]> git.ipfire.org Git - people/ms/linux.git/blame - mm/memcontrol.c
memcg: use [kv]zalloc[_node] rather than [kv]malloc+memset
[people/ms/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 63int do_swap_account __read_mostly;
a42c390c
MH
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
c077719b
KH
72#else
73#define do_swap_account (0)
74#endif
75
d2265e6f
KH
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
c077719b 85
d52aa412
KH
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
0c3e73e8 98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c
KH
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
32047e2a 102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
103
104 MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
d52aa412
KH
109};
110
6d12e2d8
KH
111/*
112 * per-zone information in memory controller.
113 */
6d12e2d8 114struct mem_cgroup_per_zone {
072c56c1
KH
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
b69408e8
CL
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
120
121 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
4e416953
BS
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
6d12e2d8
KH
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
f64c3f54
BS
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
2e72b634
KS
160struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163};
164
9490ff27 165/* For threshold */
2e72b634
KS
166struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
5407a562 168 int current_threshold;
2e72b634
KS
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173};
2c488db2
KS
174
175struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184};
185
9490ff27
KH
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190};
2e72b634 191
2e72b634 192static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 194
8cdea7c0
BS
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
8cdea7c0
BS
205 */
206struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
8c7c6e34
KH
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
78fb7466
PE
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
78fb7466 219 */
6d12e2d8 220 struct mem_cgroup_lru_info info;
072c56c1 221
2733c06a
KM
222 /*
223 protect against reclaim related member.
224 */
225 spinlock_t reclaim_param_lock;
226
6d61ef40 227 /*
af901ca1 228 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 229 * reclaimed from.
6d61ef40 230 */
04046e1a 231 int last_scanned_child;
18f59ea7
BS
232 /*
233 * Should the accounting and control be hierarchical, per subtree?
234 */
235 bool use_hierarchy;
867578cb 236 atomic_t oom_lock;
8c7c6e34 237 atomic_t refcnt;
14797e23 238
a7885eb8 239 unsigned int swappiness;
3c11ecf4
KH
240 /* OOM-Killer disable */
241 int oom_kill_disable;
a7885eb8 242
22a668d7
KH
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
245
2e72b634
KS
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
248
249 /* thresholds for memory usage. RCU-protected */
2c488db2 250 struct mem_cgroup_thresholds thresholds;
907860ed 251
2e72b634 252 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 253 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 254
9490ff27
KH
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
257
7dc74be0
DN
258 /*
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
261 */
262 unsigned long move_charge_at_immigrate;
d52aa412 263 /*
c62b1a3b 264 * percpu counter.
d52aa412 265 */
c62b1a3b 266 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
267 /*
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
270 */
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
8cdea7c0
BS
273};
274
7dc74be0
DN
275/* Stuffs for move charges at task migration. */
276/*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280enum move_type {
4ffef5fe 281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
283 NR_MOVE_TYPE,
284};
285
4ffef5fe
DN
286/* "mc" and its members are protected by cgroup_mutex */
287static struct move_charge_struct {
b1dd693e 288 spinlock_t lock; /* for from, to */
4ffef5fe
DN
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
854ffa8d 292 unsigned long moved_charge;
483c30b5 293 unsigned long moved_swap;
8033b97c
DN
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296} mc = {
2bd9bb20 297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299};
4ffef5fe 300
90254a65
DN
301static bool move_anon(void)
302{
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
305}
306
87946a72
DN
307static bool move_file(void)
308{
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
311}
312
4e416953
BS
313/*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
217bc319
KH
320enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
327 NR_CHARGE_TYPE,
328};
329
52d4b9ac
KH
330/* only for here (for easy reading.) */
331#define PCGF_CACHE (1UL << PCG_CACHE)
332#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 333#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
334/* Not used, but added here for completeness */
335#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 336
8c7c6e34
KH
337/* for encoding cft->private value on file */
338#define _MEM (0)
339#define _MEMSWAP (1)
9490ff27 340#define _OOM_TYPE (2)
8c7c6e34
KH
341#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
343#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
344/* Used for OOM nofiier */
345#define OOM_CONTROL (0)
8c7c6e34 346
75822b44
BS
347/*
348 * Reclaim flags for mem_cgroup_hierarchical_reclaim
349 */
350#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
351#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
353#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
354#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
355#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 356
8c7c6e34
KH
357static void mem_cgroup_get(struct mem_cgroup *mem);
358static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 359static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 360static void drain_all_stock_async(void);
8c7c6e34 361
f64c3f54
BS
362static struct mem_cgroup_per_zone *
363mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364{
365 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366}
367
d324236b
WF
368struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369{
370 return &mem->css;
371}
372
f64c3f54
BS
373static struct mem_cgroup_per_zone *
374page_cgroup_zoneinfo(struct page_cgroup *pc)
375{
376 struct mem_cgroup *mem = pc->mem_cgroup;
377 int nid = page_cgroup_nid(pc);
378 int zid = page_cgroup_zid(pc);
379
380 if (!mem)
381 return NULL;
382
383 return mem_cgroup_zoneinfo(mem, nid, zid);
384}
385
386static struct mem_cgroup_tree_per_zone *
387soft_limit_tree_node_zone(int nid, int zid)
388{
389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390}
391
392static struct mem_cgroup_tree_per_zone *
393soft_limit_tree_from_page(struct page *page)
394{
395 int nid = page_to_nid(page);
396 int zid = page_zonenum(page);
397
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static void
4e416953 402__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 403 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
404 struct mem_cgroup_tree_per_zone *mctz,
405 unsigned long long new_usage_in_excess)
f64c3f54
BS
406{
407 struct rb_node **p = &mctz->rb_root.rb_node;
408 struct rb_node *parent = NULL;
409 struct mem_cgroup_per_zone *mz_node;
410
411 if (mz->on_tree)
412 return;
413
ef8745c1
KH
414 mz->usage_in_excess = new_usage_in_excess;
415 if (!mz->usage_in_excess)
416 return;
f64c3f54
BS
417 while (*p) {
418 parent = *p;
419 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420 tree_node);
421 if (mz->usage_in_excess < mz_node->usage_in_excess)
422 p = &(*p)->rb_left;
423 /*
424 * We can't avoid mem cgroups that are over their soft
425 * limit by the same amount
426 */
427 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428 p = &(*p)->rb_right;
429 }
430 rb_link_node(&mz->tree_node, parent, p);
431 rb_insert_color(&mz->tree_node, &mctz->rb_root);
432 mz->on_tree = true;
4e416953
BS
433}
434
435static void
436__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 struct mem_cgroup_per_zone *mz,
438 struct mem_cgroup_tree_per_zone *mctz)
439{
440 if (!mz->on_tree)
441 return;
442 rb_erase(&mz->tree_node, &mctz->rb_root);
443 mz->on_tree = false;
444}
445
f64c3f54
BS
446static void
447mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448 struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz)
450{
451 spin_lock(&mctz->lock);
4e416953 452 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
453 spin_unlock(&mctz->lock);
454}
455
f64c3f54
BS
456
457static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458{
ef8745c1 459 unsigned long long excess;
f64c3f54
BS
460 struct mem_cgroup_per_zone *mz;
461 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
462 int nid = page_to_nid(page);
463 int zid = page_zonenum(page);
f64c3f54
BS
464 mctz = soft_limit_tree_from_page(page);
465
466 /*
4e649152
KH
467 * Necessary to update all ancestors when hierarchy is used.
468 * because their event counter is not touched.
f64c3f54 469 */
4e649152
KH
470 for (; mem; mem = parent_mem_cgroup(mem)) {
471 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 472 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
473 /*
474 * We have to update the tree if mz is on RB-tree or
475 * mem is over its softlimit.
476 */
ef8745c1 477 if (excess || mz->on_tree) {
4e649152
KH
478 spin_lock(&mctz->lock);
479 /* if on-tree, remove it */
480 if (mz->on_tree)
481 __mem_cgroup_remove_exceeded(mem, mz, mctz);
482 /*
ef8745c1
KH
483 * Insert again. mz->usage_in_excess will be updated.
484 * If excess is 0, no tree ops.
4e649152 485 */
ef8745c1 486 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
487 spin_unlock(&mctz->lock);
488 }
f64c3f54
BS
489 }
490}
491
492static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493{
494 int node, zone;
495 struct mem_cgroup_per_zone *mz;
496 struct mem_cgroup_tree_per_zone *mctz;
497
498 for_each_node_state(node, N_POSSIBLE) {
499 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500 mz = mem_cgroup_zoneinfo(mem, node, zone);
501 mctz = soft_limit_tree_node_zone(node, zone);
502 mem_cgroup_remove_exceeded(mem, mz, mctz);
503 }
504 }
505}
506
4e416953
BS
507static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
508{
509 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
510}
511
512static struct mem_cgroup_per_zone *
513__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514{
515 struct rb_node *rightmost = NULL;
26251eaf 516 struct mem_cgroup_per_zone *mz;
4e416953
BS
517
518retry:
26251eaf 519 mz = NULL;
4e416953
BS
520 rightmost = rb_last(&mctz->rb_root);
521 if (!rightmost)
522 goto done; /* Nothing to reclaim from */
523
524 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525 /*
526 * Remove the node now but someone else can add it back,
527 * we will to add it back at the end of reclaim to its correct
528 * position in the tree.
529 */
530 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532 !css_tryget(&mz->mem->css))
533 goto retry;
534done:
535 return mz;
536}
537
538static struct mem_cgroup_per_zone *
539mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540{
541 struct mem_cgroup_per_zone *mz;
542
543 spin_lock(&mctz->lock);
544 mz = __mem_cgroup_largest_soft_limit_node(mctz);
545 spin_unlock(&mctz->lock);
546 return mz;
547}
548
711d3d2c
KH
549/*
550 * Implementation Note: reading percpu statistics for memcg.
551 *
552 * Both of vmstat[] and percpu_counter has threshold and do periodic
553 * synchronization to implement "quick" read. There are trade-off between
554 * reading cost and precision of value. Then, we may have a chance to implement
555 * a periodic synchronizion of counter in memcg's counter.
556 *
557 * But this _read() function is used for user interface now. The user accounts
558 * memory usage by memory cgroup and he _always_ requires exact value because
559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560 * have to visit all online cpus and make sum. So, for now, unnecessary
561 * synchronization is not implemented. (just implemented for cpu hotplug)
562 *
563 * If there are kernel internal actions which can make use of some not-exact
564 * value, and reading all cpu value can be performance bottleneck in some
565 * common workload, threashold and synchonization as vmstat[] should be
566 * implemented.
567 */
c62b1a3b
KH
568static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569 enum mem_cgroup_stat_index idx)
570{
571 int cpu;
572 s64 val = 0;
573
711d3d2c
KH
574 get_online_cpus();
575 for_each_online_cpu(cpu)
c62b1a3b 576 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
577#ifdef CONFIG_HOTPLUG_CPU
578 spin_lock(&mem->pcp_counter_lock);
579 val += mem->nocpu_base.count[idx];
580 spin_unlock(&mem->pcp_counter_lock);
581#endif
582 put_online_cpus();
c62b1a3b
KH
583 return val;
584}
585
586static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
587{
588 s64 ret;
589
590 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592 return ret;
593}
594
0c3e73e8
BS
595static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596 bool charge)
597{
598 int val = (charge) ? 1 : -1;
c62b1a3b 599 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
600}
601
c05555b5
KH
602static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603 struct page_cgroup *pc,
604 bool charge)
d52aa412 605{
0c3e73e8 606 int val = (charge) ? 1 : -1;
d52aa412 607
c62b1a3b
KH
608 preempt_disable();
609
c05555b5 610 if (PageCgroupCache(pc))
c62b1a3b 611 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
d52aa412 612 else
c62b1a3b 613 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
55e462b0
BR
614
615 if (charge)
c62b1a3b 616 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
55e462b0 617 else
c62b1a3b 618 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
d2265e6f 619 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
2e72b634 620
c62b1a3b 621 preempt_enable();
6d12e2d8
KH
622}
623
14067bb3 624static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 625 enum lru_list idx)
6d12e2d8
KH
626{
627 int nid, zid;
628 struct mem_cgroup_per_zone *mz;
629 u64 total = 0;
630
631 for_each_online_node(nid)
632 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
633 mz = mem_cgroup_zoneinfo(mem, nid, zid);
634 total += MEM_CGROUP_ZSTAT(mz, idx);
635 }
636 return total;
d52aa412
KH
637}
638
d2265e6f
KH
639static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
640{
641 s64 val;
642
643 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
644
645 return !(val & ((1 << event_mask_shift) - 1));
646}
647
648/*
649 * Check events in order.
650 *
651 */
652static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
653{
654 /* threshold event is triggered in finer grain than soft limit */
655 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
656 mem_cgroup_threshold(mem);
657 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
658 mem_cgroup_update_tree(mem, page);
659 }
660}
661
d5b69e38 662static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
663{
664 return container_of(cgroup_subsys_state(cont,
665 mem_cgroup_subsys_id), struct mem_cgroup,
666 css);
667}
668
cf475ad2 669struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 670{
31a78f23
BS
671 /*
672 * mm_update_next_owner() may clear mm->owner to NULL
673 * if it races with swapoff, page migration, etc.
674 * So this can be called with p == NULL.
675 */
676 if (unlikely(!p))
677 return NULL;
678
78fb7466
PE
679 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
680 struct mem_cgroup, css);
681}
682
54595fe2
KH
683static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
684{
685 struct mem_cgroup *mem = NULL;
0b7f569e
KH
686
687 if (!mm)
688 return NULL;
54595fe2
KH
689 /*
690 * Because we have no locks, mm->owner's may be being moved to other
691 * cgroup. We use css_tryget() here even if this looks
692 * pessimistic (rather than adding locks here).
693 */
694 rcu_read_lock();
695 do {
696 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
697 if (unlikely(!mem))
698 break;
699 } while (!css_tryget(&mem->css));
700 rcu_read_unlock();
701 return mem;
702}
703
7d74b06f
KH
704/* The caller has to guarantee "mem" exists before calling this */
705static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 706{
711d3d2c
KH
707 struct cgroup_subsys_state *css;
708 int found;
709
710 if (!mem) /* ROOT cgroup has the smallest ID */
711 return root_mem_cgroup; /*css_put/get against root is ignored*/
712 if (!mem->use_hierarchy) {
713 if (css_tryget(&mem->css))
714 return mem;
715 return NULL;
716 }
717 rcu_read_lock();
718 /*
719 * searching a memory cgroup which has the smallest ID under given
720 * ROOT cgroup. (ID >= 1)
721 */
722 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
723 if (css && css_tryget(css))
724 mem = container_of(css, struct mem_cgroup, css);
725 else
726 mem = NULL;
727 rcu_read_unlock();
728 return mem;
7d74b06f
KH
729}
730
731static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
732 struct mem_cgroup *root,
733 bool cond)
734{
735 int nextid = css_id(&iter->css) + 1;
736 int found;
737 int hierarchy_used;
14067bb3 738 struct cgroup_subsys_state *css;
14067bb3 739
7d74b06f 740 hierarchy_used = iter->use_hierarchy;
14067bb3 741
7d74b06f 742 css_put(&iter->css);
711d3d2c
KH
743 /* If no ROOT, walk all, ignore hierarchy */
744 if (!cond || (root && !hierarchy_used))
7d74b06f 745 return NULL;
14067bb3 746
711d3d2c
KH
747 if (!root)
748 root = root_mem_cgroup;
749
7d74b06f
KH
750 do {
751 iter = NULL;
14067bb3 752 rcu_read_lock();
7d74b06f
KH
753
754 css = css_get_next(&mem_cgroup_subsys, nextid,
755 &root->css, &found);
14067bb3 756 if (css && css_tryget(css))
7d74b06f 757 iter = container_of(css, struct mem_cgroup, css);
14067bb3 758 rcu_read_unlock();
7d74b06f 759 /* If css is NULL, no more cgroups will be found */
14067bb3 760 nextid = found + 1;
7d74b06f 761 } while (css && !iter);
14067bb3 762
7d74b06f 763 return iter;
14067bb3 764}
7d74b06f
KH
765/*
766 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
767 * be careful that "break" loop is not allowed. We have reference count.
768 * Instead of that modify "cond" to be false and "continue" to exit the loop.
769 */
770#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
771 for (iter = mem_cgroup_start_loop(root);\
772 iter != NULL;\
773 iter = mem_cgroup_get_next(iter, root, cond))
774
775#define for_each_mem_cgroup_tree(iter, root) \
776 for_each_mem_cgroup_tree_cond(iter, root, true)
777
711d3d2c
KH
778#define for_each_mem_cgroup_all(iter) \
779 for_each_mem_cgroup_tree_cond(iter, NULL, true)
780
14067bb3 781
4b3bde4c
BS
782static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
783{
784 return (mem == root_mem_cgroup);
785}
786
08e552c6
KH
787/*
788 * Following LRU functions are allowed to be used without PCG_LOCK.
789 * Operations are called by routine of global LRU independently from memcg.
790 * What we have to take care of here is validness of pc->mem_cgroup.
791 *
792 * Changes to pc->mem_cgroup happens when
793 * 1. charge
794 * 2. moving account
795 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
796 * It is added to LRU before charge.
797 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
798 * When moving account, the page is not on LRU. It's isolated.
799 */
4f98a2fe 800
08e552c6
KH
801void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
802{
803 struct page_cgroup *pc;
08e552c6 804 struct mem_cgroup_per_zone *mz;
6d12e2d8 805
f8d66542 806 if (mem_cgroup_disabled())
08e552c6
KH
807 return;
808 pc = lookup_page_cgroup(page);
809 /* can happen while we handle swapcache. */
4b3bde4c 810 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 811 return;
4b3bde4c 812 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
813 /*
814 * We don't check PCG_USED bit. It's cleared when the "page" is finally
815 * removed from global LRU.
816 */
08e552c6 817 mz = page_cgroup_zoneinfo(pc);
b69408e8 818 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
4b3bde4c
BS
819 if (mem_cgroup_is_root(pc->mem_cgroup))
820 return;
821 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 822 list_del_init(&pc->lru);
6d12e2d8
KH
823}
824
08e552c6 825void mem_cgroup_del_lru(struct page *page)
6d12e2d8 826{
08e552c6
KH
827 mem_cgroup_del_lru_list(page, page_lru(page));
828}
b69408e8 829
08e552c6
KH
830void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
831{
832 struct mem_cgroup_per_zone *mz;
833 struct page_cgroup *pc;
b69408e8 834
f8d66542 835 if (mem_cgroup_disabled())
08e552c6 836 return;
6d12e2d8 837
08e552c6 838 pc = lookup_page_cgroup(page);
bd112db8
DN
839 /*
840 * Used bit is set without atomic ops but after smp_wmb().
841 * For making pc->mem_cgroup visible, insert smp_rmb() here.
842 */
08e552c6 843 smp_rmb();
4b3bde4c
BS
844 /* unused or root page is not rotated. */
845 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
846 return;
847 mz = page_cgroup_zoneinfo(pc);
848 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
849}
850
08e552c6 851void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 852{
08e552c6
KH
853 struct page_cgroup *pc;
854 struct mem_cgroup_per_zone *mz;
6d12e2d8 855
f8d66542 856 if (mem_cgroup_disabled())
08e552c6
KH
857 return;
858 pc = lookup_page_cgroup(page);
4b3bde4c 859 VM_BUG_ON(PageCgroupAcctLRU(pc));
bd112db8
DN
860 /*
861 * Used bit is set without atomic ops but after smp_wmb().
