]> git.ipfire.org Git - people/ms/linux.git/blame - mm/memcontrol.c
mm/dmapool.c: reuse devres_release() to free resources
[people/ms/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0 359#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
2633d7a0 362 struct list_head memcg_slab_caches;
2633d7a0
GC
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365#endif
45cf7ebd
GC
366
367 int last_scanned_node;
368#if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372#endif
70ddf637 373
fba94807
TH
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
54f72fe0
JW
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
380};
381
510fc4e1
GC
382/* internal only representation about the status of kmem accounting. */
383enum {
6de64beb 384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
386};
387
510fc4e1
GC
388#ifdef CONFIG_MEMCG_KMEM
389static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390{
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392}
7de37682
GC
393
394static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395{
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397}
398
399static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400{
10d5ebf4
LZ
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
7de37682
GC
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408}
409
410static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411{
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414}
510fc4e1
GC
415#endif
416
7dc74be0
DN
417/* Stuffs for move charges at task migration. */
418/*
ee5e8472
GC
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
421 */
422enum move_type {
4ffef5fe 423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
425 NR_MOVE_TYPE,
426};
427
4ffef5fe
DN
428/* "mc" and its members are protected by cgroup_mutex */
429static struct move_charge_struct {
b1dd693e 430 spinlock_t lock; /* for from, to */
4ffef5fe
DN
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
ee5e8472 433 unsigned long immigrate_flags;
4ffef5fe 434 unsigned long precharge;
854ffa8d 435 unsigned long moved_charge;
483c30b5 436 unsigned long moved_swap;
8033b97c
DN
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439} mc = {
2bd9bb20 440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442};
4ffef5fe 443
90254a65
DN
444static bool move_anon(void)
445{
ee5e8472 446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
447}
448
87946a72
DN
449static bool move_file(void)
450{
ee5e8472 451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
452}
453
4e416953
BS
454/*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
a0db00fc 458#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 459#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 460
217bc319
KH
461enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 463 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
466 NR_CHARGE_TYPE,
467};
468
8c7c6e34 469/* for encoding cft->private value on file */
86ae53e1
GC
470enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
510fc4e1 474 _KMEM,
86ae53e1
GC
475};
476
a0db00fc
KS
477#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 479#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
480/* Used for OOM nofiier */
481#define OOM_CONTROL (0)
8c7c6e34 482
75822b44
BS
483/*
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
485 */
486#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490
0999821b
GC
491/*
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
495 */
496static DEFINE_MUTEX(memcg_create_mutex);
497
b2145145
WL
498struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499{
a7c6d554 500 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
501}
502
70ddf637
AV
503/* Some nice accessors for the vmpressure. */
504struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505{
506 if (!memcg)
507 memcg = root_mem_cgroup;
508 return &memcg->vmpressure;
509}
510
511struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512{
513 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514}
515
7ffc0edc
MH
516static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517{
518 return (memcg == root_mem_cgroup);
519}
520
4219b2da
LZ
521/*
522 * We restrict the id in the range of [1, 65535], so it can fit into
523 * an unsigned short.
524 */
525#define MEM_CGROUP_ID_MAX USHRT_MAX
526
34c00c31
LZ
527static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528{
529 /*
530 * The ID of the root cgroup is 0, but memcg treat 0 as an
531 * invalid ID, so we return (cgroup_id + 1).
532 */
533 return memcg->css.cgroup->id + 1;
534}
535
536static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
537{
538 struct cgroup_subsys_state *css;
539
073219e9 540 css = css_from_id(id - 1, &memory_cgrp_subsys);
34c00c31
LZ
541 return mem_cgroup_from_css(css);
542}
543
e1aab161 544/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 545#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 546
e1aab161
GC
547void sock_update_memcg(struct sock *sk)
548{
376be5ff 549 if (mem_cgroup_sockets_enabled) {
e1aab161 550 struct mem_cgroup *memcg;
3f134619 551 struct cg_proto *cg_proto;
e1aab161
GC
552
553 BUG_ON(!sk->sk_prot->proto_cgroup);
554
f3f511e1
GC
555 /* Socket cloning can throw us here with sk_cgrp already
556 * filled. It won't however, necessarily happen from
557 * process context. So the test for root memcg given
558 * the current task's memcg won't help us in this case.
559 *
560 * Respecting the original socket's memcg is a better
561 * decision in this case.
562 */
563 if (sk->sk_cgrp) {
564 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 565 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
566 return;
567 }
568
e1aab161
GC
569 rcu_read_lock();
570 memcg = mem_cgroup_from_task(current);
3f134619 571 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
572 if (!mem_cgroup_is_root(memcg) &&
573 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 574 sk->sk_cgrp = cg_proto;
e1aab161
GC
575 }
576 rcu_read_unlock();
577 }
578}
579EXPORT_SYMBOL(sock_update_memcg);
580
581void sock_release_memcg(struct sock *sk)
582{
376be5ff 583 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
584 struct mem_cgroup *memcg;
585 WARN_ON(!sk->sk_cgrp->memcg);
586 memcg = sk->sk_cgrp->memcg;
5347e5ae 587 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
588 }
589}
d1a4c0b3
GC
590
591struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
592{
593 if (!memcg || mem_cgroup_is_root(memcg))
594 return NULL;
595
2e685cad 596 return &memcg->tcp_mem;
d1a4c0b3
GC
597}
598EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 599
3f134619
GC
600static void disarm_sock_keys(struct mem_cgroup *memcg)
601{
2e685cad 602 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
603 return;
604 static_key_slow_dec(&memcg_socket_limit_enabled);
605}
606#else
607static void disarm_sock_keys(struct mem_cgroup *memcg)
608{
609}
610#endif
611
a8964b9b 612#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
613/*
614 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
615 * The main reason for not using cgroup id for this:
616 * this works better in sparse environments, where we have a lot of memcgs,
617 * but only a few kmem-limited. Or also, if we have, for instance, 200
618 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
619 * 200 entry array for that.
55007d84
GC
620 *
621 * The current size of the caches array is stored in
622 * memcg_limited_groups_array_size. It will double each time we have to
623 * increase it.
624 */
625static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
626int memcg_limited_groups_array_size;
627
55007d84
GC
628/*
629 * MIN_SIZE is different than 1, because we would like to avoid going through
630 * the alloc/free process all the time. In a small machine, 4 kmem-limited
631 * cgroups is a reasonable guess. In the future, it could be a parameter or
632 * tunable, but that is strictly not necessary.
633 *
b8627835 634 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
635 * this constant directly from cgroup, but it is understandable that this is
636 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 637 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
638 * increase ours as well if it increases.
639 */
640#define MEMCG_CACHES_MIN_SIZE 4
b8627835 641#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 642
d7f25f8a
GC
643/*
644 * A lot of the calls to the cache allocation functions are expected to be
645 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
646 * conditional to this static branch, we'll have to allow modules that does
647 * kmem_cache_alloc and the such to see this symbol as well
648 */
a8964b9b 649struct static_key memcg_kmem_enabled_key;
d7f25f8a 650EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
651
652static void disarm_kmem_keys(struct mem_cgroup *memcg)
653{
55007d84 654 if (memcg_kmem_is_active(memcg)) {
a8964b9b 655 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
656 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
657 }
bea207c8
GC
658 /*
659 * This check can't live in kmem destruction function,
660 * since the charges will outlive the cgroup
661 */
662 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
663}
664#else
665static void disarm_kmem_keys(struct mem_cgroup *memcg)
666{
667}
668#endif /* CONFIG_MEMCG_KMEM */
669
670static void disarm_static_keys(struct mem_cgroup *memcg)
671{
672 disarm_sock_keys(memcg);
673 disarm_kmem_keys(memcg);
674}
675
c0ff4b85 676static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 677
f64c3f54 678static struct mem_cgroup_per_zone *
c0ff4b85 679mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 680{
45cf7ebd 681 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 682 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
683}
684
c0ff4b85 685struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 686{
c0ff4b85 687 return &memcg->css;
d324236b
WF
688}
689
f64c3f54 690static struct mem_cgroup_per_zone *
c0ff4b85 691page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 692{
97a6c37b
JW
693 int nid = page_to_nid(page);
694 int zid = page_zonenum(page);
f64c3f54 695
c0ff4b85 696 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
697}
698
bb4cc1a8
AM
699static struct mem_cgroup_tree_per_zone *
700soft_limit_tree_node_zone(int nid, int zid)
701{
702 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
703}
704
705static struct mem_cgroup_tree_per_zone *
706soft_limit_tree_from_page(struct page *page)
707{
708 int nid = page_to_nid(page);
709 int zid = page_zonenum(page);
710
711 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
712}
713
714static void
715__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
716 struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz,
718 unsigned long long new_usage_in_excess)
719{
720 struct rb_node **p = &mctz->rb_root.rb_node;
721 struct rb_node *parent = NULL;
722 struct mem_cgroup_per_zone *mz_node;
723
724 if (mz->on_tree)
725 return;
726
727 mz->usage_in_excess = new_usage_in_excess;
728 if (!mz->usage_in_excess)
729 return;
730 while (*p) {
731 parent = *p;
732 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
733 tree_node);
734 if (mz->usage_in_excess < mz_node->usage_in_excess)
735 p = &(*p)->rb_left;
736 /*
737 * We can't avoid mem cgroups that are over their soft
738 * limit by the same amount
739 */
740 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
741 p = &(*p)->rb_right;
742 }
743 rb_link_node(&mz->tree_node, parent, p);
744 rb_insert_color(&mz->tree_node, &mctz->rb_root);
745 mz->on_tree = true;
746}
747
748static void
749__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
750 struct mem_cgroup_per_zone *mz,
751 struct mem_cgroup_tree_per_zone *mctz)
752{
753 if (!mz->on_tree)
754 return;
755 rb_erase(&mz->tree_node, &mctz->rb_root);
756 mz->on_tree = false;
757}
758
759static void
760mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
761 struct mem_cgroup_per_zone *mz,
762 struct mem_cgroup_tree_per_zone *mctz)
763{
764 spin_lock(&mctz->lock);
765 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
766 spin_unlock(&mctz->lock);
767}
768
769
770static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
771{
772 unsigned long long excess;
773 struct mem_cgroup_per_zone *mz;
774 struct mem_cgroup_tree_per_zone *mctz;
775 int nid = page_to_nid(page);
776 int zid = page_zonenum(page);
777 mctz = soft_limit_tree_from_page(page);
778
779 /*
780 * Necessary to update all ancestors when hierarchy is used.
781 * because their event counter is not touched.
782 */
783 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
784 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
785 excess = res_counter_soft_limit_excess(&memcg->res);
786 /*
787 * We have to update the tree if mz is on RB-tree or
788 * mem is over its softlimit.
789 */
790 if (excess || mz->on_tree) {
791 spin_lock(&mctz->lock);
792 /* if on-tree, remove it */
793 if (mz->on_tree)
794 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
795 /*
796 * Insert again. mz->usage_in_excess will be updated.
797 * If excess is 0, no tree ops.
798 */
799 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
800 spin_unlock(&mctz->lock);
801 }
802 }
803}
804
805static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
806{
807 int node, zone;
808 struct mem_cgroup_per_zone *mz;
809 struct mem_cgroup_tree_per_zone *mctz;
810
811 for_each_node(node) {
812 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
813 mz = mem_cgroup_zoneinfo(memcg, node, zone);
814 mctz = soft_limit_tree_node_zone(node, zone);
815 mem_cgroup_remove_exceeded(memcg, mz, mctz);
816 }
817 }
818}
819
820static struct mem_cgroup_per_zone *
821__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
822{
823 struct rb_node *rightmost = NULL;
824 struct mem_cgroup_per_zone *mz;
825
826retry:
827 mz = NULL;
828 rightmost = rb_last(&mctz->rb_root);
829 if (!rightmost)
830 goto done; /* Nothing to reclaim from */
831
832 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
833 /*
834 * Remove the node now but someone else can add it back,
835 * we will to add it back at the end of reclaim to its correct
836 * position in the tree.
837 */
838 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
839 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
840 !css_tryget(&mz->memcg->css))
841 goto retry;
842done:
843 return mz;
844}
845
846static struct mem_cgroup_per_zone *
847mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
848{
849 struct mem_cgroup_per_zone *mz;
850
851 spin_lock(&mctz->lock);
852 mz = __mem_cgroup_largest_soft_limit_node(mctz);
853 spin_unlock(&mctz->lock);
854 return mz;
855}
856
711d3d2c
KH
857/*
858 * Implementation Note: reading percpu statistics for memcg.
859 *
860 * Both of vmstat[] and percpu_counter has threshold and do periodic
861 * synchronization to implement "quick" read. There are trade-off between
862 * reading cost and precision of value. Then, we may have a chance to implement
863 * a periodic synchronizion of counter in memcg's counter.
864 *
865 * But this _read() function is used for user interface now. The user accounts
866 * memory usage by memory cgroup and he _always_ requires exact value because
867 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
868 * have to visit all online cpus and make sum. So, for now, unnecessary
869 * synchronization is not implemented. (just implemented for cpu hotplug)
870 *
871 * If there are kernel internal actions which can make use of some not-exact
872 * value, and reading all cpu value can be performance bottleneck in some
873 * common workload, threashold and synchonization as vmstat[] should be
874 * implemented.
875 */
c0ff4b85 876static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 877 enum mem_cgroup_stat_index idx)
c62b1a3b 878{
7a159cc9 879 long val = 0;
c62b1a3b 880 int cpu;
c62b1a3b 881
711d3d2c
KH
882 get_online_cpus();
883 for_each_online_cpu(cpu)
c0ff4b85 884 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 885#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
886 spin_lock(&memcg->pcp_counter_lock);
887 val += memcg->nocpu_base.count[idx];
888 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
889#endif
890 put_online_cpus();
c62b1a3b
KH
891 return val;
892}
893
c0ff4b85 894static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
895 bool charge)
896{
897 int val = (charge) ? 1 : -1;
bff6bb83 898 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
899}
900
c0ff4b85 901static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
902 enum mem_cgroup_events_index idx)
903{
904 unsigned long val = 0;
905 int cpu;
906
9c567512 907 get_online_cpus();
e9f8974f 908 for_each_online_cpu(cpu)
c0ff4b85 909 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 910#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
911 spin_lock(&memcg->pcp_counter_lock);
912 val += memcg->nocpu_base.events[idx];
913 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 914#endif
9c567512 915 put_online_cpus();
e9f8974f
JW
916 return val;
917}
918
c0ff4b85 919static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 920 struct page *page,
b2402857 921 bool anon, int nr_pages)
d52aa412 922{
b2402857
KH
923 /*
924 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
925 * counted as CACHE even if it's on ANON LRU.
926 */
927 if (anon)
928 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 929 nr_pages);
d52aa412 930 else
b2402857 931 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 932 nr_pages);
55e462b0 933
b070e65c
DR
934 if (PageTransHuge(page))
935 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
936 nr_pages);
937
e401f176
KH
938 /* pagein of a big page is an event. So, ignore page size */
939 if (nr_pages > 0)
c0ff4b85 940 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 941 else {
c0ff4b85 942 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
943 nr_pages = -nr_pages; /* for event */
944 }
e401f176 945
13114716 946 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
947}
948
bb2a0de9 949unsigned long
4d7dcca2 950mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
951{
952 struct mem_cgroup_per_zone *mz;
953
954 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
955 return mz->lru_size[lru];
956}
957
958static unsigned long
c0ff4b85 959mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 960 unsigned int lru_mask)
889976db
YH
961{
962 struct mem_cgroup_per_zone *mz;
f156ab93 963 enum lru_list lru;
bb2a0de9
KH
964 unsigned long ret = 0;
965
c0ff4b85 966 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 967
f156ab93
HD
968 for_each_lru(lru) {
969 if (BIT(lru) & lru_mask)
970 ret += mz->lru_size[lru];
bb2a0de9
KH
971 }
972 return ret;
973}
974
975static unsigned long
c0ff4b85 976mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
977 int nid, unsigned int lru_mask)
978{
889976db
YH
979 u64 total = 0;
980 int zid;
981
bb2a0de9 982 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
983 total += mem_cgroup_zone_nr_lru_pages(memcg,
984 nid, zid, lru_mask);
bb2a0de9 985
889976db
YH
986 return total;
987}
bb2a0de9 988
c0ff4b85 989static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 990 unsigned int lru_mask)
6d12e2d8 991{
889976db 992 int nid;
6d12e2d8
KH
993 u64 total = 0;
994
31aaea4a 995 for_each_node_state(nid, N_MEMORY)
c0ff4b85 996 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 997 return total;
d52aa412
KH
998}
999
f53d7ce3
JW
1000static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1001 enum mem_cgroup_events_target target)
7a159cc9
JW
1002{
1003 unsigned long val, next;
1004
13114716 1005 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1006 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1007 /* from time_after() in jiffies.h */
f53d7ce3
JW
1008 if ((long)next - (long)val < 0) {
1009 switch (target) {
1010 case MEM_CGROUP_TARGET_THRESH:
1011 next = val + THRESHOLDS_EVENTS_TARGET;
1012 break;
bb4cc1a8
AM
1013 case MEM_CGROUP_TARGET_SOFTLIMIT:
1014 next = val + SOFTLIMIT_EVENTS_TARGET;
1015 break;
f53d7ce3
JW
1016 case MEM_CGROUP_TARGET_NUMAINFO:
1017 next = val + NUMAINFO_EVENTS_TARGET;
1018 break;
1019 default:
1020 break;
1021 }
1022 __this_cpu_write(memcg->stat->targets[target], next);
1023 return true;
7a159cc9 1024 }
f53d7ce3 1025 return false;
d2265e6f
KH
1026}
1027
1028/*
1029 * Check events in order.
1030 *
1031 */
c0ff4b85 1032static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1033{
4799401f 1034 preempt_disable();
d2265e6f 1035 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1036 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1037 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1038 bool do_softlimit;
82b3f2a7 1039 bool do_numainfo __maybe_unused;
f53d7ce3 1040
bb4cc1a8
AM
1041 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1042 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1043#if MAX_NUMNODES > 1
1044 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1045 MEM_CGROUP_TARGET_NUMAINFO);
1046#endif
1047 preempt_enable();
1048
c0ff4b85 1049 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1050 if (unlikely(do_softlimit))
1051 mem_cgroup_update_tree(memcg, page);
453a9bf3 1052#if MAX_NUMNODES > 1
f53d7ce3 1053 if (unlikely(do_numainfo))
c0ff4b85 1054 atomic_inc(&memcg->numainfo_events);
453a9bf3 1055#endif
f53d7ce3
JW
1056 } else
1057 preempt_enable();
d2265e6f
KH
1058}
1059
cf475ad2 1060struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1061{
31a78f23
BS
1062 /*
1063 * mm_update_next_owner() may clear mm->owner to NULL
1064 * if it races with swapoff, page migration, etc.
1065 * So this can be called with p == NULL.
1066 */
1067 if (unlikely(!p))
1068 return NULL;
1069
073219e9 1070 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1071}
1072
df381975 1073static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1074{
c0ff4b85 1075 struct mem_cgroup *memcg = NULL;
0b7f569e 1076
54595fe2
KH
1077 rcu_read_lock();
1078 do {
6f6acb00
MH
1079 /*
1080 * Page cache insertions can happen withou an
1081 * actual mm context, e.g. during disk probing
1082 * on boot, loopback IO, acct() writes etc.
1083 */
1084 if (unlikely(!mm))
df381975 1085 memcg = root_mem_cgroup;
6f6acb00
MH
1086 else {
1087 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1088 if (unlikely(!memcg))
1089 memcg = root_mem_cgroup;
1090 }
c0ff4b85 1091 } while (!css_tryget(&memcg->css));
54595fe2 1092 rcu_read_unlock();
c0ff4b85 1093 return memcg;
54595fe2
KH
1094}
1095
16248d8f
MH
1096/*
1097 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1098 * ref. count) or NULL if the whole root's subtree has been visited.
1099 *
1100 * helper function to be used by mem_cgroup_iter
1101 */
1102static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1103 struct mem_cgroup *last_visited)
16248d8f 1104{
492eb21b 1105 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1106
bd8815a6 1107 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1108skip_node:
492eb21b 1109 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1110
1111 /*
1112 * Even if we found a group we have to make sure it is
1113 * alive. css && !memcg means that the groups should be
1114 * skipped and we should continue the tree walk.
1115 * last_visited css is safe to use because it is
1116 * protected by css_get and the tree walk is rcu safe.
0eef6156
MH
1117 *
1118 * We do not take a reference on the root of the tree walk
1119 * because we might race with the root removal when it would
1120 * be the only node in the iterated hierarchy and mem_cgroup_iter
1121 * would end up in an endless loop because it expects that at
1122 * least one valid node will be returned. Root cannot disappear
1123 * because caller of the iterator should hold it already so
1124 * skipping css reference should be safe.
16248d8f 1125 */
492eb21b 1126 if (next_css) {
ce48225f
HD
1127 if ((next_css == &root->css) ||
1128 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
d8ad3055 1129 return mem_cgroup_from_css(next_css);
0eef6156
MH
1130
1131 prev_css = next_css;
1132 goto skip_node;
16248d8f
MH
1133 }
1134
1135 return NULL;
1136}
1137
519ebea3
JW
1138static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1139{
1140 /*
1141 * When a group in the hierarchy below root is destroyed, the
1142 * hierarchy iterator can no longer be trusted since it might
1143 * have pointed to the destroyed group. Invalidate it.
