]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm/hugetlb_vmemmap: rename ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
dc90f084 56#include <linux/memremap.h>
b69408e8 57#include <linux/mm_inline.h>
5d1ea48b 58#include <linux/swap_cgroup.h>
cdec2e42 59#include <linux/cpu.h>
158e0a2d 60#include <linux/oom.h>
0056f4e6 61#include <linux/lockdep.h>
79bd9814 62#include <linux/file.h>
03248add 63#include <linux/resume_user_mode.h>
0e4b01df 64#include <linux/psi.h>
c8713d0b 65#include <linux/seq_buf.h>
6a792697 66#include <linux/sched/isolation.h>
08e552c6 67#include "internal.h"
d1a4c0b3 68#include <net/sock.h>
4bd2c1ee 69#include <net/ip.h>
f35c3a8e 70#include "slab.h"
014bb1de 71#include "swap.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
37d5985c
RG
82/* Active memory cgroup to use from an interrupt context */
83DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 84EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 85
f7e1cb6e 86/* Socket memory accounting disabled? */
0f0cace3 87static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 88
04823c83 89/* Kernel memory accounting disabled? */
17c17367 90static bool cgroup_memory_nokmem __ro_after_init;
04823c83 91
b6c1a8af
YS
92/* BPF memory accounting disabled? */
93static bool cgroup_memory_nobpf __ro_after_init;
94
97b27821
TH
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
7941d214
JW
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
b25806dc 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
7941d214
JW
103}
104
a0db00fc
KS
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
8c7c6e34 206/* for encoding cft->private value on file */
86ae53e1
GC
207enum res_type {
208 _MEM,
209 _MEMSWAP,
510fc4e1 210 _KMEM,
d55f90bf 211 _TCP,
86ae53e1
GC
212};
213
a0db00fc
KS
214#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34
KH
216#define MEMFILE_ATTR(val) ((val) & 0xffff)
217
b05706f1
KT
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
a4ebf1b6 233static inline bool task_is_dying(void)
7775face
TH
234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
70ddf637
AV
239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
9647875b 247struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 248{
9647875b 249 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
250}
251
84c07d11 252#ifdef CONFIG_MEMCG_KMEM
0764db9b 253static DEFINE_SPINLOCK(objcg_lock);
bf4f0599 254
4d5c8aed
RG
255bool mem_cgroup_kmem_disabled(void)
256{
257 return cgroup_memory_nokmem;
258}
259
f1286fae
MS
260static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261 unsigned int nr_pages);
c1a660de 262
bf4f0599
RG
263static void obj_cgroup_release(struct percpu_ref *ref)
264{
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
266 unsigned int nr_bytes;
267 unsigned int nr_pages;
268 unsigned long flags;
269
270 /*
271 * At this point all allocated objects are freed, and
272 * objcg->nr_charged_bytes can't have an arbitrary byte value.
273 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 *
275 * The following sequence can lead to it:
276 * 1) CPU0: objcg == stock->cached_objcg
277 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278 * PAGE_SIZE bytes are charged
279 * 3) CPU1: a process from another memcg is allocating something,
280 * the stock if flushed,
281 * objcg->nr_charged_bytes = PAGE_SIZE - 92
282 * 5) CPU0: we do release this object,
283 * 92 bytes are added to stock->nr_bytes
284 * 6) CPU0: stock is flushed,
285 * 92 bytes are added to objcg->nr_charged_bytes
286 *
287 * In the result, nr_charged_bytes == PAGE_SIZE.
288 * This page will be uncharged in obj_cgroup_release().
289 */
290 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292 nr_pages = nr_bytes >> PAGE_SHIFT;
293
bf4f0599 294 if (nr_pages)
f1286fae 295 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1 296
0764db9b 297 spin_lock_irqsave(&objcg_lock, flags);
bf4f0599 298 list_del(&objcg->list);
0764db9b 299 spin_unlock_irqrestore(&objcg_lock, flags);
bf4f0599
RG
300
301 percpu_ref_exit(ref);
302 kfree_rcu(objcg, rcu);
303}
304
305static struct obj_cgroup *obj_cgroup_alloc(void)
306{
307 struct obj_cgroup *objcg;
308 int ret;
309
310 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 if (!objcg)
312 return NULL;
313
314 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 GFP_KERNEL);
316 if (ret) {
317 kfree(objcg);
318 return NULL;
319 }
320 INIT_LIST_HEAD(&objcg->list);
321 return objcg;
322}
323
324static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 struct mem_cgroup *parent)
326{
327 struct obj_cgroup *objcg, *iter;
328
329 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
0764db9b 331 spin_lock_irq(&objcg_lock);
bf4f0599 332
9838354e
MS
333 /* 1) Ready to reparent active objcg. */
334 list_add(&objcg->list, &memcg->objcg_list);
335 /* 2) Reparent active objcg and already reparented objcgs to parent. */
336 list_for_each_entry(iter, &memcg->objcg_list, list)
337 WRITE_ONCE(iter->memcg, parent);
338 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
339 list_splice(&memcg->objcg_list, &parent->objcg_list);
340
0764db9b 341 spin_unlock_irq(&objcg_lock);
bf4f0599
RG
342
343 percpu_ref_kill(&objcg->refcnt);
344}
345
d7f25f8a
GC
346/*
347 * A lot of the calls to the cache allocation functions are expected to be
272911a4 348 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
349 * conditional to this static branch, we'll have to allow modules that does
350 * kmem_cache_alloc and the such to see this symbol as well
351 */
f7a449f7
RG
352DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353EXPORT_SYMBOL(memcg_kmem_online_key);
b6c1a8af
YS
354
355DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356EXPORT_SYMBOL(memcg_bpf_enabled_key);
0a432dcb 357#endif
17cc4dfe 358
ad7fa852 359/**
75376c6f
MWO
360 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361 * @folio: folio of interest
ad7fa852
TH
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
75376c6f 364 * with @folio is returned. The returned css remains associated with @folio
ad7fa852
TH
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
ad7fa852 369 */
75376c6f 370struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
ad7fa852 371{
75376c6f 372 struct mem_cgroup *memcg = folio_memcg(folio);
ad7fa852 373
9e10a130 374 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
375 memcg = root_mem_cgroup;
376
ad7fa852
TH
377 return &memcg->css;
378}
379
2fc04524
VD
380/**
381 * page_cgroup_ino - return inode number of the memcg a page is charged to
382 * @page: the page
383 *
384 * Look up the closest online ancestor of the memory cgroup @page is charged to
385 * and return its inode number or 0 if @page is not charged to any cgroup. It
386 * is safe to call this function without holding a reference to @page.
387 *
388 * Note, this function is inherently racy, because there is nothing to prevent
389 * the cgroup inode from getting torn down and potentially reallocated a moment
390 * after page_cgroup_ino() returns, so it only should be used by callers that
391 * do not care (such as procfs interfaces).
392 */
393ino_t page_cgroup_ino(struct page *page)
394{
395 struct mem_cgroup *memcg;
396 unsigned long ino = 0;
397
398 rcu_read_lock();
bcfe06bf 399 memcg = page_memcg_check(page);
286e04b8 400
2fc04524
VD
401 while (memcg && !(memcg->css.flags & CSS_ONLINE))
402 memcg = parent_mem_cgroup(memcg);
403 if (memcg)
404 ino = cgroup_ino(memcg->css.cgroup);
405 rcu_read_unlock();
406 return ino;
407}
408
ef8f2327
MG
409static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
410 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 411 unsigned long new_usage_in_excess)
bb4cc1a8
AM
412{
413 struct rb_node **p = &mctz->rb_root.rb_node;
414 struct rb_node *parent = NULL;
ef8f2327 415 struct mem_cgroup_per_node *mz_node;
fa90b2fd 416 bool rightmost = true;
bb4cc1a8
AM
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
ef8f2327 426 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 427 tree_node);
fa90b2fd 428 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 429 p = &(*p)->rb_left;
fa90b2fd 430 rightmost = false;
378876b0 431 } else {
bb4cc1a8 432 p = &(*p)->rb_right;
378876b0 433 }
bb4cc1a8 434 }
fa90b2fd
DB
435
436 if (rightmost)
437 mctz->rb_rightmost = &mz->tree_node;
438
bb4cc1a8
AM
439 rb_link_node(&mz->tree_node, parent, p);
440 rb_insert_color(&mz->tree_node, &mctz->rb_root);
441 mz->on_tree = true;
442}
443
ef8f2327
MG
444static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
445 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
446{
447 if (!mz->on_tree)
448 return;
fa90b2fd
DB
449
450 if (&mz->tree_node == mctz->rb_rightmost)
451 mctz->rb_rightmost = rb_prev(&mz->tree_node);
452
bb4cc1a8
AM
453 rb_erase(&mz->tree_node, &mctz->rb_root);
454 mz->on_tree = false;
455}
456
ef8f2327
MG
457static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
458 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 459{
0a31bc97
JW
460 unsigned long flags;
461
462 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 463 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 464 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
465}
466
3e32cb2e
JW
467static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
468{
469 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 470 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
471 unsigned long excess = 0;
472
473 if (nr_pages > soft_limit)
474 excess = nr_pages - soft_limit;
475
476 return excess;
477}
bb4cc1a8 478
658b69c9 479static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
bb4cc1a8 480{
3e32cb2e 481 unsigned long excess;
ef8f2327
MG
482 struct mem_cgroup_per_node *mz;
483 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 484
e4dde56c 485 if (lru_gen_enabled()) {
36c7b4db
A
486 if (soft_limit_excess(memcg))
487 lru_gen_soft_reclaim(&memcg->nodeinfo[nid]->lruvec);
e4dde56c
YZ
488 return;
489 }
490
2ab082ba 491 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
492 if (!mctz)
493 return;
bb4cc1a8
AM
494 /*
495 * Necessary to update all ancestors when hierarchy is used.
496 * because their event counter is not touched.
497 */
498 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
658b69c9 499 mz = memcg->nodeinfo[nid];
3e32cb2e 500 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
501 /*
502 * We have to update the tree if mz is on RB-tree or
503 * mem is over its softlimit.
504 */
505 if (excess || mz->on_tree) {
0a31bc97
JW
506 unsigned long flags;
507
508 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
509 /* if on-tree, remove it */
510 if (mz->on_tree)
cf2c8127 511 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
512 /*
513 * Insert again. mz->usage_in_excess will be updated.
514 * If excess is 0, no tree ops.
515 */
cf2c8127 516 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 517 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
518 }
519 }
520}
521
522static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
523{
ef8f2327
MG
524 struct mem_cgroup_tree_per_node *mctz;
525 struct mem_cgroup_per_node *mz;
526 int nid;
bb4cc1a8 527
e231875b 528 for_each_node(nid) {
a3747b53 529 mz = memcg->nodeinfo[nid];
2ab082ba 530 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
531 if (mctz)
532 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
533 }
534}
535
ef8f2327
MG
536static struct mem_cgroup_per_node *
537__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 538{
ef8f2327 539 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
540
541retry:
542 mz = NULL;
fa90b2fd 543 if (!mctz->rb_rightmost)
bb4cc1a8
AM
544 goto done; /* Nothing to reclaim from */
545
fa90b2fd
DB
546 mz = rb_entry(mctz->rb_rightmost,
547 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
548 /*
549 * Remove the node now but someone else can add it back,
550 * we will to add it back at the end of reclaim to its correct
551 * position in the tree.
552 */
cf2c8127 553 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 554 if (!soft_limit_excess(mz->memcg) ||
8965aa28 555 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
556 goto retry;
557done:
558 return mz;
559}
560
ef8f2327
MG
561static struct mem_cgroup_per_node *
562mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 563{
ef8f2327 564 struct mem_cgroup_per_node *mz;
bb4cc1a8 565
0a31bc97 566 spin_lock_irq(&mctz->lock);
bb4cc1a8 567 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 568 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
569 return mz;
570}
571
11192d9c
SB
572/*
573 * memcg and lruvec stats flushing
574 *
575 * Many codepaths leading to stats update or read are performance sensitive and
576 * adding stats flushing in such codepaths is not desirable. So, to optimize the
577 * flushing the kernel does:
578 *
579 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
580 * rstat update tree grow unbounded.
581 *
582 * 2) Flush the stats synchronously on reader side only when there are more than
583 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
584 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
585 * only for 2 seconds due to (1).
586 */
587static void flush_memcg_stats_dwork(struct work_struct *w);
588static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
11192d9c 589static DEFINE_PER_CPU(unsigned int, stats_updates);
3cd9992b 590static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
11192d9c 591static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
9b301615
SB
592static u64 flush_next_time;
593
594#define FLUSH_TIME (2UL*HZ)
11192d9c 595
be3e67b5
SAS
596/*
597 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
598 * not rely on this as part of an acquired spinlock_t lock. These functions are
599 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
600 * is sufficient.
601 */
602static void memcg_stats_lock(void)
603{
e575d401
TG
604 preempt_disable_nested();
605 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
606}
607
608static void __memcg_stats_lock(void)
609{
e575d401 610 preempt_disable_nested();
be3e67b5
SAS
611}
612
613static void memcg_stats_unlock(void)
614{
e575d401 615 preempt_enable_nested();
be3e67b5
SAS
616}
617
5b3be698 618static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
11192d9c 619{
5b3be698
SB
620 unsigned int x;
621
f9d911ca
YA
622 if (!val)
623 return;
624
11192d9c 625 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
5b3be698
SB
626
627 x = __this_cpu_add_return(stats_updates, abs(val));
628 if (x > MEMCG_CHARGE_BATCH) {
873f64b7
JS
629 /*
630 * If stats_flush_threshold exceeds the threshold
631 * (>num_online_cpus()), cgroup stats update will be triggered
632 * in __mem_cgroup_flush_stats(). Increasing this var further
633 * is redundant and simply adds overhead in atomic update.
634 */
635 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
636 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
5b3be698
SB
637 __this_cpu_write(stats_updates, 0);
638 }
11192d9c
SB
639}
640
9fad9aee 641static void do_flush_stats(bool atomic)
11192d9c 642{
3cd9992b
YA
643 /*
644 * We always flush the entire tree, so concurrent flushers can just
645 * skip. This avoids a thundering herd problem on the rstat global lock
646 * from memcg flushers (e.g. reclaim, refault, etc).
647 */
648 if (atomic_read(&stats_flush_ongoing) ||
649 atomic_xchg(&stats_flush_ongoing, 1))
11192d9c
SB
650 return;
651
3cd9992b 652 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
9fad9aee
YA
653
654 if (atomic)
655 cgroup_rstat_flush_atomic(root_mem_cgroup->css.cgroup);
656 else
657 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
658
11192d9c 659 atomic_set(&stats_flush_threshold, 0);
3cd9992b 660 atomic_set(&stats_flush_ongoing, 0);
11192d9c
SB
661}
662
9fad9aee
YA
663static bool should_flush_stats(void)
664{
665 return atomic_read(&stats_flush_threshold) > num_online_cpus();
666}
667
11192d9c
SB
668void mem_cgroup_flush_stats(void)
669{
9fad9aee
YA
670 if (should_flush_stats())
671 do_flush_stats(false);
11192d9c
SB
672}
673
9fad9aee
YA
674void mem_cgroup_flush_stats_atomic(void)
675{
676 if (should_flush_stats())
677 do_flush_stats(true);
678}
679
4009b2f1 680void mem_cgroup_flush_stats_ratelimited(void)
9b301615 681{
3cd9992b 682 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
4009b2f1 683 mem_cgroup_flush_stats();
9b301615
SB
684}
685
11192d9c
SB
686static void flush_memcg_stats_dwork(struct work_struct *w)
687{
9fad9aee
YA
688 /*
689 * Always flush here so that flushing in latency-sensitive paths is
690 * as cheap as possible.
691 */
692 do_flush_stats(false);
9b301615 693 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
11192d9c
SB
694}
695
d396def5
SB
696/* Subset of vm_event_item to report for memcg event stats */
697static const unsigned int memcg_vm_event_stat[] = {
8278f1c7
SB
698 PGPGIN,
699 PGPGOUT,
d396def5
SB
700 PGSCAN_KSWAPD,
701 PGSCAN_DIRECT,
57e9cc50 702 PGSCAN_KHUGEPAGED,
d396def5
SB
703 PGSTEAL_KSWAPD,
704 PGSTEAL_DIRECT,
57e9cc50 705 PGSTEAL_KHUGEPAGED,
d396def5
SB
706 PGFAULT,
707 PGMAJFAULT,
708 PGREFILL,
709 PGACTIVATE,
710 PGDEACTIVATE,
711 PGLAZYFREE,
712 PGLAZYFREED,
713#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
714 ZSWPIN,
715 ZSWPOUT,
716#endif
717#ifdef CONFIG_TRANSPARENT_HUGEPAGE
718 THP_FAULT_ALLOC,
719 THP_COLLAPSE_ALLOC,
720#endif
721};
722
8278f1c7
SB
723#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
724static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
725
726static void init_memcg_events(void)
727{
728 int i;
729
730 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
731 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
732}
733
734static inline int memcg_events_index(enum vm_event_item idx)
735{
736 return mem_cgroup_events_index[idx] - 1;
737}
738
410f8e82
SB
739struct memcg_vmstats_percpu {
740 /* Local (CPU and cgroup) page state & events */
741 long state[MEMCG_NR_STAT];
8278f1c7 742 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
743
744 /* Delta calculation for lockless upward propagation */
745 long state_prev[MEMCG_NR_STAT];
8278f1c7 746 unsigned long events_prev[NR_MEMCG_EVENTS];
410f8e82
SB
747
748 /* Cgroup1: threshold notifications & softlimit tree updates */
749 unsigned long nr_page_events;
750 unsigned long targets[MEM_CGROUP_NTARGETS];
751};
752
753struct memcg_vmstats {
754 /* Aggregated (CPU and subtree) page state & events */
755 long state[MEMCG_NR_STAT];
8278f1c7 756 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
757
758 /* Pending child counts during tree propagation */
759 long state_pending[MEMCG_NR_STAT];
8278f1c7 760 unsigned long events_pending[NR_MEMCG_EVENTS];
410f8e82
SB
761};
762
763unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
764{
765 long x = READ_ONCE(memcg->vmstats->state[idx]);
766#ifdef CONFIG_SMP
767 if (x < 0)
768 x = 0;
769#endif
770 return x;
771}
772
db9adbcb
JW
773/**
774 * __mod_memcg_state - update cgroup memory statistics
775 * @memcg: the memory cgroup
776 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
777 * @val: delta to add to the counter, can be negative
778 */
779void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
780{
db9adbcb
JW
781 if (mem_cgroup_disabled())
782 return;
783
2d146aa3 784 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
5b3be698 785 memcg_rstat_updated(memcg, val);
db9adbcb
JW
786}
787
2d146aa3 788/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
789static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
790{
791 long x = 0;
792 int cpu;
793
794 for_each_possible_cpu(cpu)
2d146aa3 795 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
796#ifdef CONFIG_SMP
797 if (x < 0)
798 x = 0;
799#endif
800 return x;
801}
802
eedc4e5a
RG
803void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
804 int val)
db9adbcb
JW
805{
806 struct mem_cgroup_per_node *pn;
42a30035 807 struct mem_cgroup *memcg;
db9adbcb 808
db9adbcb 809 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 810 memcg = pn->memcg;
db9adbcb 811
be3e67b5
SAS
812 /*
813 * The caller from rmap relay on disabled preemption becase they never
814 * update their counter from in-interrupt context. For these two
815 * counters we check that the update is never performed from an
816 * interrupt context while other caller need to have disabled interrupt.
817 */
818 __memcg_stats_lock();
e575d401 819 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
be3e67b5
SAS
820 switch (idx) {
821 case NR_ANON_MAPPED:
822 case NR_FILE_MAPPED:
823 case NR_ANON_THPS:
824 case NR_SHMEM_PMDMAPPED:
825 case NR_FILE_PMDMAPPED:
826 WARN_ON_ONCE(!in_task());
827 break;
828 default:
e575d401 829 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
830 }
831 }
832
db9adbcb 833 /* Update memcg */
11192d9c 834 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
db9adbcb 835
b4c46484 836 /* Update lruvec */
7e1c0d6f 837 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
11192d9c 838
5b3be698 839 memcg_rstat_updated(memcg, val);
be3e67b5 840 memcg_stats_unlock();
db9adbcb
JW
841}
842
eedc4e5a
RG
843/**
844 * __mod_lruvec_state - update lruvec memory statistics
845 * @lruvec: the lruvec
846 * @idx: the stat item
847 * @val: delta to add to the counter, can be negative
848 *
849 * The lruvec is the intersection of the NUMA node and a cgroup. This
850 * function updates the all three counters that are affected by a
851 * change of state at this level: per-node, per-cgroup, per-lruvec.
852 */
853void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
854 int val)
855{
856 /* Update node */
857 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
858
859 /* Update memcg and lruvec */
860 if (!mem_cgroup_disabled())
861 __mod_memcg_lruvec_state(lruvec, idx, val);
862}
863
c47d5032
SB
864void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
865 int val)
866{
867 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 868 struct mem_cgroup *memcg;
c47d5032
SB
869 pg_data_t *pgdat = page_pgdat(page);
870 struct lruvec *lruvec;
871
b4e0b68f
MS
872 rcu_read_lock();
873 memcg = page_memcg(head);
c47d5032 874 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 875 if (!memcg) {
b4e0b68f 876 rcu_read_unlock();
c47d5032
SB
877 __mod_node_page_state(pgdat, idx, val);
878 return;
879 }
880
d635a69d 881 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 882 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 883 rcu_read_unlock();
c47d5032 884}
f0c0c115 885EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 886
da3ceeff 887void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 888{
4f103c63 889 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
890 struct mem_cgroup *memcg;
891 struct lruvec *lruvec;
892
893 rcu_read_lock();
fc4db90f 894 memcg = mem_cgroup_from_slab_obj(p);
ec9f0238 895
8faeb1ff
MS
896 /*
897 * Untracked pages have no memcg, no lruvec. Update only the
898 * node. If we reparent the slab objects to the root memcg,
899 * when we free the slab object, we need to update the per-memcg
900 * vmstats to keep it correct for the root memcg.
901 */
902 if (!memcg) {
ec9f0238
RG
903 __mod_node_page_state(pgdat, idx, val);
904 } else {
867e5e1d 905 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
906 __mod_lruvec_state(lruvec, idx, val);
907 }
908 rcu_read_unlock();
909}
910
db9adbcb
JW
911/**
912 * __count_memcg_events - account VM events in a cgroup
913 * @memcg: the memory cgroup
914 * @idx: the event item
f0953a1b 915 * @count: the number of events that occurred
db9adbcb
JW
916 */
917void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
918 unsigned long count)
919{
8278f1c7
SB
920 int index = memcg_events_index(idx);
921
922 if (mem_cgroup_disabled() || index < 0)
db9adbcb
JW
923 return;
924
be3e67b5 925 memcg_stats_lock();
8278f1c7 926 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
5b3be698 927 memcg_rstat_updated(memcg, count);
be3e67b5 928 memcg_stats_unlock();
db9adbcb
JW
929}
930
42a30035 931static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 932{
8278f1c7
SB
933 int index = memcg_events_index(event);
934
935 if (index < 0)
936 return 0;
937 return READ_ONCE(memcg->vmstats->events[index]);
e9f8974f
JW
938}
939
42a30035
JW
940static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
941{
815744d7
JW
942 long x = 0;
943 int cpu;
8278f1c7
SB
944 int index = memcg_events_index(event);
945
946 if (index < 0)
947 return 0;
815744d7
JW
948
949 for_each_possible_cpu(cpu)
8278f1c7 950 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
815744d7 951 return x;
42a30035
JW
952}
953
c0ff4b85 954static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
3fba69a5 955 int nr_pages)
d52aa412 956{
e401f176
KH
957 /* pagein of a big page is an event. So, ignore page size */
958 if (nr_pages > 0)
c9019e9b 959 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 960 else {
c9019e9b 961 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
962 nr_pages = -nr_pages; /* for event */
963 }
e401f176 964
871789d4 965 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
966}
967
f53d7ce3
JW
968static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
969 enum mem_cgroup_events_target target)
7a159cc9
JW
970{
971 unsigned long val, next;
972
871789d4
CD
973 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
974 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 975 /* from time_after() in jiffies.h */
6a1a8b80 976 if ((long)(next - val) < 0) {
f53d7ce3
JW
977 switch (target) {
978 case MEM_CGROUP_TARGET_THRESH:
979 next = val + THRESHOLDS_EVENTS_TARGET;
980 break;
bb4cc1a8
AM
981 case MEM_CGROUP_TARGET_SOFTLIMIT:
982 next = val + SOFTLIMIT_EVENTS_TARGET;
983 break;
f53d7ce3
JW
984 default:
985 break;
986 }
871789d4 987 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 988 return true;
7a159cc9 989 }
f53d7ce3 990 return false;
d2265e6f
KH
991}
992
993/*
994 * Check events in order.
995 *
996 */
8e88bd2d 997static void memcg_check_events(struct mem_cgroup *memcg, int nid)
d2265e6f 998{
2343e88d
SAS
999 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1000 return;
1001
d2265e6f 1002 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1003 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1004 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1005 bool do_softlimit;
f53d7ce3 1006
bb4cc1a8
AM
1007 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1008 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 1009 mem_cgroup_threshold(memcg);
bb4cc1a8 1010 if (unlikely(do_softlimit))
8e88bd2d 1011 mem_cgroup_update_tree(memcg, nid);
0a31bc97 1012 }
d2265e6f
KH
1013}
1014
cf475ad2 1015struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1016{
31a78f23
BS
1017 /*
1018 * mm_update_next_owner() may clear mm->owner to NULL
1019 * if it races with swapoff, page migration, etc.
1020 * So this can be called with p == NULL.
1021 */
1022 if (unlikely(!p))
1023 return NULL;
1024
073219e9 1025 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1026}
33398cf2 1027EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1028
04f94e3f
DS
1029static __always_inline struct mem_cgroup *active_memcg(void)
1030{
55a68c82 1031 if (!in_task())
04f94e3f
DS
1032 return this_cpu_read(int_active_memcg);
1033 else
1034 return current->active_memcg;
1035}
1036
d46eb14b
SB
1037/**
1038 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1039 * @mm: mm from which memcg should be extracted. It can be NULL.
1040 *
04f94e3f
DS
1041 * Obtain a reference on mm->memcg and returns it if successful. If mm
1042 * is NULL, then the memcg is chosen as follows:
1043 * 1) The active memcg, if set.
1044 * 2) current->mm->memcg, if available
1045 * 3) root memcg
1046 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
1047 */
1048struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1049{
d46eb14b
SB
1050 struct mem_cgroup *memcg;
1051
1052 if (mem_cgroup_disabled())
1053 return NULL;
0b7f569e 1054
2884b6b7
MS
1055 /*
1056 * Page cache insertions can happen without an
1057 * actual mm context, e.g. during disk probing
1058 * on boot, loopback IO, acct() writes etc.
1059 *
1060 * No need to css_get on root memcg as the reference
1061 * counting is disabled on the root level in the
1062 * cgroup core. See CSS_NO_REF.
1063 */
04f94e3f
DS
1064 if (unlikely(!mm)) {
1065 memcg = active_memcg();
1066 if (unlikely(memcg)) {
1067 /* remote memcg must hold a ref */
1068 css_get(&memcg->css);
1069 return memcg;
1070 }
1071 mm = current->mm;
1072 if (unlikely(!mm))
1073 return root_mem_cgroup;
1074 }
2884b6b7 1075
54595fe2
KH
1076 rcu_read_lock();
1077 do {
2884b6b7
MS
1078 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1079 if (unlikely(!memcg))
df381975 1080 memcg = root_mem_cgroup;
00d484f3 1081 } while (!css_tryget(&memcg->css));
54595fe2 1082 rcu_read_unlock();
c0ff4b85 1083 return memcg;
54595fe2 1084}
d46eb14b
SB
1085EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1086
4127c650
RG
1087static __always_inline bool memcg_kmem_bypass(void)
1088{
1089 /* Allow remote memcg charging from any context. */
1090 if (unlikely(active_memcg()))
1091 return false;
1092
1093 /* Memcg to charge can't be determined. */
6126891c 1094 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
4127c650
RG
1095 return true;
1096
1097 return false;
1098}
1099
5660048c
JW
1100/**
1101 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1102 * @root: hierarchy root
1103 * @prev: previously returned memcg, NULL on first invocation
1104 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1105 *
1106 * Returns references to children of the hierarchy below @root, or
1107 * @root itself, or %NULL after a full round-trip.
1108 *
1109 * Caller must pass the return value in @prev on subsequent
1110 * invocations for reference counting, or use mem_cgroup_iter_break()
1111 * to cancel a hierarchy walk before the round-trip is complete.
1112 *
05bdc520
ML
1113 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1114 * in the hierarchy among all concurrent reclaimers operating on the
1115 * same node.
5660048c 1116 */
694fbc0f 1117struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1118 struct mem_cgroup *prev,
694fbc0f 1119 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1120{
3f649ab7 1121 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1122 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1123 struct mem_cgroup *memcg = NULL;
5ac8fb31 1124 struct mem_cgroup *pos = NULL;
711d3d2c 1125
694fbc0f
AM
1126 if (mem_cgroup_disabled())
1127 return NULL;
5660048c 1128
9f3a0d09
JW
1129 if (!root)
1130 root = root_mem_cgroup;
7d74b06f 1131
542f85f9 1132 rcu_read_lock();
5f578161 1133
5ac8fb31 1134 if (reclaim) {
ef8f2327 1135 struct mem_cgroup_per_node *mz;
5ac8fb31 1136
a3747b53 1137 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1138 iter = &mz->iter;
5ac8fb31 1139
a9320aae
WY
1140 /*
1141 * On start, join the current reclaim iteration cycle.
1142 * Exit when a concurrent walker completes it.
1143 */
1144 if (!prev)
1145 reclaim->generation = iter->generation;
1146 else if (reclaim->generation != iter->generation)
5ac8fb31
JW
1147 goto out_unlock;
1148
6df38689 1149 while (1) {
4db0c3c2 1150 pos = READ_ONCE(iter->position);
6df38689
VD
1151 if (!pos || css_tryget(&pos->css))
1152 break;
5ac8fb31 1153 /*
6df38689
VD
1154 * css reference reached zero, so iter->position will
1155 * be cleared by ->css_released. However, we should not
1156 * rely on this happening soon, because ->css_released
1157 * is called from a work queue, and by busy-waiting we
1158 * might block it. So we clear iter->position right
1159 * away.
5ac8fb31 1160 */
6df38689
VD
1161 (void)cmpxchg(&iter->position, pos, NULL);
1162 }
89d8330c
WY
1163 } else if (prev) {
1164 pos = prev;
5ac8fb31
JW
1165 }
1166
1167 if (pos)
1168 css = &pos->css;
1169
1170 for (;;) {
1171 css = css_next_descendant_pre(css, &root->css);
1172 if (!css) {
1173 /*
1174 * Reclaimers share the hierarchy walk, and a
1175 * new one might jump in right at the end of
1176 * the hierarchy - make sure they see at least
1177 * one group and restart from the beginning.
1178 */
1179 if (!prev)
1180 continue;
1181 break;
527a5ec9 1182 }
7d74b06f 1183
5ac8fb31
JW
1184 /*
1185 * Verify the css and acquire a reference. The root
1186 * is provided by the caller, so we know it's alive
1187 * and kicking, and don't take an extra reference.