862 * For making pc->mem_cgroup visible, insert smp_rmb() here.
863 */
08e552c6
KH
864 smp_rmb();
865 if (!PageCgroupUsed(pc))
894bc310 866 return;
b69408e8 867
08e552c6 868 mz = page_cgroup_zoneinfo(pc);
b69408e8 869 MEM_CGROUP_ZSTAT(mz, lru) += 1;
4b3bde4c
BS
870 SetPageCgroupAcctLRU(pc);
871 if (mem_cgroup_is_root(pc->mem_cgroup))
872 return;
08e552c6
KH
873 list_add(&pc->lru, &mz->lists[lru]);
874}
544122e5 875
08e552c6 876/*
544122e5
KH
877 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
878 * lru because the page may.be reused after it's fully uncharged (because of
879 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
880 * it again. This function is only used to charge SwapCache. It's done under
881 * lock_page and expected that zone->lru_lock is never held.
08e552c6 882 */
544122e5 883static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 884{
544122e5
KH
885 unsigned long flags;
886 struct zone *zone = page_zone(page);
887 struct page_cgroup *pc = lookup_page_cgroup(page);
888
889 spin_lock_irqsave(&zone->lru_lock, flags);
890 /*
891 * Forget old LRU when this page_cgroup is *not* used. This Used bit
892 * is guarded by lock_page() because the page is SwapCache.
893 */
894 if (!PageCgroupUsed(pc))
895 mem_cgroup_del_lru_list(page, page_lru(page));
896 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
897}
898
544122e5
KH
899static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
900{
901 unsigned long flags;
902 struct zone *zone = page_zone(page);
903 struct page_cgroup *pc = lookup_page_cgroup(page);
904
905 spin_lock_irqsave(&zone->lru_lock, flags);
906 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 907 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
908 mem_cgroup_add_lru_list(page, page_lru(page));
909 spin_unlock_irqrestore(&zone->lru_lock, flags);
910}
911
912
08e552c6
KH
913void mem_cgroup_move_lists(struct page *page,
914 enum lru_list from, enum lru_list to)
915{
f8d66542 916 if (mem_cgroup_disabled())
08e552c6
KH
917 return;
918 mem_cgroup_del_lru_list(page, from);
919 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
920}
921
4c4a2214
DR
922int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
923{
924 int ret;
0b7f569e 925 struct mem_cgroup *curr = NULL;
158e0a2d 926 struct task_struct *p;
4c4a2214 927
158e0a2d
KH
928 p = find_lock_task_mm(task);
929 if (!p)
930 return 0;
931 curr = try_get_mem_cgroup_from_mm(p->mm);
932 task_unlock(p);
0b7f569e
KH
933 if (!curr)
934 return 0;
d31f56db
DN
935 /*
936 * We should check use_hierarchy of "mem" not "curr". Because checking
937 * use_hierarchy of "curr" here make this function true if hierarchy is
938 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
939 * hierarchy(even if use_hierarchy is disabled in "mem").
940 */
941 if (mem->use_hierarchy)
0b7f569e
KH
942 ret = css_is_ancestor(&curr->css, &mem->css);
943 else
944 ret = (curr == mem);
945 css_put(&curr->css);
4c4a2214
DR
946 return ret;
947}
948
c772be93 949static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
950{
951 unsigned long active;
952 unsigned long inactive;
c772be93
KM
953 unsigned long gb;
954 unsigned long inactive_ratio;
14797e23 955
14067bb3
KH
956 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
957 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 958
c772be93
KM
959 gb = (inactive + active) >> (30 - PAGE_SHIFT);
960 if (gb)
961 inactive_ratio = int_sqrt(10 * gb);
962 else
963 inactive_ratio = 1;
964
965 if (present_pages) {
966 present_pages[0] = inactive;
967 present_pages[1] = active;
968 }
969
970 return inactive_ratio;
971}
972
973int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
974{
975 unsigned long active;
976 unsigned long inactive;
977 unsigned long present_pages[2];
978 unsigned long inactive_ratio;
979
980 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
981
982 inactive = present_pages[0];
983 active = present_pages[1];
984
985 if (inactive * inactive_ratio < active)
14797e23
KM
986 return 1;
987
988 return 0;
989}
990
56e49d21
RR
991int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
992{
993 unsigned long active;
994 unsigned long inactive;
995
996 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
997 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
998
999 return (active > inactive);
1000}
1001
a3d8e054
KM
1002unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1003 struct zone *zone,
1004 enum lru_list lru)
1005{
13d7e3a2 1006 int nid = zone_to_nid(zone);
a3d8e054
KM
1007 int zid = zone_idx(zone);
1008 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1009
1010 return MEM_CGROUP_ZSTAT(mz, lru);
1011}
1012
3e2f41f1
KM
1013struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1014 struct zone *zone)
1015{
13d7e3a2 1016 int nid = zone_to_nid(zone);
3e2f41f1
KM
1017 int zid = zone_idx(zone);
1018 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1019
1020 return &mz->reclaim_stat;
1021}
1022
1023struct zone_reclaim_stat *
1024mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1025{
1026 struct page_cgroup *pc;
1027 struct mem_cgroup_per_zone *mz;
1028
1029 if (mem_cgroup_disabled())
1030 return NULL;
1031
1032 pc = lookup_page_cgroup(page);
bd112db8
DN
1033 /*
1034 * Used bit is set without atomic ops but after smp_wmb().
1035 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1036 */
1037 smp_rmb();
1038 if (!PageCgroupUsed(pc))
1039 return NULL;
1040
3e2f41f1
KM
1041 mz = page_cgroup_zoneinfo(pc);
1042 if (!mz)
1043 return NULL;
1044
1045 return &mz->reclaim_stat;
1046}
1047
66e1707b
BS
1048unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1049 struct list_head *dst,
1050 unsigned long *scanned, int order,
1051 int mode, struct zone *z,
1052 struct mem_cgroup *mem_cont,
4f98a2fe 1053 int active, int file)
66e1707b
BS
1054{
1055 unsigned long nr_taken = 0;
1056 struct page *page;
1057 unsigned long scan;
1058 LIST_HEAD(pc_list);
1059 struct list_head *src;
ff7283fa 1060 struct page_cgroup *pc, *tmp;
13d7e3a2 1061 int nid = zone_to_nid(z);
1ecaab2b
KH
1062 int zid = zone_idx(z);
1063 struct mem_cgroup_per_zone *mz;
b7c46d15 1064 int lru = LRU_FILE * file + active;
2ffebca6 1065 int ret;
66e1707b 1066
cf475ad2 1067 BUG_ON(!mem_cont);
1ecaab2b 1068 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1069 src = &mz->lists[lru];
66e1707b 1070
ff7283fa
KH
1071 scan = 0;
1072 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1073 if (scan >= nr_to_scan)
ff7283fa 1074 break;
08e552c6
KH
1075
1076 page = pc->page;
52d4b9ac
KH
1077 if (unlikely(!PageCgroupUsed(pc)))
1078 continue;
436c6541 1079 if (unlikely(!PageLRU(page)))
ff7283fa 1080 continue;
ff7283fa 1081
436c6541 1082 scan++;
2ffebca6
KH
1083 ret = __isolate_lru_page(page, mode, file);
1084 switch (ret) {
1085 case 0:
66e1707b 1086 list_move(&page->lru, dst);
2ffebca6 1087 mem_cgroup_del_lru(page);
2c888cfb 1088 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1089 break;
1090 case -EBUSY:
1091 /* we don't affect global LRU but rotate in our LRU */
1092 mem_cgroup_rotate_lru_list(page, page_lru(page));
1093 break;
1094 default:
1095 break;
66e1707b
BS
1096 }
1097 }
1098
66e1707b 1099 *scanned = scan;
cc8e970c
KM
1100
1101 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1102 0, 0, 0, mode);
1103
66e1707b
BS
1104 return nr_taken;
1105}
1106
6d61ef40
BS
1107#define mem_cgroup_from_res_counter(counter, member) \
1108 container_of(counter, struct mem_cgroup, member)
1109
b85a96c0
DN
1110static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1111{
1112 if (do_swap_account) {
1113 if (res_counter_check_under_limit(&mem->res) &&
1114 res_counter_check_under_limit(&mem->memsw))
1115 return true;
1116 } else
1117 if (res_counter_check_under_limit(&mem->res))
1118 return true;
1119 return false;
1120}
1121
a7885eb8
KM
1122static unsigned int get_swappiness(struct mem_cgroup *memcg)
1123{
1124 struct cgroup *cgrp = memcg->css.cgroup;
1125 unsigned int swappiness;
1126
1127 /* root ? */
1128 if (cgrp->parent == NULL)
1129 return vm_swappiness;
1130
1131 spin_lock(&memcg->reclaim_param_lock);
1132 swappiness = memcg->swappiness;
1133 spin_unlock(&memcg->reclaim_param_lock);
1134
1135 return swappiness;
1136}
1137
32047e2a
KH
1138static void mem_cgroup_start_move(struct mem_cgroup *mem)
1139{
1140 int cpu;
1489ebad
KH
1141
1142 get_online_cpus();
1143 spin_lock(&mem->pcp_counter_lock);
1144 for_each_online_cpu(cpu)
32047e2a 1145 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1146 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1147 spin_unlock(&mem->pcp_counter_lock);
1148 put_online_cpus();
32047e2a
KH
1149
1150 synchronize_rcu();
1151}
1152
1153static void mem_cgroup_end_move(struct mem_cgroup *mem)
1154{
1155 int cpu;
1156
1157 if (!mem)
1158 return;
1489ebad
KH
1159 get_online_cpus();
1160 spin_lock(&mem->pcp_counter_lock);
1161 for_each_online_cpu(cpu)
32047e2a 1162 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1163 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1164 spin_unlock(&mem->pcp_counter_lock);
1165 put_online_cpus();
32047e2a
KH
1166}
1167/*
1168 * 2 routines for checking "mem" is under move_account() or not.
1169 *
1170 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1171 * for avoiding race in accounting. If true,
1172 * pc->mem_cgroup may be overwritten.
1173 *
1174 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1175 * under hierarchy of moving cgroups. This is for
1176 * waiting at hith-memory prressure caused by "move".
1177 */
1178
1179static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1180{
1181 VM_BUG_ON(!rcu_read_lock_held());
1182 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1183}
4b534334
KH
1184
1185static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1186{
2bd9bb20
KH
1187 struct mem_cgroup *from;
1188 struct mem_cgroup *to;
4b534334 1189 bool ret = false;
2bd9bb20
KH
1190 /*
1191 * Unlike task_move routines, we access mc.to, mc.from not under
1192 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1193 */
1194 spin_lock(&mc.lock);
1195 from = mc.from;
1196 to = mc.to;
1197 if (!from)
1198 goto unlock;
1199 if (from == mem || to == mem
1200 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1201 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1202 ret = true;
1203unlock:
1204 spin_unlock(&mc.lock);
4b534334
KH
1205 return ret;
1206}
1207
1208static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1209{
1210 if (mc.moving_task && current != mc.moving_task) {
1211 if (mem_cgroup_under_move(mem)) {
1212 DEFINE_WAIT(wait);
1213 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1214 /* moving charge context might have finished. */
1215 if (mc.moving_task)
1216 schedule();
1217 finish_wait(&mc.waitq, &wait);
1218 return true;
1219 }
1220 }
1221 return false;
1222}
1223
e222432b 1224/**
6a6135b6 1225 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1226 * @memcg: The memory cgroup that went over limit
1227 * @p: Task that is going to be killed
1228 *
1229 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1230 * enabled
1231 */
1232void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1233{
1234 struct cgroup *task_cgrp;
1235 struct cgroup *mem_cgrp;
1236 /*
1237 * Need a buffer in BSS, can't rely on allocations. The code relies
1238 * on the assumption that OOM is serialized for memory controller.
1239 * If this assumption is broken, revisit this code.
1240 */
1241 static char memcg_name[PATH_MAX];
1242 int ret;
1243
d31f56db 1244 if (!memcg || !p)
e222432b
BS
1245 return;
1246
1247
1248 rcu_read_lock();
1249
1250 mem_cgrp = memcg->css.cgroup;
1251 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1252
1253 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1254 if (ret < 0) {
1255 /*
1256 * Unfortunately, we are unable to convert to a useful name
1257 * But we'll still print out the usage information
1258 */
1259 rcu_read_unlock();
1260 goto done;
1261 }
1262 rcu_read_unlock();
1263
1264 printk(KERN_INFO "Task in %s killed", memcg_name);
1265
1266 rcu_read_lock();
1267 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1268 if (ret < 0) {
1269 rcu_read_unlock();
1270 goto done;
1271 }
1272 rcu_read_unlock();
1273
1274 /*
1275 * Continues from above, so we don't need an KERN_ level
1276 */
1277 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1278done:
1279
1280 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1281 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1282 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1283 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1284 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1285 "failcnt %llu\n",
1286 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1287 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1288 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1289}
1290
81d39c20
KH
1291/*
1292 * This function returns the number of memcg under hierarchy tree. Returns
1293 * 1(self count) if no children.
1294 */
1295static int mem_cgroup_count_children(struct mem_cgroup *mem)
1296{
1297 int num = 0;
7d74b06f
KH
1298 struct mem_cgroup *iter;
1299
1300 for_each_mem_cgroup_tree(iter, mem)
1301 num++;
81d39c20
KH
1302 return num;
1303}
1304
a63d83f4
DR
1305/*
1306 * Return the memory (and swap, if configured) limit for a memcg.
1307 */
1308u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1309{
1310 u64 limit;
1311 u64 memsw;
1312
f3e8eb70
JW
1313 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1314 limit += total_swap_pages << PAGE_SHIFT;
1315
a63d83f4
DR
1316 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1317 /*
1318 * If memsw is finite and limits the amount of swap space available
1319 * to this memcg, return that limit.
1320 */
1321 return min(limit, memsw);
1322}
1323
6d61ef40 1324/*
04046e1a
KH
1325 * Visit the first child (need not be the first child as per the ordering
1326 * of the cgroup list, since we track last_scanned_child) of @mem and use
1327 * that to reclaim free pages from.
1328 */
1329static struct mem_cgroup *
1330mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1331{
1332 struct mem_cgroup *ret = NULL;
1333 struct cgroup_subsys_state *css;
1334 int nextid, found;
1335
1336 if (!root_mem->use_hierarchy) {
1337 css_get(&root_mem->css);
1338 ret = root_mem;
1339 }
1340
1341 while (!ret) {
1342 rcu_read_lock();
1343 nextid = root_mem->last_scanned_child + 1;
1344 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1345 &found);
1346 if (css && css_tryget(css))
1347 ret = container_of(css, struct mem_cgroup, css);
1348
1349 rcu_read_unlock();
1350 /* Updates scanning parameter */
1351 spin_lock(&root_mem->reclaim_param_lock);
1352 if (!css) {
1353 /* this means start scan from ID:1 */
1354 root_mem->last_scanned_child = 0;
1355 } else
1356 root_mem->last_scanned_child = found;
1357 spin_unlock(&root_mem->reclaim_param_lock);
1358 }
1359
1360 return ret;
1361}
1362
1363/*
1364 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1365 * we reclaimed from, so that we don't end up penalizing one child extensively
1366 * based on its position in the children list.
6d61ef40
BS
1367 *
1368 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1369 *
1370 * We give up and return to the caller when we visit root_mem twice.
1371 * (other groups can be removed while we're walking....)
81d39c20
KH
1372 *
1373 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1374 */
1375static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1376 struct zone *zone,
75822b44
BS
1377 gfp_t gfp_mask,
1378 unsigned long reclaim_options)
6d61ef40 1379{
04046e1a
KH
1380 struct mem_cgroup *victim;
1381 int ret, total = 0;
1382 int loop = 0;
75822b44
BS
1383 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1384 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953
BS
1385 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1386 unsigned long excess = mem_cgroup_get_excess(root_mem);
04046e1a 1387
22a668d7
KH
1388 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1389 if (root_mem->memsw_is_minimum)
1390 noswap = true;
1391
4e416953 1392 while (1) {
04046e1a 1393 victim = mem_cgroup_select_victim(root_mem);
4e416953 1394 if (victim == root_mem) {
04046e1a 1395 loop++;
cdec2e42
KH
1396 if (loop >= 1)
1397 drain_all_stock_async();
4e416953
BS
1398 if (loop >= 2) {
1399 /*
1400 * If we have not been able to reclaim
1401 * anything, it might because there are
1402 * no reclaimable pages under this hierarchy
1403 */
1404 if (!check_soft || !total) {
1405 css_put(&victim->css);
1406 break;
1407 }
1408 /*
1409 * We want to do more targetted reclaim.
1410 * excess >> 2 is not to excessive so as to
1411 * reclaim too much, nor too less that we keep
1412 * coming back to reclaim from this cgroup
1413 */
1414 if (total >= (excess >> 2) ||
1415 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1416 css_put(&victim->css);
1417 break;
1418 }
1419 }
1420 }
c62b1a3b 1421 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1422 /* this cgroup's local usage == 0 */
1423 css_put(&victim->css);
6d61ef40
BS
1424 continue;
1425 }
04046e1a 1426 /* we use swappiness of local cgroup */
4e416953
BS
1427 if (check_soft)
1428 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
14fec796 1429 noswap, get_swappiness(victim), zone);
4e416953
BS
1430 else
1431 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1432 noswap, get_swappiness(victim));
04046e1a 1433 css_put(&victim->css);
81d39c20
KH
1434 /*
1435 * At shrinking usage, we can't check we should stop here or
1436 * reclaim more. It's depends on callers. last_scanned_child
1437 * will work enough for keeping fairness under tree.
1438 */
1439 if (shrink)
1440 return ret;
04046e1a 1441 total += ret;
4e416953
BS
1442 if (check_soft) {
1443 if (res_counter_check_under_soft_limit(&root_mem->res))
1444 return total;
1445 } else if (mem_cgroup_check_under_limit(root_mem))
04046e1a 1446 return 1 + total;
6d61ef40 1447 }
04046e1a 1448 return total;
6d61ef40
BS
1449}
1450
867578cb
KH
1451/*
1452 * Check OOM-Killer is already running under our hierarchy.
1453 * If someone is running, return false.
1454 */
1455static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1456{
7d74b06f
KH
1457 int x, lock_count = 0;
1458 struct mem_cgroup *iter;
a636b327 1459
7d74b06f
KH
1460 for_each_mem_cgroup_tree(iter, mem) {
1461 x = atomic_inc_return(&iter->oom_lock);
1462 lock_count = max(x, lock_count);
1463 }
867578cb
KH
1464
1465 if (lock_count == 1)
1466 return true;
1467 return false;
a636b327 1468}
0b7f569e 1469
7d74b06f 1470static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1471{
7d74b06f
KH
1472 struct mem_cgroup *iter;
1473
867578cb
KH
1474 /*
1475 * When a new child is created while the hierarchy is under oom,
1476 * mem_cgroup_oom_lock() may not be called. We have to use
1477 * atomic_add_unless() here.
1478 */
7d74b06f
KH
1479 for_each_mem_cgroup_tree(iter, mem)
1480 atomic_add_unless(&iter->oom_lock, -1, 0);
0b7f569e
KH
1481 return 0;
1482}
1483
867578cb
KH
1484
1485static DEFINE_MUTEX(memcg_oom_mutex);
1486static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1487
dc98df5a
KH
1488struct oom_wait_info {
1489 struct mem_cgroup *mem;
1490 wait_queue_t wait;
1491};
1492
1493static int memcg_oom_wake_function(wait_queue_t *wait,
1494 unsigned mode, int sync, void *arg)
1495{
1496 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1497 struct oom_wait_info *oom_wait_info;
1498
1499 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1500
1501 if (oom_wait_info->mem == wake_mem)
1502 goto wakeup;
1503 /* if no hierarchy, no match */
1504 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1505 return 0;
1506 /*
1507 * Both of oom_wait_info->mem and wake_mem are stable under us.