1144 */
1145 atomic_inc(&root->dead_count);
1146}
1147
1148static struct mem_cgroup *
1149mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1150 struct mem_cgroup *root,
1151 int *sequence)
1152{
1153 struct mem_cgroup *position = NULL;
1154 /*
1155 * A cgroup destruction happens in two stages: offlining and
1156 * release. They are separated by a RCU grace period.
1157 *
1158 * If the iterator is valid, we may still race with an
1159 * offlining. The RCU lock ensures the object won't be
1160 * released, tryget will fail if we lost the race.
1161 */
1162 *sequence = atomic_read(&root->dead_count);
1163 if (iter->last_dead_count == *sequence) {
1164 smp_rmb();
1165 position = iter->last_visited;
ecc736fc
MH
1166
1167 /*
1168 * We cannot take a reference to root because we might race
1169 * with root removal and returning NULL would end up in
1170 * an endless loop on the iterator user level when root
1171 * would be returned all the time.
1172 */
1173 if (position && position != root &&
1174 !css_tryget(&position->css))
519ebea3
JW
1175 position = NULL;
1176 }
1177 return position;
1178}
1179
1180static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1181 struct mem_cgroup *last_visited,
1182 struct mem_cgroup *new_position,
ecc736fc 1183 struct mem_cgroup *root,
519ebea3
JW
1184 int sequence)
1185{
ecc736fc
MH
1186 /* root reference counting symmetric to mem_cgroup_iter_load */
1187 if (last_visited && last_visited != root)
519ebea3
JW
1188 css_put(&last_visited->css);
1189 /*
1190 * We store the sequence count from the time @last_visited was
1191 * loaded successfully instead of rereading it here so that we
1192 * don't lose destruction events in between. We could have
1193 * raced with the destruction of @new_position after all.
1194 */
1195 iter->last_visited = new_position;
1196 smp_wmb();
1197 iter->last_dead_count = sequence;
1198}
1199
5660048c
JW
1200/**
1201 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1202 * @root: hierarchy root
1203 * @prev: previously returned memcg, NULL on first invocation
1204 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1205 *
1206 * Returns references to children of the hierarchy below @root, or
1207 * @root itself, or %NULL after a full round-trip.
1208 *
1209 * Caller must pass the return value in @prev on subsequent
1210 * invocations for reference counting, or use mem_cgroup_iter_break()
1211 * to cancel a hierarchy walk before the round-trip is complete.
1212 *
1213 * Reclaimers can specify a zone and a priority level in @reclaim to
1214 * divide up the memcgs in the hierarchy among all concurrent
1215 * reclaimers operating on the same zone and priority.
1216 */
694fbc0f 1217struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1218 struct mem_cgroup *prev,
694fbc0f 1219 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1220{
9f3a0d09 1221 struct mem_cgroup *memcg = NULL;
542f85f9 1222 struct mem_cgroup *last_visited = NULL;
711d3d2c 1223
694fbc0f
AM
1224 if (mem_cgroup_disabled())
1225 return NULL;
5660048c 1226
9f3a0d09
JW
1227 if (!root)
1228 root = root_mem_cgroup;
7d74b06f 1229
9f3a0d09 1230 if (prev && !reclaim)
542f85f9 1231 last_visited = prev;
14067bb3 1232
9f3a0d09
JW
1233 if (!root->use_hierarchy && root != root_mem_cgroup) {
1234 if (prev)
c40046f3 1235 goto out_css_put;
694fbc0f 1236 return root;
9f3a0d09 1237 }
14067bb3 1238
542f85f9 1239 rcu_read_lock();
9f3a0d09 1240 while (!memcg) {
527a5ec9 1241 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1242 int uninitialized_var(seq);
711d3d2c 1243
527a5ec9
JW
1244 if (reclaim) {
1245 int nid = zone_to_nid(reclaim->zone);
1246 int zid = zone_idx(reclaim->zone);
1247 struct mem_cgroup_per_zone *mz;
1248
1249 mz = mem_cgroup_zoneinfo(root, nid, zid);
1250 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1251 if (prev && reclaim->generation != iter->generation) {
5f578161 1252 iter->last_visited = NULL;
542f85f9
MH
1253 goto out_unlock;
1254 }
5f578161 1255
519ebea3 1256 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1257 }
7d74b06f 1258
694fbc0f 1259 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1260
527a5ec9 1261 if (reclaim) {
ecc736fc
MH
1262 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1263 seq);
542f85f9 1264
19f39402 1265 if (!memcg)
527a5ec9
JW
1266 iter->generation++;
1267 else if (!prev && memcg)
1268 reclaim->generation = iter->generation;
1269 }
9f3a0d09 1270
694fbc0f 1271 if (prev && !memcg)
542f85f9 1272 goto out_unlock;
9f3a0d09 1273 }
542f85f9
MH
1274out_unlock:
1275 rcu_read_unlock();
c40046f3
MH
1276out_css_put:
1277 if (prev && prev != root)
1278 css_put(&prev->css);
1279
9f3a0d09 1280 return memcg;
14067bb3 1281}
7d74b06f 1282
5660048c
JW
1283/**
1284 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1285 * @root: hierarchy root
1286 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1287 */
1288void mem_cgroup_iter_break(struct mem_cgroup *root,
1289 struct mem_cgroup *prev)
9f3a0d09
JW
1290{
1291 if (!root)
1292 root = root_mem_cgroup;
1293 if (prev && prev != root)
1294 css_put(&prev->css);
1295}
7d74b06f 1296
9f3a0d09
JW
1297/*
1298 * Iteration constructs for visiting all cgroups (under a tree). If
1299 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1300 * be used for reference counting.
1301 */
1302#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1303 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1304 iter != NULL; \
527a5ec9 1305 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1306
9f3a0d09 1307#define for_each_mem_cgroup(iter) \
527a5ec9 1308 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1309 iter != NULL; \
527a5ec9 1310 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1311
68ae564b 1312void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1313{
c0ff4b85 1314 struct mem_cgroup *memcg;
456f998e 1315
456f998e 1316 rcu_read_lock();
c0ff4b85
R
1317 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1318 if (unlikely(!memcg))
456f998e
YH
1319 goto out;
1320
1321 switch (idx) {
456f998e 1322 case PGFAULT:
0e574a93
JW
1323 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1324 break;
1325 case PGMAJFAULT:
1326 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1327 break;
1328 default:
1329 BUG();
1330 }
1331out:
1332 rcu_read_unlock();
1333}
68ae564b 1334EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1335
925b7673
JW
1336/**
1337 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1338 * @zone: zone of the wanted lruvec
fa9add64 1339 * @memcg: memcg of the wanted lruvec
925b7673
JW
1340 *
1341 * Returns the lru list vector holding pages for the given @zone and
1342 * @mem. This can be the global zone lruvec, if the memory controller
1343 * is disabled.
1344 */
1345struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1346 struct mem_cgroup *memcg)
1347{
1348 struct mem_cgroup_per_zone *mz;
bea8c150 1349 struct lruvec *lruvec;
925b7673 1350
bea8c150
HD
1351 if (mem_cgroup_disabled()) {
1352 lruvec = &zone->lruvec;
1353 goto out;
1354 }
925b7673
JW
1355
1356 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1357 lruvec = &mz->lruvec;
1358out:
1359 /*
1360 * Since a node can be onlined after the mem_cgroup was created,
1361 * we have to be prepared to initialize lruvec->zone here;
1362 * and if offlined then reonlined, we need to reinitialize it.
1363 */
1364 if (unlikely(lruvec->zone != zone))
1365 lruvec->zone = zone;
1366 return lruvec;
925b7673
JW
1367}
1368
08e552c6
KH
1369/*
1370 * Following LRU functions are allowed to be used without PCG_LOCK.
1371 * Operations are called by routine of global LRU independently from memcg.
1372 * What we have to take care of here is validness of pc->mem_cgroup.
1373 *
1374 * Changes to pc->mem_cgroup happens when
1375 * 1. charge
1376 * 2. moving account
1377 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1378 * It is added to LRU before charge.
1379 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1380 * When moving account, the page is not on LRU. It's isolated.
1381 */
4f98a2fe 1382
925b7673 1383/**
fa9add64 1384 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1385 * @page: the page
fa9add64 1386 * @zone: zone of the page
925b7673 1387 */
fa9add64 1388struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1389{
08e552c6 1390 struct mem_cgroup_per_zone *mz;
925b7673
JW
1391 struct mem_cgroup *memcg;
1392 struct page_cgroup *pc;
bea8c150 1393 struct lruvec *lruvec;
6d12e2d8 1394
bea8c150
HD
1395 if (mem_cgroup_disabled()) {
1396 lruvec = &zone->lruvec;
1397 goto out;
1398 }
925b7673 1399
08e552c6 1400 pc = lookup_page_cgroup(page);
38c5d72f 1401 memcg = pc->mem_cgroup;
7512102c
HD
1402
1403 /*
fa9add64 1404 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1405 * an uncharged page off lru does nothing to secure
1406 * its former mem_cgroup from sudden removal.
1407 *
1408 * Our caller holds lru_lock, and PageCgroupUsed is updated
1409 * under page_cgroup lock: between them, they make all uses
1410 * of pc->mem_cgroup safe.
1411 */
fa9add64 1412 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1413 pc->mem_cgroup = memcg = root_mem_cgroup;
1414
925b7673 1415 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1416 lruvec = &mz->lruvec;
1417out:
1418 /*
1419 * Since a node can be onlined after the mem_cgroup was created,
1420 * we have to be prepared to initialize lruvec->zone here;
1421 * and if offlined then reonlined, we need to reinitialize it.
1422 */
1423 if (unlikely(lruvec->zone != zone))
1424 lruvec->zone = zone;
1425 return lruvec;
08e552c6 1426}
b69408e8 1427
925b7673 1428/**
fa9add64
HD
1429 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1430 * @lruvec: mem_cgroup per zone lru vector
1431 * @lru: index of lru list the page is sitting on
1432 * @nr_pages: positive when adding or negative when removing
925b7673 1433 *
fa9add64
HD
1434 * This function must be called when a page is added to or removed from an
1435 * lru list.
3f58a829 1436 */
fa9add64
HD
1437void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1438 int nr_pages)
3f58a829
MK
1439{
1440 struct mem_cgroup_per_zone *mz;
fa9add64 1441 unsigned long *lru_size;
3f58a829
MK
1442
1443 if (mem_cgroup_disabled())
1444 return;
1445
fa9add64
HD
1446 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1447 lru_size = mz->lru_size + lru;
1448 *lru_size += nr_pages;
1449 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1450}
544122e5 1451
3e92041d 1452/*
c0ff4b85 1453 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1454 * hierarchy subtree
1455 */
c3ac9a8a
JW
1456bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1457 struct mem_cgroup *memcg)
3e92041d 1458{
91c63734
JW
1459 if (root_memcg == memcg)
1460 return true;
3a981f48 1461 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1462 return false;
b47f77b5 1463 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1464}
1465
1466static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1467 struct mem_cgroup *memcg)
1468{
1469 bool ret;
1470
91c63734 1471 rcu_read_lock();
c3ac9a8a 1472 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1473 rcu_read_unlock();
1474 return ret;
3e92041d
MH
1475}
1476
ffbdccf5
DR
1477bool task_in_mem_cgroup(struct task_struct *task,
1478 const struct mem_cgroup *memcg)
4c4a2214 1479{
0b7f569e 1480 struct mem_cgroup *curr = NULL;
158e0a2d 1481 struct task_struct *p;
ffbdccf5 1482 bool ret;
4c4a2214 1483
158e0a2d 1484 p = find_lock_task_mm(task);
de077d22 1485 if (p) {
df381975 1486 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1487 task_unlock(p);
1488 } else {
1489 /*
1490 * All threads may have already detached their mm's, but the oom
1491 * killer still needs to detect if they have already been oom
1492 * killed to prevent needlessly killing additional tasks.
1493 */
ffbdccf5 1494 rcu_read_lock();
de077d22
DR
1495 curr = mem_cgroup_from_task(task);
1496 if (curr)
1497 css_get(&curr->css);
ffbdccf5 1498 rcu_read_unlock();
de077d22 1499 }
d31f56db 1500 /*
c0ff4b85 1501 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1502 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1503 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1504 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1505 */
c0ff4b85 1506 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1507 css_put(&curr->css);
4c4a2214
DR
1508 return ret;
1509}
1510
c56d5c7d 1511int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1512{
9b272977 1513 unsigned long inactive_ratio;
14797e23 1514 unsigned long inactive;
9b272977 1515 unsigned long active;
c772be93 1516 unsigned long gb;
14797e23 1517
4d7dcca2
HD
1518 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1519 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1520
c772be93
KM
1521 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1522 if (gb)
1523 inactive_ratio = int_sqrt(10 * gb);
1524 else
1525 inactive_ratio = 1;
1526
9b272977 1527 return inactive * inactive_ratio < active;
14797e23
KM
1528}
1529
6d61ef40
BS
1530#define mem_cgroup_from_res_counter(counter, member) \
1531 container_of(counter, struct mem_cgroup, member)
1532
19942822 1533/**
9d11ea9f 1534 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1535 * @memcg: the memory cgroup
19942822 1536 *
9d11ea9f 1537 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1538 * pages.
19942822 1539 */
c0ff4b85 1540static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1541{
9d11ea9f
JW
1542 unsigned long long margin;
1543
c0ff4b85 1544 margin = res_counter_margin(&memcg->res);
9d11ea9f 1545 if (do_swap_account)
c0ff4b85 1546 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1547 return margin >> PAGE_SHIFT;
19942822
JW
1548}
1549
1f4c025b 1550int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1551{
a7885eb8 1552 /* root ? */
63876986 1553 if (!css_parent(&memcg->css))
a7885eb8
KM
1554 return vm_swappiness;
1555
bf1ff263 1556 return memcg->swappiness;
a7885eb8
KM
1557}
1558
619d094b
KH
1559/*
1560 * memcg->moving_account is used for checking possibility that some thread is
1561 * calling move_account(). When a thread on CPU-A starts moving pages under
1562 * a memcg, other threads should check memcg->moving_account under
1563 * rcu_read_lock(), like this:
1564 *
1565 * CPU-A CPU-B
1566 * rcu_read_lock()
1567 * memcg->moving_account+1 if (memcg->mocing_account)
1568 * take heavy locks.
1569 * synchronize_rcu() update something.
1570 * rcu_read_unlock()
1571 * start move here.
1572 */
4331f7d3
KH
1573
1574/* for quick checking without looking up memcg */
1575atomic_t memcg_moving __read_mostly;
1576
c0ff4b85 1577static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1578{
4331f7d3 1579 atomic_inc(&memcg_moving);
619d094b 1580 atomic_inc(&memcg->moving_account);
32047e2a
KH
1581 synchronize_rcu();
1582}
1583
c0ff4b85 1584static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1585{
619d094b
KH
1586 /*
1587 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1588 * We check NULL in callee rather than caller.
1589 */
4331f7d3
KH
1590 if (memcg) {
1591 atomic_dec(&memcg_moving);
619d094b 1592 atomic_dec(&memcg->moving_account);
4331f7d3 1593 }
32047e2a 1594}
619d094b 1595
32047e2a 1596/*
bdcbb659 1597 * A routine for checking "mem" is under move_account() or not.
32047e2a 1598 *
bdcbb659
QH
1599 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1600 * moving cgroups. This is for waiting at high-memory pressure
1601 * caused by "move".
32047e2a 1602 */
c0ff4b85 1603static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1604{
2bd9bb20
KH
1605 struct mem_cgroup *from;
1606 struct mem_cgroup *to;
4b534334 1607 bool ret = false;
2bd9bb20
KH
1608 /*
1609 * Unlike task_move routines, we access mc.to, mc.from not under
1610 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1611 */
1612 spin_lock(&mc.lock);
1613 from = mc.from;
1614 to = mc.to;
1615 if (!from)
1616 goto unlock;
3e92041d 1617
c0ff4b85
R
1618 ret = mem_cgroup_same_or_subtree(memcg, from)
1619 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1620unlock:
1621 spin_unlock(&mc.lock);
4b534334
KH
1622 return ret;
1623}
1624
c0ff4b85 1625static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1626{
1627 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1628 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1629 DEFINE_WAIT(wait);
1630 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1631 /* moving charge context might have finished. */
1632 if (mc.moving_task)
1633 schedule();
1634 finish_wait(&mc.waitq, &wait);
1635 return true;
1636 }
1637 }
1638 return false;
1639}
1640
312734c0
KH
1641/*
1642 * Take this lock when
1643 * - a code tries to modify page's memcg while it's USED.
1644 * - a code tries to modify page state accounting in a memcg.
312734c0
KH
1645 */
1646static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1647 unsigned long *flags)
1648{
1649 spin_lock_irqsave(&memcg->move_lock, *flags);
1650}
1651
1652static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1653 unsigned long *flags)
1654{
1655 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1656}
1657
58cf188e 1658#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1659/**
58cf188e 1660 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1661 * @memcg: The memory cgroup that went over limit
1662 * @p: Task that is going to be killed
1663 *
1664 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1665 * enabled
1666 */
1667void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1668{
e61734c5 1669 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1670 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1671 struct mem_cgroup *iter;
1672 unsigned int i;
e222432b 1673
58cf188e 1674 if (!p)
e222432b
BS
1675 return;
1676
08088cb9 1677 mutex_lock(&oom_info_lock);
e222432b
BS
1678 rcu_read_lock();
1679
e61734c5
TH
1680 pr_info("Task in ");
1681 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1682 pr_info(" killed as a result of limit of ");
1683 pr_cont_cgroup_path(memcg->css.cgroup);
1684 pr_info("\n");
e222432b 1685
e222432b
BS
1686 rcu_read_unlock();
1687
d045197f 1688 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1689 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1690 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1691 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1692 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1693 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1694 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1695 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1696 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1697 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1698 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1699 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1700
1701 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1702 pr_info("Memory cgroup stats for ");
1703 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1704 pr_cont(":");
1705
1706 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1707 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1708 continue;
1709 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1710 K(mem_cgroup_read_stat(iter, i)));
1711 }
1712
1713 for (i = 0; i < NR_LRU_LISTS; i++)
1714 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1715 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1716
1717 pr_cont("\n");
1718 }
08088cb9 1719 mutex_unlock(&oom_info_lock);
e222432b
BS
1720}
1721
81d39c20
KH
1722/*
1723 * This function returns the number of memcg under hierarchy tree. Returns
1724 * 1(self count) if no children.
1725 */
c0ff4b85 1726static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1727{
1728 int num = 0;
7d74b06f
KH
1729 struct mem_cgroup *iter;
1730
c0ff4b85 1731 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1732 num++;
81d39c20
KH
1733 return num;
1734}
1735
a63d83f4
DR
1736/*
1737 * Return the memory (and swap, if configured) limit for a memcg.
1738 */
9cbb78bb 1739static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1740{
1741 u64 limit;
a63d83f4 1742
f3e8eb70 1743 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1744
a63d83f4 1745 /*
9a5a8f19 1746 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1747 */
9a5a8f19
MH
1748 if (mem_cgroup_swappiness(memcg)) {
1749 u64 memsw;
1750
1751 limit += total_swap_pages << PAGE_SHIFT;
1752 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1753
1754 /*
1755 * If memsw is finite and limits the amount of swap space
1756 * available to this memcg, return that limit.
1757 */
1758 limit = min(limit, memsw);
1759 }
1760
1761 return limit;
a63d83f4
DR
1762}
1763
19965460
DR
1764static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1765 int order)
9cbb78bb
DR
1766{
1767 struct mem_cgroup *iter;
1768 unsigned long chosen_points = 0;
1769 unsigned long totalpages;
1770 unsigned int points = 0;
1771 struct task_struct *chosen = NULL;
1772
876aafbf 1773 /*
465adcf1
DR
1774 * If current has a pending SIGKILL or is exiting, then automatically
1775 * select it. The goal is to allow it to allocate so that it may
1776 * quickly exit and free its memory.
876aafbf 1777 */
465adcf1 1778 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1779 set_thread_flag(TIF_MEMDIE);
1780 return;
1781 }
1782
1783 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1784 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1785 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1786 struct css_task_iter it;
9cbb78bb
DR
1787 struct task_struct *task;
1788
72ec7029
TH
1789 css_task_iter_start(&iter->css, &it);
1790 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1791 switch (oom_scan_process_thread(task, totalpages, NULL,
1792 false)) {
1793 case OOM_SCAN_SELECT:
1794 if (chosen)
1795 put_task_struct(chosen);
1796 chosen = task;
1797 chosen_points = ULONG_MAX;
1798 get_task_struct(chosen);
1799 /* fall through */
1800 case OOM_SCAN_CONTINUE:
1801 continue;
1802 case OOM_SCAN_ABORT:
72ec7029 1803 css_task_iter_end(&it);
9cbb78bb
DR
1804 mem_cgroup_iter_break(memcg, iter);
1805 if (chosen)
1806 put_task_struct(chosen);
1807 return;
1808 case OOM_SCAN_OK:
1809 break;
1810 };
1811 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1812 if (!points || points < chosen_points)
1813 continue;
1814 /* Prefer thread group leaders for display purposes */
1815 if (points == chosen_points &&
1816 thread_group_leader(chosen))
1817 continue;
1818
1819 if (chosen)
1820 put_task_struct(chosen);
1821 chosen = task;
1822 chosen_points = points;
1823 get_task_struct(chosen);
9cbb78bb 1824 }
72ec7029 1825 css_task_iter_end(&it);
9cbb78bb
DR
1826 }
1827
1828 if (!chosen)
1829 return;
1830 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1831 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1832 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1833}
1834
5660048c
JW
1835static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1836 gfp_t gfp_mask,
1837 unsigned long flags)
1838{
1839 unsigned long total = 0;
1840 bool noswap = false;
1841 int loop;
1842
1843 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1844 noswap = true;
1845 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1846 noswap = true;
1847
1848 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1849 if (loop)
1850 drain_all_stock_async(memcg);
1851 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1852 /*
1853 * Allow limit shrinkers, which are triggered directly
1854 * by userspace, to catch signals and stop reclaim
1855 * after minimal progress, regardless of the margin.