1188 */
41555dad
WY
1189 if (css == &root->css || css_tryget(css)) {
1190 memcg = mem_cgroup_from_css(css);
0b8f73e1 1191 break;
41555dad 1192 }
9f3a0d09 1193 }
5ac8fb31
JW
1194
1195 if (reclaim) {
5ac8fb31 1196 /*
6df38689
VD
1197 * The position could have already been updated by a competing
1198 * thread, so check that the value hasn't changed since we read
1199 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1200 */
6df38689
VD
1201 (void)cmpxchg(&iter->position, pos, memcg);
1202
5ac8fb31
JW
1203 if (pos)
1204 css_put(&pos->css);
1205
1206 if (!memcg)
1207 iter->generation++;
9f3a0d09 1208 }
5ac8fb31 1209
542f85f9
MH
1210out_unlock:
1211 rcu_read_unlock();
c40046f3
MH
1212 if (prev && prev != root)
1213 css_put(&prev->css);
1214
9f3a0d09 1215 return memcg;
14067bb3 1216}
7d74b06f 1217
5660048c
JW
1218/**
1219 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1220 * @root: hierarchy root
1221 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1222 */
1223void mem_cgroup_iter_break(struct mem_cgroup *root,
1224 struct mem_cgroup *prev)
9f3a0d09
JW
1225{
1226 if (!root)
1227 root = root_mem_cgroup;
1228 if (prev && prev != root)
1229 css_put(&prev->css);
1230}
7d74b06f 1231
54a83d6b
MC
1232static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1233 struct mem_cgroup *dead_memcg)
6df38689 1234{
6df38689 1235 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1236 struct mem_cgroup_per_node *mz;
1237 int nid;
6df38689 1238
54a83d6b 1239 for_each_node(nid) {
a3747b53 1240 mz = from->nodeinfo[nid];
9da83f3f
YS
1241 iter = &mz->iter;
1242 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1243 }
1244}
1245
54a83d6b
MC
1246static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1247{
1248 struct mem_cgroup *memcg = dead_memcg;
1249 struct mem_cgroup *last;
1250
1251 do {
1252 __invalidate_reclaim_iterators(memcg, dead_memcg);
1253 last = memcg;
1254 } while ((memcg = parent_mem_cgroup(memcg)));
1255
1256 /*
b8dd3ee9 1257 * When cgroup1 non-hierarchy mode is used,
54a83d6b
MC
1258 * parent_mem_cgroup() does not walk all the way up to the
1259 * cgroup root (root_mem_cgroup). So we have to handle
1260 * dead_memcg from cgroup root separately.
1261 */
7848ed62 1262 if (!mem_cgroup_is_root(last))
54a83d6b
MC
1263 __invalidate_reclaim_iterators(root_mem_cgroup,
1264 dead_memcg);
1265}
1266
7c5f64f8
VD
1267/**
1268 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1269 * @memcg: hierarchy root
1270 * @fn: function to call for each task
1271 * @arg: argument passed to @fn
1272 *
1273 * This function iterates over tasks attached to @memcg or to any of its
1274 * descendants and calls @fn for each task. If @fn returns a non-zero
1275 * value, the function breaks the iteration loop and returns the value.
1276 * Otherwise, it will iterate over all tasks and return 0.
1277 *
1278 * This function must not be called for the root memory cgroup.
1279 */
1280int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1281 int (*fn)(struct task_struct *, void *), void *arg)
1282{
1283 struct mem_cgroup *iter;
1284 int ret = 0;
1285
7848ed62 1286 BUG_ON(mem_cgroup_is_root(memcg));
7c5f64f8
VD
1287
1288 for_each_mem_cgroup_tree(iter, memcg) {
1289 struct css_task_iter it;
1290 struct task_struct *task;
1291
f168a9a5 1292 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1293 while (!ret && (task = css_task_iter_next(&it)))
1294 ret = fn(task, arg);
1295 css_task_iter_end(&it);
1296 if (ret) {
1297 mem_cgroup_iter_break(memcg, iter);
1298 break;
1299 }
1300 }
1301 return ret;
1302}
1303
6168d0da 1304#ifdef CONFIG_DEBUG_VM
e809c3fe 1305void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
6168d0da
AS
1306{
1307 struct mem_cgroup *memcg;
1308
1309 if (mem_cgroup_disabled())
1310 return;
1311
e809c3fe 1312 memcg = folio_memcg(folio);
6168d0da
AS
1313
1314 if (!memcg)
7848ed62 1315 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
6168d0da 1316 else
e809c3fe 1317 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
6168d0da
AS
1318}
1319#endif
1320
6168d0da 1321/**
e809c3fe
MWO
1322 * folio_lruvec_lock - Lock the lruvec for a folio.
1323 * @folio: Pointer to the folio.
6168d0da 1324 *
d7e3aba5 1325 * These functions are safe to use under any of the following conditions:
e809c3fe
MWO
1326 * - folio locked
1327 * - folio_test_lru false
1328 * - folio_memcg_lock()
1329 * - folio frozen (refcount of 0)
1330 *
1331 * Return: The lruvec this folio is on with its lock held.
6168d0da 1332 */
e809c3fe 1333struct lruvec *folio_lruvec_lock(struct folio *folio)
6168d0da 1334{
e809c3fe 1335 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1336
6168d0da 1337 spin_lock(&lruvec->lru_lock);
e809c3fe 1338 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1339
1340 return lruvec;
1341}
1342
e809c3fe
MWO
1343/**
1344 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1345 * @folio: Pointer to the folio.
1346 *
1347 * These functions are safe to use under any of the following conditions:
1348 * - folio locked
1349 * - folio_test_lru false
1350 * - folio_memcg_lock()
1351 * - folio frozen (refcount of 0)
1352 *
1353 * Return: The lruvec this folio is on with its lock held and interrupts
1354 * disabled.
1355 */
1356struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
6168d0da 1357{
e809c3fe 1358 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1359
6168d0da 1360 spin_lock_irq(&lruvec->lru_lock);
e809c3fe 1361 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1362
1363 return lruvec;
1364}
1365
e809c3fe
MWO
1366/**
1367 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1368 * @folio: Pointer to the folio.
1369 * @flags: Pointer to irqsave flags.
1370 *
1371 * These functions are safe to use under any of the following conditions:
1372 * - folio locked
1373 * - folio_test_lru false
1374 * - folio_memcg_lock()
1375 * - folio frozen (refcount of 0)
1376 *
1377 * Return: The lruvec this folio is on with its lock held and interrupts
1378 * disabled.
1379 */
1380struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1381 unsigned long *flags)
6168d0da 1382{
e809c3fe 1383 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1384
6168d0da 1385 spin_lock_irqsave(&lruvec->lru_lock, *flags);
e809c3fe 1386 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1387
1388 return lruvec;
1389}
1390
925b7673 1391/**
fa9add64
HD
1392 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1393 * @lruvec: mem_cgroup per zone lru vector
1394 * @lru: index of lru list the page is sitting on
b4536f0c 1395 * @zid: zone id of the accounted pages
fa9add64 1396 * @nr_pages: positive when adding or negative when removing
925b7673 1397 *
ca707239 1398 * This function must be called under lru_lock, just before a page is added
07ca7606 1399 * to or just after a page is removed from an lru list.
3f58a829 1400 */
fa9add64 1401void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1402 int zid, int nr_pages)
3f58a829 1403{
ef8f2327 1404 struct mem_cgroup_per_node *mz;
fa9add64 1405 unsigned long *lru_size;
ca707239 1406 long size;
3f58a829
MK
1407
1408 if (mem_cgroup_disabled())
1409 return;
1410
ef8f2327 1411 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1412 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1413
1414 if (nr_pages < 0)
1415 *lru_size += nr_pages;
1416
1417 size = *lru_size;
b4536f0c
MH
1418 if (WARN_ONCE(size < 0,
1419 "%s(%p, %d, %d): lru_size %ld\n",
1420 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1421 VM_BUG_ON(1);
1422 *lru_size = 0;
1423 }
1424
1425 if (nr_pages > 0)
1426 *lru_size += nr_pages;
08e552c6 1427}
544122e5 1428
19942822 1429/**
9d11ea9f 1430 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1431 * @memcg: the memory cgroup
19942822 1432 *
9d11ea9f 1433 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1434 * pages.
19942822 1435 */
c0ff4b85 1436static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1437{
3e32cb2e
JW
1438 unsigned long margin = 0;
1439 unsigned long count;
1440 unsigned long limit;
9d11ea9f 1441
3e32cb2e 1442 count = page_counter_read(&memcg->memory);
bbec2e15 1443 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1444 if (count < limit)
1445 margin = limit - count;
1446
7941d214 1447 if (do_memsw_account()) {
3e32cb2e 1448 count = page_counter_read(&memcg->memsw);
bbec2e15 1449 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1450 if (count < limit)
3e32cb2e 1451 margin = min(margin, limit - count);
cbedbac3
LR
1452 else
1453 margin = 0;
3e32cb2e
JW
1454 }
1455
1456 return margin;
19942822
JW
1457}
1458
32047e2a 1459/*
bdcbb659 1460 * A routine for checking "mem" is under move_account() or not.
32047e2a 1461 *
bdcbb659
QH
1462 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1463 * moving cgroups. This is for waiting at high-memory pressure
1464 * caused by "move".
32047e2a 1465 */
c0ff4b85 1466static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1467{
2bd9bb20
KH
1468 struct mem_cgroup *from;
1469 struct mem_cgroup *to;
4b534334 1470 bool ret = false;
2bd9bb20
KH
1471 /*
1472 * Unlike task_move routines, we access mc.to, mc.from not under
1473 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1474 */
1475 spin_lock(&mc.lock);
1476 from = mc.from;
1477 to = mc.to;
1478 if (!from)
1479 goto unlock;
3e92041d 1480
2314b42d
JW
1481 ret = mem_cgroup_is_descendant(from, memcg) ||
1482 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1483unlock:
1484 spin_unlock(&mc.lock);
4b534334
KH
1485 return ret;
1486}
1487
c0ff4b85 1488static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1489{
1490 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1491 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1492 DEFINE_WAIT(wait);
1493 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1494 /* moving charge context might have finished. */
1495 if (mc.moving_task)
1496 schedule();
1497 finish_wait(&mc.waitq, &wait);
1498 return true;
1499 }
1500 }
1501 return false;
1502}
1503
5f9a4f4a
MS
1504struct memory_stat {
1505 const char *name;
5f9a4f4a
MS
1506 unsigned int idx;
1507};
1508
57b2847d 1509static const struct memory_stat memory_stats[] = {
fff66b79
MS
1510 { "anon", NR_ANON_MAPPED },
1511 { "file", NR_FILE_PAGES },
a8c49af3 1512 { "kernel", MEMCG_KMEM },
fff66b79
MS
1513 { "kernel_stack", NR_KERNEL_STACK_KB },
1514 { "pagetables", NR_PAGETABLE },
ebc97a52 1515 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
fff66b79
MS
1516 { "percpu", MEMCG_PERCPU_B },
1517 { "sock", MEMCG_SOCK },
4e5aa1f4 1518 { "vmalloc", MEMCG_VMALLOC },
fff66b79 1519 { "shmem", NR_SHMEM },
f4840ccf
JW
1520#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1521 { "zswap", MEMCG_ZSWAP_B },
1522 { "zswapped", MEMCG_ZSWAPPED },
1523#endif
fff66b79
MS
1524 { "file_mapped", NR_FILE_MAPPED },
1525 { "file_dirty", NR_FILE_DIRTY },
1526 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1527#ifdef CONFIG_SWAP
1528 { "swapcached", NR_SWAPCACHE },
1529#endif
5f9a4f4a 1530#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1531 { "anon_thp", NR_ANON_THPS },
1532 { "file_thp", NR_FILE_THPS },
1533 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1534#endif
fff66b79
MS
1535 { "inactive_anon", NR_INACTIVE_ANON },
1536 { "active_anon", NR_ACTIVE_ANON },
1537 { "inactive_file", NR_INACTIVE_FILE },
1538 { "active_file", NR_ACTIVE_FILE },
1539 { "unevictable", NR_UNEVICTABLE },
1540 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1541 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1542
1543 /* The memory events */
fff66b79
MS
1544 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1545 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1546 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1547 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1548 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1549 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1550 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1551};
1552
fff66b79
MS
1553/* Translate stat items to the correct unit for memory.stat output */
1554static int memcg_page_state_unit(int item)
1555{
1556 switch (item) {
1557 case MEMCG_PERCPU_B:
f4840ccf 1558 case MEMCG_ZSWAP_B:
fff66b79
MS
1559 case NR_SLAB_RECLAIMABLE_B:
1560 case NR_SLAB_UNRECLAIMABLE_B:
1561 case WORKINGSET_REFAULT_ANON:
1562 case WORKINGSET_REFAULT_FILE:
1563 case WORKINGSET_ACTIVATE_ANON:
1564 case WORKINGSET_ACTIVATE_FILE:
1565 case WORKINGSET_RESTORE_ANON:
1566 case WORKINGSET_RESTORE_FILE:
1567 case WORKINGSET_NODERECLAIM:
1568 return 1;
1569 case NR_KERNEL_STACK_KB:
1570 return SZ_1K;
1571 default:
1572 return PAGE_SIZE;
1573 }
1574}
1575
1576static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1577 int item)
1578{
1579 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1580}
1581
68aaee14 1582static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
c8713d0b
JW
1583{
1584 struct seq_buf s;
1585 int i;
71cd3113 1586
68aaee14 1587 seq_buf_init(&s, buf, bufsize);
c8713d0b
JW
1588
1589 /*
1590 * Provide statistics on the state of the memory subsystem as
1591 * well as cumulative event counters that show past behavior.
1592 *
1593 * This list is ordered following a combination of these gradients:
1594 * 1) generic big picture -> specifics and details
1595 * 2) reflecting userspace activity -> reflecting kernel heuristics
1596 *
1597 * Current memory state:
1598 */
fd25a9e0 1599 mem_cgroup_flush_stats();
c8713d0b 1600
5f9a4f4a
MS
1601 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1602 u64 size;
c8713d0b 1603
fff66b79 1604 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1605 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1606
5f9a4f4a 1607 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1608 size += memcg_page_state_output(memcg,
1609 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1610 seq_buf_printf(&s, "slab %llu\n", size);
1611 }
1612 }
c8713d0b
JW
1613
1614 /* Accumulated memory events */
c8713d0b
JW
1615 seq_buf_printf(&s, "pgscan %lu\n",
1616 memcg_events(memcg, PGSCAN_KSWAPD) +
57e9cc50
JW
1617 memcg_events(memcg, PGSCAN_DIRECT) +
1618 memcg_events(memcg, PGSCAN_KHUGEPAGED));
c8713d0b
JW
1619 seq_buf_printf(&s, "pgsteal %lu\n",
1620 memcg_events(memcg, PGSTEAL_KSWAPD) +
57e9cc50
JW
1621 memcg_events(memcg, PGSTEAL_DIRECT) +
1622 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
c8713d0b 1623
8278f1c7
SB
1624 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1625 if (memcg_vm_event_stat[i] == PGPGIN ||
1626 memcg_vm_event_stat[i] == PGPGOUT)
1627 continue;
1628
673520f8
QZ
1629 seq_buf_printf(&s, "%s %lu\n",
1630 vm_event_name(memcg_vm_event_stat[i]),
1631 memcg_events(memcg, memcg_vm_event_stat[i]));
8278f1c7 1632 }
c8713d0b
JW
1633
1634 /* The above should easily fit into one page */
1635 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
c8713d0b 1636}
71cd3113 1637
58cf188e 1638#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1639/**
f0c867d9 1640 * mem_cgroup_print_oom_context: Print OOM information relevant to
1641 * memory controller.
e222432b
BS
1642 * @memcg: The memory cgroup that went over limit
1643 * @p: Task that is going to be killed
1644 *
1645 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1646 * enabled
1647 */
f0c867d9 1648void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1649{
e222432b
BS
1650 rcu_read_lock();
1651
f0c867d9 1652 if (memcg) {
1653 pr_cont(",oom_memcg=");
1654 pr_cont_cgroup_path(memcg->css.cgroup);
1655 } else
1656 pr_cont(",global_oom");
2415b9f5 1657 if (p) {
f0c867d9 1658 pr_cont(",task_memcg=");
2415b9f5 1659 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1660 }
e222432b 1661 rcu_read_unlock();
f0c867d9 1662}
1663
1664/**
1665 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1666 * memory controller.
1667 * @memcg: The memory cgroup that went over limit
1668 */
1669void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1670{
68aaee14
TH
1671 /* Use static buffer, for the caller is holding oom_lock. */
1672 static char buf[PAGE_SIZE];
1673
1674 lockdep_assert_held(&oom_lock);
e222432b 1675
3e32cb2e
JW
1676 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1677 K((u64)page_counter_read(&memcg->memory)),
15b42562 1678 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1679 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1680 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1681 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1682 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1683 else {
1684 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1685 K((u64)page_counter_read(&memcg->memsw)),
1686 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1687 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1688 K((u64)page_counter_read(&memcg->kmem)),
1689 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1690 }
c8713d0b
JW
1691
1692 pr_info("Memory cgroup stats for ");
1693 pr_cont_cgroup_path(memcg->css.cgroup);
1694 pr_cont(":");
68aaee14 1695 memory_stat_format(memcg, buf, sizeof(buf));
c8713d0b 1696 pr_info("%s", buf);
e222432b
BS
1697}
1698
a63d83f4
DR
1699/*
1700 * Return the memory (and swap, if configured) limit for a memcg.
1701 */
bbec2e15 1702unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1703{
8d387a5f
WL
1704 unsigned long max = READ_ONCE(memcg->memory.max);
1705
b94c4e94 1706 if (do_memsw_account()) {
8d387a5f
WL
1707 if (mem_cgroup_swappiness(memcg)) {
1708 /* Calculate swap excess capacity from memsw limit */
1709 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1710
1711 max += min(swap, (unsigned long)total_swap_pages);
1712 }
b94c4e94
JW
1713 } else {
1714 if (mem_cgroup_swappiness(memcg))
1715 max += min(READ_ONCE(memcg->swap.max),
1716 (unsigned long)total_swap_pages);
9a5a8f19 1717 }
bbec2e15 1718 return max;
a63d83f4
DR
1719}
1720
9783aa99
CD
1721unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1722{
1723 return page_counter_read(&memcg->memory);
1724}
1725
b6e6edcf 1726static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1727 int order)
9cbb78bb 1728{
6e0fc46d
DR
1729 struct oom_control oc = {
1730 .zonelist = NULL,
1731 .nodemask = NULL,
2a966b77 1732 .memcg = memcg,
6e0fc46d
DR
1733 .gfp_mask = gfp_mask,
1734 .order = order,
6e0fc46d 1735 };
1378b37d 1736 bool ret = true;
9cbb78bb 1737
7775face
TH
1738 if (mutex_lock_killable(&oom_lock))
1739 return true;
1378b37d
YS
1740
1741 if (mem_cgroup_margin(memcg) >= (1 << order))
1742 goto unlock;
1743
7775face
TH
1744 /*
1745 * A few threads which were not waiting at mutex_lock_killable() can
1746 * fail to bail out. Therefore, check again after holding oom_lock.
1747 */
a4ebf1b6 1748 ret = task_is_dying() || out_of_memory(&oc);
1378b37d
YS
1749
1750unlock:
dc56401f 1751 mutex_unlock(&oom_lock);
7c5f64f8 1752 return ret;
9cbb78bb
DR
1753}
1754
0608f43d 1755static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1756 pg_data_t *pgdat,
0608f43d
AM
1757 gfp_t gfp_mask,
1758 unsigned long *total_scanned)
1759{
1760 struct mem_cgroup *victim = NULL;
1761 int total = 0;
1762 int loop = 0;
1763 unsigned long excess;
1764 unsigned long nr_scanned;
1765 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1766 .pgdat = pgdat,
0608f43d
AM
1767 };
1768
3e32cb2e 1769 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1770
1771 while (1) {
1772 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1773 if (!victim) {
1774 loop++;
1775 if (loop >= 2) {
1776 /*
1777 * If we have not been able to reclaim
1778 * anything, it might because there are
1779 * no reclaimable pages under this hierarchy
1780 */
1781 if (!total)
1782 break;
1783 /*
1784 * We want to do more targeted reclaim.
1785 * excess >> 2 is not to excessive so as to
1786 * reclaim too much, nor too less that we keep
1787 * coming back to reclaim from this cgroup
1788 */
1789 if (total >= (excess >> 2) ||
1790 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1791 break;
1792 }
1793 continue;
1794 }
a9dd0a83 1795 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1796 pgdat, &nr_scanned);
0608f43d 1797 *total_scanned += nr_scanned;
3e32cb2e 1798 if (!soft_limit_excess(root_memcg))
0608f43d 1799 break;
6d61ef40 1800 }
0608f43d
AM
1801 mem_cgroup_iter_break(root_memcg, victim);
1802 return total;
6d61ef40
BS
1803}
1804
0056f4e6
JW
1805#ifdef CONFIG_LOCKDEP
1806static struct lockdep_map memcg_oom_lock_dep_map = {
1807 .name = "memcg_oom_lock",
1808};
1809#endif
1810
fb2a6fc5
JW
1811static DEFINE_SPINLOCK(memcg_oom_lock);
1812
867578cb
KH
1813/*
1814 * Check OOM-Killer is already running under our hierarchy.
1815 * If someone is running, return false.
1816 */
fb2a6fc5 1817static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1818{
79dfdacc 1819 struct mem_cgroup *iter, *failed = NULL;
a636b327 1820
fb2a6fc5
JW
1821 spin_lock(&memcg_oom_lock);
1822
9f3a0d09 1823 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1824 if (iter->oom_lock) {
79dfdacc
MH
1825 /*
1826 * this subtree of our hierarchy is already locked
1827 * so we cannot give a lock.
1828 */
79dfdacc 1829 failed = iter;
9f3a0d09
JW
1830 mem_cgroup_iter_break(memcg, iter);
1831 break;
23751be0
JW
1832 } else
1833 iter->oom_lock = true;
7d74b06f 1834 }
867578cb 1835
fb2a6fc5
JW
1836 if (failed) {
1837 /*
1838 * OK, we failed to lock the whole subtree so we have
1839 * to clean up what we set up to the failing subtree
1840 */
1841 for_each_mem_cgroup_tree(iter, memcg) {
1842 if (iter == failed) {
1843 mem_cgroup_iter_break(memcg, iter);
1844 break;
1845 }
1846 iter->oom_lock = false;
79dfdacc 1847 }
0056f4e6
JW
1848 } else
1849 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1850
1851 spin_unlock(&memcg_oom_lock);
1852
1853 return !failed;
a636b327 1854}
0b7f569e 1855
fb2a6fc5 1856static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1857{
7d74b06f
KH
1858 struct mem_cgroup *iter;
1859
fb2a6fc5 1860 spin_lock(&memcg_oom_lock);
5facae4f 1861 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1862 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1863 iter->oom_lock = false;
fb2a6fc5 1864 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1865}
1866
c0ff4b85 1867static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1868{
1869 struct mem_cgroup *iter;
1870
c2b42d3c 1871 spin_lock(&memcg_oom_lock);
c0ff4b85 1872 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1873 iter->under_oom++;
1874 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1875}
1876
c0ff4b85 1877static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1878{
1879 struct mem_cgroup *iter;
1880
867578cb 1881 /*
f0953a1b 1882 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1883 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1884 */
c2b42d3c 1885 spin_lock(&memcg_oom_lock);
c0ff4b85 1886 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1887 if (iter->under_oom > 0)
1888 iter->under_oom--;
1889 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1890}
1891
867578cb
KH
1892static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1893
dc98df5a 1894struct oom_wait_info {
d79154bb 1895 struct mem_cgroup *memcg;
ac6424b9 1896 wait_queue_entry_t wait;
dc98df5a
KH
1897};
1898
ac6424b9 1899static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1900 unsigned mode, int sync, void *arg)
1901{
d79154bb
HD
1902 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1903 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1904 struct oom_wait_info *oom_wait_info;
1905
1906 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1907 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1908
2314b42d
JW
1909 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1910 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1911 return 0;
dc98df5a
KH
1912 return autoremove_wake_function(wait, mode, sync, arg);
1913}
1914
c0ff4b85 1915static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1916{
c2b42d3c
TH
1917 /*
1918 * For the following lockless ->under_oom test, the only required
1919 * guarantee is that it must see the state asserted by an OOM when
1920 * this function is called as a result of userland actions
1921 * triggered by the notification of the OOM. This is trivially
1922 * achieved by invoking mem_cgroup_mark_under_oom() before
1923 * triggering notification.
1924 */
1925 if (memcg && memcg->under_oom)
f4b90b70 1926 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1927}
1928
becdf89d
SB
1929/*
1930 * Returns true if successfully killed one or more processes. Though in some
1931 * corner cases it can return true even without killing any process.
1932 */
1933static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1934{
becdf89d 1935 bool locked, ret;
7056d3a3 1936
29ef680a 1937 if (order > PAGE_ALLOC_COSTLY_ORDER)
becdf89d 1938 return false;
29ef680a 1939
7a1adfdd
RG
1940 memcg_memory_event(memcg, MEMCG_OOM);
1941
867578cb 1942 /*
49426420
JW
1943 * We are in the middle of the charge context here, so we
1944 * don't want to block when potentially sitting on a callstack
1945 * that holds all kinds of filesystem and mm locks.
1946 *
29ef680a
MH
1947 * cgroup1 allows disabling the OOM killer and waiting for outside
1948 * handling until the charge can succeed; remember the context and put
1949 * the task to sleep at the end of the page fault when all locks are
1950 * released.
49426420 1951 *
29ef680a
MH
1952 * On the other hand, in-kernel OOM killer allows for an async victim
1953 * memory reclaim (oom_reaper) and that means that we are not solely
1954 * relying on the oom victim to make a forward progress and we can
1955 * invoke the oom killer here.
1956 *
1957 * Please note that mem_cgroup_out_of_memory might fail to find a
1958 * victim and then we have to bail out from the charge path.
867578cb 1959 */
17c56de6 1960 if (READ_ONCE(memcg->oom_kill_disable)) {
becdf89d
SB
1961 if (current->in_user_fault) {
1962 css_get(&memcg->css);
1963 current->memcg_in_oom = memcg;
1964 current->memcg_oom_gfp_mask = mask;
1965 current->memcg_oom_order = order;
1966 }
1967 return false;
29ef680a
MH
1968 }
1969
7056d3a3
MH
1970 mem_cgroup_mark_under_oom(memcg);
1971
1972 locked = mem_cgroup_oom_trylock(memcg);
1973
1974 if (locked)
1975 mem_cgroup_oom_notify(memcg);
1976
1977 mem_cgroup_unmark_under_oom(memcg);
becdf89d 1978 ret = mem_cgroup_out_of_memory(memcg, mask, order);
7056d3a3
MH
1979
1980 if (locked)
1981 mem_cgroup_oom_unlock(memcg);
29ef680a 1982
7056d3a3 1983 return ret;
3812c8c8
JW
1984}
1985
1986/**
1987 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1988 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1989 *
49426420
JW
1990 * This has to be called at the end of a page fault if the memcg OOM
1991 * handler was enabled.
3812c8c8 1992 *
49426420 1993 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1994 * sleep on a waitqueue until the userspace task resolves the
1995 * situation. Sleeping directly in the charge context with all kinds
1996 * of locks held is not a good idea, instead we remember an OOM state
1997 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1998 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1999 *
2000 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2001 * completed, %false otherwise.
3812c8c8 2002 */
49426420 2003bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2004{
626ebc41 2005 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2006 struct oom_wait_info owait;
49426420 2007 bool locked;
3812c8c8
JW
2008
2009 /* OOM is global, do not handle */
3812c8c8 2010 if (!memcg)
49426420 2011 return false;
3812c8c8 2012
7c5f64f8 2013 if (!handle)
49426420 2014 goto cleanup;
3812c8c8
JW
2015
2016 owait.memcg = memcg;
2017 owait.wait.flags = 0;
2018 owait.wait.func = memcg_oom_wake_function;
2019 owait.wait.private = current;
2055da97 2020 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2021
3812c8c8 2022 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2023 mem_cgroup_mark_under_oom(memcg);
2024
2025 locked = mem_cgroup_oom_trylock(memcg);
2026
2027 if (locked)
2028 mem_cgroup_oom_notify(memcg);
2029
17c56de6 2030 if (locked && !READ_ONCE(memcg->oom_kill_disable)) {
49426420
JW
2031 mem_cgroup_unmark_under_oom(memcg);
2032 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
2033 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2034 current->memcg_oom_order);
49426420 2035 } else {
3812c8c8 2036 schedule();
49426420
JW
2037 mem_cgroup_unmark_under_oom(memcg);
2038 finish_wait(&memcg_oom_waitq, &owait.wait);
2039 }
2040
2041 if (locked) {
fb2a6fc5
JW
2042 mem_cgroup_oom_unlock(memcg);
2043 /*
2044 * There is no guarantee that an OOM-lock contender
2045 * sees the wakeups triggered by the OOM kill
f0953a1b 2046 * uncharges. Wake any sleepers explicitly.
fb2a6fc5
JW
2047 */
2048 memcg_oom_recover(memcg);
2049 }
49426420 2050cleanup:
626ebc41 2051 current->memcg_in_oom = NULL;
3812c8c8 2052 css_put(&memcg->css);
867578cb 2053 return true;
0b7f569e
KH
2054}
2055
3d8b38eb
RG
2056/**
2057 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2058 * @victim: task to be killed by the OOM killer
2059 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2060 *
2061 * Returns a pointer to a memory cgroup, which has to be cleaned up
2062 * by killing all belonging OOM-killable tasks.
2063 *
2064 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2065 */
2066struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2067 struct mem_cgroup *oom_domain)
2068{
2069 struct mem_cgroup *oom_group = NULL;
2070 struct mem_cgroup *memcg;
2071
2072 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2073 return NULL;
2074
2075 if (!oom_domain)
2076 oom_domain = root_mem_cgroup;
2077
2078 rcu_read_lock();
2079
2080 memcg = mem_cgroup_from_task(victim);
7848ed62 2081 if (mem_cgroup_is_root(memcg))
3d8b38eb
RG
2082 goto out;
2083
48fe267c
RG
2084 /*
2085 * If the victim task has been asynchronously moved to a different
2086 * memory cgroup, we might end up killing tasks outside oom_domain.
2087 * In this case it's better to ignore memory.group.oom.
2088 */
2089 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2090 goto out;
2091
3d8b38eb
RG
2092 /*
2093 * Traverse the memory cgroup hierarchy from the victim task's
2094 * cgroup up to the OOMing cgroup (or root) to find the
2095 * highest-level memory cgroup with oom.group set.
2096 */
2097 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
eaf7b66b 2098 if (READ_ONCE(memcg->oom_group))
3d8b38eb
RG
2099 oom_group = memcg;
2100
2101 if (memcg == oom_domain)
2102 break;
2103 }
2104
2105 if (oom_group)
2106 css_get(&oom_group->css);
2107out:
2108 rcu_read_unlock();
2109
2110 return oom_group;
2111}
2112
2113void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2114{
2115 pr_info("Tasks in ");
2116 pr_cont_cgroup_path(memcg->css.cgroup);
2117 pr_cont(" are going to be killed due to memory.oom.group set\n");
2118}
2119
d7365e78 2120/**
f70ad448
MWO
2121 * folio_memcg_lock - Bind a folio to its memcg.
2122 * @folio: The folio.
32047e2a 2123 *
f70ad448 2124 * This function prevents unlocked LRU folios from being moved to
739f79fc
JW
2125 * another cgroup.
2126 *
f70ad448
MWO
2127 * It ensures lifetime of the bound memcg. The caller is responsible
2128 * for the lifetime of the folio.
d69b042f 2129 */
f70ad448 2130void folio_memcg_lock(struct folio *folio)
89c06bd5
KH
2131{
2132 struct mem_cgroup *memcg;
6de22619 2133 unsigned long flags;
89c06bd5 2134
6de22619
JW
2135 /*
2136 * The RCU lock is held throughout the transaction. The fast
2137 * path can get away without acquiring the memcg->move_lock
2138 * because page moving starts with an RCU grace period.
