
2962 unsigned int off;
2963
4b5f8d9a
VB
2964 slab = folio_slab(folio);
2965 objcgs = slab_objcgs(slab);
2966 if (!objcgs)
2967 return NULL;
2968
2969 off = obj_to_index(slab->slab_cache, slab, p);
2970 if (objcgs[off])
2971 return obj_cgroup_memcg(objcgs[off]);
10befea9
RG
2972
2973 return NULL;
9855609b 2974 }
8380ce47 2975
bcfe06bf 2976 /*
becacb04 2977 * folio_memcg_check() is used here, because in theory we can encounter
4b5f8d9a
VB
2978 * a folio where the slab flag has been cleared already, but
2979 * slab->memcg_data has not been freed yet
becacb04 2980 * folio_memcg_check() will guarantee that a proper memory
bcfe06bf
RG
2981 * cgroup pointer or NULL will be returned.
2982 */
becacb04 2983 return folio_memcg_check(folio);
8380ce47
RG
2984}
2985
fc4db90f
RG
2986/*
2987 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2988 *
2989 * A passed kernel object can be a slab object, vmalloc object or a generic
2990 * kernel page, so different mechanisms for getting the memory cgroup pointer
2991 * should be used.
2992 *
2993 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2994 * can not know for sure how the kernel object is implemented.
2995 * mem_cgroup_from_obj() can be safely used in such cases.
2996 *
2997 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2998 * cgroup_mutex, etc.
2999 */
3000struct mem_cgroup *mem_cgroup_from_obj(void *p)
3001{
3002 struct folio *folio;
3003
3004 if (mem_cgroup_disabled())
3005 return NULL;
3006
3007 if (unlikely(is_vmalloc_addr(p)))
3008 folio = page_folio(vmalloc_to_page(p));
3009 else
3010 folio = virt_to_folio(p);
3011
3012 return mem_cgroup_from_obj_folio(folio, p);
3013}
3014
3015/*
3016 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3017 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3018 * allocated using vmalloc().
3019 *
3020 * A passed kernel object must be a slab object or a generic kernel page.
3021 *
3022 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3023 * cgroup_mutex, etc.
3024 */
3025struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3026{
3027 if (mem_cgroup_disabled())
3028 return NULL;
3029
3030 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3031}
3032
f4840ccf
JW
3033static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3034{
3035 struct obj_cgroup *objcg = NULL;
3036
7848ed62 3037 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
f4840ccf
JW
3038 objcg = rcu_dereference(memcg->objcg);
3039 if (objcg && obj_cgroup_tryget(objcg))
3040 break;
3041 objcg = NULL;
3042 }
3043 return objcg;
3044}
3045
bf4f0599
RG
3046__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3047{
3048 struct obj_cgroup *objcg = NULL;
3049 struct mem_cgroup *memcg;
3050
279c3393
RG
3051 if (memcg_kmem_bypass())
3052 return NULL;
3053
bf4f0599 3054 rcu_read_lock();
37d5985c
RG
3055 if (unlikely(active_memcg()))
3056 memcg = active_memcg();
bf4f0599
RG
3057 else
3058 memcg = mem_cgroup_from_task(current);
f4840ccf 3059 objcg = __get_obj_cgroup_from_memcg(memcg);
bf4f0599 3060 rcu_read_unlock();
f4840ccf
JW
3061 return objcg;
3062}
3063
3064struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3065{
3066 struct obj_cgroup *objcg;
3067
f7a449f7 3068 if (!memcg_kmem_online())
f4840ccf
JW
3069 return NULL;
3070
3071 if (PageMemcgKmem(page)) {
3072 objcg = __folio_objcg(page_folio(page));
3073 obj_cgroup_get(objcg);
3074 } else {
3075 struct mem_cgroup *memcg;
bf4f0599 3076
f4840ccf
JW
3077 rcu_read_lock();
3078 memcg = __folio_memcg(page_folio(page));
3079 if (memcg)
3080 objcg = __get_obj_cgroup_from_memcg(memcg);
3081 else
3082 objcg = NULL;
3083 rcu_read_unlock();
3084 }
bf4f0599
RG
3085 return objcg;
3086}
3087
a8c49af3
YA
3088static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3089{
3090 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3091 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3092 if (nr_pages > 0)
3093 page_counter_charge(&memcg->kmem, nr_pages);
3094 else
3095 page_counter_uncharge(&memcg->kmem, -nr_pages);
3096 }
3097}
3098
3099
f1286fae
MS
3100/*
3101 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3102 * @objcg: object cgroup to uncharge
3103 * @nr_pages: number of pages to uncharge
3104 */
e74d2259
MS
3105static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3106 unsigned int nr_pages)
3107{
3108 struct mem_cgroup *memcg;
3109
3110 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 3111
a8c49af3 3112 memcg_account_kmem(memcg, -nr_pages);
f1286fae 3113 refill_stock(memcg, nr_pages);
e74d2259 3114
e74d2259 3115 css_put(&memcg->css);
e74d2259
MS
3116}
3117
f1286fae
MS
3118/*
3119 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3120 * @objcg: object cgroup to charge
45264778 3121 * @gfp: reclaim mode
92d0510c 3122 * @nr_pages: number of pages to charge
45264778
VD
3123 *
3124 * Returns 0 on success, an error code on failure.
3125 */
f1286fae
MS
3126static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3127 unsigned int nr_pages)
7ae1e1d0 3128{
f1286fae 3129 struct mem_cgroup *memcg;
7ae1e1d0
GC
3130 int ret;
3131
f1286fae
MS
3132 memcg = get_mem_cgroup_from_objcg(objcg);
3133
c5c8b16b 3134 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 3135 if (ret)
f1286fae 3136 goto out;
52c29b04 3137
a8c49af3 3138 memcg_account_kmem(memcg, nr_pages);
f1286fae
MS
3139out:
3140 css_put(&memcg->css);
4b13f64d 3141
f1286fae 3142 return ret;
4b13f64d
RG
3143}
3144
45264778 3145/**
f4b00eab 3146 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3147 * @page: page to charge
3148 * @gfp: reclaim mode
3149 * @order: allocation order
3150 *
3151 * Returns 0 on success, an error code on failure.
3152 */
f4b00eab 3153int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3154{
b4e0b68f 3155 struct obj_cgroup *objcg;
fcff7d7e 3156 int ret = 0;
7ae1e1d0 3157
b4e0b68f
MS
3158 objcg = get_obj_cgroup_from_current();
3159 if (objcg) {
3160 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3161 if (!ret) {
b4e0b68f 3162 page->memcg_data = (unsigned long)objcg |
18b2db3b 3163 MEMCG_DATA_KMEM;
1a3e1f40 3164 return 0;
4d96ba35 3165 }
b4e0b68f 3166 obj_cgroup_put(objcg);
c4159a75 3167 }
d05e83a6 3168 return ret;
7ae1e1d0 3169}
49a18eae 3170
45264778 3171/**
f4b00eab 3172 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3173 * @page: page to uncharge
3174 * @order: allocation order
3175 */
f4b00eab 3176void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3177{
1b7e4464 3178 struct folio *folio = page_folio(page);
b4e0b68f 3179 struct obj_cgroup *objcg;
f3ccb2c4 3180 unsigned int nr_pages = 1 << order;
7ae1e1d0 3181
1b7e4464 3182 if (!folio_memcg_kmem(folio))
7ae1e1d0
GC
3183 return;
3184
1b7e4464 3185 objcg = __folio_objcg(folio);
b4e0b68f 3186 obj_cgroup_uncharge_pages(objcg, nr_pages);
1b7e4464 3187 folio->memcg_data = 0;
b4e0b68f 3188 obj_cgroup_put(objcg);
60d3fd32 3189}
bf4f0599 3190
68ac5b3c
WL
3191void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3192 enum node_stat_item idx, int nr)
3193{
fead2b86 3194 struct memcg_stock_pcp *stock;
56751146 3195 struct obj_cgroup *old = NULL;
68ac5b3c
WL
3196 unsigned long flags;
3197 int *bytes;
3198
56751146 3199 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3200 stock = this_cpu_ptr(&memcg_stock);
3201
68ac5b3c
WL
3202 /*
3203 * Save vmstat data in stock and skip vmstat array update unless
3204 * accumulating over a page of vmstat data or when pgdat or idx
3205 * changes.
3206 */
3b8abb32 3207 if (READ_ONCE(stock->cached_objcg) != objcg) {
56751146 3208 old = drain_obj_stock(stock);
68ac5b3c
WL
3209 obj_cgroup_get(objcg);
3210 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3211 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3b8abb32 3212 WRITE_ONCE(stock->cached_objcg, objcg);
68ac5b3c
WL
3213 stock->cached_pgdat = pgdat;
3214 } else if (stock->cached_pgdat != pgdat) {
3215 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3216 struct pglist_data *oldpg = stock->cached_pgdat;
3217
68ac5b3c 3218 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3219 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3220 stock->nr_slab_reclaimable_b);
3221 stock->nr_slab_reclaimable_b = 0;
3222 }
3223 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3224 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3225 stock->nr_slab_unreclaimable_b);
3226 stock->nr_slab_unreclaimable_b = 0;
3227 }
3228 stock->cached_pgdat = pgdat;
3229 }
3230
3231 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3232 : &stock->nr_slab_unreclaimable_b;
3233 /*
3234 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3235 * cached locally at least once before pushing it out.
3236 */
3237 if (!*bytes) {
3238 *bytes = nr;
3239 nr = 0;
3240 } else {
3241 *bytes += nr;
3242 if (abs(*bytes) > PAGE_SIZE) {
3243 nr = *bytes;
3244 *bytes = 0;
3245 } else {
3246 nr = 0;
3247 }
3248 }
3249 if (nr)
3250 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3251
56751146
SAS
3252 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3253 if (old)
3254 obj_cgroup_put(old);
68ac5b3c
WL
3255}
3256
bf4f0599
RG
3257static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3258{
fead2b86 3259 struct memcg_stock_pcp *stock;
bf4f0599
RG
3260 unsigned long flags;
3261 bool ret = false;
3262
56751146 3263 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3264
3265 stock = this_cpu_ptr(&memcg_stock);
3b8abb32 3266 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
bf4f0599
RG
3267 stock->nr_bytes -= nr_bytes;
3268 ret = true;
3269 }
3270
56751146 3271 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
bf4f0599
RG
3272
3273 return ret;
3274}
3275
56751146 3276static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 3277{
3b8abb32 3278 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
bf4f0599
RG
3279
3280 if (!old)
56751146 3281 return NULL;
bf4f0599
RG
3282
3283 if (stock->nr_bytes) {
3284 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3285 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3286
af9a3b69
JW
3287 if (nr_pages) {
3288 struct mem_cgroup *memcg;
3289
3290 memcg = get_mem_cgroup_from_objcg(old);
3291
3292 memcg_account_kmem(memcg, -nr_pages);
3293 __refill_stock(memcg, nr_pages);
3294
3295 css_put(&memcg->css);
3296 }
bf4f0599
RG
3297
3298 /*
3299 * The leftover is flushed to the centralized per-memcg value.
3300 * On the next attempt to refill obj stock it will be moved
3301 * to a per-cpu stock (probably, on an other CPU), see
3302 * refill_obj_stock().
3303 *
3304 * How often it's flushed is a trade-off between the memory
3305 * limit enforcement accuracy and potential CPU contention,
3306 * so it might be changed in the future.
3307 */
3308 atomic_add(nr_bytes, &old->nr_charged_bytes);
3309 stock->nr_bytes = 0;
3310 }
3311
68ac5b3c
WL
3312 /*
3313 * Flush the vmstat data in current stock
3314 */
3315 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3316 if (stock->nr_slab_reclaimable_b) {
3317 mod_objcg_mlstate(old, stock->cached_pgdat,
3318 NR_SLAB_RECLAIMABLE_B,
3319 stock->nr_slab_reclaimable_b);
3320 stock->nr_slab_reclaimable_b = 0;
3321 }
3322 if (stock->nr_slab_unreclaimable_b) {
3323 mod_objcg_mlstate(old, stock->cached_pgdat,
3324 NR_SLAB_UNRECLAIMABLE_B,
3325 stock->nr_slab_unreclaimable_b);
3326 stock->nr_slab_unreclaimable_b = 0;
3327 }
3328 stock->cached_pgdat = NULL;
3329 }
3330
3b8abb32 3331 WRITE_ONCE(stock->cached_objcg, NULL);
56751146
SAS
3332 /*
3333 * The `old' objects needs to be released by the caller via
3334 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3335 */
3336 return old;
bf4f0599
RG
3337}
3338
3339static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3340 struct mem_cgroup *root_memcg)
3341{
3b8abb32 3342 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
bf4f0599
RG
3343 struct mem_cgroup *memcg;
3344
3b8abb32
RG
3345 if (objcg) {
3346 memcg = obj_cgroup_memcg(objcg);
bf4f0599
RG
3347 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3348 return true;
3349 }
3350
3351 return false;
3352}
3353
5387c904
WL
3354static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3355 bool allow_uncharge)
bf4f0599 3356{
fead2b86 3357 struct memcg_stock_pcp *stock;
56751146 3358 struct obj_cgroup *old = NULL;
bf4f0599 3359 unsigned long flags;
5387c904 3360 unsigned int nr_pages = 0;
bf4f0599 3361
56751146 3362 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3363
3364 stock = this_cpu_ptr(&memcg_stock);
3b8abb32 3365 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
56751146 3366 old = drain_obj_stock(stock);
bf4f0599 3367 obj_cgroup_get(objcg);
3b8abb32 3368 WRITE_ONCE(stock->cached_objcg, objcg);
5387c904
WL
3369 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3370 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3371 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3372 }
3373 stock->nr_bytes += nr_bytes;
3374
5387c904
WL
3375 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3376 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3377 stock->nr_bytes &= (PAGE_SIZE - 1);
3378 }
bf4f0599 3379
56751146
SAS
3380 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3381 if (old)
3382 obj_cgroup_put(old);
5387c904
WL
3383
3384 if (nr_pages)
3385 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3386}
3387
3388int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3389{
bf4f0599
RG
3390 unsigned int nr_pages, nr_bytes;
3391 int ret;
3392
3393 if (consume_obj_stock(objcg, size))
3394 return 0;
3395
3396 /*
5387c904 3397 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3398 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3399 * flushing objcg->nr_charged_bytes requires two atomic
3400 * operations, and objcg->nr_charged_bytes can't be big.
3401 * The shared objcg->nr_charged_bytes can also become a
3402 * performance bottleneck if all tasks of the same memcg are
3403 * trying to update it. So it's better to ignore it and try
3404 * grab some new pages. The stock's nr_bytes will be flushed to
3405 * objcg->nr_charged_bytes later on when objcg changes.
3406 *
3407 * The stock's nr_bytes may contain enough pre-charged bytes
3408 * to allow one less page from being charged, but we can't rely
3409 * on the pre-charged bytes not being changed outside of
3410 * consume_obj_stock() or refill_obj_stock(). So ignore those
3411 * pre-charged bytes as well when charging pages. To avoid a
3412 * page uncharge right after a page charge, we set the
3413 * allow_uncharge flag to false when calling refill_obj_stock()
3414 * to temporarily allow the pre-charged bytes to exceed the page
3415 * size limit. The maximum reachable value of the pre-charged
3416 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3417 * race.
bf4f0599 3418 */
bf4f0599
RG
3419 nr_pages = size >> PAGE_SHIFT;
3420 nr_bytes = size & (PAGE_SIZE - 1);
3421
3422 if (nr_bytes)
3423 nr_pages += 1;
3424
e74d2259 3425 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3426 if (!ret && nr_bytes)
5387c904 3427 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3428
bf4f0599
RG
3429 return ret;
3430}
3431
3432void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3433{
5387c904 3434 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3435}
3436
84c07d11 3437#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3438
ca3e0214 3439/*
be6c8982 3440 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3441 */
be6c8982 3442void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3443{
1b7e4464
MWO
3444 struct folio *folio = page_folio(head);
3445 struct mem_cgroup *memcg = folio_memcg(folio);
e94c8a9c 3446 int i;
ca3e0214 3447
be6c8982 3448 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3449 return;
b070e65c 3450
be6c8982 3451 for (i = 1; i < nr; i++)
1b7e4464 3452 folio_page(folio, i)->memcg_data = folio->memcg_data;
b4e0b68f 3453
1b7e4464
MWO
3454 if (folio_memcg_kmem(folio))
3455 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
b4e0b68f
MS
3456 else
3457 css_get_many(&memcg->css, nr - 1);
ca3e0214 3458}
ca3e0214 3459
e55b9f96 3460#ifdef CONFIG_SWAP
02491447
DN
3461/**
3462 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3463 * @entry: swap entry to be moved
3464 * @from: mem_cgroup which the entry is moved from
3465 * @to: mem_cgroup which the entry is moved to
3466 *
3467 * It succeeds only when the swap_cgroup's record for this entry is the same
3468 * as the mem_cgroup's id of @from.
3469 *
3470 * Returns 0 on success, -EINVAL on failure.
3471 *
3e32cb2e 3472 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3473 * both res and memsw, and called css_get().
3474 */
3475static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3476 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3477{
3478 unsigned short old_id, new_id;
3479
34c00c31
LZ
3480 old_id = mem_cgroup_id(from);
3481 new_id = mem_cgroup_id(to);
02491447
DN
3482
3483 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3484 mod_memcg_state(from, MEMCG_SWAP, -1);
3485 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3486 return 0;
3487 }
3488 return -EINVAL;
3489}
3490#else
3491static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3492 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3493{
3494 return -EINVAL;
3495}
8c7c6e34 3496#endif
d13d1443 3497
bbec2e15 3498static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3499
bbec2e15
RG
3500static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3501 unsigned long max, bool memsw)
628f4235 3502{
3e32cb2e 3503 bool enlarge = false;
bb4a7ea2 3504 bool drained = false;
3e32cb2e 3505 int ret;
c054a78c
YZ
3506 bool limits_invariant;
3507 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3508
3e32cb2e 3509 do {
628f4235
KH
3510 if (signal_pending(current)) {
3511 ret = -EINTR;
3512 break;
3513 }
3e32cb2e 3514
bbec2e15 3515 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3516 /*
3517 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3518 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3519 */
15b42562 3520 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3521 max <= memcg->memsw.max;
c054a78c 3522 if (!limits_invariant) {
bbec2e15 3523 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3524 ret = -EINVAL;
8c7c6e34
KH
3525 break;
3526 }
bbec2e15 3527 if (max > counter->max)
3e32cb2e 3528 enlarge = true;
bbec2e15
RG
3529 ret = page_counter_set_max(counter, max);
3530 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3531
3532 if (!ret)
3533 break;
3534
bb4a7ea2
SB
3535 if (!drained) {
3536 drain_all_stock(memcg);
3537 drained = true;
3538 continue;
3539 }
3540
73b73bac 3541 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3542 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
1ab5c056
AR
3543 ret = -EBUSY;
3544 break;
3545 }
3546 } while (true);
3e32cb2e 3547
3c11ecf4
KH
3548 if (!ret && enlarge)
3549 memcg_oom_recover(memcg);
3e32cb2e 3550
628f4235
KH
3551 return ret;
3552}
3553
ef8f2327 3554unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3555 gfp_t gfp_mask,
3556 unsigned long *total_scanned)
3557{
3558 unsigned long nr_reclaimed = 0;
ef8f2327 3559 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3560 unsigned long reclaimed;
3561 int loop = 0;
ef8f2327 3562 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3563 unsigned long excess;
0608f43d 3564
e4dde56c
YZ
3565 if (lru_gen_enabled())
3566 return 0;
3567
0608f43d
AM
3568 if (order > 0)
3569 return 0;
3570
2ab082ba 3571 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
d6507ff5
MH
3572
3573 /*
3574 * Do not even bother to check the largest node if the root
3575 * is empty. Do it lockless to prevent lock bouncing. Races
3576 * are acceptable as soft limit is best effort anyway.