1856 */
1857 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1858 break;
1859 if (mem_cgroup_margin(memcg))
1860 break;
1861 /*
1862 * If nothing was reclaimed after two attempts, there
1863 * may be no reclaimable pages in this hierarchy.
1864 */
1865 if (loop && !total)
1866 break;
1867 }
1868 return total;
1869}
1870
4d0c066d
KH
1871/**
1872 * test_mem_cgroup_node_reclaimable
dad7557e 1873 * @memcg: the target memcg
4d0c066d
KH
1874 * @nid: the node ID to be checked.
1875 * @noswap : specify true here if the user wants flle only information.
1876 *
1877 * This function returns whether the specified memcg contains any
1878 * reclaimable pages on a node. Returns true if there are any reclaimable
1879 * pages in the node.
1880 */
c0ff4b85 1881static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1882 int nid, bool noswap)
1883{
c0ff4b85 1884 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1885 return true;
1886 if (noswap || !total_swap_pages)
1887 return false;
c0ff4b85 1888 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1889 return true;
1890 return false;
1891
1892}
bb4cc1a8 1893#if MAX_NUMNODES > 1
889976db
YH
1894
1895/*
1896 * Always updating the nodemask is not very good - even if we have an empty
1897 * list or the wrong list here, we can start from some node and traverse all
1898 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1899 *
1900 */
c0ff4b85 1901static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1902{
1903 int nid;
453a9bf3
KH
1904 /*
1905 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1906 * pagein/pageout changes since the last update.
1907 */
c0ff4b85 1908 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1909 return;
c0ff4b85 1910 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1911 return;
1912
889976db 1913 /* make a nodemask where this memcg uses memory from */
31aaea4a 1914 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1915
31aaea4a 1916 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1917
c0ff4b85
R
1918 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1919 node_clear(nid, memcg->scan_nodes);
889976db 1920 }
453a9bf3 1921
c0ff4b85
R
1922 atomic_set(&memcg->numainfo_events, 0);
1923 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1924}
1925
1926/*
1927 * Selecting a node where we start reclaim from. Because what we need is just
1928 * reducing usage counter, start from anywhere is O,K. Considering
1929 * memory reclaim from current node, there are pros. and cons.
1930 *
1931 * Freeing memory from current node means freeing memory from a node which
1932 * we'll use or we've used. So, it may make LRU bad. And if several threads
1933 * hit limits, it will see a contention on a node. But freeing from remote
1934 * node means more costs for memory reclaim because of memory latency.
1935 *
1936 * Now, we use round-robin. Better algorithm is welcomed.
1937 */
c0ff4b85 1938int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1939{
1940 int node;
1941
c0ff4b85
R
1942 mem_cgroup_may_update_nodemask(memcg);
1943 node = memcg->last_scanned_node;
889976db 1944
c0ff4b85 1945 node = next_node(node, memcg->scan_nodes);
889976db 1946 if (node == MAX_NUMNODES)
c0ff4b85 1947 node = first_node(memcg->scan_nodes);
889976db
YH
1948 /*
1949 * We call this when we hit limit, not when pages are added to LRU.
1950 * No LRU may hold pages because all pages are UNEVICTABLE or
1951 * memcg is too small and all pages are not on LRU. In that case,
1952 * we use curret node.
1953 */
1954 if (unlikely(node == MAX_NUMNODES))
1955 node = numa_node_id();
1956
c0ff4b85 1957 memcg->last_scanned_node = node;
889976db
YH
1958 return node;
1959}
1960
bb4cc1a8
AM
1961/*
1962 * Check all nodes whether it contains reclaimable pages or not.
1963 * For quick scan, we make use of scan_nodes. This will allow us to skip
1964 * unused nodes. But scan_nodes is lazily updated and may not cotain
1965 * enough new information. We need to do double check.
1966 */
1967static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1968{
1969 int nid;
1970
1971 /*
1972 * quick check...making use of scan_node.
1973 * We can skip unused nodes.
1974 */
1975 if (!nodes_empty(memcg->scan_nodes)) {
1976 for (nid = first_node(memcg->scan_nodes);
1977 nid < MAX_NUMNODES;
1978 nid = next_node(nid, memcg->scan_nodes)) {
1979
1980 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1981 return true;
1982 }
1983 }
1984 /*
1985 * Check rest of nodes.
1986 */
1987 for_each_node_state(nid, N_MEMORY) {
1988 if (node_isset(nid, memcg->scan_nodes))
1989 continue;
1990 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1991 return true;
1992 }
1993 return false;
1994}
1995
889976db 1996#else
c0ff4b85 1997int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1998{
1999 return 0;
2000}
4d0c066d 2001
bb4cc1a8
AM
2002static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2003{
2004 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2005}
889976db
YH
2006#endif
2007
0608f43d
AM
2008static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2009 struct zone *zone,
2010 gfp_t gfp_mask,
2011 unsigned long *total_scanned)
2012{
2013 struct mem_cgroup *victim = NULL;
2014 int total = 0;
2015 int loop = 0;
2016 unsigned long excess;
2017 unsigned long nr_scanned;
2018 struct mem_cgroup_reclaim_cookie reclaim = {
2019 .zone = zone,
2020 .priority = 0,
2021 };
2022
2023 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2024
2025 while (1) {
2026 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2027 if (!victim) {
2028 loop++;
2029 if (loop >= 2) {
2030 /*
2031 * If we have not been able to reclaim
2032 * anything, it might because there are
2033 * no reclaimable pages under this hierarchy
2034 */
2035 if (!total)
2036 break;
2037 /*
2038 * We want to do more targeted reclaim.
2039 * excess >> 2 is not to excessive so as to
2040 * reclaim too much, nor too less that we keep
2041 * coming back to reclaim from this cgroup
2042 */
2043 if (total >= (excess >> 2) ||
2044 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2045 break;
2046 }
2047 continue;
2048 }
2049 if (!mem_cgroup_reclaimable(victim, false))
2050 continue;
2051 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2052 zone, &nr_scanned);
2053 *total_scanned += nr_scanned;
2054 if (!res_counter_soft_limit_excess(&root_memcg->res))
2055 break;
6d61ef40 2056 }
0608f43d
AM
2057 mem_cgroup_iter_break(root_memcg, victim);
2058 return total;
6d61ef40
BS
2059}
2060
0056f4e6
JW
2061#ifdef CONFIG_LOCKDEP
2062static struct lockdep_map memcg_oom_lock_dep_map = {
2063 .name = "memcg_oom_lock",
2064};
2065#endif
2066
fb2a6fc5
JW
2067static DEFINE_SPINLOCK(memcg_oom_lock);
2068
867578cb
KH
2069/*
2070 * Check OOM-Killer is already running under our hierarchy.
2071 * If someone is running, return false.
2072 */
fb2a6fc5 2073static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2074{
79dfdacc 2075 struct mem_cgroup *iter, *failed = NULL;
a636b327 2076
fb2a6fc5
JW
2077 spin_lock(&memcg_oom_lock);
2078
9f3a0d09 2079 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2080 if (iter->oom_lock) {
79dfdacc
MH
2081 /*
2082 * this subtree of our hierarchy is already locked
2083 * so we cannot give a lock.
2084 */
79dfdacc 2085 failed = iter;
9f3a0d09
JW
2086 mem_cgroup_iter_break(memcg, iter);
2087 break;
23751be0
JW
2088 } else
2089 iter->oom_lock = true;
7d74b06f 2090 }
867578cb 2091
fb2a6fc5
JW
2092 if (failed) {
2093 /*
2094 * OK, we failed to lock the whole subtree so we have
2095 * to clean up what we set up to the failing subtree
2096 */
2097 for_each_mem_cgroup_tree(iter, memcg) {
2098 if (iter == failed) {
2099 mem_cgroup_iter_break(memcg, iter);
2100 break;
2101 }
2102 iter->oom_lock = false;
79dfdacc 2103 }
0056f4e6
JW
2104 } else
2105 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2106
2107 spin_unlock(&memcg_oom_lock);
2108
2109 return !failed;
a636b327 2110}
0b7f569e 2111
fb2a6fc5 2112static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2113{
7d74b06f
KH
2114 struct mem_cgroup *iter;
2115
fb2a6fc5 2116 spin_lock(&memcg_oom_lock);
0056f4e6 2117 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2118 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2119 iter->oom_lock = false;
fb2a6fc5 2120 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2121}
2122
c0ff4b85 2123static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2124{
2125 struct mem_cgroup *iter;
2126
c0ff4b85 2127 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2128 atomic_inc(&iter->under_oom);
2129}
2130
c0ff4b85 2131static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2132{
2133 struct mem_cgroup *iter;
2134
867578cb
KH
2135 /*
2136 * When a new child is created while the hierarchy is under oom,
2137 * mem_cgroup_oom_lock() may not be called. We have to use
2138 * atomic_add_unless() here.
2139 */
c0ff4b85 2140 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2141 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2142}
2143
867578cb
KH
2144static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2145
dc98df5a 2146struct oom_wait_info {
d79154bb 2147 struct mem_cgroup *memcg;
dc98df5a
KH
2148 wait_queue_t wait;
2149};
2150
2151static int memcg_oom_wake_function(wait_queue_t *wait,
2152 unsigned mode, int sync, void *arg)
2153{
d79154bb
HD
2154 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2155 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2156 struct oom_wait_info *oom_wait_info;
2157
2158 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2159 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2160
dc98df5a 2161 /*
d79154bb 2162 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2163 * Then we can use css_is_ancestor without taking care of RCU.
2164 */
c0ff4b85
R
2165 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2166 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2167 return 0;
dc98df5a
KH
2168 return autoremove_wake_function(wait, mode, sync, arg);
2169}
2170
c0ff4b85 2171static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2172{
3812c8c8 2173 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2174 /* for filtering, pass "memcg" as argument. */
2175 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2176}
2177
c0ff4b85 2178static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2179{
c0ff4b85
R
2180 if (memcg && atomic_read(&memcg->under_oom))
2181 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2182}
2183
3812c8c8 2184static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2185{
3812c8c8
JW
2186 if (!current->memcg_oom.may_oom)
2187 return;
867578cb 2188 /*
49426420
JW
2189 * We are in the middle of the charge context here, so we
2190 * don't want to block when potentially sitting on a callstack
2191 * that holds all kinds of filesystem and mm locks.
2192 *
2193 * Also, the caller may handle a failed allocation gracefully
2194 * (like optional page cache readahead) and so an OOM killer
2195 * invocation might not even be necessary.
2196 *
2197 * That's why we don't do anything here except remember the
2198 * OOM context and then deal with it at the end of the page
2199 * fault when the stack is unwound, the locks are released,
2200 * and when we know whether the fault was overall successful.
867578cb 2201 */
49426420
JW
2202 css_get(&memcg->css);
2203 current->memcg_oom.memcg = memcg;
2204 current->memcg_oom.gfp_mask = mask;
2205 current->memcg_oom.order = order;
3812c8c8
JW
2206}
2207
2208/**
2209 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2210 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2211 *
49426420
JW
2212 * This has to be called at the end of a page fault if the memcg OOM
2213 * handler was enabled.
3812c8c8 2214 *
49426420 2215 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2216 * sleep on a waitqueue until the userspace task resolves the
2217 * situation. Sleeping directly in the charge context with all kinds
2218 * of locks held is not a good idea, instead we remember an OOM state
2219 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2220 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2221 *
2222 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2223 * completed, %false otherwise.
3812c8c8 2224 */
49426420 2225bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2226{
49426420 2227 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2228 struct oom_wait_info owait;
49426420 2229 bool locked;
3812c8c8
JW
2230
2231 /* OOM is global, do not handle */
3812c8c8 2232 if (!memcg)
49426420 2233 return false;
3812c8c8 2234
49426420
JW
2235 if (!handle)
2236 goto cleanup;
3812c8c8
JW
2237
2238 owait.memcg = memcg;
2239 owait.wait.flags = 0;
2240 owait.wait.func = memcg_oom_wake_function;
2241 owait.wait.private = current;
2242 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2243
3812c8c8 2244 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2245 mem_cgroup_mark_under_oom(memcg);
2246
2247 locked = mem_cgroup_oom_trylock(memcg);
2248
2249 if (locked)
2250 mem_cgroup_oom_notify(memcg);
2251
2252 if (locked && !memcg->oom_kill_disable) {
2253 mem_cgroup_unmark_under_oom(memcg);
2254 finish_wait(&memcg_oom_waitq, &owait.wait);
2255 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2256 current->memcg_oom.order);
2257 } else {
3812c8c8 2258 schedule();
49426420
JW
2259 mem_cgroup_unmark_under_oom(memcg);
2260 finish_wait(&memcg_oom_waitq, &owait.wait);
2261 }
2262
2263 if (locked) {
fb2a6fc5
JW
2264 mem_cgroup_oom_unlock(memcg);
2265 /*
2266 * There is no guarantee that an OOM-lock contender
2267 * sees the wakeups triggered by the OOM kill
2268 * uncharges. Wake any sleepers explicitely.
2269 */
2270 memcg_oom_recover(memcg);
2271 }
49426420
JW
2272cleanup:
2273 current->memcg_oom.memcg = NULL;
3812c8c8 2274 css_put(&memcg->css);
867578cb 2275 return true;
0b7f569e
KH
2276}
2277
d69b042f 2278/*
b5ffc856 2279 * Used to update mapped file or writeback or other statistics.
32047e2a
KH
2280 *
2281 * Notes: Race condition
2282 *
b5ffc856 2283 * We usually use lock_page_cgroup() for accessing page_cgroup member but
32047e2a
KH
2284 * it tends to be costly. But considering some conditions, we doesn't need
2285 * to do so _always_.
2286 *
2287 * Considering "charge", lock_page_cgroup() is not required because all
2288 * file-stat operations happen after a page is attached to radix-tree. There
2289 * are no race with "charge".
2290 *
2291 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2292 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2293 * if there are race with "uncharge". Statistics itself is properly handled
2294 * by flags.
2295 *
2296 * Considering "move", this is an only case we see a race. To make the race
b5ffc856
QH
2297 * small, we check memcg->moving_account and detect there are possibility
2298 * of race or not. If there is, we take a lock.
d69b042f 2299 */
26174efd 2300
89c06bd5
KH
2301void __mem_cgroup_begin_update_page_stat(struct page *page,
2302 bool *locked, unsigned long *flags)
2303{
2304 struct mem_cgroup *memcg;
2305 struct page_cgroup *pc;
2306
2307 pc = lookup_page_cgroup(page);
2308again:
2309 memcg = pc->mem_cgroup;
2310 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2311 return;
2312 /*
2313 * If this memory cgroup is not under account moving, we don't
da92c47d 2314 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2315 * rcu_read_lock(), any calls to move_account will be delayed until
bdcbb659 2316 * rcu_read_unlock().
89c06bd5 2317 */
bdcbb659
QH
2318 VM_BUG_ON(!rcu_read_lock_held());
2319 if (atomic_read(&memcg->moving_account) <= 0)
89c06bd5
KH
2320 return;
2321
2322 move_lock_mem_cgroup(memcg, flags);
2323 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2324 move_unlock_mem_cgroup(memcg, flags);
2325 goto again;
2326 }
2327 *locked = true;
2328}
2329
2330void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2331{
2332 struct page_cgroup *pc = lookup_page_cgroup(page);
2333
2334 /*
2335 * It's guaranteed that pc->mem_cgroup never changes while
2336 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2337 * should take move_lock_mem_cgroup().
89c06bd5
KH
2338 */
2339 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2340}
2341
2a7106f2 2342void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2343 enum mem_cgroup_stat_index idx, int val)
d69b042f 2344{
c0ff4b85 2345 struct mem_cgroup *memcg;
32047e2a 2346 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2347 unsigned long uninitialized_var(flags);
d69b042f 2348
cfa44946 2349 if (mem_cgroup_disabled())
d69b042f 2350 return;
89c06bd5 2351
658b72c5 2352 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2353 memcg = pc->mem_cgroup;
2354 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2355 return;
26174efd 2356
c0ff4b85 2357 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2358}
26174efd 2359
cdec2e42
KH
2360/*
2361 * size of first charge trial. "32" comes from vmscan.c's magic value.
2362 * TODO: maybe necessary to use big numbers in big irons.
2363 */
7ec99d62 2364#define CHARGE_BATCH 32U
cdec2e42
KH
2365struct memcg_stock_pcp {
2366 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2367 unsigned int nr_pages;
cdec2e42 2368 struct work_struct work;
26fe6168 2369 unsigned long flags;
a0db00fc 2370#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2371};
2372static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2373static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2374
a0956d54
SS
2375/**
2376 * consume_stock: Try to consume stocked charge on this cpu.
2377 * @memcg: memcg to consume from.
2378 * @nr_pages: how many pages to charge.
2379 *
2380 * The charges will only happen if @memcg matches the current cpu's memcg
2381 * stock, and at least @nr_pages are available in that stock. Failure to
2382 * service an allocation will refill the stock.
2383 *
2384 * returns true if successful, false otherwise.
cdec2e42 2385 */
a0956d54 2386static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2387{
2388 struct memcg_stock_pcp *stock;
2389 bool ret = true;
2390
a0956d54
SS
2391 if (nr_pages > CHARGE_BATCH)
2392 return false;
2393
cdec2e42 2394 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2395 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2396 stock->nr_pages -= nr_pages;
cdec2e42
KH
2397 else /* need to call res_counter_charge */
2398 ret = false;
2399 put_cpu_var(memcg_stock);
2400 return ret;
2401}
2402
2403/*
2404 * Returns stocks cached in percpu to res_counter and reset cached information.
2405 */
2406static void drain_stock(struct memcg_stock_pcp *stock)
2407{
2408 struct mem_cgroup *old = stock->cached;
2409
11c9ea4e
JW
2410 if (stock->nr_pages) {
2411 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2412
2413 res_counter_uncharge(&old->res, bytes);
cdec2e42 2414 if (do_swap_account)
11c9ea4e
JW
2415 res_counter_uncharge(&old->memsw, bytes);
2416 stock->nr_pages = 0;
cdec2e42
KH
2417 }
2418 stock->cached = NULL;
cdec2e42
KH
2419}
2420
2421/*
2422 * This must be called under preempt disabled or must be called by
2423 * a thread which is pinned to local cpu.
2424 */
2425static void drain_local_stock(struct work_struct *dummy)
2426{
7c8e0181 2427 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2428 drain_stock(stock);
26fe6168 2429 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2430}
2431
e4777496
MH
2432static void __init memcg_stock_init(void)
2433{
2434 int cpu;
2435
2436 for_each_possible_cpu(cpu) {
2437 struct memcg_stock_pcp *stock =
2438 &per_cpu(memcg_stock, cpu);
2439 INIT_WORK(&stock->work, drain_local_stock);
2440 }
2441}
2442
cdec2e42
KH
2443/*
2444 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2445 * This will be consumed by consume_stock() function, later.
cdec2e42 2446 */
c0ff4b85 2447static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2448{
2449 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2450
c0ff4b85 2451 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2452 drain_stock(stock);
c0ff4b85 2453 stock->cached = memcg;
cdec2e42 2454 }
11c9ea4e 2455 stock->nr_pages += nr_pages;
cdec2e42
KH
2456 put_cpu_var(memcg_stock);
2457}
2458
2459/*
c0ff4b85 2460 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2461 * of the hierarchy under it. sync flag says whether we should block
2462 * until the work is done.
cdec2e42 2463 */
c0ff4b85 2464static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2465{
26fe6168 2466 int cpu, curcpu;
d38144b7 2467
cdec2e42 2468 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2469 get_online_cpus();
5af12d0e 2470 curcpu = get_cpu();
cdec2e42
KH
2471 for_each_online_cpu(cpu) {
2472 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2473 struct mem_cgroup *memcg;
26fe6168 2474
c0ff4b85
R
2475 memcg = stock->cached;
2476 if (!memcg || !stock->nr_pages)
26fe6168 2477 continue;
c0ff4b85 2478 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2479 continue;
d1a05b69
MH
2480 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2481 if (cpu == curcpu)
2482 drain_local_stock(&stock->work);
2483 else
2484 schedule_work_on(cpu, &stock->work);
2485 }
cdec2e42 2486 }
5af12d0e 2487 put_cpu();
d38144b7
MH
2488
2489 if (!sync)
2490 goto out;
2491
2492 for_each_online_cpu(cpu) {
2493 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2494 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2495 flush_work(&stock->work);
2496 }
2497out:
f894ffa8 2498 put_online_cpus();
d38144b7
MH
2499}
2500
2501/*
2502 * Tries to drain stocked charges in other cpus. This function is asynchronous
2503 * and just put a work per cpu for draining localy on each cpu. Caller can
2504 * expects some charges will be back to res_counter later but cannot wait for
2505 * it.
2506 */
c0ff4b85 2507static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2508{
9f50fad6
MH
2509 /*
2510 * If someone calls draining, avoid adding more kworker runs.