739f79fc 2139 */
d7365e78
JW
2140 rcu_read_lock();
2141
2142 if (mem_cgroup_disabled())
1c824a68 2143 return;
89c06bd5 2144again:
f70ad448 2145 memcg = folio_memcg(folio);
29833315 2146 if (unlikely(!memcg))
1c824a68 2147 return;
d7365e78 2148
20ad50d6
AS
2149#ifdef CONFIG_PROVE_LOCKING
2150 local_irq_save(flags);
2151 might_lock(&memcg->move_lock);
2152 local_irq_restore(flags);
2153#endif
2154
bdcbb659 2155 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2156 return;
89c06bd5 2157
6de22619 2158 spin_lock_irqsave(&memcg->move_lock, flags);
f70ad448 2159 if (memcg != folio_memcg(folio)) {
6de22619 2160 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2161 goto again;
2162 }
6de22619
JW
2163
2164 /*
1c824a68
JW
2165 * When charge migration first begins, we can have multiple
2166 * critical sections holding the fast-path RCU lock and one
2167 * holding the slowpath move_lock. Track the task who has the
2168 * move_lock for unlock_page_memcg().
6de22619
JW
2169 */
2170 memcg->move_lock_task = current;
2171 memcg->move_lock_flags = flags;
89c06bd5 2172}
f70ad448
MWO
2173
2174void lock_page_memcg(struct page *page)
2175{
2176 folio_memcg_lock(page_folio(page));
2177}
89c06bd5 2178
f70ad448 2179static void __folio_memcg_unlock(struct mem_cgroup *memcg)
89c06bd5 2180{
6de22619
JW
2181 if (memcg && memcg->move_lock_task == current) {
2182 unsigned long flags = memcg->move_lock_flags;
2183
2184 memcg->move_lock_task = NULL;
2185 memcg->move_lock_flags = 0;
2186
2187 spin_unlock_irqrestore(&memcg->move_lock, flags);
2188 }
89c06bd5 2189
d7365e78 2190 rcu_read_unlock();
89c06bd5 2191}
739f79fc
JW
2192
2193/**
f70ad448
MWO
2194 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2195 * @folio: The folio.
2196 *
2197 * This releases the binding created by folio_memcg_lock(). This does
2198 * not change the accounting of this folio to its memcg, but it does
2199 * permit others to change it.
739f79fc 2200 */
f70ad448 2201void folio_memcg_unlock(struct folio *folio)
739f79fc 2202{
f70ad448
MWO
2203 __folio_memcg_unlock(folio_memcg(folio));
2204}
9da7b521 2205
f70ad448
MWO
2206void unlock_page_memcg(struct page *page)
2207{
2208 folio_memcg_unlock(page_folio(page));
739f79fc 2209}
89c06bd5 2210
fead2b86 2211struct memcg_stock_pcp {
56751146 2212 local_lock_t stock_lock;
fead2b86
MH
2213 struct mem_cgroup *cached; /* this never be root cgroup */
2214 unsigned int nr_pages;
2215
bf4f0599
RG
2216#ifdef CONFIG_MEMCG_KMEM
2217 struct obj_cgroup *cached_objcg;
68ac5b3c 2218 struct pglist_data *cached_pgdat;
bf4f0599 2219 unsigned int nr_bytes;
68ac5b3c
WL
2220 int nr_slab_reclaimable_b;
2221 int nr_slab_unreclaimable_b;
bf4f0599
RG
2222#endif
2223
cdec2e42 2224 struct work_struct work;
26fe6168 2225 unsigned long flags;
a0db00fc 2226#define FLUSHING_CACHED_CHARGE 0
cdec2e42 2227};
56751146
SAS
2228static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2229 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2230};
9f50fad6 2231static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2232
bf4f0599 2233#ifdef CONFIG_MEMCG_KMEM
56751146 2234static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
bf4f0599
RG
2235static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2236 struct mem_cgroup *root_memcg);
a8c49af3 2237static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
bf4f0599
RG
2238
2239#else
56751146 2240static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 2241{
56751146 2242 return NULL;
bf4f0599
RG
2243}
2244static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2245 struct mem_cgroup *root_memcg)
2246{
2247 return false;
2248}
a8c49af3
YA
2249static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2250{
2251}
bf4f0599
RG
2252#endif
2253
a0956d54
SS
2254/**
2255 * consume_stock: Try to consume stocked charge on this cpu.
2256 * @memcg: memcg to consume from.
2257 * @nr_pages: how many pages to charge.
2258 *
2259 * The charges will only happen if @memcg matches the current cpu's memcg
2260 * stock, and at least @nr_pages are available in that stock. Failure to
2261 * service an allocation will refill the stock.
2262 *
2263 * returns true if successful, false otherwise.
cdec2e42 2264 */
a0956d54 2265static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2266{
2267 struct memcg_stock_pcp *stock;
db2ba40c 2268 unsigned long flags;
3e32cb2e 2269 bool ret = false;
cdec2e42 2270
a983b5eb 2271 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2272 return ret;
a0956d54 2273
56751146 2274 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2275
2276 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2277 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2278 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2279 ret = true;
2280 }
db2ba40c 2281
56751146 2282 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
db2ba40c 2283
cdec2e42
KH
2284 return ret;
2285}
2286
2287/*
3e32cb2e 2288 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2289 */
2290static void drain_stock(struct memcg_stock_pcp *stock)
2291{
2292 struct mem_cgroup *old = stock->cached;
2293
1a3e1f40
JW
2294 if (!old)
2295 return;
2296
11c9ea4e 2297 if (stock->nr_pages) {
3e32cb2e 2298 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2299 if (do_memsw_account())
3e32cb2e 2300 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2301 stock->nr_pages = 0;
cdec2e42 2302 }
1a3e1f40
JW
2303
2304 css_put(&old->css);
cdec2e42 2305 stock->cached = NULL;
cdec2e42
KH
2306}
2307
cdec2e42
KH
2308static void drain_local_stock(struct work_struct *dummy)
2309{
db2ba40c 2310 struct memcg_stock_pcp *stock;
56751146 2311 struct obj_cgroup *old = NULL;
db2ba40c
JW
2312 unsigned long flags;
2313
72f0184c 2314 /*
5c49cf9a
MH
2315 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2316 * drain_stock races is that we always operate on local CPU stock
2317 * here with IRQ disabled
72f0184c 2318 */
56751146 2319 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2320
2321 stock = this_cpu_ptr(&memcg_stock);
56751146 2322 old = drain_obj_stock(stock);
cdec2e42 2323 drain_stock(stock);
26fe6168 2324 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c 2325
56751146
SAS
2326 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2327 if (old)
2328 obj_cgroup_put(old);
cdec2e42
KH
2329}
2330
2331/*
3e32cb2e 2332 * Cache charges(val) to local per_cpu area.
320cc51d 2333 * This will be consumed by consume_stock() function, later.
cdec2e42 2334 */
af9a3b69 2335static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2336{
db2ba40c 2337 struct memcg_stock_pcp *stock;
cdec2e42 2338
db2ba40c 2339 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2340 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2341 drain_stock(stock);
1a3e1f40 2342 css_get(&memcg->css);
c0ff4b85 2343 stock->cached = memcg;
cdec2e42 2344 }
11c9ea4e 2345 stock->nr_pages += nr_pages;
db2ba40c 2346
a983b5eb 2347 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487 2348 drain_stock(stock);
af9a3b69
JW
2349}
2350
2351static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2352{
2353 unsigned long flags;
475d0487 2354
56751146 2355 local_lock_irqsave(&memcg_stock.stock_lock, flags);
af9a3b69 2356 __refill_stock(memcg, nr_pages);
56751146 2357 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
cdec2e42
KH
2358}
2359
2360/*
c0ff4b85 2361 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2362 * of the hierarchy under it.
cdec2e42 2363 */
6d3d6aa2 2364static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2365{
26fe6168 2366 int cpu, curcpu;
d38144b7 2367
6d3d6aa2
JW
2368 /* If someone's already draining, avoid adding running more workers. */
2369 if (!mutex_trylock(&percpu_charge_mutex))
2370 return;
72f0184c
MH
2371 /*
2372 * Notify other cpus that system-wide "drain" is running
2373 * We do not care about races with the cpu hotplug because cpu down
2374 * as well as workers from this path always operate on the local
2375 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2376 */
0790ed62
SAS
2377 migrate_disable();
2378 curcpu = smp_processor_id();
cdec2e42
KH
2379 for_each_online_cpu(cpu) {
2380 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2381 struct mem_cgroup *memcg;
e1a366be 2382 bool flush = false;
26fe6168 2383
e1a366be 2384 rcu_read_lock();
c0ff4b85 2385 memcg = stock->cached;
e1a366be
RG
2386 if (memcg && stock->nr_pages &&
2387 mem_cgroup_is_descendant(memcg, root_memcg))
2388 flush = true;
27fb0956 2389 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2390 flush = true;
e1a366be
RG
2391 rcu_read_unlock();
2392
2393 if (flush &&
2394 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2395 if (cpu == curcpu)
2396 drain_local_stock(&stock->work);
6a792697 2397 else if (!cpu_is_isolated(cpu))
d1a05b69
MH
2398 schedule_work_on(cpu, &stock->work);
2399 }
cdec2e42 2400 }
0790ed62 2401 migrate_enable();
9f50fad6 2402 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2403}
2404
2cd21c89
JW
2405static int memcg_hotplug_cpu_dead(unsigned int cpu)
2406{
2407 struct memcg_stock_pcp *stock;
a3d4c05a 2408
2cd21c89
JW
2409 stock = &per_cpu(memcg_stock, cpu);
2410 drain_stock(stock);
a3d4c05a 2411
308167fc 2412 return 0;
cdec2e42
KH
2413}
2414
b3ff9291
CD
2415static unsigned long reclaim_high(struct mem_cgroup *memcg,
2416 unsigned int nr_pages,
2417 gfp_t gfp_mask)
f7e1cb6e 2418{
b3ff9291
CD
2419 unsigned long nr_reclaimed = 0;
2420
f7e1cb6e 2421 do {
e22c6ed9
JW
2422 unsigned long pflags;
2423
d1663a90
JK
2424 if (page_counter_read(&memcg->memory) <=
2425 READ_ONCE(memcg->memory.high))
f7e1cb6e 2426 continue;
e22c6ed9 2427
e27be240 2428 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2429
2430 psi_memstall_enter(&pflags);
b3ff9291 2431 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
73b73bac 2432 gfp_mask,
55ab834a 2433 MEMCG_RECLAIM_MAY_SWAP);
e22c6ed9 2434 psi_memstall_leave(&pflags);
4bf17307
CD
2435 } while ((memcg = parent_mem_cgroup(memcg)) &&
2436 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2437
2438 return nr_reclaimed;
f7e1cb6e
JW
2439}
2440
2441static void high_work_func(struct work_struct *work)
2442{
2443 struct mem_cgroup *memcg;
2444
2445 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2446 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2447}
2448
0e4b01df
CD
2449/*
2450 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2451 * enough to still cause a significant slowdown in most cases, while still
2452 * allowing diagnostics and tracing to proceed without becoming stuck.
2453 */
2454#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2455
2456/*
2457 * When calculating the delay, we use these either side of the exponentiation to
2458 * maintain precision and scale to a reasonable number of jiffies (see the table
2459 * below.
2460 *
2461 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2462 * overage ratio to a delay.
ac5ddd0f 2463 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2464 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2465 * to produce a reasonable delay curve.
2466 *
2467 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2468 * reasonable delay curve compared to precision-adjusted overage, not
2469 * penalising heavily at first, but still making sure that growth beyond the
2470 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2471 * example, with a high of 100 megabytes:
2472 *
2473 * +-------+------------------------+
2474 * | usage | time to allocate in ms |
2475 * +-------+------------------------+
2476 * | 100M | 0 |
2477 * | 101M | 6 |
2478 * | 102M | 25 |
2479 * | 103M | 57 |
2480 * | 104M | 102 |
2481 * | 105M | 159 |
2482 * | 106M | 230 |
2483 * | 107M | 313 |
2484 * | 108M | 409 |
2485 * | 109M | 518 |
2486 * | 110M | 639 |
2487 * | 111M | 774 |
2488 * | 112M | 921 |
2489 * | 113M | 1081 |
2490 * | 114M | 1254 |
2491 * | 115M | 1439 |
2492 * | 116M | 1638 |
2493 * | 117M | 1849 |
2494 * | 118M | 2000 |
2495 * | 119M | 2000 |
2496 * | 120M | 2000 |
2497 * +-------+------------------------+
2498 */
2499 #define MEMCG_DELAY_PRECISION_SHIFT 20
2500 #define MEMCG_DELAY_SCALING_SHIFT 14
2501
8a5dbc65 2502static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2503{
8a5dbc65 2504 u64 overage;
b23afb93 2505
8a5dbc65
JK
2506 if (usage <= high)
2507 return 0;
e26733e0 2508
8a5dbc65
JK
2509 /*
2510 * Prevent division by 0 in overage calculation by acting as if
2511 * it was a threshold of 1 page
2512 */
2513 high = max(high, 1UL);
9b8b1754 2514
8a5dbc65
JK
2515 overage = usage - high;
2516 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2517 return div64_u64(overage, high);
2518}
e26733e0 2519
8a5dbc65
JK
2520static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2521{
2522 u64 overage, max_overage = 0;
e26733e0 2523
8a5dbc65
JK
2524 do {
2525 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2526 READ_ONCE(memcg->memory.high));
8a5dbc65 2527 max_overage = max(overage, max_overage);
e26733e0
CD
2528 } while ((memcg = parent_mem_cgroup(memcg)) &&
2529 !mem_cgroup_is_root(memcg));
2530
8a5dbc65
JK
2531 return max_overage;
2532}
2533
4b82ab4f
JK
2534static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2535{
2536 u64 overage, max_overage = 0;
2537
2538 do {
2539 overage = calculate_overage(page_counter_read(&memcg->swap),
2540 READ_ONCE(memcg->swap.high));
2541 if (overage)
2542 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2543 max_overage = max(overage, max_overage);
2544 } while ((memcg = parent_mem_cgroup(memcg)) &&
2545 !mem_cgroup_is_root(memcg));
2546
2547 return max_overage;
2548}
2549
8a5dbc65
JK
2550/*
2551 * Get the number of jiffies that we should penalise a mischievous cgroup which
2552 * is exceeding its memory.high by checking both it and its ancestors.
2553 */
2554static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2555 unsigned int nr_pages,
2556 u64 max_overage)
2557{
2558 unsigned long penalty_jiffies;
2559
e26733e0
CD
2560 if (!max_overage)
2561 return 0;
0e4b01df
CD
2562
2563 /*
0e4b01df
CD
2564 * We use overage compared to memory.high to calculate the number of
2565 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2566 * fairly lenient on small overages, and increasingly harsh when the
2567 * memcg in question makes it clear that it has no intention of stopping
2568 * its crazy behaviour, so we exponentially increase the delay based on
2569 * overage amount.
2570 */
e26733e0
CD
2571 penalty_jiffies = max_overage * max_overage * HZ;
2572 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2573 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2574
2575 /*
2576 * Factor in the task's own contribution to the overage, such that four
2577 * N-sized allocations are throttled approximately the same as one
2578 * 4N-sized allocation.
2579 *
2580 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2581 * larger the current charge patch is than that.
2582 */
ff144e69 2583 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2584}
2585
2586/*
2587 * Scheduled by try_charge() to be executed from the userland return path
2588 * and reclaims memory over the high limit.
2589 */
2590void mem_cgroup_handle_over_high(void)
2591{
2592 unsigned long penalty_jiffies;
2593 unsigned long pflags;
b3ff9291 2594 unsigned long nr_reclaimed;
e26733e0 2595 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2596 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2597 struct mem_cgroup *memcg;
b3ff9291 2598 bool in_retry = false;
e26733e0
CD
2599
2600 if (likely(!nr_pages))
2601 return;
2602
2603 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2604 current->memcg_nr_pages_over_high = 0;
2605
b3ff9291
CD
2606retry_reclaim:
2607 /*
2608 * The allocating task should reclaim at least the batch size, but for
2609 * subsequent retries we only want to do what's necessary to prevent oom
2610 * or breaching resource isolation.
2611 *
2612 * This is distinct from memory.max or page allocator behaviour because
2613 * memory.high is currently batched, whereas memory.max and the page
2614 * allocator run every time an allocation is made.
2615 */
2616 nr_reclaimed = reclaim_high(memcg,
2617 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2618 GFP_KERNEL);
2619
e26733e0
CD
2620 /*
2621 * memory.high is breached and reclaim is unable to keep up. Throttle
2622 * allocators proactively to slow down excessive growth.
2623 */
8a5dbc65
JK
2624 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2625 mem_find_max_overage(memcg));
0e4b01df 2626
4b82ab4f
JK
2627 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2628 swap_find_max_overage(memcg));
2629
ff144e69
JK
2630 /*
2631 * Clamp the max delay per usermode return so as to still keep the
2632 * application moving forwards and also permit diagnostics, albeit
2633 * extremely slowly.
2634 */
2635 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2636
0e4b01df
CD
2637 /*
2638 * Don't sleep if the amount of jiffies this memcg owes us is so low
2639 * that it's not even worth doing, in an attempt to be nice to those who
2640 * go only a small amount over their memory.high value and maybe haven't
2641 * been aggressively reclaimed enough yet.
2642 */
2643 if (penalty_jiffies <= HZ / 100)
2644 goto out;
2645
b3ff9291
CD
2646 /*
2647 * If reclaim is making forward progress but we're still over
2648 * memory.high, we want to encourage that rather than doing allocator
2649 * throttling.
2650 */
2651 if (nr_reclaimed || nr_retries--) {
2652 in_retry = true;
2653 goto retry_reclaim;
2654 }
2655
0e4b01df
CD
2656 /*
2657 * If we exit early, we're guaranteed to die (since
2658 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2659 * need to account for any ill-begotten jiffies to pay them off later.
2660 */
2661 psi_memstall_enter(&pflags);
2662 schedule_timeout_killable(penalty_jiffies);
2663 psi_memstall_leave(&pflags);
2664
2665out:
2666 css_put(&memcg->css);
b23afb93
TH
2667}
2668
c5c8b16b
MS
2669static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2670 unsigned int nr_pages)
8a9f3ccd 2671{
a983b5eb 2672 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2673 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2674 struct mem_cgroup *mem_over_limit;
3e32cb2e 2675 struct page_counter *counter;
6539cc05 2676 unsigned long nr_reclaimed;
a4ebf1b6 2677 bool passed_oom = false;
73b73bac 2678 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
b70a2a21 2679 bool drained = false;
d6e103a7 2680 bool raised_max_event = false;
e22c6ed9 2681 unsigned long pflags;
a636b327 2682
6539cc05 2683retry:
b6b6cc72 2684 if (consume_stock(memcg, nr_pages))
10d53c74 2685 return 0;
8a9f3ccd 2686
7941d214 2687 if (!do_memsw_account() ||
6071ca52
JW
2688 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2689 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2690 goto done_restock;
7941d214 2691 if (do_memsw_account())
3e32cb2e
JW
2692 page_counter_uncharge(&memcg->memsw, batch);
2693 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2694 } else {
3e32cb2e 2695 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
73b73bac 2696 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
3fbe7244 2697 }
7a81b88c 2698
6539cc05
JW
2699 if (batch > nr_pages) {
2700 batch = nr_pages;
2701 goto retry;
2702 }
6d61ef40 2703
89a28483
JW
2704 /*
2705 * Prevent unbounded recursion when reclaim operations need to
2706 * allocate memory. This might exceed the limits temporarily,
2707 * but we prefer facilitating memory reclaim and getting back
2708 * under the limit over triggering OOM kills in these cases.
2709 */
2710 if (unlikely(current->flags & PF_MEMALLOC))
2711 goto force;
2712
06b078fc
JW
2713 if (unlikely(task_in_memcg_oom(current)))
2714 goto nomem;
2715
d0164adc 2716 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2717 goto nomem;
4b534334 2718
e27be240 2719 memcg_memory_event(mem_over_limit, MEMCG_MAX);
d6e103a7 2720 raised_max_event = true;
241994ed 2721
e22c6ed9 2722 psi_memstall_enter(&pflags);
b70a2a21 2723 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
55ab834a 2724 gfp_mask, reclaim_options);
e22c6ed9 2725 psi_memstall_leave(&pflags);
6539cc05 2726
61e02c74 2727 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2728 goto retry;
28c34c29 2729
b70a2a21 2730 if (!drained) {
6d3d6aa2 2731 drain_all_stock(mem_over_limit);
b70a2a21
JW
2732 drained = true;
2733 goto retry;
2734 }
2735
28c34c29
JW
2736 if (gfp_mask & __GFP_NORETRY)
2737 goto nomem;
6539cc05
JW
2738 /*
2739 * Even though the limit is exceeded at this point, reclaim
2740 * may have been able to free some pages. Retry the charge
2741 * before killing the task.
2742 *
2743 * Only for regular pages, though: huge pages are rather
2744 * unlikely to succeed so close to the limit, and we fall back
2745 * to regular pages anyway in case of failure.
2746 */
61e02c74 2747 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2748 goto retry;
2749 /*
2750 * At task move, charge accounts can be doubly counted. So, it's
2751 * better to wait until the end of task_move if something is going on.
2752 */
2753 if (mem_cgroup_wait_acct_move(mem_over_limit))
2754 goto retry;
2755
9b130619
JW
2756 if (nr_retries--)
2757 goto retry;
2758
38d38493 2759 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2760 goto nomem;
2761
a4ebf1b6
VA
2762 /* Avoid endless loop for tasks bypassed by the oom killer */
2763 if (passed_oom && task_is_dying())
2764 goto nomem;
6539cc05 2765
29ef680a
MH
2766 /*
2767 * keep retrying as long as the memcg oom killer is able to make
2768 * a forward progress or bypass the charge if the oom killer
2769 * couldn't make any progress.
2770 */
becdf89d
SB
2771 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2772 get_order(nr_pages * PAGE_SIZE))) {
a4ebf1b6 2773 passed_oom = true;
d977aa93 2774 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a 2775 goto retry;
29ef680a 2776 }
7a81b88c 2777nomem:
1461e8c2
SB
2778 /*
2779 * Memcg doesn't have a dedicated reserve for atomic
2780 * allocations. But like the global atomic pool, we need to
2781 * put the burden of reclaim on regular allocation requests
2782 * and let these go through as privileged allocations.
2783 */
2784 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
3168ecbe 2785 return -ENOMEM;
10d53c74 2786force:
d6e103a7
RG
2787 /*
2788 * If the allocation has to be enforced, don't forget to raise
2789 * a MEMCG_MAX event.
2790 */
2791 if (!raised_max_event)
2792 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2793
10d53c74
TH
2794 /*
2795 * The allocation either can't fail or will lead to more memory
2796 * being freed very soon. Allow memory usage go over the limit
2797 * temporarily by force charging it.
2798 */
2799 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2800 if (do_memsw_account())
10d53c74 2801 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2802
2803 return 0;
6539cc05
JW
2804
2805done_restock:
2806 if (batch > nr_pages)
2807 refill_stock(memcg, batch - nr_pages);
b23afb93 2808
241994ed 2809 /*
b23afb93
TH
2810 * If the hierarchy is above the normal consumption range, schedule
2811 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2812 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2813 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2814 * not recorded as it most likely matches current's and won't
2815 * change in the meantime. As high limit is checked again before
2816 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2817 */
2818 do {
4b82ab4f
JK
2819 bool mem_high, swap_high;
2820
2821 mem_high = page_counter_read(&memcg->memory) >
2822 READ_ONCE(memcg->memory.high);
2823 swap_high = page_counter_read(&memcg->swap) >
2824 READ_ONCE(memcg->swap.high);
2825
2826 /* Don't bother a random interrupted task */
086f694a 2827 if (!in_task()) {
4b82ab4f 2828 if (mem_high) {
f7e1cb6e
JW
2829 schedule_work(&memcg->high_work);
2830 break;
2831 }
4b82ab4f
JK
2832 continue;
2833 }
2834
2835 if (mem_high || swap_high) {
2836 /*
2837 * The allocating tasks in this cgroup will need to do
2838 * reclaim or be throttled to prevent further growth
2839 * of the memory or swap footprints.
2840 *
2841 * Target some best-effort fairness between the tasks,
2842 * and distribute reclaim work and delay penalties
2843 * based on how much each task is actually allocating.
2844 */
9516a18a 2845 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2846 set_notify_resume(current);
2847 break;
2848 }
241994ed 2849 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74 2850
c9afe31e
SB
2851 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2852 !(current->flags & PF_MEMALLOC) &&
2853 gfpflags_allow_blocking(gfp_mask)) {
2854 mem_cgroup_handle_over_high();
2855 }
10d53c74 2856 return 0;
7a81b88c 2857}
8a9f3ccd 2858
c5c8b16b
MS
2859static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2860 unsigned int nr_pages)
2861{
2862 if (mem_cgroup_is_root(memcg))
2863 return 0;
2864
2865 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2866}
2867
58056f77 2868static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2869{
ce00a967
JW
2870 if (mem_cgroup_is_root(memcg))
2871 return;
2872
3e32cb2e 2873 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2874 if (do_memsw_account())
3e32cb2e 2875 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
2876}
2877
118f2875 2878static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
0a31bc97 2879{
118f2875 2880 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
0a31bc97 2881 /*
a5eb011a 2882 * Any of the following ensures page's memcg stability:
0a31bc97 2883 *
a0b5b414
JW
2884 * - the page lock
2885 * - LRU isolation
2886 * - lock_page_memcg()
2887 * - exclusive reference
018ee47f 2888 * - mem_cgroup_trylock_pages()
0a31bc97 2889 */
118f2875 2890 folio->memcg_data = (unsigned long)memcg;
7a81b88c 2891}
66e1707b 2892
84c07d11 2893#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2894/*
2895 * The allocated objcg pointers array is not accounted directly.
2896 * Moreover, it should not come from DMA buffer and is not readily
2897 * reclaimable. So those GFP bits should be masked off.
2898 */
2899#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2900
a7ebf564
WL
2901/*
2902 * mod_objcg_mlstate() may be called with irq enabled, so
2903 * mod_memcg_lruvec_state() should be used.
2904 */
2905static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2906 struct pglist_data *pgdat,
2907 enum node_stat_item idx, int nr)
2908{
2909 struct mem_cgroup *memcg;
2910 struct lruvec *lruvec;
2911
2912 rcu_read_lock();
2913 memcg = obj_cgroup_memcg(objcg);
2914 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2915 mod_memcg_lruvec_state(lruvec, idx, nr);
2916 rcu_read_unlock();
2917}
2918
4b5f8d9a
VB
2919int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2920 gfp_t gfp, bool new_slab)
10befea9 2921{
4b5f8d9a 2922 unsigned int objects = objs_per_slab(s, slab);
2e9bd483 2923 unsigned long memcg_data;
10befea9
RG
2924 void *vec;
2925
41eb5df1 2926 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9 2927 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
4b5f8d9a 2928 slab_nid(slab));
10befea9
RG
2929 if (!vec)
2930 return -ENOMEM;
2931
2e9bd483 2932 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
4b5f8d9a 2933 if (new_slab) {
2e9bd483 2934 /*
4b5f8d9a
VB
2935 * If the slab is brand new and nobody can yet access its
2936 * memcg_data, no synchronization is required and memcg_data can
2937 * be simply assigned.
2e9bd483 2938 */
4b5f8d9a
VB
2939 slab->memcg_data = memcg_data;
2940 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2e9bd483 2941 /*
4b5f8d9a
VB
2942 * If the slab is already in use, somebody can allocate and
2943 * assign obj_cgroups in parallel. In this case the existing
2e9bd483
RG
2944 * objcg vector should be reused.
2945 */
10befea9 2946 kfree(vec);
2e9bd483
RG
2947 return 0;
2948 }
10befea9 2949
2e9bd483 2950 kmemleak_not_leak(vec);
10befea9
RG
2951 return 0;
2952}
2953
fc4db90f
RG
2954static __always_inline
2955struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
8380ce47 2956{
8380ce47 2957 /*
9855609b
RG
2958 * Slab objects are accounted individually, not per-page.
2959 * Memcg membership data for each individual object is saved in
4b5f8d9a 2960 * slab->memcg_data.
8380ce47 2961 */
4b5f8d9a
VB
2962 if (folio_test_slab(folio)) {
2963 struct obj_cgroup **objcgs;
2964 struct slab *slab;
9855609b
RG
2965 unsigned int off;
2966
4b5f8d9a
VB
2967 slab = folio_slab(folio);
2968 objcgs = slab_objcgs(slab);
2969 if (!objcgs)
2970 return NULL;
2971
2972 off = obj_to_index(slab->slab_cache, slab, p);
2973 if (objcgs[off])
2974 return obj_cgroup_memcg(objcgs[off]);
10befea9
RG
2975
2976 return NULL;
9855609b 2977 }
8380ce47 2978
bcfe06bf 2979 /*
becacb04 2980 * folio_memcg_check() is used here, because in theory we can encounter
4b5f8d9a
VB
2981 * a folio where the slab flag has been cleared already, but
2982 * slab->memcg_data has not been freed yet
becacb04 2983 * folio_memcg_check() will guarantee that a proper memory
bcfe06bf
RG
2984 * cgroup pointer or NULL will be returned.
2985 */
becacb04 2986 return folio_memcg_check(folio);
8380ce47
RG
2987}
2988
fc4db90f
RG
2989/*
2990 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2991 *
2992 * A passed kernel object can be a slab object, vmalloc object or a generic
2993 * kernel page, so different mechanisms for getting the memory cgroup pointer
2994 * should be used.
2995 *
2996 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2997 * can not know for sure how the kernel object is implemented.
2998 * mem_cgroup_from_obj() can be safely used in such cases.
2999 *
3000 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3001 * cgroup_mutex, etc.
3002 */
3003struct mem_cgroup *mem_cgroup_from_obj(void *p)
3004{
3005 struct folio *folio;
3006
3007 if (mem_cgroup_disabled())
3008 return NULL;
3009
3010 if (unlikely(is_vmalloc_addr(p)))
3011 folio = page_folio(vmalloc_to_page(p));
3012 else
3013 folio = virt_to_folio(p);
3014
3015 return mem_cgroup_from_obj_folio(folio, p);
3016}
3017
3018/*
3019 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3020 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3021 * allocated using vmalloc().
3022 *
3023 * A passed kernel object must be a slab object or a generic kernel page.
3024 *
3025 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3026 * cgroup_mutex, etc.