3577 */
bfc7228b 3578 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3579 return 0;
3580
0608f43d
AM
3581 /*
3582 * This loop can run a while, specially if mem_cgroup's continuously
3583 * keep exceeding their soft limit and putting the system under
3584 * pressure
3585 */
3586 do {
3587 if (next_mz)
3588 mz = next_mz;
3589 else
3590 mz = mem_cgroup_largest_soft_limit_node(mctz);
3591 if (!mz)
3592 break;
3593
ef8f2327 3594 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
d8f65338 3595 gfp_mask, total_scanned);
0608f43d 3596 nr_reclaimed += reclaimed;
0a31bc97 3597 spin_lock_irq(&mctz->lock);
0608f43d
AM
3598
3599 /*
3600 * If we failed to reclaim anything from this memory cgroup
3601 * it is time to move on to the next cgroup
3602 */
3603 next_mz = NULL;
bc2f2e7f
VD
3604 if (!reclaimed)
3605 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3606
3e32cb2e 3607 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3608 /*
3609 * One school of thought says that we should not add
3610 * back the node to the tree if reclaim returns 0.
3611 * But our reclaim could return 0, simply because due
3612 * to priority we are exposing a smaller subset of
3613 * memory to reclaim from. Consider this as a longer
3614 * term TODO.
3615 */
3616 /* If excess == 0, no tree ops */
cf2c8127 3617 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3618 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3619 css_put(&mz->memcg->css);
3620 loop++;
3621 /*
3622 * Could not reclaim anything and there are no more
3623 * mem cgroups to try or we seem to be looping without
3624 * reclaiming anything.
3625 */
3626 if (!nr_reclaimed &&
3627 (next_mz == NULL ||
3628 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3629 break;
3630 } while (!nr_reclaimed);
3631 if (next_mz)
3632 css_put(&next_mz->memcg->css);
3633 return nr_reclaimed;
3634}
3635
c26251f9 3636/*
51038171 3637 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3638 *
3639 * Caller is responsible for holding css reference for memcg.
3640 */
3641static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3642{
d977aa93 3643 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3644
c1e862c1
KH
3645 /* we call try-to-free pages for make this cgroup empty */
3646 lru_add_drain_all();
d12c60f6
JS
3647
3648 drain_all_stock(memcg);
3649
f817ed48 3650 /* try to free all pages in this cgroup */
3e32cb2e 3651 while (nr_retries && page_counter_read(&memcg->memory)) {
c26251f9
MH
3652 if (signal_pending(current))
3653 return -EINTR;
3654
73b73bac 3655 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3656 MEMCG_RECLAIM_MAY_SWAP))
f817ed48 3657 nr_retries--;
f817ed48 3658 }
ab5196c2
MH
3659
3660 return 0;
cc847582
KH
3661}
3662
6770c64e
TH
3663static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3664 char *buf, size_t nbytes,
3665 loff_t off)
c1e862c1 3666{
6770c64e 3667 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3668
d8423011
MH
3669 if (mem_cgroup_is_root(memcg))
3670 return -EINVAL;
6770c64e 3671 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3672}
3673
182446d0
TH
3674static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3675 struct cftype *cft)
18f59ea7 3676{
bef8620c 3677 return 1;
18f59ea7
BS
3678}
3679
182446d0
TH
3680static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3681 struct cftype *cft, u64 val)
18f59ea7 3682{
bef8620c 3683 if (val == 1)
0b8f73e1 3684 return 0;
567fb435 3685
bef8620c
RG
3686 pr_warn_once("Non-hierarchical mode is deprecated. "
3687 "Please report your usecase to linux-mm@kvack.org if you "
3688 "depend on this functionality.\n");
567fb435 3689
bef8620c 3690 return -EINVAL;
18f59ea7
BS
3691}
3692
6f646156 3693static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3694{
42a30035 3695 unsigned long val;
ce00a967 3696
3e32cb2e 3697 if (mem_cgroup_is_root(memcg)) {
a2174e95 3698 /*
f82a7a86
YA
3699 * Approximate root's usage from global state. This isn't
3700 * perfect, but the root usage was always an approximation.
a2174e95 3701 */
f82a7a86
YA
3702 val = global_node_page_state(NR_FILE_PAGES) +
3703 global_node_page_state(NR_ANON_MAPPED);
42a30035 3704 if (swap)
f82a7a86 3705 val += total_swap_pages - get_nr_swap_pages();
3e32cb2e 3706 } else {
ce00a967 3707 if (!swap)
3e32cb2e 3708 val = page_counter_read(&memcg->memory);
ce00a967 3709 else
3e32cb2e 3710 val = page_counter_read(&memcg->memsw);
ce00a967 3711 }
c12176d3 3712 return val;
ce00a967
JW
3713}
3714
3e32cb2e
JW
3715enum {
3716 RES_USAGE,
3717 RES_LIMIT,
3718 RES_MAX_USAGE,
3719 RES_FAILCNT,
3720 RES_SOFT_LIMIT,
3721};
ce00a967 3722
791badbd 3723static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3724 struct cftype *cft)
8cdea7c0 3725{
182446d0 3726 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3727 struct page_counter *counter;
af36f906 3728
3e32cb2e 3729 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3730 case _MEM:
3e32cb2e
JW
3731 counter = &memcg->memory;
3732 break;
8c7c6e34 3733 case _MEMSWAP:
3e32cb2e
JW
3734 counter = &memcg->memsw;
3735 break;
510fc4e1 3736 case _KMEM:
3e32cb2e 3737 counter = &memcg->kmem;
510fc4e1 3738 break;
d55f90bf 3739 case _TCP:
0db15298 3740 counter = &memcg->tcpmem;
d55f90bf 3741 break;
8c7c6e34
KH
3742 default:
3743 BUG();
8c7c6e34 3744 }
3e32cb2e
JW
3745
3746 switch (MEMFILE_ATTR(cft->private)) {
3747 case RES_USAGE:
3748 if (counter == &memcg->memory)
c12176d3 3749 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3750 if (counter == &memcg->memsw)
c12176d3 3751 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3752 return (u64)page_counter_read(counter) * PAGE_SIZE;
3753 case RES_LIMIT:
bbec2e15 3754 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3755 case RES_MAX_USAGE:
3756 return (u64)counter->watermark * PAGE_SIZE;
3757 case RES_FAILCNT:
3758 return counter->failcnt;
3759 case RES_SOFT_LIMIT:
2178e20c 3760 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3e32cb2e
JW
3761 default:
3762 BUG();
3763 }
8cdea7c0 3764}
510fc4e1 3765
6b0ba2ab
FS
3766/*
3767 * This function doesn't do anything useful. Its only job is to provide a read
3768 * handler for a file so that cgroup_file_mode() will add read permissions.
3769 */
3770static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3771 __always_unused void *v)
3772{
3773 return -EINVAL;
3774}
3775
84c07d11 3776#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3777static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3778{
bf4f0599 3779 struct obj_cgroup *objcg;
d6441637 3780
9c94bef9 3781 if (mem_cgroup_kmem_disabled())
b313aeee
VD
3782 return 0;
3783
da0efe30
MS
3784 if (unlikely(mem_cgroup_is_root(memcg)))
3785 return 0;
d6441637 3786
bf4f0599 3787 objcg = obj_cgroup_alloc();
f9c69d63 3788 if (!objcg)
bf4f0599 3789 return -ENOMEM;
f9c69d63 3790
bf4f0599
RG
3791 objcg->memcg = memcg;
3792 rcu_assign_pointer(memcg->objcg, objcg);
3793
f7a449f7 3794 static_branch_enable(&memcg_kmem_online_key);
d648bcc7 3795
f9c69d63 3796 memcg->kmemcg_id = memcg->id.id;
0b8f73e1
JW
3797
3798 return 0;
d6441637
VD
3799}
3800
8e0a8912
JW
3801static void memcg_offline_kmem(struct mem_cgroup *memcg)
3802{
64268868 3803 struct mem_cgroup *parent;
8e0a8912 3804
9c94bef9 3805 if (mem_cgroup_kmem_disabled())
da0efe30
MS
3806 return;
3807
3808 if (unlikely(mem_cgroup_is_root(memcg)))
8e0a8912 3809 return;
9855609b 3810
8e0a8912
JW
3811 parent = parent_mem_cgroup(memcg);
3812 if (!parent)
3813 parent = root_mem_cgroup;
3814
bf4f0599 3815 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a 3816
8e0a8912 3817 /*
64268868
MS
3818 * After we have finished memcg_reparent_objcgs(), all list_lrus
3819 * corresponding to this cgroup are guaranteed to remain empty.
3820 * The ordering is imposed by list_lru_node->lock taken by
1f391eb2 3821 * memcg_reparent_list_lrus().
8e0a8912 3822 */
1f391eb2 3823 memcg_reparent_list_lrus(memcg, parent);
8e0a8912 3824}
d6441637 3825#else
0b8f73e1 3826static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3827{
3828 return 0;
3829}
3830static void memcg_offline_kmem(struct mem_cgroup *memcg)
3831{
3832}
84c07d11 3833#endif /* CONFIG_MEMCG_KMEM */
127424c8 3834
bbec2e15 3835static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3836{
3837 int ret;
3838
bbec2e15 3839 mutex_lock(&memcg_max_mutex);
d55f90bf 3840
bbec2e15 3841 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3842 if (ret)
3843 goto out;
3844
0db15298 3845 if (!memcg->tcpmem_active) {
d55f90bf
VD
3846 /*
3847 * The active flag needs to be written after the static_key
3848 * update. This is what guarantees that the socket activation
2d758073
JW
3849 * function is the last one to run. See mem_cgroup_sk_alloc()
3850 * for details, and note that we don't mark any socket as
3851 * belonging to this memcg until that flag is up.
d55f90bf
VD
3852 *
3853 * We need to do this, because static_keys will span multiple
3854 * sites, but we can't control their order. If we mark a socket
3855 * as accounted, but the accounting functions are not patched in
3856 * yet, we'll lose accounting.
3857 *
2d758073 3858 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3859 * because when this value change, the code to process it is not
3860 * patched in yet.
3861 */
3862 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3863 memcg->tcpmem_active = true;
d55f90bf
VD
3864 }
3865out:
bbec2e15 3866 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3867 return ret;
3868}
d55f90bf 3869
628f4235
KH
3870/*
3871 * The user of this function is...
3872 * RES_LIMIT.
3873 */
451af504
TH
3874static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3875 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3876{
451af504 3877 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3878 unsigned long nr_pages;
628f4235
KH
3879 int ret;
3880
451af504 3881 buf = strstrip(buf);
650c5e56 3882 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3883 if (ret)
3884 return ret;
af36f906 3885
3e32cb2e 3886 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3887 case RES_LIMIT:
4b3bde4c
BS
3888 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3889 ret = -EINVAL;
3890 break;
3891 }
3e32cb2e
JW
3892 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3893 case _MEM:
bbec2e15 3894 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3895 break;
3e32cb2e 3896 case _MEMSWAP:
bbec2e15 3897 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3898 break;
3e32cb2e 3899 case _KMEM:
58056f77
SB
3900 /* kmem.limit_in_bytes is deprecated. */
3901 ret = -EOPNOTSUPP;
3e32cb2e 3902 break;
d55f90bf 3903 case _TCP:
bbec2e15 3904 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3905 break;
3e32cb2e 3906 }
296c81d8 3907 break;
3e32cb2e 3908 case RES_SOFT_LIMIT:
2343e88d
SAS
3909 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3910 ret = -EOPNOTSUPP;
3911 } else {
2178e20c 3912 WRITE_ONCE(memcg->soft_limit, nr_pages);
2343e88d
SAS
3913 ret = 0;
3914 }
628f4235
KH
3915 break;
3916 }
451af504 3917 return ret ?: nbytes;
8cdea7c0
BS
3918}
3919
6770c64e
TH
3920static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3921 size_t nbytes, loff_t off)
c84872e1 3922{
6770c64e 3923 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3924 struct page_counter *counter;
c84872e1 3925
3e32cb2e
JW
3926 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3927 case _MEM:
3928 counter = &memcg->memory;
3929 break;
3930 case _MEMSWAP:
3931 counter = &memcg->memsw;
3932 break;
3933 case _KMEM:
3934 counter = &memcg->kmem;
3935 break;
d55f90bf 3936 case _TCP:
0db15298 3937 counter = &memcg->tcpmem;
d55f90bf 3938 break;
3e32cb2e
JW
3939 default:
3940 BUG();
3941 }
af36f906 3942
3e32cb2e 3943 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3944 case RES_MAX_USAGE:
3e32cb2e 3945 page_counter_reset_watermark(counter);
29f2a4da
PE
3946 break;
3947 case RES_FAILCNT:
3e32cb2e 3948 counter->failcnt = 0;
29f2a4da 3949 break;
3e32cb2e
JW
3950 default:
3951 BUG();
29f2a4da 3952 }
f64c3f54 3953
6770c64e 3954 return nbytes;
c84872e1
PE
3955}
3956
182446d0 3957static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3958 struct cftype *cft)
3959{
182446d0 3960 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3961}
3962
02491447 3963#ifdef CONFIG_MMU
182446d0 3964static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3965 struct cftype *cft, u64 val)
3966{
182446d0 3967 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3968
da34a848
JW
3969 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3970 "Please report your usecase to linux-mm@kvack.org if you "
3971 "depend on this functionality.\n");
3972
1dfab5ab 3973 if (val & ~MOVE_MASK)
7dc74be0 3974 return -EINVAL;
ee5e8472 3975
7dc74be0 3976 /*
ee5e8472
GC
3977 * No kind of locking is needed in here, because ->can_attach() will
3978 * check this value once in the beginning of the process, and then carry
3979 * on with stale data. This means that changes to this value will only
3980 * affect task migrations starting after the change.
7dc74be0 3981 */
c0ff4b85 3982 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3983 return 0;
3984}
02491447 3985#else
182446d0 3986static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3987 struct cftype *cft, u64 val)
3988{
3989 return -ENOSYS;
3990}
3991#endif
7dc74be0 3992
406eb0c9 3993#ifdef CONFIG_NUMA
113b7dfd
JW
3994
3995#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3996#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3997#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3998
3999static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 4000 int nid, unsigned int lru_mask, bool tree)
113b7dfd 4001{
867e5e1d 4002 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
4003 unsigned long nr = 0;
4004 enum lru_list lru;
4005
4006 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4007
4008 for_each_lru(lru) {
4009 if (!(BIT(lru) & lru_mask))
4010 continue;
dd8657b6
SB
4011 if (tree)
4012 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4013 else
4014 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
4015 }
4016 return nr;
4017}
4018
4019static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
4020 unsigned int lru_mask,
4021 bool tree)
113b7dfd
JW
4022{
4023 unsigned long nr = 0;
4024 enum lru_list lru;
4025
4026 for_each_lru(lru) {
4027 if (!(BIT(lru) & lru_mask))
4028 continue;
dd8657b6
SB
4029 if (tree)
4030 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4031 else
4032 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
4033 }
4034 return nr;
4035}
4036
2da8ca82 4037static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4038{
25485de6
GT
4039 struct numa_stat {
4040 const char *name;
4041 unsigned int lru_mask;
4042 };
4043
4044 static const struct numa_stat stats[] = {
4045 { "total", LRU_ALL },
4046 { "file", LRU_ALL_FILE },
4047 { "anon", LRU_ALL_ANON },
4048 { "unevictable", BIT(LRU_UNEVICTABLE) },
4049 };
4050 const struct numa_stat *stat;
406eb0c9 4051 int nid;
aa9694bb 4052 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 4053
fd25a9e0 4054 mem_cgroup_flush_stats();
2d146aa3 4055
25485de6 4056 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4057 seq_printf(m, "%s=%lu", stat->name,
4058 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4059 false));
4060 for_each_node_state(nid, N_MEMORY)
4061 seq_printf(m, " N%d=%lu", nid,
4062 mem_cgroup_node_nr_lru_pages(memcg, nid,
4063 stat->lru_mask, false));
25485de6 4064 seq_putc(m, '\n');
406eb0c9 4065 }
406eb0c9 4066
071aee13 4067 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4068
4069 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4070 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4071 true));
4072 for_each_node_state(nid, N_MEMORY)
4073 seq_printf(m, " N%d=%lu", nid,
4074 mem_cgroup_node_nr_lru_pages(memcg, nid,
4075 stat->lru_mask, true));
071aee13 4076 seq_putc(m, '\n');
406eb0c9 4077 }
406eb0c9 4078
406eb0c9
YH
4079 return 0;
4080}
4081#endif /* CONFIG_NUMA */
4082
c8713d0b 4083static const unsigned int memcg1_stats[] = {
0d1c2072 4084 NR_FILE_PAGES,
be5d0a74 4085 NR_ANON_MAPPED,
468c3982
JW
4086#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4087 NR_ANON_THPS,
4088#endif
c8713d0b
JW
4089 NR_SHMEM,
4090 NR_FILE_MAPPED,
4091 NR_FILE_DIRTY,
4092 NR_WRITEBACK,
e09b0b61
YS
4093 WORKINGSET_REFAULT_ANON,
4094 WORKINGSET_REFAULT_FILE,
c8713d0b
JW
4095 MEMCG_SWAP,
4096};
4097
4098static const char *const memcg1_stat_names[] = {
4099 "cache",
4100 "rss",
468c3982 4101#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4102 "rss_huge",
468c3982 4103#endif
c8713d0b
JW
4104 "shmem",
4105 "mapped_file",
4106 "dirty",
4107 "writeback",
e09b0b61
YS
4108 "workingset_refault_anon",
4109 "workingset_refault_file",
c8713d0b
JW
4110 "swap",
4111};
4112
df0e53d0 4113/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4114static const unsigned int memcg1_events[] = {
df0e53d0
JW
4115 PGPGIN,
4116 PGPGOUT,
4117 PGFAULT,
4118 PGMAJFAULT,
4119};
4120
dddb44ff 4121static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
d2ceb9b7 4122{
3e32cb2e 4123 unsigned long memory, memsw;
af7c4b0e
JW
4124 struct mem_cgroup *mi;
4125 unsigned int i;
406eb0c9 4126
71cd3113 4127 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4128
fd25a9e0 4129 mem_cgroup_flush_stats();
2d146aa3 4130
71cd3113 4131 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4132 unsigned long nr;
4133
71cd3113 4134 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4135 continue;
468c3982 4136 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
dddb44ff 4137 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
e09b0b61 4138 nr * memcg_page_state_unit(memcg1_stats[i]));
1dd3a273 4139 }
7b854121 4140
df0e53d0 4141 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
dddb44ff
YA
4142 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4143 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4144
4145 for (i = 0; i < NR_LRU_LISTS; i++)
dddb44ff
YA
4146 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4147 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4148 PAGE_SIZE);
af7c4b0e 4149
14067bb3 4150 /* Hierarchical information */
3e32cb2e
JW
4151 memory = memsw = PAGE_COUNTER_MAX;
4152 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4153 memory = min(memory, READ_ONCE(mi->memory.max));
4154 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4155 }
dddb44ff
YA
4156 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4157 (u64)memory * PAGE_SIZE);
7941d214 4158 if (do_memsw_account())
dddb44ff
YA
4159 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4160 (u64)memsw * PAGE_SIZE);
7f016ee8 4161
8de7ecc6 4162 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4163 unsigned long nr;
4164
71cd3113 4165 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4166 continue;
7de2e9f1 4167 nr = memcg_page_state(memcg, memcg1_stats[i]);
dddb44ff 4168 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
e09b0b61 4169 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
af7c4b0e
JW
4170 }
4171
8de7ecc6 4172 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
dddb44ff
YA
4173 seq_buf_printf(s, "total_%s %llu\n",
4174 vm_event_name(memcg1_events[i]),
4175 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4176
8de7ecc6 4177 for (i = 0; i < NR_LRU_LISTS; i++)
dddb44ff
YA
4178 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4179 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4180 PAGE_SIZE);
14067bb3 4181
7f016ee8 4182#ifdef CONFIG_DEBUG_VM
7f016ee8 4183 {
ef8f2327
MG
4184 pg_data_t *pgdat;
4185 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4186 unsigned long anon_cost = 0;
4187 unsigned long file_cost = 0;
7f016ee8 4188
ef8f2327 4189 for_each_online_pgdat(pgdat) {
a3747b53 4190 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4191
1431d4d1
JW
4192 anon_cost += mz->lruvec.anon_cost;
4193 file_cost += mz->lruvec.file_cost;
ef8f2327 4194 }
dddb44ff
YA
4195 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4196 seq_buf_printf(s, "file_cost %lu\n", file_cost);
7f016ee8
KM
4197 }
4198#endif
d2ceb9b7
KH
4199}
4200
182446d0
TH
4201static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4202 struct cftype *cft)
a7885eb8 4203{
182446d0 4204 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4205
1f4c025b 4206 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4207}
4208
182446d0
TH
4209static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4210 struct cftype *cft, u64 val)
a7885eb8 4211{
182446d0 4212 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4213
37bc3cb9 4214 if (val > 200)
a7885eb8
KM
4215 return -EINVAL;
4216
a4792030 4217 if (!mem_cgroup_is_root(memcg))
82b3aa26 4218 WRITE_ONCE(memcg->swappiness, val);
3dae7fec 4219 else
82b3aa26 4220 WRITE_ONCE(vm_swappiness, val);
068b38c1 4221
a7885eb8
KM
4222 return 0;
4223}
4224
2e72b634
KS
4225static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4226{
4227 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4228 unsigned long usage;
2e72b634
KS
4229 int i;
4230
4231 rcu_read_lock();
4232 if (!swap)
2c488db2 4233 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4234 else
2c488db2 4235 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4236
4237 if (!t)
4238 goto unlock;
4239
ce00a967 4240 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4241
4242 /*
748dad36 4243 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4244 * If it's not true, a threshold was crossed after last
4245 * call of __mem_cgroup_threshold().