2511 */
2512 if (!mutex_trylock(&percpu_charge_mutex))
2513 return;
c0ff4b85 2514 drain_all_stock(root_memcg, false);
9f50fad6 2515 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2516}
2517
2518/* This is a synchronous drain interface. */
c0ff4b85 2519static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2520{
2521 /* called when force_empty is called */
9f50fad6 2522 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2523 drain_all_stock(root_memcg, true);
9f50fad6 2524 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2525}
2526
711d3d2c
KH
2527/*
2528 * This function drains percpu counter value from DEAD cpu and
2529 * move it to local cpu. Note that this function can be preempted.
2530 */
c0ff4b85 2531static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2532{
2533 int i;
2534
c0ff4b85 2535 spin_lock(&memcg->pcp_counter_lock);
6104621d 2536 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2537 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2538
c0ff4b85
R
2539 per_cpu(memcg->stat->count[i], cpu) = 0;
2540 memcg->nocpu_base.count[i] += x;
711d3d2c 2541 }
e9f8974f 2542 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2543 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2544
c0ff4b85
R
2545 per_cpu(memcg->stat->events[i], cpu) = 0;
2546 memcg->nocpu_base.events[i] += x;
e9f8974f 2547 }
c0ff4b85 2548 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2549}
2550
0db0628d 2551static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2552 unsigned long action,
2553 void *hcpu)
2554{
2555 int cpu = (unsigned long)hcpu;
2556 struct memcg_stock_pcp *stock;
711d3d2c 2557 struct mem_cgroup *iter;
cdec2e42 2558
619d094b 2559 if (action == CPU_ONLINE)
1489ebad 2560 return NOTIFY_OK;
1489ebad 2561
d833049b 2562 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2563 return NOTIFY_OK;
711d3d2c 2564
9f3a0d09 2565 for_each_mem_cgroup(iter)
711d3d2c
KH
2566 mem_cgroup_drain_pcp_counter(iter, cpu);
2567
cdec2e42
KH
2568 stock = &per_cpu(memcg_stock, cpu);
2569 drain_stock(stock);
2570 return NOTIFY_OK;
2571}
2572
4b534334 2573
6d1fdc48 2574/* See mem_cgroup_try_charge() for details */
4b534334
KH
2575enum {
2576 CHARGE_OK, /* success */
2577 CHARGE_RETRY, /* need to retry but retry is not bad */
2578 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2579 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2580};
2581
c0ff4b85 2582static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2583 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2584 bool invoke_oom)
4b534334 2585{
7ec99d62 2586 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2587 struct mem_cgroup *mem_over_limit;
2588 struct res_counter *fail_res;
2589 unsigned long flags = 0;
2590 int ret;
2591
c0ff4b85 2592 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2593
2594 if (likely(!ret)) {
2595 if (!do_swap_account)
2596 return CHARGE_OK;
c0ff4b85 2597 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2598 if (likely(!ret))
2599 return CHARGE_OK;
2600
c0ff4b85 2601 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2602 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2603 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2604 } else
2605 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2606 /*
9221edb7
JW
2607 * Never reclaim on behalf of optional batching, retry with a
2608 * single page instead.
2609 */
4c9c5359 2610 if (nr_pages > min_pages)
4b534334
KH
2611 return CHARGE_RETRY;
2612
2613 if (!(gfp_mask & __GFP_WAIT))
2614 return CHARGE_WOULDBLOCK;
2615
4c9c5359
SS
2616 if (gfp_mask & __GFP_NORETRY)
2617 return CHARGE_NOMEM;
2618
5660048c 2619 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2620 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2621 return CHARGE_RETRY;
4b534334 2622 /*
19942822
JW
2623 * Even though the limit is exceeded at this point, reclaim
2624 * may have been able to free some pages. Retry the charge
2625 * before killing the task.
2626 *
2627 * Only for regular pages, though: huge pages are rather
2628 * unlikely to succeed so close to the limit, and we fall back
2629 * to regular pages anyway in case of failure.
4b534334 2630 */
4c9c5359 2631 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2632 return CHARGE_RETRY;
2633
2634 /*
2635 * At task move, charge accounts can be doubly counted. So, it's
2636 * better to wait until the end of task_move if something is going on.
2637 */
2638 if (mem_cgroup_wait_acct_move(mem_over_limit))
2639 return CHARGE_RETRY;
2640
3812c8c8
JW
2641 if (invoke_oom)
2642 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2643
3812c8c8 2644 return CHARGE_NOMEM;
4b534334
KH
2645}
2646
6d1fdc48
JW
2647/**
2648 * mem_cgroup_try_charge - try charging a memcg
2649 * @memcg: memcg to charge
2650 * @nr_pages: number of pages to charge
2651 * @oom: trigger OOM if reclaim fails
38c5d72f 2652 *
6d1fdc48
JW
2653 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2654 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
8a9f3ccd 2655 */
6d1fdc48
JW
2656static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2657 gfp_t gfp_mask,
2658 unsigned int nr_pages,
2659 bool oom)
8a9f3ccd 2660{
7ec99d62 2661 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2662 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
4b534334 2663 int ret;
a636b327 2664
6d1fdc48
JW
2665 if (mem_cgroup_is_root(memcg))
2666 goto done;
867578cb 2667 /*
6d1fdc48
JW
2668 * Unlike in global OOM situations, memcg is not in a physical
2669 * memory shortage. Allow dying and OOM-killed tasks to
2670 * bypass the last charges so that they can exit quickly and
2671 * free their memory.
867578cb 2672 */
6d1fdc48 2673 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
d8dc595c
MH
2674 fatal_signal_pending(current) ||
2675 current->flags & PF_EXITING))
867578cb 2676 goto bypass;
a636b327 2677
49426420 2678 if (unlikely(task_in_memcg_oom(current)))
1f14c1ac 2679 goto nomem;
49426420 2680
a0d8b00a
JW
2681 if (gfp_mask & __GFP_NOFAIL)
2682 oom = false;
f75ca962 2683again:
b6b6cc72
MH
2684 if (consume_stock(memcg, nr_pages))
2685 goto done;
8a9f3ccd 2686
4b534334 2687 do {
3812c8c8 2688 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2689
4b534334 2690 /* If killed, bypass charge */
6d1fdc48 2691 if (fatal_signal_pending(current))
4b534334 2692 goto bypass;
6d61ef40 2693
3812c8c8
JW
2694 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2695 nr_pages, invoke_oom);
4b534334
KH
2696 switch (ret) {
2697 case CHARGE_OK:
2698 break;
2699 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2700 batch = nr_pages;
f75ca962 2701 goto again;
4b534334
KH
2702 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2703 goto nomem;
2704 case CHARGE_NOMEM: /* OOM routine works */
6d1fdc48 2705 if (!oom || invoke_oom)
867578cb 2706 goto nomem;
4b534334
KH
2707 nr_oom_retries--;
2708 break;
66e1707b 2709 }
4b534334
KH
2710 } while (ret != CHARGE_OK);
2711
7ec99d62 2712 if (batch > nr_pages)
c0ff4b85 2713 refill_stock(memcg, batch - nr_pages);
0c3e73e8 2714done:
7a81b88c
KH
2715 return 0;
2716nomem:
6d1fdc48 2717 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2718 return -ENOMEM;
867578cb 2719bypass:
38c5d72f 2720 return -EINTR;
7a81b88c 2721}
8a9f3ccd 2722
6d1fdc48
JW
2723/**
2724 * mem_cgroup_try_charge_mm - try charging a mm
2725 * @mm: mm_struct to charge
2726 * @nr_pages: number of pages to charge
2727 * @oom: trigger OOM if reclaim fails
2728 *
2729 * Returns the charged mem_cgroup associated with the given mm_struct or
2730 * NULL the charge failed.
2731 */
2732static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2733 gfp_t gfp_mask,
2734 unsigned int nr_pages,
2735 bool oom)
2736
2737{
2738 struct mem_cgroup *memcg;
2739 int ret;
2740
2741 memcg = get_mem_cgroup_from_mm(mm);
2742 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
2743 css_put(&memcg->css);
2744 if (ret == -EINTR)
2745 memcg = root_mem_cgroup;
2746 else if (ret)
2747 memcg = NULL;
2748
2749 return memcg;
2750}
2751
a3032a2c
DN
2752/*
2753 * Somemtimes we have to undo a charge we got by try_charge().
2754 * This function is for that and do uncharge, put css's refcnt.
2755 * gotten by try_charge().
2756 */
c0ff4b85 2757static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2758 unsigned int nr_pages)
a3032a2c 2759{
c0ff4b85 2760 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2761 unsigned long bytes = nr_pages * PAGE_SIZE;
2762
c0ff4b85 2763 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2764 if (do_swap_account)
c0ff4b85 2765 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2766 }
854ffa8d
DN
2767}
2768
d01dd17f
KH
2769/*
2770 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2771 * This is useful when moving usage to parent cgroup.
2772 */
2773static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2774 unsigned int nr_pages)
2775{
2776 unsigned long bytes = nr_pages * PAGE_SIZE;
2777
2778 if (mem_cgroup_is_root(memcg))
2779 return;
2780
2781 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2782 if (do_swap_account)
2783 res_counter_uncharge_until(&memcg->memsw,
2784 memcg->memsw.parent, bytes);
2785}
2786
a3b2d692
KH
2787/*
2788 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2789 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2790 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2791 * called against removed memcg.)
a3b2d692
KH
2792 */
2793static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2794{
a3b2d692
KH
2795 /* ID 0 is unused ID */
2796 if (!id)
2797 return NULL;
34c00c31 2798 return mem_cgroup_from_id(id);
a3b2d692
KH
2799}
2800
e42d9d5d 2801struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2802{
c0ff4b85 2803 struct mem_cgroup *memcg = NULL;
3c776e64 2804 struct page_cgroup *pc;
a3b2d692 2805 unsigned short id;
b5a84319
KH
2806 swp_entry_t ent;
2807
309381fe 2808 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2809
3c776e64 2810 pc = lookup_page_cgroup(page);
c0bd3f63 2811 lock_page_cgroup(pc);
a3b2d692 2812 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2813 memcg = pc->mem_cgroup;
2814 if (memcg && !css_tryget(&memcg->css))
2815 memcg = NULL;
e42d9d5d 2816 } else if (PageSwapCache(page)) {
3c776e64 2817 ent.val = page_private(page);
9fb4b7cc 2818 id = lookup_swap_cgroup_id(ent);
a3b2d692 2819 rcu_read_lock();
c0ff4b85
R
2820 memcg = mem_cgroup_lookup(id);
2821 if (memcg && !css_tryget(&memcg->css))
2822 memcg = NULL;
a3b2d692 2823 rcu_read_unlock();
3c776e64 2824 }
c0bd3f63 2825 unlock_page_cgroup(pc);
c0ff4b85 2826 return memcg;
b5a84319
KH
2827}
2828
c0ff4b85 2829static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2830 struct page *page,
7ec99d62 2831 unsigned int nr_pages,
9ce70c02
HD
2832 enum charge_type ctype,
2833 bool lrucare)
7a81b88c 2834{
ce587e65 2835 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2836 struct zone *uninitialized_var(zone);
fa9add64 2837 struct lruvec *lruvec;
9ce70c02 2838 bool was_on_lru = false;
b2402857 2839 bool anon;
9ce70c02 2840
ca3e0214 2841 lock_page_cgroup(pc);
309381fe 2842 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2843 /*
2844 * we don't need page_cgroup_lock about tail pages, becase they are not
2845 * accessed by any other context at this point.
2846 */
9ce70c02
HD
2847
2848 /*
2849 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2850 * may already be on some other mem_cgroup's LRU. Take care of it.
2851 */
2852 if (lrucare) {
2853 zone = page_zone(page);
2854 spin_lock_irq(&zone->lru_lock);
2855 if (PageLRU(page)) {
fa9add64 2856 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2857 ClearPageLRU(page);
fa9add64 2858 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2859 was_on_lru = true;
2860 }
2861 }
2862
c0ff4b85 2863 pc->mem_cgroup = memcg;
261fb61a
KH
2864 /*
2865 * We access a page_cgroup asynchronously without lock_page_cgroup().
2866 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2867 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2868 * before USED bit, we need memory barrier here.
2869 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2870 */
08e552c6 2871 smp_wmb();
b2402857 2872 SetPageCgroupUsed(pc);
3be91277 2873
9ce70c02
HD
2874 if (lrucare) {
2875 if (was_on_lru) {
fa9add64 2876 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
309381fe 2877 VM_BUG_ON_PAGE(PageLRU(page), page);
9ce70c02 2878 SetPageLRU(page);
fa9add64 2879 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2880 }
2881 spin_unlock_irq(&zone->lru_lock);
2882 }
2883
41326c17 2884 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2885 anon = true;
2886 else
2887 anon = false;
2888
b070e65c 2889 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2890 unlock_page_cgroup(pc);
9ce70c02 2891
430e4863 2892 /*
bb4cc1a8
AM
2893 * "charge_statistics" updated event counter. Then, check it.
2894 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2895 * if they exceeds softlimit.
430e4863 2896 */
c0ff4b85 2897 memcg_check_events(memcg, page);
7a81b88c 2898}
66e1707b 2899
7cf27982
GC
2900static DEFINE_MUTEX(set_limit_mutex);
2901
7ae1e1d0 2902#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2903/*
2904 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2905 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2906 */
2907static DEFINE_MUTEX(memcg_slab_mutex);
2908
d6441637
VD
2909static DEFINE_MUTEX(activate_kmem_mutex);
2910
7ae1e1d0
GC
2911static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2912{
2913 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 2914 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
2915}
2916
1f458cbf
GC
2917/*
2918 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2919 * in the memcg_cache_params struct.
2920 */
2921static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2922{
2923 struct kmem_cache *cachep;
2924
2925 VM_BUG_ON(p->is_root_cache);
2926 cachep = p->root_cache;
7a67d7ab 2927 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2928}
2929
749c5415 2930#ifdef CONFIG_SLABINFO
2da8ca82 2931static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2932{
2da8ca82 2933 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2934 struct memcg_cache_params *params;
2935
2936 if (!memcg_can_account_kmem(memcg))
2937 return -EIO;
2938
2939 print_slabinfo_header(m);
2940
bd673145 2941 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2942 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2943 cache_show(memcg_params_to_cache(params), m);
bd673145 2944 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2945
2946 return 0;
2947}
2948#endif
2949
c67a8a68 2950static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
7ae1e1d0
GC
2951{
2952 struct res_counter *fail_res;
7ae1e1d0 2953 int ret = 0;
7ae1e1d0
GC
2954
2955 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2956 if (ret)
2957 return ret;
2958
6d1fdc48
JW
2959 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
2960 oom_gfp_allowed(gfp));
7ae1e1d0
GC
2961 if (ret == -EINTR) {
2962 /*
6d1fdc48 2963 * mem_cgroup_try_charge() chosed to bypass to root due to
7ae1e1d0
GC
2964 * OOM kill or fatal signal. Since our only options are to
2965 * either fail the allocation or charge it to this cgroup, do
2966 * it as a temporary condition. But we can't fail. From a
2967 * kmem/slab perspective, the cache has already been selected,
2968 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2969 * our minds.
2970 *
2971 * This condition will only trigger if the task entered
2972 * memcg_charge_kmem in a sane state, but was OOM-killed during
6d1fdc48 2973 * mem_cgroup_try_charge() above. Tasks that were already
7ae1e1d0
GC
2974 * dying when the allocation triggers should have been already
2975 * directed to the root cgroup in memcontrol.h
2976 */
2977 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2978 if (do_swap_account)
2979 res_counter_charge_nofail(&memcg->memsw, size,
2980 &fail_res);
2981 ret = 0;
2982 } else if (ret)
2983 res_counter_uncharge(&memcg->kmem, size);
2984
2985 return ret;
2986}
2987
c67a8a68 2988static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
7ae1e1d0 2989{
7ae1e1d0
GC
2990 res_counter_uncharge(&memcg->res, size);
2991 if (do_swap_account)
2992 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2993
2994 /* Not down to 0 */
2995 if (res_counter_uncharge(&memcg->kmem, size))
2996 return;
2997
10d5ebf4
LZ
2998 /*
2999 * Releases a reference taken in kmem_cgroup_css_offline in case
3000 * this last uncharge is racing with the offlining code or it is
3001 * outliving the memcg existence.
3002 *
3003 * The memory barrier imposed by test&clear is paired with the
3004 * explicit one in memcg_kmem_mark_dead().
3005 */
7de37682 3006 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3007 css_put(&memcg->css);
7ae1e1d0
GC
3008}
3009
2633d7a0
GC
3010/*
3011 * helper for acessing a memcg's index. It will be used as an index in the
3012 * child cache array in kmem_cache, and also to derive its name. This function
3013 * will return -1 when this is not a kmem-limited memcg.
3014 */
3015int memcg_cache_id(struct mem_cgroup *memcg)
3016{
3017 return memcg ? memcg->kmemcg_id : -1;
3018}
3019
55007d84
GC
3020static size_t memcg_caches_array_size(int num_groups)
3021{
3022 ssize_t size;
3023 if (num_groups <= 0)
3024 return 0;
3025
3026 size = 2 * num_groups;
3027 if (size < MEMCG_CACHES_MIN_SIZE)
3028 size = MEMCG_CACHES_MIN_SIZE;
3029 else if (size > MEMCG_CACHES_MAX_SIZE)
3030 size = MEMCG_CACHES_MAX_SIZE;
3031
3032 return size;
3033}
3034
3035/*
3036 * We should update the current array size iff all caches updates succeed. This
3037 * can only be done from the slab side. The slab mutex needs to be held when
3038 * calling this.
3039 */
3040void memcg_update_array_size(int num)
3041{
3042 if (num > memcg_limited_groups_array_size)
3043 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3044}
3045
3046int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3047{
3048 struct memcg_cache_params *cur_params = s->memcg_params;
3049
f35c3a8e 3050 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
3051
3052 if (num_groups > memcg_limited_groups_array_size) {
3053 int i;
f8570263 3054 struct memcg_cache_params *new_params;
55007d84
GC
3055 ssize_t size = memcg_caches_array_size(num_groups);
3056
3057 size *= sizeof(void *);
90c7a79c 3058 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3059
f8570263
VD
3060 new_params = kzalloc(size, GFP_KERNEL);
3061 if (!new_params)
55007d84 3062 return -ENOMEM;
55007d84 3063
f8570263 3064 new_params->is_root_cache = true;
55007d84
GC
3065
3066 /*
3067 * There is the chance it will be bigger than
3068 * memcg_limited_groups_array_size, if we failed an allocation
3069 * in a cache, in which case all caches updated before it, will
3070 * have a bigger array.
3071 *
3072 * But if that is the case, the data after
3073 * memcg_limited_groups_array_size is certainly unused
3074 */
3075 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3076 if (!cur_params->memcg_caches[i])
3077 continue;
f8570263 3078 new_params->memcg_caches[i] =
55007d84
GC
3079 cur_params->memcg_caches[i];
3080 }
3081
3082 /*
3083 * Ideally, we would wait until all caches succeed, and only
3084 * then free the old one. But this is not worth the extra
3085 * pointer per-cache we'd have to have for this.
3086 *
3087 * It is not a big deal if some caches are left with a size
3088 * bigger than the others. And all updates will reset this
3089 * anyway.
3090 */
f8570263
VD
3091 rcu_assign_pointer(s->memcg_params, new_params);
3092 if (cur_params)
3093 kfree_rcu(cur_params, rcu_head);
55007d84
GC
3094 }
3095 return 0;
3096}
3097
363a044f
VD
3098int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3099 struct kmem_cache *root_cache)
2633d7a0 3100{
90c7a79c 3101 size_t size;
2633d7a0
GC
3102
3103 if (!memcg_kmem_enabled())
3104 return 0;
3105
90c7a79c
AV
3106 if (!memcg) {
3107 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3108 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3109 } else
3110 size = sizeof(struct memcg_cache_params);
55007d84 3111
2633d7a0
GC
3112 s->memcg_params = kzalloc(size, GFP_KERNEL);
3113 if (!s->memcg_params)
3114 return -ENOMEM;
3115
943a451a 3116 if (memcg) {
2633d7a0 3117 s->memcg_params->memcg = memcg;
943a451a 3118 s->memcg_params->root_cache = root_cache;
051dd460 3119 css_get(&memcg->css);
4ba902b5
GC
3120 } else
3121 s->memcg_params->is_root_cache = true;
3122
2633d7a0
GC
3123 return 0;
3124}
3125
363a044f
VD
3126void memcg_free_cache_params(struct kmem_cache *s)
3127{
051dd460
VD
3128 if (!s->memcg_params)
3129 return;
3130 if (!s->memcg_params->is_root_cache)
3131 css_put(&s->memcg_params->memcg->css);
363a044f
VD
3132 kfree(s->memcg_params);
3133}
3134
bd673145
VD
3135static void memcg_kmem_create_cache(struct mem_cgroup *memcg,
3136 struct kmem_cache *root_cache)
2633d7a0 3137{
93f39eea
VD
3138 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
3139 memcg_slab_mutex */
bd673145 3140 struct kmem_cache *cachep;
d7f25f8a
GC
3141 int id;
3142
bd673145
VD
3143 lockdep_assert_held(&memcg_slab_mutex);
3144
3145 id = memcg_cache_id(memcg);
3146
3147 /*
3148 * Since per-memcg caches are created asynchronously on first
3149 * allocation (see memcg_kmem_get_cache()), several threads can try to
3150 * create the same cache, but only one of them may succeed.