3027 */
3028struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3029{
3030 if (mem_cgroup_disabled())
3031 return NULL;
3032
3033 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3034}
3035
f4840ccf
JW
3036static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3037{
3038 struct obj_cgroup *objcg = NULL;
3039
7848ed62 3040 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
f4840ccf
JW
3041 objcg = rcu_dereference(memcg->objcg);
3042 if (objcg && obj_cgroup_tryget(objcg))
3043 break;
3044 objcg = NULL;
3045 }
3046 return objcg;
3047}
3048
bf4f0599
RG
3049__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3050{
3051 struct obj_cgroup *objcg = NULL;
3052 struct mem_cgroup *memcg;
3053
279c3393
RG
3054 if (memcg_kmem_bypass())
3055 return NULL;
3056
bf4f0599 3057 rcu_read_lock();
37d5985c
RG
3058 if (unlikely(active_memcg()))
3059 memcg = active_memcg();
bf4f0599
RG
3060 else
3061 memcg = mem_cgroup_from_task(current);
f4840ccf 3062 objcg = __get_obj_cgroup_from_memcg(memcg);
bf4f0599 3063 rcu_read_unlock();
f4840ccf
JW
3064 return objcg;
3065}
3066
3067struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3068{
3069 struct obj_cgroup *objcg;
3070
f7a449f7 3071 if (!memcg_kmem_online())
f4840ccf
JW
3072 return NULL;
3073
3074 if (PageMemcgKmem(page)) {
3075 objcg = __folio_objcg(page_folio(page));
3076 obj_cgroup_get(objcg);
3077 } else {
3078 struct mem_cgroup *memcg;
bf4f0599 3079
f4840ccf
JW
3080 rcu_read_lock();
3081 memcg = __folio_memcg(page_folio(page));
3082 if (memcg)
3083 objcg = __get_obj_cgroup_from_memcg(memcg);
3084 else
3085 objcg = NULL;
3086 rcu_read_unlock();
3087 }
bf4f0599
RG
3088 return objcg;
3089}
3090
a8c49af3
YA
3091static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3092{
3093 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3094 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3095 if (nr_pages > 0)
3096 page_counter_charge(&memcg->kmem, nr_pages);
3097 else
3098 page_counter_uncharge(&memcg->kmem, -nr_pages);
3099 }
3100}
3101
3102
f1286fae
MS
3103/*
3104 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3105 * @objcg: object cgroup to uncharge
3106 * @nr_pages: number of pages to uncharge
3107 */
e74d2259
MS
3108static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3109 unsigned int nr_pages)
3110{
3111 struct mem_cgroup *memcg;
3112
3113 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 3114
a8c49af3 3115 memcg_account_kmem(memcg, -nr_pages);
f1286fae 3116 refill_stock(memcg, nr_pages);
e74d2259 3117
e74d2259 3118 css_put(&memcg->css);
e74d2259
MS
3119}
3120
f1286fae
MS
3121/*
3122 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3123 * @objcg: object cgroup to charge
45264778 3124 * @gfp: reclaim mode
92d0510c 3125 * @nr_pages: number of pages to charge
45264778
VD
3126 *
3127 * Returns 0 on success, an error code on failure.
3128 */
f1286fae
MS
3129static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3130 unsigned int nr_pages)
7ae1e1d0 3131{
f1286fae 3132 struct mem_cgroup *memcg;
7ae1e1d0
GC
3133 int ret;
3134
f1286fae
MS
3135 memcg = get_mem_cgroup_from_objcg(objcg);
3136
c5c8b16b 3137 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 3138 if (ret)
f1286fae 3139 goto out;
52c29b04 3140
a8c49af3 3141 memcg_account_kmem(memcg, nr_pages);
f1286fae
MS
3142out:
3143 css_put(&memcg->css);
4b13f64d 3144
f1286fae 3145 return ret;
4b13f64d
RG
3146}
3147
45264778 3148/**
f4b00eab 3149 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3150 * @page: page to charge
3151 * @gfp: reclaim mode
3152 * @order: allocation order
3153 *
3154 * Returns 0 on success, an error code on failure.
3155 */
f4b00eab 3156int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3157{
b4e0b68f 3158 struct obj_cgroup *objcg;
fcff7d7e 3159 int ret = 0;
7ae1e1d0 3160
b4e0b68f
MS
3161 objcg = get_obj_cgroup_from_current();
3162 if (objcg) {
3163 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3164 if (!ret) {
b4e0b68f 3165 page->memcg_data = (unsigned long)objcg |
18b2db3b 3166 MEMCG_DATA_KMEM;
1a3e1f40 3167 return 0;
4d96ba35 3168 }
b4e0b68f 3169 obj_cgroup_put(objcg);
c4159a75 3170 }
d05e83a6 3171 return ret;
7ae1e1d0 3172}
49a18eae 3173
45264778 3174/**
f4b00eab 3175 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3176 * @page: page to uncharge
3177 * @order: allocation order
3178 */
f4b00eab 3179void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3180{
1b7e4464 3181 struct folio *folio = page_folio(page);
b4e0b68f 3182 struct obj_cgroup *objcg;
f3ccb2c4 3183 unsigned int nr_pages = 1 << order;
7ae1e1d0 3184
1b7e4464 3185 if (!folio_memcg_kmem(folio))
7ae1e1d0
GC
3186 return;
3187
1b7e4464 3188 objcg = __folio_objcg(folio);
b4e0b68f 3189 obj_cgroup_uncharge_pages(objcg, nr_pages);
1b7e4464 3190 folio->memcg_data = 0;
b4e0b68f 3191 obj_cgroup_put(objcg);
60d3fd32 3192}
bf4f0599 3193
68ac5b3c
WL
3194void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3195 enum node_stat_item idx, int nr)
3196{
fead2b86 3197 struct memcg_stock_pcp *stock;
56751146 3198 struct obj_cgroup *old = NULL;
68ac5b3c
WL
3199 unsigned long flags;
3200 int *bytes;
3201
56751146 3202 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3203 stock = this_cpu_ptr(&memcg_stock);
3204
68ac5b3c
WL
3205 /*
3206 * Save vmstat data in stock and skip vmstat array update unless
3207 * accumulating over a page of vmstat data or when pgdat or idx
3208 * changes.
3209 */
3210 if (stock->cached_objcg != objcg) {
56751146 3211 old = drain_obj_stock(stock);
68ac5b3c
WL
3212 obj_cgroup_get(objcg);
3213 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3214 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3215 stock->cached_objcg = objcg;
3216 stock->cached_pgdat = pgdat;
3217 } else if (stock->cached_pgdat != pgdat) {
3218 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3219 struct pglist_data *oldpg = stock->cached_pgdat;
3220
68ac5b3c 3221 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3222 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3223 stock->nr_slab_reclaimable_b);
3224 stock->nr_slab_reclaimable_b = 0;
3225 }
3226 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3227 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3228 stock->nr_slab_unreclaimable_b);
3229 stock->nr_slab_unreclaimable_b = 0;
3230 }
3231 stock->cached_pgdat = pgdat;
3232 }
3233
3234 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3235 : &stock->nr_slab_unreclaimable_b;
3236 /*
3237 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3238 * cached locally at least once before pushing it out.
3239 */
3240 if (!*bytes) {
3241 *bytes = nr;
3242 nr = 0;
3243 } else {
3244 *bytes += nr;
3245 if (abs(*bytes) > PAGE_SIZE) {
3246 nr = *bytes;
3247 *bytes = 0;
3248 } else {
3249 nr = 0;
3250 }
3251 }
3252 if (nr)
3253 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3254
56751146
SAS
3255 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3256 if (old)
3257 obj_cgroup_put(old);
68ac5b3c
WL
3258}
3259
bf4f0599
RG
3260static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3261{
fead2b86 3262 struct memcg_stock_pcp *stock;
bf4f0599
RG
3263 unsigned long flags;
3264 bool ret = false;
3265
56751146 3266 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3267
3268 stock = this_cpu_ptr(&memcg_stock);
bf4f0599
RG
3269 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3270 stock->nr_bytes -= nr_bytes;
3271 ret = true;
3272 }
3273
56751146 3274 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
bf4f0599
RG
3275
3276 return ret;
3277}
3278
56751146 3279static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599
RG
3280{
3281 struct obj_cgroup *old = stock->cached_objcg;
3282
3283 if (!old)
56751146 3284 return NULL;
bf4f0599
RG
3285
3286 if (stock->nr_bytes) {
3287 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3288 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3289
af9a3b69
JW
3290 if (nr_pages) {
3291 struct mem_cgroup *memcg;
3292
3293 memcg = get_mem_cgroup_from_objcg(old);
3294
3295 memcg_account_kmem(memcg, -nr_pages);
3296 __refill_stock(memcg, nr_pages);
3297
3298 css_put(&memcg->css);
3299 }
bf4f0599
RG
3300
3301 /*
3302 * The leftover is flushed to the centralized per-memcg value.
3303 * On the next attempt to refill obj stock it will be moved
3304 * to a per-cpu stock (probably, on an other CPU), see
3305 * refill_obj_stock().
3306 *
3307 * How often it's flushed is a trade-off between the memory
3308 * limit enforcement accuracy and potential CPU contention,
3309 * so it might be changed in the future.
3310 */
3311 atomic_add(nr_bytes, &old->nr_charged_bytes);
3312 stock->nr_bytes = 0;
3313 }
3314
68ac5b3c
WL
3315 /*
3316 * Flush the vmstat data in current stock
3317 */
3318 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3319 if (stock->nr_slab_reclaimable_b) {
3320 mod_objcg_mlstate(old, stock->cached_pgdat,
3321 NR_SLAB_RECLAIMABLE_B,
3322 stock->nr_slab_reclaimable_b);
3323 stock->nr_slab_reclaimable_b = 0;
3324 }
3325 if (stock->nr_slab_unreclaimable_b) {
3326 mod_objcg_mlstate(old, stock->cached_pgdat,
3327 NR_SLAB_UNRECLAIMABLE_B,
3328 stock->nr_slab_unreclaimable_b);
3329 stock->nr_slab_unreclaimable_b = 0;
3330 }
3331 stock->cached_pgdat = NULL;
3332 }
3333
bf4f0599 3334 stock->cached_objcg = NULL;
56751146
SAS
3335 /*
3336 * The `old' objects needs to be released by the caller via
3337 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3338 */
3339 return old;
bf4f0599
RG
3340}
3341
3342static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3343 struct mem_cgroup *root_memcg)
3344{
3345 struct mem_cgroup *memcg;
3346
fead2b86
MH
3347 if (stock->cached_objcg) {
3348 memcg = obj_cgroup_memcg(stock->cached_objcg);
bf4f0599
RG
3349 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3350 return true;
3351 }
3352
3353 return false;
3354}
3355
5387c904
WL
3356static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3357 bool allow_uncharge)
bf4f0599 3358{
fead2b86 3359 struct memcg_stock_pcp *stock;
56751146 3360 struct obj_cgroup *old = NULL;
bf4f0599 3361 unsigned long flags;
5387c904 3362 unsigned int nr_pages = 0;
bf4f0599 3363
56751146 3364 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3365
3366 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 3367 if (stock->cached_objcg != objcg) { /* reset if necessary */
56751146 3368 old = drain_obj_stock(stock);
bf4f0599
RG
3369 obj_cgroup_get(objcg);
3370 stock->cached_objcg = objcg;
5387c904
WL
3371 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3372 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3373 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3374 }
3375 stock->nr_bytes += nr_bytes;
3376
5387c904
WL
3377 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3378 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3379 stock->nr_bytes &= (PAGE_SIZE - 1);
3380 }
bf4f0599 3381
56751146
SAS
3382 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3383 if (old)
3384 obj_cgroup_put(old);
5387c904
WL
3385
3386 if (nr_pages)
3387 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3388}
3389
3390int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3391{
bf4f0599
RG
3392 unsigned int nr_pages, nr_bytes;
3393 int ret;
3394
3395 if (consume_obj_stock(objcg, size))
3396 return 0;
3397
3398 /*
5387c904 3399 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3400 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3401 * flushing objcg->nr_charged_bytes requires two atomic
3402 * operations, and objcg->nr_charged_bytes can't be big.
3403 * The shared objcg->nr_charged_bytes can also become a
3404 * performance bottleneck if all tasks of the same memcg are
3405 * trying to update it. So it's better to ignore it and try
3406 * grab some new pages. The stock's nr_bytes will be flushed to
3407 * objcg->nr_charged_bytes later on when objcg changes.
3408 *
3409 * The stock's nr_bytes may contain enough pre-charged bytes
3410 * to allow one less page from being charged, but we can't rely
3411 * on the pre-charged bytes not being changed outside of
3412 * consume_obj_stock() or refill_obj_stock(). So ignore those
3413 * pre-charged bytes as well when charging pages. To avoid a
3414 * page uncharge right after a page charge, we set the
3415 * allow_uncharge flag to false when calling refill_obj_stock()
3416 * to temporarily allow the pre-charged bytes to exceed the page
3417 * size limit. The maximum reachable value of the pre-charged
3418 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3419 * race.
bf4f0599 3420 */
bf4f0599
RG
3421 nr_pages = size >> PAGE_SHIFT;
3422 nr_bytes = size & (PAGE_SIZE - 1);
3423
3424 if (nr_bytes)
3425 nr_pages += 1;
3426
e74d2259 3427 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3428 if (!ret && nr_bytes)
5387c904 3429 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3430
bf4f0599
RG
3431 return ret;
3432}
3433
3434void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3435{
5387c904 3436 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3437}
3438
84c07d11 3439#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3440
ca3e0214 3441/*
be6c8982 3442 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3443 */
be6c8982 3444void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3445{
1b7e4464
MWO
3446 struct folio *folio = page_folio(head);
3447 struct mem_cgroup *memcg = folio_memcg(folio);
e94c8a9c 3448 int i;
ca3e0214 3449
be6c8982 3450 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3451 return;
b070e65c 3452
be6c8982 3453 for (i = 1; i < nr; i++)
1b7e4464 3454 folio_page(folio, i)->memcg_data = folio->memcg_data;
b4e0b68f 3455
1b7e4464
MWO
3456 if (folio_memcg_kmem(folio))
3457 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
b4e0b68f
MS
3458 else
3459 css_get_many(&memcg->css, nr - 1);
ca3e0214 3460}
ca3e0214 3461
e55b9f96 3462#ifdef CONFIG_SWAP
02491447
DN
3463/**
3464 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3465 * @entry: swap entry to be moved
3466 * @from: mem_cgroup which the entry is moved from
3467 * @to: mem_cgroup which the entry is moved to
3468 *
3469 * It succeeds only when the swap_cgroup's record for this entry is the same
3470 * as the mem_cgroup's id of @from.
3471 *
3472 * Returns 0 on success, -EINVAL on failure.
3473 *
3e32cb2e 3474 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3475 * both res and memsw, and called css_get().
3476 */
3477static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3478 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3479{
3480 unsigned short old_id, new_id;
3481
34c00c31
LZ
3482 old_id = mem_cgroup_id(from);
3483 new_id = mem_cgroup_id(to);
02491447
DN
3484
3485 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3486 mod_memcg_state(from, MEMCG_SWAP, -1);
3487 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3488 return 0;
3489 }
3490 return -EINVAL;
3491}
3492#else
3493static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3494 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3495{
3496 return -EINVAL;
3497}
8c7c6e34 3498#endif
d13d1443 3499
bbec2e15 3500static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3501
bbec2e15
RG
3502static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3503 unsigned long max, bool memsw)
628f4235 3504{
3e32cb2e 3505 bool enlarge = false;
bb4a7ea2 3506 bool drained = false;
3e32cb2e 3507 int ret;
c054a78c
YZ
3508 bool limits_invariant;
3509 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3510
3e32cb2e 3511 do {
628f4235
KH
3512 if (signal_pending(current)) {
3513 ret = -EINTR;
3514 break;
3515 }
3e32cb2e 3516
bbec2e15 3517 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3518 /*
3519 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3520 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3521 */
15b42562 3522 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3523 max <= memcg->memsw.max;
c054a78c 3524 if (!limits_invariant) {
bbec2e15 3525 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3526 ret = -EINVAL;
8c7c6e34
KH
3527 break;
3528 }
bbec2e15 3529 if (max > counter->max)
3e32cb2e 3530 enlarge = true;
bbec2e15
RG
3531 ret = page_counter_set_max(counter, max);
3532 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3533
3534 if (!ret)
3535 break;
3536
bb4a7ea2
SB
3537 if (!drained) {
3538 drain_all_stock(memcg);
3539 drained = true;
3540 continue;
3541 }
3542
73b73bac 3543 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3544 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
1ab5c056
AR
3545 ret = -EBUSY;
3546 break;
3547 }
3548 } while (true);
3e32cb2e 3549
3c11ecf4
KH
3550 if (!ret && enlarge)
3551 memcg_oom_recover(memcg);
3e32cb2e 3552
628f4235
KH
3553 return ret;
3554}
3555
ef8f2327 3556unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3557 gfp_t gfp_mask,
3558 unsigned long *total_scanned)
3559{
3560 unsigned long nr_reclaimed = 0;
ef8f2327 3561 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3562 unsigned long reclaimed;
3563 int loop = 0;
ef8f2327 3564 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3565 unsigned long excess;
0608f43d 3566
e4dde56c
YZ
3567 if (lru_gen_enabled())
3568 return 0;
3569
0608f43d
AM
3570 if (order > 0)
3571 return 0;
3572
2ab082ba 3573 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
d6507ff5
MH
3574
3575 /*
3576 * Do not even bother to check the largest node if the root
3577 * is empty. Do it lockless to prevent lock bouncing. Races
3578 * are acceptable as soft limit is best effort anyway.
3579 */
bfc7228b 3580 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3581 return 0;
3582
0608f43d
AM
3583 /*
3584 * This loop can run a while, specially if mem_cgroup's continuously
3585 * keep exceeding their soft limit and putting the system under
3586 * pressure
3587 */
3588 do {
3589 if (next_mz)
3590 mz = next_mz;
3591 else
3592 mz = mem_cgroup_largest_soft_limit_node(mctz);
3593 if (!mz)
3594 break;
3595
ef8f2327 3596 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
d8f65338 3597 gfp_mask, total_scanned);
0608f43d 3598 nr_reclaimed += reclaimed;
0a31bc97 3599 spin_lock_irq(&mctz->lock);
0608f43d
AM
3600
3601 /*
3602 * If we failed to reclaim anything from this memory cgroup
3603 * it is time to move on to the next cgroup
3604 */
3605 next_mz = NULL;
bc2f2e7f
VD
3606 if (!reclaimed)
3607 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3608
3e32cb2e 3609 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3610 /*
3611 * One school of thought says that we should not add
3612 * back the node to the tree if reclaim returns 0.
3613 * But our reclaim could return 0, simply because due
3614 * to priority we are exposing a smaller subset of
3615 * memory to reclaim from. Consider this as a longer
3616 * term TODO.
3617 */
3618 /* If excess == 0, no tree ops */
cf2c8127 3619 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3620 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3621 css_put(&mz->memcg->css);
3622 loop++;
3623 /*
3624 * Could not reclaim anything and there are no more
3625 * mem cgroups to try or we seem to be looping without
3626 * reclaiming anything.
3627 */
3628 if (!nr_reclaimed &&
3629 (next_mz == NULL ||
3630 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3631 break;
3632 } while (!nr_reclaimed);
3633 if (next_mz)
3634 css_put(&next_mz->memcg->css);
3635 return nr_reclaimed;
3636}
3637
c26251f9 3638/*
51038171 3639 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3640 *
3641 * Caller is responsible for holding css reference for memcg.
3642 */
3643static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3644{
d977aa93 3645 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3646
c1e862c1
KH
3647 /* we call try-to-free pages for make this cgroup empty */
3648 lru_add_drain_all();
d12c60f6
JS
3649
3650 drain_all_stock(memcg);
3651
f817ed48 3652 /* try to free all pages in this cgroup */
3e32cb2e 3653 while (nr_retries && page_counter_read(&memcg->memory)) {
c26251f9
MH
3654 if (signal_pending(current))
3655 return -EINTR;
3656
73b73bac 3657 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3658 MEMCG_RECLAIM_MAY_SWAP))
f817ed48 3659 nr_retries--;
f817ed48 3660 }
ab5196c2
MH
3661
3662 return 0;
cc847582
KH
3663}
3664
6770c64e
TH
3665static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3666 char *buf, size_t nbytes,
3667 loff_t off)
c1e862c1 3668{
6770c64e 3669 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3670
d8423011
MH
3671 if (mem_cgroup_is_root(memcg))
3672 return -EINVAL;
6770c64e 3673 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3674}
3675
182446d0
TH
3676static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3677 struct cftype *cft)
18f59ea7 3678{
bef8620c 3679 return 1;
18f59ea7
BS
3680}
3681
182446d0
TH
3682static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3683 struct cftype *cft, u64 val)
18f59ea7 3684{
bef8620c 3685 if (val == 1)
0b8f73e1 3686 return 0;
567fb435 3687
bef8620c
RG
3688 pr_warn_once("Non-hierarchical mode is deprecated. "
3689 "Please report your usecase to linux-mm@kvack.org if you "
3690 "depend on this functionality.\n");
567fb435 3691
bef8620c 3692 return -EINVAL;
18f59ea7
BS
3693}
3694
6f646156 3695static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3696{
42a30035 3697 unsigned long val;
ce00a967 3698
3e32cb2e 3699 if (mem_cgroup_is_root(memcg)) {
a2174e95
YA
3700 /*
3701 * We can reach here from irq context through:
3702 * uncharge_batch()
3703 * |--memcg_check_events()
3704 * |--mem_cgroup_threshold()
3705 * |--__mem_cgroup_threshold()
3706 * |--mem_cgroup_usage
3707 *
3708 * rstat flushing is an expensive operation that should not be
3709 * done from irq context; use stale stats in this case.
3710 * Arguably, usage threshold events are not reliable on the root
3711 * memcg anyway since its usage is ill-defined.
9fad9aee
YA
3712 *
3713 * Additionally, other call paths through memcg_check_events()
3714 * disable irqs, so make sure we are flushing stats atomically.
a2174e95
YA
3715 */
3716 if (in_task())
9fad9aee 3717 mem_cgroup_flush_stats_atomic();
0d1c2072 3718 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3719 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3720 if (swap)
3721 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3722 } else {
ce00a967 3723 if (!swap)
3e32cb2e 3724 val = page_counter_read(&memcg->memory);
ce00a967 3725 else
3e32cb2e 3726 val = page_counter_read(&memcg->memsw);
ce00a967 3727 }
c12176d3 3728 return val;
ce00a967
JW
3729}
3730
3e32cb2e
JW
3731enum {
3732 RES_USAGE,
3733 RES_LIMIT,
3734 RES_MAX_USAGE,
3735 RES_FAILCNT,
3736 RES_SOFT_LIMIT,
3737};
ce00a967 3738
791badbd 3739static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3740 struct cftype *cft)
8cdea7c0 3741{
182446d0 3742 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3743 struct page_counter *counter;
af36f906 3744
3e32cb2e 3745 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3746 case _MEM:
3e32cb2e
JW
3747 counter = &memcg->memory;
3748 break;
8c7c6e34 3749 case _MEMSWAP:
3e32cb2e
JW
3750 counter = &memcg->memsw;
3751 break;
510fc4e1 3752 case _KMEM:
3e32cb2e 3753 counter = &memcg->kmem;
510fc4e1 3754 break;
d55f90bf 3755 case _TCP:
0db15298 3756 counter = &memcg->tcpmem;
d55f90bf 3757 break;
8c7c6e34
KH
3758 default:
3759 BUG();
8c7c6e34 3760 }
3e32cb2e
JW
3761
3762 switch (MEMFILE_ATTR(cft->private)) {
3763 case RES_USAGE:
3764 if (counter == &memcg->memory)
c12176d3 3765 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3766 if (counter == &memcg->memsw)
c12176d3 3767 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3768 return (u64)page_counter_read(counter) * PAGE_SIZE;
3769 case RES_LIMIT:
bbec2e15 3770 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3771 case RES_MAX_USAGE:
3772 return (u64)counter->watermark * PAGE_SIZE;
3773 case RES_FAILCNT:
3774 return counter->failcnt;
3775 case RES_SOFT_LIMIT:
2178e20c 3776 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3e32cb2e
JW
3777 default:
3778 BUG();
3779 }
8cdea7c0 3780}
510fc4e1 3781
6b0ba2ab
FS
3782/*
3783 * This function doesn't do anything useful. Its only job is to provide a read
3784 * handler for a file so that cgroup_file_mode() will add read permissions.
3785 */
3786static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3787 __always_unused void *v)
3788{
3789 return -EINVAL;
3790}
3791
84c07d11 3792#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3793static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3794{
bf4f0599 3795 struct obj_cgroup *objcg;
d6441637 3796
9c94bef9 3797 if (mem_cgroup_kmem_disabled())
b313aeee
VD
3798 return 0;
3799
da0efe30
MS
3800 if (unlikely(mem_cgroup_is_root(memcg)))
3801 return 0;
d6441637 3802
bf4f0599 3803 objcg = obj_cgroup_alloc();
f9c69d63 3804 if (!objcg)
bf4f0599 3805 return -ENOMEM;
f9c69d63 3806
bf4f0599
RG
3807 objcg->memcg = memcg;
3808 rcu_assign_pointer(memcg->objcg, objcg);
3809
f7a449f7 3810 static_branch_enable(&memcg_kmem_online_key);
d648bcc7 3811
f9c69d63 3812 memcg->kmemcg_id = memcg->id.id;
0b8f73e1
JW
3813
3814 return 0;
d6441637
VD
3815}
3816
8e0a8912
JW
3817static void memcg_offline_kmem(struct mem_cgroup *memcg)
3818{
64268868 3819 struct mem_cgroup *parent;
8e0a8912 3820
9c94bef9 3821 if (mem_cgroup_kmem_disabled())
da0efe30
MS
3822 return;
3823
3824 if (unlikely(mem_cgroup_is_root(memcg)))
8e0a8912 3825 return;
9855609b 3826
8e0a8912
JW
3827 parent = parent_mem_cgroup(memcg);
3828 if (!parent)
3829 parent = root_mem_cgroup;
3830
bf4f0599 3831 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a 3832
8e0a8912 3833 /*
64268868
MS
3834 * After we have finished memcg_reparent_objcgs(), all list_lrus
3835 * corresponding to this cgroup are guaranteed to remain empty.
3836 * The ordering is imposed by list_lru_node->lock taken by
1f391eb2 3837 * memcg_reparent_list_lrus().
8e0a8912 3838 */
1f391eb2 3839 memcg_reparent_list_lrus(memcg, parent);
8e0a8912 3840}
d6441637 3841#else
0b8f73e1 3842static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3843{
3844 return 0;
3845}
3846static void memcg_offline_kmem(struct mem_cgroup *memcg)
3847{
3848}
84c07d11 3849#endif /* CONFIG_MEMCG_KMEM */
127424c8 3850
bbec2e15 3851static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3852{
3853 int ret;
3854
bbec2e15 3855 mutex_lock(&memcg_max_mutex);
d55f90bf 3856
bbec2e15 3857 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3858 if (ret)
3859 goto out;
3860
0db15298 3861 if (!memcg->tcpmem_active) {
d55f90bf
VD
3862 /*
3863 * The active flag needs to be written after the static_key
3864 * update. This is what guarantees that the socket activation
2d758073
JW
3865 * function is the last one to run. See mem_cgroup_sk_alloc()
3866 * for details, and note that we don't mark any socket as
3867 * belonging to this memcg until that flag is up.
d55f90bf
VD
3868 *
3869 * We need to do this, because static_keys will span multiple
3870 * sites, but we can't control their order. If we mark a socket
3871 * as accounted, but the accounting functions are not patched in
3872 * yet, we'll lose accounting.
3873 *
2d758073 3874 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3875 * because when this value change, the code to process it is not
3876 * patched in yet.
3877 */
3878 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3879 memcg->tcpmem_active = true;
d55f90bf
VD
3880 }
3881out:
bbec2e15 3882 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3883 return ret;
3884}
d55f90bf 3885
628f4235
KH
3886/*
3887 * The user of this function is...
3888 * RES_LIMIT.
3889 */
451af504
TH
3890static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3891 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3892{
451af504 3893 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3894 unsigned long nr_pages;
628f4235
KH
3895 int ret;
3896
451af504 3897 buf = strstrip(buf);
650c5e56 3898 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3899 if (ret)
3900 return ret;
af36f906 3901
3e32cb2e 3902 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3903 case RES_LIMIT:
4b3bde4c
BS
3904 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3905 ret = -EINVAL;
3906 break;
3907 }
3e32cb2e
JW
3908 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3909 case _MEM:
bbec2e15 3910 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3911 break;
3e32cb2e 3912 case _MEMSWAP:
bbec2e15 3913 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3914 break;
3e32cb2e 3915 case _KMEM:
58056f77
SB
3916 /* kmem.limit_in_bytes is deprecated. */
3917 ret = -EOPNOTSUPP;
3e32cb2e 3918 break;
d55f90bf 3919 case _TCP:
bbec2e15 3920 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3921 break;
3e32cb2e 3922 }
296c81d8 3923 break;
3e32cb2e 3924 case RES_SOFT_LIMIT:
2343e88d
SAS
3925 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3926 ret = -EOPNOTSUPP;
3927 } else {
2178e20c 3928 WRITE_ONCE(memcg->soft_limit, nr_pages);
2343e88d
SAS
3929 ret = 0;
3930 }
628f4235
KH
3931 break;
3932 }
451af504 3933 return ret ?: nbytes;
8cdea7c0
BS
3934}
3935
6770c64e
TH
3936static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3937 size_t nbytes, loff_t off)
c84872e1 3938{
6770c64e 3939 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3940 struct page_counter *counter;
c84872e1 3941
3e32cb2e
JW
3942 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3943 case _MEM:
3944 counter = &memcg->memory;
3945 break;
3946 case _MEMSWAP:
3947 counter = &memcg->memsw;
3948 break;
3949 case _KMEM:
3950 counter = &memcg->kmem;
3951 break;
d55f90bf 3952 case _TCP:
0db15298 3953 counter = &memcg->tcpmem;
d55f90bf 3954 break;
3e32cb2e
JW
3955 default:
3956 BUG();
3957 }
af36f906 3958
3e32cb2e 3959 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3960 case RES_MAX_USAGE:
3e32cb2e 3961 page_counter_reset_watermark(counter);
29f2a4da
PE
3962 break;
3963 case RES_FAILCNT:
3e32cb2e 3964 counter->failcnt = 0;
29f2a4da 3965 break;
3e32cb2e
JW
3966 default:
3967 BUG();
29f2a4da 3968 }
f64c3f54 3969
6770c64e 3970 return nbytes;
c84872e1
PE
3971}
3972
182446d0 3973static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3974 struct cftype *cft)
3975{
182446d0 3976 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3977}
3978
02491447 3979#ifdef CONFIG_MMU
182446d0 3980static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3981 struct cftype *cft, u64 val)
3982{
182446d0 3983 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3984
da34a848
JW
3985 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3986 "Please report your usecase to linux-mm@kvack.org if you "
3987 "depend on this functionality.\n");
3988
1dfab5ab 3989 if (val & ~MOVE_MASK)
7dc74be0 3990 return -EINVAL;
ee5e8472 3991
7dc74be0 3992 /*
ee5e8472
GC
3993 * No kind of locking is needed in here, because ->can_attach() will
3994 * check this value once in the beginning of the process, and then carry
3995 * on with stale data. This means that changes to this value will only
3996 * affect task migrations starting after the change.