1508 * Then we can use css_is_ancestor without taking care of RCU.
1509 */
1510 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1511 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1512 return 0;
1513
1514wakeup:
1515 return autoremove_wake_function(wait, mode, sync, arg);
1516}
1517
1518static void memcg_wakeup_oom(struct mem_cgroup *mem)
1519{
1520 /* for filtering, pass "mem" as argument. */
1521 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1522}
1523
3c11ecf4
KH
1524static void memcg_oom_recover(struct mem_cgroup *mem)
1525{
2bd9bb20 1526 if (mem && atomic_read(&mem->oom_lock))
3c11ecf4
KH
1527 memcg_wakeup_oom(mem);
1528}
1529
867578cb
KH
1530/*
1531 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1532 */
1533bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1534{
dc98df5a 1535 struct oom_wait_info owait;
3c11ecf4 1536 bool locked, need_to_kill;
867578cb 1537
dc98df5a
KH
1538 owait.mem = mem;
1539 owait.wait.flags = 0;
1540 owait.wait.func = memcg_oom_wake_function;
1541 owait.wait.private = current;
1542 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1543 need_to_kill = true;
867578cb
KH
1544 /* At first, try to OOM lock hierarchy under mem.*/
1545 mutex_lock(&memcg_oom_mutex);
1546 locked = mem_cgroup_oom_lock(mem);
1547 /*
1548 * Even if signal_pending(), we can't quit charge() loop without
1549 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1550 * under OOM is always welcomed, use TASK_KILLABLE here.
1551 */
3c11ecf4
KH
1552 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1553 if (!locked || mem->oom_kill_disable)
1554 need_to_kill = false;
1555 if (locked)
9490ff27 1556 mem_cgroup_oom_notify(mem);
867578cb
KH
1557 mutex_unlock(&memcg_oom_mutex);
1558
3c11ecf4
KH
1559 if (need_to_kill) {
1560 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1561 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1562 } else {
867578cb 1563 schedule();
dc98df5a 1564 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1565 }
1566 mutex_lock(&memcg_oom_mutex);
1567 mem_cgroup_oom_unlock(mem);
dc98df5a 1568 memcg_wakeup_oom(mem);
867578cb
KH
1569 mutex_unlock(&memcg_oom_mutex);
1570
1571 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1572 return false;
1573 /* Give chance to dying process */
1574 schedule_timeout(1);
1575 return true;
0b7f569e
KH
1576}
1577
d69b042f
BS
1578/*
1579 * Currently used to update mapped file statistics, but the routine can be
1580 * generalized to update other statistics as well.
32047e2a
KH
1581 *
1582 * Notes: Race condition
1583 *
1584 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1585 * it tends to be costly. But considering some conditions, we doesn't need
1586 * to do so _always_.
1587 *
1588 * Considering "charge", lock_page_cgroup() is not required because all
1589 * file-stat operations happen after a page is attached to radix-tree. There
1590 * are no race with "charge".
1591 *
1592 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1593 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1594 * if there are race with "uncharge". Statistics itself is properly handled
1595 * by flags.
1596 *
1597 * Considering "move", this is an only case we see a race. To make the race
1598 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1599 * possibility of race condition. If there is, we take a lock.
d69b042f 1600 */
26174efd 1601
2a7106f2
GT
1602void mem_cgroup_update_page_stat(struct page *page,
1603 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
1604{
1605 struct mem_cgroup *mem;
32047e2a
KH
1606 struct page_cgroup *pc = lookup_page_cgroup(page);
1607 bool need_unlock = false;
dbd4ea78 1608 unsigned long uninitialized_var(flags);
d69b042f 1609
d69b042f
BS
1610 if (unlikely(!pc))
1611 return;
1612
32047e2a 1613 rcu_read_lock();
d69b042f 1614 mem = pc->mem_cgroup;
32047e2a
KH
1615 if (unlikely(!mem || !PageCgroupUsed(pc)))
1616 goto out;
1617 /* pc->mem_cgroup is unstable ? */
1618 if (unlikely(mem_cgroup_stealed(mem))) {
1619 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1620 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
1621 need_unlock = true;
1622 mem = pc->mem_cgroup;
1623 if (!mem || !PageCgroupUsed(pc))
1624 goto out;
1625 }
26174efd 1626
26174efd 1627 switch (idx) {
2a7106f2 1628 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1629 if (val > 0)
1630 SetPageCgroupFileMapped(pc);
1631 else if (!page_mapped(page))
0c270f8f 1632 ClearPageCgroupFileMapped(pc);
2a7106f2 1633 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1634 break;
1635 default:
1636 BUG();
8725d541 1637 }
d69b042f 1638
2a7106f2
GT
1639 this_cpu_add(mem->stat->count[idx], val);
1640
32047e2a
KH
1641out:
1642 if (unlikely(need_unlock))
dbd4ea78 1643 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1644 rcu_read_unlock();
1645 return;
d69b042f 1646}
2a7106f2 1647EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1648
cdec2e42
KH
1649/*
1650 * size of first charge trial. "32" comes from vmscan.c's magic value.
1651 * TODO: maybe necessary to use big numbers in big irons.
1652 */
1653#define CHARGE_SIZE (32 * PAGE_SIZE)
1654struct memcg_stock_pcp {
1655 struct mem_cgroup *cached; /* this never be root cgroup */
1656 int charge;
1657 struct work_struct work;
1658};
1659static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1660static atomic_t memcg_drain_count;
1661
1662/*
1663 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1664 * from local stock and true is returned. If the stock is 0 or charges from a
1665 * cgroup which is not current target, returns false. This stock will be
1666 * refilled.
1667 */
1668static bool consume_stock(struct mem_cgroup *mem)
1669{
1670 struct memcg_stock_pcp *stock;
1671 bool ret = true;
1672
1673 stock = &get_cpu_var(memcg_stock);
1674 if (mem == stock->cached && stock->charge)
1675 stock->charge -= PAGE_SIZE;
1676 else /* need to call res_counter_charge */
1677 ret = false;
1678 put_cpu_var(memcg_stock);
1679 return ret;
1680}
1681
1682/*
1683 * Returns stocks cached in percpu to res_counter and reset cached information.
1684 */
1685static void drain_stock(struct memcg_stock_pcp *stock)
1686{
1687 struct mem_cgroup *old = stock->cached;
1688
1689 if (stock->charge) {
1690 res_counter_uncharge(&old->res, stock->charge);
1691 if (do_swap_account)
1692 res_counter_uncharge(&old->memsw, stock->charge);
1693 }
1694 stock->cached = NULL;
1695 stock->charge = 0;
1696}
1697
1698/*
1699 * This must be called under preempt disabled or must be called by
1700 * a thread which is pinned to local cpu.
1701 */
1702static void drain_local_stock(struct work_struct *dummy)
1703{
1704 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1705 drain_stock(stock);
1706}
1707
1708/*
1709 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1710 * This will be consumed by consume_stock() function, later.
cdec2e42
KH
1711 */
1712static void refill_stock(struct mem_cgroup *mem, int val)
1713{
1714 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1715
1716 if (stock->cached != mem) { /* reset if necessary */
1717 drain_stock(stock);
1718 stock->cached = mem;
1719 }
1720 stock->charge += val;
1721 put_cpu_var(memcg_stock);
1722}
1723
1724/*
1725 * Tries to drain stocked charges in other cpus. This function is asynchronous
1726 * and just put a work per cpu for draining localy on each cpu. Caller can
1727 * expects some charges will be back to res_counter later but cannot wait for
1728 * it.
1729 */
1730static void drain_all_stock_async(void)
1731{
1732 int cpu;
1733 /* This function is for scheduling "drain" in asynchronous way.
1734 * The result of "drain" is not directly handled by callers. Then,
1735 * if someone is calling drain, we don't have to call drain more.
1736 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1737 * there is a race. We just do loose check here.
1738 */
1739 if (atomic_read(&memcg_drain_count))
1740 return;
1741 /* Notify other cpus that system-wide "drain" is running */
1742 atomic_inc(&memcg_drain_count);
1743 get_online_cpus();
1744 for_each_online_cpu(cpu) {
1745 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1746 schedule_work_on(cpu, &stock->work);
1747 }
1748 put_online_cpus();
1749 atomic_dec(&memcg_drain_count);
1750 /* We don't wait for flush_work */
1751}
1752
1753/* This is a synchronous drain interface. */
1754static void drain_all_stock_sync(void)
1755{
1756 /* called when force_empty is called */
1757 atomic_inc(&memcg_drain_count);
1758 schedule_on_each_cpu(drain_local_stock);
1759 atomic_dec(&memcg_drain_count);
1760}
1761
711d3d2c
KH
1762/*
1763 * This function drains percpu counter value from DEAD cpu and
1764 * move it to local cpu. Note that this function can be preempted.
1765 */
1766static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1767{
1768 int i;
1769
1770 spin_lock(&mem->pcp_counter_lock);
1771 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1772 s64 x = per_cpu(mem->stat->count[i], cpu);
1773
1774 per_cpu(mem->stat->count[i], cpu) = 0;
1775 mem->nocpu_base.count[i] += x;
1776 }
1489ebad
KH
1777 /* need to clear ON_MOVE value, works as a kind of lock. */
1778 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1779 spin_unlock(&mem->pcp_counter_lock);
1780}
1781
1782static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1783{
1784 int idx = MEM_CGROUP_ON_MOVE;
1785
1786 spin_lock(&mem->pcp_counter_lock);
1787 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
1788 spin_unlock(&mem->pcp_counter_lock);
1789}
1790
1791static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1792 unsigned long action,
1793 void *hcpu)
1794{
1795 int cpu = (unsigned long)hcpu;
1796 struct memcg_stock_pcp *stock;
711d3d2c 1797 struct mem_cgroup *iter;
cdec2e42 1798
1489ebad
KH
1799 if ((action == CPU_ONLINE)) {
1800 for_each_mem_cgroup_all(iter)
1801 synchronize_mem_cgroup_on_move(iter, cpu);
1802 return NOTIFY_OK;
1803 }
1804
711d3d2c 1805 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 1806 return NOTIFY_OK;
711d3d2c
KH
1807
1808 for_each_mem_cgroup_all(iter)
1809 mem_cgroup_drain_pcp_counter(iter, cpu);
1810
cdec2e42
KH
1811 stock = &per_cpu(memcg_stock, cpu);
1812 drain_stock(stock);
1813 return NOTIFY_OK;
1814}
1815
4b534334
KH
1816
1817/* See __mem_cgroup_try_charge() for details */
1818enum {
1819 CHARGE_OK, /* success */
1820 CHARGE_RETRY, /* need to retry but retry is not bad */
1821 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1822 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1823 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1824};
1825
1826static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1827 int csize, bool oom_check)
1828{
1829 struct mem_cgroup *mem_over_limit;
1830 struct res_counter *fail_res;
1831 unsigned long flags = 0;
1832 int ret;
1833
1834 ret = res_counter_charge(&mem->res, csize, &fail_res);
1835
1836 if (likely(!ret)) {
1837 if (!do_swap_account)
1838 return CHARGE_OK;
1839 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1840 if (likely(!ret))
1841 return CHARGE_OK;
1842
1843 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1844 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1845 } else
1846 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1847
1848 if (csize > PAGE_SIZE) /* change csize and retry */
1849 return CHARGE_RETRY;
1850
1851 if (!(gfp_mask & __GFP_WAIT))
1852 return CHARGE_WOULDBLOCK;
1853
1854 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1855 gfp_mask, flags);
1856 /*
1857 * try_to_free_mem_cgroup_pages() might not give us a full
1858 * picture of reclaim. Some pages are reclaimed and might be
1859 * moved to swap cache or just unmapped from the cgroup.
1860 * Check the limit again to see if the reclaim reduced the
1861 * current usage of the cgroup before giving up
1862 */
1863 if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1864 return CHARGE_RETRY;
1865
1866 /*
1867 * At task move, charge accounts can be doubly counted. So, it's
1868 * better to wait until the end of task_move if something is going on.
1869 */
1870 if (mem_cgroup_wait_acct_move(mem_over_limit))
1871 return CHARGE_RETRY;
1872
1873 /* If we don't need to call oom-killer at el, return immediately */
1874 if (!oom_check)
1875 return CHARGE_NOMEM;
1876 /* check OOM */
1877 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1878 return CHARGE_OOM_DIE;
1879
1880 return CHARGE_RETRY;
1881}
1882
f817ed48
KH
1883/*
1884 * Unlike exported interface, "oom" parameter is added. if oom==true,
1885 * oom-killer can be invoked.
8a9f3ccd 1886 */
f817ed48 1887static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510
AA
1888 gfp_t gfp_mask,
1889 struct mem_cgroup **memcg, bool oom,
1890 int page_size)
8a9f3ccd 1891{
4b534334
KH
1892 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1893 struct mem_cgroup *mem = NULL;
1894 int ret;
ec168510 1895 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
a636b327 1896
867578cb
KH
1897 /*
1898 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1899 * in system level. So, allow to go ahead dying process in addition to
1900 * MEMDIE process.
1901 */
1902 if (unlikely(test_thread_flag(TIF_MEMDIE)
1903 || fatal_signal_pending(current)))
1904 goto bypass;
a636b327 1905
8a9f3ccd 1906 /*
3be91277
HD
1907 * We always charge the cgroup the mm_struct belongs to.
1908 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1909 * thread group leader migrates. It's possible that mm is not
1910 * set, if so charge the init_mm (happens for pagecache usage).
1911 */
f75ca962
KH
1912 if (!*memcg && !mm)
1913 goto bypass;
1914again:
1915 if (*memcg) { /* css should be a valid one */
4b534334 1916 mem = *memcg;
f75ca962
KH
1917 VM_BUG_ON(css_is_removed(&mem->css));
1918 if (mem_cgroup_is_root(mem))
1919 goto done;
ec168510 1920 if (page_size == PAGE_SIZE && consume_stock(mem))
f75ca962 1921 goto done;
4b534334
KH
1922 css_get(&mem->css);
1923 } else {
f75ca962 1924 struct task_struct *p;
54595fe2 1925
f75ca962
KH
1926 rcu_read_lock();
1927 p = rcu_dereference(mm->owner);
f75ca962 1928 /*
ebb76ce1
KH
1929 * Because we don't have task_lock(), "p" can exit.
1930 * In that case, "mem" can point to root or p can be NULL with
1931 * race with swapoff. Then, we have small risk of mis-accouning.
1932 * But such kind of mis-account by race always happens because
1933 * we don't have cgroup_mutex(). It's overkill and we allo that
1934 * small race, here.
1935 * (*) swapoff at el will charge against mm-struct not against
1936 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
1937 */
1938 mem = mem_cgroup_from_task(p);
ebb76ce1 1939 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
1940 rcu_read_unlock();
1941 goto done;
1942 }
ec168510 1943 if (page_size == PAGE_SIZE && consume_stock(mem)) {
f75ca962
KH
1944 /*
1945 * It seems dagerous to access memcg without css_get().
1946 * But considering how consume_stok works, it's not
1947 * necessary. If consume_stock success, some charges
1948 * from this memcg are cached on this cpu. So, we
1949 * don't need to call css_get()/css_tryget() before
1950 * calling consume_stock().
1951 */
1952 rcu_read_unlock();
1953 goto done;
1954 }
1955 /* after here, we may be blocked. we need to get refcnt */
1956 if (!css_tryget(&mem->css)) {
1957 rcu_read_unlock();
1958 goto again;
1959 }
1960 rcu_read_unlock();
1961 }
8a9f3ccd 1962
4b534334
KH
1963 do {
1964 bool oom_check;
7a81b88c 1965
4b534334 1966 /* If killed, bypass charge */
f75ca962
KH
1967 if (fatal_signal_pending(current)) {
1968 css_put(&mem->css);
4b534334 1969 goto bypass;
f75ca962 1970 }
6d61ef40 1971
4b534334
KH
1972 oom_check = false;
1973 if (oom && !nr_oom_retries) {
1974 oom_check = true;
1975 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 1976 }
66e1707b 1977
4b534334 1978 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
8033b97c 1979
4b534334
KH
1980 switch (ret) {
1981 case CHARGE_OK:
1982 break;
1983 case CHARGE_RETRY: /* not in OOM situation but retry */
ec168510 1984 csize = page_size;
f75ca962
KH
1985 css_put(&mem->css);
1986 mem = NULL;
1987 goto again;
4b534334 1988 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 1989 css_put(&mem->css);
4b534334
KH
1990 goto nomem;
1991 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
1992 if (!oom) {
1993 css_put(&mem->css);
867578cb 1994 goto nomem;
f75ca962 1995 }
4b534334
KH
1996 /* If oom, we never return -ENOMEM */
1997 nr_oom_retries--;
1998 break;
1999 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2000 css_put(&mem->css);
867578cb 2001 goto bypass;
66e1707b 2002 }
4b534334
KH
2003 } while (ret != CHARGE_OK);
2004
ec168510
AA
2005 if (csize > page_size)
2006 refill_stock(mem, csize - page_size);
f75ca962 2007 css_put(&mem->css);
0c3e73e8 2008done:
f75ca962 2009 *memcg = mem;
7a81b88c
KH
2010 return 0;
2011nomem:
f75ca962 2012 *memcg = NULL;
7a81b88c 2013 return -ENOMEM;
867578cb
KH
2014bypass:
2015 *memcg = NULL;
2016 return 0;
7a81b88c 2017}
8a9f3ccd 2018
a3032a2c
DN
2019/*
2020 * Somemtimes we have to undo a charge we got by try_charge().
2021 * This function is for that and do uncharge, put css's refcnt.
2022 * gotten by try_charge().
2023 */
854ffa8d
DN
2024static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2025 unsigned long count)
a3032a2c
DN
2026{
2027 if (!mem_cgroup_is_root(mem)) {
854ffa8d 2028 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
a3032a2c 2029 if (do_swap_account)
854ffa8d 2030 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
a3032a2c 2031 }
854ffa8d
DN
2032}
2033
ec168510
AA
2034static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2035 int page_size)
854ffa8d 2036{
ec168510 2037 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
a3032a2c
DN
2038}
2039
a3b2d692
KH
2040/*
2041 * A helper function to get mem_cgroup from ID. must be called under
2042 * rcu_read_lock(). The caller must check css_is_removed() or some if
2043 * it's concern. (dropping refcnt from swap can be called against removed
2044 * memcg.)