4246 */
5407a562 4247 i = t->current_threshold;
2e72b634
KS
4248
4249 /*
4250 * Iterate backward over array of thresholds starting from
4251 * current_threshold and check if a threshold is crossed.
4252 * If none of thresholds below usage is crossed, we read
4253 * only one element of the array here.
4254 */
4255 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4256 eventfd_signal(t->entries[i].eventfd, 1);
4257
4258 /* i = current_threshold + 1 */
4259 i++;
4260
4261 /*
4262 * Iterate forward over array of thresholds starting from
4263 * current_threshold+1 and check if a threshold is crossed.
4264 * If none of thresholds above usage is crossed, we read
4265 * only one element of the array here.
4266 */
4267 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4268 eventfd_signal(t->entries[i].eventfd, 1);
4269
4270 /* Update current_threshold */
5407a562 4271 t->current_threshold = i - 1;
2e72b634
KS
4272unlock:
4273 rcu_read_unlock();
4274}
4275
4276static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4277{
ad4ca5f4
KS
4278 while (memcg) {
4279 __mem_cgroup_threshold(memcg, false);
7941d214 4280 if (do_memsw_account())
ad4ca5f4
KS
4281 __mem_cgroup_threshold(memcg, true);
4282
4283 memcg = parent_mem_cgroup(memcg);
4284 }
2e72b634
KS
4285}
4286
4287static int compare_thresholds(const void *a, const void *b)
4288{
4289 const struct mem_cgroup_threshold *_a = a;
4290 const struct mem_cgroup_threshold *_b = b;
4291
2bff24a3
GT
4292 if (_a->threshold > _b->threshold)
4293 return 1;
4294
4295 if (_a->threshold < _b->threshold)
4296 return -1;
4297
4298 return 0;
2e72b634
KS
4299}
4300
c0ff4b85 4301static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4302{
4303 struct mem_cgroup_eventfd_list *ev;
4304
2bcf2e92
MH
4305 spin_lock(&memcg_oom_lock);
4306
c0ff4b85 4307 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4308 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4309
4310 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4311 return 0;
4312}
4313
c0ff4b85 4314static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4315{
7d74b06f
KH
4316 struct mem_cgroup *iter;
4317
c0ff4b85 4318 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4319 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4320}
4321
59b6f873 4322static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4323 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4324{
2c488db2
KS
4325 struct mem_cgroup_thresholds *thresholds;
4326 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4327 unsigned long threshold;
4328 unsigned long usage;
2c488db2 4329 int i, size, ret;
2e72b634 4330
650c5e56 4331 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4332 if (ret)
4333 return ret;
4334
4335 mutex_lock(&memcg->thresholds_lock);
2c488db2 4336
05b84301 4337 if (type == _MEM) {
2c488db2 4338 thresholds = &memcg->thresholds;
ce00a967 4339 usage = mem_cgroup_usage(memcg, false);
05b84301 4340 } else if (type == _MEMSWAP) {
2c488db2 4341 thresholds = &memcg->memsw_thresholds;
ce00a967 4342 usage = mem_cgroup_usage(memcg, true);
05b84301 4343 } else
2e72b634
KS
4344 BUG();
4345
2e72b634 4346 /* Check if a threshold crossed before adding a new one */
2c488db2 4347 if (thresholds->primary)
2e72b634
KS
4348 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4349
2c488db2 4350 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4351
4352 /* Allocate memory for new array of thresholds */
67b8046f 4353 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4354 if (!new) {
2e72b634
KS
4355 ret = -ENOMEM;
4356 goto unlock;
4357 }
2c488db2 4358 new->size = size;
2e72b634
KS
4359
4360 /* Copy thresholds (if any) to new array */
e90342e6
GS
4361 if (thresholds->primary)
4362 memcpy(new->entries, thresholds->primary->entries,
4363 flex_array_size(new, entries, size - 1));
2c488db2 4364
2e72b634 4365 /* Add new threshold */
2c488db2
KS
4366 new->entries[size - 1].eventfd = eventfd;
4367 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4368
4369 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4370 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4371 compare_thresholds, NULL);
4372
4373 /* Find current threshold */
2c488db2 4374 new->current_threshold = -1;
2e72b634 4375 for (i = 0; i < size; i++) {
748dad36 4376 if (new->entries[i].threshold <= usage) {
2e72b634 4377 /*
2c488db2
KS
4378 * new->current_threshold will not be used until
4379 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4380 * it here.
4381 */
2c488db2 4382 ++new->current_threshold;
748dad36
SZ
4383 } else
4384 break;
2e72b634
KS
4385 }
4386
2c488db2
KS
4387 /* Free old spare buffer and save old primary buffer as spare */
4388 kfree(thresholds->spare);
4389 thresholds->spare = thresholds->primary;
4390
4391 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4392
907860ed 4393 /* To be sure that nobody uses thresholds */
2e72b634
KS
4394 synchronize_rcu();
4395
2e72b634
KS
4396unlock:
4397 mutex_unlock(&memcg->thresholds_lock);
4398
4399 return ret;
4400}
4401
59b6f873 4402static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4403 struct eventfd_ctx *eventfd, const char *args)
4404{
59b6f873 4405 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4406}
4407
59b6f873 4408static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4409 struct eventfd_ctx *eventfd, const char *args)
4410{
59b6f873 4411 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4412}
4413
59b6f873 4414static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4415 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4416{
2c488db2
KS
4417 struct mem_cgroup_thresholds *thresholds;
4418 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4419 unsigned long usage;
7d36665a 4420 int i, j, size, entries;
2e72b634
KS
4421
4422 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4423
4424 if (type == _MEM) {
2c488db2 4425 thresholds = &memcg->thresholds;
ce00a967 4426 usage = mem_cgroup_usage(memcg, false);
05b84301 4427 } else if (type == _MEMSWAP) {
2c488db2 4428 thresholds = &memcg->memsw_thresholds;
ce00a967 4429 usage = mem_cgroup_usage(memcg, true);
05b84301 4430 } else
2e72b634
KS
4431 BUG();
4432
371528ca
AV
4433 if (!thresholds->primary)
4434 goto unlock;
4435
2e72b634
KS
4436 /* Check if a threshold crossed before removing */
4437 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4438
4439 /* Calculate new number of threshold */
7d36665a 4440 size = entries = 0;
2c488db2
KS
4441 for (i = 0; i < thresholds->primary->size; i++) {
4442 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4443 size++;
7d36665a
CX
4444 else
4445 entries++;
2e72b634
KS
4446 }
4447
2c488db2 4448 new = thresholds->spare;
907860ed 4449
7d36665a
CX
4450 /* If no items related to eventfd have been cleared, nothing to do */
4451 if (!entries)
4452 goto unlock;
4453
2e72b634
KS
4454 /* Set thresholds array to NULL if we don't have thresholds */
4455 if (!size) {
2c488db2
KS
4456 kfree(new);
4457 new = NULL;
907860ed 4458 goto swap_buffers;
2e72b634
KS
4459 }
4460
2c488db2 4461 new->size = size;
2e72b634
KS
4462
4463 /* Copy thresholds and find current threshold */
2c488db2
KS
4464 new->current_threshold = -1;
4465 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4466 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4467 continue;
4468
2c488db2 4469 new->entries[j] = thresholds->primary->entries[i];
748dad36 4470 if (new->entries[j].threshold <= usage) {
2e72b634 4471 /*
2c488db2 4472 * new->current_threshold will not be used
2e72b634
KS
4473 * until rcu_assign_pointer(), so it's safe to increment
4474 * it here.
4475 */
2c488db2 4476 ++new->current_threshold;
2e72b634
KS
4477 }
4478 j++;
4479 }
4480
907860ed 4481swap_buffers:
2c488db2
KS
4482 /* Swap primary and spare array */
4483 thresholds->spare = thresholds->primary;
8c757763 4484
2c488db2 4485 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4486
907860ed 4487 /* To be sure that nobody uses thresholds */
2e72b634 4488 synchronize_rcu();
6611d8d7
MC
4489
4490 /* If all events are unregistered, free the spare array */
4491 if (!new) {
4492 kfree(thresholds->spare);
4493 thresholds->spare = NULL;
4494 }
371528ca 4495unlock:
2e72b634 4496 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4497}
c1e862c1 4498
59b6f873 4499static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4500 struct eventfd_ctx *eventfd)
4501{
59b6f873 4502 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4503}
4504
59b6f873 4505static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4506 struct eventfd_ctx *eventfd)
4507{
59b6f873 4508 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4509}
4510
59b6f873 4511static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4512 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4513{
9490ff27 4514 struct mem_cgroup_eventfd_list *event;
9490ff27 4515
9490ff27
KH
4516 event = kmalloc(sizeof(*event), GFP_KERNEL);
4517 if (!event)
4518 return -ENOMEM;
4519
1af8efe9 4520 spin_lock(&memcg_oom_lock);
9490ff27
KH
4521
4522 event->eventfd = eventfd;
4523 list_add(&event->list, &memcg->oom_notify);
4524
4525 /* already in OOM ? */
c2b42d3c 4526 if (memcg->under_oom)
9490ff27 4527 eventfd_signal(eventfd, 1);
1af8efe9 4528 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4529
4530 return 0;
4531}
4532
59b6f873 4533static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4534 struct eventfd_ctx *eventfd)
9490ff27 4535{
9490ff27 4536 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4537
1af8efe9 4538 spin_lock(&memcg_oom_lock);
9490ff27 4539
c0ff4b85 4540 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4541 if (ev->eventfd == eventfd) {
4542 list_del(&ev->list);
4543 kfree(ev);
4544 }
4545 }
4546
1af8efe9 4547 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4548}
4549
2da8ca82 4550static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4551{
aa9694bb 4552 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4553
17c56de6 4554 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
c2b42d3c 4555 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4556 seq_printf(sf, "oom_kill %lu\n",
4557 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4558 return 0;
4559}
4560
182446d0 4561static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4562 struct cftype *cft, u64 val)
4563{
182446d0 4564 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4565
4566 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4567 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4568 return -EINVAL;
4569
17c56de6 4570 WRITE_ONCE(memcg->oom_kill_disable, val);
4d845ebf 4571 if (!val)
c0ff4b85 4572 memcg_oom_recover(memcg);
3dae7fec 4573
3c11ecf4
KH
4574 return 0;
4575}
4576
52ebea74
TH
4577#ifdef CONFIG_CGROUP_WRITEBACK
4578
3a8e9ac8
TH
4579#include <trace/events/writeback.h>
4580
841710aa
TH
4581static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4582{
4583 return wb_domain_init(&memcg->cgwb_domain, gfp);
4584}
4585
4586static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4587{
4588 wb_domain_exit(&memcg->cgwb_domain);
4589}
4590
2529bb3a
TH
4591static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4592{
4593 wb_domain_size_changed(&memcg->cgwb_domain);
4594}
4595
841710aa
TH
4596struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4597{
4598 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4599
4600 if (!memcg->css.parent)
4601 return NULL;
4602
4603 return &memcg->cgwb_domain;
4604}
4605
c2aa723a
TH
4606/**
4607 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4608 * @wb: bdi_writeback in question
c5edf9cd
TH
4609 * @pfilepages: out parameter for number of file pages
4610 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4611 * @pdirty: out parameter for number of dirty pages
4612 * @pwriteback: out parameter for number of pages under writeback
4613 *
c5edf9cd
TH
4614 * Determine the numbers of file, headroom, dirty, and writeback pages in
4615 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4616 * is a bit more involved.
c2aa723a 4617 *
c5edf9cd
TH
4618 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4619 * headroom is calculated as the lowest headroom of itself and the
4620 * ancestors. Note that this doesn't consider the actual amount of
4621 * available memory in the system. The caller should further cap
4622 * *@pheadroom accordingly.
c2aa723a 4623 */
c5edf9cd
TH
4624void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4625 unsigned long *pheadroom, unsigned long *pdirty,
4626 unsigned long *pwriteback)
c2aa723a
TH
4627{
4628 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4629 struct mem_cgroup *parent;
c2aa723a 4630
190409ca 4631 mem_cgroup_flush_stats();
c2aa723a 4632
2d146aa3
JW
4633 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4634 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4635 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4636 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4637
2d146aa3 4638 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4639 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4640 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4641 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4642 unsigned long used = page_counter_read(&memcg->memory);
4643
c5edf9cd 4644 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4645 memcg = parent;
4646 }
c2aa723a
TH
4647}
4648
97b27821
TH
4649/*
4650 * Foreign dirty flushing
4651 *
4652 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4653 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4654 * deliberate design decision because honoring per-page ownership in the
4655 * writeback path is complicated, may lead to higher CPU and IO overheads
4656 * and deemed unnecessary given that write-sharing an inode across
4657 * different cgroups isn't a common use-case.
4658 *
4659 * Combined with inode majority-writer ownership switching, this works well
4660 * enough in most cases but there are some pathological cases. For
4661 * example, let's say there are two cgroups A and B which keep writing to
4662 * different but confined parts of the same inode. B owns the inode and
4663 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4664 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4665 * triggering background writeback. A will be slowed down without a way to
4666 * make writeback of the dirty pages happen.
4667 *
f0953a1b 4668 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4669 * severely throttled after making some progress after each
f0953a1b 4670 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4671 * completely idle.
4672 *
4673 * Solving this problem completely requires matching the ownership tracking
4674 * granularities between memcg and writeback in either direction. However,
4675 * the more egregious behaviors can be avoided by simply remembering the
4676 * most recent foreign dirtying events and initiating remote flushes on
4677 * them when local writeback isn't enough to keep the memory clean enough.
4678 *
4679 * The following two functions implement such mechanism. When a foreign
4680 * page - a page whose memcg and writeback ownerships don't match - is
4681 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4682 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4683 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4684 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4685 * foreign bdi_writebacks which haven't expired. Both the numbers of
4686 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4687 * limited to MEMCG_CGWB_FRN_CNT.
4688 *
4689 * The mechanism only remembers IDs and doesn't hold any object references.
4690 * As being wrong occasionally doesn't matter, updates and accesses to the
4691 * records are lockless and racy.
4692 */
9d8053fc 4693void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
97b27821
TH
4694 struct bdi_writeback *wb)
4695{
9d8053fc 4696 struct mem_cgroup *memcg = folio_memcg(folio);
97b27821
TH
4697 struct memcg_cgwb_frn *frn;
4698 u64 now = get_jiffies_64();
4699 u64 oldest_at = now;
4700 int oldest = -1;
4701 int i;
4702
9d8053fc 4703 trace_track_foreign_dirty(folio, wb);
3a8e9ac8 4704
97b27821
TH
4705 /*
4706 * Pick the slot to use. If there is already a slot for @wb, keep
4707 * using it. If not replace the oldest one which isn't being
4708 * written out.
4709 */
4710 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4711 frn = &memcg->cgwb_frn[i];
4712 if (frn->bdi_id == wb->bdi->id &&
4713 frn->memcg_id == wb->memcg_css->id)
4714 break;
4715 if (time_before64(frn->at, oldest_at) &&
4716 atomic_read(&frn->done.cnt) == 1) {
4717 oldest = i;
4718 oldest_at = frn->at;
4719 }
4720 }
4721
4722 if (i < MEMCG_CGWB_FRN_CNT) {
4723 /*
4724 * Re-using an existing one. Update timestamp lazily to
4725 * avoid making the cacheline hot. We want them to be
4726 * reasonably up-to-date and significantly shorter than
4727 * dirty_expire_interval as that's what expires the record.
4728 * Use the shorter of 1s and dirty_expire_interval / 8.
4729 */
4730 unsigned long update_intv =
4731 min_t(unsigned long, HZ,
4732 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4733
4734 if (time_before64(frn->at, now - update_intv))
4735 frn->at = now;
4736 } else if (oldest >= 0) {
4737 /* replace the oldest free one */
4738 frn = &memcg->cgwb_frn[oldest];
4739 frn->bdi_id = wb->bdi->id;
4740 frn->memcg_id = wb->memcg_css->id;
4741 frn->at = now;
4742 }
4743}
4744
4745/* issue foreign writeback flushes for recorded foreign dirtying events */
4746void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4747{
4748 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4749 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4750 u64 now = jiffies_64;
4751 int i;
4752
4753 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4754 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4755
4756 /*
4757 * If the record is older than dirty_expire_interval,
4758 * writeback on it has already started. No need to kick it
4759 * off again. Also, don't start a new one if there's
4760 * already one in flight.
4761 */
4762 if (time_after64(frn->at, now - intv) &&
4763 atomic_read(&frn->done.cnt) == 1) {
4764 frn->at = 0;
3a8e9ac8 4765 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4766 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4767 WB_REASON_FOREIGN_FLUSH,
4768 &frn->done);
4769 }
4770 }
4771}
4772
841710aa
TH
4773#else /* CONFIG_CGROUP_WRITEBACK */
4774
4775static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4776{
4777 return 0;
4778}
4779
4780static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4781{
4782}
4783
2529bb3a
TH
4784static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4785{
4786}
4787
52ebea74
TH
4788#endif /* CONFIG_CGROUP_WRITEBACK */
4789
3bc942f3
TH
4790/*
4791 * DO NOT USE IN NEW FILES.
4792 *
4793 * "cgroup.event_control" implementation.
4794 *
4795 * This is way over-engineered. It tries to support fully configurable
4796 * events for each user. Such level of flexibility is completely
4797 * unnecessary especially in the light of the planned unified hierarchy.
4798 *
4799 * Please deprecate this and replace with something simpler if at all
4800 * possible.
4801 */
4802
79bd9814
TH
4803/*
4804 * Unregister event and free resources.
4805 *
4806 * Gets called from workqueue.
4807 */
3bc942f3 4808static void memcg_event_remove(struct work_struct *work)
79bd9814 4809{
3bc942f3
TH
4810 struct mem_cgroup_event *event =
4811 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4812 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4813
4814 remove_wait_queue(event->wqh, &event->wait);
4815
59b6f873 4816 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4817
4818 /* Notify userspace the event is going away. */
4819 eventfd_signal(event->eventfd, 1);
4820
4821 eventfd_ctx_put(event->eventfd);
4822 kfree(event);
59b6f873 4823 css_put(&memcg->css);
79bd9814
TH
4824}
4825
4826/*
a9a08845 4827 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4828 *
4829 * Called with wqh->lock held and interrupts disabled.
4830 */
ac6424b9 4831static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4832 int sync, void *key)
79bd9814 4833{
3bc942f3
TH
4834 struct mem_cgroup_event *event =
4835 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4836 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4837 __poll_t flags = key_to_poll(key);
79bd9814 4838
a9a08845 4839 if (flags & EPOLLHUP) {
79bd9814
TH
4840 /*
4841 * If the event has been detached at cgroup removal, we
4842 * can simply return knowing the other side will cleanup
4843 * for us.
4844 *
4845 * We can't race against event freeing since the other
4846 * side will require wqh->lock via remove_wait_queue(),
4847 * which we hold.
4848 */
fba94807 4849 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4850 if (!list_empty(&event->list)) {
4851 list_del_init(&event->list);
4852 /*
4853 * We are in atomic context, but cgroup_event_remove()
4854 * may sleep, so we have to call it in workqueue.
4855 */
4856 schedule_work(&event->remove);
4857 }
fba94807 4858 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4859 }
4860
4861 return 0;
4862}
4863
3bc942f3 4864static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4865 wait_queue_head_t *wqh, poll_table *pt)
4866{
3bc942f3
TH
4867 struct mem_cgroup_event *event =
4868 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4869
4870 event->wqh = wqh;
4871 add_wait_queue(wqh, &event->wait);
4872}
4873
4874/*
3bc942f3
TH
4875 * DO NOT USE IN NEW FILES.