3151 */
3152 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
3153 return;
3154
073ee1c6
VD
3155 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3156 cachep = kmem_cache_create_memcg(memcg, root_cache, memcg_name_buf);
2edefe11 3157 /*
bd673145
VD
3158 * If we could not create a memcg cache, do not complain, because
3159 * that's not critical at all as we can always proceed with the root
3160 * cache.
2edefe11 3161 */
bd673145
VD
3162 if (!cachep)
3163 return;
2edefe11 3164
bd673145 3165 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 3166
d7f25f8a 3167 /*
959c8963
VD
3168 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3169 * barrier here to ensure nobody will see the kmem_cache partially
3170 * initialized.
d7f25f8a 3171 */
959c8963
VD
3172 smp_wmb();
3173
bd673145
VD
3174 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3175 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 3176}
d7f25f8a 3177
bd673145 3178static void memcg_kmem_destroy_cache(struct kmem_cache *cachep)
1aa13254 3179{
bd673145 3180 struct kmem_cache *root_cache;
1aa13254
VD
3181 struct mem_cgroup *memcg;
3182 int id;
3183
bd673145 3184 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 3185
bd673145 3186 BUG_ON(is_root_cache(cachep));
2edefe11 3187
bd673145
VD
3188 root_cache = cachep->memcg_params->root_cache;
3189 memcg = cachep->memcg_params->memcg;
96403da2 3190 id = memcg_cache_id(memcg);
d7f25f8a 3191
bd673145
VD
3192 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3193 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 3194
bd673145
VD
3195 list_del(&cachep->memcg_params->list);
3196
3197 kmem_cache_destroy(cachep);
2633d7a0
GC
3198}
3199
0e9d92f2
GC
3200/*
3201 * During the creation a new cache, we need to disable our accounting mechanism
3202 * altogether. This is true even if we are not creating, but rather just
3203 * enqueing new caches to be created.
3204 *
3205 * This is because that process will trigger allocations; some visible, like
3206 * explicit kmallocs to auxiliary data structures, name strings and internal
3207 * cache structures; some well concealed, like INIT_WORK() that can allocate
3208 * objects during debug.
3209 *
3210 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3211 * to it. This may not be a bounded recursion: since the first cache creation
3212 * failed to complete (waiting on the allocation), we'll just try to create the
3213 * cache again, failing at the same point.
3214 *
3215 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3216 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3217 * inside the following two functions.
3218 */
3219static inline void memcg_stop_kmem_account(void)
3220{
3221 VM_BUG_ON(!current->mm);
3222 current->memcg_kmem_skip_account++;
3223}
3224
3225static inline void memcg_resume_kmem_account(void)
3226{
3227 VM_BUG_ON(!current->mm);
3228 current->memcg_kmem_skip_account--;
3229}
3230
b8529907 3231int __kmem_cache_destroy_memcg_children(struct kmem_cache *s)
7cf27982
GC
3232{
3233 struct kmem_cache *c;
b8529907 3234 int i, failed = 0;
7cf27982 3235
bd673145 3236 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
3237 for_each_memcg_cache_index(i) {
3238 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3239 if (!c)
3240 continue;
3241
bd673145 3242 memcg_kmem_destroy_cache(c);
b8529907
VD
3243
3244 if (cache_from_memcg_idx(s, i))
3245 failed++;
7cf27982 3246 }
bd673145 3247 mutex_unlock(&memcg_slab_mutex);
b8529907 3248 return failed;
7cf27982
GC
3249}
3250
1f458cbf
GC
3251static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3252{
3253 struct kmem_cache *cachep;
bd673145 3254 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
3255
3256 if (!memcg_kmem_is_active(memcg))
3257 return;
3258
bd673145
VD
3259 mutex_lock(&memcg_slab_mutex);
3260 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 3261 cachep = memcg_params_to_cache(params);
bd673145
VD
3262 kmem_cache_shrink(cachep);
3263 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3264 memcg_kmem_destroy_cache(cachep);
1f458cbf 3265 }
bd673145 3266 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
3267}
3268
5722d094
VD
3269struct create_work {
3270 struct mem_cgroup *memcg;
3271 struct kmem_cache *cachep;
3272 struct work_struct work;
3273};
3274
d7f25f8a
GC
3275static void memcg_create_cache_work_func(struct work_struct *w)
3276{
5722d094
VD
3277 struct create_work *cw = container_of(w, struct create_work, work);
3278 struct mem_cgroup *memcg = cw->memcg;
3279 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 3280
bd673145
VD
3281 mutex_lock(&memcg_slab_mutex);
3282 memcg_kmem_create_cache(memcg, cachep);
3283 mutex_unlock(&memcg_slab_mutex);
3284
5722d094 3285 css_put(&memcg->css);
d7f25f8a
GC
3286 kfree(cw);
3287}
3288
3289/*
3290 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3291 */
0e9d92f2
GC
3292static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3293 struct kmem_cache *cachep)
d7f25f8a
GC
3294{
3295 struct create_work *cw;
3296
3297 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3298 if (cw == NULL) {
3299 css_put(&memcg->css);
d7f25f8a
GC
3300 return;
3301 }
3302
3303 cw->memcg = memcg;
3304 cw->cachep = cachep;
3305
3306 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3307 schedule_work(&cw->work);
3308}
3309
0e9d92f2
GC
3310static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3311 struct kmem_cache *cachep)
3312{
3313 /*
3314 * We need to stop accounting when we kmalloc, because if the
3315 * corresponding kmalloc cache is not yet created, the first allocation
3316 * in __memcg_create_cache_enqueue will recurse.
3317 *
3318 * However, it is better to enclose the whole function. Depending on
3319 * the debugging options enabled, INIT_WORK(), for instance, can
3320 * trigger an allocation. This too, will make us recurse. Because at
3321 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3322 * the safest choice is to do it like this, wrapping the whole function.
3323 */
3324 memcg_stop_kmem_account();
3325 __memcg_create_cache_enqueue(memcg, cachep);
3326 memcg_resume_kmem_account();
3327}
c67a8a68
VD
3328
3329int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3330{
3331 int res;
3332
3333 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3334 PAGE_SIZE << order);
3335 if (!res)
3336 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3337 return res;
3338}
3339
3340void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3341{
3342 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3343 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3344}
3345
d7f25f8a
GC
3346/*
3347 * Return the kmem_cache we're supposed to use for a slab allocation.
3348 * We try to use the current memcg's version of the cache.
3349 *
3350 * If the cache does not exist yet, if we are the first user of it,
3351 * we either create it immediately, if possible, or create it asynchronously
3352 * in a workqueue.
3353 * In the latter case, we will let the current allocation go through with
3354 * the original cache.
3355 *
3356 * Can't be called in interrupt context or from kernel threads.
3357 * This function needs to be called with rcu_read_lock() held.
3358 */
3359struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3360 gfp_t gfp)
3361{
3362 struct mem_cgroup *memcg;
959c8963 3363 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3364
3365 VM_BUG_ON(!cachep->memcg_params);
3366 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3367
0e9d92f2
GC
3368 if (!current->mm || current->memcg_kmem_skip_account)
3369 return cachep;
3370
d7f25f8a
GC
3371 rcu_read_lock();
3372 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3373
3374 if (!memcg_can_account_kmem(memcg))
ca0dde97 3375 goto out;
d7f25f8a 3376
959c8963
VD
3377 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3378 if (likely(memcg_cachep)) {
3379 cachep = memcg_cachep;
ca0dde97 3380 goto out;
d7f25f8a
GC
3381 }
3382
ca0dde97
LZ
3383 /* The corresponding put will be done in the workqueue. */
3384 if (!css_tryget(&memcg->css))
3385 goto out;
3386 rcu_read_unlock();
3387
3388 /*
3389 * If we are in a safe context (can wait, and not in interrupt
3390 * context), we could be be predictable and return right away.
3391 * This would guarantee that the allocation being performed
3392 * already belongs in the new cache.
3393 *
3394 * However, there are some clashes that can arrive from locking.
3395 * For instance, because we acquire the slab_mutex while doing
3396 * kmem_cache_dup, this means no further allocation could happen
3397 * with the slab_mutex held.
3398 *
3399 * Also, because cache creation issue get_online_cpus(), this
3400 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3401 * that ends up reversed during cpu hotplug. (cpuset allocates
3402 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3403 * better to defer everything.
3404 */
3405 memcg_create_cache_enqueue(memcg, cachep);
3406 return cachep;
3407out:
3408 rcu_read_unlock();
3409 return cachep;
d7f25f8a 3410}
d7f25f8a 3411
7ae1e1d0
GC
3412/*
3413 * We need to verify if the allocation against current->mm->owner's memcg is
3414 * possible for the given order. But the page is not allocated yet, so we'll
3415 * need a further commit step to do the final arrangements.
3416 *
3417 * It is possible for the task to switch cgroups in this mean time, so at
3418 * commit time, we can't rely on task conversion any longer. We'll then use
3419 * the handle argument to return to the caller which cgroup we should commit
3420 * against. We could also return the memcg directly and avoid the pointer
3421 * passing, but a boolean return value gives better semantics considering
3422 * the compiled-out case as well.
3423 *
3424 * Returning true means the allocation is possible.
3425 */
3426bool
3427__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3428{
3429 struct mem_cgroup *memcg;
3430 int ret;
3431
3432 *_memcg = NULL;
6d42c232
GC
3433
3434 /*
3435 * Disabling accounting is only relevant for some specific memcg
3436 * internal allocations. Therefore we would initially not have such
52383431
VD
3437 * check here, since direct calls to the page allocator that are
3438 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3439 * outside memcg core. We are mostly concerned with cache allocations,
3440 * and by having this test at memcg_kmem_get_cache, we are already able
3441 * to relay the allocation to the root cache and bypass the memcg cache
3442 * altogether.
6d42c232
GC
3443 *
3444 * There is one exception, though: the SLUB allocator does not create
3445 * large order caches, but rather service large kmallocs directly from
3446 * the page allocator. Therefore, the following sequence when backed by
3447 * the SLUB allocator:
3448 *
f894ffa8
AM
3449 * memcg_stop_kmem_account();
3450 * kmalloc(<large_number>)
3451 * memcg_resume_kmem_account();
6d42c232
GC
3452 *
3453 * would effectively ignore the fact that we should skip accounting,
3454 * since it will drive us directly to this function without passing
3455 * through the cache selector memcg_kmem_get_cache. Such large
3456 * allocations are extremely rare but can happen, for instance, for the
3457 * cache arrays. We bring this test here.
3458 */
3459 if (!current->mm || current->memcg_kmem_skip_account)
3460 return true;
3461
df381975 3462 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0
GC
3463
3464 if (!memcg_can_account_kmem(memcg)) {
3465 css_put(&memcg->css);
3466 return true;
3467 }
3468
7ae1e1d0
GC
3469 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3470 if (!ret)
3471 *_memcg = memcg;
7ae1e1d0
GC
3472
3473 css_put(&memcg->css);
3474 return (ret == 0);
3475}
3476
3477void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3478 int order)
3479{
3480 struct page_cgroup *pc;
3481
3482 VM_BUG_ON(mem_cgroup_is_root(memcg));
3483
3484 /* The page allocation failed. Revert */
3485 if (!page) {
3486 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3487 return;
3488 }
3489
3490 pc = lookup_page_cgroup(page);
3491 lock_page_cgroup(pc);
3492 pc->mem_cgroup = memcg;
3493 SetPageCgroupUsed(pc);
3494 unlock_page_cgroup(pc);
3495}
3496
3497void __memcg_kmem_uncharge_pages(struct page *page, int order)
3498{
3499 struct mem_cgroup *memcg = NULL;
3500 struct page_cgroup *pc;
3501
3502
3503 pc = lookup_page_cgroup(page);
3504 /*
3505 * Fast unlocked return. Theoretically might have changed, have to
3506 * check again after locking.
3507 */
3508 if (!PageCgroupUsed(pc))
3509 return;
3510
3511 lock_page_cgroup(pc);
3512 if (PageCgroupUsed(pc)) {
3513 memcg = pc->mem_cgroup;
3514 ClearPageCgroupUsed(pc);
3515 }
3516 unlock_page_cgroup(pc);
3517
3518 /*
3519 * We trust that only if there is a memcg associated with the page, it
3520 * is a valid allocation
3521 */
3522 if (!memcg)
3523 return;
3524
309381fe 3525 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3526 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3527}
1f458cbf
GC
3528#else
3529static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3530{
3531}
7ae1e1d0
GC
3532#endif /* CONFIG_MEMCG_KMEM */
3533
ca3e0214
KH
3534#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3535
a0db00fc 3536#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3537/*
3538 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3539 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3540 * charge/uncharge will be never happen and move_account() is done under
3541 * compound_lock(), so we don't have to take care of races.
ca3e0214 3542 */
e94c8a9c 3543void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3544{
3545 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3546 struct page_cgroup *pc;
b070e65c 3547 struct mem_cgroup *memcg;
e94c8a9c 3548 int i;
ca3e0214 3549
3d37c4a9
KH
3550 if (mem_cgroup_disabled())
3551 return;
b070e65c
DR
3552
3553 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3554 for (i = 1; i < HPAGE_PMD_NR; i++) {
3555 pc = head_pc + i;
b070e65c 3556 pc->mem_cgroup = memcg;
e94c8a9c 3557 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3558 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3559 }
b070e65c
DR
3560 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3561 HPAGE_PMD_NR);
ca3e0214 3562}
12d27107 3563#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3564
f817ed48 3565/**
de3638d9 3566 * mem_cgroup_move_account - move account of the page
5564e88b 3567 * @page: the page
7ec99d62 3568 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3569 * @pc: page_cgroup of the page.
3570 * @from: mem_cgroup which the page is moved from.
3571 * @to: mem_cgroup which the page is moved to. @from != @to.
3572 *
3573 * The caller must confirm following.
08e552c6 3574 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3575 * - compound_lock is held when nr_pages > 1
f817ed48 3576 *
2f3479b1
KH
3577 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3578 * from old cgroup.
f817ed48 3579 */
7ec99d62
JW
3580static int mem_cgroup_move_account(struct page *page,
3581 unsigned int nr_pages,
3582 struct page_cgroup *pc,
3583 struct mem_cgroup *from,
2f3479b1 3584 struct mem_cgroup *to)
f817ed48 3585{
de3638d9
JW
3586 unsigned long flags;
3587 int ret;
b2402857 3588 bool anon = PageAnon(page);
987eba66 3589
f817ed48 3590 VM_BUG_ON(from == to);
309381fe 3591 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3592 /*
3593 * The page is isolated from LRU. So, collapse function
3594 * will not handle this page. But page splitting can happen.
3595 * Do this check under compound_page_lock(). The caller should
3596 * hold it.
3597 */
3598 ret = -EBUSY;
7ec99d62 3599 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3600 goto out;
3601
3602 lock_page_cgroup(pc);
3603
3604 ret = -EINVAL;
3605 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3606 goto unlock;
3607
312734c0 3608 move_lock_mem_cgroup(from, &flags);
f817ed48 3609
59d1d256
JW
3610 if (!anon && page_mapped(page)) {
3611 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3612 nr_pages);
3613 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3614 nr_pages);
3615 }
3ea67d06 3616
59d1d256
JW
3617 if (PageWriteback(page)) {
3618 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3619 nr_pages);
3620 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3621 nr_pages);
3622 }
3ea67d06 3623
b070e65c 3624 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3625
854ffa8d 3626 /* caller should have done css_get */
08e552c6 3627 pc->mem_cgroup = to;
b070e65c 3628 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3629 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3630 ret = 0;
3631unlock:
57f9fd7d 3632 unlock_page_cgroup(pc);
d2265e6f
KH
3633 /*
3634 * check events
3635 */
5564e88b
JW
3636 memcg_check_events(to, page);
3637 memcg_check_events(from, page);
de3638d9 3638out:
f817ed48
KH
3639 return ret;
3640}
3641
2ef37d3f
MH
3642/**
3643 * mem_cgroup_move_parent - moves page to the parent group
3644 * @page: the page to move
3645 * @pc: page_cgroup of the page
3646 * @child: page's cgroup
3647 *
3648 * move charges to its parent or the root cgroup if the group has no
3649 * parent (aka use_hierarchy==0).
3650 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3651 * mem_cgroup_move_account fails) the failure is always temporary and
3652 * it signals a race with a page removal/uncharge or migration. In the
3653 * first case the page is on the way out and it will vanish from the LRU
3654 * on the next attempt and the call should be retried later.
3655 * Isolation from the LRU fails only if page has been isolated from
3656 * the LRU since we looked at it and that usually means either global
3657 * reclaim or migration going on. The page will either get back to the
3658 * LRU or vanish.
3659 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3660 * (!PageCgroupUsed) or moved to a different group. The page will
3661 * disappear in the next attempt.
f817ed48 3662 */
5564e88b
JW
3663static int mem_cgroup_move_parent(struct page *page,
3664 struct page_cgroup *pc,
6068bf01 3665 struct mem_cgroup *child)
f817ed48 3666{
f817ed48 3667 struct mem_cgroup *parent;
7ec99d62 3668 unsigned int nr_pages;
4be4489f 3669 unsigned long uninitialized_var(flags);
f817ed48
KH
3670 int ret;
3671
d8423011 3672 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3673
57f9fd7d
DN
3674 ret = -EBUSY;
3675 if (!get_page_unless_zero(page))
3676 goto out;
3677 if (isolate_lru_page(page))
3678 goto put;
52dbb905 3679
7ec99d62 3680 nr_pages = hpage_nr_pages(page);
08e552c6 3681
cc926f78
KH
3682 parent = parent_mem_cgroup(child);
3683 /*
3684 * If no parent, move charges to root cgroup.
3685 */
3686 if (!parent)
3687 parent = root_mem_cgroup;
f817ed48 3688
2ef37d3f 3689 if (nr_pages > 1) {
309381fe 3690 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3691 flags = compound_lock_irqsave(page);
2ef37d3f 3692 }
987eba66 3693
cc926f78 3694 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3695 pc, child, parent);
cc926f78
KH
3696 if (!ret)
3697 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3698
7ec99d62 3699 if (nr_pages > 1)
987eba66 3700 compound_unlock_irqrestore(page, flags);
08e552c6 3701 putback_lru_page(page);
57f9fd7d 3702put:
40d58138 3703 put_page(page);
57f9fd7d 3704out:
f817ed48
KH
3705 return ret;
3706}
3707
d715ae08 3708int mem_cgroup_charge_anon(struct page *page,
1bec6b33 3709 struct mm_struct *mm, gfp_t gfp_mask)
7a81b88c 3710{
7ec99d62 3711 unsigned int nr_pages = 1;
6d1fdc48 3712 struct mem_cgroup *memcg;
8493ae43 3713 bool oom = true;
ec168510 3714
1bec6b33
JW
3715 if (mem_cgroup_disabled())
3716 return 0;
3717
3718 VM_BUG_ON_PAGE(page_mapped(page), page);
3719 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3720 VM_BUG_ON(!mm);
3721
37c2ac78 3722 if (PageTransHuge(page)) {
7ec99d62 3723 nr_pages <<= compound_order(page);
309381fe 3724 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
8493ae43
JW
3725 /*
3726 * Never OOM-kill a process for a huge page. The
3727 * fault handler will fall back to regular pages.
3728 */
3729 oom = false;
37c2ac78 3730 }
7a81b88c 3731
6d1fdc48
JW
3732 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
3733 if (!memcg)
3734 return -ENOMEM;
1bec6b33
JW
3735 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3736 MEM_CGROUP_CHARGE_TYPE_ANON, false);
8a9f3ccd 3737 return 0;
8a9f3ccd
BS
3738}
3739
54595fe2
KH
3740/*
3741 * While swap-in, try_charge -> commit or cancel, the page is locked.
3742 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3743 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3744 * "commit()" or removed by "cancel()"
3745 */
0435a2fd
JW
3746static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3747 struct page *page,
3748 gfp_t mask,
3749 struct mem_cgroup **memcgp)
8c7c6e34 3750{
6d1fdc48 3751 struct mem_cgroup *memcg = NULL;
90deb788 3752 struct page_cgroup *pc;
54595fe2 3753 int ret;
8c7c6e34 3754
90deb788
JW
3755 pc = lookup_page_cgroup(page);
3756 /*
3757 * Every swap fault against a single page tries to charge the
3758 * page, bail as early as possible. shmem_unuse() encounters
3759 * already charged pages, too. The USED bit is protected by
3760 * the page lock, which serializes swap cache removal, which
3761 * in turn serializes uncharging.
3762 */
3763 if (PageCgroupUsed(pc))
6d1fdc48
JW
3764 goto out;
3765 if (do_swap_account)
3766 memcg = try_get_mem_cgroup_from_page(page);
c0ff4b85 3767 if (!memcg)
6d1fdc48
JW
3768 memcg = get_mem_cgroup_from_mm(mm);
3769 ret = mem_cgroup_try_charge(memcg, mask, 1, true);
c0ff4b85 3770 css_put(&memcg->css);
38c5d72f 3771 if (ret == -EINTR)
6d1fdc48
JW
3772 memcg = root_mem_cgroup;
3773 else if (ret)
3774 return ret;
3775out:
3776 *memcgp = memcg;
3777 return 0;
8c7c6e34
KH
3778}
3779
0435a2fd
JW
3780int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3781 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3782{
6d1fdc48
JW
3783 if (mem_cgroup_disabled()) {
3784 *memcgp = NULL;
0435a2fd 3785 return 0;
6d1fdc48 3786 }
bdf4f4d2
JW
3787 /*
3788 * A racing thread's fault, or swapoff, may have already
3789 * updated the pte, and even removed page from swap cache: in
3790 * those cases unuse_pte()'s pte_same() test will fail; but
3791 * there's also a KSM case which does need to charge the page.