2045 */
2046static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2047{
2048 struct cgroup_subsys_state *css;
2049
2050 /* ID 0 is unused ID */
2051 if (!id)
2052 return NULL;
2053 css = css_lookup(&mem_cgroup_subsys, id);
2054 if (!css)
2055 return NULL;
2056 return container_of(css, struct mem_cgroup, css);
2057}
2058
e42d9d5d 2059struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2060{
e42d9d5d 2061 struct mem_cgroup *mem = NULL;
3c776e64 2062 struct page_cgroup *pc;
a3b2d692 2063 unsigned short id;
b5a84319
KH
2064 swp_entry_t ent;
2065
3c776e64
DN
2066 VM_BUG_ON(!PageLocked(page));
2067
3c776e64 2068 pc = lookup_page_cgroup(page);
c0bd3f63 2069 lock_page_cgroup(pc);
a3b2d692 2070 if (PageCgroupUsed(pc)) {
3c776e64 2071 mem = pc->mem_cgroup;
a3b2d692
KH
2072 if (mem && !css_tryget(&mem->css))
2073 mem = NULL;
e42d9d5d 2074 } else if (PageSwapCache(page)) {
3c776e64 2075 ent.val = page_private(page);
a3b2d692
KH
2076 id = lookup_swap_cgroup(ent);
2077 rcu_read_lock();
2078 mem = mem_cgroup_lookup(id);
2079 if (mem && !css_tryget(&mem->css))
2080 mem = NULL;
2081 rcu_read_unlock();
3c776e64 2082 }
c0bd3f63 2083 unlock_page_cgroup(pc);
b5a84319
KH
2084 return mem;
2085}
2086
7a81b88c 2087/*
a5e924f5 2088 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
2089 * USED state. If already USED, uncharge and return.
2090 */
152c9ccb
DN
2091static void ____mem_cgroup_commit_charge(struct mem_cgroup *mem,
2092 struct page_cgroup *pc,
2093 enum charge_type ctype)
7a81b88c 2094{
8a9f3ccd 2095 pc->mem_cgroup = mem;
261fb61a
KH
2096 /*
2097 * We access a page_cgroup asynchronously without lock_page_cgroup().
2098 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2099 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2100 * before USED bit, we need memory barrier here.
2101 * See mem_cgroup_add_lru_list(), etc.
2102 */
08e552c6 2103 smp_wmb();
4b3bde4c
BS
2104 switch (ctype) {
2105 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2106 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2107 SetPageCgroupCache(pc);
2108 SetPageCgroupUsed(pc);
2109 break;
2110 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2111 ClearPageCgroupCache(pc);
2112 SetPageCgroupUsed(pc);
2113 break;
2114 default:
2115 break;
2116 }
3be91277 2117
08e552c6 2118 mem_cgroup_charge_statistics(mem, pc, true);
152c9ccb
DN
2119}
2120
2121static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2122 struct page_cgroup *pc,
2123 enum charge_type ctype,
2124 int page_size)
2125{
2126 int i;
2127 int count = page_size >> PAGE_SHIFT;
2128
2129 /* try_charge() can return NULL to *memcg, taking care of it. */
2130 if (!mem)
2131 return;
2132
2133 lock_page_cgroup(pc);
2134 if (unlikely(PageCgroupUsed(pc))) {
2135 unlock_page_cgroup(pc);
2136 mem_cgroup_cancel_charge(mem, page_size);
2137 return;
2138 }
2139
2140 /*
2141 * we don't need page_cgroup_lock about tail pages, becase they are not
2142 * accessed by any other context at this point.
2143 */
2144 for (i = 0; i < count; i++)
2145 ____mem_cgroup_commit_charge(mem, pc + i, ctype);
52d4b9ac 2146
52d4b9ac 2147 unlock_page_cgroup(pc);
430e4863
KH
2148 /*
2149 * "charge_statistics" updated event counter. Then, check it.
2150 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2151 * if they exceeds softlimit.
2152 */
d2265e6f 2153 memcg_check_events(mem, pc->page);
7a81b88c 2154}
66e1707b 2155
f817ed48 2156/**
57f9fd7d 2157 * __mem_cgroup_move_account - move account of the page
f817ed48
KH
2158 * @pc: page_cgroup of the page.
2159 * @from: mem_cgroup which the page is moved from.
2160 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2161 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2162 *
2163 * The caller must confirm following.
08e552c6 2164 * - page is not on LRU (isolate_page() is useful.)
57f9fd7d 2165 * - the pc is locked, used, and ->mem_cgroup points to @from.
f817ed48 2166 *
854ffa8d
DN
2167 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2168 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2169 * true, this function does "uncharge" from old cgroup, but it doesn't if
2170 * @uncharge is false, so a caller should do "uncharge".
f817ed48
KH
2171 */
2172
57f9fd7d 2173static void __mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 2174 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
f817ed48 2175{
f817ed48 2176 VM_BUG_ON(from == to);
08e552c6 2177 VM_BUG_ON(PageLRU(pc->page));
112bc2e1 2178 VM_BUG_ON(!page_is_cgroup_locked(pc));
57f9fd7d
DN
2179 VM_BUG_ON(!PageCgroupUsed(pc));
2180 VM_BUG_ON(pc->mem_cgroup != from);
f817ed48 2181
8725d541 2182 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2183 /* Update mapped_file data for mem_cgroup */
2184 preempt_disable();
2185 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2186 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2187 preempt_enable();
d69b042f 2188 }
854ffa8d
DN
2189 mem_cgroup_charge_statistics(from, pc, false);
2190 if (uncharge)
2191 /* This is not "cancel", but cancel_charge does all we need. */
ec168510 2192 mem_cgroup_cancel_charge(from, PAGE_SIZE);
d69b042f 2193
854ffa8d 2194 /* caller should have done css_get */
08e552c6
KH
2195 pc->mem_cgroup = to;
2196 mem_cgroup_charge_statistics(to, pc, true);
88703267
KH
2197 /*
2198 * We charges against "to" which may not have any tasks. Then, "to"
2199 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
2200 * this function is just force_empty() and move charge, so it's
2201 * garanteed that "to" is never removed. So, we don't check rmdir
2202 * status here.
88703267 2203 */
57f9fd7d
DN
2204}
2205
2206/*
2207 * check whether the @pc is valid for moving account and call
2208 * __mem_cgroup_move_account()
2209 */
2210static int mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 2211 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
57f9fd7d
DN
2212{
2213 int ret = -EINVAL;
dbd4ea78
KH
2214 unsigned long flags;
2215
57f9fd7d
DN
2216 lock_page_cgroup(pc);
2217 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
dbd4ea78 2218 move_lock_page_cgroup(pc, &flags);
854ffa8d 2219 __mem_cgroup_move_account(pc, from, to, uncharge);
dbd4ea78 2220 move_unlock_page_cgroup(pc, &flags);
57f9fd7d
DN
2221 ret = 0;
2222 }
2223 unlock_page_cgroup(pc);
d2265e6f
KH
2224 /*
2225 * check events
2226 */
2227 memcg_check_events(to, pc->page);
2228 memcg_check_events(from, pc->page);
f817ed48
KH
2229 return ret;
2230}
2231
2232/*
2233 * move charges to its parent.
2234 */
2235
2236static int mem_cgroup_move_parent(struct page_cgroup *pc,
2237 struct mem_cgroup *child,
2238 gfp_t gfp_mask)
2239{
08e552c6 2240 struct page *page = pc->page;
f817ed48
KH
2241 struct cgroup *cg = child->css.cgroup;
2242 struct cgroup *pcg = cg->parent;
2243 struct mem_cgroup *parent;
f817ed48
KH
2244 int ret;
2245
2246 /* Is ROOT ? */
2247 if (!pcg)
2248 return -EINVAL;
2249
57f9fd7d
DN
2250 ret = -EBUSY;
2251 if (!get_page_unless_zero(page))
2252 goto out;
2253 if (isolate_lru_page(page))
2254 goto put;
08e552c6 2255
f817ed48 2256 parent = mem_cgroup_from_cont(pcg);
ec168510
AA
2257 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false,
2258 PAGE_SIZE);
a636b327 2259 if (ret || !parent)
57f9fd7d 2260 goto put_back;
f817ed48 2261
854ffa8d
DN
2262 ret = mem_cgroup_move_account(pc, child, parent, true);
2263 if (ret)
ec168510 2264 mem_cgroup_cancel_charge(parent, PAGE_SIZE);
57f9fd7d 2265put_back:
08e552c6 2266 putback_lru_page(page);
57f9fd7d 2267put:
40d58138 2268 put_page(page);
57f9fd7d 2269out:
f817ed48
KH
2270 return ret;
2271}
2272
7a81b88c
KH
2273/*
2274 * Charge the memory controller for page usage.
2275 * Return
2276 * 0 if the charge was successful
2277 * < 0 if the cgroup is over its limit
2278 */
2279static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2280 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2281{
73045c47 2282 struct mem_cgroup *mem = NULL;
7a81b88c
KH
2283 struct page_cgroup *pc;
2284 int ret;
ec168510
AA
2285 int page_size = PAGE_SIZE;
2286
37c2ac78 2287 if (PageTransHuge(page)) {
ec168510 2288 page_size <<= compound_order(page);
37c2ac78
AA
2289 VM_BUG_ON(!PageTransHuge(page));
2290 }
7a81b88c
KH
2291
2292 pc = lookup_page_cgroup(page);
2293 /* can happen at boot */
2294 if (unlikely(!pc))
2295 return 0;
2296 prefetchw(pc);
2297
ec168510 2298 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
a636b327 2299 if (ret || !mem)
7a81b88c
KH
2300 return ret;
2301
ec168510 2302 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
8a9f3ccd 2303 return 0;
8a9f3ccd
BS
2304}
2305
7a81b88c
KH
2306int mem_cgroup_newpage_charge(struct page *page,
2307 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2308{
f8d66542 2309 if (mem_cgroup_disabled())
cede86ac 2310 return 0;
69029cd5
KH
2311 /*
2312 * If already mapped, we don't have to account.
2313 * If page cache, page->mapping has address_space.
2314 * But page->mapping may have out-of-use anon_vma pointer,
2315 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2316 * is NULL.
2317 */
2318 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2319 return 0;
2320 if (unlikely(!mm))
2321 mm = &init_mm;
217bc319 2322 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2323 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2324}
2325
83aae4c7
DN
2326static void
2327__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2328 enum charge_type ctype);
2329
e1a1cd59
BS
2330int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2331 gfp_t gfp_mask)
8697d331 2332{
b5a84319
KH
2333 int ret;
2334
f8d66542 2335 if (mem_cgroup_disabled())
cede86ac 2336 return 0;
52d4b9ac
KH
2337 if (PageCompound(page))
2338 return 0;
accf163e
KH
2339 /*
2340 * Corner case handling. This is called from add_to_page_cache()
2341 * in usual. But some FS (shmem) precharges this page before calling it
2342 * and call add_to_page_cache() with GFP_NOWAIT.
2343 *
2344 * For GFP_NOWAIT case, the page may be pre-charged before calling
2345 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2346 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2347 * And when the page is SwapCache, it should take swap information
2348 * into account. This is under lock_page() now.
accf163e
KH
2349 */
2350 if (!(gfp_mask & __GFP_WAIT)) {
2351 struct page_cgroup *pc;
2352
52d4b9ac
KH
2353 pc = lookup_page_cgroup(page);
2354 if (!pc)
2355 return 0;
2356 lock_page_cgroup(pc);
2357 if (PageCgroupUsed(pc)) {
2358 unlock_page_cgroup(pc);
accf163e
KH
2359 return 0;
2360 }
52d4b9ac 2361 unlock_page_cgroup(pc);
accf163e
KH
2362 }
2363
73045c47 2364 if (unlikely(!mm))
8697d331 2365 mm = &init_mm;
accf163e 2366
c05555b5
KH
2367 if (page_is_file_cache(page))
2368 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2369 MEM_CGROUP_CHARGE_TYPE_CACHE);
b5a84319 2370
83aae4c7
DN
2371 /* shmem */
2372 if (PageSwapCache(page)) {
73045c47
DN
2373 struct mem_cgroup *mem = NULL;
2374
83aae4c7
DN
2375 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2376 if (!ret)
2377 __mem_cgroup_commit_charge_swapin(page, mem,
2378 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2379 } else
2380 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2381 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2382
b5a84319 2383 return ret;
e8589cc1
KH
2384}
2385
54595fe2
KH
2386/*
2387 * While swap-in, try_charge -> commit or cancel, the page is locked.
2388 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2389 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2390 * "commit()" or removed by "cancel()"
2391 */
8c7c6e34
KH
2392int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2393 struct page *page,
2394 gfp_t mask, struct mem_cgroup **ptr)
2395{
2396 struct mem_cgroup *mem;
54595fe2 2397 int ret;
8c7c6e34 2398
f8d66542 2399 if (mem_cgroup_disabled())
8c7c6e34
KH
2400 return 0;
2401
2402 if (!do_swap_account)
2403 goto charge_cur_mm;
8c7c6e34
KH
2404 /*
2405 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2406 * the pte, and even removed page from swap cache: in those cases
2407 * do_swap_page()'s pte_same() test will fail; but there's also a
2408 * KSM case which does need to charge the page.
8c7c6e34
KH
2409 */
2410 if (!PageSwapCache(page))
407f9c8b 2411 goto charge_cur_mm;
e42d9d5d 2412 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2413 if (!mem)
2414 goto charge_cur_mm;
8c7c6e34 2415 *ptr = mem;
ec168510 2416 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
54595fe2
KH
2417 css_put(&mem->css);
2418 return ret;
8c7c6e34
KH
2419charge_cur_mm:
2420 if (unlikely(!mm))
2421 mm = &init_mm;
ec168510 2422 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
8c7c6e34
KH
2423}
2424
83aae4c7
DN
2425static void
2426__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2427 enum charge_type ctype)
7a81b88c
KH
2428{
2429 struct page_cgroup *pc;
2430
f8d66542 2431 if (mem_cgroup_disabled())
7a81b88c
KH
2432 return;
2433 if (!ptr)
2434 return;
88703267 2435 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 2436 pc = lookup_page_cgroup(page);
544122e5 2437 mem_cgroup_lru_del_before_commit_swapcache(page);
ec168510 2438 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
544122e5 2439 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
2440 /*
2441 * Now swap is on-memory. This means this page may be
2442 * counted both as mem and swap....double count.
03f3c433
KH
2443 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2444 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2445 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2446 */
03f3c433 2447 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2448 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2449 unsigned short id;
8c7c6e34 2450 struct mem_cgroup *memcg;
a3b2d692
KH
2451
2452 id = swap_cgroup_record(ent, 0);
2453 rcu_read_lock();
2454 memcg = mem_cgroup_lookup(id);
8c7c6e34 2455 if (memcg) {
a3b2d692
KH
2456 /*
2457 * This recorded memcg can be obsolete one. So, avoid
2458 * calling css_tryget
2459 */
0c3e73e8 2460 if (!mem_cgroup_is_root(memcg))
4e649152 2461 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2462 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2463 mem_cgroup_put(memcg);
2464 }
a3b2d692 2465 rcu_read_unlock();
8c7c6e34 2466 }
88703267
KH
2467 /*
2468 * At swapin, we may charge account against cgroup which has no tasks.
2469 * So, rmdir()->pre_destroy() can be called while we do this charge.
2470 * In that case, we need to call pre_destroy() again. check it here.
2471 */
2472 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2473}
2474
83aae4c7
DN
2475void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2476{
2477 __mem_cgroup_commit_charge_swapin(page, ptr,
2478 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2479}
2480
7a81b88c
KH
2481void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2482{
f8d66542 2483 if (mem_cgroup_disabled())
7a81b88c
KH
2484 return;
2485 if (!mem)
2486 return;
ec168510 2487 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
7a81b88c
KH
2488}
2489
569b846d 2490static void
ec168510
AA
2491__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2492 int page_size)
569b846d
KH
2493{
2494 struct memcg_batch_info *batch = NULL;
2495 bool uncharge_memsw = true;
2496 /* If swapout, usage of swap doesn't decrease */
2497 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2498 uncharge_memsw = false;
569b846d
KH
2499
2500 batch = &current->memcg_batch;
2501 /*
2502 * In usual, we do css_get() when we remember memcg pointer.
2503 * But in this case, we keep res->usage until end of a series of
2504 * uncharges. Then, it's ok to ignore memcg's refcnt.
2505 */
2506 if (!batch->memcg)
2507 batch->memcg = mem;
3c11ecf4
KH
2508 /*
2509 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2510 * In those cases, all pages freed continously can be expected to be in
2511 * the same cgroup and we have chance to coalesce uncharges.
2512 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2513 * because we want to do uncharge as soon as possible.
2514 */
2515
2516 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2517 goto direct_uncharge;
2518
ec168510
AA
2519 if (page_size != PAGE_SIZE)
2520 goto direct_uncharge;
2521
569b846d
KH
2522 /*
2523 * In typical case, batch->memcg == mem. This means we can
2524 * merge a series of uncharges to an uncharge of res_counter.
2525 * If not, we uncharge res_counter ony by one.
2526 */
2527 if (batch->memcg != mem)
2528 goto direct_uncharge;
2529 /* remember freed charge and uncharge it later */
2530 batch->bytes += PAGE_SIZE;
2531 if (uncharge_memsw)
2532 batch->memsw_bytes += PAGE_SIZE;
2533 return;
2534direct_uncharge:
ec168510 2535 res_counter_uncharge(&mem->res, page_size);
569b846d 2536 if (uncharge_memsw)
ec168510 2537 res_counter_uncharge(&mem->memsw, page_size);
3c11ecf4
KH
2538 if (unlikely(batch->memcg != mem))
2539 memcg_oom_recover(mem);
569b846d
KH
2540 return;
2541}
7a81b88c 2542
8a9f3ccd 2543/*
69029cd5 2544 * uncharge if !page_mapped(page)
8a9f3ccd 2545 */
8c7c6e34 2546static struct mem_cgroup *
69029cd5 2547__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2548{
152c9ccb
DN
2549 int i;
2550 int count;
8289546e 2551 struct page_cgroup *pc;
8c7c6e34 2552 struct mem_cgroup *mem = NULL;
ec168510 2553 int page_size = PAGE_SIZE;
8a9f3ccd 2554
f8d66542 2555 if (mem_cgroup_disabled())
8c7c6e34 2556 return NULL;
4077960e 2557
d13d1443 2558 if (PageSwapCache(page))
8c7c6e34 2559 return NULL;
d13d1443 2560
37c2ac78 2561 if (PageTransHuge(page)) {
ec168510 2562 page_size <<= compound_order(page);
37c2ac78
AA
2563 VM_BUG_ON(!PageTransHuge(page));
2564 }
ec168510 2565
152c9ccb 2566 count = page_size >> PAGE_SHIFT;
8697d331 2567 /*
3c541e14 2568 * Check if our page_cgroup is valid
8697d331 2569 */
52d4b9ac
KH
2570 pc = lookup_page_cgroup(page);
2571 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2572 return NULL;
b9c565d5 2573
52d4b9ac 2574 lock_page_cgroup(pc);
d13d1443 2575
8c7c6e34
KH
2576 mem = pc->mem_cgroup;
2577
d13d1443
KH
2578 if (!PageCgroupUsed(pc))
2579 goto unlock_out;
2580
2581 switch (ctype) {
2582 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2583 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
2584 /* See mem_cgroup_prepare_migration() */
2585 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2586 goto unlock_out;
2587 break;
2588 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2589 if (!PageAnon(page)) { /* Shared memory */
2590 if (page->mapping && !page_is_file_cache(page))
2591 goto unlock_out;
2592 } else if (page_mapped(page)) /* Anon */
2593 goto unlock_out;
2594 break;
2595 default:
2596 break;
52d4b9ac 2597 }
d13d1443 2598
152c9ccb
DN
2599 for (i = 0; i < count; i++)
2600 mem_cgroup_charge_statistics(mem, pc + i, false);
04046e1a 2601
52d4b9ac 2602 ClearPageCgroupUsed(pc);
544122e5
KH
2603 /*
2604 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2605 * freed from LRU. This is safe because uncharged page is expected not
2606 * to be reused (freed soon). Exception is SwapCache, it's handled by
2607 * special functions.