7dc74be0 3997 */
c0ff4b85 3998 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3999 return 0;
4000}
02491447 4001#else
182446d0 4002static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
4003 struct cftype *cft, u64 val)
4004{
4005 return -ENOSYS;
4006}
4007#endif
7dc74be0 4008
406eb0c9 4009#ifdef CONFIG_NUMA
113b7dfd
JW
4010
4011#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4012#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4013#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
4014
4015static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 4016 int nid, unsigned int lru_mask, bool tree)
113b7dfd 4017{
867e5e1d 4018 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
4019 unsigned long nr = 0;
4020 enum lru_list lru;
4021
4022 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4023
4024 for_each_lru(lru) {
4025 if (!(BIT(lru) & lru_mask))
4026 continue;
dd8657b6
SB
4027 if (tree)
4028 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4029 else
4030 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
4031 }
4032 return nr;
4033}
4034
4035static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
4036 unsigned int lru_mask,
4037 bool tree)
113b7dfd
JW
4038{
4039 unsigned long nr = 0;
4040 enum lru_list lru;
4041
4042 for_each_lru(lru) {
4043 if (!(BIT(lru) & lru_mask))
4044 continue;
dd8657b6
SB
4045 if (tree)
4046 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4047 else
4048 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
4049 }
4050 return nr;
4051}
4052
2da8ca82 4053static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4054{
25485de6
GT
4055 struct numa_stat {
4056 const char *name;
4057 unsigned int lru_mask;
4058 };
4059
4060 static const struct numa_stat stats[] = {
4061 { "total", LRU_ALL },
4062 { "file", LRU_ALL_FILE },
4063 { "anon", LRU_ALL_ANON },
4064 { "unevictable", BIT(LRU_UNEVICTABLE) },
4065 };
4066 const struct numa_stat *stat;
406eb0c9 4067 int nid;
aa9694bb 4068 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 4069
fd25a9e0 4070 mem_cgroup_flush_stats();
2d146aa3 4071
25485de6 4072 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4073 seq_printf(m, "%s=%lu", stat->name,
4074 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4075 false));
4076 for_each_node_state(nid, N_MEMORY)
4077 seq_printf(m, " N%d=%lu", nid,
4078 mem_cgroup_node_nr_lru_pages(memcg, nid,
4079 stat->lru_mask, false));
25485de6 4080 seq_putc(m, '\n');
406eb0c9 4081 }
406eb0c9 4082
071aee13 4083 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4084
4085 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4086 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4087 true));
4088 for_each_node_state(nid, N_MEMORY)
4089 seq_printf(m, " N%d=%lu", nid,
4090 mem_cgroup_node_nr_lru_pages(memcg, nid,
4091 stat->lru_mask, true));
071aee13 4092 seq_putc(m, '\n');
406eb0c9 4093 }
406eb0c9 4094
406eb0c9
YH
4095 return 0;
4096}
4097#endif /* CONFIG_NUMA */
4098
c8713d0b 4099static const unsigned int memcg1_stats[] = {
0d1c2072 4100 NR_FILE_PAGES,
be5d0a74 4101 NR_ANON_MAPPED,
468c3982
JW
4102#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4103 NR_ANON_THPS,
4104#endif
c8713d0b
JW
4105 NR_SHMEM,
4106 NR_FILE_MAPPED,
4107 NR_FILE_DIRTY,
4108 NR_WRITEBACK,
e09b0b61
YS
4109 WORKINGSET_REFAULT_ANON,
4110 WORKINGSET_REFAULT_FILE,
c8713d0b
JW
4111 MEMCG_SWAP,
4112};
4113
4114static const char *const memcg1_stat_names[] = {
4115 "cache",
4116 "rss",
468c3982 4117#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4118 "rss_huge",
468c3982 4119#endif
c8713d0b
JW
4120 "shmem",
4121 "mapped_file",
4122 "dirty",
4123 "writeback",
e09b0b61
YS
4124 "workingset_refault_anon",
4125 "workingset_refault_file",
c8713d0b
JW
4126 "swap",
4127};
4128
df0e53d0 4129/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4130static const unsigned int memcg1_events[] = {
df0e53d0
JW
4131 PGPGIN,
4132 PGPGOUT,
4133 PGFAULT,
4134 PGMAJFAULT,
4135};
4136
2da8ca82 4137static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4138{
aa9694bb 4139 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4140 unsigned long memory, memsw;
af7c4b0e
JW
4141 struct mem_cgroup *mi;
4142 unsigned int i;
406eb0c9 4143
71cd3113 4144 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4145
fd25a9e0 4146 mem_cgroup_flush_stats();
2d146aa3 4147
71cd3113 4148 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4149 unsigned long nr;
4150
71cd3113 4151 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4152 continue;
468c3982 4153 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
e09b0b61
YS
4154 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4155 nr * memcg_page_state_unit(memcg1_stats[i]));
1dd3a273 4156 }
7b854121 4157
df0e53d0 4158 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4159 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4160 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4161
4162 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4163 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4164 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4165 PAGE_SIZE);
af7c4b0e 4166
14067bb3 4167 /* Hierarchical information */
3e32cb2e
JW
4168 memory = memsw = PAGE_COUNTER_MAX;
4169 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4170 memory = min(memory, READ_ONCE(mi->memory.max));
4171 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4172 }
3e32cb2e
JW
4173 seq_printf(m, "hierarchical_memory_limit %llu\n",
4174 (u64)memory * PAGE_SIZE);
7941d214 4175 if (do_memsw_account())
3e32cb2e
JW
4176 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4177 (u64)memsw * PAGE_SIZE);
7f016ee8 4178
8de7ecc6 4179 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4180 unsigned long nr;
4181
71cd3113 4182 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4183 continue;
7de2e9f1 4184 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4185 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
e09b0b61 4186 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
af7c4b0e
JW
4187 }
4188
8de7ecc6 4189 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4190 seq_printf(m, "total_%s %llu\n",
4191 vm_event_name(memcg1_events[i]),
dd923990 4192 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4193
8de7ecc6 4194 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4195 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4196 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4197 PAGE_SIZE);
14067bb3 4198
7f016ee8 4199#ifdef CONFIG_DEBUG_VM
7f016ee8 4200 {
ef8f2327
MG
4201 pg_data_t *pgdat;
4202 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4203 unsigned long anon_cost = 0;
4204 unsigned long file_cost = 0;
7f016ee8 4205
ef8f2327 4206 for_each_online_pgdat(pgdat) {
a3747b53 4207 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4208
1431d4d1
JW
4209 anon_cost += mz->lruvec.anon_cost;
4210 file_cost += mz->lruvec.file_cost;
ef8f2327 4211 }
1431d4d1
JW
4212 seq_printf(m, "anon_cost %lu\n", anon_cost);
4213 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4214 }
4215#endif
4216
d2ceb9b7
KH
4217 return 0;
4218}
4219
182446d0
TH
4220static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4221 struct cftype *cft)
a7885eb8 4222{
182446d0 4223 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4224
1f4c025b 4225 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4226}
4227
182446d0
TH
4228static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4229 struct cftype *cft, u64 val)
a7885eb8 4230{
182446d0 4231 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4232
37bc3cb9 4233 if (val > 200)
a7885eb8
KM
4234 return -EINVAL;
4235
a4792030 4236 if (!mem_cgroup_is_root(memcg))
82b3aa26 4237 WRITE_ONCE(memcg->swappiness, val);
3dae7fec 4238 else
82b3aa26 4239 WRITE_ONCE(vm_swappiness, val);
068b38c1 4240
a7885eb8
KM
4241 return 0;
4242}
4243
2e72b634
KS
4244static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4245{
4246 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4247 unsigned long usage;
2e72b634
KS
4248 int i;
4249
4250 rcu_read_lock();
4251 if (!swap)
2c488db2 4252 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4253 else
2c488db2 4254 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4255
4256 if (!t)
4257 goto unlock;
4258
ce00a967 4259 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4260
4261 /*
748dad36 4262 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4263 * If it's not true, a threshold was crossed after last
4264 * call of __mem_cgroup_threshold().
4265 */
5407a562 4266 i = t->current_threshold;
2e72b634
KS
4267
4268 /*
4269 * Iterate backward over array of thresholds starting from
4270 * current_threshold and check if a threshold is crossed.
4271 * If none of thresholds below usage is crossed, we read
4272 * only one element of the array here.
4273 */
4274 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4275 eventfd_signal(t->entries[i].eventfd, 1);
4276
4277 /* i = current_threshold + 1 */
4278 i++;
4279
4280 /*
4281 * Iterate forward over array of thresholds starting from
4282 * current_threshold+1 and check if a threshold is crossed.
4283 * If none of thresholds above usage is crossed, we read
4284 * only one element of the array here.
4285 */
4286 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4287 eventfd_signal(t->entries[i].eventfd, 1);
4288
4289 /* Update current_threshold */
5407a562 4290 t->current_threshold = i - 1;
2e72b634
KS
4291unlock:
4292 rcu_read_unlock();
4293}
4294
4295static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4296{
ad4ca5f4
KS
4297 while (memcg) {
4298 __mem_cgroup_threshold(memcg, false);
7941d214 4299 if (do_memsw_account())
ad4ca5f4
KS
4300 __mem_cgroup_threshold(memcg, true);
4301
4302 memcg = parent_mem_cgroup(memcg);
4303 }
2e72b634
KS
4304}
4305
4306static int compare_thresholds(const void *a, const void *b)
4307{
4308 const struct mem_cgroup_threshold *_a = a;
4309 const struct mem_cgroup_threshold *_b = b;
4310
2bff24a3
GT
4311 if (_a->threshold > _b->threshold)
4312 return 1;
4313
4314 if (_a->threshold < _b->threshold)
4315 return -1;
4316
4317 return 0;
2e72b634
KS
4318}
4319
c0ff4b85 4320static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4321{
4322 struct mem_cgroup_eventfd_list *ev;
4323
2bcf2e92
MH
4324 spin_lock(&memcg_oom_lock);
4325
c0ff4b85 4326 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4327 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4328
4329 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4330 return 0;
4331}
4332
c0ff4b85 4333static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4334{
7d74b06f
KH
4335 struct mem_cgroup *iter;
4336
c0ff4b85 4337 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4338 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4339}
4340
59b6f873 4341static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4342 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4343{
2c488db2
KS
4344 struct mem_cgroup_thresholds *thresholds;
4345 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4346 unsigned long threshold;
4347 unsigned long usage;
2c488db2 4348 int i, size, ret;
2e72b634 4349
650c5e56 4350 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4351 if (ret)
4352 return ret;
4353
4354 mutex_lock(&memcg->thresholds_lock);
2c488db2 4355
05b84301 4356 if (type == _MEM) {
2c488db2 4357 thresholds = &memcg->thresholds;
ce00a967 4358 usage = mem_cgroup_usage(memcg, false);
05b84301 4359 } else if (type == _MEMSWAP) {
2c488db2 4360 thresholds = &memcg->memsw_thresholds;
ce00a967 4361 usage = mem_cgroup_usage(memcg, true);
05b84301 4362 } else
2e72b634
KS
4363 BUG();
4364
2e72b634 4365 /* Check if a threshold crossed before adding a new one */
2c488db2 4366 if (thresholds->primary)
2e72b634
KS
4367 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4368
2c488db2 4369 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4370
4371 /* Allocate memory for new array of thresholds */
67b8046f 4372 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4373 if (!new) {
2e72b634
KS
4374 ret = -ENOMEM;
4375 goto unlock;
4376 }
2c488db2 4377 new->size = size;
2e72b634
KS
4378
4379 /* Copy thresholds (if any) to new array */
e90342e6
GS
4380 if (thresholds->primary)
4381 memcpy(new->entries, thresholds->primary->entries,
4382 flex_array_size(new, entries, size - 1));
2c488db2 4383
2e72b634 4384 /* Add new threshold */
2c488db2
KS
4385 new->entries[size - 1].eventfd = eventfd;
4386 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4387
4388 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4389 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4390 compare_thresholds, NULL);
4391
4392 /* Find current threshold */
2c488db2 4393 new->current_threshold = -1;
2e72b634 4394 for (i = 0; i < size; i++) {
748dad36 4395 if (new->entries[i].threshold <= usage) {
2e72b634 4396 /*
2c488db2
KS
4397 * new->current_threshold will not be used until
4398 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4399 * it here.
4400 */
2c488db2 4401 ++new->current_threshold;
748dad36
SZ
4402 } else
4403 break;
2e72b634
KS
4404 }
4405
2c488db2
KS
4406 /* Free old spare buffer and save old primary buffer as spare */
4407 kfree(thresholds->spare);
4408 thresholds->spare = thresholds->primary;
4409
4410 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4411
907860ed 4412 /* To be sure that nobody uses thresholds */
2e72b634
KS
4413 synchronize_rcu();
4414
2e72b634
KS
4415unlock:
4416 mutex_unlock(&memcg->thresholds_lock);
4417
4418 return ret;
4419}
4420
59b6f873 4421static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4422 struct eventfd_ctx *eventfd, const char *args)
4423{
59b6f873 4424 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4425}
4426
59b6f873 4427static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4428 struct eventfd_ctx *eventfd, const char *args)
4429{
59b6f873 4430 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4431}
4432
59b6f873 4433static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4434 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4435{
2c488db2
KS
4436 struct mem_cgroup_thresholds *thresholds;
4437 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4438 unsigned long usage;
7d36665a 4439 int i, j, size, entries;
2e72b634
KS
4440
4441 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4442
4443 if (type == _MEM) {
2c488db2 4444 thresholds = &memcg->thresholds;
ce00a967 4445 usage = mem_cgroup_usage(memcg, false);
05b84301 4446 } else if (type == _MEMSWAP) {
2c488db2 4447 thresholds = &memcg->memsw_thresholds;
ce00a967 4448 usage = mem_cgroup_usage(memcg, true);
05b84301 4449 } else
2e72b634
KS
4450 BUG();
4451
371528ca
AV
4452 if (!thresholds->primary)
4453 goto unlock;
4454
2e72b634
KS
4455 /* Check if a threshold crossed before removing */
4456 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4457
4458 /* Calculate new number of threshold */
7d36665a 4459 size = entries = 0;
2c488db2
KS
4460 for (i = 0; i < thresholds->primary->size; i++) {
4461 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4462 size++;
7d36665a
CX
4463 else
4464 entries++;
2e72b634
KS
4465 }
4466
2c488db2 4467 new = thresholds->spare;
907860ed 4468
7d36665a
CX
4469 /* If no items related to eventfd have been cleared, nothing to do */
4470 if (!entries)
4471 goto unlock;
4472
2e72b634
KS
4473 /* Set thresholds array to NULL if we don't have thresholds */
4474 if (!size) {
2c488db2
KS
4475 kfree(new);
4476 new = NULL;
907860ed 4477 goto swap_buffers;
2e72b634
KS
4478 }
4479
2c488db2 4480 new->size = size;
2e72b634
KS
4481
4482 /* Copy thresholds and find current threshold */
2c488db2
KS
4483 new->current_threshold = -1;
4484 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4485 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4486 continue;
4487
2c488db2 4488 new->entries[j] = thresholds->primary->entries[i];
748dad36 4489 if (new->entries[j].threshold <= usage) {
2e72b634 4490 /*
2c488db2 4491 * new->current_threshold will not be used
2e72b634
KS
4492 * until rcu_assign_pointer(), so it's safe to increment
4493 * it here.
4494 */
2c488db2 4495 ++new->current_threshold;
2e72b634
KS
4496 }
4497 j++;
4498 }
4499
907860ed 4500swap_buffers:
2c488db2
KS
4501 /* Swap primary and spare array */
4502 thresholds->spare = thresholds->primary;
8c757763 4503
2c488db2 4504 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4505
907860ed 4506 /* To be sure that nobody uses thresholds */
2e72b634 4507 synchronize_rcu();
6611d8d7
MC
4508
4509 /* If all events are unregistered, free the spare array */
4510 if (!new) {
4511 kfree(thresholds->spare);
4512 thresholds->spare = NULL;
4513 }
371528ca 4514unlock:
2e72b634 4515 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4516}
c1e862c1 4517
59b6f873 4518static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4519 struct eventfd_ctx *eventfd)
4520{
59b6f873 4521 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4522}
4523
59b6f873 4524static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4525 struct eventfd_ctx *eventfd)
4526{
59b6f873 4527 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4528}
4529
59b6f873 4530static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4531 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4532{
9490ff27 4533 struct mem_cgroup_eventfd_list *event;
9490ff27 4534
9490ff27
KH
4535 event = kmalloc(sizeof(*event), GFP_KERNEL);
4536 if (!event)
4537 return -ENOMEM;
4538
1af8efe9 4539 spin_lock(&memcg_oom_lock);
9490ff27
KH
4540
4541 event->eventfd = eventfd;
4542 list_add(&event->list, &memcg->oom_notify);
4543
4544 /* already in OOM ? */
c2b42d3c 4545 if (memcg->under_oom)
9490ff27 4546 eventfd_signal(eventfd, 1);
1af8efe9 4547 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4548
4549 return 0;
4550}
4551
59b6f873 4552static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4553 struct eventfd_ctx *eventfd)
9490ff27 4554{
9490ff27 4555 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4556
1af8efe9 4557 spin_lock(&memcg_oom_lock);
9490ff27 4558
c0ff4b85 4559 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4560 if (ev->eventfd == eventfd) {
4561 list_del(&ev->list);
4562 kfree(ev);
4563 }
4564 }
4565
1af8efe9 4566 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4567}
4568
2da8ca82 4569static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4570{
aa9694bb 4571 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4572
17c56de6 4573 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
c2b42d3c 4574 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4575 seq_printf(sf, "oom_kill %lu\n",
4576 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4577 return 0;
4578}
4579
182446d0 4580static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4581 struct cftype *cft, u64 val)
4582{
182446d0 4583 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4584
4585 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4586 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4587 return -EINVAL;
4588
17c56de6 4589 WRITE_ONCE(memcg->oom_kill_disable, val);
4d845ebf 4590 if (!val)
c0ff4b85 4591 memcg_oom_recover(memcg);
3dae7fec 4592
3c11ecf4
KH
4593 return 0;
4594}
4595
52ebea74
TH
4596#ifdef CONFIG_CGROUP_WRITEBACK
4597
3a8e9ac8
TH
4598#include <trace/events/writeback.h>
4599
841710aa
TH
4600static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4601{
4602 return wb_domain_init(&memcg->cgwb_domain, gfp);
4603}
4604
4605static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4606{
4607 wb_domain_exit(&memcg->cgwb_domain);
4608}
4609
2529bb3a
TH
4610static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4611{
4612 wb_domain_size_changed(&memcg->cgwb_domain);
4613}
4614
841710aa
TH
4615struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4616{
4617 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4618
4619 if (!memcg->css.parent)
4620 return NULL;
4621
4622 return &memcg->cgwb_domain;
4623}
4624
c2aa723a
TH
4625/**
4626 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4627 * @wb: bdi_writeback in question
c5edf9cd
TH
4628 * @pfilepages: out parameter for number of file pages
4629 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4630 * @pdirty: out parameter for number of dirty pages
4631 * @pwriteback: out parameter for number of pages under writeback
4632 *
c5edf9cd
TH
4633 * Determine the numbers of file, headroom, dirty, and writeback pages in
4634 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4635 * is a bit more involved.
c2aa723a 4636 *
c5edf9cd
TH
4637 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4638 * headroom is calculated as the lowest headroom of itself and the
4639 * ancestors. Note that this doesn't consider the actual amount of
4640 * available memory in the system. The caller should further cap
4641 * *@pheadroom accordingly.
c2aa723a 4642 */
c5edf9cd
TH
4643void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4644 unsigned long *pheadroom, unsigned long *pdirty,
4645 unsigned long *pwriteback)
c2aa723a
TH
4646{
4647 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4648 struct mem_cgroup *parent;
c2aa723a 4649
9fad9aee
YA
4650 /*
4651 * wb_writeback() takes a spinlock and calls
4652 * wb_over_bg_thresh()->mem_cgroup_wb_stats(). Do not sleep.
4653 */
4654 mem_cgroup_flush_stats_atomic();
c2aa723a 4655
2d146aa3
JW
4656 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4657 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4658 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4659 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4660
2d146aa3 4661 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4662 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4663 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4664 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4665 unsigned long used = page_counter_read(&memcg->memory);
4666
c5edf9cd 4667 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4668 memcg = parent;
4669 }
c2aa723a
TH
4670}
4671
97b27821
TH
4672/*
4673 * Foreign dirty flushing
4674 *
4675 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4676 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4677 * deliberate design decision because honoring per-page ownership in the
4678 * writeback path is complicated, may lead to higher CPU and IO overheads
4679 * and deemed unnecessary given that write-sharing an inode across
4680 * different cgroups isn't a common use-case.
4681 *
4682 * Combined with inode majority-writer ownership switching, this works well
4683 * enough in most cases but there are some pathological cases. For
4684 * example, let's say there are two cgroups A and B which keep writing to
4685 * different but confined parts of the same inode. B owns the inode and
4686 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4687 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4688 * triggering background writeback. A will be slowed down without a way to
4689 * make writeback of the dirty pages happen.
4690 *
f0953a1b 4691 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4692 * severely throttled after making some progress after each
f0953a1b 4693 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4694 * completely idle.
4695 *
4696 * Solving this problem completely requires matching the ownership tracking
4697 * granularities between memcg and writeback in either direction. However,
4698 * the more egregious behaviors can be avoided by simply remembering the
4699 * most recent foreign dirtying events and initiating remote flushes on
4700 * them when local writeback isn't enough to keep the memory clean enough.
4701 *
4702 * The following two functions implement such mechanism. When a foreign
4703 * page - a page whose memcg and writeback ownerships don't match - is
4704 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4705 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4706 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4707 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4708 * foreign bdi_writebacks which haven't expired. Both the numbers of
4709 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4710 * limited to MEMCG_CGWB_FRN_CNT.
4711 *
4712 * The mechanism only remembers IDs and doesn't hold any object references.
4713 * As being wrong occasionally doesn't matter, updates and accesses to the
4714 * records are lockless and racy.
4715 */
9d8053fc 4716void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
97b27821
TH
4717 struct bdi_writeback *wb)
4718{
9d8053fc 4719 struct mem_cgroup *memcg = folio_memcg(folio);
97b27821
TH
4720 struct memcg_cgwb_frn *frn;
4721 u64 now = get_jiffies_64();
4722 u64 oldest_at = now;
4723 int oldest = -1;
4724 int i;
4725
9d8053fc 4726 trace_track_foreign_dirty(folio, wb);
3a8e9ac8 4727
97b27821
TH
4728 /*
4729 * Pick the slot to use. If there is already a slot for @wb, keep
4730 * using it. If not replace the oldest one which isn't being
4731 * written out.
4732 */
4733 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4734 frn = &memcg->cgwb_frn[i];
4735 if (frn->bdi_id == wb->bdi->id &&
4736 frn->memcg_id == wb->memcg_css->id)
4737 break;
4738 if (time_before64(frn->at, oldest_at) &&
4739 atomic_read(&frn->done.cnt) == 1) {
4740 oldest = i;
4741 oldest_at = frn->at;
4742 }
4743 }
4744
4745 if (i < MEMCG_CGWB_FRN_CNT) {
4746 /*
4747 * Re-using an existing one. Update timestamp lazily to
4748 * avoid making the cacheline hot. We want them to be
4749 * reasonably up-to-date and significantly shorter than
4750 * dirty_expire_interval as that's what expires the record.
4751 * Use the shorter of 1s and dirty_expire_interval / 8.
4752 */
4753 unsigned long update_intv =
4754 min_t(unsigned long, HZ,
4755 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4756
4757 if (time_before64(frn->at, now - update_intv))
4758 frn->at = now;
4759 } else if (oldest >= 0) {
4760 /* replace the oldest free one */
4761 frn = &memcg->cgwb_frn[oldest];
4762 frn->bdi_id = wb->bdi->id;
4763 frn->memcg_id = wb->memcg_css->id;
4764 frn->at = now;
4765 }
4766}
4767
4768/* issue foreign writeback flushes for recorded foreign dirtying events */
4769void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4770{
4771 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4772 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4773 u64 now = jiffies_64;
4774 int i;
4775
4776 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4777 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4778
4779 /*
4780 * If the record is older than dirty_expire_interval,
4781 * writeback on it has already started. No need to kick it
4782 * off again. Also, don't start a new one if there's
4783 * already one in flight.
4784 */
4785 if (time_after64(frn->at, now - intv) &&
4786 atomic_read(&frn->done.cnt) == 1) {
4787 frn->at = 0;
3a8e9ac8 4788 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4789 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4790 WB_REASON_FOREIGN_FLUSH,
4791 &frn->done);
4792 }
4793 }
4794}
4795
841710aa
TH
4796#else /* CONFIG_CGROUP_WRITEBACK */
4797
4798static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4799{
4800 return 0;
4801}
4802
4803static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4804{
4805}
4806
2529bb3a
TH
4807static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4808{
4809}
4810
52ebea74
TH
4811#endif /* CONFIG_CGROUP_WRITEBACK */
4812
3bc942f3
TH
4813/*
4814 * DO NOT USE IN NEW FILES.
4815 *
4816 * "cgroup.event_control" implementation.
4817 *
4818 * This is way over-engineered. It tries to support fully configurable
4819 * events for each user. Such level of flexibility is completely
4820 * unnecessary especially in the light of the planned unified hierarchy.
4821 *
4822 * Please deprecate this and replace with something simpler if at all
4823 * possible.
4824 */
4825
79bd9814
TH
4826/*
4827 * Unregister event and free resources.
4828 *
4829 * Gets called from workqueue.
4830 */
3bc942f3 4831static void memcg_event_remove(struct work_struct *work)
79bd9814 4832{
3bc942f3
TH
4833 struct mem_cgroup_event *event =
4834 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4835 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4836
4837 remove_wait_queue(event->wqh, &event->wait);
4838
59b6f873 4839 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4840
4841 /* Notify userspace the event is going away. */
4842 eventfd_signal(event->eventfd, 1);
4843
4844 eventfd_ctx_put(event->eventfd);
4845 kfree(event);
59b6f873 4846 css_put(&memcg->css);
79bd9814
TH
4847}
4848
4849/*
a9a08845 4850 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4851 *
4852 * Called with wqh->lock held and interrupts disabled.
4853 */
ac6424b9 4854static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4855 int sync, void *key)
79bd9814 4856{
3bc942f3
TH
4857 struct mem_cgroup_event *event =
4858 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4859 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4860 __poll_t flags = key_to_poll(key);
79bd9814 4861
a9a08845 4862 if (flags & EPOLLHUP) {
79bd9814
TH
4863 /*
4864 * If the event has been detached at cgroup removal, we
4865 * can simply return knowing the other side will cleanup
4866 * for us.
4867 *
4868 * We can't race against event freeing since the other
4869 * side will require wqh->lock via remove_wait_queue(),
4870 * which we hold.
4871 */
fba94807 4872 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4873 if (!list_empty(&event->list)) {
4874 list_del_init(&event->list);
4875 /*
4876 * We are in atomic context, but cgroup_event_remove()
4877 * may sleep, so we have to call it in workqueue.
4878 */
4879 schedule_work(&event->remove);
4880 }
fba94807 4881 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4882 }
4883
4884 return 0;
4885}
4886
3bc942f3 4887static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4888 wait_queue_head_t *wqh, poll_table *pt)
4889{
3bc942f3
TH
4890 struct mem_cgroup_event *event =
4891 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4892
4893 event->wqh = wqh;
4894 add_wait_queue(wqh, &event->wait);
4895}
4896
4897/*
3bc942f3
TH
4898 * DO NOT USE IN NEW FILES.
4899 *
79bd9814
TH
4900 * Parse input and register new cgroup event handler.
4901 *
4902 * Input must be in format '<event_fd> <control_fd> <args>'.
4903 * Interpretation of args is defined by control file implementation.
4904 */
451af504
TH
4905static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4906 char *buf, size_t nbytes, loff_t off)
79bd9814 4907{
451af504 4908 struct cgroup_subsys_state *css = of_css(of);
fba94807 4909 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4910 struct mem_cgroup_event *event;
79bd9814
TH
4911 struct cgroup_subsys_state *cfile_css;
4912 unsigned int efd, cfd;
4913 struct fd efile;
4914 struct fd cfile;
4a7ba45b 4915 struct dentry *cdentry;
fba94807 4916 const char *name;
79bd9814
TH
4917 char *endp;
4918 int ret;
4919
2343e88d
SAS
4920 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4921 return -EOPNOTSUPP;
4922
451af504
TH
4923 buf = strstrip(buf);
4924
4925 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4926 if (*endp != ' ')
4927 return -EINVAL;
451af504 4928 buf = endp + 1;
79bd9814 4929
451af504 4930 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4931 if ((*endp != ' ') && (*endp != '\0'))
4932 return -EINVAL;
451af504 4933 buf = endp + 1;
79bd9814
TH
4934
4935 event = kzalloc(sizeof(*event), GFP_KERNEL);
4936 if (!event)
4937 return -ENOMEM;
4938
59b6f873 4939 event->memcg = memcg;
79bd9814 4940 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4941 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4942 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4943 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4944
4945 efile = fdget(efd);
4946 if (!efile.file) {
4947 ret = -EBADF;
4948 goto out_kfree;
4949 }
4950
4951 event->eventfd = eventfd_ctx_fileget(efile.file);
4952 if (IS_ERR(event->eventfd)) {
4953 ret = PTR_ERR(event->eventfd);
4954 goto out_put_efile;
4955 }
4956
4957 cfile = fdget(cfd);
4958 if (!cfile.file) {
4959 ret = -EBADF;
4960 goto out_put_eventfd;
4961 }
4962
4963 /* the process need read permission on control file */
4964 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4965 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4966 if (ret < 0)
4967 goto out_put_cfile;
4968
4a7ba45b
TH
4969 /*
4970 * The control file must be a regular cgroup1 file. As a regular cgroup
4971 * file can't be renamed, it's safe to access its name afterwards.
4972 */
4973 cdentry = cfile.file->f_path.dentry;
4974 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4975 ret = -EINVAL;
4976 goto out_put_cfile;
4977 }
4978
fba94807
TH
4979 /*
4980 * Determine the event callbacks and set them in @event. This used
4981 * to be done via struct cftype but cgroup core no longer knows
4982 * about these events. The following is crude but the whole thing
4983 * is for compatibility anyway.
3bc942f3
TH
4984 *
4985 * DO NOT ADD NEW FILES.
fba94807 4986 */
4a7ba45b 4987 name = cdentry->d_name.name;
fba94807
TH
4988
4989 if (!strcmp(name, "memory.usage_in_bytes")) {
4990 event->register_event = mem_cgroup_usage_register_event;
4991 event->unregister_event = mem_cgroup_usage_unregister_event;
4992 } else if (!strcmp(name, "memory.oom_control")) {
4993 event->register_event = mem_cgroup_oom_register_event;
4994 event->unregister_event = mem_cgroup_oom_unregister_event;
4995 } else if (!strcmp(name, "memory.pressure_level")) {
4996 event->register_event = vmpressure_register_event;
4997 event->unregister_event = vmpressure_unregister_event;
4998 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4999 event->register_event = memsw_cgroup_usage_register_event;
5000 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
5001 } else {
5002 ret = -EINVAL;
5003 goto out_put_cfile;
5004 }
5005
79bd9814 5006 /*
b5557c4c
TH
5007 * Verify @cfile should belong to @css. Also, remaining events are
5008 * automatically removed on cgroup destruction but the removal is
5009 * asynchronous, so take an extra ref on @css.