3792 */
3793 if (!PageSwapCache(page)) {
6d1fdc48 3794 struct mem_cgroup *memcg;
bdf4f4d2 3795
6d1fdc48
JW
3796 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3797 if (!memcg)
3798 return -ENOMEM;
3799 *memcgp = memcg;
3800 return 0;
bdf4f4d2 3801 }
0435a2fd
JW
3802 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3803}
3804
827a03d2
JW
3805void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3806{
3807 if (mem_cgroup_disabled())
3808 return;
3809 if (!memcg)
3810 return;
3811 __mem_cgroup_cancel_charge(memcg, 1);
3812}
3813
83aae4c7 3814static void
72835c86 3815__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3816 enum charge_type ctype)
7a81b88c 3817{
f8d66542 3818 if (mem_cgroup_disabled())
7a81b88c 3819 return;
72835c86 3820 if (!memcg)
7a81b88c 3821 return;
5a6475a4 3822
ce587e65 3823 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3824 /*
3825 * Now swap is on-memory. This means this page may be
3826 * counted both as mem and swap....double count.
03f3c433
KH
3827 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3828 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3829 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3830 */
03f3c433 3831 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3832 swp_entry_t ent = {.val = page_private(page)};
86493009 3833 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3834 }
7a81b88c
KH
3835}
3836
72835c86
JW
3837void mem_cgroup_commit_charge_swapin(struct page *page,
3838 struct mem_cgroup *memcg)
83aae4c7 3839{
72835c86 3840 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3841 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3842}
3843
d715ae08 3844int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
827a03d2 3845 gfp_t gfp_mask)
7a81b88c 3846{
827a03d2 3847 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
6d1fdc48 3848 struct mem_cgroup *memcg;
827a03d2
JW
3849 int ret;
3850
f8d66542 3851 if (mem_cgroup_disabled())
827a03d2
JW
3852 return 0;
3853 if (PageCompound(page))
3854 return 0;
3855
6d1fdc48 3856 if (PageSwapCache(page)) { /* shmem */
0435a2fd
JW
3857 ret = __mem_cgroup_try_charge_swapin(mm, page,
3858 gfp_mask, &memcg);
6d1fdc48
JW
3859 if (ret)
3860 return ret;
3861 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3862 return 0;
827a03d2 3863 }
6d1fdc48 3864
6f6acb00
MH
3865 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3866 if (!memcg)
3867 return -ENOMEM;
6d1fdc48
JW
3868 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3869 return 0;
7a81b88c
KH
3870}
3871
c0ff4b85 3872static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3873 unsigned int nr_pages,
3874 const enum charge_type ctype)
569b846d
KH
3875{
3876 struct memcg_batch_info *batch = NULL;
3877 bool uncharge_memsw = true;
7ec99d62 3878
569b846d
KH
3879 /* If swapout, usage of swap doesn't decrease */
3880 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3881 uncharge_memsw = false;
569b846d
KH
3882
3883 batch = &current->memcg_batch;
3884 /*
3885 * In usual, we do css_get() when we remember memcg pointer.
3886 * But in this case, we keep res->usage until end of a series of
3887 * uncharges. Then, it's ok to ignore memcg's refcnt.
3888 */
3889 if (!batch->memcg)
c0ff4b85 3890 batch->memcg = memcg;
3c11ecf4
KH
3891 /*
3892 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3893 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3894 * the same cgroup and we have chance to coalesce uncharges.
3895 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3896 * because we want to do uncharge as soon as possible.
3897 */
3898
3899 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3900 goto direct_uncharge;
3901
7ec99d62 3902 if (nr_pages > 1)
ec168510
AA
3903 goto direct_uncharge;
3904
569b846d
KH
3905 /*
3906 * In typical case, batch->memcg == mem. This means we can
3907 * merge a series of uncharges to an uncharge of res_counter.
3908 * If not, we uncharge res_counter ony by one.
3909 */
c0ff4b85 3910 if (batch->memcg != memcg)
569b846d
KH
3911 goto direct_uncharge;
3912 /* remember freed charge and uncharge it later */
7ffd4ca7 3913 batch->nr_pages++;
569b846d 3914 if (uncharge_memsw)
7ffd4ca7 3915 batch->memsw_nr_pages++;
569b846d
KH
3916 return;
3917direct_uncharge:
c0ff4b85 3918 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3919 if (uncharge_memsw)
c0ff4b85
R
3920 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3921 if (unlikely(batch->memcg != memcg))
3922 memcg_oom_recover(memcg);
569b846d 3923}
7a81b88c 3924
8a9f3ccd 3925/*
69029cd5 3926 * uncharge if !page_mapped(page)
8a9f3ccd 3927 */
8c7c6e34 3928static struct mem_cgroup *
0030f535
JW
3929__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3930 bool end_migration)
8a9f3ccd 3931{
c0ff4b85 3932 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3933 unsigned int nr_pages = 1;
3934 struct page_cgroup *pc;
b2402857 3935 bool anon;
8a9f3ccd 3936
f8d66542 3937 if (mem_cgroup_disabled())
8c7c6e34 3938 return NULL;
4077960e 3939
37c2ac78 3940 if (PageTransHuge(page)) {
7ec99d62 3941 nr_pages <<= compound_order(page);
309381fe 3942 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
37c2ac78 3943 }
8697d331 3944 /*
3c541e14 3945 * Check if our page_cgroup is valid
8697d331 3946 */
52d4b9ac 3947 pc = lookup_page_cgroup(page);
cfa44946 3948 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3949 return NULL;
b9c565d5 3950
52d4b9ac 3951 lock_page_cgroup(pc);
d13d1443 3952
c0ff4b85 3953 memcg = pc->mem_cgroup;
8c7c6e34 3954
d13d1443
KH
3955 if (!PageCgroupUsed(pc))
3956 goto unlock_out;
3957
b2402857
KH
3958 anon = PageAnon(page);
3959
d13d1443 3960 switch (ctype) {
41326c17 3961 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3962 /*
3963 * Generally PageAnon tells if it's the anon statistics to be
3964 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3965 * used before page reached the stage of being marked PageAnon.
3966 */
b2402857
KH
3967 anon = true;
3968 /* fallthrough */
8a9478ca 3969 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3970 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3971 if (page_mapped(page))
3972 goto unlock_out;
3973 /*
3974 * Pages under migration may not be uncharged. But
3975 * end_migration() /must/ be the one uncharging the
3976 * unused post-migration page and so it has to call
3977 * here with the migration bit still set. See the
3978 * res_counter handling below.
3979 */
3980 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3981 goto unlock_out;
3982 break;
3983 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3984 if (!PageAnon(page)) { /* Shared memory */
3985 if (page->mapping && !page_is_file_cache(page))
3986 goto unlock_out;
3987 } else if (page_mapped(page)) /* Anon */
3988 goto unlock_out;
3989 break;
3990 default:
3991 break;
52d4b9ac 3992 }
d13d1443 3993
b070e65c 3994 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 3995
52d4b9ac 3996 ClearPageCgroupUsed(pc);
544122e5
KH
3997 /*
3998 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3999 * freed from LRU. This is safe because uncharged page is expected not
4000 * to be reused (freed soon). Exception is SwapCache, it's handled by
4001 * special functions.
4002 */
b9c565d5 4003
52d4b9ac 4004 unlock_page_cgroup(pc);
f75ca962 4005 /*
c0ff4b85 4006 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4007 * will never be freed, so it's safe to call css_get().
f75ca962 4008 */
c0ff4b85 4009 memcg_check_events(memcg, page);
f75ca962 4010 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4011 mem_cgroup_swap_statistics(memcg, true);
4050377b 4012 css_get(&memcg->css);
f75ca962 4013 }
0030f535
JW
4014 /*
4015 * Migration does not charge the res_counter for the
4016 * replacement page, so leave it alone when phasing out the
4017 * page that is unused after the migration.
4018 */
4019 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4020 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4021
c0ff4b85 4022 return memcg;
d13d1443
KH
4023
4024unlock_out:
4025 unlock_page_cgroup(pc);
8c7c6e34 4026 return NULL;
3c541e14
BS
4027}
4028
69029cd5
KH
4029void mem_cgroup_uncharge_page(struct page *page)
4030{
52d4b9ac
KH
4031 /* early check. */
4032 if (page_mapped(page))
4033 return;
309381fe 4034 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
28ccddf7
JW
4035 /*
4036 * If the page is in swap cache, uncharge should be deferred
4037 * to the swap path, which also properly accounts swap usage
4038 * and handles memcg lifetime.
4039 *
4040 * Note that this check is not stable and reclaim may add the
4041 * page to swap cache at any time after this. However, if the
4042 * page is not in swap cache by the time page->mapcount hits
4043 * 0, there won't be any page table references to the swap
4044 * slot, and reclaim will free it and not actually write the
4045 * page to disk.
4046 */
0c59b89c
JW
4047 if (PageSwapCache(page))
4048 return;
0030f535 4049 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4050}
4051
4052void mem_cgroup_uncharge_cache_page(struct page *page)
4053{
309381fe
SL
4054 VM_BUG_ON_PAGE(page_mapped(page), page);
4055 VM_BUG_ON_PAGE(page->mapping, page);
0030f535 4056 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4057}
4058
569b846d
KH
4059/*
4060 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4061 * In that cases, pages are freed continuously and we can expect pages
4062 * are in the same memcg. All these calls itself limits the number of
4063 * pages freed at once, then uncharge_start/end() is called properly.
4064 * This may be called prural(2) times in a context,
4065 */
4066
4067void mem_cgroup_uncharge_start(void)
4068{
4069 current->memcg_batch.do_batch++;
4070 /* We can do nest. */
4071 if (current->memcg_batch.do_batch == 1) {
4072 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4073 current->memcg_batch.nr_pages = 0;
4074 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4075 }
4076}
4077
4078void mem_cgroup_uncharge_end(void)
4079{
4080 struct memcg_batch_info *batch = &current->memcg_batch;
4081
4082 if (!batch->do_batch)
4083 return;
4084
4085 batch->do_batch--;
4086 if (batch->do_batch) /* If stacked, do nothing. */
4087 return;
4088
4089 if (!batch->memcg)
4090 return;
4091 /*
4092 * This "batch->memcg" is valid without any css_get/put etc...
4093 * bacause we hide charges behind us.
4094 */
7ffd4ca7
JW
4095 if (batch->nr_pages)
4096 res_counter_uncharge(&batch->memcg->res,
4097 batch->nr_pages * PAGE_SIZE);
4098 if (batch->memsw_nr_pages)
4099 res_counter_uncharge(&batch->memcg->memsw,
4100 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4101 memcg_oom_recover(batch->memcg);
569b846d
KH
4102 /* forget this pointer (for sanity check) */
4103 batch->memcg = NULL;
4104}
4105
e767e056 4106#ifdef CONFIG_SWAP
8c7c6e34 4107/*
e767e056 4108 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4109 * memcg information is recorded to swap_cgroup of "ent"
4110 */
8a9478ca
KH
4111void
4112mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4113{
4114 struct mem_cgroup *memcg;
8a9478ca
KH
4115 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4116
4117 if (!swapout) /* this was a swap cache but the swap is unused ! */
4118 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4119
0030f535 4120 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4121
f75ca962
KH
4122 /*
4123 * record memcg information, if swapout && memcg != NULL,
4050377b 4124 * css_get() was called in uncharge().
f75ca962
KH
4125 */
4126 if (do_swap_account && swapout && memcg)
34c00c31 4127 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4128}
e767e056 4129#endif
8c7c6e34 4130
c255a458 4131#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4132/*
4133 * called from swap_entry_free(). remove record in swap_cgroup and
4134 * uncharge "memsw" account.
4135 */
4136void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4137{
8c7c6e34 4138 struct mem_cgroup *memcg;
a3b2d692 4139 unsigned short id;
8c7c6e34
KH
4140
4141 if (!do_swap_account)
4142 return;
4143
a3b2d692
KH
4144 id = swap_cgroup_record(ent, 0);
4145 rcu_read_lock();
4146 memcg = mem_cgroup_lookup(id);
8c7c6e34 4147 if (memcg) {
a3b2d692
KH
4148 /*
4149 * We uncharge this because swap is freed.
4150 * This memcg can be obsolete one. We avoid calling css_tryget
4151 */
0c3e73e8 4152 if (!mem_cgroup_is_root(memcg))
4e649152 4153 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4154 mem_cgroup_swap_statistics(memcg, false);
4050377b 4155 css_put(&memcg->css);
8c7c6e34 4156 }
a3b2d692 4157 rcu_read_unlock();
d13d1443 4158}
02491447
DN
4159
4160/**
4161 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4162 * @entry: swap entry to be moved
4163 * @from: mem_cgroup which the entry is moved from
4164 * @to: mem_cgroup which the entry is moved to
4165 *
4166 * It succeeds only when the swap_cgroup's record for this entry is the same
4167 * as the mem_cgroup's id of @from.
4168 *
4169 * Returns 0 on success, -EINVAL on failure.
4170 *
4171 * The caller must have charged to @to, IOW, called res_counter_charge() about
4172 * both res and memsw, and called css_get().
4173 */
4174static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4175 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4176{
4177 unsigned short old_id, new_id;
4178
34c00c31
LZ
4179 old_id = mem_cgroup_id(from);
4180 new_id = mem_cgroup_id(to);
02491447
DN
4181
4182 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4183 mem_cgroup_swap_statistics(from, false);
483c30b5 4184 mem_cgroup_swap_statistics(to, true);
02491447 4185 /*
483c30b5
DN
4186 * This function is only called from task migration context now.
4187 * It postpones res_counter and refcount handling till the end
4188 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4189 * improvement. But we cannot postpone css_get(to) because if
4190 * the process that has been moved to @to does swap-in, the
4191 * refcount of @to might be decreased to 0.
4192 *
4193 * We are in attach() phase, so the cgroup is guaranteed to be
4194 * alive, so we can just call css_get().
02491447 4195 */
4050377b 4196 css_get(&to->css);
02491447
DN
4197 return 0;
4198 }
4199 return -EINVAL;
4200}
4201#else
4202static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4203 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4204{
4205 return -EINVAL;
4206}
8c7c6e34 4207#endif
d13d1443 4208
ae41be37 4209/*
01b1ae63
KH
4210 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4211 * page belongs to.
ae41be37 4212 */
0030f535
JW
4213void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4214 struct mem_cgroup **memcgp)
ae41be37 4215{
c0ff4b85 4216 struct mem_cgroup *memcg = NULL;
b32967ff 4217 unsigned int nr_pages = 1;
7ec99d62 4218 struct page_cgroup *pc;
ac39cf8c 4219 enum charge_type ctype;
8869b8f6 4220
72835c86 4221 *memcgp = NULL;
56039efa 4222
f8d66542 4223 if (mem_cgroup_disabled())
0030f535 4224 return;
4077960e 4225
b32967ff
MG
4226 if (PageTransHuge(page))
4227 nr_pages <<= compound_order(page);
4228
52d4b9ac
KH
4229 pc = lookup_page_cgroup(page);
4230 lock_page_cgroup(pc);
4231 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4232 memcg = pc->mem_cgroup;
4233 css_get(&memcg->css);
ac39cf8c
AM
4234 /*
4235 * At migrating an anonymous page, its mapcount goes down
4236 * to 0 and uncharge() will be called. But, even if it's fully
4237 * unmapped, migration may fail and this page has to be
4238 * charged again. We set MIGRATION flag here and delay uncharge
4239 * until end_migration() is called
4240 *
4241 * Corner Case Thinking
4242 * A)
4243 * When the old page was mapped as Anon and it's unmap-and-freed
4244 * while migration was ongoing.
4245 * If unmap finds the old page, uncharge() of it will be delayed
4246 * until end_migration(). If unmap finds a new page, it's
4247 * uncharged when it make mapcount to be 1->0. If unmap code
4248 * finds swap_migration_entry, the new page will not be mapped
4249 * and end_migration() will find it(mapcount==0).
4250 *
4251 * B)
4252 * When the old page was mapped but migraion fails, the kernel
4253 * remaps it. A charge for it is kept by MIGRATION flag even
4254 * if mapcount goes down to 0. We can do remap successfully
4255 * without charging it again.
4256 *
4257 * C)
4258 * The "old" page is under lock_page() until the end of
4259 * migration, so, the old page itself will not be swapped-out.
4260 * If the new page is swapped out before end_migraton, our
4261 * hook to usual swap-out path will catch the event.
4262 */
4263 if (PageAnon(page))
4264 SetPageCgroupMigration(pc);
e8589cc1 4265 }
52d4b9ac 4266 unlock_page_cgroup(pc);
ac39cf8c
AM
4267 /*
4268 * If the page is not charged at this point,
4269 * we return here.
4270 */
c0ff4b85 4271 if (!memcg)
0030f535 4272 return;
01b1ae63 4273
72835c86 4274 *memcgp = memcg;
ac39cf8c
AM
4275 /*
4276 * We charge new page before it's used/mapped. So, even if unlock_page()
4277 * is called before end_migration, we can catch all events on this new
4278 * page. In the case new page is migrated but not remapped, new page's
4279 * mapcount will be finally 0 and we call uncharge in end_migration().
4280 */
ac39cf8c 4281 if (PageAnon(page))
41326c17 4282 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4283 else
62ba7442 4284 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4285 /*
4286 * The page is committed to the memcg, but it's not actually
4287 * charged to the res_counter since we plan on replacing the
4288 * old one and only one page is going to be left afterwards.
4289 */
b32967ff 4290 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4291}
8869b8f6 4292
69029cd5 4293/* remove redundant charge if migration failed*/
c0ff4b85 4294void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4295 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4296{
ac39cf8c 4297 struct page *used, *unused;
01b1ae63 4298 struct page_cgroup *pc;
b2402857 4299 bool anon;
01b1ae63 4300
c0ff4b85 4301 if (!memcg)
01b1ae63 4302 return;
b25ed609 4303
50de1dd9 4304 if (!migration_ok) {
ac39cf8c
AM
4305 used = oldpage;
4306 unused = newpage;
01b1ae63 4307 } else {
ac39cf8c 4308 used = newpage;
01b1ae63
KH
4309 unused = oldpage;
4310 }
0030f535 4311 anon = PageAnon(used);
7d188958
JW
4312 __mem_cgroup_uncharge_common(unused,
4313 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4314 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4315 true);
0030f535 4316 css_put(&memcg->css);
69029cd5 4317 /*
ac39cf8c
AM
4318 * We disallowed uncharge of pages under migration because mapcount
4319 * of the page goes down to zero, temporarly.
4320 * Clear the flag and check the page should be charged.
01b1ae63 4321 */
ac39cf8c
AM
4322 pc = lookup_page_cgroup(oldpage);
4323 lock_page_cgroup(pc);
4324 ClearPageCgroupMigration(pc);
4325 unlock_page_cgroup(pc);
ac39cf8c 4326
01b1ae63 4327 /*
ac39cf8c
AM
4328 * If a page is a file cache, radix-tree replacement is very atomic
4329 * and we can skip this check. When it was an Anon page, its mapcount
4330 * goes down to 0. But because we added MIGRATION flage, it's not
4331 * uncharged yet. There are several case but page->mapcount check
4332 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4333 * check. (see prepare_charge() also)
69029cd5 4334 */
b2402857 4335 if (anon)
ac39cf8c 4336 mem_cgroup_uncharge_page(used);
ae41be37 4337}
78fb7466 4338
ab936cbc
KH
4339/*
4340 * At replace page cache, newpage is not under any memcg but it's on
4341 * LRU. So, this function doesn't touch res_counter but handles LRU
4342 * in correct way. Both pages are locked so we cannot race with uncharge.
4343 */
4344void mem_cgroup_replace_page_cache(struct page *oldpage,
4345 struct page *newpage)
4346{
bde05d1c 4347 struct mem_cgroup *memcg = NULL;
ab936cbc 4348 struct page_cgroup *pc;
ab936cbc 4349 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4350
4351 if (mem_cgroup_disabled())
4352 return;
4353
4354 pc = lookup_page_cgroup(oldpage);
4355 /* fix accounting on old pages */
4356 lock_page_cgroup(pc);
bde05d1c
HD
4357 if (PageCgroupUsed(pc)) {
4358 memcg = pc->mem_cgroup;
b070e65c 4359 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4360 ClearPageCgroupUsed(pc);
4361 }
ab936cbc
KH
4362 unlock_page_cgroup(pc);
4363
bde05d1c
HD
4364 /*
4365 * When called from shmem_replace_page(), in some cases the
4366 * oldpage has already been charged, and in some cases not.
4367 */
4368 if (!memcg)
4369 return;
ab936cbc
KH
4370 /*
4371 * Even if newpage->mapping was NULL before starting replacement,
4372 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4373 * LRU while we overwrite pc->mem_cgroup.
4374 */
ce587e65 4375 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4376}
4377
f212ad7c
DN
4378#ifdef CONFIG_DEBUG_VM
4379static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4380{
4381 struct page_cgroup *pc;
4382
4383 pc = lookup_page_cgroup(page);
cfa44946
JW
4384 /*
4385 * Can be NULL while feeding pages into the page allocator for
4386 * the first time, i.e. during boot or memory hotplug;
4387 * or when mem_cgroup_disabled().