2608 */
b9c565d5 2609
52d4b9ac 2610 unlock_page_cgroup(pc);
f75ca962
KH
2611 /*
2612 * even after unlock, we have mem->res.usage here and this memcg
2613 * will never be freed.
2614 */
d2265e6f 2615 memcg_check_events(mem, page);
f75ca962
KH
2616 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2617 mem_cgroup_swap_statistics(mem, true);
2618 mem_cgroup_get(mem);
2619 }
2620 if (!mem_cgroup_is_root(mem))
ec168510 2621 __do_uncharge(mem, ctype, page_size);
6d12e2d8 2622
8c7c6e34 2623 return mem;
d13d1443
KH
2624
2625unlock_out:
2626 unlock_page_cgroup(pc);
8c7c6e34 2627 return NULL;
3c541e14
BS
2628}
2629
69029cd5
KH
2630void mem_cgroup_uncharge_page(struct page *page)
2631{
52d4b9ac
KH
2632 /* early check. */
2633 if (page_mapped(page))
2634 return;
2635 if (page->mapping && !PageAnon(page))
2636 return;
69029cd5
KH
2637 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2638}
2639
2640void mem_cgroup_uncharge_cache_page(struct page *page)
2641{
2642 VM_BUG_ON(page_mapped(page));
b7abea96 2643 VM_BUG_ON(page->mapping);
69029cd5
KH
2644 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2645}
2646
569b846d
KH
2647/*
2648 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2649 * In that cases, pages are freed continuously and we can expect pages
2650 * are in the same memcg. All these calls itself limits the number of
2651 * pages freed at once, then uncharge_start/end() is called properly.
2652 * This may be called prural(2) times in a context,
2653 */
2654
2655void mem_cgroup_uncharge_start(void)
2656{
2657 current->memcg_batch.do_batch++;
2658 /* We can do nest. */
2659 if (current->memcg_batch.do_batch == 1) {
2660 current->memcg_batch.memcg = NULL;
2661 current->memcg_batch.bytes = 0;
2662 current->memcg_batch.memsw_bytes = 0;
2663 }
2664}
2665
2666void mem_cgroup_uncharge_end(void)
2667{
2668 struct memcg_batch_info *batch = &current->memcg_batch;
2669
2670 if (!batch->do_batch)
2671 return;
2672
2673 batch->do_batch--;
2674 if (batch->do_batch) /* If stacked, do nothing. */
2675 return;
2676
2677 if (!batch->memcg)
2678 return;
2679 /*
2680 * This "batch->memcg" is valid without any css_get/put etc...
2681 * bacause we hide charges behind us.
2682 */
2683 if (batch->bytes)
2684 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2685 if (batch->memsw_bytes)
2686 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
3c11ecf4 2687 memcg_oom_recover(batch->memcg);
569b846d
KH
2688 /* forget this pointer (for sanity check) */
2689 batch->memcg = NULL;
2690}
2691
e767e056 2692#ifdef CONFIG_SWAP
8c7c6e34 2693/*
e767e056 2694 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2695 * memcg information is recorded to swap_cgroup of "ent"
2696 */
8a9478ca
KH
2697void
2698mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2699{
2700 struct mem_cgroup *memcg;
8a9478ca
KH
2701 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2702
2703 if (!swapout) /* this was a swap cache but the swap is unused ! */
2704 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2705
2706 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2707
f75ca962
KH
2708 /*
2709 * record memcg information, if swapout && memcg != NULL,
2710 * mem_cgroup_get() was called in uncharge().
2711 */
2712 if (do_swap_account && swapout && memcg)
a3b2d692 2713 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 2714}
e767e056 2715#endif
8c7c6e34
KH
2716
2717#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2718/*
2719 * called from swap_entry_free(). remove record in swap_cgroup and
2720 * uncharge "memsw" account.
2721 */
2722void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2723{
8c7c6e34 2724 struct mem_cgroup *memcg;
a3b2d692 2725 unsigned short id;
8c7c6e34
KH
2726
2727 if (!do_swap_account)
2728 return;
2729
a3b2d692
KH
2730 id = swap_cgroup_record(ent, 0);
2731 rcu_read_lock();
2732 memcg = mem_cgroup_lookup(id);
8c7c6e34 2733 if (memcg) {
a3b2d692
KH
2734 /*
2735 * We uncharge this because swap is freed.
2736 * This memcg can be obsolete one. We avoid calling css_tryget
2737 */
0c3e73e8 2738 if (!mem_cgroup_is_root(memcg))
4e649152 2739 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2740 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2741 mem_cgroup_put(memcg);
2742 }
a3b2d692 2743 rcu_read_unlock();
d13d1443 2744}
02491447
DN
2745
2746/**
2747 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2748 * @entry: swap entry to be moved
2749 * @from: mem_cgroup which the entry is moved from
2750 * @to: mem_cgroup which the entry is moved to
483c30b5 2751 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2752 *
2753 * It succeeds only when the swap_cgroup's record for this entry is the same
2754 * as the mem_cgroup's id of @from.
2755 *
2756 * Returns 0 on success, -EINVAL on failure.
2757 *
2758 * The caller must have charged to @to, IOW, called res_counter_charge() about
2759 * both res and memsw, and called css_get().
2760 */
2761static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2762 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2763{
2764 unsigned short old_id, new_id;
2765
2766 old_id = css_id(&from->css);
2767 new_id = css_id(&to->css);
2768
2769 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2770 mem_cgroup_swap_statistics(from, false);
483c30b5 2771 mem_cgroup_swap_statistics(to, true);
02491447 2772 /*
483c30b5
DN
2773 * This function is only called from task migration context now.
2774 * It postpones res_counter and refcount handling till the end
2775 * of task migration(mem_cgroup_clear_mc()) for performance
2776 * improvement. But we cannot postpone mem_cgroup_get(to)
2777 * because if the process that has been moved to @to does
2778 * swap-in, the refcount of @to might be decreased to 0.
02491447 2779 */
02491447 2780 mem_cgroup_get(to);
483c30b5
DN
2781 if (need_fixup) {
2782 if (!mem_cgroup_is_root(from))
2783 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2784 mem_cgroup_put(from);
2785 /*
2786 * we charged both to->res and to->memsw, so we should
2787 * uncharge to->res.
2788 */
2789 if (!mem_cgroup_is_root(to))
2790 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 2791 }
02491447
DN
2792 return 0;
2793 }
2794 return -EINVAL;
2795}
2796#else
2797static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2798 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2799{
2800 return -EINVAL;
2801}
8c7c6e34 2802#endif
d13d1443 2803
ae41be37 2804/*
01b1ae63
KH
2805 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2806 * page belongs to.
ae41be37 2807 */
ac39cf8c
AM
2808int mem_cgroup_prepare_migration(struct page *page,
2809 struct page *newpage, struct mem_cgroup **ptr)
ae41be37
KH
2810{
2811 struct page_cgroup *pc;
e8589cc1 2812 struct mem_cgroup *mem = NULL;
ac39cf8c 2813 enum charge_type ctype;
e8589cc1 2814 int ret = 0;
8869b8f6 2815
ec168510 2816 VM_BUG_ON(PageTransHuge(page));
f8d66542 2817 if (mem_cgroup_disabled())
4077960e
BS
2818 return 0;
2819
52d4b9ac
KH
2820 pc = lookup_page_cgroup(page);
2821 lock_page_cgroup(pc);
2822 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2823 mem = pc->mem_cgroup;
2824 css_get(&mem->css);
ac39cf8c
AM
2825 /*
2826 * At migrating an anonymous page, its mapcount goes down
2827 * to 0 and uncharge() will be called. But, even if it's fully
2828 * unmapped, migration may fail and this page has to be
2829 * charged again. We set MIGRATION flag here and delay uncharge
2830 * until end_migration() is called
2831 *
2832 * Corner Case Thinking
2833 * A)
2834 * When the old page was mapped as Anon and it's unmap-and-freed
2835 * while migration was ongoing.
2836 * If unmap finds the old page, uncharge() of it will be delayed
2837 * until end_migration(). If unmap finds a new page, it's
2838 * uncharged when it make mapcount to be 1->0. If unmap code
2839 * finds swap_migration_entry, the new page will not be mapped
2840 * and end_migration() will find it(mapcount==0).
2841 *
2842 * B)
2843 * When the old page was mapped but migraion fails, the kernel
2844 * remaps it. A charge for it is kept by MIGRATION flag even
2845 * if mapcount goes down to 0. We can do remap successfully
2846 * without charging it again.
2847 *
2848 * C)
2849 * The "old" page is under lock_page() until the end of
2850 * migration, so, the old page itself will not be swapped-out.
2851 * If the new page is swapped out before end_migraton, our
2852 * hook to usual swap-out path will catch the event.
2853 */
2854 if (PageAnon(page))
2855 SetPageCgroupMigration(pc);
e8589cc1 2856 }
52d4b9ac 2857 unlock_page_cgroup(pc);
ac39cf8c
AM
2858 /*
2859 * If the page is not charged at this point,
2860 * we return here.
2861 */
2862 if (!mem)
2863 return 0;
01b1ae63 2864
93d5c9be 2865 *ptr = mem;
ec168510 2866 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
ac39cf8c
AM
2867 css_put(&mem->css);/* drop extra refcnt */
2868 if (ret || *ptr == NULL) {
2869 if (PageAnon(page)) {
2870 lock_page_cgroup(pc);
2871 ClearPageCgroupMigration(pc);
2872 unlock_page_cgroup(pc);
2873 /*
2874 * The old page may be fully unmapped while we kept it.
2875 */
2876 mem_cgroup_uncharge_page(page);
2877 }
2878 return -ENOMEM;
e8589cc1 2879 }
ac39cf8c
AM
2880 /*
2881 * We charge new page before it's used/mapped. So, even if unlock_page()
2882 * is called before end_migration, we can catch all events on this new
2883 * page. In the case new page is migrated but not remapped, new page's
2884 * mapcount will be finally 0 and we call uncharge in end_migration().
2885 */
2886 pc = lookup_page_cgroup(newpage);
2887 if (PageAnon(page))
2888 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2889 else if (page_is_file_cache(page))
2890 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2891 else
2892 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ec168510 2893 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
e8589cc1 2894 return ret;
ae41be37 2895}
8869b8f6 2896
69029cd5 2897/* remove redundant charge if migration failed*/
01b1ae63 2898void mem_cgroup_end_migration(struct mem_cgroup *mem,
ac39cf8c 2899 struct page *oldpage, struct page *newpage)
ae41be37 2900{
ac39cf8c 2901 struct page *used, *unused;
01b1ae63 2902 struct page_cgroup *pc;
01b1ae63
KH
2903
2904 if (!mem)
2905 return;
ac39cf8c 2906 /* blocks rmdir() */
88703267 2907 cgroup_exclude_rmdir(&mem->css);
01b1ae63
KH
2908 /* at migration success, oldpage->mapping is NULL. */
2909 if (oldpage->mapping) {
ac39cf8c
AM
2910 used = oldpage;
2911 unused = newpage;
01b1ae63 2912 } else {
ac39cf8c 2913 used = newpage;
01b1ae63
KH
2914 unused = oldpage;
2915 }
69029cd5 2916 /*
ac39cf8c
AM
2917 * We disallowed uncharge of pages under migration because mapcount
2918 * of the page goes down to zero, temporarly.
2919 * Clear the flag and check the page should be charged.
01b1ae63 2920 */
ac39cf8c
AM
2921 pc = lookup_page_cgroup(oldpage);
2922 lock_page_cgroup(pc);
2923 ClearPageCgroupMigration(pc);
2924 unlock_page_cgroup(pc);
01b1ae63 2925
ac39cf8c
AM
2926 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2927
01b1ae63 2928 /*
ac39cf8c
AM
2929 * If a page is a file cache, radix-tree replacement is very atomic
2930 * and we can skip this check. When it was an Anon page, its mapcount
2931 * goes down to 0. But because we added MIGRATION flage, it's not
2932 * uncharged yet. There are several case but page->mapcount check
2933 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2934 * check. (see prepare_charge() also)
69029cd5 2935 */
ac39cf8c
AM
2936 if (PageAnon(used))
2937 mem_cgroup_uncharge_page(used);
88703267 2938 /*
ac39cf8c
AM
2939 * At migration, we may charge account against cgroup which has no
2940 * tasks.
88703267
KH
2941 * So, rmdir()->pre_destroy() can be called while we do this charge.
2942 * In that case, we need to call pre_destroy() again. check it here.
2943 */
2944 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 2945}
78fb7466 2946
c9b0ed51 2947/*
ae3abae6
DN
2948 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2949 * Calling hierarchical_reclaim is not enough because we should update
2950 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2951 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2952 * not from the memcg which this page would be charged to.
2953 * try_charge_swapin does all of these works properly.
c9b0ed51 2954 */
ae3abae6 2955int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
2956 struct mm_struct *mm,
2957 gfp_t gfp_mask)
c9b0ed51 2958{
b5a84319 2959 struct mem_cgroup *mem = NULL;
ae3abae6 2960 int ret;
c9b0ed51 2961
f8d66542 2962 if (mem_cgroup_disabled())
cede86ac 2963 return 0;
c9b0ed51 2964
ae3abae6
DN
2965 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2966 if (!ret)
2967 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 2968
ae3abae6 2969 return ret;
c9b0ed51
KH
2970}
2971
8c7c6e34
KH
2972static DEFINE_MUTEX(set_limit_mutex);
2973
d38d2a75 2974static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 2975 unsigned long long val)
628f4235 2976{
81d39c20 2977 int retry_count;
3c11ecf4 2978 u64 memswlimit, memlimit;
628f4235 2979 int ret = 0;
81d39c20
KH
2980 int children = mem_cgroup_count_children(memcg);
2981 u64 curusage, oldusage;
3c11ecf4 2982 int enlarge;
81d39c20
KH
2983
2984 /*
2985 * For keeping hierarchical_reclaim simple, how long we should retry
2986 * is depends on callers. We set our retry-count to be function
2987 * of # of children which we should visit in this loop.
2988 */
2989 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2990
2991 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 2992
3c11ecf4 2993 enlarge = 0;
8c7c6e34 2994 while (retry_count) {
628f4235
KH
2995 if (signal_pending(current)) {
2996 ret = -EINTR;
2997 break;
2998 }
8c7c6e34
KH
2999 /*
3000 * Rather than hide all in some function, I do this in
3001 * open coded manner. You see what this really does.
3002 * We have to guarantee mem->res.limit < mem->memsw.limit.
3003 */
3004 mutex_lock(&set_limit_mutex);
3005 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3006 if (memswlimit < val) {
3007 ret = -EINVAL;
3008 mutex_unlock(&set_limit_mutex);
628f4235
KH
3009 break;
3010 }
3c11ecf4
KH
3011
3012 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3013 if (memlimit < val)
3014 enlarge = 1;
3015
8c7c6e34 3016 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3017 if (!ret) {
3018 if (memswlimit == val)
3019 memcg->memsw_is_minimum = true;
3020 else
3021 memcg->memsw_is_minimum = false;
3022 }
8c7c6e34
KH
3023 mutex_unlock(&set_limit_mutex);
3024
3025 if (!ret)
3026 break;
3027
aa20d489 3028 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 3029 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3030 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3031 /* Usage is reduced ? */
3032 if (curusage >= oldusage)
3033 retry_count--;
3034 else
3035 oldusage = curusage;
8c7c6e34 3036 }
3c11ecf4
KH
3037 if (!ret && enlarge)
3038 memcg_oom_recover(memcg);
14797e23 3039
8c7c6e34
KH
3040 return ret;
3041}
3042
338c8431
LZ
3043static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3044 unsigned long long val)
8c7c6e34 3045{
81d39c20 3046 int retry_count;
3c11ecf4 3047 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3048 int children = mem_cgroup_count_children(memcg);
3049 int ret = -EBUSY;
3c11ecf4 3050 int enlarge = 0;
8c7c6e34 3051
81d39c20
KH
3052 /* see mem_cgroup_resize_res_limit */
3053 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3054 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3055 while (retry_count) {
3056 if (signal_pending(current)) {
3057 ret = -EINTR;
3058 break;
3059 }
3060 /*
3061 * Rather than hide all in some function, I do this in
3062 * open coded manner. You see what this really does.
3063 * We have to guarantee mem->res.limit < mem->memsw.limit.
3064 */
3065 mutex_lock(&set_limit_mutex);
3066 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3067 if (memlimit > val) {
3068 ret = -EINVAL;
3069 mutex_unlock(&set_limit_mutex);
3070 break;
3071 }
3c11ecf4
KH
3072 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3073 if (memswlimit < val)
3074 enlarge = 1;
8c7c6e34 3075 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3076 if (!ret) {
3077 if (memlimit == val)
3078 memcg->memsw_is_minimum = true;
3079 else
3080 memcg->memsw_is_minimum = false;
3081 }
8c7c6e34
KH
3082 mutex_unlock(&set_limit_mutex);
3083
3084 if (!ret)
3085 break;
3086
4e416953 3087 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
3088 MEM_CGROUP_RECLAIM_NOSWAP |
3089 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3090 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3091 /* Usage is reduced ? */
8c7c6e34 3092 if (curusage >= oldusage)
628f4235 3093 retry_count--;
81d39c20
KH
3094 else
3095 oldusage = curusage;
628f4235 3096 }
3c11ecf4
KH
3097 if (!ret && enlarge)
3098 memcg_oom_recover(memcg);
628f4235
KH
3099 return ret;
3100}
3101
4e416953 3102unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
00918b6a 3103 gfp_t gfp_mask)
4e416953
BS
3104{
3105 unsigned long nr_reclaimed = 0;
3106 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3107 unsigned long reclaimed;
3108 int loop = 0;
3109 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3110 unsigned long long excess;
4e416953
BS
3111
3112 if (order > 0)
3113 return 0;
3114
00918b6a 3115 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3116 /*
3117 * This loop can run a while, specially if mem_cgroup's continuously
3118 * keep exceeding their soft limit and putting the system under
3119 * pressure
3120 */
3121 do {
3122 if (next_mz)
3123 mz = next_mz;
3124 else
3125 mz = mem_cgroup_largest_soft_limit_node(mctz);
3126 if (!mz)
3127 break;
3128
3129 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3130 gfp_mask,
3131 MEM_CGROUP_RECLAIM_SOFT);
3132 nr_reclaimed += reclaimed;
3133 spin_lock(&mctz->lock);
3134
3135 /*
3136 * If we failed to reclaim anything from this memory cgroup
3137 * it is time to move on to the next cgroup
3138 */
3139 next_mz = NULL;
3140 if (!reclaimed) {
3141 do {
3142 /*
3143 * Loop until we find yet another one.
3144 *
3145 * By the time we get the soft_limit lock
3146 * again, someone might have aded the
3147 * group back on the RB tree. Iterate to
3148 * make sure we get a different mem.
3149 * mem_cgroup_largest_soft_limit_node returns
3150 * NULL if no other cgroup is present on
3151 * the tree
3152 */
3153 next_mz =
3154 __mem_cgroup_largest_soft_limit_node(mctz);
3155 if (next_mz == mz) {
3156 css_put(&next_mz->mem->css);
3157 next_mz = NULL;
3158 } else /* next_mz == NULL or other memcg */
3159 break;
3160 } while (1);
3161 }
4e416953 3162 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3163 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3164 /*
3165 * One school of thought says that we should not add
3166 * back the node to the tree if reclaim returns 0.