4876 *
79bd9814
TH
4877 * Parse input and register new cgroup event handler.
4878 *
4879 * Input must be in format '<event_fd> <control_fd> <args>'.
4880 * Interpretation of args is defined by control file implementation.
4881 */
451af504
TH
4882static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4883 char *buf, size_t nbytes, loff_t off)
79bd9814 4884{
451af504 4885 struct cgroup_subsys_state *css = of_css(of);
fba94807 4886 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4887 struct mem_cgroup_event *event;
79bd9814
TH
4888 struct cgroup_subsys_state *cfile_css;
4889 unsigned int efd, cfd;
4890 struct fd efile;
4891 struct fd cfile;
4a7ba45b 4892 struct dentry *cdentry;
fba94807 4893 const char *name;
79bd9814
TH
4894 char *endp;
4895 int ret;
4896
2343e88d
SAS
4897 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4898 return -EOPNOTSUPP;
4899
451af504
TH
4900 buf = strstrip(buf);
4901
4902 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4903 if (*endp != ' ')
4904 return -EINVAL;
451af504 4905 buf = endp + 1;
79bd9814 4906
451af504 4907 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4908 if ((*endp != ' ') && (*endp != '\0'))
4909 return -EINVAL;
451af504 4910 buf = endp + 1;
79bd9814
TH
4911
4912 event = kzalloc(sizeof(*event), GFP_KERNEL);
4913 if (!event)
4914 return -ENOMEM;
4915
59b6f873 4916 event->memcg = memcg;
79bd9814 4917 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4918 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4919 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4920 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4921
4922 efile = fdget(efd);
4923 if (!efile.file) {
4924 ret = -EBADF;
4925 goto out_kfree;
4926 }
4927
4928 event->eventfd = eventfd_ctx_fileget(efile.file);
4929 if (IS_ERR(event->eventfd)) {
4930 ret = PTR_ERR(event->eventfd);
4931 goto out_put_efile;
4932 }
4933
4934 cfile = fdget(cfd);
4935 if (!cfile.file) {
4936 ret = -EBADF;
4937 goto out_put_eventfd;
4938 }
4939
4940 /* the process need read permission on control file */
4941 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4942 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4943 if (ret < 0)
4944 goto out_put_cfile;
4945
4a7ba45b
TH
4946 /*
4947 * The control file must be a regular cgroup1 file. As a regular cgroup
4948 * file can't be renamed, it's safe to access its name afterwards.
4949 */
4950 cdentry = cfile.file->f_path.dentry;
4951 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4952 ret = -EINVAL;
4953 goto out_put_cfile;
4954 }
4955
fba94807
TH
4956 /*
4957 * Determine the event callbacks and set them in @event. This used
4958 * to be done via struct cftype but cgroup core no longer knows
4959 * about these events. The following is crude but the whole thing
4960 * is for compatibility anyway.
3bc942f3
TH
4961 *
4962 * DO NOT ADD NEW FILES.
fba94807 4963 */
4a7ba45b 4964 name = cdentry->d_name.name;
fba94807
TH
4965
4966 if (!strcmp(name, "memory.usage_in_bytes")) {
4967 event->register_event = mem_cgroup_usage_register_event;
4968 event->unregister_event = mem_cgroup_usage_unregister_event;
4969 } else if (!strcmp(name, "memory.oom_control")) {
4970 event->register_event = mem_cgroup_oom_register_event;
4971 event->unregister_event = mem_cgroup_oom_unregister_event;
4972 } else if (!strcmp(name, "memory.pressure_level")) {
4973 event->register_event = vmpressure_register_event;
4974 event->unregister_event = vmpressure_unregister_event;
4975 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4976 event->register_event = memsw_cgroup_usage_register_event;
4977 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4978 } else {
4979 ret = -EINVAL;
4980 goto out_put_cfile;
4981 }
4982
79bd9814 4983 /*
b5557c4c
TH
4984 * Verify @cfile should belong to @css. Also, remaining events are
4985 * automatically removed on cgroup destruction but the removal is
4986 * asynchronous, so take an extra ref on @css.
79bd9814 4987 */
4a7ba45b 4988 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
ec903c0c 4989 &memory_cgrp_subsys);
79bd9814 4990 ret = -EINVAL;
5a17f543 4991 if (IS_ERR(cfile_css))
79bd9814 4992 goto out_put_cfile;
5a17f543
TH
4993 if (cfile_css != css) {
4994 css_put(cfile_css);
79bd9814 4995 goto out_put_cfile;
5a17f543 4996 }
79bd9814 4997
451af504 4998 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4999 if (ret)
5000 goto out_put_css;
5001
9965ed17 5002 vfs_poll(efile.file, &event->pt);
79bd9814 5003
4ba9515d 5004 spin_lock_irq(&memcg->event_list_lock);
fba94807 5005 list_add(&event->list, &memcg->event_list);
4ba9515d 5006 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
5007
5008 fdput(cfile);
5009 fdput(efile);
5010
451af504 5011 return nbytes;
79bd9814
TH
5012
5013out_put_css:
b5557c4c 5014 css_put(css);
79bd9814
TH
5015out_put_cfile:
5016 fdput(cfile);
5017out_put_eventfd:
5018 eventfd_ctx_put(event->eventfd);
5019out_put_efile:
5020 fdput(efile);
5021out_kfree:
5022 kfree(event);
5023
5024 return ret;
5025}
5026
c29b5b3d
MS
5027#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5028static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5029{
5030 /*
5031 * Deprecated.
df4ae285 5032 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
c29b5b3d
MS
5033 */
5034 return 0;
5035}
5036#endif
5037
dddb44ff
YA
5038static int memory_stat_show(struct seq_file *m, void *v);
5039
241994ed 5040static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 5041 {
0eea1030 5042 .name = "usage_in_bytes",
8c7c6e34 5043 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5044 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5045 },
c84872e1
PE
5046 {
5047 .name = "max_usage_in_bytes",
8c7c6e34 5048 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5049 .write = mem_cgroup_reset,
791badbd 5050 .read_u64 = mem_cgroup_read_u64,
c84872e1 5051 },
8cdea7c0 5052 {
0eea1030 5053 .name = "limit_in_bytes",
8c7c6e34 5054 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5055 .write = mem_cgroup_write,
791badbd 5056 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5057 },
296c81d8
BS
5058 {
5059 .name = "soft_limit_in_bytes",
5060 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5061 .write = mem_cgroup_write,
791badbd 5062 .read_u64 = mem_cgroup_read_u64,
296c81d8 5063 },
8cdea7c0
BS
5064 {
5065 .name = "failcnt",
8c7c6e34 5066 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5067 .write = mem_cgroup_reset,
791badbd 5068 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5069 },
d2ceb9b7
KH
5070 {
5071 .name = "stat",
dddb44ff 5072 .seq_show = memory_stat_show,
d2ceb9b7 5073 },
c1e862c1
KH
5074 {
5075 .name = "force_empty",
6770c64e 5076 .write = mem_cgroup_force_empty_write,
c1e862c1 5077 },
18f59ea7
BS
5078 {
5079 .name = "use_hierarchy",
5080 .write_u64 = mem_cgroup_hierarchy_write,
5081 .read_u64 = mem_cgroup_hierarchy_read,
5082 },
79bd9814 5083 {
3bc942f3 5084 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5085 .write = memcg_write_event_control,
7dbdb199 5086 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5087 },
a7885eb8
KM
5088 {
5089 .name = "swappiness",
5090 .read_u64 = mem_cgroup_swappiness_read,
5091 .write_u64 = mem_cgroup_swappiness_write,
5092 },
7dc74be0
DN
5093 {
5094 .name = "move_charge_at_immigrate",
5095 .read_u64 = mem_cgroup_move_charge_read,
5096 .write_u64 = mem_cgroup_move_charge_write,
5097 },
9490ff27
KH
5098 {
5099 .name = "oom_control",
2da8ca82 5100 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5101 .write_u64 = mem_cgroup_oom_control_write,
9490ff27 5102 },
70ddf637
AV
5103 {
5104 .name = "pressure_level",
6b0ba2ab 5105 .seq_show = mem_cgroup_dummy_seq_show,
70ddf637 5106 },
406eb0c9
YH
5107#ifdef CONFIG_NUMA
5108 {
5109 .name = "numa_stat",
2da8ca82 5110 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5111 },
5112#endif
510fc4e1
GC
5113 {
5114 .name = "kmem.limit_in_bytes",
5115 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5116 .write = mem_cgroup_write,
791badbd 5117 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5118 },
5119 {
5120 .name = "kmem.usage_in_bytes",
5121 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5122 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5123 },
5124 {
5125 .name = "kmem.failcnt",
5126 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5127 .write = mem_cgroup_reset,
791badbd 5128 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5129 },
5130 {
5131 .name = "kmem.max_usage_in_bytes",
5132 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5133 .write = mem_cgroup_reset,
791badbd 5134 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5135 },
a87425a3
YS
5136#if defined(CONFIG_MEMCG_KMEM) && \
5137 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5138 {
5139 .name = "kmem.slabinfo",
c29b5b3d 5140 .seq_show = mem_cgroup_slab_show,
749c5415
GC
5141 },
5142#endif
d55f90bf
VD
5143 {
5144 .name = "kmem.tcp.limit_in_bytes",
5145 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5146 .write = mem_cgroup_write,
5147 .read_u64 = mem_cgroup_read_u64,
5148 },
5149 {
5150 .name = "kmem.tcp.usage_in_bytes",
5151 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5152 .read_u64 = mem_cgroup_read_u64,
5153 },
5154 {
5155 .name = "kmem.tcp.failcnt",
5156 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5157 .write = mem_cgroup_reset,
5158 .read_u64 = mem_cgroup_read_u64,
5159 },
5160 {
5161 .name = "kmem.tcp.max_usage_in_bytes",
5162 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5163 .write = mem_cgroup_reset,
5164 .read_u64 = mem_cgroup_read_u64,
5165 },
6bc10349 5166 { }, /* terminate */
af36f906 5167};
8c7c6e34 5168
73f576c0
JW
5169/*
5170 * Private memory cgroup IDR
5171 *
5172 * Swap-out records and page cache shadow entries need to store memcg
5173 * references in constrained space, so we maintain an ID space that is
5174 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5175 * memory-controlled cgroups to 64k.
5176 *
b8f2935f 5177 * However, there usually are many references to the offline CSS after
73f576c0
JW
5178 * the cgroup has been destroyed, such as page cache or reclaimable
5179 * slab objects, that don't need to hang on to the ID. We want to keep
5180 * those dead CSS from occupying IDs, or we might quickly exhaust the
5181 * relatively small ID space and prevent the creation of new cgroups
5182 * even when there are much fewer than 64k cgroups - possibly none.
5183 *
5184 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5185 * be freed and recycled when it's no longer needed, which is usually
5186 * when the CSS is offlined.
5187 *
5188 * The only exception to that are records of swapped out tmpfs/shmem
5189 * pages that need to be attributed to live ancestors on swapin. But
5190 * those references are manageable from userspace.
5191 */
5192
5193static DEFINE_IDR(mem_cgroup_idr);
5194
7e97de0b
KT
5195static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5196{
5197 if (memcg->id.id > 0) {
5198 idr_remove(&mem_cgroup_idr, memcg->id.id);
5199 memcg->id.id = 0;
5200 }
5201}
5202
c1514c0a
VF
5203static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5204 unsigned int n)
73f576c0 5205{
1c2d479a 5206 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5207}
5208
615d66c3 5209static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5210{
1c2d479a 5211 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5212 mem_cgroup_id_remove(memcg);
73f576c0
JW
5213
5214 /* Memcg ID pins CSS */
5215 css_put(&memcg->css);
5216 }
5217}
5218
615d66c3
VD
5219static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5220{
5221 mem_cgroup_id_put_many(memcg, 1);
5222}
5223
73f576c0
JW
5224/**
5225 * mem_cgroup_from_id - look up a memcg from a memcg id
5226 * @id: the memcg id to look up
5227 *
5228 * Caller must hold rcu_read_lock().
5229 */
5230struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5231{
5232 WARN_ON_ONCE(!rcu_read_lock_held());
5233 return idr_find(&mem_cgroup_idr, id);
5234}
5235
c15187a4
RG
5236#ifdef CONFIG_SHRINKER_DEBUG
5237struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5238{
5239 struct cgroup *cgrp;
5240 struct cgroup_subsys_state *css;
5241 struct mem_cgroup *memcg;
5242
5243 cgrp = cgroup_get_from_id(ino);
fa7e439c 5244 if (IS_ERR(cgrp))
c0f2df49 5245 return ERR_CAST(cgrp);
c15187a4
RG
5246
5247 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5248 if (css)
5249 memcg = container_of(css, struct mem_cgroup, css);
5250 else
5251 memcg = ERR_PTR(-ENOENT);
5252
5253 cgroup_put(cgrp);
5254
5255 return memcg;
5256}
5257#endif
5258
ef8f2327 5259static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5260{
5261 struct mem_cgroup_per_node *pn;
8c9bb398
WY
5262
5263 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
6d12e2d8
KH
5264 if (!pn)
5265 return 1;
1ecaab2b 5266
7e1c0d6f
SB
5267 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5268 GFP_KERNEL_ACCOUNT);
5269 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5270 kfree(pn);
5271 return 1;
5272 }
5273
ef8f2327 5274 lruvec_init(&pn->lruvec);
ef8f2327
MG
5275 pn->memcg = memcg;
5276
54f72fe0 5277 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5278 return 0;
5279}
5280
ef8f2327 5281static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5282{
00f3ca2c
JW
5283 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5284
4eaf431f
MH
5285 if (!pn)
5286 return;
5287
7e1c0d6f 5288 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5289 kfree(pn);
1ecaab2b
KH
5290}
5291
40e952f9 5292static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5293{
c8b2a36f 5294 int node;
59927fb9 5295
c8b2a36f 5296 for_each_node(node)
ef8f2327 5297 free_mem_cgroup_per_node_info(memcg, node);
410f8e82 5298 kfree(memcg->vmstats);
871789d4 5299 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5300 kfree(memcg);
59927fb9 5301}
3afe36b1 5302
40e952f9
TE
5303static void mem_cgroup_free(struct mem_cgroup *memcg)
5304{
ec1c86b2 5305 lru_gen_exit_memcg(memcg);
40e952f9
TE
5306 memcg_wb_domain_exit(memcg);
5307 __mem_cgroup_free(memcg);
5308}
5309
0b8f73e1 5310static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5311{
d142e3e6 5312 struct mem_cgroup *memcg;
6d12e2d8 5313 int node;
97b27821 5314 int __maybe_unused i;
11d67612 5315 long error = -ENOMEM;
8cdea7c0 5316
06b2c3b0 5317 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
c0ff4b85 5318 if (!memcg)
11d67612 5319 return ERR_PTR(error);
0b8f73e1 5320
73f576c0 5321 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
be740503 5322 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
11d67612
YS
5323 if (memcg->id.id < 0) {
5324 error = memcg->id.id;
73f576c0 5325 goto fail;
11d67612 5326 }
73f576c0 5327
410f8e82
SB
5328 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5329 if (!memcg->vmstats)
5330 goto fail;
5331
3e38e0aa
RG
5332 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5333 GFP_KERNEL_ACCOUNT);
871789d4 5334 if (!memcg->vmstats_percpu)
0b8f73e1 5335 goto fail;
78fb7466 5336
3ed28fa1 5337 for_each_node(node)
ef8f2327 5338 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5339 goto fail;
f64c3f54 5340
0b8f73e1
JW
5341 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5342 goto fail;
28dbc4b6 5343
f7e1cb6e 5344 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5345 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5346 mutex_init(&memcg->thresholds_lock);
5347 spin_lock_init(&memcg->move_lock);
70ddf637 5348 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5349 INIT_LIST_HEAD(&memcg->event_list);
5350 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5351 memcg->socket_pressure = jiffies;
84c07d11 5352#ifdef CONFIG_MEMCG_KMEM
900a38f0 5353 memcg->kmemcg_id = -1;
bf4f0599 5354 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5355#endif
52ebea74
TH
5356#ifdef CONFIG_CGROUP_WRITEBACK
5357 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5358 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5359 memcg->cgwb_frn[i].done =
5360 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5361#endif
5362#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5363 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5364 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5365 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5366#endif
73f576c0 5367 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
ec1c86b2 5368 lru_gen_init_memcg(memcg);
0b8f73e1
JW
5369 return memcg;
5370fail:
7e97de0b 5371 mem_cgroup_id_remove(memcg);
40e952f9 5372 __mem_cgroup_free(memcg);
11d67612 5373 return ERR_PTR(error);
d142e3e6
GC
5374}
5375
0b8f73e1
JW
5376static struct cgroup_subsys_state * __ref
5377mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5378{
0b8f73e1 5379 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5380 struct mem_cgroup *memcg, *old_memcg;
d142e3e6 5381
b87d8cef 5382 old_memcg = set_active_memcg(parent);
0b8f73e1 5383 memcg = mem_cgroup_alloc();
b87d8cef 5384 set_active_memcg(old_memcg);
11d67612
YS
5385 if (IS_ERR(memcg))
5386 return ERR_CAST(memcg);
d142e3e6 5387
d1663a90 5388 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5389 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
f4840ccf
JW
5390#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5391 memcg->zswap_max = PAGE_COUNTER_MAX;
5392#endif
4b82ab4f 5393 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1 5394 if (parent) {
82b3aa26 5395 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
17c56de6 5396 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
bef8620c 5397
3e32cb2e 5398 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5399 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5400 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5401 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5402 } else {
8278f1c7 5403 init_memcg_events();
bef8620c
RG
5404 page_counter_init(&memcg->memory, NULL);
5405 page_counter_init(&memcg->swap, NULL);
5406 page_counter_init(&memcg->kmem, NULL);
5407 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5408
0b8f73e1
JW
5409 root_mem_cgroup = memcg;
5410 return &memcg->css;
5411 }
5412
f7e1cb6e 5413 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5414 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5415
b6c1a8af
YS
5416#if defined(CONFIG_MEMCG_KMEM)
5417 if (!cgroup_memory_nobpf)
5418 static_branch_inc(&memcg_bpf_enabled_key);
5419#endif
5420
0b8f73e1 5421 return &memcg->css;
0b8f73e1
JW
5422}
5423
73f576c0 5424static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5425{
58fa2a55
VD
5426 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5427
da0efe30
MS
5428 if (memcg_online_kmem(memcg))
5429 goto remove_id;
5430
0a4465d3 5431 /*
e4262c4f 5432 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5433 * by the time the maps are allocated. So, we allocate maps
5434 * here, when for_each_mem_cgroup() can't skip it.
5435 */
da0efe30
MS
5436 if (alloc_shrinker_info(memcg))
5437 goto offline_kmem;
0a4465d3 5438
73f576c0 5439 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5440 refcount_set(&memcg->id.ref, 1);
73f576c0 5441 css_get(css);
aa48e47e
SB
5442
5443 if (unlikely(mem_cgroup_is_root(memcg)))
5444 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5445 2UL*HZ);
e4dde56c 5446 lru_gen_online_memcg(memcg);
2f7dd7a4 5447 return 0;
da0efe30
MS
5448offline_kmem:
5449 memcg_offline_kmem(memcg);
5450remove_id:
5451 mem_cgroup_id_remove(memcg);
5452 return -ENOMEM;
8cdea7c0
BS
5453}
5454
eb95419b 5455static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5456{
eb95419b 5457 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5458 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5459
5460 /*
5461 * Unregister events and notify userspace.
5462 * Notify userspace about cgroup removing only after rmdir of cgroup
5463 * directory to avoid race between userspace and kernelspace.