4388 */
f212ad7c
DN
4389 if (likely(pc) && PageCgroupUsed(pc))
4390 return pc;
4391 return NULL;
4392}
4393
4394bool mem_cgroup_bad_page_check(struct page *page)
4395{
4396 if (mem_cgroup_disabled())
4397 return false;
4398
4399 return lookup_page_cgroup_used(page) != NULL;
4400}
4401
4402void mem_cgroup_print_bad_page(struct page *page)
4403{
4404 struct page_cgroup *pc;
4405
4406 pc = lookup_page_cgroup_used(page);
4407 if (pc) {
d045197f
AM
4408 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4409 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4410 }
4411}
4412#endif
4413
d38d2a75 4414static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4415 unsigned long long val)
628f4235 4416{
81d39c20 4417 int retry_count;
3c11ecf4 4418 u64 memswlimit, memlimit;
628f4235 4419 int ret = 0;
81d39c20
KH
4420 int children = mem_cgroup_count_children(memcg);
4421 u64 curusage, oldusage;
3c11ecf4 4422 int enlarge;
81d39c20
KH
4423
4424 /*
4425 * For keeping hierarchical_reclaim simple, how long we should retry
4426 * is depends on callers. We set our retry-count to be function
4427 * of # of children which we should visit in this loop.
4428 */
4429 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4430
4431 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4432
3c11ecf4 4433 enlarge = 0;
8c7c6e34 4434 while (retry_count) {
628f4235
KH
4435 if (signal_pending(current)) {
4436 ret = -EINTR;
4437 break;
4438 }
8c7c6e34
KH
4439 /*
4440 * Rather than hide all in some function, I do this in
4441 * open coded manner. You see what this really does.
aaad153e 4442 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4443 */
4444 mutex_lock(&set_limit_mutex);
4445 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4446 if (memswlimit < val) {
4447 ret = -EINVAL;
4448 mutex_unlock(&set_limit_mutex);
628f4235
KH
4449 break;
4450 }
3c11ecf4
KH
4451
4452 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4453 if (memlimit < val)
4454 enlarge = 1;
4455
8c7c6e34 4456 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4457 if (!ret) {
4458 if (memswlimit == val)
4459 memcg->memsw_is_minimum = true;
4460 else
4461 memcg->memsw_is_minimum = false;
4462 }
8c7c6e34
KH
4463 mutex_unlock(&set_limit_mutex);
4464
4465 if (!ret)
4466 break;
4467
5660048c
JW
4468 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4469 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4470 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4471 /* Usage is reduced ? */
f894ffa8 4472 if (curusage >= oldusage)
81d39c20
KH
4473 retry_count--;
4474 else
4475 oldusage = curusage;
8c7c6e34 4476 }
3c11ecf4
KH
4477 if (!ret && enlarge)
4478 memcg_oom_recover(memcg);
14797e23 4479
8c7c6e34
KH
4480 return ret;
4481}
4482
338c8431
LZ
4483static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4484 unsigned long long val)
8c7c6e34 4485{
81d39c20 4486 int retry_count;
3c11ecf4 4487 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4488 int children = mem_cgroup_count_children(memcg);
4489 int ret = -EBUSY;
3c11ecf4 4490 int enlarge = 0;
8c7c6e34 4491
81d39c20 4492 /* see mem_cgroup_resize_res_limit */
f894ffa8 4493 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4494 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4495 while (retry_count) {
4496 if (signal_pending(current)) {
4497 ret = -EINTR;
4498 break;
4499 }
4500 /*
4501 * Rather than hide all in some function, I do this in
4502 * open coded manner. You see what this really does.
aaad153e 4503 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4504 */
4505 mutex_lock(&set_limit_mutex);
4506 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4507 if (memlimit > val) {
4508 ret = -EINVAL;
4509 mutex_unlock(&set_limit_mutex);
4510 break;
4511 }
3c11ecf4
KH
4512 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4513 if (memswlimit < val)
4514 enlarge = 1;
8c7c6e34 4515 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4516 if (!ret) {
4517 if (memlimit == val)
4518 memcg->memsw_is_minimum = true;
4519 else
4520 memcg->memsw_is_minimum = false;
4521 }
8c7c6e34
KH
4522 mutex_unlock(&set_limit_mutex);
4523
4524 if (!ret)
4525 break;
4526
5660048c
JW
4527 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4528 MEM_CGROUP_RECLAIM_NOSWAP |
4529 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4530 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4531 /* Usage is reduced ? */
8c7c6e34 4532 if (curusage >= oldusage)
628f4235 4533 retry_count--;
81d39c20
KH
4534 else
4535 oldusage = curusage;
628f4235 4536 }
3c11ecf4
KH
4537 if (!ret && enlarge)
4538 memcg_oom_recover(memcg);
628f4235
KH
4539 return ret;
4540}
4541
0608f43d
AM
4542unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4543 gfp_t gfp_mask,
4544 unsigned long *total_scanned)
4545{
4546 unsigned long nr_reclaimed = 0;
4547 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4548 unsigned long reclaimed;
4549 int loop = 0;
4550 struct mem_cgroup_tree_per_zone *mctz;
4551 unsigned long long excess;
4552 unsigned long nr_scanned;
4553
4554 if (order > 0)
4555 return 0;
4556
4557 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4558 /*
4559 * This loop can run a while, specially if mem_cgroup's continuously
4560 * keep exceeding their soft limit and putting the system under
4561 * pressure
4562 */
4563 do {
4564 if (next_mz)
4565 mz = next_mz;
4566 else
4567 mz = mem_cgroup_largest_soft_limit_node(mctz);
4568 if (!mz)
4569 break;
4570
4571 nr_scanned = 0;
4572 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4573 gfp_mask, &nr_scanned);
4574 nr_reclaimed += reclaimed;
4575 *total_scanned += nr_scanned;
4576 spin_lock(&mctz->lock);
4577
4578 /*
4579 * If we failed to reclaim anything from this memory cgroup
4580 * it is time to move on to the next cgroup
4581 */
4582 next_mz = NULL;
4583 if (!reclaimed) {
4584 do {
4585 /*
4586 * Loop until we find yet another one.
4587 *
4588 * By the time we get the soft_limit lock
4589 * again, someone might have aded the
4590 * group back on the RB tree. Iterate to
4591 * make sure we get a different mem.
4592 * mem_cgroup_largest_soft_limit_node returns
4593 * NULL if no other cgroup is present on
4594 * the tree
4595 */
4596 next_mz =
4597 __mem_cgroup_largest_soft_limit_node(mctz);
4598 if (next_mz == mz)
4599 css_put(&next_mz->memcg->css);
4600 else /* next_mz == NULL or other memcg */
4601 break;
4602 } while (1);
4603 }
4604 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4605 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4606 /*
4607 * One school of thought says that we should not add
4608 * back the node to the tree if reclaim returns 0.
4609 * But our reclaim could return 0, simply because due
4610 * to priority we are exposing a smaller subset of
4611 * memory to reclaim from. Consider this as a longer
4612 * term TODO.
4613 */
4614 /* If excess == 0, no tree ops */
4615 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4616 spin_unlock(&mctz->lock);
4617 css_put(&mz->memcg->css);
4618 loop++;
4619 /*
4620 * Could not reclaim anything and there are no more
4621 * mem cgroups to try or we seem to be looping without
4622 * reclaiming anything.
4623 */
4624 if (!nr_reclaimed &&
4625 (next_mz == NULL ||
4626 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4627 break;
4628 } while (!nr_reclaimed);
4629 if (next_mz)
4630 css_put(&next_mz->memcg->css);
4631 return nr_reclaimed;
4632}
4633
2ef37d3f
MH
4634/**
4635 * mem_cgroup_force_empty_list - clears LRU of a group
4636 * @memcg: group to clear
4637 * @node: NUMA node
4638 * @zid: zone id
4639 * @lru: lru to to clear
4640 *
3c935d18 4641 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4642 * reclaim the pages page themselves - pages are moved to the parent (or root)
4643 * group.
cc847582 4644 */
2ef37d3f 4645static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4646 int node, int zid, enum lru_list lru)
cc847582 4647{
bea8c150 4648 struct lruvec *lruvec;
2ef37d3f 4649 unsigned long flags;
072c56c1 4650 struct list_head *list;
925b7673
JW
4651 struct page *busy;
4652 struct zone *zone;
072c56c1 4653
08e552c6 4654 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4655 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4656 list = &lruvec->lists[lru];
cc847582 4657
f817ed48 4658 busy = NULL;
2ef37d3f 4659 do {
925b7673 4660 struct page_cgroup *pc;
5564e88b
JW
4661 struct page *page;
4662
08e552c6 4663 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4664 if (list_empty(list)) {
08e552c6 4665 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4666 break;
f817ed48 4667 }
925b7673
JW
4668 page = list_entry(list->prev, struct page, lru);
4669 if (busy == page) {
4670 list_move(&page->lru, list);
648bcc77 4671 busy = NULL;
08e552c6 4672 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4673 continue;
4674 }
08e552c6 4675 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4676
925b7673 4677 pc = lookup_page_cgroup(page);
5564e88b 4678
3c935d18 4679 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4680 /* found lock contention or "pc" is obsolete. */
925b7673 4681 busy = page;
f817ed48
KH
4682 cond_resched();
4683 } else
4684 busy = NULL;
2ef37d3f 4685 } while (!list_empty(list));
cc847582
KH
4686}
4687
4688/*
c26251f9
MH
4689 * make mem_cgroup's charge to be 0 if there is no task by moving
4690 * all the charges and pages to the parent.
cc847582 4691 * This enables deleting this mem_cgroup.
c26251f9
MH
4692 *
4693 * Caller is responsible for holding css reference on the memcg.
cc847582 4694 */
ab5196c2 4695static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4696{
c26251f9 4697 int node, zid;
bea207c8 4698 u64 usage;
f817ed48 4699
fce66477 4700 do {
52d4b9ac
KH
4701 /* This is for making all *used* pages to be on LRU. */
4702 lru_add_drain_all();
c0ff4b85 4703 drain_all_stock_sync(memcg);
c0ff4b85 4704 mem_cgroup_start_move(memcg);
31aaea4a 4705 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4706 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4707 enum lru_list lru;
4708 for_each_lru(lru) {
2ef37d3f 4709 mem_cgroup_force_empty_list(memcg,
f156ab93 4710 node, zid, lru);
f817ed48 4711 }
1ecaab2b 4712 }
f817ed48 4713 }
c0ff4b85
R
4714 mem_cgroup_end_move(memcg);
4715 memcg_oom_recover(memcg);
52d4b9ac 4716 cond_resched();
f817ed48 4717
2ef37d3f 4718 /*
bea207c8
GC
4719 * Kernel memory may not necessarily be trackable to a specific
4720 * process. So they are not migrated, and therefore we can't
4721 * expect their value to drop to 0 here.
4722 * Having res filled up with kmem only is enough.
4723 *
2ef37d3f
MH
4724 * This is a safety check because mem_cgroup_force_empty_list
4725 * could have raced with mem_cgroup_replace_page_cache callers
4726 * so the lru seemed empty but the page could have been added
4727 * right after the check. RES_USAGE should be safe as we always
4728 * charge before adding to the LRU.
4729 */
bea207c8
GC
4730 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4731 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4732 } while (usage > 0);
c26251f9
MH
4733}
4734
b5f99b53
GC
4735static inline bool memcg_has_children(struct mem_cgroup *memcg)
4736{
696ac172
JW
4737 lockdep_assert_held(&memcg_create_mutex);
4738 /*
4739 * The lock does not prevent addition or deletion to the list
4740 * of children, but it prevents a new child from being
4741 * initialized based on this parent in css_online(), so it's
4742 * enough to decide whether hierarchically inherited
4743 * attributes can still be changed or not.
4744 */
4745 return memcg->use_hierarchy &&
4746 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
4747}
4748
c26251f9
MH
4749/*
4750 * Reclaims as many pages from the given memcg as possible and moves
4751 * the rest to the parent.
4752 *
4753 * Caller is responsible for holding css reference for memcg.
4754 */
4755static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4756{
4757 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4758 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4759
c1e862c1 4760 /* returns EBUSY if there is a task or if we come here twice. */
07bc356e 4761 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
c26251f9
MH
4762 return -EBUSY;
4763
c1e862c1
KH
4764 /* we call try-to-free pages for make this cgroup empty */
4765 lru_add_drain_all();
f817ed48 4766 /* try to free all pages in this cgroup */
569530fb 4767 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4768 int progress;
c1e862c1 4769
c26251f9
MH
4770 if (signal_pending(current))
4771 return -EINTR;
4772
c0ff4b85 4773 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4774 false);
c1e862c1 4775 if (!progress) {
f817ed48 4776 nr_retries--;
c1e862c1 4777 /* maybe some writeback is necessary */
8aa7e847 4778 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4779 }
f817ed48
KH
4780
4781 }
08e552c6 4782 lru_add_drain();
ab5196c2
MH
4783 mem_cgroup_reparent_charges(memcg);
4784
4785 return 0;
cc847582
KH
4786}
4787
182446d0
TH
4788static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4789 unsigned int event)
c1e862c1 4790{
182446d0 4791 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 4792
d8423011
MH
4793 if (mem_cgroup_is_root(memcg))
4794 return -EINVAL;
c33bd835 4795 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
4796}
4797
182446d0
TH
4798static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4799 struct cftype *cft)
18f59ea7 4800{
182446d0 4801 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4802}
4803
182446d0
TH
4804static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4805 struct cftype *cft, u64 val)
18f59ea7
BS
4806{
4807 int retval = 0;
182446d0 4808 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 4809 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 4810
0999821b 4811 mutex_lock(&memcg_create_mutex);
567fb435
GC
4812
4813 if (memcg->use_hierarchy == val)
4814 goto out;
4815
18f59ea7 4816 /*
af901ca1 4817 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4818 * in the child subtrees. If it is unset, then the change can
4819 * occur, provided the current cgroup has no children.
4820 *
4821 * For the root cgroup, parent_mem is NULL, we allow value to be
4822 * set if there are no children.
4823 */
c0ff4b85 4824 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4825 (val == 1 || val == 0)) {
696ac172 4826 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 4827 memcg->use_hierarchy = val;
18f59ea7
BS
4828 else
4829 retval = -EBUSY;
4830 } else
4831 retval = -EINVAL;
567fb435
GC
4832
4833out:
0999821b 4834 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4835
4836 return retval;
4837}
4838
0c3e73e8 4839
c0ff4b85 4840static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4841 enum mem_cgroup_stat_index idx)
0c3e73e8 4842{
7d74b06f 4843 struct mem_cgroup *iter;
7a159cc9 4844 long val = 0;
0c3e73e8 4845
7a159cc9 4846 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4847 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4848 val += mem_cgroup_read_stat(iter, idx);
4849
4850 if (val < 0) /* race ? */
4851 val = 0;
4852 return val;
0c3e73e8
BS
4853}
4854
c0ff4b85 4855static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4856{
7d74b06f 4857 u64 val;
104f3928 4858
c0ff4b85 4859 if (!mem_cgroup_is_root(memcg)) {
104f3928 4860 if (!swap)
65c64ce8 4861 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4862 else
65c64ce8 4863 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4864 }
4865
b070e65c
DR
4866 /*
4867 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4868 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4869 */
c0ff4b85
R
4870 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4871 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4872
7d74b06f 4873 if (swap)
bff6bb83 4874 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4875
4876 return val << PAGE_SHIFT;
4877}
4878
791badbd
TH
4879static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4880 struct cftype *cft)
8cdea7c0 4881{
182446d0 4882 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
104f3928 4883 u64 val;
791badbd 4884 int name;
86ae53e1 4885 enum res_type type;
8c7c6e34
KH
4886
4887 type = MEMFILE_TYPE(cft->private);
4888 name = MEMFILE_ATTR(cft->private);
af36f906 4889
8c7c6e34
KH
4890 switch (type) {
4891 case _MEM:
104f3928 4892 if (name == RES_USAGE)
c0ff4b85 4893 val = mem_cgroup_usage(memcg, false);
104f3928 4894 else
c0ff4b85 4895 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
4896 break;
4897 case _MEMSWAP:
104f3928 4898 if (name == RES_USAGE)
c0ff4b85 4899 val = mem_cgroup_usage(memcg, true);
104f3928 4900 else
c0ff4b85 4901 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 4902 break;
510fc4e1
GC
4903 case _KMEM:
4904 val = res_counter_read_u64(&memcg->kmem, name);
4905 break;
8c7c6e34
KH
4906 default:
4907 BUG();
8c7c6e34 4908 }
af36f906 4909
791badbd 4910 return val;
8cdea7c0 4911}
510fc4e1 4912
510fc4e1 4913#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
4914/* should be called with activate_kmem_mutex held */
4915static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4916 unsigned long long limit)
4917{
4918 int err = 0;
4919 int memcg_id;
4920
4921 if (memcg_kmem_is_active(memcg))
4922 return 0;
4923
4924 /*
4925 * We are going to allocate memory for data shared by all memory
4926 * cgroups so let's stop accounting here.
4927 */
4928 memcg_stop_kmem_account();
4929
510fc4e1
GC
4930 /*
4931 * For simplicity, we won't allow this to be disabled. It also can't
4932 * be changed if the cgroup has children already, or if tasks had
4933 * already joined.
4934 *
4935 * If tasks join before we set the limit, a person looking at
4936 * kmem.usage_in_bytes will have no way to determine when it took
4937 * place, which makes the value quite meaningless.
4938 *
4939 * After it first became limited, changes in the value of the limit are
4940 * of course permitted.
510fc4e1 4941 */
0999821b 4942 mutex_lock(&memcg_create_mutex);
07bc356e 4943 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
d6441637
VD
4944 err = -EBUSY;
4945 mutex_unlock(&memcg_create_mutex);
4946 if (err)
4947 goto out;
510fc4e1 4948
d6441637
VD
4949 memcg_id = ida_simple_get(&kmem_limited_groups,
4950 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4951 if (memcg_id < 0) {
4952 err = memcg_id;
4953 goto out;
4954 }
4955
4956 /*
4957 * Make sure we have enough space for this cgroup in each root cache's
4958 * memcg_params.
4959 */
bd673145 4960 mutex_lock(&memcg_slab_mutex);
d6441637 4961 err = memcg_update_all_caches(memcg_id + 1);
bd673145 4962 mutex_unlock(&memcg_slab_mutex);
d6441637
VD
4963 if (err)
4964 goto out_rmid;
4965
4966 memcg->kmemcg_id = memcg_id;
4967 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
4968
4969 /*
4970 * We couldn't have accounted to this cgroup, because it hasn't got the
4971 * active bit set yet, so this should succeed.
4972 */
4973 err = res_counter_set_limit(&memcg->kmem, limit);
4974 VM_BUG_ON(err);
4975
4976 static_key_slow_inc(&memcg_kmem_enabled_key);
4977 /*
4978 * Setting the active bit after enabling static branching will
4979 * guarantee no one starts accounting before all call sites are
4980 * patched.
4981 */
4982 memcg_kmem_set_active(memcg);
510fc4e1 4983out:
d6441637
VD
4984 memcg_resume_kmem_account();
4985 return err;
4986
4987out_rmid:
4988 ida_simple_remove(&kmem_limited_groups, memcg_id);
4989 goto out;
4990}
4991
4992static int memcg_activate_kmem(struct mem_cgroup *memcg,
4993 unsigned long long limit)
4994{
4995 int ret;
4996
4997 mutex_lock(&activate_kmem_mutex);
4998 ret = __memcg_activate_kmem(memcg, limit);
4999 mutex_unlock(&activate_kmem_mutex);
5000 return ret;
5001}
5002
5003static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5004 unsigned long long val)
5005{
5006 int ret;
5007
5008 if (!memcg_kmem_is_active(memcg))
5009 ret = memcg_activate_kmem(memcg, val);
5010 else
5011 ret = res_counter_set_limit(&memcg->kmem, val);
510fc4e1
GC
5012 return ret;
5013}
5014
55007d84 5015static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5016{
55007d84 5017 int ret = 0;
510fc4e1 5018 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 5019
d6441637
VD
5020 if (!parent)
5021 return 0;
55007d84 5022
d6441637 5023 mutex_lock(&activate_kmem_mutex);
55007d84 5024 /*
d6441637
VD
5025 * If the parent cgroup is not kmem-active now, it cannot be activated
5026 * after this point, because it has at least one child already.
55007d84 5027 */
d6441637
VD
5028 if (memcg_kmem_is_active(parent))
5029 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5030 mutex_unlock(&activate_kmem_mutex);
55007d84 5031 return ret;
510fc4e1 5032}
d6441637
VD
5033#else
5034static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5035 unsigned long long val)
5036{
5037 return -EINVAL;
5038}
6d043990 5039#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5040
628f4235
KH
5041/*
5042 * The user of this function is...
5043 * RES_LIMIT.