79bd9814 5010 */
4a7ba45b 5011 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
ec903c0c 5012 &memory_cgrp_subsys);
79bd9814 5013 ret = -EINVAL;
5a17f543 5014 if (IS_ERR(cfile_css))
79bd9814 5015 goto out_put_cfile;
5a17f543
TH
5016 if (cfile_css != css) {
5017 css_put(cfile_css);
79bd9814 5018 goto out_put_cfile;
5a17f543 5019 }
79bd9814 5020
451af504 5021 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
5022 if (ret)
5023 goto out_put_css;
5024
9965ed17 5025 vfs_poll(efile.file, &event->pt);
79bd9814 5026
4ba9515d 5027 spin_lock_irq(&memcg->event_list_lock);
fba94807 5028 list_add(&event->list, &memcg->event_list);
4ba9515d 5029 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
5030
5031 fdput(cfile);
5032 fdput(efile);
5033
451af504 5034 return nbytes;
79bd9814
TH
5035
5036out_put_css:
b5557c4c 5037 css_put(css);
79bd9814
TH
5038out_put_cfile:
5039 fdput(cfile);
5040out_put_eventfd:
5041 eventfd_ctx_put(event->eventfd);
5042out_put_efile:
5043 fdput(efile);
5044out_kfree:
5045 kfree(event);
5046
5047 return ret;
5048}
5049
c29b5b3d
MS
5050#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5051static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5052{
5053 /*
5054 * Deprecated.
df4ae285 5055 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
c29b5b3d
MS
5056 */
5057 return 0;
5058}
5059#endif
5060
241994ed 5061static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 5062 {
0eea1030 5063 .name = "usage_in_bytes",
8c7c6e34 5064 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5065 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5066 },
c84872e1
PE
5067 {
5068 .name = "max_usage_in_bytes",
8c7c6e34 5069 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5070 .write = mem_cgroup_reset,
791badbd 5071 .read_u64 = mem_cgroup_read_u64,
c84872e1 5072 },
8cdea7c0 5073 {
0eea1030 5074 .name = "limit_in_bytes",
8c7c6e34 5075 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5076 .write = mem_cgroup_write,
791badbd 5077 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5078 },
296c81d8
BS
5079 {
5080 .name = "soft_limit_in_bytes",
5081 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5082 .write = mem_cgroup_write,
791badbd 5083 .read_u64 = mem_cgroup_read_u64,
296c81d8 5084 },
8cdea7c0
BS
5085 {
5086 .name = "failcnt",
8c7c6e34 5087 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5088 .write = mem_cgroup_reset,
791badbd 5089 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5090 },
d2ceb9b7
KH
5091 {
5092 .name = "stat",
2da8ca82 5093 .seq_show = memcg_stat_show,
d2ceb9b7 5094 },
c1e862c1
KH
5095 {
5096 .name = "force_empty",
6770c64e 5097 .write = mem_cgroup_force_empty_write,
c1e862c1 5098 },
18f59ea7
BS
5099 {
5100 .name = "use_hierarchy",
5101 .write_u64 = mem_cgroup_hierarchy_write,
5102 .read_u64 = mem_cgroup_hierarchy_read,
5103 },
79bd9814 5104 {
3bc942f3 5105 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5106 .write = memcg_write_event_control,
7dbdb199 5107 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5108 },
a7885eb8
KM
5109 {
5110 .name = "swappiness",
5111 .read_u64 = mem_cgroup_swappiness_read,
5112 .write_u64 = mem_cgroup_swappiness_write,
5113 },
7dc74be0
DN
5114 {
5115 .name = "move_charge_at_immigrate",
5116 .read_u64 = mem_cgroup_move_charge_read,
5117 .write_u64 = mem_cgroup_move_charge_write,
5118 },
9490ff27
KH
5119 {
5120 .name = "oom_control",
2da8ca82 5121 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5122 .write_u64 = mem_cgroup_oom_control_write,
9490ff27 5123 },
70ddf637
AV
5124 {
5125 .name = "pressure_level",
6b0ba2ab 5126 .seq_show = mem_cgroup_dummy_seq_show,
70ddf637 5127 },
406eb0c9
YH
5128#ifdef CONFIG_NUMA
5129 {
5130 .name = "numa_stat",
2da8ca82 5131 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5132 },
5133#endif
510fc4e1
GC
5134 {
5135 .name = "kmem.limit_in_bytes",
5136 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5137 .write = mem_cgroup_write,
791badbd 5138 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5139 },
5140 {
5141 .name = "kmem.usage_in_bytes",
5142 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5143 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5144 },
5145 {
5146 .name = "kmem.failcnt",
5147 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5148 .write = mem_cgroup_reset,
791badbd 5149 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5150 },
5151 {
5152 .name = "kmem.max_usage_in_bytes",
5153 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5154 .write = mem_cgroup_reset,
791badbd 5155 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5156 },
a87425a3
YS
5157#if defined(CONFIG_MEMCG_KMEM) && \
5158 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5159 {
5160 .name = "kmem.slabinfo",
c29b5b3d 5161 .seq_show = mem_cgroup_slab_show,
749c5415
GC
5162 },
5163#endif
d55f90bf
VD
5164 {
5165 .name = "kmem.tcp.limit_in_bytes",
5166 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5167 .write = mem_cgroup_write,
5168 .read_u64 = mem_cgroup_read_u64,
5169 },
5170 {
5171 .name = "kmem.tcp.usage_in_bytes",
5172 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5173 .read_u64 = mem_cgroup_read_u64,
5174 },
5175 {
5176 .name = "kmem.tcp.failcnt",
5177 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5178 .write = mem_cgroup_reset,
5179 .read_u64 = mem_cgroup_read_u64,
5180 },
5181 {
5182 .name = "kmem.tcp.max_usage_in_bytes",
5183 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5184 .write = mem_cgroup_reset,
5185 .read_u64 = mem_cgroup_read_u64,
5186 },
6bc10349 5187 { }, /* terminate */
af36f906 5188};
8c7c6e34 5189
73f576c0
JW
5190/*
5191 * Private memory cgroup IDR
5192 *
5193 * Swap-out records and page cache shadow entries need to store memcg
5194 * references in constrained space, so we maintain an ID space that is
5195 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5196 * memory-controlled cgroups to 64k.
5197 *
b8f2935f 5198 * However, there usually are many references to the offline CSS after
73f576c0
JW
5199 * the cgroup has been destroyed, such as page cache or reclaimable
5200 * slab objects, that don't need to hang on to the ID. We want to keep
5201 * those dead CSS from occupying IDs, or we might quickly exhaust the
5202 * relatively small ID space and prevent the creation of new cgroups
5203 * even when there are much fewer than 64k cgroups - possibly none.
5204 *
5205 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5206 * be freed and recycled when it's no longer needed, which is usually
5207 * when the CSS is offlined.
5208 *
5209 * The only exception to that are records of swapped out tmpfs/shmem
5210 * pages that need to be attributed to live ancestors on swapin. But
5211 * those references are manageable from userspace.
5212 */
5213
5214static DEFINE_IDR(mem_cgroup_idr);
5215
7e97de0b
KT
5216static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5217{
5218 if (memcg->id.id > 0) {
5219 idr_remove(&mem_cgroup_idr, memcg->id.id);
5220 memcg->id.id = 0;
5221 }
5222}
5223
c1514c0a
VF
5224static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5225 unsigned int n)
73f576c0 5226{
1c2d479a 5227 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5228}
5229
615d66c3 5230static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5231{
1c2d479a 5232 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5233 mem_cgroup_id_remove(memcg);
73f576c0
JW
5234
5235 /* Memcg ID pins CSS */
5236 css_put(&memcg->css);
5237 }
5238}
5239
615d66c3
VD
5240static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5241{
5242 mem_cgroup_id_put_many(memcg, 1);
5243}
5244
73f576c0
JW
5245/**
5246 * mem_cgroup_from_id - look up a memcg from a memcg id
5247 * @id: the memcg id to look up
5248 *
5249 * Caller must hold rcu_read_lock().
5250 */
5251struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5252{
5253 WARN_ON_ONCE(!rcu_read_lock_held());
5254 return idr_find(&mem_cgroup_idr, id);
5255}
5256
c15187a4
RG
5257#ifdef CONFIG_SHRINKER_DEBUG
5258struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5259{
5260 struct cgroup *cgrp;
5261 struct cgroup_subsys_state *css;
5262 struct mem_cgroup *memcg;
5263
5264 cgrp = cgroup_get_from_id(ino);
fa7e439c 5265 if (IS_ERR(cgrp))
c0f2df49 5266 return ERR_CAST(cgrp);
c15187a4
RG
5267
5268 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5269 if (css)
5270 memcg = container_of(css, struct mem_cgroup, css);
5271 else
5272 memcg = ERR_PTR(-ENOENT);
5273
5274 cgroup_put(cgrp);
5275
5276 return memcg;
5277}
5278#endif
5279
ef8f2327 5280static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5281{
5282 struct mem_cgroup_per_node *pn;
8c9bb398
WY
5283
5284 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
6d12e2d8
KH
5285 if (!pn)
5286 return 1;
1ecaab2b 5287
7e1c0d6f
SB
5288 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5289 GFP_KERNEL_ACCOUNT);
5290 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5291 kfree(pn);
5292 return 1;
5293 }
5294
ef8f2327 5295 lruvec_init(&pn->lruvec);
ef8f2327
MG
5296 pn->memcg = memcg;
5297
54f72fe0 5298 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5299 return 0;
5300}
5301
ef8f2327 5302static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5303{
00f3ca2c
JW
5304 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5305
4eaf431f
MH
5306 if (!pn)
5307 return;
5308
7e1c0d6f 5309 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5310 kfree(pn);
1ecaab2b
KH
5311}
5312
40e952f9 5313static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5314{
c8b2a36f 5315 int node;
59927fb9 5316
c8b2a36f 5317 for_each_node(node)
ef8f2327 5318 free_mem_cgroup_per_node_info(memcg, node);
410f8e82 5319 kfree(memcg->vmstats);
871789d4 5320 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5321 kfree(memcg);
59927fb9 5322}
3afe36b1 5323
40e952f9
TE
5324static void mem_cgroup_free(struct mem_cgroup *memcg)
5325{
ec1c86b2 5326 lru_gen_exit_memcg(memcg);
40e952f9
TE
5327 memcg_wb_domain_exit(memcg);
5328 __mem_cgroup_free(memcg);
5329}
5330
0b8f73e1 5331static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5332{
d142e3e6 5333 struct mem_cgroup *memcg;
6d12e2d8 5334 int node;
97b27821 5335 int __maybe_unused i;
11d67612 5336 long error = -ENOMEM;
8cdea7c0 5337
06b2c3b0 5338 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
c0ff4b85 5339 if (!memcg)
11d67612 5340 return ERR_PTR(error);
0b8f73e1 5341
73f576c0 5342 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
be740503 5343 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
11d67612
YS
5344 if (memcg->id.id < 0) {
5345 error = memcg->id.id;
73f576c0 5346 goto fail;
11d67612 5347 }
73f576c0 5348
410f8e82
SB
5349 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5350 if (!memcg->vmstats)
5351 goto fail;
5352
3e38e0aa
RG
5353 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5354 GFP_KERNEL_ACCOUNT);
871789d4 5355 if (!memcg->vmstats_percpu)
0b8f73e1 5356 goto fail;
78fb7466 5357
3ed28fa1 5358 for_each_node(node)
ef8f2327 5359 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5360 goto fail;
f64c3f54 5361
0b8f73e1
JW
5362 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5363 goto fail;
28dbc4b6 5364
f7e1cb6e 5365 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5366 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5367 mutex_init(&memcg->thresholds_lock);
5368 spin_lock_init(&memcg->move_lock);
70ddf637 5369 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5370 INIT_LIST_HEAD(&memcg->event_list);
5371 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5372 memcg->socket_pressure = jiffies;
84c07d11 5373#ifdef CONFIG_MEMCG_KMEM
900a38f0 5374 memcg->kmemcg_id = -1;
bf4f0599 5375 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5376#endif
52ebea74
TH
5377#ifdef CONFIG_CGROUP_WRITEBACK
5378 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5379 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5380 memcg->cgwb_frn[i].done =
5381 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5382#endif
5383#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5384 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5385 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5386 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5387#endif
73f576c0 5388 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
ec1c86b2 5389 lru_gen_init_memcg(memcg);
0b8f73e1
JW
5390 return memcg;
5391fail:
7e97de0b 5392 mem_cgroup_id_remove(memcg);
40e952f9 5393 __mem_cgroup_free(memcg);
11d67612 5394 return ERR_PTR(error);
d142e3e6
GC
5395}
5396
0b8f73e1
JW
5397static struct cgroup_subsys_state * __ref
5398mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5399{
0b8f73e1 5400 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5401 struct mem_cgroup *memcg, *old_memcg;
d142e3e6 5402
b87d8cef 5403 old_memcg = set_active_memcg(parent);
0b8f73e1 5404 memcg = mem_cgroup_alloc();
b87d8cef 5405 set_active_memcg(old_memcg);
11d67612
YS
5406 if (IS_ERR(memcg))
5407 return ERR_CAST(memcg);
d142e3e6 5408
d1663a90 5409 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5410 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
f4840ccf
JW
5411#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5412 memcg->zswap_max = PAGE_COUNTER_MAX;
5413#endif
4b82ab4f 5414 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1 5415 if (parent) {
82b3aa26 5416 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
17c56de6 5417 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
bef8620c 5418
3e32cb2e 5419 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5420 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5421 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5422 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5423 } else {
8278f1c7 5424 init_memcg_events();
bef8620c
RG
5425 page_counter_init(&memcg->memory, NULL);
5426 page_counter_init(&memcg->swap, NULL);
5427 page_counter_init(&memcg->kmem, NULL);
5428 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5429
0b8f73e1
JW
5430 root_mem_cgroup = memcg;
5431 return &memcg->css;
5432 }
5433
f7e1cb6e 5434 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5435 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5436
b6c1a8af
YS
5437#if defined(CONFIG_MEMCG_KMEM)
5438 if (!cgroup_memory_nobpf)
5439 static_branch_inc(&memcg_bpf_enabled_key);
5440#endif
5441
0b8f73e1 5442 return &memcg->css;
0b8f73e1
JW
5443}
5444
73f576c0 5445static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5446{
58fa2a55
VD
5447 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5448
da0efe30
MS
5449 if (memcg_online_kmem(memcg))
5450 goto remove_id;
5451
0a4465d3 5452 /*
e4262c4f 5453 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5454 * by the time the maps are allocated. So, we allocate maps
5455 * here, when for_each_mem_cgroup() can't skip it.
5456 */
da0efe30
MS
5457 if (alloc_shrinker_info(memcg))
5458 goto offline_kmem;
0a4465d3 5459
73f576c0 5460 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5461 refcount_set(&memcg->id.ref, 1);
73f576c0 5462 css_get(css);
aa48e47e
SB
5463
5464 if (unlikely(mem_cgroup_is_root(memcg)))
5465 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5466 2UL*HZ);
e4dde56c 5467 lru_gen_online_memcg(memcg);
2f7dd7a4 5468 return 0;
da0efe30
MS
5469offline_kmem:
5470 memcg_offline_kmem(memcg);
5471remove_id:
5472 mem_cgroup_id_remove(memcg);
5473 return -ENOMEM;
8cdea7c0
BS
5474}
5475
eb95419b 5476static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5477{
eb95419b 5478 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5479 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5480
5481 /*
5482 * Unregister events and notify userspace.
5483 * Notify userspace about cgroup removing only after rmdir of cgroup
5484 * directory to avoid race between userspace and kernelspace.
5485 */
4ba9515d 5486 spin_lock_irq(&memcg->event_list_lock);
fba94807 5487 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5488 list_del_init(&event->list);
5489 schedule_work(&event->remove);
5490 }
4ba9515d 5491 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5492
bf8d5d52 5493 page_counter_set_min(&memcg->memory, 0);
23067153 5494 page_counter_set_low(&memcg->memory, 0);
63677c74 5495
567e9ab2 5496 memcg_offline_kmem(memcg);
a178015c 5497 reparent_shrinker_deferred(memcg);
52ebea74 5498 wb_memcg_offline(memcg);
e4dde56c 5499 lru_gen_offline_memcg(memcg);
73f576c0 5500
591edfb1
RG
5501 drain_all_stock(memcg);
5502
73f576c0 5503 mem_cgroup_id_put(memcg);
df878fb0
KH
5504}
5505
6df38689
VD
5506static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5507{
5508 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5509
5510 invalidate_reclaim_iterators(memcg);
e4dde56c 5511 lru_gen_release_memcg(memcg);
6df38689
VD
5512}
5513
eb95419b 5514static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5515{
eb95419b 5516 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5517 int __maybe_unused i;
c268e994 5518
97b27821
TH
5519#ifdef CONFIG_CGROUP_WRITEBACK
5520 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5521 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5522#endif
f7e1cb6e 5523 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5524 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5525
0db15298 5526 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5527 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5528
b6c1a8af
YS
5529#if defined(CONFIG_MEMCG_KMEM)
5530 if (!cgroup_memory_nobpf)
5531 static_branch_dec(&memcg_bpf_enabled_key);
5532#endif
5533
0b8f73e1
JW
5534 vmpressure_cleanup(&memcg->vmpressure);
5535 cancel_work_sync(&memcg->high_work);
5536 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5537 free_shrinker_info(memcg);
0b8f73e1 5538 mem_cgroup_free(memcg);
8cdea7c0
BS
5539}
5540
1ced953b
TH
5541/**
5542 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5543 * @css: the target css
5544 *
5545 * Reset the states of the mem_cgroup associated with @css. This is
5546 * invoked when the userland requests disabling on the default hierarchy
5547 * but the memcg is pinned through dependency. The memcg should stop
5548 * applying policies and should revert to the vanilla state as it may be
5549 * made visible again.
5550 *
5551 * The current implementation only resets the essential configurations.
5552 * This needs to be expanded to cover all the visible parts.
5553 */
5554static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5555{
5556 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5557
bbec2e15
RG
5558 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5559 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5560 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5561 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5562 page_counter_set_min(&memcg->memory, 0);
23067153 5563 page_counter_set_low(&memcg->memory, 0);
d1663a90 5564 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5565 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
4b82ab4f 5566 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5567 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5568}
5569
2d146aa3
JW
5570static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5571{
5572 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5573 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5574 struct memcg_vmstats_percpu *statc;
5575 long delta, v;
7e1c0d6f 5576 int i, nid;
2d146aa3
JW
5577
5578 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5579
5580 for (i = 0; i < MEMCG_NR_STAT; i++) {
5581 /*
5582 * Collect the aggregated propagation counts of groups
5583 * below us. We're in a per-cpu loop here and this is
5584 * a global counter, so the first cycle will get them.
5585 */
410f8e82 5586 delta = memcg->vmstats->state_pending[i];
2d146aa3 5587 if (delta)
410f8e82 5588 memcg->vmstats->state_pending[i] = 0;
2d146aa3
JW
5589
5590 /* Add CPU changes on this level since the last flush */
5591 v = READ_ONCE(statc->state[i]);
5592 if (v != statc->state_prev[i]) {
5593 delta += v - statc->state_prev[i];
5594 statc->state_prev[i] = v;
5595 }
5596
5597 if (!delta)
5598 continue;
5599
5600 /* Aggregate counts on this level and propagate upwards */
410f8e82 5601 memcg->vmstats->state[i] += delta;
2d146aa3 5602 if (parent)
410f8e82 5603 parent->vmstats->state_pending[i] += delta;
2d146aa3
JW
5604 }
5605
8278f1c7 5606 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
410f8e82 5607 delta = memcg->vmstats->events_pending[i];
2d146aa3 5608 if (delta)
410f8e82 5609 memcg->vmstats->events_pending[i] = 0;
2d146aa3
JW
5610
5611 v = READ_ONCE(statc->events[i]);
5612 if (v != statc->events_prev[i]) {
5613 delta += v - statc->events_prev[i];
5614 statc->events_prev[i] = v;
5615 }
5616
5617 if (!delta)
5618 continue;
5619
410f8e82 5620 memcg->vmstats->events[i] += delta;
2d146aa3 5621 if (parent)
410f8e82 5622 parent->vmstats->events_pending[i] += delta;
2d146aa3 5623 }
7e1c0d6f
SB
5624
5625 for_each_node_state(nid, N_MEMORY) {
5626 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5627 struct mem_cgroup_per_node *ppn = NULL;
5628 struct lruvec_stats_percpu *lstatc;
5629
5630 if (parent)
5631 ppn = parent->nodeinfo[nid];
5632
5633 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5634
5635 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5636 delta = pn->lruvec_stats.state_pending[i];
5637 if (delta)
5638 pn->lruvec_stats.state_pending[i] = 0;
5639
5640 v = READ_ONCE(lstatc->state[i]);
5641 if (v != lstatc->state_prev[i]) {
5642 delta += v - lstatc->state_prev[i];
5643 lstatc->state_prev[i] = v;
5644 }
5645
5646 if (!delta)
5647 continue;
5648
5649 pn->lruvec_stats.state[i] += delta;
5650 if (ppn)
5651 ppn->lruvec_stats.state_pending[i] += delta;
5652 }
5653 }
2d146aa3
JW
5654}
5655
02491447 5656#ifdef CONFIG_MMU
7dc74be0 5657/* Handlers for move charge at task migration. */
854ffa8d 5658static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5659{
05b84301 5660 int ret;
9476db97 5661
d0164adc
MG
5662 /* Try a single bulk charge without reclaim first, kswapd may wake */
5663 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5664 if (!ret) {
854ffa8d 5665 mc.precharge += count;
854ffa8d
DN
5666 return ret;
5667 }
9476db97 5668
3674534b 5669 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5670 while (count--) {
3674534b 5671 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5672 if (ret)
38c5d72f 5673 return ret;
854ffa8d 5674 mc.precharge++;
9476db97 5675 cond_resched();
854ffa8d 5676 }
9476db97 5677 return 0;
4ffef5fe
DN
5678}
5679
4ffef5fe
DN
5680union mc_target {
5681 struct page *page;
02491447 5682 swp_entry_t ent;
4ffef5fe
DN
5683};
5684
4ffef5fe 5685enum mc_target_type {
8d32ff84 5686 MC_TARGET_NONE = 0,
4ffef5fe 5687 MC_TARGET_PAGE,
02491447 5688 MC_TARGET_SWAP,
c733a828 5689 MC_TARGET_DEVICE,
4ffef5fe
DN
5690};
5691
90254a65
DN
5692static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5693 unsigned long addr, pte_t ptent)
4ffef5fe 5694{
25b2995a 5695 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5696
90254a65
DN
5697 if (!page || !page_mapped(page))
5698 return NULL;
5699 if (PageAnon(page)) {
1dfab5ab 5700 if (!(mc.flags & MOVE_ANON))
90254a65 5701 return NULL;
1dfab5ab
JW
5702 } else {
5703 if (!(mc.flags & MOVE_FILE))
5704 return NULL;
5705 }
90254a65
DN
5706 if (!get_page_unless_zero(page))
5707 return NULL;
5708
5709 return page;
5710}
5711
c733a828 5712#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5713static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5714 pte_t ptent, swp_entry_t *entry)
90254a65 5715{
90254a65
DN
5716 struct page *page = NULL;
5717 swp_entry_t ent = pte_to_swp_entry(ptent);
5718
9a137153 5719 if (!(mc.flags & MOVE_ANON))
90254a65 5720 return NULL;
c733a828
JG
5721
5722 /*
27674ef6
CH
5723 * Handle device private pages that are not accessible by the CPU, but
5724 * stored as special swap entries in the page table.
c733a828
JG
5725 */
5726 if (is_device_private_entry(ent)) {
af5cdaf8 5727 page = pfn_swap_entry_to_page(ent);
27674ef6 5728 if (!get_page_unless_zero(page))
c733a828
JG
5729 return NULL;
5730 return page;
5731 }
5732
9a137153
RC
5733 if (non_swap_entry(ent))
5734 return NULL;
5735
4b91355e 5736 /*
cb691e2f 5737 * Because swap_cache_get_folio() updates some statistics counter,
4b91355e
KH
5738 * we call find_get_page() with swapper_space directly.
5739 */
f6ab1f7f 5740 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5741 entry->val = ent.val;
90254a65
DN
5742
5743 return page;
5744}
4b91355e
KH
5745#else
5746static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5747 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5748{
5749 return NULL;
5750}
5751#endif
90254a65 5752
87946a72 5753static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
48384b0b 5754 unsigned long addr, pte_t ptent)
87946a72 5755{
524984ff
MWO
5756 unsigned long index;
5757 struct folio *folio;
5758
87946a72
DN
5759 if (!vma->vm_file) /* anonymous vma */
5760 return NULL;
1dfab5ab 5761 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5762 return NULL;
5763
524984ff 5764 /* folio is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5765 /* shmem/tmpfs may report page out on swap: account for that too. */
524984ff
MWO
5766 index = linear_page_index(vma, addr);
5767 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
66dabbb6 5768 if (IS_ERR(folio))
524984ff
MWO
5769 return NULL;
5770 return folio_file_page(folio, index);
87946a72
DN
5771}
5772
b1b0deab
CG
5773/**
5774 * mem_cgroup_move_account - move account of the page
5775 * @page: the page
25843c2b 5776 * @compound: charge the page as compound or small page
b1b0deab
CG
5777 * @from: mem_cgroup which the page is moved from.
5778 * @to: mem_cgroup which the page is moved to. @from != @to.
5779 *
4e0cf05f 5780 * The page must be locked and not on the LRU.
b1b0deab
CG
5781 *
5782 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5783 * from old cgroup.
5784 */
5785static int mem_cgroup_move_account(struct page *page,
f627c2f5 5786 bool compound,
b1b0deab
CG
5787 struct mem_cgroup *from,
5788 struct mem_cgroup *to)
5789{
fcce4672 5790 struct folio *folio = page_folio(page);
ae8af438
KK
5791 struct lruvec *from_vec, *to_vec;
5792 struct pglist_data *pgdat;
fcce4672 5793 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
8e88bd2d 5794 int nid, ret;
b1b0deab
CG
5795
5796 VM_BUG_ON(from == to);
4e0cf05f 5797 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fcce4672 5798 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
9c325215 5799 VM_BUG_ON(compound && !folio_test_large(folio));
b1b0deab 5800
b1b0deab 5801 ret = -EINVAL;
fcce4672 5802 if (folio_memcg(folio) != from)
4e0cf05f 5803 goto out;
b1b0deab 5804
fcce4672 5805 pgdat = folio_pgdat(folio);
867e5e1d
JW
5806 from_vec = mem_cgroup_lruvec(from, pgdat);
5807 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5808
fcce4672 5809 folio_memcg_lock(folio);
b1b0deab 5810
fcce4672
MWO
5811 if (folio_test_anon(folio)) {
5812 if (folio_mapped(folio)) {
be5d0a74
JW
5813 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5814 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
fcce4672 5815 if (folio_test_transhuge(folio)) {
69473e5d
MS
5816 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5817 -nr_pages);
5818 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5819 nr_pages);
468c3982 5820 }
be5d0a74
JW
5821 }
5822 } else {
0d1c2072
JW
5823 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5824 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5825
fcce4672 5826 if (folio_test_swapbacked(folio)) {
0d1c2072
JW
5827 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5828 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5829 }
5830
fcce4672 5831 if (folio_mapped(folio)) {
49e50d27
JW
5832 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5833 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5834 }
b1b0deab 5835
fcce4672
MWO
5836 if (folio_test_dirty(folio)) {
5837 struct address_space *mapping = folio_mapping(folio);
c4843a75 5838
f56753ac 5839 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5840 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5841 -nr_pages);
5842 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5843 nr_pages);
5844 }
c4843a75
GT
5845 }
5846 }
5847
c449deb2
HD
5848#ifdef CONFIG_SWAP
5849 if (folio_test_swapcache(folio)) {
5850 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5851 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5852 }
5853#endif
fcce4672 5854 if (folio_test_writeback(folio)) {
ae8af438
KK
5855 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5856 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5857 }
5858
5859 /*
abb242f5
JW
5860 * All state has been migrated, let's switch to the new memcg.
5861 *
bcfe06bf 5862 * It is safe to change page's memcg here because the page
abb242f5
JW
5863 * is referenced, charged, isolated, and locked: we can't race
5864 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5865 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5866 *
5867 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5868 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5869 * new memcg that isn't locked, the above state can change
5870 * concurrently again. Make sure we're truly done with it.
b1b0deab 5871 */
abb242f5 5872 smp_mb();
b1b0deab 5873
1a3e1f40
JW
5874 css_get(&to->css);
5875 css_put(&from->css);
5876
fcce4672 5877 folio->memcg_data = (unsigned long)to;
87eaceb3 5878
f70ad448 5879 __folio_memcg_unlock(from);
b1b0deab
CG
5880
5881 ret = 0;
fcce4672 5882 nid = folio_nid(folio);
b1b0deab
CG
5883
5884 local_irq_disable();
6e0110c2 5885 mem_cgroup_charge_statistics(to, nr_pages);
8e88bd2d 5886 memcg_check_events(to, nid);
6e0110c2 5887 mem_cgroup_charge_statistics(from, -nr_pages);
8e88bd2d 5888 memcg_check_events(from, nid);
b1b0deab 5889 local_irq_enable();
b1b0deab
CG
5890out:
5891 return ret;
5892}
5893
7cf7806c
LR
5894/**
5895 * get_mctgt_type - get target type of moving charge
5896 * @vma: the vma the pte to be checked belongs
5897 * @addr: the address corresponding to the pte to be checked
5898 * @ptent: the pte to be checked
5899 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5900 *
5901 * Returns
5902 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5903 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5904 * move charge. if @target is not NULL, the page is stored in target->page
5905 * with extra refcnt got(Callers should handle it).
5906 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5907 * target for charge migration. if @target is not NULL, the entry is stored
5908 * in target->ent.
f25cbb7a
AS
5909 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5910 * thus not on the lru.
df6ad698
JG
5911 * For now we such page is charge like a regular page would be as for all
5912 * intent and purposes it is just special memory taking the place of a
5913 * regular page.
c733a828
JG
5914 *
5915 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5916 *
5917 * Called with pte lock held.
5918 */
5919
8d32ff84 5920static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5921 unsigned long addr, pte_t ptent, union mc_target *target)
5922{
5923 struct page *page = NULL;
8d32ff84 5924 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5925 swp_entry_t ent = { .val = 0 };
5926
5927 if (pte_present(ptent))
5928 page = mc_handle_present_pte(vma, addr, ptent);
5c041f5d
PX
5929 else if (pte_none_mostly(ptent))
5930 /*
5931 * PTE markers should be treated as a none pte here, separated
5932 * from other swap handling below.
5933 */
5934 page = mc_handle_file_pte(vma, addr, ptent);
90254a65 5935 else if (is_swap_pte(ptent))
48406ef8 5936 page = mc_handle_swap_pte(vma, ptent, &ent);
90254a65 5937
4e0cf05f
JW
5938 if (target && page) {
5939 if (!trylock_page(page)) {
5940 put_page(page);
5941 return ret;
5942 }
5943 /*
5944 * page_mapped() must be stable during the move. This
5945 * pte is locked, so if it's present, the page cannot
5946 * become unmapped. If it isn't, we have only partial
5947 * control over the mapped state: the page lock will
5948 * prevent new faults against pagecache and swapcache,
5949 * so an unmapped page cannot become mapped. However,
5950 * if the page is already mapped elsewhere, it can
5951 * unmap, and there is nothing we can do about it.
5952 * Alas, skip moving the page in this case.
5953 */
5954 if (!pte_present(ptent) && page_mapped(page)) {
5955 unlock_page(page);
5956 put_page(page);
5957 return ret;
5958 }
5959 }
5960
90254a65 5961 if (!page && !ent.val)
8d32ff84 5962 return ret;
02491447 5963 if (page) {
02491447 5964 /*
0a31bc97 5965 * Do only loose check w/o serialization.
1306a85a 5966 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5967 * not under LRU exclusion.
02491447 5968 */
bcfe06bf 5969 if (page_memcg(page) == mc.from) {
02491447 5970 ret = MC_TARGET_PAGE;
f25cbb7a
AS
5971 if (is_device_private_page(page) ||
5972 is_device_coherent_page(page))
c733a828 5973 ret = MC_TARGET_DEVICE;
02491447
DN
5974 if (target)
5975 target->page = page;
5976 }
4e0cf05f
JW
5977 if (!ret || !target) {
5978 if (target)
5979 unlock_page(page);
02491447 5980 put_page(page);
4e0cf05f 5981 }
02491447 5982 }
3e14a57b
HY
5983 /*
5984 * There is a swap entry and a page doesn't exist or isn't charged.
5985 * But we cannot move a tail-page in a THP.
5986 */
5987 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5988 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5989 ret = MC_TARGET_SWAP;
5990 if (target)
5991 target->ent = ent;
4ffef5fe 5992 }
4ffef5fe
DN
5993 return ret;
5994}
5995
12724850
NH
5996#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5997/*
d6810d73
HY
5998 * We don't consider PMD mapped swapping or file mapped pages because THP does
5999 * not support them for now.
12724850
NH
6000 * Caller should make sure that pmd_trans_huge(pmd) is true.