5464 */
4ba9515d 5465 spin_lock_irq(&memcg->event_list_lock);
fba94807 5466 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5467 list_del_init(&event->list);
5468 schedule_work(&event->remove);
5469 }
4ba9515d 5470 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5471
bf8d5d52 5472 page_counter_set_min(&memcg->memory, 0);
23067153 5473 page_counter_set_low(&memcg->memory, 0);
63677c74 5474
567e9ab2 5475 memcg_offline_kmem(memcg);
a178015c 5476 reparent_shrinker_deferred(memcg);
52ebea74 5477 wb_memcg_offline(memcg);
e4dde56c 5478 lru_gen_offline_memcg(memcg);
73f576c0 5479
591edfb1
RG
5480 drain_all_stock(memcg);
5481
73f576c0 5482 mem_cgroup_id_put(memcg);
df878fb0
KH
5483}
5484
6df38689
VD
5485static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5486{
5487 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5488
5489 invalidate_reclaim_iterators(memcg);
e4dde56c 5490 lru_gen_release_memcg(memcg);
6df38689
VD
5491}
5492
eb95419b 5493static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5494{
eb95419b 5495 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5496 int __maybe_unused i;
c268e994 5497
97b27821
TH
5498#ifdef CONFIG_CGROUP_WRITEBACK
5499 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5500 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5501#endif
f7e1cb6e 5502 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5503 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5504
0db15298 5505 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5506 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5507
b6c1a8af
YS
5508#if defined(CONFIG_MEMCG_KMEM)
5509 if (!cgroup_memory_nobpf)
5510 static_branch_dec(&memcg_bpf_enabled_key);
5511#endif
5512
0b8f73e1
JW
5513 vmpressure_cleanup(&memcg->vmpressure);
5514 cancel_work_sync(&memcg->high_work);
5515 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5516 free_shrinker_info(memcg);
0b8f73e1 5517 mem_cgroup_free(memcg);
8cdea7c0
BS
5518}
5519
1ced953b
TH
5520/**
5521 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5522 * @css: the target css
5523 *
5524 * Reset the states of the mem_cgroup associated with @css. This is
5525 * invoked when the userland requests disabling on the default hierarchy
5526 * but the memcg is pinned through dependency. The memcg should stop
5527 * applying policies and should revert to the vanilla state as it may be
5528 * made visible again.
5529 *
5530 * The current implementation only resets the essential configurations.
5531 * This needs to be expanded to cover all the visible parts.
5532 */
5533static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5534{
5535 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5536
bbec2e15
RG
5537 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5538 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5539 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5540 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5541 page_counter_set_min(&memcg->memory, 0);
23067153 5542 page_counter_set_low(&memcg->memory, 0);
d1663a90 5543 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5544 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
4b82ab4f 5545 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5546 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5547}
5548
2d146aa3
JW
5549static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5550{
5551 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5552 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5553 struct memcg_vmstats_percpu *statc;
5554 long delta, v;
7e1c0d6f 5555 int i, nid;
2d146aa3
JW
5556
5557 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5558
5559 for (i = 0; i < MEMCG_NR_STAT; i++) {
5560 /*
5561 * Collect the aggregated propagation counts of groups
5562 * below us. We're in a per-cpu loop here and this is
5563 * a global counter, so the first cycle will get them.
5564 */
410f8e82 5565 delta = memcg->vmstats->state_pending[i];
2d146aa3 5566 if (delta)
410f8e82 5567 memcg->vmstats->state_pending[i] = 0;
2d146aa3
JW
5568
5569 /* Add CPU changes on this level since the last flush */
5570 v = READ_ONCE(statc->state[i]);
5571 if (v != statc->state_prev[i]) {
5572 delta += v - statc->state_prev[i];
5573 statc->state_prev[i] = v;
5574 }
5575
5576 if (!delta)
5577 continue;
5578
5579 /* Aggregate counts on this level and propagate upwards */
410f8e82 5580 memcg->vmstats->state[i] += delta;
2d146aa3 5581 if (parent)
410f8e82 5582 parent->vmstats->state_pending[i] += delta;
2d146aa3
JW
5583 }
5584
8278f1c7 5585 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
410f8e82 5586 delta = memcg->vmstats->events_pending[i];
2d146aa3 5587 if (delta)
410f8e82 5588 memcg->vmstats->events_pending[i] = 0;
2d146aa3
JW
5589
5590 v = READ_ONCE(statc->events[i]);
5591 if (v != statc->events_prev[i]) {
5592 delta += v - statc->events_prev[i];
5593 statc->events_prev[i] = v;
5594 }
5595
5596 if (!delta)
5597 continue;
5598
410f8e82 5599 memcg->vmstats->events[i] += delta;
2d146aa3 5600 if (parent)
410f8e82 5601 parent->vmstats->events_pending[i] += delta;
2d146aa3 5602 }
7e1c0d6f
SB
5603
5604 for_each_node_state(nid, N_MEMORY) {
5605 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5606 struct mem_cgroup_per_node *ppn = NULL;
5607 struct lruvec_stats_percpu *lstatc;
5608
5609 if (parent)
5610 ppn = parent->nodeinfo[nid];
5611
5612 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5613
5614 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5615 delta = pn->lruvec_stats.state_pending[i];
5616 if (delta)
5617 pn->lruvec_stats.state_pending[i] = 0;
5618
5619 v = READ_ONCE(lstatc->state[i]);
5620 if (v != lstatc->state_prev[i]) {
5621 delta += v - lstatc->state_prev[i];
5622 lstatc->state_prev[i] = v;
5623 }
5624
5625 if (!delta)
5626 continue;
5627
5628 pn->lruvec_stats.state[i] += delta;
5629 if (ppn)
5630 ppn->lruvec_stats.state_pending[i] += delta;
5631 }
5632 }
2d146aa3
JW
5633}
5634
02491447 5635#ifdef CONFIG_MMU
7dc74be0 5636/* Handlers for move charge at task migration. */
854ffa8d 5637static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5638{
05b84301 5639 int ret;
9476db97 5640
d0164adc
MG
5641 /* Try a single bulk charge without reclaim first, kswapd may wake */
5642 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5643 if (!ret) {
854ffa8d 5644 mc.precharge += count;
854ffa8d
DN
5645 return ret;
5646 }
9476db97 5647
3674534b 5648 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5649 while (count--) {
3674534b 5650 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5651 if (ret)
38c5d72f 5652 return ret;
854ffa8d 5653 mc.precharge++;
9476db97 5654 cond_resched();
854ffa8d 5655 }
9476db97 5656 return 0;
4ffef5fe
DN
5657}
5658
4ffef5fe
DN
5659union mc_target {
5660 struct page *page;
02491447 5661 swp_entry_t ent;
4ffef5fe
DN
5662};
5663
4ffef5fe 5664enum mc_target_type {
8d32ff84 5665 MC_TARGET_NONE = 0,
4ffef5fe 5666 MC_TARGET_PAGE,
02491447 5667 MC_TARGET_SWAP,
c733a828 5668 MC_TARGET_DEVICE,
4ffef5fe
DN
5669};
5670
90254a65
DN
5671static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5672 unsigned long addr, pte_t ptent)
4ffef5fe 5673{
25b2995a 5674 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5675
90254a65
DN
5676 if (!page || !page_mapped(page))
5677 return NULL;
5678 if (PageAnon(page)) {
1dfab5ab 5679 if (!(mc.flags & MOVE_ANON))
90254a65 5680 return NULL;
1dfab5ab
JW
5681 } else {
5682 if (!(mc.flags & MOVE_FILE))
5683 return NULL;
5684 }
90254a65
DN
5685 if (!get_page_unless_zero(page))
5686 return NULL;
5687
5688 return page;
5689}
5690
c733a828 5691#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5692static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5693 pte_t ptent, swp_entry_t *entry)
90254a65 5694{
90254a65
DN
5695 struct page *page = NULL;
5696 swp_entry_t ent = pte_to_swp_entry(ptent);
5697
9a137153 5698 if (!(mc.flags & MOVE_ANON))
90254a65 5699 return NULL;
c733a828
JG
5700
5701 /*
27674ef6
CH
5702 * Handle device private pages that are not accessible by the CPU, but
5703 * stored as special swap entries in the page table.
c733a828
JG
5704 */
5705 if (is_device_private_entry(ent)) {
af5cdaf8 5706 page = pfn_swap_entry_to_page(ent);
27674ef6 5707 if (!get_page_unless_zero(page))
c733a828
JG
5708 return NULL;
5709 return page;
5710 }
5711
9a137153
RC
5712 if (non_swap_entry(ent))
5713 return NULL;
5714
4b91355e 5715 /*
cb691e2f 5716 * Because swap_cache_get_folio() updates some statistics counter,
4b91355e
KH
5717 * we call find_get_page() with swapper_space directly.
5718 */
f6ab1f7f 5719 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5720 entry->val = ent.val;
90254a65
DN
5721
5722 return page;
5723}
4b91355e
KH
5724#else
5725static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5726 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5727{
5728 return NULL;
5729}
5730#endif
90254a65 5731
87946a72 5732static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
48384b0b 5733 unsigned long addr, pte_t ptent)
87946a72 5734{
524984ff
MWO
5735 unsigned long index;
5736 struct folio *folio;
5737
87946a72
DN
5738 if (!vma->vm_file) /* anonymous vma */
5739 return NULL;
1dfab5ab 5740 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5741 return NULL;
5742
524984ff 5743 /* folio is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5744 /* shmem/tmpfs may report page out on swap: account for that too. */
524984ff
MWO
5745 index = linear_page_index(vma, addr);
5746 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
66dabbb6 5747 if (IS_ERR(folio))
524984ff
MWO
5748 return NULL;
5749 return folio_file_page(folio, index);
87946a72
DN
5750}
5751
b1b0deab
CG
5752/**
5753 * mem_cgroup_move_account - move account of the page
5754 * @page: the page
25843c2b 5755 * @compound: charge the page as compound or small page
b1b0deab
CG
5756 * @from: mem_cgroup which the page is moved from.
5757 * @to: mem_cgroup which the page is moved to. @from != @to.
5758 *
4e0cf05f 5759 * The page must be locked and not on the LRU.
b1b0deab
CG
5760 *
5761 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5762 * from old cgroup.
5763 */
5764static int mem_cgroup_move_account(struct page *page,
f627c2f5 5765 bool compound,
b1b0deab
CG
5766 struct mem_cgroup *from,
5767 struct mem_cgroup *to)
5768{
fcce4672 5769 struct folio *folio = page_folio(page);
ae8af438
KK
5770 struct lruvec *from_vec, *to_vec;
5771 struct pglist_data *pgdat;
fcce4672 5772 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
8e88bd2d 5773 int nid, ret;
b1b0deab
CG
5774
5775 VM_BUG_ON(from == to);
4e0cf05f 5776 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fcce4672 5777 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
9c325215 5778 VM_BUG_ON(compound && !folio_test_large(folio));
b1b0deab 5779
b1b0deab 5780 ret = -EINVAL;
fcce4672 5781 if (folio_memcg(folio) != from)
4e0cf05f 5782 goto out;
b1b0deab 5783
fcce4672 5784 pgdat = folio_pgdat(folio);
867e5e1d
JW
5785 from_vec = mem_cgroup_lruvec(from, pgdat);
5786 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5787
fcce4672 5788 folio_memcg_lock(folio);
b1b0deab 5789
fcce4672
MWO
5790 if (folio_test_anon(folio)) {
5791 if (folio_mapped(folio)) {
be5d0a74
JW
5792 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5793 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
fcce4672 5794 if (folio_test_transhuge(folio)) {
69473e5d
MS
5795 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5796 -nr_pages);
5797 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5798 nr_pages);
468c3982 5799 }
be5d0a74
JW
5800 }
5801 } else {
0d1c2072
JW
5802 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5803 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5804
fcce4672 5805 if (folio_test_swapbacked(folio)) {
0d1c2072
JW
5806 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5807 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5808 }
5809
fcce4672 5810 if (folio_mapped(folio)) {
49e50d27
JW
5811 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5812 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5813 }
b1b0deab 5814
fcce4672
MWO
5815 if (folio_test_dirty(folio)) {
5816 struct address_space *mapping = folio_mapping(folio);
c4843a75 5817
f56753ac 5818 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5819 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5820 -nr_pages);
5821 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5822 nr_pages);
5823 }
c4843a75
GT
5824 }
5825 }
5826
c449deb2
HD
5827#ifdef CONFIG_SWAP
5828 if (folio_test_swapcache(folio)) {
5829 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5830 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5831 }
5832#endif
fcce4672 5833 if (folio_test_writeback(folio)) {
ae8af438
KK
5834 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5835 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5836 }
5837
5838 /*
abb242f5
JW
5839 * All state has been migrated, let's switch to the new memcg.
5840 *
bcfe06bf 5841 * It is safe to change page's memcg here because the page
abb242f5
JW
5842 * is referenced, charged, isolated, and locked: we can't race
5843 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5844 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5845 *
5846 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5847 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5848 * new memcg that isn't locked, the above state can change
5849 * concurrently again. Make sure we're truly done with it.
b1b0deab 5850 */
abb242f5 5851 smp_mb();
b1b0deab 5852
1a3e1f40
JW
5853 css_get(&to->css);
5854 css_put(&from->css);
5855
fcce4672 5856 folio->memcg_data = (unsigned long)to;
87eaceb3 5857
f70ad448 5858 __folio_memcg_unlock(from);
b1b0deab
CG
5859
5860 ret = 0;
fcce4672 5861 nid = folio_nid(folio);
b1b0deab
CG
5862
5863 local_irq_disable();
6e0110c2 5864 mem_cgroup_charge_statistics(to, nr_pages);
8e88bd2d 5865 memcg_check_events(to, nid);
6e0110c2 5866 mem_cgroup_charge_statistics(from, -nr_pages);
8e88bd2d 5867 memcg_check_events(from, nid);
b1b0deab 5868 local_irq_enable();
b1b0deab
CG
5869out:
5870 return ret;
5871}
5872
7cf7806c
LR
5873/**
5874 * get_mctgt_type - get target type of moving charge
5875 * @vma: the vma the pte to be checked belongs
5876 * @addr: the address corresponding to the pte to be checked
5877 * @ptent: the pte to be checked
5878 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5879 *
5880 * Returns
5881 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5882 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5883 * move charge. if @target is not NULL, the page is stored in target->page
5884 * with extra refcnt got(Callers should handle it).
5885 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5886 * target for charge migration. if @target is not NULL, the entry is stored
5887 * in target->ent.
f25cbb7a
AS
5888 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5889 * thus not on the lru.
df6ad698
JG
5890 * For now we such page is charge like a regular page would be as for all
5891 * intent and purposes it is just special memory taking the place of a
5892 * regular page.
c733a828
JG
5893 *
5894 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5895 *
5896 * Called with pte lock held.
5897 */
5898
8d32ff84 5899static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5900 unsigned long addr, pte_t ptent, union mc_target *target)
5901{
5902 struct page *page = NULL;
8d32ff84 5903 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5904 swp_entry_t ent = { .val = 0 };
5905
5906 if (pte_present(ptent))
5907 page = mc_handle_present_pte(vma, addr, ptent);
5c041f5d
PX
5908 else if (pte_none_mostly(ptent))
5909 /*
5910 * PTE markers should be treated as a none pte here, separated
5911 * from other swap handling below.
5912 */
5913 page = mc_handle_file_pte(vma, addr, ptent);
90254a65 5914 else if (is_swap_pte(ptent))
48406ef8 5915 page = mc_handle_swap_pte(vma, ptent, &ent);
90254a65 5916
4e0cf05f
JW
5917 if (target && page) {
5918 if (!trylock_page(page)) {
5919 put_page(page);
5920 return ret;
5921 }
5922 /*
5923 * page_mapped() must be stable during the move. This
5924 * pte is locked, so if it's present, the page cannot
5925 * become unmapped. If it isn't, we have only partial
5926 * control over the mapped state: the page lock will
5927 * prevent new faults against pagecache and swapcache,
5928 * so an unmapped page cannot become mapped. However,
5929 * if the page is already mapped elsewhere, it can
5930 * unmap, and there is nothing we can do about it.
5931 * Alas, skip moving the page in this case.
5932 */
5933 if (!pte_present(ptent) && page_mapped(page)) {
5934 unlock_page(page);
5935 put_page(page);
5936 return ret;
5937 }
5938 }
5939
90254a65 5940 if (!page && !ent.val)
8d32ff84 5941 return ret;
02491447 5942 if (page) {
02491447 5943 /*
0a31bc97 5944 * Do only loose check w/o serialization.
1306a85a 5945 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5946 * not under LRU exclusion.
02491447 5947 */
bcfe06bf 5948 if (page_memcg(page) == mc.from) {
02491447 5949 ret = MC_TARGET_PAGE;
f25cbb7a
AS
5950 if (is_device_private_page(page) ||
5951 is_device_coherent_page(page))
c733a828 5952 ret = MC_TARGET_DEVICE;
02491447
DN
5953 if (target)
5954 target->page = page;
5955 }
4e0cf05f
JW
5956 if (!ret || !target) {
5957 if (target)
5958 unlock_page(page);
02491447 5959 put_page(page);
4e0cf05f 5960 }
02491447 5961 }
3e14a57b
HY
5962 /*
5963 * There is a swap entry and a page doesn't exist or isn't charged.
5964 * But we cannot move a tail-page in a THP.
5965 */
5966 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5967 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5968 ret = MC_TARGET_SWAP;
5969 if (target)
5970 target->ent = ent;
4ffef5fe 5971 }
4ffef5fe
DN
5972 return ret;
5973}
5974
12724850
NH
5975#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5976/*
d6810d73
HY
5977 * We don't consider PMD mapped swapping or file mapped pages because THP does
5978 * not support them for now.
12724850
NH
5979 * Caller should make sure that pmd_trans_huge(pmd) is true.
5980 */
5981static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5982 unsigned long addr, pmd_t pmd, union mc_target *target)
5983{
5984 struct page *page = NULL;
12724850
NH
5985 enum mc_target_type ret = MC_TARGET_NONE;
5986
84c3fc4e
ZY
5987 if (unlikely(is_swap_pmd(pmd))) {
5988 VM_BUG_ON(thp_migration_supported() &&
5989 !is_pmd_migration_entry(pmd));
5990 return ret;
5991 }
12724850 5992 page = pmd_page(pmd);
309381fe 5993 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5994 if (!(mc.flags & MOVE_ANON))
12724850 5995 return ret;
bcfe06bf 5996 if (page_memcg(page) == mc.from) {
12724850
NH
5997 ret = MC_TARGET_PAGE;
5998 if (target) {
5999 get_page(page);
4e0cf05f
JW
6000 if (!trylock_page(page)) {
6001 put_page(page);
6002 return MC_TARGET_NONE;
6003 }
12724850
NH
6004 target->page = page;
6005 }
6006 }
6007 return ret;
6008}
6009#else
6010static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6011 unsigned long addr, pmd_t pmd, union mc_target *target)
6012{
6013 return MC_TARGET_NONE;
6014}
6015#endif
6016
4ffef5fe
DN
6017static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6018 unsigned long addr, unsigned long end,
6019 struct mm_walk *walk)
6020{
26bcd64a 6021 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6022 pte_t *pte;
6023 spinlock_t *ptl;
6024
b6ec57f4
KS
6025 ptl = pmd_trans_huge_lock(pmd, vma);
6026 if (ptl) {
c733a828
JG
6027 /*
6028 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
6029 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6030 * this might change.
c733a828 6031 */
12724850
NH
6032 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6033 mc.precharge += HPAGE_PMD_NR;
bf929152 6034 spin_unlock(ptl);
1a5a9906 6035 return 0;
12724850 6036 }
03319327 6037
45f83cef
AA
6038 if (pmd_trans_unstable(pmd))
6039 return 0;
4ffef5fe
DN
6040 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6041 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6042 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6043 mc.precharge++; /* increment precharge temporarily */
6044 pte_unmap_unlock(pte - 1, ptl);
6045 cond_resched();
6046
7dc74be0
DN
6047 return 0;
6048}
6049
7b86ac33
CH
6050static const struct mm_walk_ops precharge_walk_ops = {
6051 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6052};
6053
4ffef5fe
DN
6054static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6055{
6056 unsigned long precharge;
4ffef5fe 6057
d8ed45c5 6058 mmap_read_lock(mm);
ba0aff8e 6059 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
d8ed45c5 6060 mmap_read_unlock(mm);
4ffef5fe
DN
6061
6062 precharge = mc.precharge;
6063 mc.precharge = 0;
6064
6065 return precharge;
6066}
6067
4ffef5fe
DN
6068static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6069{
dfe076b0
DN
6070 unsigned long precharge = mem_cgroup_count_precharge(mm);
6071
6072 VM_BUG_ON(mc.moving_task);
6073 mc.moving_task = current;
6074 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6075}
6076
dfe076b0
DN
6077/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6078static void __mem_cgroup_clear_mc(void)
4ffef5fe 6079{
2bd9bb20
KH
6080 struct mem_cgroup *from = mc.from;
6081 struct mem_cgroup *to = mc.to;
6082
4ffef5fe 6083 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 6084 if (mc.precharge) {
00501b53 6085 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
6086 mc.precharge = 0;
6087 }
6088 /*
6089 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6090 * we must uncharge here.