3167 * But our reclaim could return 0, simply because due
3168 * to priority we are exposing a smaller subset of
3169 * memory to reclaim from. Consider this as a longer
3170 * term TODO.
3171 */
ef8745c1
KH
3172 /* If excess == 0, no tree ops */
3173 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3174 spin_unlock(&mctz->lock);
3175 css_put(&mz->mem->css);
3176 loop++;
3177 /*
3178 * Could not reclaim anything and there are no more
3179 * mem cgroups to try or we seem to be looping without
3180 * reclaiming anything.
3181 */
3182 if (!nr_reclaimed &&
3183 (next_mz == NULL ||
3184 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3185 break;
3186 } while (!nr_reclaimed);
3187 if (next_mz)
3188 css_put(&next_mz->mem->css);
3189 return nr_reclaimed;
3190}
3191
cc847582
KH
3192/*
3193 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3194 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3195 */
f817ed48 3196static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3197 int node, int zid, enum lru_list lru)
cc847582 3198{
08e552c6
KH
3199 struct zone *zone;
3200 struct mem_cgroup_per_zone *mz;
f817ed48 3201 struct page_cgroup *pc, *busy;
08e552c6 3202 unsigned long flags, loop;
072c56c1 3203 struct list_head *list;
f817ed48 3204 int ret = 0;
072c56c1 3205
08e552c6
KH
3206 zone = &NODE_DATA(node)->node_zones[zid];
3207 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3208 list = &mz->lists[lru];
cc847582 3209
f817ed48
KH
3210 loop = MEM_CGROUP_ZSTAT(mz, lru);
3211 /* give some margin against EBUSY etc...*/
3212 loop += 256;
3213 busy = NULL;
3214 while (loop--) {
3215 ret = 0;
08e552c6 3216 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3217 if (list_empty(list)) {
08e552c6 3218 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3219 break;
f817ed48
KH
3220 }
3221 pc = list_entry(list->prev, struct page_cgroup, lru);
3222 if (busy == pc) {
3223 list_move(&pc->lru, list);
648bcc77 3224 busy = NULL;
08e552c6 3225 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3226 continue;
3227 }
08e552c6 3228 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3229
2c26fdd7 3230 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 3231 if (ret == -ENOMEM)
52d4b9ac 3232 break;
f817ed48
KH
3233
3234 if (ret == -EBUSY || ret == -EINVAL) {
3235 /* found lock contention or "pc" is obsolete. */
3236 busy = pc;
3237 cond_resched();
3238 } else
3239 busy = NULL;
cc847582 3240 }
08e552c6 3241
f817ed48
KH
3242 if (!ret && !list_empty(list))
3243 return -EBUSY;
3244 return ret;
cc847582
KH
3245}
3246
3247/*
3248 * make mem_cgroup's charge to be 0 if there is no task.
3249 * This enables deleting this mem_cgroup.
3250 */
c1e862c1 3251static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3252{
f817ed48
KH
3253 int ret;
3254 int node, zid, shrink;
3255 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3256 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3257
cc847582 3258 css_get(&mem->css);
f817ed48
KH
3259
3260 shrink = 0;
c1e862c1
KH
3261 /* should free all ? */
3262 if (free_all)
3263 goto try_to_free;
f817ed48 3264move_account:
fce66477 3265 do {
f817ed48 3266 ret = -EBUSY;
c1e862c1
KH
3267 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3268 goto out;
3269 ret = -EINTR;
3270 if (signal_pending(current))
cc847582 3271 goto out;
52d4b9ac
KH
3272 /* This is for making all *used* pages to be on LRU. */
3273 lru_add_drain_all();
cdec2e42 3274 drain_all_stock_sync();
f817ed48 3275 ret = 0;
32047e2a 3276 mem_cgroup_start_move(mem);
299b4eaa 3277 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3278 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3279 enum lru_list l;
f817ed48
KH
3280 for_each_lru(l) {
3281 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3282 node, zid, l);
f817ed48
KH
3283 if (ret)
3284 break;
3285 }
1ecaab2b 3286 }
f817ed48
KH
3287 if (ret)
3288 break;
3289 }
32047e2a 3290 mem_cgroup_end_move(mem);
3c11ecf4 3291 memcg_oom_recover(mem);
f817ed48
KH
3292 /* it seems parent cgroup doesn't have enough mem */
3293 if (ret == -ENOMEM)
3294 goto try_to_free;
52d4b9ac 3295 cond_resched();
fce66477
DN
3296 /* "ret" should also be checked to ensure all lists are empty. */
3297 } while (mem->res.usage > 0 || ret);
cc847582
KH
3298out:
3299 css_put(&mem->css);
3300 return ret;
f817ed48
KH
3301
3302try_to_free:
c1e862c1
KH
3303 /* returns EBUSY if there is a task or if we come here twice. */
3304 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3305 ret = -EBUSY;
3306 goto out;
3307 }
c1e862c1
KH
3308 /* we call try-to-free pages for make this cgroup empty */
3309 lru_add_drain_all();
f817ed48
KH
3310 /* try to free all pages in this cgroup */
3311 shrink = 1;
3312 while (nr_retries && mem->res.usage > 0) {
3313 int progress;
c1e862c1
KH
3314
3315 if (signal_pending(current)) {
3316 ret = -EINTR;
3317 goto out;
3318 }
a7885eb8
KM
3319 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3320 false, get_swappiness(mem));
c1e862c1 3321 if (!progress) {
f817ed48 3322 nr_retries--;
c1e862c1 3323 /* maybe some writeback is necessary */
8aa7e847 3324 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3325 }
f817ed48
KH
3326
3327 }
08e552c6 3328 lru_add_drain();
f817ed48 3329 /* try move_account...there may be some *locked* pages. */
fce66477 3330 goto move_account;
cc847582
KH
3331}
3332
c1e862c1
KH
3333int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3334{
3335 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3336}
3337
3338
18f59ea7
BS
3339static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3340{
3341 return mem_cgroup_from_cont(cont)->use_hierarchy;
3342}
3343
3344static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3345 u64 val)
3346{
3347 int retval = 0;
3348 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3349 struct cgroup *parent = cont->parent;
3350 struct mem_cgroup *parent_mem = NULL;
3351
3352 if (parent)
3353 parent_mem = mem_cgroup_from_cont(parent);
3354
3355 cgroup_lock();
3356 /*
af901ca1 3357 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3358 * in the child subtrees. If it is unset, then the change can
3359 * occur, provided the current cgroup has no children.
3360 *
3361 * For the root cgroup, parent_mem is NULL, we allow value to be
3362 * set if there are no children.
3363 */
3364 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3365 (val == 1 || val == 0)) {
3366 if (list_empty(&cont->children))
3367 mem->use_hierarchy = val;
3368 else
3369 retval = -EBUSY;
3370 } else
3371 retval = -EINVAL;
3372 cgroup_unlock();
3373
3374 return retval;
3375}
3376
0c3e73e8 3377
7d74b06f
KH
3378static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3379 enum mem_cgroup_stat_index idx)
0c3e73e8 3380{
7d74b06f
KH
3381 struct mem_cgroup *iter;
3382 s64 val = 0;
0c3e73e8 3383
7d74b06f
KH
3384 /* each per cpu's value can be minus.Then, use s64 */
3385 for_each_mem_cgroup_tree(iter, mem)
3386 val += mem_cgroup_read_stat(iter, idx);
3387
3388 if (val < 0) /* race ? */
3389 val = 0;
3390 return val;
0c3e73e8
BS
3391}
3392
104f3928
KS
3393static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3394{
7d74b06f 3395 u64 val;
104f3928
KS
3396
3397 if (!mem_cgroup_is_root(mem)) {
3398 if (!swap)
3399 return res_counter_read_u64(&mem->res, RES_USAGE);
3400 else
3401 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3402 }
3403
7d74b06f
KH
3404 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3405 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3406
7d74b06f
KH
3407 if (swap)
3408 val += mem_cgroup_get_recursive_idx_stat(mem,
3409 MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3410
3411 return val << PAGE_SHIFT;
3412}
3413
2c3daa72 3414static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3415{
8c7c6e34 3416 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3417 u64 val;
8c7c6e34
KH
3418 int type, name;
3419
3420 type = MEMFILE_TYPE(cft->private);
3421 name = MEMFILE_ATTR(cft->private);
3422 switch (type) {
3423 case _MEM:
104f3928
KS
3424 if (name == RES_USAGE)
3425 val = mem_cgroup_usage(mem, false);
3426 else
0c3e73e8 3427 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3428 break;
3429 case _MEMSWAP:
104f3928
KS
3430 if (name == RES_USAGE)
3431 val = mem_cgroup_usage(mem, true);
3432 else
0c3e73e8 3433 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3434 break;
3435 default:
3436 BUG();
3437 break;
3438 }
3439 return val;
8cdea7c0 3440}
628f4235
KH
3441/*
3442 * The user of this function is...
3443 * RES_LIMIT.
3444 */
856c13aa
PM
3445static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3446 const char *buffer)
8cdea7c0 3447{
628f4235 3448 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3449 int type, name;
628f4235
KH
3450 unsigned long long val;
3451 int ret;
3452
8c7c6e34
KH
3453 type = MEMFILE_TYPE(cft->private);
3454 name = MEMFILE_ATTR(cft->private);
3455 switch (name) {
628f4235 3456 case RES_LIMIT:
4b3bde4c
BS
3457 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3458 ret = -EINVAL;
3459 break;
3460 }
628f4235
KH
3461 /* This function does all necessary parse...reuse it */
3462 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3463 if (ret)
3464 break;
3465 if (type == _MEM)
628f4235 3466 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3467 else
3468 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3469 break;
296c81d8
BS
3470 case RES_SOFT_LIMIT:
3471 ret = res_counter_memparse_write_strategy(buffer, &val);
3472 if (ret)
3473 break;
3474 /*
3475 * For memsw, soft limits are hard to implement in terms
3476 * of semantics, for now, we support soft limits for
3477 * control without swap
3478 */
3479 if (type == _MEM)
3480 ret = res_counter_set_soft_limit(&memcg->res, val);
3481 else
3482 ret = -EINVAL;
3483 break;
628f4235
KH
3484 default:
3485 ret = -EINVAL; /* should be BUG() ? */
3486 break;
3487 }
3488 return ret;
8cdea7c0
BS
3489}
3490
fee7b548
KH
3491static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3492 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3493{
3494 struct cgroup *cgroup;
3495 unsigned long long min_limit, min_memsw_limit, tmp;
3496
3497 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3498 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3499 cgroup = memcg->css.cgroup;
3500 if (!memcg->use_hierarchy)
3501 goto out;
3502
3503 while (cgroup->parent) {
3504 cgroup = cgroup->parent;
3505 memcg = mem_cgroup_from_cont(cgroup);
3506 if (!memcg->use_hierarchy)
3507 break;
3508 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3509 min_limit = min(min_limit, tmp);
3510 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3511 min_memsw_limit = min(min_memsw_limit, tmp);
3512 }
3513out:
3514 *mem_limit = min_limit;
3515 *memsw_limit = min_memsw_limit;
3516 return;
3517}
3518
29f2a4da 3519static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3520{
3521 struct mem_cgroup *mem;
8c7c6e34 3522 int type, name;
c84872e1
PE
3523
3524 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3525 type = MEMFILE_TYPE(event);
3526 name = MEMFILE_ATTR(event);
3527 switch (name) {
29f2a4da 3528 case RES_MAX_USAGE:
8c7c6e34
KH
3529 if (type == _MEM)
3530 res_counter_reset_max(&mem->res);
3531 else
3532 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3533 break;
3534 case RES_FAILCNT:
8c7c6e34
KH
3535 if (type == _MEM)
3536 res_counter_reset_failcnt(&mem->res);
3537 else
3538 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3539 break;
3540 }
f64c3f54 3541
85cc59db 3542 return 0;
c84872e1
PE
3543}
3544
7dc74be0
DN
3545static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3546 struct cftype *cft)
3547{
3548 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3549}
3550
02491447 3551#ifdef CONFIG_MMU
7dc74be0
DN
3552static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3553 struct cftype *cft, u64 val)
3554{
3555 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3556
3557 if (val >= (1 << NR_MOVE_TYPE))
3558 return -EINVAL;
3559 /*
3560 * We check this value several times in both in can_attach() and
3561 * attach(), so we need cgroup lock to prevent this value from being
3562 * inconsistent.
3563 */
3564 cgroup_lock();
3565 mem->move_charge_at_immigrate = val;
3566 cgroup_unlock();
3567
3568 return 0;
3569}
02491447
DN
3570#else
3571static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3572 struct cftype *cft, u64 val)
3573{
3574 return -ENOSYS;
3575}
3576#endif
7dc74be0 3577
14067bb3
KH
3578
3579/* For read statistics */
3580enum {
3581 MCS_CACHE,
3582 MCS_RSS,
d8046582 3583 MCS_FILE_MAPPED,
14067bb3
KH
3584 MCS_PGPGIN,
3585 MCS_PGPGOUT,
1dd3a273 3586 MCS_SWAP,
14067bb3
KH
3587 MCS_INACTIVE_ANON,
3588 MCS_ACTIVE_ANON,
3589 MCS_INACTIVE_FILE,
3590 MCS_ACTIVE_FILE,
3591 MCS_UNEVICTABLE,
3592 NR_MCS_STAT,
3593};
3594
3595struct mcs_total_stat {
3596 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3597};
3598
14067bb3
KH
3599struct {
3600 char *local_name;
3601 char *total_name;
3602} memcg_stat_strings[NR_MCS_STAT] = {
3603 {"cache", "total_cache"},
3604 {"rss", "total_rss"},
d69b042f 3605 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3606 {"pgpgin", "total_pgpgin"},
3607 {"pgpgout", "total_pgpgout"},
1dd3a273 3608 {"swap", "total_swap"},
14067bb3
KH
3609 {"inactive_anon", "total_inactive_anon"},
3610 {"active_anon", "total_active_anon"},
3611 {"inactive_file", "total_inactive_file"},
3612 {"active_file", "total_active_file"},
3613 {"unevictable", "total_unevictable"}
3614};
3615
3616
7d74b06f
KH
3617static void
3618mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 3619{
14067bb3
KH
3620 s64 val;
3621
3622 /* per cpu stat */
c62b1a3b 3623 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3624 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3625 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3626 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3627 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3628 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c62b1a3b 3629 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
14067bb3 3630 s->stat[MCS_PGPGIN] += val;
c62b1a3b 3631 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
14067bb3 3632 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3633 if (do_swap_account) {
c62b1a3b 3634 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3635 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3636 }
14067bb3
KH
3637
3638 /* per zone stat */
3639 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3640 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3641 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3642 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3643 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3644 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3645 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3646 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3647 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3648 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
3649}
3650
3651static void
3652mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3653{
7d74b06f
KH
3654 struct mem_cgroup *iter;
3655
3656 for_each_mem_cgroup_tree(iter, mem)
3657 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
3658}
3659
c64745cf
PM
3660static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3661 struct cgroup_map_cb *cb)
d2ceb9b7 3662{
d2ceb9b7 3663 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3664 struct mcs_total_stat mystat;
d2ceb9b7
KH
3665 int i;
3666
14067bb3
KH
3667 memset(&mystat, 0, sizeof(mystat));
3668 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3669
1dd3a273
DN
3670 for (i = 0; i < NR_MCS_STAT; i++) {
3671 if (i == MCS_SWAP && !do_swap_account)
3672 continue;
14067bb3 3673 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3674 }
7b854121 3675
14067bb3 3676 /* Hierarchical information */
fee7b548
KH
3677 {
3678 unsigned long long limit, memsw_limit;
3679 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3680 cb->fill(cb, "hierarchical_memory_limit", limit);
3681 if (do_swap_account)
3682 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3683 }
7f016ee8 3684
14067bb3
KH
3685 memset(&mystat, 0, sizeof(mystat));
3686 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3687 for (i = 0; i < NR_MCS_STAT; i++) {
3688 if (i == MCS_SWAP && !do_swap_account)
3689 continue;
14067bb3 3690 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3691 }
14067bb3 3692
7f016ee8 3693#ifdef CONFIG_DEBUG_VM
c772be93 3694 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3695
3696 {
3697 int nid, zid;
3698 struct mem_cgroup_per_zone *mz;
3699 unsigned long recent_rotated[2] = {0, 0};
3700 unsigned long recent_scanned[2] = {0, 0};
3701
3702 for_each_online_node(nid)
3703 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3704 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3705
3706 recent_rotated[0] +=
3707 mz->reclaim_stat.recent_rotated[0];
3708 recent_rotated[1] +=
3709 mz->reclaim_stat.recent_rotated[1];
3710 recent_scanned[0] +=
3711 mz->reclaim_stat.recent_scanned[0];
3712 recent_scanned[1] +=
3713 mz->reclaim_stat.recent_scanned[1];
3714 }
3715 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3716 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3717 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3718 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3719 }
3720#endif
3721
d2ceb9b7
KH
3722 return 0;
3723}
3724
a7885eb8
KM
3725static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3726{
3727 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3728
3729 return get_swappiness(memcg);
3730}
3731
3732static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3733 u64 val)
3734{
3735 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3736 struct mem_cgroup *parent;
068b38c1 3737
a7885eb8
KM
3738 if (val > 100)
3739 return -EINVAL;
3740
3741 if (cgrp->parent == NULL)
3742 return -EINVAL;
3743
3744 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3745
3746 cgroup_lock();
3747
a7885eb8
KM
3748 /* If under hierarchy, only empty-root can set this value */
3749 if ((parent->use_hierarchy) ||
068b38c1
LZ
3750 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3751 cgroup_unlock();
a7885eb8 3752 return -EINVAL;
068b38c1 3753 }
a7885eb8
KM
3754
3755 spin_lock(&memcg->reclaim_param_lock);
3756 memcg->swappiness = val;
3757 spin_unlock(&memcg->reclaim_param_lock);
3758
068b38c1
LZ
3759 cgroup_unlock();
3760
a7885eb8
KM
3761 return 0;
3762}
3763
2e72b634
KS
3764static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3765{
3766 struct mem_cgroup_threshold_ary *t;
3767 u64 usage;
3768 int i;
3769
3770 rcu_read_lock();
3771 if (!swap)
2c488db2 3772 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3773 else
2c488db2 3774 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3775
3776 if (!t)
3777 goto unlock;
3778
3779 usage = mem_cgroup_usage(memcg, swap);
3780
3781 /*
3782 * current_threshold points to threshold just below usage.
3783 * If it's not true, a threshold was crossed after last
3784 * call of __mem_cgroup_threshold().
3785 */
5407a562 3786 i = t->current_threshold;
2e72b634
KS
3787
3788 /*
3789 * Iterate backward over array of thresholds starting from
3790 * current_threshold and check if a threshold is crossed.
3791 * If none of thresholds below usage is crossed, we read
3792 * only one element of the array here.
3793 */
3794 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3795 eventfd_signal(t->entries[i].eventfd, 1);
3796
3797 /* i = current_threshold + 1 */
3798 i++;
3799
3800 /*
3801 * Iterate forward over array of thresholds starting from
3802 * current_threshold+1 and check if a threshold is crossed.
3803 * If none of thresholds above usage is crossed, we read
3804 * only one element of the array here.