6001 */
6002static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6003 unsigned long addr, pmd_t pmd, union mc_target *target)
6004{
6005 struct page *page = NULL;
12724850
NH
6006 enum mc_target_type ret = MC_TARGET_NONE;
6007
84c3fc4e
ZY
6008 if (unlikely(is_swap_pmd(pmd))) {
6009 VM_BUG_ON(thp_migration_supported() &&
6010 !is_pmd_migration_entry(pmd));
6011 return ret;
6012 }
12724850 6013 page = pmd_page(pmd);
309381fe 6014 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 6015 if (!(mc.flags & MOVE_ANON))
12724850 6016 return ret;
bcfe06bf 6017 if (page_memcg(page) == mc.from) {
12724850
NH
6018 ret = MC_TARGET_PAGE;
6019 if (target) {
6020 get_page(page);
4e0cf05f
JW
6021 if (!trylock_page(page)) {
6022 put_page(page);
6023 return MC_TARGET_NONE;
6024 }
12724850
NH
6025 target->page = page;
6026 }
6027 }
6028 return ret;
6029}
6030#else
6031static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6032 unsigned long addr, pmd_t pmd, union mc_target *target)
6033{
6034 return MC_TARGET_NONE;
6035}
6036#endif
6037
4ffef5fe
DN
6038static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6039 unsigned long addr, unsigned long end,
6040 struct mm_walk *walk)
6041{
26bcd64a 6042 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6043 pte_t *pte;
6044 spinlock_t *ptl;
6045
b6ec57f4
KS
6046 ptl = pmd_trans_huge_lock(pmd, vma);
6047 if (ptl) {
c733a828
JG
6048 /*
6049 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
6050 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6051 * this might change.
c733a828 6052 */
12724850
NH
6053 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6054 mc.precharge += HPAGE_PMD_NR;
bf929152 6055 spin_unlock(ptl);
1a5a9906 6056 return 0;
12724850 6057 }
03319327 6058
45f83cef
AA
6059 if (pmd_trans_unstable(pmd))
6060 return 0;
4ffef5fe
DN
6061 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6062 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6063 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6064 mc.precharge++; /* increment precharge temporarily */
6065 pte_unmap_unlock(pte - 1, ptl);
6066 cond_resched();
6067
7dc74be0
DN
6068 return 0;
6069}
6070
7b86ac33
CH
6071static const struct mm_walk_ops precharge_walk_ops = {
6072 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6073};
6074
4ffef5fe
DN
6075static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6076{
6077 unsigned long precharge;
4ffef5fe 6078
d8ed45c5 6079 mmap_read_lock(mm);
ba0aff8e 6080 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
d8ed45c5 6081 mmap_read_unlock(mm);
4ffef5fe
DN
6082
6083 precharge = mc.precharge;
6084 mc.precharge = 0;
6085
6086 return precharge;
6087}
6088
4ffef5fe
DN
6089static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6090{
dfe076b0
DN
6091 unsigned long precharge = mem_cgroup_count_precharge(mm);
6092
6093 VM_BUG_ON(mc.moving_task);
6094 mc.moving_task = current;
6095 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6096}
6097
dfe076b0
DN
6098/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6099static void __mem_cgroup_clear_mc(void)
4ffef5fe 6100{
2bd9bb20
KH
6101 struct mem_cgroup *from = mc.from;
6102 struct mem_cgroup *to = mc.to;
6103
4ffef5fe 6104 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 6105 if (mc.precharge) {
00501b53 6106 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
6107 mc.precharge = 0;
6108 }
6109 /*
6110 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6111 * we must uncharge here.
6112 */
6113 if (mc.moved_charge) {
00501b53 6114 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 6115 mc.moved_charge = 0;
4ffef5fe 6116 }
483c30b5
DN
6117 /* we must fixup refcnts and charges */
6118 if (mc.moved_swap) {
483c30b5 6119 /* uncharge swap account from the old cgroup */
ce00a967 6120 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 6121 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 6122
615d66c3
VD
6123 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6124
05b84301 6125 /*
3e32cb2e
JW
6126 * we charged both to->memory and to->memsw, so we
6127 * should uncharge to->memory.
05b84301 6128 */
ce00a967 6129 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
6130 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6131
483c30b5
DN
6132 mc.moved_swap = 0;
6133 }
dfe076b0
DN
6134 memcg_oom_recover(from);
6135 memcg_oom_recover(to);
6136 wake_up_all(&mc.waitq);
6137}
6138
6139static void mem_cgroup_clear_mc(void)
6140{
264a0ae1
TH
6141 struct mm_struct *mm = mc.mm;
6142
dfe076b0
DN
6143 /*
6144 * we must clear moving_task before waking up waiters at the end of
6145 * task migration.
6146 */
6147 mc.moving_task = NULL;
6148 __mem_cgroup_clear_mc();
2bd9bb20 6149 spin_lock(&mc.lock);
4ffef5fe
DN
6150 mc.from = NULL;
6151 mc.to = NULL;
264a0ae1 6152 mc.mm = NULL;
2bd9bb20 6153 spin_unlock(&mc.lock);
264a0ae1
TH
6154
6155 mmput(mm);
4ffef5fe
DN
6156}
6157
1f7dd3e5 6158static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 6159{
1f7dd3e5 6160 struct cgroup_subsys_state *css;
eed67d75 6161 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 6162 struct mem_cgroup *from;
4530eddb 6163 struct task_struct *leader, *p;
9f2115f9 6164 struct mm_struct *mm;
1dfab5ab 6165 unsigned long move_flags;
9f2115f9 6166 int ret = 0;
7dc74be0 6167
1f7dd3e5
TH
6168 /* charge immigration isn't supported on the default hierarchy */
6169 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
6170 return 0;
6171
4530eddb
TH
6172 /*
6173 * Multi-process migrations only happen on the default hierarchy
6174 * where charge immigration is not used. Perform charge
6175 * immigration if @tset contains a leader and whine if there are
6176 * multiple.
6177 */
6178 p = NULL;
1f7dd3e5 6179 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
6180 WARN_ON_ONCE(p);
6181 p = leader;
1f7dd3e5 6182 memcg = mem_cgroup_from_css(css);
4530eddb
TH
6183 }
6184 if (!p)
6185 return 0;
6186
1f7dd3e5 6187 /*
f0953a1b 6188 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
6189 * tunable will only affect upcoming migrations, not the current one.
6190 * So we need to save it, and keep it going.
6191 */
6192 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6193 if (!move_flags)
6194 return 0;
6195
9f2115f9
TH
6196 from = mem_cgroup_from_task(p);
6197
6198 VM_BUG_ON(from == memcg);
6199
6200 mm = get_task_mm(p);
6201 if (!mm)
6202 return 0;
6203 /* We move charges only when we move a owner of the mm */
6204 if (mm->owner == p) {
6205 VM_BUG_ON(mc.from);
6206 VM_BUG_ON(mc.to);
6207 VM_BUG_ON(mc.precharge);
6208 VM_BUG_ON(mc.moved_charge);
6209 VM_BUG_ON(mc.moved_swap);
6210
6211 spin_lock(&mc.lock);
264a0ae1 6212 mc.mm = mm;
9f2115f9
TH
6213 mc.from = from;
6214 mc.to = memcg;
6215 mc.flags = move_flags;
6216 spin_unlock(&mc.lock);
6217 /* We set mc.moving_task later */
6218
6219 ret = mem_cgroup_precharge_mc(mm);
6220 if (ret)
6221 mem_cgroup_clear_mc();
264a0ae1
TH
6222 } else {
6223 mmput(mm);
7dc74be0
DN
6224 }
6225 return ret;
6226}
6227
1f7dd3e5 6228static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6229{
4e2f245d
JW
6230 if (mc.to)
6231 mem_cgroup_clear_mc();
7dc74be0
DN
6232}
6233
4ffef5fe
DN
6234static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6235 unsigned long addr, unsigned long end,
6236 struct mm_walk *walk)
7dc74be0 6237{
4ffef5fe 6238 int ret = 0;
26bcd64a 6239 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6240 pte_t *pte;
6241 spinlock_t *ptl;
12724850
NH
6242 enum mc_target_type target_type;
6243 union mc_target target;
6244 struct page *page;
4ffef5fe 6245
b6ec57f4
KS
6246 ptl = pmd_trans_huge_lock(pmd, vma);
6247 if (ptl) {
62ade86a 6248 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6249 spin_unlock(ptl);
12724850
NH
6250 return 0;
6251 }
6252 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6253 if (target_type == MC_TARGET_PAGE) {
6254 page = target.page;
f7f9c00d 6255 if (isolate_lru_page(page)) {
f627c2f5 6256 if (!mem_cgroup_move_account(page, true,
1306a85a 6257 mc.from, mc.to)) {
12724850
NH
6258 mc.precharge -= HPAGE_PMD_NR;
6259 mc.moved_charge += HPAGE_PMD_NR;
6260 }
6261 putback_lru_page(page);
6262 }
4e0cf05f 6263 unlock_page(page);
12724850 6264 put_page(page);
c733a828
JG
6265 } else if (target_type == MC_TARGET_DEVICE) {
6266 page = target.page;
6267 if (!mem_cgroup_move_account(page, true,
6268 mc.from, mc.to)) {
6269 mc.precharge -= HPAGE_PMD_NR;
6270 mc.moved_charge += HPAGE_PMD_NR;
6271 }
4e0cf05f 6272 unlock_page(page);
c733a828 6273 put_page(page);
12724850 6274 }
bf929152 6275 spin_unlock(ptl);
1a5a9906 6276 return 0;
12724850
NH
6277 }
6278
45f83cef
AA
6279 if (pmd_trans_unstable(pmd))
6280 return 0;
4ffef5fe
DN
6281retry:
6282 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6283 for (; addr != end; addr += PAGE_SIZE) {
6284 pte_t ptent = *(pte++);
c733a828 6285 bool device = false;
02491447 6286 swp_entry_t ent;
4ffef5fe
DN
6287
6288 if (!mc.precharge)
6289 break;
6290
8d32ff84 6291 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6292 case MC_TARGET_DEVICE:
6293 device = true;
e4a9bc58 6294 fallthrough;
4ffef5fe
DN
6295 case MC_TARGET_PAGE:
6296 page = target.page;
53f9263b
KS
6297 /*
6298 * We can have a part of the split pmd here. Moving it
6299 * can be done but it would be too convoluted so simply
6300 * ignore such a partial THP and keep it in original
6301 * memcg. There should be somebody mapping the head.
6302 */
6303 if (PageTransCompound(page))
6304 goto put;
f7f9c00d 6305 if (!device && !isolate_lru_page(page))
4ffef5fe 6306 goto put;
f627c2f5
KS
6307 if (!mem_cgroup_move_account(page, false,
6308 mc.from, mc.to)) {
4ffef5fe 6309 mc.precharge--;
854ffa8d
DN
6310 /* we uncharge from mc.from later. */
6311 mc.moved_charge++;
4ffef5fe 6312 }
c733a828
JG
6313 if (!device)
6314 putback_lru_page(page);
4e0cf05f
JW
6315put: /* get_mctgt_type() gets & locks the page */
6316 unlock_page(page);
4ffef5fe
DN
6317 put_page(page);
6318 break;
02491447
DN
6319 case MC_TARGET_SWAP:
6320 ent = target.ent;
e91cbb42 6321 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6322 mc.precharge--;
8d22a935
HD
6323 mem_cgroup_id_get_many(mc.to, 1);
6324 /* we fixup other refcnts and charges later. */
483c30b5
DN
6325 mc.moved_swap++;
6326 }
02491447 6327 break;
4ffef5fe
DN
6328 default:
6329 break;
6330 }
6331 }
6332 pte_unmap_unlock(pte - 1, ptl);
6333 cond_resched();
6334
6335 if (addr != end) {
6336 /*
6337 * We have consumed all precharges we got in can_attach().
6338 * We try charge one by one, but don't do any additional
6339 * charges to mc.to if we have failed in charge once in attach()
6340 * phase.
6341 */
854ffa8d 6342 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6343 if (!ret)
6344 goto retry;
6345 }
6346
6347 return ret;
6348}
6349
7b86ac33
CH
6350static const struct mm_walk_ops charge_walk_ops = {
6351 .pmd_entry = mem_cgroup_move_charge_pte_range,
6352};
6353
264a0ae1 6354static void mem_cgroup_move_charge(void)
4ffef5fe 6355{
4ffef5fe 6356 lru_add_drain_all();
312722cb 6357 /*
81f8c3a4
JW
6358 * Signal lock_page_memcg() to take the memcg's move_lock
6359 * while we're moving its pages to another memcg. Then wait
6360 * for already started RCU-only updates to finish.
312722cb
JW
6361 */
6362 atomic_inc(&mc.from->moving_account);
6363 synchronize_rcu();
dfe076b0 6364retry:
d8ed45c5 6365 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6366 /*
c1e8d7c6 6367 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6368 * waitq. So we cancel all extra charges, wake up all waiters,
6369 * and retry. Because we cancel precharges, we might not be able
6370 * to move enough charges, but moving charge is a best-effort
6371 * feature anyway, so it wouldn't be a big problem.
6372 */
6373 __mem_cgroup_clear_mc();
6374 cond_resched();
6375 goto retry;
6376 }
26bcd64a
NH
6377 /*
6378 * When we have consumed all precharges and failed in doing
6379 * additional charge, the page walk just aborts.
6380 */
ba0aff8e 6381 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
d8ed45c5 6382 mmap_read_unlock(mc.mm);
312722cb 6383 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6384}
6385
264a0ae1 6386static void mem_cgroup_move_task(void)
67e465a7 6387{
264a0ae1
TH
6388 if (mc.to) {
6389 mem_cgroup_move_charge();
a433658c 6390 mem_cgroup_clear_mc();
264a0ae1 6391 }
67e465a7 6392}
5cfb80a7 6393#else /* !CONFIG_MMU */
1f7dd3e5 6394static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6395{
6396 return 0;
6397}
1f7dd3e5 6398static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6399{
6400}
264a0ae1 6401static void mem_cgroup_move_task(void)
5cfb80a7
DN
6402{
6403}
6404#endif
67e465a7 6405
bd74fdae
YZ
6406#ifdef CONFIG_LRU_GEN
6407static void mem_cgroup_attach(struct cgroup_taskset *tset)
6408{
6409 struct task_struct *task;
6410 struct cgroup_subsys_state *css;
6411
6412 /* find the first leader if there is any */
6413 cgroup_taskset_for_each_leader(task, css, tset)
6414 break;
6415
6416 if (!task)
6417 return;
6418
6419 task_lock(task);
6420 if (task->mm && READ_ONCE(task->mm->owner) == task)
6421 lru_gen_migrate_mm(task->mm);
6422 task_unlock(task);
6423}
6424#else
6425static void mem_cgroup_attach(struct cgroup_taskset *tset)
6426{
6427}
6428#endif /* CONFIG_LRU_GEN */
6429
677dc973
CD
6430static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6431{
6432 if (value == PAGE_COUNTER_MAX)
6433 seq_puts(m, "max\n");
6434 else
6435 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6436
6437 return 0;
6438}
6439
241994ed
JW
6440static u64 memory_current_read(struct cgroup_subsys_state *css,
6441 struct cftype *cft)
6442{
f5fc3c5d
JW
6443 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6444
6445 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6446}
6447
8e20d4b3
GR
6448static u64 memory_peak_read(struct cgroup_subsys_state *css,
6449 struct cftype *cft)
6450{
6451 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6452
6453 return (u64)memcg->memory.watermark * PAGE_SIZE;
6454}
6455
bf8d5d52
RG
6456static int memory_min_show(struct seq_file *m, void *v)
6457{
677dc973
CD
6458 return seq_puts_memcg_tunable(m,
6459 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6460}
6461
6462static ssize_t memory_min_write(struct kernfs_open_file *of,
6463 char *buf, size_t nbytes, loff_t off)
6464{
6465 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6466 unsigned long min;
6467 int err;
6468
6469 buf = strstrip(buf);
6470 err = page_counter_memparse(buf, "max", &min);
6471 if (err)
6472 return err;
6473
6474 page_counter_set_min(&memcg->memory, min);
6475
6476 return nbytes;
6477}
6478
241994ed
JW
6479static int memory_low_show(struct seq_file *m, void *v)
6480{
677dc973
CD
6481 return seq_puts_memcg_tunable(m,
6482 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6483}
6484
6485static ssize_t memory_low_write(struct kernfs_open_file *of,
6486 char *buf, size_t nbytes, loff_t off)
6487{
6488 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6489 unsigned long low;
6490 int err;
6491
6492 buf = strstrip(buf);
d2973697 6493 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6494 if (err)
6495 return err;
6496
23067153 6497 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6498
6499 return nbytes;
6500}
6501
6502static int memory_high_show(struct seq_file *m, void *v)
6503{
d1663a90
JK
6504 return seq_puts_memcg_tunable(m,
6505 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6506}
6507
6508static ssize_t memory_high_write(struct kernfs_open_file *of,
6509 char *buf, size_t nbytes, loff_t off)
6510{
6511 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6512 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6513 bool drained = false;
241994ed
JW
6514 unsigned long high;
6515 int err;
6516
6517 buf = strstrip(buf);
d2973697 6518 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6519 if (err)
6520 return err;
6521
e82553c1
JW
6522 page_counter_set_high(&memcg->memory, high);
6523
8c8c383c
JW
6524 for (;;) {
6525 unsigned long nr_pages = page_counter_read(&memcg->memory);
6526 unsigned long reclaimed;
6527
6528 if (nr_pages <= high)
6529 break;
6530
6531 if (signal_pending(current))
6532 break;
6533
6534 if (!drained) {
6535 drain_all_stock(memcg);
6536 drained = true;
6537 continue;
6538 }
6539
6540 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
55ab834a 6541 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
8c8c383c
JW
6542
6543 if (!reclaimed && !nr_retries--)
6544 break;
6545 }
588083bb 6546
19ce33ac 6547 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6548 return nbytes;
6549}
6550
6551static int memory_max_show(struct seq_file *m, void *v)
6552{
677dc973
CD
6553 return seq_puts_memcg_tunable(m,
6554 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6555}
6556
6557static ssize_t memory_max_write(struct kernfs_open_file *of,
6558 char *buf, size_t nbytes, loff_t off)
6559{
6560 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6561 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6562 bool drained = false;
241994ed
JW
6563 unsigned long max;
6564 int err;
6565
6566 buf = strstrip(buf);
d2973697 6567 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6568 if (err)
6569 return err;
6570
bbec2e15 6571 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6572
6573 for (;;) {
6574 unsigned long nr_pages = page_counter_read(&memcg->memory);
6575
6576 if (nr_pages <= max)
6577 break;
6578
7249c9f0 6579 if (signal_pending(current))
b6e6edcf 6580 break;
b6e6edcf
JW
6581
6582 if (!drained) {
6583 drain_all_stock(memcg);
6584 drained = true;
6585 continue;
6586 }
6587
6588 if (nr_reclaims) {
6589 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
55ab834a 6590 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
b6e6edcf
JW
6591 nr_reclaims--;
6592 continue;
6593 }
6594
e27be240 6595 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6596 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6597 break;
6598 }
241994ed 6599
2529bb3a 6600 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6601 return nbytes;
6602}
6603
1e577f97
SB
6604static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6605{
6606 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6607 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6608 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6609 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6610 seq_printf(m, "oom_kill %lu\n",
6611 atomic_long_read(&events[MEMCG_OOM_KILL]));
b6bf9abb
DS
6612 seq_printf(m, "oom_group_kill %lu\n",
6613 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
1e577f97
SB
6614}
6615
241994ed
JW
6616static int memory_events_show(struct seq_file *m, void *v)
6617{
aa9694bb 6618 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6619
1e577f97
SB
6620 __memory_events_show(m, memcg->memory_events);
6621 return 0;
6622}
6623
6624static int memory_events_local_show(struct seq_file *m, void *v)
6625{
6626 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6627
1e577f97 6628 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6629 return 0;
6630}
6631
587d9f72
JW
6632static int memory_stat_show(struct seq_file *m, void *v)
6633{
aa9694bb 6634 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
68aaee14 6635 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1ff9e6e1 6636
c8713d0b
JW
6637 if (!buf)
6638 return -ENOMEM;
68aaee14 6639 memory_stat_format(memcg, buf, PAGE_SIZE);
c8713d0b
JW
6640 seq_puts(m, buf);
6641 kfree(buf);
587d9f72
JW
6642 return 0;
6643}
6644
5f9a4f4a 6645#ifdef CONFIG_NUMA
fff66b79
MS
6646static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6647 int item)
6648{
6649 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6650}
6651
5f9a4f4a
MS
6652static int memory_numa_stat_show(struct seq_file *m, void *v)
6653{
6654 int i;
6655 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6656
fd25a9e0 6657 mem_cgroup_flush_stats();
7e1c0d6f 6658
5f9a4f4a
MS
6659 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6660 int nid;
6661
6662 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6663 continue;
6664
6665 seq_printf(m, "%s", memory_stats[i].name);
6666 for_each_node_state(nid, N_MEMORY) {
6667 u64 size;
6668 struct lruvec *lruvec;
6669
6670 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6671 size = lruvec_page_state_output(lruvec,
6672 memory_stats[i].idx);
5f9a4f4a
MS
6673 seq_printf(m, " N%d=%llu", nid, size);
6674 }
6675 seq_putc(m, '\n');
6676 }
6677
6678 return 0;
6679}
6680#endif
6681
3d8b38eb
RG
6682static int memory_oom_group_show(struct seq_file *m, void *v)
6683{
aa9694bb 6684 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb 6685
eaf7b66b 6686 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
3d8b38eb
RG
6687
6688 return 0;
6689}
6690
6691static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6692 char *buf, size_t nbytes, loff_t off)
6693{
6694 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6695 int ret, oom_group;
6696
6697 buf = strstrip(buf);
6698 if (!buf)
6699 return -EINVAL;
6700
6701 ret = kstrtoint(buf, 0, &oom_group);
6702 if (ret)
6703 return ret;
6704
6705 if (oom_group != 0 && oom_group != 1)
6706 return -EINVAL;
6707
eaf7b66b 6708 WRITE_ONCE(memcg->oom_group, oom_group);
3d8b38eb
RG
6709
6710 return nbytes;
6711}
6712
94968384
SB
6713static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6714 size_t nbytes, loff_t off)
6715{
6716 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6717 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6718 unsigned long nr_to_reclaim, nr_reclaimed = 0;
55ab834a
MH
6719 unsigned int reclaim_options;
6720 int err;
12a5d395
MA
6721
6722 buf = strstrip(buf);
55ab834a
MH
6723 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6724 if (err)
6725 return err;
12a5d395 6726
55ab834a 6727 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
94968384
SB
6728 while (nr_reclaimed < nr_to_reclaim) {
6729 unsigned long reclaimed;
6730
6731 if (signal_pending(current))
6732 return -EINTR;
6733
6734 /*
6735 * This is the final attempt, drain percpu lru caches in the
6736 * hope of introducing more evictable pages for
6737 * try_to_free_mem_cgroup_pages().
6738 */
6739 if (!nr_retries)
6740 lru_add_drain_all();
6741
6742 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6743 nr_to_reclaim - nr_reclaimed,
55ab834a 6744 GFP_KERNEL, reclaim_options);
94968384
SB
6745
6746 if (!reclaimed && !nr_retries--)
6747 return -EAGAIN;
6748
6749 nr_reclaimed += reclaimed;
6750 }
6751
6752 return nbytes;
6753}
6754
241994ed
JW
6755static struct cftype memory_files[] = {
6756 {
6757 .name = "current",
f5fc3c5d 6758 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6759 .read_u64 = memory_current_read,
6760 },
8e20d4b3
GR
6761 {
6762 .name = "peak",
6763 .flags = CFTYPE_NOT_ON_ROOT,
6764 .read_u64 = memory_peak_read,
6765 },
bf8d5d52
RG
6766 {
6767 .name = "min",
6768 .flags = CFTYPE_NOT_ON_ROOT,
6769 .seq_show = memory_min_show,
6770 .write = memory_min_write,
6771 },
241994ed
JW
6772 {
6773 .name = "low",
6774 .flags = CFTYPE_NOT_ON_ROOT,
6775 .seq_show = memory_low_show,
6776 .write = memory_low_write,
6777 },
6778 {
6779 .name = "high",
6780 .flags = CFTYPE_NOT_ON_ROOT,
6781 .seq_show = memory_high_show,
6782 .write = memory_high_write,
6783 },
6784 {
6785 .name = "max",
6786 .flags = CFTYPE_NOT_ON_ROOT,
6787 .seq_show = memory_max_show,
6788 .write = memory_max_write,
6789 },
6790 {
6791 .name = "events",
6792 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6793 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6794 .seq_show = memory_events_show,
6795 },
1e577f97
SB
6796 {
6797 .name = "events.local",
6798 .flags = CFTYPE_NOT_ON_ROOT,
6799 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6800 .seq_show = memory_events_local_show,
6801 },
587d9f72
JW
6802 {
6803 .name = "stat",
587d9f72
JW
6804 .seq_show = memory_stat_show,
6805 },
5f9a4f4a
MS
6806#ifdef CONFIG_NUMA
6807 {
6808 .name = "numa_stat",
6809 .seq_show = memory_numa_stat_show,
6810 },
6811#endif
3d8b38eb
RG
6812 {
6813 .name = "oom.group",
6814 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6815 .seq_show = memory_oom_group_show,
6816 .write = memory_oom_group_write,
6817 },
94968384
SB
6818 {
6819 .name = "reclaim",
6820 .flags = CFTYPE_NS_DELEGATABLE,
6821 .write = memory_reclaim,
6822 },
241994ed
JW
6823 { } /* terminate */
6824};
6825
073219e9 6826struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6827 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6828 .css_online = mem_cgroup_css_online,
92fb9748 6829 .css_offline = mem_cgroup_css_offline,
6df38689 6830 .css_released = mem_cgroup_css_released,
92fb9748 6831 .css_free = mem_cgroup_css_free,
1ced953b 6832 .css_reset = mem_cgroup_css_reset,
2d146aa3 6833 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0 6834 .can_attach = mem_cgroup_can_attach,
bd74fdae 6835 .attach = mem_cgroup_attach,
7dc74be0 6836 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6837 .post_attach = mem_cgroup_move_task,
241994ed
JW
6838 .dfl_cftypes = memory_files,
6839 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6840 .early_init = 0,
8cdea7c0 6841};
c077719b 6842
bc50bcc6
JW
6843/*
6844 * This function calculates an individual cgroup's effective
6845 * protection which is derived from its own memory.min/low, its
6846 * parent's and siblings' settings, as well as the actual memory
6847 * distribution in the tree.
6848 *
6849 * The following rules apply to the effective protection values:
6850 *
6851 * 1. At the first level of reclaim, effective protection is equal to
6852 * the declared protection in memory.min and memory.low.
6853 *
6854 * 2. To enable safe delegation of the protection configuration, at
6855 * subsequent levels the effective protection is capped to the
6856 * parent's effective protection.
6857 *
6858 * 3. To make complex and dynamic subtrees easier to configure, the
6859 * user is allowed to overcommit the declared protection at a given
6860 * level. If that is the case, the parent's effective protection is
6861 * distributed to the children in proportion to how much protection
6862 * they have declared and how much of it they are utilizing.
6863 *
6864 * This makes distribution proportional, but also work-conserving:
6865 * if one cgroup claims much more protection than it uses memory,
6866 * the unused remainder is available to its siblings.
6867 *
6868 * 4. Conversely, when the declared protection is undercommitted at a
6869 * given level, the distribution of the larger parental protection
6870 * budget is NOT proportional. A cgroup's protection from a sibling
6871 * is capped to its own memory.min/low setting.
6872 *
8a931f80
JW
6873 * 5. However, to allow protecting recursive subtrees from each other
6874 * without having to declare each individual cgroup's fixed share
6875 * of the ancestor's claim to protection, any unutilized -
6876 * "floating" - protection from up the tree is distributed in
6877 * proportion to each cgroup's *usage*. This makes the protection
6878 * neutral wrt sibling cgroups and lets them compete freely over
6879 * the shared parental protection budget, but it protects the
6880 * subtree as a whole from neighboring subtrees.
6881 *
6882 * Note that 4. and 5. are not in conflict: 4. is about protecting
6883 * against immediate siblings whereas 5. is about protecting against
6884 * neighboring subtrees.
bc50bcc6
JW
6885 */
6886static unsigned long effective_protection(unsigned long usage,
8a931f80 6887 unsigned long parent_usage,
bc50bcc6
JW
6888 unsigned long setting,
6889 unsigned long parent_effective,
6890 unsigned long siblings_protected)
6891{
6892 unsigned long protected;
8a931f80 6893 unsigned long ep;
bc50bcc6
JW
6894
6895 protected = min(usage, setting);
6896 /*
6897 * If all cgroups at this level combined claim and use more
6898 * protection then what the parent affords them, distribute
6899 * shares in proportion to utilization.
6900 *
6901 * We are using actual utilization rather than the statically
6902 * claimed protection in order to be work-conserving: claimed
6903 * but unused protection is available to siblings that would
6904 * otherwise get a smaller chunk than what they claimed.
6905 */
6906 if (siblings_protected > parent_effective)
6907 return protected * parent_effective / siblings_protected;
6908
6909 /*
6910 * Ok, utilized protection of all children is within what the
6911 * parent affords them, so we know whatever this child claims
6912 * and utilizes is effectively protected.
6913 *
6914 * If there is unprotected usage beyond this value, reclaim
6915 * will apply pressure in proportion to that amount.
6916 *
6917 * If there is unutilized protection, the cgroup will be fully
6918 * shielded from reclaim, but we do return a smaller value for
6919 * protection than what the group could enjoy in theory. This
6920 * is okay. With the overcommit distribution above, effective
6921 * protection is always dependent on how memory is actually
6922 * consumed among the siblings anyway.
6923 */
8a931f80
JW
6924 ep = protected;
6925
6926 /*
6927 * If the children aren't claiming (all of) the protection
6928 * afforded to them by the parent, distribute the remainder in
6929 * proportion to the (unprotected) memory of each cgroup. That
6930 * way, cgroups that aren't explicitly prioritized wrt each
6931 * other compete freely over the allowance, but they are
6932 * collectively protected from neighboring trees.
6933 *
6934 * We're using unprotected memory for the weight so that if
6935 * some cgroups DO claim explicit protection, we don't protect
6936 * the same bytes twice.
cd324edc
JW
6937 *
6938 * Check both usage and parent_usage against the respective
6939 * protected values. One should imply the other, but they
6940 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6941 */
6942 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6943 return ep;
cd324edc
JW
6944 if (parent_effective > siblings_protected &&
6945 parent_usage > siblings_protected &&
6946 usage > protected) {
8a931f80
JW
6947 unsigned long unclaimed;
6948
6949 unclaimed = parent_effective - siblings_protected;
6950 unclaimed *= usage - protected;
6951 unclaimed /= parent_usage - siblings_protected;
6952
6953 ep += unclaimed;
6954 }
6955
6956 return ep;
bc50bcc6
JW
6957}
6958
241994ed 6959/**
05395718 6960 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 6961 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6962 * @memcg: the memory cgroup to check
6963 *
23067153
RG
6964 * WARNING: This function is not stateless! It can only be used as part
6965 * of a top-down tree iteration, not for isolated queries.
241994ed 6966 */
45c7f7e1
CD
6967void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6968 struct mem_cgroup *memcg)
241994ed 6969{
8a931f80 6970 unsigned long usage, parent_usage;
23067153
RG
6971 struct mem_cgroup *parent;
6972
241994ed 6973 if (mem_cgroup_disabled())
45c7f7e1 6974 return;
241994ed 6975
34c81057
SC
6976 if (!root)
6977 root = root_mem_cgroup;
22f7496f
YS
6978
6979 /*
6980 * Effective values of the reclaim targets are ignored so they
6981 * can be stale. Have a look at mem_cgroup_protection for more
6982 * details.
6983 * TODO: calculation should be more robust so that we do not need
6984 * that special casing.