6091 */
6092 if (mc.moved_charge) {
00501b53 6093 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 6094 mc.moved_charge = 0;
4ffef5fe 6095 }
483c30b5
DN
6096 /* we must fixup refcnts and charges */
6097 if (mc.moved_swap) {
483c30b5 6098 /* uncharge swap account from the old cgroup */
ce00a967 6099 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 6100 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 6101
615d66c3
VD
6102 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6103
05b84301 6104 /*
3e32cb2e
JW
6105 * we charged both to->memory and to->memsw, so we
6106 * should uncharge to->memory.
05b84301 6107 */
ce00a967 6108 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
6109 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6110
483c30b5
DN
6111 mc.moved_swap = 0;
6112 }
dfe076b0
DN
6113 memcg_oom_recover(from);
6114 memcg_oom_recover(to);
6115 wake_up_all(&mc.waitq);
6116}
6117
6118static void mem_cgroup_clear_mc(void)
6119{
264a0ae1
TH
6120 struct mm_struct *mm = mc.mm;
6121
dfe076b0
DN
6122 /*
6123 * we must clear moving_task before waking up waiters at the end of
6124 * task migration.
6125 */
6126 mc.moving_task = NULL;
6127 __mem_cgroup_clear_mc();
2bd9bb20 6128 spin_lock(&mc.lock);
4ffef5fe
DN
6129 mc.from = NULL;
6130 mc.to = NULL;
264a0ae1 6131 mc.mm = NULL;
2bd9bb20 6132 spin_unlock(&mc.lock);
264a0ae1
TH
6133
6134 mmput(mm);
4ffef5fe
DN
6135}
6136
1f7dd3e5 6137static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 6138{
1f7dd3e5 6139 struct cgroup_subsys_state *css;
eed67d75 6140 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 6141 struct mem_cgroup *from;
4530eddb 6142 struct task_struct *leader, *p;
9f2115f9 6143 struct mm_struct *mm;
1dfab5ab 6144 unsigned long move_flags;
9f2115f9 6145 int ret = 0;
7dc74be0 6146
1f7dd3e5
TH
6147 /* charge immigration isn't supported on the default hierarchy */
6148 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
6149 return 0;
6150
4530eddb
TH
6151 /*
6152 * Multi-process migrations only happen on the default hierarchy
6153 * where charge immigration is not used. Perform charge
6154 * immigration if @tset contains a leader and whine if there are
6155 * multiple.
6156 */
6157 p = NULL;
1f7dd3e5 6158 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
6159 WARN_ON_ONCE(p);
6160 p = leader;
1f7dd3e5 6161 memcg = mem_cgroup_from_css(css);
4530eddb
TH
6162 }
6163 if (!p)
6164 return 0;
6165
1f7dd3e5 6166 /*
f0953a1b 6167 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
6168 * tunable will only affect upcoming migrations, not the current one.
6169 * So we need to save it, and keep it going.
6170 */
6171 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6172 if (!move_flags)
6173 return 0;
6174
9f2115f9
TH
6175 from = mem_cgroup_from_task(p);
6176
6177 VM_BUG_ON(from == memcg);
6178
6179 mm = get_task_mm(p);
6180 if (!mm)
6181 return 0;
6182 /* We move charges only when we move a owner of the mm */
6183 if (mm->owner == p) {
6184 VM_BUG_ON(mc.from);
6185 VM_BUG_ON(mc.to);
6186 VM_BUG_ON(mc.precharge);
6187 VM_BUG_ON(mc.moved_charge);
6188 VM_BUG_ON(mc.moved_swap);
6189
6190 spin_lock(&mc.lock);
264a0ae1 6191 mc.mm = mm;
9f2115f9
TH
6192 mc.from = from;
6193 mc.to = memcg;
6194 mc.flags = move_flags;
6195 spin_unlock(&mc.lock);
6196 /* We set mc.moving_task later */
6197
6198 ret = mem_cgroup_precharge_mc(mm);
6199 if (ret)
6200 mem_cgroup_clear_mc();
264a0ae1
TH
6201 } else {
6202 mmput(mm);
7dc74be0
DN
6203 }
6204 return ret;
6205}
6206
1f7dd3e5 6207static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6208{
4e2f245d
JW
6209 if (mc.to)
6210 mem_cgroup_clear_mc();
7dc74be0
DN
6211}
6212
4ffef5fe
DN
6213static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6214 unsigned long addr, unsigned long end,
6215 struct mm_walk *walk)
7dc74be0 6216{
4ffef5fe 6217 int ret = 0;
26bcd64a 6218 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6219 pte_t *pte;
6220 spinlock_t *ptl;
12724850
NH
6221 enum mc_target_type target_type;
6222 union mc_target target;
6223 struct page *page;
4ffef5fe 6224
b6ec57f4
KS
6225 ptl = pmd_trans_huge_lock(pmd, vma);
6226 if (ptl) {
62ade86a 6227 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6228 spin_unlock(ptl);
12724850
NH
6229 return 0;
6230 }
6231 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6232 if (target_type == MC_TARGET_PAGE) {
6233 page = target.page;
f7f9c00d 6234 if (isolate_lru_page(page)) {
f627c2f5 6235 if (!mem_cgroup_move_account(page, true,
1306a85a 6236 mc.from, mc.to)) {
12724850
NH
6237 mc.precharge -= HPAGE_PMD_NR;
6238 mc.moved_charge += HPAGE_PMD_NR;
6239 }
6240 putback_lru_page(page);
6241 }
4e0cf05f 6242 unlock_page(page);
12724850 6243 put_page(page);
c733a828
JG
6244 } else if (target_type == MC_TARGET_DEVICE) {
6245 page = target.page;
6246 if (!mem_cgroup_move_account(page, true,
6247 mc.from, mc.to)) {
6248 mc.precharge -= HPAGE_PMD_NR;
6249 mc.moved_charge += HPAGE_PMD_NR;
6250 }
4e0cf05f 6251 unlock_page(page);
c733a828 6252 put_page(page);
12724850 6253 }
bf929152 6254 spin_unlock(ptl);
1a5a9906 6255 return 0;
12724850
NH
6256 }
6257
45f83cef
AA
6258 if (pmd_trans_unstable(pmd))
6259 return 0;
4ffef5fe
DN
6260retry:
6261 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6262 for (; addr != end; addr += PAGE_SIZE) {
6263 pte_t ptent = *(pte++);
c733a828 6264 bool device = false;
02491447 6265 swp_entry_t ent;
4ffef5fe
DN
6266
6267 if (!mc.precharge)
6268 break;
6269
8d32ff84 6270 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6271 case MC_TARGET_DEVICE:
6272 device = true;
e4a9bc58 6273 fallthrough;
4ffef5fe
DN
6274 case MC_TARGET_PAGE:
6275 page = target.page;
53f9263b
KS
6276 /*
6277 * We can have a part of the split pmd here. Moving it
6278 * can be done but it would be too convoluted so simply
6279 * ignore such a partial THP and keep it in original
6280 * memcg. There should be somebody mapping the head.
6281 */
6282 if (PageTransCompound(page))
6283 goto put;
f7f9c00d 6284 if (!device && !isolate_lru_page(page))
4ffef5fe 6285 goto put;
f627c2f5
KS
6286 if (!mem_cgroup_move_account(page, false,
6287 mc.from, mc.to)) {
4ffef5fe 6288 mc.precharge--;
854ffa8d
DN
6289 /* we uncharge from mc.from later. */
6290 mc.moved_charge++;
4ffef5fe 6291 }
c733a828
JG
6292 if (!device)
6293 putback_lru_page(page);
4e0cf05f
JW
6294put: /* get_mctgt_type() gets & locks the page */
6295 unlock_page(page);
4ffef5fe
DN
6296 put_page(page);
6297 break;
02491447
DN
6298 case MC_TARGET_SWAP:
6299 ent = target.ent;
e91cbb42 6300 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6301 mc.precharge--;
8d22a935
HD
6302 mem_cgroup_id_get_many(mc.to, 1);
6303 /* we fixup other refcnts and charges later. */
483c30b5
DN
6304 mc.moved_swap++;
6305 }
02491447 6306 break;
4ffef5fe
DN
6307 default:
6308 break;
6309 }
6310 }
6311 pte_unmap_unlock(pte - 1, ptl);
6312 cond_resched();
6313
6314 if (addr != end) {
6315 /*
6316 * We have consumed all precharges we got in can_attach().
6317 * We try charge one by one, but don't do any additional
6318 * charges to mc.to if we have failed in charge once in attach()
6319 * phase.
6320 */
854ffa8d 6321 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6322 if (!ret)
6323 goto retry;
6324 }
6325
6326 return ret;
6327}
6328
7b86ac33
CH
6329static const struct mm_walk_ops charge_walk_ops = {
6330 .pmd_entry = mem_cgroup_move_charge_pte_range,
6331};
6332
264a0ae1 6333static void mem_cgroup_move_charge(void)
4ffef5fe 6334{
4ffef5fe 6335 lru_add_drain_all();
312722cb 6336 /*
81f8c3a4
JW
6337 * Signal lock_page_memcg() to take the memcg's move_lock
6338 * while we're moving its pages to another memcg. Then wait
6339 * for already started RCU-only updates to finish.
312722cb
JW
6340 */
6341 atomic_inc(&mc.from->moving_account);
6342 synchronize_rcu();
dfe076b0 6343retry:
d8ed45c5 6344 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6345 /*
c1e8d7c6 6346 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6347 * waitq. So we cancel all extra charges, wake up all waiters,
6348 * and retry. Because we cancel precharges, we might not be able
6349 * to move enough charges, but moving charge is a best-effort
6350 * feature anyway, so it wouldn't be a big problem.
6351 */
6352 __mem_cgroup_clear_mc();
6353 cond_resched();
6354 goto retry;
6355 }
26bcd64a
NH
6356 /*
6357 * When we have consumed all precharges and failed in doing
6358 * additional charge, the page walk just aborts.
6359 */
ba0aff8e 6360 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
d8ed45c5 6361 mmap_read_unlock(mc.mm);
312722cb 6362 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6363}
6364
264a0ae1 6365static void mem_cgroup_move_task(void)
67e465a7 6366{
264a0ae1
TH
6367 if (mc.to) {
6368 mem_cgroup_move_charge();
a433658c 6369 mem_cgroup_clear_mc();
264a0ae1 6370 }
67e465a7 6371}
5cfb80a7 6372#else /* !CONFIG_MMU */
1f7dd3e5 6373static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6374{
6375 return 0;
6376}
1f7dd3e5 6377static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6378{
6379}
264a0ae1 6380static void mem_cgroup_move_task(void)
5cfb80a7
DN
6381{
6382}
6383#endif
67e465a7 6384
bd74fdae
YZ
6385#ifdef CONFIG_LRU_GEN
6386static void mem_cgroup_attach(struct cgroup_taskset *tset)
6387{
6388 struct task_struct *task;
6389 struct cgroup_subsys_state *css;
6390
6391 /* find the first leader if there is any */
6392 cgroup_taskset_for_each_leader(task, css, tset)
6393 break;
6394
6395 if (!task)
6396 return;
6397
6398 task_lock(task);
6399 if (task->mm && READ_ONCE(task->mm->owner) == task)
6400 lru_gen_migrate_mm(task->mm);
6401 task_unlock(task);
6402}
6403#else
6404static void mem_cgroup_attach(struct cgroup_taskset *tset)
6405{
6406}
6407#endif /* CONFIG_LRU_GEN */
6408
677dc973
CD
6409static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6410{
6411 if (value == PAGE_COUNTER_MAX)
6412 seq_puts(m, "max\n");
6413 else
6414 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6415
6416 return 0;
6417}
6418
241994ed
JW
6419static u64 memory_current_read(struct cgroup_subsys_state *css,
6420 struct cftype *cft)
6421{
f5fc3c5d
JW
6422 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6423
6424 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6425}
6426
8e20d4b3
GR
6427static u64 memory_peak_read(struct cgroup_subsys_state *css,
6428 struct cftype *cft)
6429{
6430 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6431
6432 return (u64)memcg->memory.watermark * PAGE_SIZE;
6433}
6434
bf8d5d52
RG
6435static int memory_min_show(struct seq_file *m, void *v)
6436{
677dc973
CD
6437 return seq_puts_memcg_tunable(m,
6438 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6439}
6440
6441static ssize_t memory_min_write(struct kernfs_open_file *of,
6442 char *buf, size_t nbytes, loff_t off)
6443{
6444 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6445 unsigned long min;
6446 int err;
6447
6448 buf = strstrip(buf);
6449 err = page_counter_memparse(buf, "max", &min);
6450 if (err)
6451 return err;
6452
6453 page_counter_set_min(&memcg->memory, min);
6454
6455 return nbytes;
6456}
6457
241994ed
JW
6458static int memory_low_show(struct seq_file *m, void *v)
6459{
677dc973
CD
6460 return seq_puts_memcg_tunable(m,
6461 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6462}
6463
6464static ssize_t memory_low_write(struct kernfs_open_file *of,
6465 char *buf, size_t nbytes, loff_t off)
6466{
6467 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6468 unsigned long low;
6469 int err;
6470
6471 buf = strstrip(buf);
d2973697 6472 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6473 if (err)
6474 return err;
6475
23067153 6476 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6477
6478 return nbytes;
6479}
6480
6481static int memory_high_show(struct seq_file *m, void *v)
6482{
d1663a90
JK
6483 return seq_puts_memcg_tunable(m,
6484 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6485}
6486
6487static ssize_t memory_high_write(struct kernfs_open_file *of,
6488 char *buf, size_t nbytes, loff_t off)
6489{
6490 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6491 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6492 bool drained = false;
241994ed
JW
6493 unsigned long high;
6494 int err;
6495
6496 buf = strstrip(buf);
d2973697 6497 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6498 if (err)
6499 return err;
6500
e82553c1
JW
6501 page_counter_set_high(&memcg->memory, high);
6502
8c8c383c
JW
6503 for (;;) {
6504 unsigned long nr_pages = page_counter_read(&memcg->memory);
6505 unsigned long reclaimed;
6506
6507 if (nr_pages <= high)
6508 break;
6509
6510 if (signal_pending(current))
6511 break;
6512
6513 if (!drained) {
6514 drain_all_stock(memcg);
6515 drained = true;
6516 continue;
6517 }
6518
6519 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
55ab834a 6520 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
8c8c383c
JW
6521
6522 if (!reclaimed && !nr_retries--)
6523 break;
6524 }
588083bb 6525
19ce33ac 6526 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6527 return nbytes;
6528}
6529
6530static int memory_max_show(struct seq_file *m, void *v)
6531{
677dc973
CD
6532 return seq_puts_memcg_tunable(m,
6533 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6534}
6535
6536static ssize_t memory_max_write(struct kernfs_open_file *of,
6537 char *buf, size_t nbytes, loff_t off)
6538{
6539 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6540 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6541 bool drained = false;
241994ed
JW
6542 unsigned long max;
6543 int err;
6544
6545 buf = strstrip(buf);
d2973697 6546 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6547 if (err)
6548 return err;
6549
bbec2e15 6550 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6551
6552 for (;;) {
6553 unsigned long nr_pages = page_counter_read(&memcg->memory);
6554
6555 if (nr_pages <= max)
6556 break;
6557
7249c9f0 6558 if (signal_pending(current))
b6e6edcf 6559 break;
b6e6edcf
JW
6560
6561 if (!drained) {
6562 drain_all_stock(memcg);
6563 drained = true;
6564 continue;
6565 }
6566
6567 if (nr_reclaims) {
6568 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
55ab834a 6569 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
b6e6edcf
JW
6570 nr_reclaims--;
6571 continue;
6572 }
6573
e27be240 6574 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6575 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6576 break;
6577 }
241994ed 6578
2529bb3a 6579 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6580 return nbytes;
6581}
6582
1e577f97
SB
6583static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6584{
6585 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6586 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6587 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6588 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6589 seq_printf(m, "oom_kill %lu\n",
6590 atomic_long_read(&events[MEMCG_OOM_KILL]));
b6bf9abb
DS
6591 seq_printf(m, "oom_group_kill %lu\n",
6592 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
1e577f97
SB
6593}
6594
241994ed
JW
6595static int memory_events_show(struct seq_file *m, void *v)
6596{
aa9694bb 6597 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6598
1e577f97
SB
6599 __memory_events_show(m, memcg->memory_events);
6600 return 0;
6601}
6602
6603static int memory_events_local_show(struct seq_file *m, void *v)
6604{
6605 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6606
1e577f97 6607 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6608 return 0;
6609}
6610
587d9f72
JW
6611static int memory_stat_show(struct seq_file *m, void *v)
6612{
aa9694bb 6613 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
68aaee14 6614 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5b42360c 6615 struct seq_buf s;
1ff9e6e1 6616
c8713d0b
JW
6617 if (!buf)
6618 return -ENOMEM;
5b42360c
YA
6619 seq_buf_init(&s, buf, PAGE_SIZE);
6620 memory_stat_format(memcg, &s);
c8713d0b
JW
6621 seq_puts(m, buf);
6622 kfree(buf);
587d9f72
JW
6623 return 0;
6624}
6625
5f9a4f4a 6626#ifdef CONFIG_NUMA
fff66b79
MS
6627static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6628 int item)
6629{
6630 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6631}
6632
5f9a4f4a
MS
6633static int memory_numa_stat_show(struct seq_file *m, void *v)
6634{
6635 int i;
6636 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6637
fd25a9e0 6638 mem_cgroup_flush_stats();
7e1c0d6f 6639
5f9a4f4a
MS
6640 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6641 int nid;
6642
6643 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6644 continue;
6645
6646 seq_printf(m, "%s", memory_stats[i].name);
6647 for_each_node_state(nid, N_MEMORY) {
6648 u64 size;
6649 struct lruvec *lruvec;
6650
6651 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6652 size = lruvec_page_state_output(lruvec,
6653 memory_stats[i].idx);
5f9a4f4a
MS
6654 seq_printf(m, " N%d=%llu", nid, size);
6655 }
6656 seq_putc(m, '\n');
6657 }
6658
6659 return 0;
6660}
6661#endif
6662
3d8b38eb
RG
6663static int memory_oom_group_show(struct seq_file *m, void *v)
6664{
aa9694bb 6665 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb 6666
eaf7b66b 6667 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
3d8b38eb
RG
6668
6669 return 0;
6670}
6671
6672static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6673 char *buf, size_t nbytes, loff_t off)
6674{
6675 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6676 int ret, oom_group;
6677
6678 buf = strstrip(buf);
6679 if (!buf)
6680 return -EINVAL;
6681
6682 ret = kstrtoint(buf, 0, &oom_group);
6683 if (ret)
6684 return ret;
6685
6686 if (oom_group != 0 && oom_group != 1)
6687 return -EINVAL;
6688
eaf7b66b 6689 WRITE_ONCE(memcg->oom_group, oom_group);
3d8b38eb
RG
6690
6691 return nbytes;
6692}
6693
94968384
SB
6694static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6695 size_t nbytes, loff_t off)
6696{
6697 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6698 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6699 unsigned long nr_to_reclaim, nr_reclaimed = 0;
55ab834a
MH
6700 unsigned int reclaim_options;
6701 int err;
12a5d395
MA
6702
6703 buf = strstrip(buf);
55ab834a
MH
6704 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6705 if (err)
6706 return err;
12a5d395 6707
55ab834a 6708 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
94968384
SB
6709 while (nr_reclaimed < nr_to_reclaim) {
6710 unsigned long reclaimed;
6711
6712 if (signal_pending(current))
6713 return -EINTR;
6714
6715 /*
6716 * This is the final attempt, drain percpu lru caches in the
6717 * hope of introducing more evictable pages for
6718 * try_to_free_mem_cgroup_pages().