3805 */
3806 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3807 eventfd_signal(t->entries[i].eventfd, 1);
3808
3809 /* Update current_threshold */
5407a562 3810 t->current_threshold = i - 1;
2e72b634
KS
3811unlock:
3812 rcu_read_unlock();
3813}
3814
3815static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3816{
ad4ca5f4
KS
3817 while (memcg) {
3818 __mem_cgroup_threshold(memcg, false);
3819 if (do_swap_account)
3820 __mem_cgroup_threshold(memcg, true);
3821
3822 memcg = parent_mem_cgroup(memcg);
3823 }
2e72b634
KS
3824}
3825
3826static int compare_thresholds(const void *a, const void *b)
3827{
3828 const struct mem_cgroup_threshold *_a = a;
3829 const struct mem_cgroup_threshold *_b = b;
3830
3831 return _a->threshold - _b->threshold;
3832}
3833
7d74b06f 3834static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
3835{
3836 struct mem_cgroup_eventfd_list *ev;
3837
3838 list_for_each_entry(ev, &mem->oom_notify, list)
3839 eventfd_signal(ev->eventfd, 1);
3840 return 0;
3841}
3842
3843static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3844{
7d74b06f
KH
3845 struct mem_cgroup *iter;
3846
3847 for_each_mem_cgroup_tree(iter, mem)
3848 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3849}
3850
3851static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3852 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
3853{
3854 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3855 struct mem_cgroup_thresholds *thresholds;
3856 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3857 int type = MEMFILE_TYPE(cft->private);
3858 u64 threshold, usage;
2c488db2 3859 int i, size, ret;
2e72b634
KS
3860
3861 ret = res_counter_memparse_write_strategy(args, &threshold);
3862 if (ret)
3863 return ret;
3864
3865 mutex_lock(&memcg->thresholds_lock);
2c488db2 3866
2e72b634 3867 if (type == _MEM)
2c488db2 3868 thresholds = &memcg->thresholds;
2e72b634 3869 else if (type == _MEMSWAP)
2c488db2 3870 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3871 else
3872 BUG();
3873
3874 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3875
3876 /* Check if a threshold crossed before adding a new one */
2c488db2 3877 if (thresholds->primary)
2e72b634
KS
3878 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3879
2c488db2 3880 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3881
3882 /* Allocate memory for new array of thresholds */
2c488db2 3883 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3884 GFP_KERNEL);
2c488db2 3885 if (!new) {
2e72b634
KS
3886 ret = -ENOMEM;
3887 goto unlock;
3888 }
2c488db2 3889 new->size = size;
2e72b634
KS
3890
3891 /* Copy thresholds (if any) to new array */
2c488db2
KS
3892 if (thresholds->primary) {
3893 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3894 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3895 }
3896
2e72b634 3897 /* Add new threshold */
2c488db2
KS
3898 new->entries[size - 1].eventfd = eventfd;
3899 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3900
3901 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3902 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3903 compare_thresholds, NULL);
3904
3905 /* Find current threshold */
2c488db2 3906 new->current_threshold = -1;
2e72b634 3907 for (i = 0; i < size; i++) {
2c488db2 3908 if (new->entries[i].threshold < usage) {
2e72b634 3909 /*
2c488db2
KS
3910 * new->current_threshold will not be used until
3911 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3912 * it here.
3913 */
2c488db2 3914 ++new->current_threshold;
2e72b634
KS
3915 }
3916 }
3917
2c488db2
KS
3918 /* Free old spare buffer and save old primary buffer as spare */
3919 kfree(thresholds->spare);
3920 thresholds->spare = thresholds->primary;
3921
3922 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3923
907860ed 3924 /* To be sure that nobody uses thresholds */
2e72b634
KS
3925 synchronize_rcu();
3926
2e72b634
KS
3927unlock:
3928 mutex_unlock(&memcg->thresholds_lock);
3929
3930 return ret;
3931}
3932
907860ed 3933static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 3934 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
3935{
3936 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3937 struct mem_cgroup_thresholds *thresholds;
3938 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3939 int type = MEMFILE_TYPE(cft->private);
3940 u64 usage;
2c488db2 3941 int i, j, size;
2e72b634
KS
3942
3943 mutex_lock(&memcg->thresholds_lock);
3944 if (type == _MEM)
2c488db2 3945 thresholds = &memcg->thresholds;
2e72b634 3946 else if (type == _MEMSWAP)
2c488db2 3947 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3948 else
3949 BUG();
3950
3951 /*
3952 * Something went wrong if we trying to unregister a threshold
3953 * if we don't have thresholds
3954 */
3955 BUG_ON(!thresholds);
3956
3957 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3958
3959 /* Check if a threshold crossed before removing */
3960 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3961
3962 /* Calculate new number of threshold */
2c488db2
KS
3963 size = 0;
3964 for (i = 0; i < thresholds->primary->size; i++) {
3965 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3966 size++;
3967 }
3968
2c488db2 3969 new = thresholds->spare;
907860ed 3970
2e72b634
KS
3971 /* Set thresholds array to NULL if we don't have thresholds */
3972 if (!size) {
2c488db2
KS
3973 kfree(new);
3974 new = NULL;
907860ed 3975 goto swap_buffers;
2e72b634
KS
3976 }
3977
2c488db2 3978 new->size = size;
2e72b634
KS
3979
3980 /* Copy thresholds and find current threshold */
2c488db2
KS
3981 new->current_threshold = -1;
3982 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3983 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3984 continue;
3985
2c488db2
KS
3986 new->entries[j] = thresholds->primary->entries[i];
3987 if (new->entries[j].threshold < usage) {
2e72b634 3988 /*
2c488db2 3989 * new->current_threshold will not be used
2e72b634
KS
3990 * until rcu_assign_pointer(), so it's safe to increment
3991 * it here.
3992 */
2c488db2 3993 ++new->current_threshold;
2e72b634
KS
3994 }
3995 j++;
3996 }
3997
907860ed 3998swap_buffers:
2c488db2
KS
3999 /* Swap primary and spare array */
4000 thresholds->spare = thresholds->primary;
4001 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4002
907860ed 4003 /* To be sure that nobody uses thresholds */
2e72b634
KS
4004 synchronize_rcu();
4005
2e72b634 4006 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4007}
c1e862c1 4008
9490ff27
KH
4009static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4010 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4011{
4012 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4013 struct mem_cgroup_eventfd_list *event;
4014 int type = MEMFILE_TYPE(cft->private);
4015
4016 BUG_ON(type != _OOM_TYPE);
4017 event = kmalloc(sizeof(*event), GFP_KERNEL);
4018 if (!event)
4019 return -ENOMEM;
4020
4021 mutex_lock(&memcg_oom_mutex);
4022
4023 event->eventfd = eventfd;
4024 list_add(&event->list, &memcg->oom_notify);
4025
4026 /* already in OOM ? */
4027 if (atomic_read(&memcg->oom_lock))
4028 eventfd_signal(eventfd, 1);
4029 mutex_unlock(&memcg_oom_mutex);
4030
4031 return 0;
4032}
4033
907860ed 4034static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4035 struct cftype *cft, struct eventfd_ctx *eventfd)
4036{
4037 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4038 struct mem_cgroup_eventfd_list *ev, *tmp;
4039 int type = MEMFILE_TYPE(cft->private);
4040
4041 BUG_ON(type != _OOM_TYPE);
4042
4043 mutex_lock(&memcg_oom_mutex);
4044
4045 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4046 if (ev->eventfd == eventfd) {
4047 list_del(&ev->list);
4048 kfree(ev);
4049 }
4050 }
4051
4052 mutex_unlock(&memcg_oom_mutex);
9490ff27
KH
4053}
4054
3c11ecf4
KH
4055static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4056 struct cftype *cft, struct cgroup_map_cb *cb)
4057{
4058 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4059
4060 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4061
4062 if (atomic_read(&mem->oom_lock))
4063 cb->fill(cb, "under_oom", 1);
4064 else
4065 cb->fill(cb, "under_oom", 0);
4066 return 0;
4067}
4068
3c11ecf4
KH
4069static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4070 struct cftype *cft, u64 val)
4071{
4072 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4073 struct mem_cgroup *parent;
4074
4075 /* cannot set to root cgroup and only 0 and 1 are allowed */
4076 if (!cgrp->parent || !((val == 0) || (val == 1)))
4077 return -EINVAL;
4078
4079 parent = mem_cgroup_from_cont(cgrp->parent);
4080
4081 cgroup_lock();
4082 /* oom-kill-disable is a flag for subhierarchy. */
4083 if ((parent->use_hierarchy) ||
4084 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4085 cgroup_unlock();
4086 return -EINVAL;
4087 }
4088 mem->oom_kill_disable = val;
4d845ebf
KH
4089 if (!val)
4090 memcg_oom_recover(mem);
3c11ecf4
KH
4091 cgroup_unlock();
4092 return 0;
4093}
4094
8cdea7c0
BS
4095static struct cftype mem_cgroup_files[] = {
4096 {
0eea1030 4097 .name = "usage_in_bytes",
8c7c6e34 4098 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4099 .read_u64 = mem_cgroup_read,
9490ff27
KH
4100 .register_event = mem_cgroup_usage_register_event,
4101 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4102 },
c84872e1
PE
4103 {
4104 .name = "max_usage_in_bytes",
8c7c6e34 4105 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4106 .trigger = mem_cgroup_reset,
c84872e1
PE
4107 .read_u64 = mem_cgroup_read,
4108 },
8cdea7c0 4109 {
0eea1030 4110 .name = "limit_in_bytes",
8c7c6e34 4111 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4112 .write_string = mem_cgroup_write,
2c3daa72 4113 .read_u64 = mem_cgroup_read,
8cdea7c0 4114 },
296c81d8
BS
4115 {
4116 .name = "soft_limit_in_bytes",
4117 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4118 .write_string = mem_cgroup_write,
4119 .read_u64 = mem_cgroup_read,
4120 },
8cdea7c0
BS
4121 {
4122 .name = "failcnt",
8c7c6e34 4123 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4124 .trigger = mem_cgroup_reset,
2c3daa72 4125 .read_u64 = mem_cgroup_read,
8cdea7c0 4126 },
d2ceb9b7
KH
4127 {
4128 .name = "stat",
c64745cf 4129 .read_map = mem_control_stat_show,
d2ceb9b7 4130 },
c1e862c1
KH
4131 {
4132 .name = "force_empty",
4133 .trigger = mem_cgroup_force_empty_write,
4134 },
18f59ea7
BS
4135 {
4136 .name = "use_hierarchy",
4137 .write_u64 = mem_cgroup_hierarchy_write,
4138 .read_u64 = mem_cgroup_hierarchy_read,
4139 },
a7885eb8
KM
4140 {
4141 .name = "swappiness",
4142 .read_u64 = mem_cgroup_swappiness_read,
4143 .write_u64 = mem_cgroup_swappiness_write,
4144 },
7dc74be0
DN
4145 {
4146 .name = "move_charge_at_immigrate",
4147 .read_u64 = mem_cgroup_move_charge_read,
4148 .write_u64 = mem_cgroup_move_charge_write,
4149 },
9490ff27
KH
4150 {
4151 .name = "oom_control",
3c11ecf4
KH
4152 .read_map = mem_cgroup_oom_control_read,
4153 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4154 .register_event = mem_cgroup_oom_register_event,
4155 .unregister_event = mem_cgroup_oom_unregister_event,
4156 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4157 },
8cdea7c0
BS
4158};
4159
8c7c6e34
KH
4160#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4161static struct cftype memsw_cgroup_files[] = {
4162 {
4163 .name = "memsw.usage_in_bytes",
4164 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4165 .read_u64 = mem_cgroup_read,
9490ff27
KH
4166 .register_event = mem_cgroup_usage_register_event,
4167 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4168 },
4169 {
4170 .name = "memsw.max_usage_in_bytes",
4171 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4172 .trigger = mem_cgroup_reset,
4173 .read_u64 = mem_cgroup_read,
4174 },
4175 {
4176 .name = "memsw.limit_in_bytes",
4177 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4178 .write_string = mem_cgroup_write,
4179 .read_u64 = mem_cgroup_read,
4180 },
4181 {
4182 .name = "memsw.failcnt",
4183 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4184 .trigger = mem_cgroup_reset,
4185 .read_u64 = mem_cgroup_read,
4186 },
4187};
4188
4189static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4190{
4191 if (!do_swap_account)
4192 return 0;
4193 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4194 ARRAY_SIZE(memsw_cgroup_files));
4195};
4196#else
4197static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4198{
4199 return 0;
4200}
4201#endif
4202
6d12e2d8
KH
4203static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4204{
4205 struct mem_cgroup_per_node *pn;
1ecaab2b 4206 struct mem_cgroup_per_zone *mz;
b69408e8 4207 enum lru_list l;
41e3355d 4208 int zone, tmp = node;
1ecaab2b
KH
4209 /*
4210 * This routine is called against possible nodes.
4211 * But it's BUG to call kmalloc() against offline node.
4212 *
4213 * TODO: this routine can waste much memory for nodes which will
4214 * never be onlined. It's better to use memory hotplug callback
4215 * function.
4216 */
41e3355d
KH
4217 if (!node_state(node, N_NORMAL_MEMORY))
4218 tmp = -1;
17295c88 4219 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4220 if (!pn)
4221 return 1;
1ecaab2b 4222
6d12e2d8 4223 mem->info.nodeinfo[node] = pn;
1ecaab2b
KH
4224 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4225 mz = &pn->zoneinfo[zone];
b69408e8
CL
4226 for_each_lru(l)
4227 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4228 mz->usage_in_excess = 0;
4e416953
BS
4229 mz->on_tree = false;
4230 mz->mem = mem;
1ecaab2b 4231 }
6d12e2d8
KH
4232 return 0;
4233}
4234
1ecaab2b
KH
4235static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4236{
4237 kfree(mem->info.nodeinfo[node]);
4238}
4239
33327948
KH
4240static struct mem_cgroup *mem_cgroup_alloc(void)
4241{
4242 struct mem_cgroup *mem;
c62b1a3b 4243 int size = sizeof(struct mem_cgroup);
33327948 4244
c62b1a3b 4245 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4246 if (size < PAGE_SIZE)
17295c88 4247 mem = kzalloc(size, GFP_KERNEL);
33327948 4248 else
17295c88 4249 mem = vzalloc(size);
33327948 4250
e7bbcdf3
DC
4251 if (!mem)
4252 return NULL;
4253
c62b1a3b 4254 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4255 if (!mem->stat)
4256 goto out_free;
711d3d2c 4257 spin_lock_init(&mem->pcp_counter_lock);
33327948 4258 return mem;
d2e61b8d
DC
4259
4260out_free:
4261 if (size < PAGE_SIZE)
4262 kfree(mem);
4263 else
4264 vfree(mem);
4265 return NULL;
33327948
KH
4266}
4267
8c7c6e34
KH
4268/*
4269 * At destroying mem_cgroup, references from swap_cgroup can remain.
4270 * (scanning all at force_empty is too costly...)
4271 *
4272 * Instead of clearing all references at force_empty, we remember
4273 * the number of reference from swap_cgroup and free mem_cgroup when
4274 * it goes down to 0.
4275 *
8c7c6e34
KH
4276 * Removal of cgroup itself succeeds regardless of refs from swap.
4277 */
4278
a7ba0eef 4279static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4280{
08e552c6
KH
4281 int node;
4282
f64c3f54 4283 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4284 free_css_id(&mem_cgroup_subsys, &mem->css);
4285
08e552c6
KH
4286 for_each_node_state(node, N_POSSIBLE)
4287 free_mem_cgroup_per_zone_info(mem, node);
4288
c62b1a3b
KH
4289 free_percpu(mem->stat);
4290 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4291 kfree(mem);
4292 else
4293 vfree(mem);
4294}
4295
8c7c6e34
KH
4296static void mem_cgroup_get(struct mem_cgroup *mem)
4297{
4298 atomic_inc(&mem->refcnt);
4299}
4300
483c30b5 4301static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4302{
483c30b5 4303 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4304 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4305 __mem_cgroup_free(mem);
7bcc1bb1
DN
4306 if (parent)
4307 mem_cgroup_put(parent);
4308 }
8c7c6e34
KH
4309}
4310
483c30b5
DN
4311static void mem_cgroup_put(struct mem_cgroup *mem)
4312{
4313 __mem_cgroup_put(mem, 1);
4314}
4315
7bcc1bb1
DN
4316/*
4317 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4318 */
4319static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4320{
4321 if (!mem->res.parent)
4322 return NULL;
4323 return mem_cgroup_from_res_counter(mem->res.parent, res);
4324}
33327948 4325
c077719b
KH
4326#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4327static void __init enable_swap_cgroup(void)
4328{
f8d66542 4329 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4330 do_swap_account = 1;
4331}
4332#else
4333static void __init enable_swap_cgroup(void)
4334{
4335}
4336#endif
4337
f64c3f54
BS
4338static int mem_cgroup_soft_limit_tree_init(void)
4339{
4340 struct mem_cgroup_tree_per_node *rtpn;
4341 struct mem_cgroup_tree_per_zone *rtpz;
4342 int tmp, node, zone;
4343
4344 for_each_node_state(node, N_POSSIBLE) {
4345 tmp = node;
4346 if (!node_state(node, N_NORMAL_MEMORY))
4347 tmp = -1;
4348 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4349 if (!rtpn)
4350 return 1;
4351
4352 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4353
4354 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4355 rtpz = &rtpn->rb_tree_per_zone[zone];
4356 rtpz->rb_root = RB_ROOT;
4357 spin_lock_init(&rtpz->lock);
4358 }
4359 }
4360 return 0;
4361}
4362
0eb253e2 4363static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4364mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4365{
28dbc4b6 4366 struct mem_cgroup *mem, *parent;
04046e1a 4367 long error = -ENOMEM;
6d12e2d8 4368 int node;
8cdea7c0 4369
c8dad2bb
JB
4370 mem = mem_cgroup_alloc();
4371 if (!mem)
04046e1a 4372 return ERR_PTR(error);
78fb7466 4373
6d12e2d8
KH
4374 for_each_node_state(node, N_POSSIBLE)
4375 if (alloc_mem_cgroup_per_zone_info(mem, node))
4376 goto free_out;
f64c3f54 4377
c077719b 4378 /* root ? */
28dbc4b6 4379 if (cont->parent == NULL) {
cdec2e42 4380 int cpu;
c077719b 4381 enable_swap_cgroup();
28dbc4b6 4382 parent = NULL;
4b3bde4c 4383 root_mem_cgroup = mem;
f64c3f54
BS
4384 if (mem_cgroup_soft_limit_tree_init())
4385 goto free_out;
cdec2e42
KH
4386 for_each_possible_cpu(cpu) {
4387 struct memcg_stock_pcp *stock =
4388 &per_cpu(memcg_stock, cpu);
4389 INIT_WORK(&stock->work, drain_local_stock);
4390 }
711d3d2c 4391 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4392 } else {
28dbc4b6 4393 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4394 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4395 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4396 }
28dbc4b6 4397
18f59ea7
BS
4398 if (parent && parent->use_hierarchy) {
4399 res_counter_init(&mem->res, &parent->res);
4400 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4401 /*
4402 * We increment refcnt of the parent to ensure that we can
4403 * safely access it on res_counter_charge/uncharge.
4404 * This refcnt will be decremented when freeing this
4405 * mem_cgroup(see mem_cgroup_put).