6985 */
34c81057 6986 if (memcg == root)
45c7f7e1 6987 return;
241994ed 6988
23067153 6989 usage = page_counter_read(&memcg->memory);
bf8d5d52 6990 if (!usage)
45c7f7e1 6991 return;
bf8d5d52 6992
bf8d5d52 6993 parent = parent_mem_cgroup(memcg);
df2a4196 6994
bc50bcc6 6995 if (parent == root) {
c3d53200 6996 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6997 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6998 return;
bf8d5d52
RG
6999 }
7000
8a931f80
JW
7001 parent_usage = page_counter_read(&parent->memory);
7002
b3a7822e 7003 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
7004 READ_ONCE(memcg->memory.min),
7005 READ_ONCE(parent->memory.emin),
b3a7822e 7006 atomic_long_read(&parent->memory.children_min_usage)));
23067153 7007
b3a7822e 7008 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
7009 READ_ONCE(memcg->memory.low),
7010 READ_ONCE(parent->memory.elow),
b3a7822e 7011 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
7012}
7013
8f425e4e
MWO
7014static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7015 gfp_t gfp)
0add0c77 7016{
118f2875 7017 long nr_pages = folio_nr_pages(folio);
0add0c77
SB
7018 int ret;
7019
7020 ret = try_charge(memcg, gfp, nr_pages);
7021 if (ret)
7022 goto out;
7023
7024 css_get(&memcg->css);
118f2875 7025 commit_charge(folio, memcg);
0add0c77
SB
7026
7027 local_irq_disable();
6e0110c2 7028 mem_cgroup_charge_statistics(memcg, nr_pages);
8f425e4e 7029 memcg_check_events(memcg, folio_nid(folio));
0add0c77
SB
7030 local_irq_enable();
7031out:
7032 return ret;
7033}
7034
8f425e4e 7035int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
00501b53 7036{
0add0c77
SB
7037 struct mem_cgroup *memcg;
7038 int ret;
00501b53 7039
0add0c77 7040 memcg = get_mem_cgroup_from_mm(mm);
8f425e4e 7041 ret = charge_memcg(folio, memcg, gfp);
0add0c77 7042 css_put(&memcg->css);
2d1c4980 7043
0add0c77
SB
7044 return ret;
7045}
e993d905 7046
0add0c77 7047/**
65995918
MWO
7048 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7049 * @folio: folio to charge.
0add0c77
SB
7050 * @mm: mm context of the victim
7051 * @gfp: reclaim mode
65995918 7052 * @entry: swap entry for which the folio is allocated
0add0c77 7053 *
65995918
MWO
7054 * This function charges a folio allocated for swapin. Please call this before
7055 * adding the folio to the swapcache.
0add0c77
SB
7056 *
7057 * Returns 0 on success. Otherwise, an error code is returned.
7058 */
65995918 7059int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
0add0c77
SB
7060 gfp_t gfp, swp_entry_t entry)
7061{
7062 struct mem_cgroup *memcg;
7063 unsigned short id;
7064 int ret;
00501b53 7065
0add0c77
SB
7066 if (mem_cgroup_disabled())
7067 return 0;
00501b53 7068
0add0c77
SB
7069 id = lookup_swap_cgroup_id(entry);
7070 rcu_read_lock();
7071 memcg = mem_cgroup_from_id(id);
7072 if (!memcg || !css_tryget_online(&memcg->css))
7073 memcg = get_mem_cgroup_from_mm(mm);
7074 rcu_read_unlock();
00501b53 7075
8f425e4e 7076 ret = charge_memcg(folio, memcg, gfp);
6abb5a86 7077
0add0c77
SB
7078 css_put(&memcg->css);
7079 return ret;
7080}
00501b53 7081
0add0c77
SB
7082/*
7083 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7084 * @entry: swap entry for which the page is charged
7085 *
7086 * Call this function after successfully adding the charged page to swapcache.
7087 *
7088 * Note: This function assumes the page for which swap slot is being uncharged
7089 * is order 0 page.
7090 */
7091void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7092{
cae3af62
MS
7093 /*
7094 * Cgroup1's unified memory+swap counter has been charged with the
7095 * new swapcache page, finish the transfer by uncharging the swap
7096 * slot. The swap slot would also get uncharged when it dies, but
7097 * it can stick around indefinitely and we'd count the page twice
7098 * the entire time.
7099 *
7100 * Cgroup2 has separate resource counters for memory and swap,
7101 * so this is a non-issue here. Memory and swap charge lifetimes
7102 * correspond 1:1 to page and swap slot lifetimes: we charge the
7103 * page to memory here, and uncharge swap when the slot is freed.
7104 */
0add0c77 7105 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
7106 /*
7107 * The swap entry might not get freed for a long time,
7108 * let's not wait for it. The page already received a
7109 * memory+swap charge, drop the swap entry duplicate.
7110 */
0add0c77 7111 mem_cgroup_uncharge_swap(entry, 1);
00501b53 7112 }
3fea5a49
JW
7113}
7114
a9d5adee
JG
7115struct uncharge_gather {
7116 struct mem_cgroup *memcg;
b4e0b68f 7117 unsigned long nr_memory;
a9d5adee 7118 unsigned long pgpgout;
a9d5adee 7119 unsigned long nr_kmem;
8e88bd2d 7120 int nid;
a9d5adee
JG
7121};
7122
7123static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 7124{
a9d5adee
JG
7125 memset(ug, 0, sizeof(*ug));
7126}
7127
7128static void uncharge_batch(const struct uncharge_gather *ug)
7129{
747db954
JW
7130 unsigned long flags;
7131
b4e0b68f
MS
7132 if (ug->nr_memory) {
7133 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 7134 if (do_memsw_account())
b4e0b68f 7135 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a8c49af3
YA
7136 if (ug->nr_kmem)
7137 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
a9d5adee 7138 memcg_oom_recover(ug->memcg);
ce00a967 7139 }
747db954
JW
7140
7141 local_irq_save(flags);
c9019e9b 7142 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 7143 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
8e88bd2d 7144 memcg_check_events(ug->memcg, ug->nid);
747db954 7145 local_irq_restore(flags);
f1796544 7146
c4ed6ebf 7147 /* drop reference from uncharge_folio */
f1796544 7148 css_put(&ug->memcg->css);
a9d5adee
JG
7149}
7150
c4ed6ebf 7151static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
a9d5adee 7152{
c4ed6ebf 7153 long nr_pages;
b4e0b68f
MS
7154 struct mem_cgroup *memcg;
7155 struct obj_cgroup *objcg;
9f762dbe 7156
c4ed6ebf 7157 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
a9d5adee 7158
a9d5adee
JG
7159 /*
7160 * Nobody should be changing or seriously looking at
c4ed6ebf
MWO
7161 * folio memcg or objcg at this point, we have fully
7162 * exclusive access to the folio.
a9d5adee 7163 */
fead2b86 7164 if (folio_memcg_kmem(folio)) {
1b7e4464 7165 objcg = __folio_objcg(folio);
b4e0b68f
MS
7166 /*
7167 * This get matches the put at the end of the function and
7168 * kmem pages do not hold memcg references anymore.
7169 */
7170 memcg = get_mem_cgroup_from_objcg(objcg);
7171 } else {
1b7e4464 7172 memcg = __folio_memcg(folio);
b4e0b68f 7173 }
a9d5adee 7174
b4e0b68f
MS
7175 if (!memcg)
7176 return;
7177
7178 if (ug->memcg != memcg) {
a9d5adee
JG
7179 if (ug->memcg) {
7180 uncharge_batch(ug);
7181 uncharge_gather_clear(ug);
7182 }
b4e0b68f 7183 ug->memcg = memcg;
c4ed6ebf 7184 ug->nid = folio_nid(folio);
f1796544
MH
7185
7186 /* pairs with css_put in uncharge_batch */
b4e0b68f 7187 css_get(&memcg->css);
a9d5adee
JG
7188 }
7189
c4ed6ebf 7190 nr_pages = folio_nr_pages(folio);
a9d5adee 7191
fead2b86 7192 if (folio_memcg_kmem(folio)) {
b4e0b68f 7193 ug->nr_memory += nr_pages;
9f762dbe 7194 ug->nr_kmem += nr_pages;
b4e0b68f 7195
c4ed6ebf 7196 folio->memcg_data = 0;
b4e0b68f
MS
7197 obj_cgroup_put(objcg);
7198 } else {
7199 /* LRU pages aren't accounted at the root level */
7200 if (!mem_cgroup_is_root(memcg))
7201 ug->nr_memory += nr_pages;
18b2db3b 7202 ug->pgpgout++;
a9d5adee 7203
c4ed6ebf 7204 folio->memcg_data = 0;
b4e0b68f
MS
7205 }
7206
7207 css_put(&memcg->css);
747db954
JW
7208}
7209
bbc6b703 7210void __mem_cgroup_uncharge(struct folio *folio)
0a31bc97 7211{
a9d5adee
JG
7212 struct uncharge_gather ug;
7213
bbc6b703
MWO
7214 /* Don't touch folio->lru of any random page, pre-check: */
7215 if (!folio_memcg(folio))
0a31bc97
JW
7216 return;
7217
a9d5adee 7218 uncharge_gather_clear(&ug);
bbc6b703 7219 uncharge_folio(folio, &ug);
a9d5adee 7220 uncharge_batch(&ug);
747db954 7221}
0a31bc97 7222
747db954 7223/**
2c8d8f97 7224 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
7225 * @page_list: list of pages to uncharge
7226 *
7227 * Uncharge a list of pages previously charged with
2c8d8f97 7228 * __mem_cgroup_charge().
747db954 7229 */
2c8d8f97 7230void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 7231{
c41a40b6 7232 struct uncharge_gather ug;
c4ed6ebf 7233 struct folio *folio;
c41a40b6 7234
c41a40b6 7235 uncharge_gather_clear(&ug);
c4ed6ebf
MWO
7236 list_for_each_entry(folio, page_list, lru)
7237 uncharge_folio(folio, &ug);
c41a40b6
MS
7238 if (ug.memcg)
7239 uncharge_batch(&ug);
0a31bc97
JW
7240}
7241
7242/**
d21bba2b
MWO
7243 * mem_cgroup_migrate - Charge a folio's replacement.
7244 * @old: Currently circulating folio.
7245 * @new: Replacement folio.
0a31bc97 7246 *
d21bba2b 7247 * Charge @new as a replacement folio for @old. @old will
6a93ca8f 7248 * be uncharged upon free.
0a31bc97 7249 *
d21bba2b 7250 * Both folios must be locked, @new->mapping must be set up.
0a31bc97 7251 */
d21bba2b 7252void mem_cgroup_migrate(struct folio *old, struct folio *new)
0a31bc97 7253{
29833315 7254 struct mem_cgroup *memcg;
d21bba2b 7255 long nr_pages = folio_nr_pages(new);
d93c4130 7256 unsigned long flags;
0a31bc97 7257
d21bba2b
MWO
7258 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7259 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7260 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7261 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
0a31bc97
JW
7262
7263 if (mem_cgroup_disabled())
7264 return;
7265
d21bba2b
MWO
7266 /* Page cache replacement: new folio already charged? */
7267 if (folio_memcg(new))
0a31bc97
JW
7268 return;
7269
d21bba2b
MWO
7270 memcg = folio_memcg(old);
7271 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
29833315 7272 if (!memcg)
0a31bc97
JW
7273 return;
7274
44b7a8d3 7275 /* Force-charge the new page. The old one will be freed soon */
8dc87c7d
MS
7276 if (!mem_cgroup_is_root(memcg)) {
7277 page_counter_charge(&memcg->memory, nr_pages);
7278 if (do_memsw_account())
7279 page_counter_charge(&memcg->memsw, nr_pages);
7280 }
0a31bc97 7281
1a3e1f40 7282 css_get(&memcg->css);
d21bba2b 7283 commit_charge(new, memcg);
44b7a8d3 7284
d93c4130 7285 local_irq_save(flags);
6e0110c2 7286 mem_cgroup_charge_statistics(memcg, nr_pages);
d21bba2b 7287 memcg_check_events(memcg, folio_nid(new));
d93c4130 7288 local_irq_restore(flags);
0a31bc97
JW
7289}
7290
ef12947c 7291DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
7292EXPORT_SYMBOL(memcg_sockets_enabled_key);
7293
2d758073 7294void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
7295{
7296 struct mem_cgroup *memcg;
7297
2d758073
JW
7298 if (!mem_cgroup_sockets_enabled)
7299 return;
7300
e876ecc6 7301 /* Do not associate the sock with unrelated interrupted task's memcg. */
086f694a 7302 if (!in_task())
e876ecc6
SB
7303 return;
7304
11092087
JW
7305 rcu_read_lock();
7306 memcg = mem_cgroup_from_task(current);
7848ed62 7307 if (mem_cgroup_is_root(memcg))
f7e1cb6e 7308 goto out;
0db15298 7309 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7310 goto out;
8965aa28 7311 if (css_tryget(&memcg->css))
11092087 7312 sk->sk_memcg = memcg;
f7e1cb6e 7313out:
11092087
JW
7314 rcu_read_unlock();
7315}
11092087 7316
2d758073 7317void mem_cgroup_sk_free(struct sock *sk)
11092087 7318{
2d758073
JW
7319 if (sk->sk_memcg)
7320 css_put(&sk->sk_memcg->css);
11092087
JW
7321}
7322
7323/**
7324 * mem_cgroup_charge_skmem - charge socket memory
7325 * @memcg: memcg to charge
7326 * @nr_pages: number of pages to charge
4b1327be 7327 * @gfp_mask: reclaim mode
11092087
JW
7328 *
7329 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 7330 * @memcg's configured limit, %false if it doesn't.
11092087 7331 */
4b1327be
WW
7332bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7333 gfp_t gfp_mask)
11092087 7334{
f7e1cb6e 7335 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7336 struct page_counter *fail;
f7e1cb6e 7337
0db15298
JW
7338 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7339 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7340 return true;
7341 }
0db15298 7342 memcg->tcpmem_pressure = 1;
4b1327be
WW
7343 if (gfp_mask & __GFP_NOFAIL) {
7344 page_counter_charge(&memcg->tcpmem, nr_pages);
7345 return true;
7346 }
f7e1cb6e 7347 return false;
11092087 7348 }
d886f4e4 7349
4b1327be
WW
7350 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7351 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7352 return true;
4b1327be 7353 }
f7e1cb6e 7354
11092087
JW
7355 return false;
7356}
7357
7358/**
7359 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7360 * @memcg: memcg to uncharge
7361 * @nr_pages: number of pages to uncharge
11092087
JW
7362 */
7363void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7364{
f7e1cb6e 7365 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7366 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7367 return;
7368 }
d886f4e4 7369
c9019e9b 7370 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7371
475d0487 7372 refill_stock(memcg, nr_pages);
11092087
JW
7373}
7374
f7e1cb6e
JW
7375static int __init cgroup_memory(char *s)
7376{
7377 char *token;
7378
7379 while ((token = strsep(&s, ",")) != NULL) {
7380 if (!*token)
7381 continue;
7382 if (!strcmp(token, "nosocket"))
7383 cgroup_memory_nosocket = true;
04823c83
VD
7384 if (!strcmp(token, "nokmem"))
7385 cgroup_memory_nokmem = true;
b6c1a8af
YS
7386 if (!strcmp(token, "nobpf"))
7387 cgroup_memory_nobpf = true;
f7e1cb6e 7388 }
460a79e1 7389 return 1;
f7e1cb6e
JW
7390}
7391__setup("cgroup.memory=", cgroup_memory);
11092087 7392
2d11085e 7393/*
1081312f
MH
7394 * subsys_initcall() for memory controller.
7395 *
308167fc
SAS
7396 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7397 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7398 * basically everything that doesn't depend on a specific mem_cgroup structure
7399 * should be initialized from here.
2d11085e
MH
7400 */
7401static int __init mem_cgroup_init(void)
7402{
95a045f6
JW
7403 int cpu, node;
7404
f3344adf
MS
7405 /*
7406 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7407 * used for per-memcg-per-cpu caching of per-node statistics. In order
7408 * to work fine, we should make sure that the overfill threshold can't
7409 * exceed S32_MAX / PAGE_SIZE.
7410 */
7411 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7412
308167fc
SAS
7413 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7414 memcg_hotplug_cpu_dead);
95a045f6
JW
7415
7416 for_each_possible_cpu(cpu)
7417 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7418 drain_local_stock);
7419
7420 for_each_node(node) {
7421 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7422
7423 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7424 node_online(node) ? node : NUMA_NO_NODE);
7425
ef8f2327 7426 rtpn->rb_root = RB_ROOT;
fa90b2fd 7427 rtpn->rb_rightmost = NULL;
ef8f2327 7428 spin_lock_init(&rtpn->lock);
95a045f6
JW
7429 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7430 }
7431
2d11085e
MH
7432 return 0;
7433}
7434subsys_initcall(mem_cgroup_init);
21afa38e 7435
e55b9f96 7436#ifdef CONFIG_SWAP
358c07fc
AB
7437static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7438{
1c2d479a 7439 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7440 /*
7441 * The root cgroup cannot be destroyed, so it's refcount must
7442 * always be >= 1.
7443 */
7848ed62 7444 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
358c07fc
AB
7445 VM_BUG_ON(1);
7446 break;
7447 }
7448 memcg = parent_mem_cgroup(memcg);
7449 if (!memcg)
7450 memcg = root_mem_cgroup;
7451 }
7452 return memcg;
7453}
7454
21afa38e
JW
7455/**
7456 * mem_cgroup_swapout - transfer a memsw charge to swap
3ecb0087 7457 * @folio: folio whose memsw charge to transfer
21afa38e
JW
7458 * @entry: swap entry to move the charge to
7459 *
3ecb0087 7460 * Transfer the memsw charge of @folio to @entry.
21afa38e 7461 */
3ecb0087 7462void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
21afa38e 7463{
1f47b61f 7464 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7465 unsigned int nr_entries;
21afa38e
JW
7466 unsigned short oldid;
7467
3ecb0087
MWO
7468 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7469 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
21afa38e 7470
76358ab5
AS
7471 if (mem_cgroup_disabled())
7472 return;
7473
b94c4e94 7474 if (!do_memsw_account())
21afa38e
JW
7475 return;
7476
3ecb0087 7477 memcg = folio_memcg(folio);
21afa38e 7478
3ecb0087 7479 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
21afa38e
JW
7480 if (!memcg)
7481 return;
7482
1f47b61f
VD
7483 /*
7484 * In case the memcg owning these pages has been offlined and doesn't
7485 * have an ID allocated to it anymore, charge the closest online
7486 * ancestor for the swap instead and transfer the memory+swap charge.
7487 */
7488 swap_memcg = mem_cgroup_id_get_online(memcg);
3ecb0087 7489 nr_entries = folio_nr_pages(folio);
d6810d73
HY
7490 /* Get references for the tail pages, too */
7491 if (nr_entries > 1)
7492 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7493 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7494 nr_entries);
3ecb0087 7495 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7496 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7497
3ecb0087 7498 folio->memcg_data = 0;
21afa38e
JW
7499
7500 if (!mem_cgroup_is_root(memcg))
d6810d73 7501 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7502
b25806dc 7503 if (memcg != swap_memcg) {
1f47b61f 7504 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7505 page_counter_charge(&swap_memcg->memsw, nr_entries);
7506 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7507 }
7508
ce9ce665
SAS
7509 /*
7510 * Interrupts should be disabled here because the caller holds the
b93b0163 7511 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7512 * important here to have the interrupts disabled because it is the
b93b0163 7513 * only synchronisation we have for updating the per-CPU variables.
ce9ce665 7514 */
be3e67b5 7515 memcg_stats_lock();
6e0110c2 7516 mem_cgroup_charge_statistics(memcg, -nr_entries);
be3e67b5 7517 memcg_stats_unlock();
3ecb0087 7518 memcg_check_events(memcg, folio_nid(folio));
73f576c0 7519
1a3e1f40 7520 css_put(&memcg->css);
21afa38e
JW
7521}
7522
38d8b4e6 7523/**
e2e3fdc7
MWO
7524 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7525 * @folio: folio being added to swap
37e84351
VD
7526 * @entry: swap entry to charge
7527 *
e2e3fdc7 7528 * Try to charge @folio's memcg for the swap space at @entry.
37e84351
VD
7529 *
7530 * Returns 0 on success, -ENOMEM on failure.
7531 */
e2e3fdc7 7532int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
37e84351 7533{
e2e3fdc7 7534 unsigned int nr_pages = folio_nr_pages(folio);
37e84351 7535 struct page_counter *counter;
38d8b4e6 7536 struct mem_cgroup *memcg;
37e84351
VD
7537 unsigned short oldid;
7538
b94c4e94 7539 if (do_memsw_account())
37e84351
VD
7540 return 0;
7541
e2e3fdc7 7542 memcg = folio_memcg(folio);
37e84351 7543
e2e3fdc7 7544 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
37e84351
VD
7545 if (!memcg)
7546 return 0;
7547
f3a53a3a
TH
7548 if (!entry.val) {
7549 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7550 return 0;
f3a53a3a 7551 }
bb98f2c5 7552
1f47b61f
VD
7553 memcg = mem_cgroup_id_get_online(memcg);
7554
b25806dc 7555 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7556 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7557 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7558 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7559 mem_cgroup_id_put(memcg);
37e84351 7560 return -ENOMEM;
1f47b61f 7561 }
37e84351 7562
38d8b4e6
HY
7563 /* Get references for the tail pages, too */
7564 if (nr_pages > 1)
7565 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7566 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
e2e3fdc7 7567 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7568 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7569
37e84351
VD
7570 return 0;
7571}
7572
21afa38e 7573/**
01c4b28c 7574 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7575 * @entry: swap entry to uncharge
38d8b4e6 7576 * @nr_pages: the amount of swap space to uncharge
21afa38e 7577 */
01c4b28c 7578void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7579{
7580 struct mem_cgroup *memcg;
7581 unsigned short id;
7582
c91bdc93
JW
7583 if (mem_cgroup_disabled())
7584 return;
7585
38d8b4e6 7586 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7587 rcu_read_lock();
adbe427b 7588 memcg = mem_cgroup_from_id(id);
21afa38e 7589 if (memcg) {
b25806dc 7590 if (!mem_cgroup_is_root(memcg)) {
b94c4e94 7591 if (do_memsw_account())
38d8b4e6 7592 page_counter_uncharge(&memcg->memsw, nr_pages);
b94c4e94
JW
7593 else
7594 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7595 }
c9019e9b 7596 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7597 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7598 }
7599 rcu_read_unlock();
7600}
7601
d8b38438
VD
7602long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7603{
7604 long nr_swap_pages = get_nr_swap_pages();
7605
b25806dc 7606 if (mem_cgroup_disabled() || do_memsw_account())
d8b38438 7607 return nr_swap_pages;
7848ed62 7608 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
d8b38438 7609 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7610 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7611 page_counter_read(&memcg->swap));
7612 return nr_swap_pages;
7613}
7614
9202d527 7615bool mem_cgroup_swap_full(struct folio *folio)
5ccc5aba
VD
7616{
7617 struct mem_cgroup *memcg;
7618
9202d527 7619 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5ccc5aba
VD
7620
7621 if (vm_swap_full())
7622 return true;
b25806dc 7623 if (do_memsw_account())
5ccc5aba
VD
7624 return false;
7625
9202d527 7626 memcg = folio_memcg(folio);
5ccc5aba
VD
7627 if (!memcg)
7628 return false;
7629
7848ed62 7630 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
4b82ab4f
JK
7631 unsigned long usage = page_counter_read(&memcg->swap);
7632
7633 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7634 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7635 return true;
4b82ab4f 7636 }
5ccc5aba
VD
7637
7638 return false;
7639}
7640
eccb52e7 7641static int __init setup_swap_account(char *s)
21afa38e 7642{
b25806dc
JW
7643 pr_warn_once("The swapaccount= commandline option is deprecated. "
7644 "Please report your usecase to linux-mm@kvack.org if you "
7645 "depend on this functionality.\n");
21afa38e
JW
7646 return 1;
7647}
eccb52e7 7648__setup("swapaccount=", setup_swap_account);
21afa38e 7649
37e84351
VD
7650static u64 swap_current_read(struct cgroup_subsys_state *css,
7651 struct cftype *cft)
7652{
7653 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7654
7655 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7656}
7657
4b82ab4f
JK
7658static int swap_high_show(struct seq_file *m, void *v)
7659{
7660 return seq_puts_memcg_tunable(m,
7661 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7662}
7663
7664static ssize_t swap_high_write(struct kernfs_open_file *of,
7665 char *buf, size_t nbytes, loff_t off)
7666{
7667 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7668 unsigned long high;
7669 int err;
7670
7671 buf = strstrip(buf);
7672 err = page_counter_memparse(buf, "max", &high);
7673 if (err)
7674 return err;
7675
7676 page_counter_set_high(&memcg->swap, high);
7677
7678 return nbytes;
7679}
7680
37e84351
VD
7681static int swap_max_show(struct seq_file *m, void *v)
7682{
677dc973
CD
7683 return seq_puts_memcg_tunable(m,
7684 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7685}
7686
7687static ssize_t swap_max_write(struct kernfs_open_file *of,
7688 char *buf, size_t nbytes, loff_t off)
7689{
7690 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7691 unsigned long max;
7692 int err;
7693
7694 buf = strstrip(buf);
7695 err = page_counter_memparse(buf, "max", &max);
7696 if (err)
7697 return err;
7698
be09102b 7699 xchg(&memcg->swap.max, max);
37e84351
VD
7700
7701 return nbytes;
7702}
7703
f3a53a3a
TH
7704static int swap_events_show(struct seq_file *m, void *v)
7705{
aa9694bb 7706 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7707
4b82ab4f
JK
7708 seq_printf(m, "high %lu\n",
7709 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7710 seq_printf(m, "max %lu\n",
7711 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7712 seq_printf(m, "fail %lu\n",
7713 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7714
7715 return 0;
7716}
7717
37e84351
VD
7718static struct cftype swap_files[] = {
7719 {
7720 .name = "swap.current",
7721 .flags = CFTYPE_NOT_ON_ROOT,
7722 .read_u64 = swap_current_read,
7723 },
4b82ab4f
JK
7724 {
7725 .name = "swap.high",
7726 .flags = CFTYPE_NOT_ON_ROOT,
7727 .seq_show = swap_high_show,
7728 .write = swap_high_write,
7729 },
37e84351
VD
7730 {
7731 .name = "swap.max",
7732 .flags = CFTYPE_NOT_ON_ROOT,
7733 .seq_show = swap_max_show,
7734 .write = swap_max_write,
7735 },
f3a53a3a
TH
7736 {
7737 .name = "swap.events",
7738 .flags = CFTYPE_NOT_ON_ROOT,
7739 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7740 .seq_show = swap_events_show,
7741 },
37e84351
VD
7742 { } /* terminate */
7743};
7744
eccb52e7 7745static struct cftype memsw_files[] = {
21afa38e
JW
7746 {
7747 .name = "memsw.usage_in_bytes",
7748 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7749 .read_u64 = mem_cgroup_read_u64,
7750 },
7751 {
7752 .name = "memsw.max_usage_in_bytes",
7753 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7754 .write = mem_cgroup_reset,
7755 .read_u64 = mem_cgroup_read_u64,
7756 },
7757 {
7758 .name = "memsw.limit_in_bytes",
7759 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7760 .write = mem_cgroup_write,
7761 .read_u64 = mem_cgroup_read_u64,
7762 },
7763 {
7764 .name = "memsw.failcnt",
7765 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7766 .write = mem_cgroup_reset,
7767 .read_u64 = mem_cgroup_read_u64,
7768 },
7769 { }, /* terminate */
7770};
7771
f4840ccf
JW
7772#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7773/**
7774 * obj_cgroup_may_zswap - check if this cgroup can zswap
7775 * @objcg: the object cgroup
7776 *
7777 * Check if the hierarchical zswap limit has been reached.
7778 *
7779 * This doesn't check for specific headroom, and it is not atomic
7780 * either. But with zswap, the size of the allocation is only known
7781 * once compression has occured, and this optimistic pre-check avoids
7782 * spending cycles on compression when there is already no room left
7783 * or zswap is disabled altogether somewhere in the hierarchy.
7784 */
7785bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7786{
7787 struct mem_cgroup *memcg, *original_memcg;
7788 bool ret = true;
7789
7790 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7791 return true;
7792
7793 original_memcg = get_mem_cgroup_from_objcg(objcg);
7848ed62 7794 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
f4840ccf
JW
7795 memcg = parent_mem_cgroup(memcg)) {
7796 unsigned long max = READ_ONCE(memcg->zswap_max);
7797 unsigned long pages;
7798
7799 if (max == PAGE_COUNTER_MAX)
7800 continue;
7801 if (max == 0) {
7802 ret = false;
7803 break;
7804 }
7805
7806 cgroup_rstat_flush(memcg->css.cgroup);
7807 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7808 if (pages < max)
7809 continue;
7810 ret = false;
7811 break;
7812 }
7813 mem_cgroup_put(original_memcg);
7814 return ret;
7815}
7816
7817/**
7818 * obj_cgroup_charge_zswap - charge compression backend memory
7819 * @objcg: the object cgroup
7820 * @size: size of compressed object
7821 *
7822 * This forces the charge after obj_cgroup_may_swap() allowed
7823 * compression and storage in zwap for this cgroup to go ahead.
7824 */
7825void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7826{
7827 struct mem_cgroup *memcg;
7828
7829 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7830 return;
7831
7832 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7833
7834 /* PF_MEMALLOC context, charging must succeed */
7835 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7836 VM_WARN_ON_ONCE(1);
7837
7838 rcu_read_lock();
7839 memcg = obj_cgroup_memcg(objcg);
7840 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7841 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7842 rcu_read_unlock();
7843}
7844
7845/**
7846 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7847 * @objcg: the object cgroup
7848 * @size: size of compressed object
7849 *
7850 * Uncharges zswap memory on page in.
7851 */
7852void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7853{
7854 struct mem_cgroup *memcg;
7855
7856 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7857 return;
7858
7859 obj_cgroup_uncharge(objcg, size);
7860
7861 rcu_read_lock();
7862 memcg = obj_cgroup_memcg(objcg);
7863 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7864 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7865 rcu_read_unlock();
7866}
7867
7868static u64 zswap_current_read(struct cgroup_subsys_state *css,
7869 struct cftype *cft)
7870{
7871 cgroup_rstat_flush(css->cgroup);
7872 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7873}
7874
7875static int zswap_max_show(struct seq_file *m, void *v)
7876{
7877 return seq_puts_memcg_tunable(m,
7878 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7879}
7880
7881static ssize_t zswap_max_write(struct kernfs_open_file *of,
7882 char *buf, size_t nbytes, loff_t off)
7883{
7884 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7885 unsigned long max;
7886 int err;
7887
7888 buf = strstrip(buf);
7889 err = page_counter_memparse(buf, "max", &max);
7890 if (err)
7891 return err;
7892
7893 xchg(&memcg->zswap_max, max);
7894
7895 return nbytes;
7896}
7897
7898static struct cftype zswap_files[] = {
7899 {
7900 .name = "zswap.current",
7901 .flags = CFTYPE_NOT_ON_ROOT,
7902 .read_u64 = zswap_current_read,
7903 },
7904 {
7905 .name = "zswap.max",
7906 .flags = CFTYPE_NOT_ON_ROOT,
7907 .seq_show = zswap_max_show,
7908 .write = zswap_max_write,
7909 },
7910 { } /* terminate */
7911};
7912#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7913
21afa38e
JW
7914static int __init mem_cgroup_swap_init(void)
7915{
2d1c4980 7916 if (mem_cgroup_disabled())
eccb52e7
JW
7917 return 0;
7918
7919 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7920 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
f4840ccf
JW
7921#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7922 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7923#endif
21afa38e
JW
7924 return 0;
7925}
b25806dc 7926subsys_initcall(mem_cgroup_swap_init);
21afa38e 7927
e55b9f96 7928#endif /* CONFIG_SWAP */