6719 */
6720 if (!nr_retries)
6721 lru_add_drain_all();
6722
6723 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6724 nr_to_reclaim - nr_reclaimed,
55ab834a 6725 GFP_KERNEL, reclaim_options);
94968384
SB
6726
6727 if (!reclaimed && !nr_retries--)
6728 return -EAGAIN;
6729
6730 nr_reclaimed += reclaimed;
6731 }
6732
6733 return nbytes;
6734}
6735
241994ed
JW
6736static struct cftype memory_files[] = {
6737 {
6738 .name = "current",
f5fc3c5d 6739 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6740 .read_u64 = memory_current_read,
6741 },
8e20d4b3
GR
6742 {
6743 .name = "peak",
6744 .flags = CFTYPE_NOT_ON_ROOT,
6745 .read_u64 = memory_peak_read,
6746 },
bf8d5d52
RG
6747 {
6748 .name = "min",
6749 .flags = CFTYPE_NOT_ON_ROOT,
6750 .seq_show = memory_min_show,
6751 .write = memory_min_write,
6752 },
241994ed
JW
6753 {
6754 .name = "low",
6755 .flags = CFTYPE_NOT_ON_ROOT,
6756 .seq_show = memory_low_show,
6757 .write = memory_low_write,
6758 },
6759 {
6760 .name = "high",
6761 .flags = CFTYPE_NOT_ON_ROOT,
6762 .seq_show = memory_high_show,
6763 .write = memory_high_write,
6764 },
6765 {
6766 .name = "max",
6767 .flags = CFTYPE_NOT_ON_ROOT,
6768 .seq_show = memory_max_show,
6769 .write = memory_max_write,
6770 },
6771 {
6772 .name = "events",
6773 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6774 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6775 .seq_show = memory_events_show,
6776 },
1e577f97
SB
6777 {
6778 .name = "events.local",
6779 .flags = CFTYPE_NOT_ON_ROOT,
6780 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6781 .seq_show = memory_events_local_show,
6782 },
587d9f72
JW
6783 {
6784 .name = "stat",
587d9f72
JW
6785 .seq_show = memory_stat_show,
6786 },
5f9a4f4a
MS
6787#ifdef CONFIG_NUMA
6788 {
6789 .name = "numa_stat",
6790 .seq_show = memory_numa_stat_show,
6791 },
6792#endif
3d8b38eb
RG
6793 {
6794 .name = "oom.group",
6795 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6796 .seq_show = memory_oom_group_show,
6797 .write = memory_oom_group_write,
6798 },
94968384
SB
6799 {
6800 .name = "reclaim",
6801 .flags = CFTYPE_NS_DELEGATABLE,
6802 .write = memory_reclaim,
6803 },
241994ed
JW
6804 { } /* terminate */
6805};
6806
073219e9 6807struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6808 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6809 .css_online = mem_cgroup_css_online,
92fb9748 6810 .css_offline = mem_cgroup_css_offline,
6df38689 6811 .css_released = mem_cgroup_css_released,
92fb9748 6812 .css_free = mem_cgroup_css_free,
1ced953b 6813 .css_reset = mem_cgroup_css_reset,
2d146aa3 6814 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0 6815 .can_attach = mem_cgroup_can_attach,
bd74fdae 6816 .attach = mem_cgroup_attach,
7dc74be0 6817 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6818 .post_attach = mem_cgroup_move_task,
241994ed
JW
6819 .dfl_cftypes = memory_files,
6820 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6821 .early_init = 0,
8cdea7c0 6822};
c077719b 6823
bc50bcc6
JW
6824/*
6825 * This function calculates an individual cgroup's effective
6826 * protection which is derived from its own memory.min/low, its
6827 * parent's and siblings' settings, as well as the actual memory
6828 * distribution in the tree.
6829 *
6830 * The following rules apply to the effective protection values:
6831 *
6832 * 1. At the first level of reclaim, effective protection is equal to
6833 * the declared protection in memory.min and memory.low.
6834 *
6835 * 2. To enable safe delegation of the protection configuration, at
6836 * subsequent levels the effective protection is capped to the
6837 * parent's effective protection.
6838 *
6839 * 3. To make complex and dynamic subtrees easier to configure, the
6840 * user is allowed to overcommit the declared protection at a given
6841 * level. If that is the case, the parent's effective protection is
6842 * distributed to the children in proportion to how much protection
6843 * they have declared and how much of it they are utilizing.
6844 *
6845 * This makes distribution proportional, but also work-conserving:
6846 * if one cgroup claims much more protection than it uses memory,
6847 * the unused remainder is available to its siblings.
6848 *
6849 * 4. Conversely, when the declared protection is undercommitted at a
6850 * given level, the distribution of the larger parental protection
6851 * budget is NOT proportional. A cgroup's protection from a sibling
6852 * is capped to its own memory.min/low setting.
6853 *
8a931f80
JW
6854 * 5. However, to allow protecting recursive subtrees from each other
6855 * without having to declare each individual cgroup's fixed share
6856 * of the ancestor's claim to protection, any unutilized -
6857 * "floating" - protection from up the tree is distributed in
6858 * proportion to each cgroup's *usage*. This makes the protection
6859 * neutral wrt sibling cgroups and lets them compete freely over
6860 * the shared parental protection budget, but it protects the
6861 * subtree as a whole from neighboring subtrees.
6862 *
6863 * Note that 4. and 5. are not in conflict: 4. is about protecting
6864 * against immediate siblings whereas 5. is about protecting against
6865 * neighboring subtrees.
bc50bcc6
JW
6866 */
6867static unsigned long effective_protection(unsigned long usage,
8a931f80 6868 unsigned long parent_usage,
bc50bcc6
JW
6869 unsigned long setting,
6870 unsigned long parent_effective,
6871 unsigned long siblings_protected)
6872{
6873 unsigned long protected;
8a931f80 6874 unsigned long ep;
bc50bcc6
JW
6875
6876 protected = min(usage, setting);
6877 /*
6878 * If all cgroups at this level combined claim and use more
6879 * protection then what the parent affords them, distribute
6880 * shares in proportion to utilization.
6881 *
6882 * We are using actual utilization rather than the statically
6883 * claimed protection in order to be work-conserving: claimed
6884 * but unused protection is available to siblings that would
6885 * otherwise get a smaller chunk than what they claimed.
6886 */
6887 if (siblings_protected > parent_effective)
6888 return protected * parent_effective / siblings_protected;
6889
6890 /*
6891 * Ok, utilized protection of all children is within what the
6892 * parent affords them, so we know whatever this child claims
6893 * and utilizes is effectively protected.
6894 *
6895 * If there is unprotected usage beyond this value, reclaim
6896 * will apply pressure in proportion to that amount.
6897 *
6898 * If there is unutilized protection, the cgroup will be fully
6899 * shielded from reclaim, but we do return a smaller value for
6900 * protection than what the group could enjoy in theory. This
6901 * is okay. With the overcommit distribution above, effective
6902 * protection is always dependent on how memory is actually
6903 * consumed among the siblings anyway.
6904 */
8a931f80
JW
6905 ep = protected;
6906
6907 /*
6908 * If the children aren't claiming (all of) the protection
6909 * afforded to them by the parent, distribute the remainder in
6910 * proportion to the (unprotected) memory of each cgroup. That
6911 * way, cgroups that aren't explicitly prioritized wrt each
6912 * other compete freely over the allowance, but they are
6913 * collectively protected from neighboring trees.
6914 *
6915 * We're using unprotected memory for the weight so that if
6916 * some cgroups DO claim explicit protection, we don't protect
6917 * the same bytes twice.
cd324edc
JW
6918 *
6919 * Check both usage and parent_usage against the respective
6920 * protected values. One should imply the other, but they
6921 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6922 */
6923 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6924 return ep;
cd324edc
JW
6925 if (parent_effective > siblings_protected &&
6926 parent_usage > siblings_protected &&
6927 usage > protected) {
8a931f80
JW
6928 unsigned long unclaimed;
6929
6930 unclaimed = parent_effective - siblings_protected;
6931 unclaimed *= usage - protected;
6932 unclaimed /= parent_usage - siblings_protected;
6933
6934 ep += unclaimed;
6935 }
6936
6937 return ep;
bc50bcc6
JW
6938}
6939
241994ed 6940/**
05395718 6941 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 6942 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6943 * @memcg: the memory cgroup to check
6944 *
23067153
RG
6945 * WARNING: This function is not stateless! It can only be used as part
6946 * of a top-down tree iteration, not for isolated queries.
241994ed 6947 */
45c7f7e1
CD
6948void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6949 struct mem_cgroup *memcg)
241994ed 6950{
8a931f80 6951 unsigned long usage, parent_usage;
23067153
RG
6952 struct mem_cgroup *parent;
6953
241994ed 6954 if (mem_cgroup_disabled())
45c7f7e1 6955 return;
241994ed 6956
34c81057
SC
6957 if (!root)
6958 root = root_mem_cgroup;
22f7496f
YS
6959
6960 /*
6961 * Effective values of the reclaim targets are ignored so they
6962 * can be stale. Have a look at mem_cgroup_protection for more
6963 * details.
6964 * TODO: calculation should be more robust so that we do not need
6965 * that special casing.
6966 */
34c81057 6967 if (memcg == root)
45c7f7e1 6968 return;
241994ed 6969
23067153 6970 usage = page_counter_read(&memcg->memory);
bf8d5d52 6971 if (!usage)
45c7f7e1 6972 return;
bf8d5d52 6973
bf8d5d52 6974 parent = parent_mem_cgroup(memcg);
df2a4196 6975
bc50bcc6 6976 if (parent == root) {
c3d53200 6977 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6978 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6979 return;
bf8d5d52
RG
6980 }
6981
8a931f80
JW
6982 parent_usage = page_counter_read(&parent->memory);
6983
b3a7822e 6984 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6985 READ_ONCE(memcg->memory.min),
6986 READ_ONCE(parent->memory.emin),
b3a7822e 6987 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6988
b3a7822e 6989 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6990 READ_ONCE(memcg->memory.low),
6991 READ_ONCE(parent->memory.elow),
b3a7822e 6992 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6993}
6994
8f425e4e
MWO
6995static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6996 gfp_t gfp)
0add0c77 6997{
118f2875 6998 long nr_pages = folio_nr_pages(folio);
0add0c77
SB
6999 int ret;
7000
7001 ret = try_charge(memcg, gfp, nr_pages);
7002 if (ret)
7003 goto out;
7004
7005 css_get(&memcg->css);
118f2875 7006 commit_charge(folio, memcg);
0add0c77
SB
7007
7008 local_irq_disable();
6e0110c2 7009 mem_cgroup_charge_statistics(memcg, nr_pages);
8f425e4e 7010 memcg_check_events(memcg, folio_nid(folio));
0add0c77
SB
7011 local_irq_enable();
7012out:
7013 return ret;
7014}
7015
8f425e4e 7016int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
00501b53 7017{
0add0c77
SB
7018 struct mem_cgroup *memcg;
7019 int ret;
00501b53 7020
0add0c77 7021 memcg = get_mem_cgroup_from_mm(mm);
8f425e4e 7022 ret = charge_memcg(folio, memcg, gfp);
0add0c77 7023 css_put(&memcg->css);
2d1c4980 7024
0add0c77
SB
7025 return ret;
7026}
e993d905 7027
0add0c77 7028/**
65995918
MWO
7029 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7030 * @folio: folio to charge.
0add0c77
SB
7031 * @mm: mm context of the victim
7032 * @gfp: reclaim mode
65995918 7033 * @entry: swap entry for which the folio is allocated
0add0c77 7034 *
65995918
MWO
7035 * This function charges a folio allocated for swapin. Please call this before
7036 * adding the folio to the swapcache.
0add0c77
SB
7037 *
7038 * Returns 0 on success. Otherwise, an error code is returned.
7039 */
65995918 7040int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
0add0c77
SB
7041 gfp_t gfp, swp_entry_t entry)
7042{
7043 struct mem_cgroup *memcg;
7044 unsigned short id;
7045 int ret;
00501b53 7046
0add0c77
SB
7047 if (mem_cgroup_disabled())
7048 return 0;
00501b53 7049
0add0c77
SB
7050 id = lookup_swap_cgroup_id(entry);
7051 rcu_read_lock();
7052 memcg = mem_cgroup_from_id(id);
7053 if (!memcg || !css_tryget_online(&memcg->css))
7054 memcg = get_mem_cgroup_from_mm(mm);
7055 rcu_read_unlock();
00501b53 7056
8f425e4e 7057 ret = charge_memcg(folio, memcg, gfp);
6abb5a86 7058
0add0c77
SB
7059 css_put(&memcg->css);
7060 return ret;
7061}
00501b53 7062
0add0c77
SB
7063/*
7064 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7065 * @entry: swap entry for which the page is charged
7066 *
7067 * Call this function after successfully adding the charged page to swapcache.
7068 *
7069 * Note: This function assumes the page for which swap slot is being uncharged
7070 * is order 0 page.
7071 */
7072void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7073{
cae3af62
MS
7074 /*
7075 * Cgroup1's unified memory+swap counter has been charged with the
7076 * new swapcache page, finish the transfer by uncharging the swap
7077 * slot. The swap slot would also get uncharged when it dies, but
7078 * it can stick around indefinitely and we'd count the page twice
7079 * the entire time.
7080 *
7081 * Cgroup2 has separate resource counters for memory and swap,
7082 * so this is a non-issue here. Memory and swap charge lifetimes
7083 * correspond 1:1 to page and swap slot lifetimes: we charge the
7084 * page to memory here, and uncharge swap when the slot is freed.
7085 */
0add0c77 7086 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
7087 /*
7088 * The swap entry might not get freed for a long time,
7089 * let's not wait for it. The page already received a
7090 * memory+swap charge, drop the swap entry duplicate.
7091 */
0add0c77 7092 mem_cgroup_uncharge_swap(entry, 1);
00501b53 7093 }
3fea5a49
JW
7094}
7095
a9d5adee
JG
7096struct uncharge_gather {
7097 struct mem_cgroup *memcg;
b4e0b68f 7098 unsigned long nr_memory;
a9d5adee 7099 unsigned long pgpgout;
a9d5adee 7100 unsigned long nr_kmem;
8e88bd2d 7101 int nid;
a9d5adee
JG
7102};
7103
7104static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 7105{
a9d5adee
JG
7106 memset(ug, 0, sizeof(*ug));
7107}
7108
7109static void uncharge_batch(const struct uncharge_gather *ug)
7110{
747db954
JW
7111 unsigned long flags;
7112
b4e0b68f
MS
7113 if (ug->nr_memory) {
7114 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 7115 if (do_memsw_account())
b4e0b68f 7116 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a8c49af3
YA
7117 if (ug->nr_kmem)
7118 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
a9d5adee 7119 memcg_oom_recover(ug->memcg);
ce00a967 7120 }
747db954
JW
7121
7122 local_irq_save(flags);
c9019e9b 7123 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 7124 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
8e88bd2d 7125 memcg_check_events(ug->memcg, ug->nid);
747db954 7126 local_irq_restore(flags);
f1796544 7127
c4ed6ebf 7128 /* drop reference from uncharge_folio */
f1796544 7129 css_put(&ug->memcg->css);
a9d5adee
JG
7130}
7131
c4ed6ebf 7132static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
a9d5adee 7133{
c4ed6ebf 7134 long nr_pages;
b4e0b68f
MS
7135 struct mem_cgroup *memcg;
7136 struct obj_cgroup *objcg;
9f762dbe 7137
c4ed6ebf 7138 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
a9d5adee 7139
a9d5adee
JG
7140 /*
7141 * Nobody should be changing or seriously looking at
c4ed6ebf
MWO
7142 * folio memcg or objcg at this point, we have fully
7143 * exclusive access to the folio.
a9d5adee 7144 */
fead2b86 7145 if (folio_memcg_kmem(folio)) {
1b7e4464 7146 objcg = __folio_objcg(folio);
b4e0b68f
MS
7147 /*
7148 * This get matches the put at the end of the function and
7149 * kmem pages do not hold memcg references anymore.
7150 */
7151 memcg = get_mem_cgroup_from_objcg(objcg);
7152 } else {
1b7e4464 7153 memcg = __folio_memcg(folio);
b4e0b68f 7154 }
a9d5adee 7155
b4e0b68f
MS
7156 if (!memcg)
7157 return;
7158
7159 if (ug->memcg != memcg) {
a9d5adee
JG
7160 if (ug->memcg) {
7161 uncharge_batch(ug);
7162 uncharge_gather_clear(ug);
7163 }
b4e0b68f 7164 ug->memcg = memcg;
c4ed6ebf 7165 ug->nid = folio_nid(folio);
f1796544
MH
7166
7167 /* pairs with css_put in uncharge_batch */
b4e0b68f 7168 css_get(&memcg->css);
a9d5adee
JG
7169 }
7170
c4ed6ebf 7171 nr_pages = folio_nr_pages(folio);
a9d5adee 7172
fead2b86 7173 if (folio_memcg_kmem(folio)) {
b4e0b68f 7174 ug->nr_memory += nr_pages;
9f762dbe 7175 ug->nr_kmem += nr_pages;
b4e0b68f 7176
c4ed6ebf 7177 folio->memcg_data = 0;
b4e0b68f
MS
7178 obj_cgroup_put(objcg);
7179 } else {
7180 /* LRU pages aren't accounted at the root level */
7181 if (!mem_cgroup_is_root(memcg))
7182 ug->nr_memory += nr_pages;
18b2db3b 7183 ug->pgpgout++;
a9d5adee 7184
c4ed6ebf 7185 folio->memcg_data = 0;
b4e0b68f
MS
7186 }
7187
7188 css_put(&memcg->css);
747db954
JW
7189}
7190
bbc6b703 7191void __mem_cgroup_uncharge(struct folio *folio)
0a31bc97 7192{
a9d5adee
JG
7193 struct uncharge_gather ug;
7194
bbc6b703
MWO
7195 /* Don't touch folio->lru of any random page, pre-check: */
7196 if (!folio_memcg(folio))
0a31bc97
JW
7197 return;
7198
a9d5adee 7199 uncharge_gather_clear(&ug);
bbc6b703 7200 uncharge_folio(folio, &ug);
a9d5adee 7201 uncharge_batch(&ug);
747db954 7202}
0a31bc97 7203
747db954 7204/**
2c8d8f97 7205 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
7206 * @page_list: list of pages to uncharge
7207 *
7208 * Uncharge a list of pages previously charged with
2c8d8f97 7209 * __mem_cgroup_charge().
747db954 7210 */
2c8d8f97 7211void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 7212{
c41a40b6 7213 struct uncharge_gather ug;
c4ed6ebf 7214 struct folio *folio;
c41a40b6 7215
c41a40b6 7216 uncharge_gather_clear(&ug);
c4ed6ebf
MWO
7217 list_for_each_entry(folio, page_list, lru)
7218 uncharge_folio(folio, &ug);
c41a40b6
MS
7219 if (ug.memcg)
7220 uncharge_batch(&ug);
0a31bc97
JW
7221}
7222
7223/**
d21bba2b
MWO
7224 * mem_cgroup_migrate - Charge a folio's replacement.
7225 * @old: Currently circulating folio.
7226 * @new: Replacement folio.
0a31bc97 7227 *
d21bba2b 7228 * Charge @new as a replacement folio for @old. @old will
6a93ca8f 7229 * be uncharged upon free.
0a31bc97 7230 *
d21bba2b 7231 * Both folios must be locked, @new->mapping must be set up.