4406 */
4407 mem_cgroup_get(parent);
18f59ea7
BS
4408 } else {
4409 res_counter_init(&mem->res, NULL);
4410 res_counter_init(&mem->memsw, NULL);
4411 }
04046e1a 4412 mem->last_scanned_child = 0;
2733c06a 4413 spin_lock_init(&mem->reclaim_param_lock);
9490ff27 4414 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4415
a7885eb8
KM
4416 if (parent)
4417 mem->swappiness = get_swappiness(parent);
a7ba0eef 4418 atomic_set(&mem->refcnt, 1);
7dc74be0 4419 mem->move_charge_at_immigrate = 0;
2e72b634 4420 mutex_init(&mem->thresholds_lock);
8cdea7c0 4421 return &mem->css;
6d12e2d8 4422free_out:
a7ba0eef 4423 __mem_cgroup_free(mem);
4b3bde4c 4424 root_mem_cgroup = NULL;
04046e1a 4425 return ERR_PTR(error);
8cdea7c0
BS
4426}
4427
ec64f515 4428static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4429 struct cgroup *cont)
4430{
4431 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4432
4433 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4434}
4435
8cdea7c0
BS
4436static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4437 struct cgroup *cont)
4438{
c268e994 4439 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4440
c268e994 4441 mem_cgroup_put(mem);
8cdea7c0
BS
4442}
4443
4444static int mem_cgroup_populate(struct cgroup_subsys *ss,
4445 struct cgroup *cont)
4446{
8c7c6e34
KH
4447 int ret;
4448
4449 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4450 ARRAY_SIZE(mem_cgroup_files));
4451
4452 if (!ret)
4453 ret = register_memsw_files(cont, ss);
4454 return ret;
8cdea7c0
BS
4455}
4456
02491447 4457#ifdef CONFIG_MMU
7dc74be0 4458/* Handlers for move charge at task migration. */
854ffa8d
DN
4459#define PRECHARGE_COUNT_AT_ONCE 256
4460static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4461{
854ffa8d
DN
4462 int ret = 0;
4463 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4464 struct mem_cgroup *mem = mc.to;
4465
854ffa8d
DN
4466 if (mem_cgroup_is_root(mem)) {
4467 mc.precharge += count;
4468 /* we don't need css_get for root */
4469 return ret;
4470 }
4471 /* try to charge at once */
4472 if (count > 1) {
4473 struct res_counter *dummy;
4474 /*
4475 * "mem" cannot be under rmdir() because we've already checked
4476 * by cgroup_lock_live_cgroup() that it is not removed and we
4477 * are still under the same cgroup_mutex. So we can postpone
4478 * css_get().
4479 */
4480 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4481 goto one_by_one;
4482 if (do_swap_account && res_counter_charge(&mem->memsw,
4483 PAGE_SIZE * count, &dummy)) {
4484 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4485 goto one_by_one;
4486 }
4487 mc.precharge += count;
854ffa8d
DN
4488 return ret;
4489 }
4490one_by_one:
4491 /* fall back to one by one charge */
4492 while (count--) {
4493 if (signal_pending(current)) {
4494 ret = -EINTR;
4495 break;
4496 }
4497 if (!batch_count--) {
4498 batch_count = PRECHARGE_COUNT_AT_ONCE;
4499 cond_resched();
4500 }
ec168510
AA
4501 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4502 PAGE_SIZE);
854ffa8d
DN
4503 if (ret || !mem)
4504 /* mem_cgroup_clear_mc() will do uncharge later */
4505 return -ENOMEM;
4506 mc.precharge++;
4507 }
4ffef5fe
DN
4508 return ret;
4509}
4510
4511/**
4512 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4513 * @vma: the vma the pte to be checked belongs
4514 * @addr: the address corresponding to the pte to be checked
4515 * @ptent: the pte to be checked
02491447 4516 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4517 *
4518 * Returns
4519 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4520 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4521 * move charge. if @target is not NULL, the page is stored in target->page
4522 * with extra refcnt got(Callers should handle it).
02491447
DN
4523 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4524 * target for charge migration. if @target is not NULL, the entry is stored
4525 * in target->ent.
4ffef5fe
DN
4526 *
4527 * Called with pte lock held.
4528 */
4ffef5fe
DN
4529union mc_target {
4530 struct page *page;
02491447 4531 swp_entry_t ent;
4ffef5fe
DN
4532};
4533
4ffef5fe
DN
4534enum mc_target_type {
4535 MC_TARGET_NONE, /* not used */
4536 MC_TARGET_PAGE,
02491447 4537 MC_TARGET_SWAP,
4ffef5fe
DN
4538};
4539
90254a65
DN
4540static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4541 unsigned long addr, pte_t ptent)
4ffef5fe 4542{
90254a65 4543 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4544
90254a65
DN
4545 if (!page || !page_mapped(page))
4546 return NULL;
4547 if (PageAnon(page)) {
4548 /* we don't move shared anon */
4549 if (!move_anon() || page_mapcount(page) > 2)
4550 return NULL;
87946a72
DN
4551 } else if (!move_file())
4552 /* we ignore mapcount for file pages */
90254a65
DN
4553 return NULL;
4554 if (!get_page_unless_zero(page))
4555 return NULL;
4556
4557 return page;
4558}
4559
4560static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4561 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4562{
4563 int usage_count;
4564 struct page *page = NULL;
4565 swp_entry_t ent = pte_to_swp_entry(ptent);
4566
4567 if (!move_anon() || non_swap_entry(ent))
4568 return NULL;
4569 usage_count = mem_cgroup_count_swap_user(ent, &page);
4570 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
4571 if (page)
4572 put_page(page);
90254a65 4573 return NULL;
02491447 4574 }
90254a65
DN
4575 if (do_swap_account)
4576 entry->val = ent.val;
4577
4578 return page;
4579}
4580
87946a72
DN
4581static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4582 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4583{
4584 struct page *page = NULL;
4585 struct inode *inode;
4586 struct address_space *mapping;
4587 pgoff_t pgoff;
4588
4589 if (!vma->vm_file) /* anonymous vma */
4590 return NULL;
4591 if (!move_file())
4592 return NULL;
4593
4594 inode = vma->vm_file->f_path.dentry->d_inode;
4595 mapping = vma->vm_file->f_mapping;
4596 if (pte_none(ptent))
4597 pgoff = linear_page_index(vma, addr);
4598 else /* pte_file(ptent) is true */
4599 pgoff = pte_to_pgoff(ptent);
4600
4601 /* page is moved even if it's not RSS of this task(page-faulted). */
4602 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4603 page = find_get_page(mapping, pgoff);
4604 } else { /* shmem/tmpfs file. we should take account of swap too. */
4605 swp_entry_t ent;
4606 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4607 if (do_swap_account)
4608 entry->val = ent.val;
4609 }
4610
4611 return page;
4612}
4613
90254a65
DN
4614static int is_target_pte_for_mc(struct vm_area_struct *vma,
4615 unsigned long addr, pte_t ptent, union mc_target *target)
4616{
4617 struct page *page = NULL;
4618 struct page_cgroup *pc;
4619 int ret = 0;
4620 swp_entry_t ent = { .val = 0 };
4621
4622 if (pte_present(ptent))
4623 page = mc_handle_present_pte(vma, addr, ptent);
4624 else if (is_swap_pte(ptent))
4625 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
4626 else if (pte_none(ptent) || pte_file(ptent))
4627 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4628
4629 if (!page && !ent.val)
4630 return 0;
02491447
DN
4631 if (page) {
4632 pc = lookup_page_cgroup(page);
4633 /*
4634 * Do only loose check w/o page_cgroup lock.
4635 * mem_cgroup_move_account() checks the pc is valid or not under
4636 * the lock.
4637 */
4638 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4639 ret = MC_TARGET_PAGE;
4640 if (target)
4641 target->page = page;
4642 }
4643 if (!ret || !target)
4644 put_page(page);
4645 }
90254a65
DN
4646 /* There is a swap entry and a page doesn't exist or isn't charged */
4647 if (ent.val && !ret &&
7f0f1546
KH
4648 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4649 ret = MC_TARGET_SWAP;
4650 if (target)
4651 target->ent = ent;
4ffef5fe 4652 }
4ffef5fe
DN
4653 return ret;
4654}
4655
4656static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4657 unsigned long addr, unsigned long end,
4658 struct mm_walk *walk)
4659{
4660 struct vm_area_struct *vma = walk->private;
4661 pte_t *pte;
4662 spinlock_t *ptl;
4663
ec168510 4664 VM_BUG_ON(pmd_trans_huge(*pmd));
4ffef5fe
DN
4665 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4666 for (; addr != end; pte++, addr += PAGE_SIZE)
4667 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4668 mc.precharge++; /* increment precharge temporarily */
4669 pte_unmap_unlock(pte - 1, ptl);
4670 cond_resched();
4671
7dc74be0
DN
4672 return 0;
4673}
4674
4ffef5fe
DN
4675static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4676{
4677 unsigned long precharge;
4678 struct vm_area_struct *vma;
4679
dfe076b0 4680 down_read(&mm->mmap_sem);
4ffef5fe
DN
4681 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4682 struct mm_walk mem_cgroup_count_precharge_walk = {
4683 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4684 .mm = mm,
4685 .private = vma,
4686 };
4687 if (is_vm_hugetlb_page(vma))
4688 continue;
4ffef5fe
DN
4689 walk_page_range(vma->vm_start, vma->vm_end,
4690 &mem_cgroup_count_precharge_walk);
4691 }
dfe076b0 4692 up_read(&mm->mmap_sem);
4ffef5fe
DN
4693
4694 precharge = mc.precharge;
4695 mc.precharge = 0;
4696
4697 return precharge;
4698}
4699
4ffef5fe
DN
4700static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4701{
dfe076b0
DN
4702 unsigned long precharge = mem_cgroup_count_precharge(mm);
4703
4704 VM_BUG_ON(mc.moving_task);
4705 mc.moving_task = current;
4706 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4707}
4708
dfe076b0
DN
4709/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4710static void __mem_cgroup_clear_mc(void)
4ffef5fe 4711{
2bd9bb20
KH
4712 struct mem_cgroup *from = mc.from;
4713 struct mem_cgroup *to = mc.to;
4714
4ffef5fe 4715 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4716 if (mc.precharge) {
4717 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4718 mc.precharge = 0;
4719 }
4720 /*
4721 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4722 * we must uncharge here.
4723 */
4724 if (mc.moved_charge) {
4725 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4726 mc.moved_charge = 0;
4ffef5fe 4727 }
483c30b5
DN
4728 /* we must fixup refcnts and charges */
4729 if (mc.moved_swap) {
483c30b5
DN
4730 /* uncharge swap account from the old cgroup */
4731 if (!mem_cgroup_is_root(mc.from))
4732 res_counter_uncharge(&mc.from->memsw,
4733 PAGE_SIZE * mc.moved_swap);
4734 __mem_cgroup_put(mc.from, mc.moved_swap);
4735
4736 if (!mem_cgroup_is_root(mc.to)) {
4737 /*
4738 * we charged both to->res and to->memsw, so we should
4739 * uncharge to->res.
4740 */
4741 res_counter_uncharge(&mc.to->res,
4742 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
4743 }
4744 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
4745 mc.moved_swap = 0;
4746 }
dfe076b0
DN
4747 memcg_oom_recover(from);
4748 memcg_oom_recover(to);
4749 wake_up_all(&mc.waitq);
4750}
4751
4752static void mem_cgroup_clear_mc(void)
4753{
4754 struct mem_cgroup *from = mc.from;
4755
4756 /*
4757 * we must clear moving_task before waking up waiters at the end of
4758 * task migration.
4759 */
4760 mc.moving_task = NULL;
4761 __mem_cgroup_clear_mc();
2bd9bb20 4762 spin_lock(&mc.lock);
4ffef5fe
DN
4763 mc.from = NULL;
4764 mc.to = NULL;
2bd9bb20 4765 spin_unlock(&mc.lock);
32047e2a 4766 mem_cgroup_end_move(from);
4ffef5fe
DN
4767}
4768
7dc74be0
DN
4769static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4770 struct cgroup *cgroup,
4771 struct task_struct *p,
4772 bool threadgroup)
4773{
4774 int ret = 0;
4775 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4776
4777 if (mem->move_charge_at_immigrate) {
4778 struct mm_struct *mm;
4779 struct mem_cgroup *from = mem_cgroup_from_task(p);
4780
4781 VM_BUG_ON(from == mem);
4782
4783 mm = get_task_mm(p);
4784 if (!mm)
4785 return 0;
7dc74be0 4786 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
4787 if (mm->owner == p) {
4788 VM_BUG_ON(mc.from);
4789 VM_BUG_ON(mc.to);
4790 VM_BUG_ON(mc.precharge);
854ffa8d 4791 VM_BUG_ON(mc.moved_charge);
483c30b5 4792 VM_BUG_ON(mc.moved_swap);
32047e2a 4793 mem_cgroup_start_move(from);
2bd9bb20 4794 spin_lock(&mc.lock);
4ffef5fe
DN
4795 mc.from = from;
4796 mc.to = mem;
2bd9bb20 4797 spin_unlock(&mc.lock);
dfe076b0 4798 /* We set mc.moving_task later */
4ffef5fe
DN
4799
4800 ret = mem_cgroup_precharge_mc(mm);
4801 if (ret)
4802 mem_cgroup_clear_mc();
dfe076b0
DN
4803 }
4804 mmput(mm);
7dc74be0
DN
4805 }
4806 return ret;
4807}
4808
4809static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4810 struct cgroup *cgroup,
4811 struct task_struct *p,
4812 bool threadgroup)
4813{
4ffef5fe 4814 mem_cgroup_clear_mc();
7dc74be0
DN
4815}
4816
4ffef5fe
DN
4817static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4818 unsigned long addr, unsigned long end,
4819 struct mm_walk *walk)
7dc74be0 4820{
4ffef5fe
DN
4821 int ret = 0;
4822 struct vm_area_struct *vma = walk->private;
4823 pte_t *pte;
4824 spinlock_t *ptl;
4825
4826retry:
ec168510 4827 VM_BUG_ON(pmd_trans_huge(*pmd));
4ffef5fe
DN
4828 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4829 for (; addr != end; addr += PAGE_SIZE) {
4830 pte_t ptent = *(pte++);
4831 union mc_target target;
4832 int type;
4833 struct page *page;
4834 struct page_cgroup *pc;
02491447 4835 swp_entry_t ent;
4ffef5fe
DN
4836
4837 if (!mc.precharge)
4838 break;
4839
4840 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4841 switch (type) {
4842 case MC_TARGET_PAGE:
4843 page = target.page;
4844 if (isolate_lru_page(page))
4845 goto put;
4846 pc = lookup_page_cgroup(page);
854ffa8d
DN
4847 if (!mem_cgroup_move_account(pc,
4848 mc.from, mc.to, false)) {
4ffef5fe 4849 mc.precharge--;
854ffa8d
DN
4850 /* we uncharge from mc.from later. */
4851 mc.moved_charge++;
4ffef5fe
DN
4852 }
4853 putback_lru_page(page);
4854put: /* is_target_pte_for_mc() gets the page */
4855 put_page(page);
4856 break;
02491447
DN
4857 case MC_TARGET_SWAP:
4858 ent = target.ent;
483c30b5
DN
4859 if (!mem_cgroup_move_swap_account(ent,
4860 mc.from, mc.to, false)) {
02491447 4861 mc.precharge--;
483c30b5
DN
4862 /* we fixup refcnts and charges later. */
4863 mc.moved_swap++;
4864 }
02491447 4865 break;
4ffef5fe
DN
4866 default:
4867 break;
4868 }
4869 }
4870 pte_unmap_unlock(pte - 1, ptl);
4871 cond_resched();
4872
4873 if (addr != end) {
4874 /*
4875 * We have consumed all precharges we got in can_attach().
4876 * We try charge one by one, but don't do any additional
4877 * charges to mc.to if we have failed in charge once in attach()
4878 * phase.
4879 */
854ffa8d 4880 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4881 if (!ret)
4882 goto retry;
4883 }
4884
4885 return ret;
4886}
4887
4888static void mem_cgroup_move_charge(struct mm_struct *mm)
4889{
4890 struct vm_area_struct *vma;
4891
4892 lru_add_drain_all();
dfe076b0
DN
4893retry:
4894 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4895 /*
4896 * Someone who are holding the mmap_sem might be waiting in
4897 * waitq. So we cancel all extra charges, wake up all waiters,
4898 * and retry. Because we cancel precharges, we might not be able
4899 * to move enough charges, but moving charge is a best-effort
4900 * feature anyway, so it wouldn't be a big problem.
4901 */
4902 __mem_cgroup_clear_mc();
4903 cond_resched();
4904 goto retry;
4905 }
4ffef5fe
DN
4906 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4907 int ret;
4908 struct mm_walk mem_cgroup_move_charge_walk = {
4909 .pmd_entry = mem_cgroup_move_charge_pte_range,
4910 .mm = mm,
4911 .private = vma,
4912 };
4913 if (is_vm_hugetlb_page(vma))
4914 continue;
4ffef5fe
DN
4915 ret = walk_page_range(vma->vm_start, vma->vm_end,
4916 &mem_cgroup_move_charge_walk);
4917 if (ret)
4918 /*
4919 * means we have consumed all precharges and failed in
4920 * doing additional charge. Just abandon here.
4921 */
4922 break;
4923 }
dfe076b0 4924 up_read(&mm->mmap_sem);
7dc74be0
DN
4925}
4926
67e465a7
BS
4927static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4928 struct cgroup *cont,
4929 struct cgroup *old_cont,
be367d09
BB
4930 struct task_struct *p,
4931 bool threadgroup)
67e465a7 4932{
dfe076b0
DN
4933 struct mm_struct *mm;
4934
4935 if (!mc.to)
4ffef5fe
DN
4936 /* no need to move charge */
4937 return;
4938
dfe076b0
DN
4939 mm = get_task_mm(p);
4940 if (mm) {
4941 mem_cgroup_move_charge(mm);
4942 mmput(mm);
4943 }
4ffef5fe 4944 mem_cgroup_clear_mc();
67e465a7 4945}
5cfb80a7
DN
4946#else /* !CONFIG_MMU */
4947static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4948 struct cgroup *cgroup,
4949 struct task_struct *p,
4950 bool threadgroup)
4951{
4952 return 0;
4953}
4954static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4955 struct cgroup *cgroup,
4956 struct task_struct *p,
4957 bool threadgroup)
4958{
4959}
4960static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4961 struct cgroup *cont,
4962 struct cgroup *old_cont,
4963 struct task_struct *p,
4964 bool threadgroup)
4965{
4966}
4967#endif
67e465a7 4968
8cdea7c0
BS
4969struct cgroup_subsys mem_cgroup_subsys = {
4970 .name = "memory",
4971 .subsys_id = mem_cgroup_subsys_id,
4972 .create = mem_cgroup_create,
df878fb0 4973 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
4974 .destroy = mem_cgroup_destroy,
4975 .populate = mem_cgroup_populate,
7dc74be0
DN
4976 .can_attach = mem_cgroup_can_attach,
4977 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 4978 .attach = mem_cgroup_move_task,
6d12e2d8 4979 .early_init = 0,
04046e1a 4980 .use_id = 1,
8cdea7c0 4981};
c077719b
KH
4982
4983#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
4984static int __init enable_swap_account(char *s)
4985{
4986 /* consider enabled if no parameter or 1 is given */
4987 if (!s || !strcmp(s, "1"))
4988 really_do_swap_account = 1;
4989 else if (!strcmp(s, "0"))
4990 really_do_swap_account = 0;
4991 return 1;
4992}
4993__setup("swapaccount", enable_swap_account);
c077719b
KH
4994
4995static int __init disable_swap_account(char *s)
4996{
a42c390c 4997 enable_swap_account("0");
c077719b
KH
4998 return 1;
4999}
5000__setup("noswapaccount", disable_swap_account);
5001#endif