0a31bc97 7232 */
d21bba2b 7233void mem_cgroup_migrate(struct folio *old, struct folio *new)
0a31bc97 7234{
29833315 7235 struct mem_cgroup *memcg;
d21bba2b 7236 long nr_pages = folio_nr_pages(new);
d93c4130 7237 unsigned long flags;
0a31bc97 7238
d21bba2b
MWO
7239 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7240 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7241 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7242 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
0a31bc97
JW
7243
7244 if (mem_cgroup_disabled())
7245 return;
7246
d21bba2b
MWO
7247 /* Page cache replacement: new folio already charged? */
7248 if (folio_memcg(new))
0a31bc97
JW
7249 return;
7250
d21bba2b
MWO
7251 memcg = folio_memcg(old);
7252 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
29833315 7253 if (!memcg)
0a31bc97
JW
7254 return;
7255
44b7a8d3 7256 /* Force-charge the new page. The old one will be freed soon */
8dc87c7d
MS
7257 if (!mem_cgroup_is_root(memcg)) {
7258 page_counter_charge(&memcg->memory, nr_pages);
7259 if (do_memsw_account())
7260 page_counter_charge(&memcg->memsw, nr_pages);
7261 }
0a31bc97 7262
1a3e1f40 7263 css_get(&memcg->css);
d21bba2b 7264 commit_charge(new, memcg);
44b7a8d3 7265
d93c4130 7266 local_irq_save(flags);
6e0110c2 7267 mem_cgroup_charge_statistics(memcg, nr_pages);
d21bba2b 7268 memcg_check_events(memcg, folio_nid(new));
d93c4130 7269 local_irq_restore(flags);
0a31bc97
JW
7270}
7271
ef12947c 7272DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
7273EXPORT_SYMBOL(memcg_sockets_enabled_key);
7274
2d758073 7275void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
7276{
7277 struct mem_cgroup *memcg;
7278
2d758073
JW
7279 if (!mem_cgroup_sockets_enabled)
7280 return;
7281
e876ecc6 7282 /* Do not associate the sock with unrelated interrupted task's memcg. */
086f694a 7283 if (!in_task())
e876ecc6
SB
7284 return;
7285
11092087
JW
7286 rcu_read_lock();
7287 memcg = mem_cgroup_from_task(current);
7848ed62 7288 if (mem_cgroup_is_root(memcg))
f7e1cb6e 7289 goto out;
0db15298 7290 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7291 goto out;
8965aa28 7292 if (css_tryget(&memcg->css))
11092087 7293 sk->sk_memcg = memcg;
f7e1cb6e 7294out:
11092087
JW
7295 rcu_read_unlock();
7296}
11092087 7297
2d758073 7298void mem_cgroup_sk_free(struct sock *sk)
11092087 7299{
2d758073
JW
7300 if (sk->sk_memcg)
7301 css_put(&sk->sk_memcg->css);
11092087
JW
7302}
7303
7304/**
7305 * mem_cgroup_charge_skmem - charge socket memory
7306 * @memcg: memcg to charge
7307 * @nr_pages: number of pages to charge
4b1327be 7308 * @gfp_mask: reclaim mode
11092087
JW
7309 *
7310 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 7311 * @memcg's configured limit, %false if it doesn't.
11092087 7312 */
4b1327be
WW
7313bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7314 gfp_t gfp_mask)
11092087 7315{
f7e1cb6e 7316 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7317 struct page_counter *fail;
f7e1cb6e 7318
0db15298
JW
7319 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7320 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7321 return true;
7322 }
0db15298 7323 memcg->tcpmem_pressure = 1;
4b1327be
WW
7324 if (gfp_mask & __GFP_NOFAIL) {
7325 page_counter_charge(&memcg->tcpmem, nr_pages);
7326 return true;
7327 }
f7e1cb6e 7328 return false;
11092087 7329 }
d886f4e4 7330
4b1327be
WW
7331 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7332 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7333 return true;
4b1327be 7334 }
f7e1cb6e 7335
11092087
JW
7336 return false;
7337}
7338
7339/**
7340 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7341 * @memcg: memcg to uncharge
7342 * @nr_pages: number of pages to uncharge
11092087
JW
7343 */
7344void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7345{
f7e1cb6e 7346 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7347 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7348 return;
7349 }
d886f4e4 7350
c9019e9b 7351 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7352
475d0487 7353 refill_stock(memcg, nr_pages);
11092087
JW
7354}
7355
f7e1cb6e
JW
7356static int __init cgroup_memory(char *s)
7357{
7358 char *token;
7359
7360 while ((token = strsep(&s, ",")) != NULL) {
7361 if (!*token)
7362 continue;
7363 if (!strcmp(token, "nosocket"))
7364 cgroup_memory_nosocket = true;
04823c83
VD
7365 if (!strcmp(token, "nokmem"))
7366 cgroup_memory_nokmem = true;
b6c1a8af
YS
7367 if (!strcmp(token, "nobpf"))
7368 cgroup_memory_nobpf = true;
f7e1cb6e 7369 }
460a79e1 7370 return 1;
f7e1cb6e
JW
7371}
7372__setup("cgroup.memory=", cgroup_memory);
11092087 7373
2d11085e 7374/*
1081312f
MH
7375 * subsys_initcall() for memory controller.
7376 *
308167fc
SAS
7377 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7378 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7379 * basically everything that doesn't depend on a specific mem_cgroup structure
7380 * should be initialized from here.
2d11085e
MH
7381 */
7382static int __init mem_cgroup_init(void)
7383{
95a045f6
JW
7384 int cpu, node;
7385
f3344adf
MS
7386 /*
7387 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7388 * used for per-memcg-per-cpu caching of per-node statistics. In order
7389 * to work fine, we should make sure that the overfill threshold can't
7390 * exceed S32_MAX / PAGE_SIZE.
7391 */
7392 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7393
308167fc
SAS
7394 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7395 memcg_hotplug_cpu_dead);
95a045f6
JW
7396
7397 for_each_possible_cpu(cpu)
7398 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7399 drain_local_stock);
7400
7401 for_each_node(node) {
7402 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7403
7404 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7405 node_online(node) ? node : NUMA_NO_NODE);
7406
ef8f2327 7407 rtpn->rb_root = RB_ROOT;
fa90b2fd 7408 rtpn->rb_rightmost = NULL;
ef8f2327 7409 spin_lock_init(&rtpn->lock);
95a045f6
JW
7410 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7411 }
7412
2d11085e
MH
7413 return 0;
7414}
7415subsys_initcall(mem_cgroup_init);
21afa38e 7416
e55b9f96 7417#ifdef CONFIG_SWAP
358c07fc
AB
7418static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7419{
1c2d479a 7420 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7421 /*
7422 * The root cgroup cannot be destroyed, so it's refcount must
7423 * always be >= 1.
7424 */
7848ed62 7425 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
358c07fc
AB
7426 VM_BUG_ON(1);
7427 break;
7428 }
7429 memcg = parent_mem_cgroup(memcg);
7430 if (!memcg)
7431 memcg = root_mem_cgroup;
7432 }
7433 return memcg;
7434}
7435
21afa38e
JW
7436/**
7437 * mem_cgroup_swapout - transfer a memsw charge to swap
3ecb0087 7438 * @folio: folio whose memsw charge to transfer
21afa38e
JW
7439 * @entry: swap entry to move the charge to
7440 *
3ecb0087 7441 * Transfer the memsw charge of @folio to @entry.
21afa38e 7442 */
3ecb0087 7443void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
21afa38e 7444{
1f47b61f 7445 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7446 unsigned int nr_entries;
21afa38e
JW
7447 unsigned short oldid;
7448
3ecb0087
MWO
7449 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7450 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
21afa38e 7451
76358ab5
AS
7452 if (mem_cgroup_disabled())
7453 return;
7454
b94c4e94 7455 if (!do_memsw_account())
21afa38e
JW
7456 return;
7457
3ecb0087 7458 memcg = folio_memcg(folio);
21afa38e 7459
3ecb0087 7460 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
21afa38e
JW
7461 if (!memcg)
7462 return;
7463
1f47b61f
VD
7464 /*
7465 * In case the memcg owning these pages has been offlined and doesn't
7466 * have an ID allocated to it anymore, charge the closest online
7467 * ancestor for the swap instead and transfer the memory+swap charge.
7468 */
7469 swap_memcg = mem_cgroup_id_get_online(memcg);
3ecb0087 7470 nr_entries = folio_nr_pages(folio);
d6810d73
HY
7471 /* Get references for the tail pages, too */
7472 if (nr_entries > 1)
7473 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7474 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7475 nr_entries);
3ecb0087 7476 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7477 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7478
3ecb0087 7479 folio->memcg_data = 0;
21afa38e
JW
7480
7481 if (!mem_cgroup_is_root(memcg))
d6810d73 7482 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7483
b25806dc 7484 if (memcg != swap_memcg) {
1f47b61f 7485 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7486 page_counter_charge(&swap_memcg->memsw, nr_entries);
7487 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7488 }
7489
ce9ce665
SAS
7490 /*
7491 * Interrupts should be disabled here because the caller holds the
b93b0163 7492 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7493 * important here to have the interrupts disabled because it is the
b93b0163 7494 * only synchronisation we have for updating the per-CPU variables.
ce9ce665 7495 */
be3e67b5 7496 memcg_stats_lock();
6e0110c2 7497 mem_cgroup_charge_statistics(memcg, -nr_entries);
be3e67b5 7498 memcg_stats_unlock();
3ecb0087 7499 memcg_check_events(memcg, folio_nid(folio));
73f576c0 7500
1a3e1f40 7501 css_put(&memcg->css);
21afa38e
JW
7502}
7503
38d8b4e6 7504/**
e2e3fdc7
MWO
7505 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7506 * @folio: folio being added to swap
37e84351
VD
7507 * @entry: swap entry to charge
7508 *
e2e3fdc7 7509 * Try to charge @folio's memcg for the swap space at @entry.
37e84351
VD
7510 *
7511 * Returns 0 on success, -ENOMEM on failure.
7512 */
e2e3fdc7 7513int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
37e84351 7514{
e2e3fdc7 7515 unsigned int nr_pages = folio_nr_pages(folio);
37e84351 7516 struct page_counter *counter;
38d8b4e6 7517 struct mem_cgroup *memcg;
37e84351
VD
7518 unsigned short oldid;
7519
b94c4e94 7520 if (do_memsw_account())
37e84351
VD
7521 return 0;
7522
e2e3fdc7 7523 memcg = folio_memcg(folio);
37e84351 7524
e2e3fdc7 7525 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
37e84351
VD
7526 if (!memcg)
7527 return 0;
7528
f3a53a3a
TH
7529 if (!entry.val) {
7530 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7531 return 0;
f3a53a3a 7532 }
bb98f2c5 7533
1f47b61f
VD
7534 memcg = mem_cgroup_id_get_online(memcg);
7535
b25806dc 7536 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7537 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7538 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7539 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7540 mem_cgroup_id_put(memcg);
37e84351 7541 return -ENOMEM;
1f47b61f 7542 }
37e84351 7543
38d8b4e6
HY
7544 /* Get references for the tail pages, too */
7545 if (nr_pages > 1)
7546 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7547 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
e2e3fdc7 7548 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7549 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7550
37e84351
VD
7551 return 0;
7552}
7553
21afa38e 7554/**
01c4b28c 7555 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7556 * @entry: swap entry to uncharge
38d8b4e6 7557 * @nr_pages: the amount of swap space to uncharge
21afa38e 7558 */
01c4b28c 7559void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7560{
7561 struct mem_cgroup *memcg;
7562 unsigned short id;
7563
c91bdc93
JW
7564 if (mem_cgroup_disabled())
7565 return;
7566
38d8b4e6 7567 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7568 rcu_read_lock();
adbe427b 7569 memcg = mem_cgroup_from_id(id);
21afa38e 7570 if (memcg) {
b25806dc 7571 if (!mem_cgroup_is_root(memcg)) {
b94c4e94 7572 if (do_memsw_account())
38d8b4e6 7573 page_counter_uncharge(&memcg->memsw, nr_pages);
b94c4e94
JW
7574 else
7575 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7576 }
c9019e9b 7577 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7578 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7579 }
7580 rcu_read_unlock();
7581}
7582
d8b38438
VD
7583long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7584{
7585 long nr_swap_pages = get_nr_swap_pages();
7586
b25806dc 7587 if (mem_cgroup_disabled() || do_memsw_account())
d8b38438 7588 return nr_swap_pages;
7848ed62 7589 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
d8b38438 7590 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7591 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7592 page_counter_read(&memcg->swap));
7593 return nr_swap_pages;
7594}
7595
9202d527 7596bool mem_cgroup_swap_full(struct folio *folio)
5ccc5aba
VD
7597{
7598 struct mem_cgroup *memcg;
7599
9202d527 7600 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5ccc5aba
VD
7601
7602 if (vm_swap_full())
7603 return true;
b25806dc 7604 if (do_memsw_account())
5ccc5aba
VD
7605 return false;
7606
9202d527 7607 memcg = folio_memcg(folio);
5ccc5aba
VD
7608 if (!memcg)
7609 return false;
7610
7848ed62 7611 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
4b82ab4f
JK
7612 unsigned long usage = page_counter_read(&memcg->swap);
7613
7614 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7615 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7616 return true;
4b82ab4f 7617 }
5ccc5aba
VD
7618
7619 return false;
7620}
7621
eccb52e7 7622static int __init setup_swap_account(char *s)
21afa38e 7623{
b25806dc
JW
7624 pr_warn_once("The swapaccount= commandline option is deprecated. "
7625 "Please report your usecase to linux-mm@kvack.org if you "
7626 "depend on this functionality.\n");
21afa38e
JW
7627 return 1;
7628}
eccb52e7 7629__setup("swapaccount=", setup_swap_account);
21afa38e 7630
37e84351
VD
7631static u64 swap_current_read(struct cgroup_subsys_state *css,
7632 struct cftype *cft)
7633{
7634 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7635
7636 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7637}
7638
4b82ab4f
JK
7639static int swap_high_show(struct seq_file *m, void *v)
7640{
7641 return seq_puts_memcg_tunable(m,
7642 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7643}
7644
7645static ssize_t swap_high_write(struct kernfs_open_file *of,
7646 char *buf, size_t nbytes, loff_t off)
7647{
7648 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7649 unsigned long high;
7650 int err;
7651
7652 buf = strstrip(buf);
7653 err = page_counter_memparse(buf, "max", &high);
7654 if (err)
7655 return err;
7656
7657 page_counter_set_high(&memcg->swap, high);
7658
7659 return nbytes;
7660}
7661
37e84351
VD
7662static int swap_max_show(struct seq_file *m, void *v)
7663{
677dc973
CD
7664 return seq_puts_memcg_tunable(m,
7665 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7666}
7667
7668static ssize_t swap_max_write(struct kernfs_open_file *of,
7669 char *buf, size_t nbytes, loff_t off)
7670{
7671 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7672 unsigned long max;
7673 int err;
7674
7675 buf = strstrip(buf);
7676 err = page_counter_memparse(buf, "max", &max);
7677 if (err)
7678 return err;
7679
be09102b 7680 xchg(&memcg->swap.max, max);
37e84351
VD
7681
7682 return nbytes;
7683}
7684
f3a53a3a
TH
7685static int swap_events_show(struct seq_file *m, void *v)
7686{
aa9694bb 7687 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7688
4b82ab4f
JK
7689 seq_printf(m, "high %lu\n",
7690 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7691 seq_printf(m, "max %lu\n",
7692 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7693 seq_printf(m, "fail %lu\n",
7694 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7695
7696 return 0;
7697}
7698
37e84351
VD
7699static struct cftype swap_files[] = {
7700 {
7701 .name = "swap.current",
7702 .flags = CFTYPE_NOT_ON_ROOT,
7703 .read_u64 = swap_current_read,
7704 },
4b82ab4f
JK
7705 {
7706 .name = "swap.high",
7707 .flags = CFTYPE_NOT_ON_ROOT,
7708 .seq_show = swap_high_show,
7709 .write = swap_high_write,
7710 },
37e84351
VD
7711 {
7712 .name = "swap.max",
7713 .flags = CFTYPE_NOT_ON_ROOT,
7714 .seq_show = swap_max_show,
7715 .write = swap_max_write,
7716 },
f3a53a3a
TH
7717 {
7718 .name = "swap.events",
7719 .flags = CFTYPE_NOT_ON_ROOT,
7720 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7721 .seq_show = swap_events_show,
7722 },
37e84351
VD
7723 { } /* terminate */
7724};
7725
eccb52e7 7726static struct cftype memsw_files[] = {
21afa38e
JW
7727 {
7728 .name = "memsw.usage_in_bytes",
7729 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7730 .read_u64 = mem_cgroup_read_u64,
7731 },
7732 {
7733 .name = "memsw.max_usage_in_bytes",
7734 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7735 .write = mem_cgroup_reset,
7736 .read_u64 = mem_cgroup_read_u64,
7737 },
7738 {
7739 .name = "memsw.limit_in_bytes",
7740 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7741 .write = mem_cgroup_write,
7742 .read_u64 = mem_cgroup_read_u64,
7743 },
7744 {
7745 .name = "memsw.failcnt",
7746 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7747 .write = mem_cgroup_reset,
7748 .read_u64 = mem_cgroup_read_u64,
7749 },
7750 { }, /* terminate */
7751};
7752
f4840ccf
JW
7753#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7754/**
7755 * obj_cgroup_may_zswap - check if this cgroup can zswap
7756 * @objcg: the object cgroup
7757 *
7758 * Check if the hierarchical zswap limit has been reached.
7759 *
7760 * This doesn't check for specific headroom, and it is not atomic
7761 * either. But with zswap, the size of the allocation is only known
7762 * once compression has occured, and this optimistic pre-check avoids
7763 * spending cycles on compression when there is already no room left
7764 * or zswap is disabled altogether somewhere in the hierarchy.
7765 */
7766bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7767{
7768 struct mem_cgroup *memcg, *original_memcg;
7769 bool ret = true;
7770
7771 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7772 return true;
7773
7774 original_memcg = get_mem_cgroup_from_objcg(objcg);
7848ed62 7775 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
f4840ccf
JW
7776 memcg = parent_mem_cgroup(memcg)) {
7777 unsigned long max = READ_ONCE(memcg->zswap_max);
7778 unsigned long pages;
7779
7780 if (max == PAGE_COUNTER_MAX)
7781 continue;
7782 if (max == 0) {
7783 ret = false;
7784 break;
7785 }
7786
7787 cgroup_rstat_flush(memcg->css.cgroup);
7788 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7789 if (pages < max)
7790 continue;
7791 ret = false;
7792 break;
7793 }
7794 mem_cgroup_put(original_memcg);
7795 return ret;
7796}
7797
7798/**
7799 * obj_cgroup_charge_zswap - charge compression backend memory
7800 * @objcg: the object cgroup
7801 * @size: size of compressed object
7802 *
7803 * This forces the charge after obj_cgroup_may_swap() allowed
7804 * compression and storage in zwap for this cgroup to go ahead.
7805 */
7806void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7807{
7808 struct mem_cgroup *memcg;
7809
7810 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7811 return;
7812
7813 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7814
7815 /* PF_MEMALLOC context, charging must succeed */
7816 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7817 VM_WARN_ON_ONCE(1);
7818
7819 rcu_read_lock();
7820 memcg = obj_cgroup_memcg(objcg);
7821 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7822 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7823 rcu_read_unlock();
7824}
7825
7826/**
7827 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7828 * @objcg: the object cgroup
7829 * @size: size of compressed object
7830 *
7831 * Uncharges zswap memory on page in.
7832 */
7833void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7834{
7835 struct mem_cgroup *memcg;
7836
7837 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7838 return;
7839
7840 obj_cgroup_uncharge(objcg, size);
7841
7842 rcu_read_lock();
7843 memcg = obj_cgroup_memcg(objcg);
7844 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7845 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7846 rcu_read_unlock();
7847}
7848
7849static u64 zswap_current_read(struct cgroup_subsys_state *css,
7850 struct cftype *cft)
7851{
7852 cgroup_rstat_flush(css->cgroup);
7853 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7854}
7855
7856static int zswap_max_show(struct seq_file *m, void *v)
7857{
7858 return seq_puts_memcg_tunable(m,
7859 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7860}
7861
7862static ssize_t zswap_max_write(struct kernfs_open_file *of,
7863 char *buf, size_t nbytes, loff_t off)
7864{
7865 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7866 unsigned long max;
7867 int err;
7868
7869 buf = strstrip(buf);
7870 err = page_counter_memparse(buf, "max", &max);
7871 if (err)
7872 return err;
7873
7874 xchg(&memcg->zswap_max, max);
7875
7876 return nbytes;
7877}
7878
7879static struct cftype zswap_files[] = {
7880 {
7881 .name = "zswap.current",
7882 .flags = CFTYPE_NOT_ON_ROOT,
7883 .read_u64 = zswap_current_read,
7884 },
7885 {
7886 .name = "zswap.max",
7887 .flags = CFTYPE_NOT_ON_ROOT,
7888 .seq_show = zswap_max_show,
7889 .write = zswap_max_write,
7890 },
7891 { } /* terminate */
7892};
7893#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7894
21afa38e
JW
7895static int __init mem_cgroup_swap_init(void)
7896{
2d1c4980 7897 if (mem_cgroup_disabled())
eccb52e7
JW
7898 return 0;
7899
7900 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7901 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
f4840ccf
JW
7902#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7903 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7904#endif
21afa38e
JW
7905 return 0;
7906}
b25806dc 7907subsys_initcall(mem_cgroup_swap_init);
21afa38e 7908
e55b9f96 7909#endif /* CONFIG_SWAP */