5044 */
182446d0 5045static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4d3bb511 5046 char *buffer)
8cdea7c0 5047{
182446d0 5048 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5049 enum res_type type;
5050 int name;
628f4235
KH
5051 unsigned long long val;
5052 int ret;
5053
8c7c6e34
KH
5054 type = MEMFILE_TYPE(cft->private);
5055 name = MEMFILE_ATTR(cft->private);
af36f906 5056
8c7c6e34 5057 switch (name) {
628f4235 5058 case RES_LIMIT:
4b3bde4c
BS
5059 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5060 ret = -EINVAL;
5061 break;
5062 }
628f4235
KH
5063 /* This function does all necessary parse...reuse it */
5064 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5065 if (ret)
5066 break;
5067 if (type == _MEM)
628f4235 5068 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5069 else if (type == _MEMSWAP)
8c7c6e34 5070 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5071 else if (type == _KMEM)
d6441637 5072 ret = memcg_update_kmem_limit(memcg, val);
510fc4e1
GC
5073 else
5074 return -EINVAL;
628f4235 5075 break;
296c81d8
BS
5076 case RES_SOFT_LIMIT:
5077 ret = res_counter_memparse_write_strategy(buffer, &val);
5078 if (ret)
5079 break;
5080 /*
5081 * For memsw, soft limits are hard to implement in terms
5082 * of semantics, for now, we support soft limits for
5083 * control without swap
5084 */
5085 if (type == _MEM)
5086 ret = res_counter_set_soft_limit(&memcg->res, val);
5087 else
5088 ret = -EINVAL;
5089 break;
628f4235
KH
5090 default:
5091 ret = -EINVAL; /* should be BUG() ? */
5092 break;
5093 }
5094 return ret;
8cdea7c0
BS
5095}
5096
fee7b548
KH
5097static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5098 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5099{
fee7b548
KH
5100 unsigned long long min_limit, min_memsw_limit, tmp;
5101
5102 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5103 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5104 if (!memcg->use_hierarchy)
5105 goto out;
5106
63876986
TH
5107 while (css_parent(&memcg->css)) {
5108 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5109 if (!memcg->use_hierarchy)
5110 break;
5111 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5112 min_limit = min(min_limit, tmp);
5113 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5114 min_memsw_limit = min(min_memsw_limit, tmp);
5115 }
5116out:
5117 *mem_limit = min_limit;
5118 *memsw_limit = min_memsw_limit;
fee7b548
KH
5119}
5120
182446d0 5121static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5122{
182446d0 5123 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5124 int name;
5125 enum res_type type;
c84872e1 5126
8c7c6e34
KH
5127 type = MEMFILE_TYPE(event);
5128 name = MEMFILE_ATTR(event);
af36f906 5129
8c7c6e34 5130 switch (name) {
29f2a4da 5131 case RES_MAX_USAGE:
8c7c6e34 5132 if (type == _MEM)
c0ff4b85 5133 res_counter_reset_max(&memcg->res);
510fc4e1 5134 else if (type == _MEMSWAP)
c0ff4b85 5135 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5136 else if (type == _KMEM)
5137 res_counter_reset_max(&memcg->kmem);
5138 else
5139 return -EINVAL;
29f2a4da
PE
5140 break;
5141 case RES_FAILCNT:
8c7c6e34 5142 if (type == _MEM)
c0ff4b85 5143 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5144 else if (type == _MEMSWAP)
c0ff4b85 5145 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5146 else if (type == _KMEM)
5147 res_counter_reset_failcnt(&memcg->kmem);
5148 else
5149 return -EINVAL;
29f2a4da
PE
5150 break;
5151 }
f64c3f54 5152
85cc59db 5153 return 0;
c84872e1
PE
5154}
5155
182446d0 5156static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5157 struct cftype *cft)
5158{
182446d0 5159 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5160}
5161
02491447 5162#ifdef CONFIG_MMU
182446d0 5163static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5164 struct cftype *cft, u64 val)
5165{
182446d0 5166 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5167
5168 if (val >= (1 << NR_MOVE_TYPE))
5169 return -EINVAL;
ee5e8472 5170
7dc74be0 5171 /*
ee5e8472
GC
5172 * No kind of locking is needed in here, because ->can_attach() will
5173 * check this value once in the beginning of the process, and then carry
5174 * on with stale data. This means that changes to this value will only
5175 * affect task migrations starting after the change.
7dc74be0 5176 */
c0ff4b85 5177 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5178 return 0;
5179}
02491447 5180#else
182446d0 5181static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5182 struct cftype *cft, u64 val)
5183{
5184 return -ENOSYS;
5185}
5186#endif
7dc74be0 5187
406eb0c9 5188#ifdef CONFIG_NUMA
2da8ca82 5189static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 5190{
25485de6
GT
5191 struct numa_stat {
5192 const char *name;
5193 unsigned int lru_mask;
5194 };
5195
5196 static const struct numa_stat stats[] = {
5197 { "total", LRU_ALL },
5198 { "file", LRU_ALL_FILE },
5199 { "anon", LRU_ALL_ANON },
5200 { "unevictable", BIT(LRU_UNEVICTABLE) },
5201 };
5202 const struct numa_stat *stat;
406eb0c9 5203 int nid;
25485de6 5204 unsigned long nr;
2da8ca82 5205 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 5206
25485de6
GT
5207 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5208 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5209 seq_printf(m, "%s=%lu", stat->name, nr);
5210 for_each_node_state(nid, N_MEMORY) {
5211 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5212 stat->lru_mask);
5213 seq_printf(m, " N%d=%lu", nid, nr);
5214 }
5215 seq_putc(m, '\n');
406eb0c9 5216 }
406eb0c9 5217
071aee13
YH
5218 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5219 struct mem_cgroup *iter;
5220
5221 nr = 0;
5222 for_each_mem_cgroup_tree(iter, memcg)
5223 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5224 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5225 for_each_node_state(nid, N_MEMORY) {
5226 nr = 0;
5227 for_each_mem_cgroup_tree(iter, memcg)
5228 nr += mem_cgroup_node_nr_lru_pages(
5229 iter, nid, stat->lru_mask);
5230 seq_printf(m, " N%d=%lu", nid, nr);
5231 }
5232 seq_putc(m, '\n');
406eb0c9 5233 }
406eb0c9 5234
406eb0c9
YH
5235 return 0;
5236}
5237#endif /* CONFIG_NUMA */
5238
af7c4b0e
JW
5239static inline void mem_cgroup_lru_names_not_uptodate(void)
5240{
5241 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5242}
5243
2da8ca82 5244static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 5245{
2da8ca82 5246 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
5247 struct mem_cgroup *mi;
5248 unsigned int i;
406eb0c9 5249
af7c4b0e 5250 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5251 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5252 continue;
af7c4b0e
JW
5253 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5254 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5255 }
7b854121 5256
af7c4b0e
JW
5257 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5258 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5259 mem_cgroup_read_events(memcg, i));
5260
5261 for (i = 0; i < NR_LRU_LISTS; i++)
5262 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5263 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5264
14067bb3 5265 /* Hierarchical information */
fee7b548
KH
5266 {
5267 unsigned long long limit, memsw_limit;
d79154bb 5268 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5269 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5270 if (do_swap_account)
78ccf5b5
JW
5271 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5272 memsw_limit);
fee7b548 5273 }
7f016ee8 5274
af7c4b0e
JW
5275 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5276 long long val = 0;
5277
bff6bb83 5278 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5279 continue;
af7c4b0e
JW
5280 for_each_mem_cgroup_tree(mi, memcg)
5281 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5282 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5283 }
5284
5285 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5286 unsigned long long val = 0;
5287
5288 for_each_mem_cgroup_tree(mi, memcg)
5289 val += mem_cgroup_read_events(mi, i);
5290 seq_printf(m, "total_%s %llu\n",
5291 mem_cgroup_events_names[i], val);
5292 }
5293
5294 for (i = 0; i < NR_LRU_LISTS; i++) {
5295 unsigned long long val = 0;
5296
5297 for_each_mem_cgroup_tree(mi, memcg)
5298 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5299 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5300 }
14067bb3 5301
7f016ee8 5302#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5303 {
5304 int nid, zid;
5305 struct mem_cgroup_per_zone *mz;
89abfab1 5306 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5307 unsigned long recent_rotated[2] = {0, 0};
5308 unsigned long recent_scanned[2] = {0, 0};
5309
5310 for_each_online_node(nid)
5311 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5312 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5313 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5314
89abfab1
HD
5315 recent_rotated[0] += rstat->recent_rotated[0];
5316 recent_rotated[1] += rstat->recent_rotated[1];
5317 recent_scanned[0] += rstat->recent_scanned[0];
5318 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5319 }
78ccf5b5
JW
5320 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5321 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5322 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5323 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5324 }
5325#endif
5326
d2ceb9b7
KH
5327 return 0;
5328}
5329
182446d0
TH
5330static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5331 struct cftype *cft)
a7885eb8 5332{
182446d0 5333 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5334
1f4c025b 5335 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5336}
5337
182446d0
TH
5338static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5339 struct cftype *cft, u64 val)
a7885eb8 5340{
182446d0 5341 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5342
3dae7fec 5343 if (val > 100)
a7885eb8
KM
5344 return -EINVAL;
5345
3dae7fec
JW
5346 if (css_parent(css))
5347 memcg->swappiness = val;
5348 else
5349 vm_swappiness = val;
068b38c1 5350
a7885eb8
KM
5351 return 0;
5352}
5353
2e72b634
KS
5354static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5355{
5356 struct mem_cgroup_threshold_ary *t;
5357 u64 usage;
5358 int i;
5359
5360 rcu_read_lock();
5361 if (!swap)
2c488db2 5362 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5363 else
2c488db2 5364 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5365
5366 if (!t)
5367 goto unlock;
5368
5369 usage = mem_cgroup_usage(memcg, swap);
5370
5371 /*
748dad36 5372 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5373 * If it's not true, a threshold was crossed after last
5374 * call of __mem_cgroup_threshold().
5375 */
5407a562 5376 i = t->current_threshold;
2e72b634
KS
5377
5378 /*
5379 * Iterate backward over array of thresholds starting from
5380 * current_threshold and check if a threshold is crossed.
5381 * If none of thresholds below usage is crossed, we read
5382 * only one element of the array here.
5383 */
5384 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5385 eventfd_signal(t->entries[i].eventfd, 1);
5386
5387 /* i = current_threshold + 1 */
5388 i++;
5389
5390 /*
5391 * Iterate forward over array of thresholds starting from
5392 * current_threshold+1 and check if a threshold is crossed.
5393 * If none of thresholds above usage is crossed, we read
5394 * only one element of the array here.
5395 */
5396 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5397 eventfd_signal(t->entries[i].eventfd, 1);
5398
5399 /* Update current_threshold */
5407a562 5400 t->current_threshold = i - 1;
2e72b634
KS
5401unlock:
5402 rcu_read_unlock();
5403}
5404
5405static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5406{
ad4ca5f4
KS
5407 while (memcg) {
5408 __mem_cgroup_threshold(memcg, false);
5409 if (do_swap_account)
5410 __mem_cgroup_threshold(memcg, true);
5411
5412 memcg = parent_mem_cgroup(memcg);
5413 }
2e72b634
KS
5414}
5415
5416static int compare_thresholds(const void *a, const void *b)
5417{
5418 const struct mem_cgroup_threshold *_a = a;
5419 const struct mem_cgroup_threshold *_b = b;
5420
2bff24a3
GT
5421 if (_a->threshold > _b->threshold)
5422 return 1;
5423
5424 if (_a->threshold < _b->threshold)
5425 return -1;
5426
5427 return 0;
2e72b634
KS
5428}
5429
c0ff4b85 5430static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5431{
5432 struct mem_cgroup_eventfd_list *ev;
5433
c0ff4b85 5434 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5435 eventfd_signal(ev->eventfd, 1);
5436 return 0;
5437}
5438
c0ff4b85 5439static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5440{
7d74b06f
KH
5441 struct mem_cgroup *iter;
5442
c0ff4b85 5443 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5444 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5445}
5446
59b6f873 5447static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5448 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5449{
2c488db2
KS
5450 struct mem_cgroup_thresholds *thresholds;
5451 struct mem_cgroup_threshold_ary *new;
2e72b634 5452 u64 threshold, usage;
2c488db2 5453 int i, size, ret;
2e72b634
KS
5454
5455 ret = res_counter_memparse_write_strategy(args, &threshold);
5456 if (ret)
5457 return ret;
5458
5459 mutex_lock(&memcg->thresholds_lock);
2c488db2 5460
2e72b634 5461 if (type == _MEM)
2c488db2 5462 thresholds = &memcg->thresholds;
2e72b634 5463 else if (type == _MEMSWAP)
2c488db2 5464 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5465 else
5466 BUG();
5467
5468 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5469
5470 /* Check if a threshold crossed before adding a new one */
2c488db2 5471 if (thresholds->primary)
2e72b634
KS
5472 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5473
2c488db2 5474 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5475
5476 /* Allocate memory for new array of thresholds */
2c488db2 5477 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5478 GFP_KERNEL);
2c488db2 5479 if (!new) {
2e72b634
KS
5480 ret = -ENOMEM;
5481 goto unlock;
5482 }
2c488db2 5483 new->size = size;
2e72b634
KS
5484
5485 /* Copy thresholds (if any) to new array */
2c488db2
KS
5486 if (thresholds->primary) {
5487 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5488 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5489 }
5490
2e72b634 5491 /* Add new threshold */
2c488db2
KS
5492 new->entries[size - 1].eventfd = eventfd;
5493 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5494
5495 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5496 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5497 compare_thresholds, NULL);
5498
5499 /* Find current threshold */
2c488db2 5500 new->current_threshold = -1;
2e72b634 5501 for (i = 0; i < size; i++) {
748dad36 5502 if (new->entries[i].threshold <= usage) {
2e72b634 5503 /*
2c488db2
KS
5504 * new->current_threshold will not be used until
5505 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5506 * it here.
5507 */
2c488db2 5508 ++new->current_threshold;
748dad36
SZ
5509 } else
5510 break;
2e72b634
KS
5511 }
5512
2c488db2
KS
5513 /* Free old spare buffer and save old primary buffer as spare */
5514 kfree(thresholds->spare);
5515 thresholds->spare = thresholds->primary;
5516
5517 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5518
907860ed 5519 /* To be sure that nobody uses thresholds */
2e72b634
KS
5520 synchronize_rcu();
5521
2e72b634
KS
5522unlock:
5523 mutex_unlock(&memcg->thresholds_lock);
5524
5525 return ret;
5526}
5527
59b6f873 5528static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5529 struct eventfd_ctx *eventfd, const char *args)
5530{
59b6f873 5531 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5532}
5533
59b6f873 5534static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5535 struct eventfd_ctx *eventfd, const char *args)
5536{
59b6f873 5537 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5538}
5539
59b6f873 5540static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5541 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5542{
2c488db2
KS
5543 struct mem_cgroup_thresholds *thresholds;
5544 struct mem_cgroup_threshold_ary *new;
2e72b634 5545 u64 usage;
2c488db2 5546 int i, j, size;
2e72b634
KS
5547
5548 mutex_lock(&memcg->thresholds_lock);
5549 if (type == _MEM)
2c488db2 5550 thresholds = &memcg->thresholds;
2e72b634 5551 else if (type == _MEMSWAP)
2c488db2 5552 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5553 else
5554 BUG();
5555
371528ca
AV
5556 if (!thresholds->primary)
5557 goto unlock;
5558
2e72b634
KS
5559 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5560
5561 /* Check if a threshold crossed before removing */
5562 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5563
5564 /* Calculate new number of threshold */
2c488db2
KS
5565 size = 0;
5566 for (i = 0; i < thresholds->primary->size; i++) {
5567 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5568 size++;
5569 }
5570
2c488db2 5571 new = thresholds->spare;
907860ed 5572
2e72b634
KS
5573 /* Set thresholds array to NULL if we don't have thresholds */
5574 if (!size) {
2c488db2
KS
5575 kfree(new);
5576 new = NULL;
907860ed 5577 goto swap_buffers;
2e72b634
KS
5578 }
5579
2c488db2 5580 new->size = size;
2e72b634
KS
5581
5582 /* Copy thresholds and find current threshold */
2c488db2
KS
5583 new->current_threshold = -1;
5584 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5585 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5586 continue;
5587
2c488db2 5588 new->entries[j] = thresholds->primary->entries[i];
748dad36 5589 if (new->entries[j].threshold <= usage) {
2e72b634 5590 /*
2c488db2 5591 * new->current_threshold will not be used
2e72b634
KS
5592 * until rcu_assign_pointer(), so it's safe to increment
5593 * it here.
5594 */
2c488db2 5595 ++new->current_threshold;
2e72b634
KS
5596 }
5597 j++;
5598 }
5599
907860ed 5600swap_buffers:
2c488db2
KS
5601 /* Swap primary and spare array */
5602 thresholds->spare = thresholds->primary;
8c757763
SZ
5603 /* If all events are unregistered, free the spare array */
5604 if (!new) {
5605 kfree(thresholds->spare);
5606 thresholds->spare = NULL;
5607 }
5608
2c488db2 5609 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5610
907860ed 5611 /* To be sure that nobody uses thresholds */
2e72b634 5612 synchronize_rcu();
371528ca 5613unlock:
2e72b634 5614 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5615}
c1e862c1 5616
59b6f873 5617static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5618 struct eventfd_ctx *eventfd)
5619{
59b6f873 5620 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5621}
5622
59b6f873 5623static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5624 struct eventfd_ctx *eventfd)
5625{
59b6f873 5626 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5627}
5628
59b6f873 5629static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5630 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5631{
9490ff27 5632 struct mem_cgroup_eventfd_list *event;
9490ff27 5633
9490ff27
KH
5634 event = kmalloc(sizeof(*event), GFP_KERNEL);
5635 if (!event)
5636 return -ENOMEM;
5637
1af8efe9 5638 spin_lock(&memcg_oom_lock);
9490ff27
KH
5639
5640 event->eventfd = eventfd;
5641 list_add(&event->list, &memcg->oom_notify);
5642
5643 /* already in OOM ? */
79dfdacc 5644 if (atomic_read(&memcg->under_oom))
9490ff27 5645 eventfd_signal(eventfd, 1);
1af8efe9 5646 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5647
5648 return 0;
5649}
5650
59b6f873 5651static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5652 struct eventfd_ctx *eventfd)
9490ff27 5653{
9490ff27 5654 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5655
1af8efe9 5656 spin_lock(&memcg_oom_lock);
9490ff27 5657
c0ff4b85 5658 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5659 if (ev->eventfd == eventfd) {
5660 list_del(&ev->list);
5661 kfree(ev);
5662 }
5663 }
5664
1af8efe9 5665 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5666}
5667
2da8ca82 5668static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 5669{
2da8ca82 5670 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 5671
791badbd
TH
5672 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5673 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
5674 return 0;
5675}
5676
182446d0 5677static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5678 struct cftype *cft, u64 val)
5679{
182446d0 5680 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
5681
5682 /* cannot set to root cgroup and only 0 and 1 are allowed */
3dae7fec 5683 if (!css_parent(css) || !((val == 0) || (val == 1)))
3c11ecf4
KH
5684 return -EINVAL;
5685
c0ff4b85 5686 memcg->oom_kill_disable = val;
4d845ebf 5687 if (!val)
c0ff4b85 5688 memcg_oom_recover(memcg);
3dae7fec 5689
3c11ecf4
KH
5690 return 0;
5691}
5692
c255a458 5693#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5694static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5695{
55007d84
GC
5696 int ret;
5697
2633d7a0 5698 memcg->kmemcg_id = -1;
55007d84
GC
5699 ret = memcg_propagate_kmem(memcg);
5700 if (ret)
5701 return ret;
2633d7a0 5702
1d62e436 5703 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5704}
e5671dfa 5705
10d5ebf4 5706static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5707{
1d62e436 5708 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5709}
5710
5711static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5712{
5713 if (!memcg_kmem_is_active(memcg))
5714 return;
5715
5716 /*
5717 * kmem charges can outlive the cgroup. In the case of slab
5718 * pages, for instance, a page contain objects from various
5719 * processes. As we prevent from taking a reference for every
5720 * such allocation we have to be careful when doing uncharge
5721 * (see memcg_uncharge_kmem) and here during offlining.
5722 *
5723 * The idea is that that only the _last_ uncharge which sees
5724 * the dead memcg will drop the last reference. An additional
5725 * reference is taken here before the group is marked dead
5726 * which is then paired with css_put during uncharge resp. here.
5727 *
5728 * Although this might sound strange as this path is called from
5729 * css_offline() when the referencemight have dropped down to 0
5730 * and shouldn't be incremented anymore (css_tryget would fail)
5731 * we do not have other options because of the kmem allocations
5732 * lifetime.
5733 */
5734 css_get(&memcg->css);
7de37682
GC
5735
5736 memcg_kmem_mark_dead(memcg);
5737
5738 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5739 return;
5740
7de37682 5741 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5742 css_put(&memcg->css);
d1a4c0b3 5743}
e5671dfa 5744#else
cbe128e3 5745static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5746{
5747 return 0;
5748}
d1a4c0b3 5749
10d5ebf4
LZ
5750static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5751{
5752}
5753
5754static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5755{
5756}
e5671dfa
GC
5757#endif
5758
3bc942f3
TH
5759/*
5760 * DO NOT USE IN NEW FILES.
5761 *
5762 * "cgroup.event_control" implementation.
5763 *
5764 * This is way over-engineered. It tries to support fully configurable
5765 * events for each user. Such level of flexibility is completely
5766 * unnecessary especially in the light of the planned unified hierarchy.
5767 *
5768 * Please deprecate this and replace with something simpler if at all
5769 * possible.
5770 */
5771
79bd9814
TH
5772/*
5773 * Unregister event and free resources.
5774 *
5775 * Gets called from workqueue.
5776 */
3bc942f3 5777static void memcg_event_remove(struct work_struct *work)
79bd9814 5778{
3bc942f3
TH
5779 struct mem_cgroup_event *event =
5780 container_of(work, struct mem_cgroup_event, remove);
59b6f873 5781 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5782
5783 remove_wait_queue(event->wqh, &event->wait);
5784
59b6f873 5785 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
5786
5787 /* Notify userspace the event is going away. */
5788 eventfd_signal(event->eventfd, 1);
5789
5790 eventfd_ctx_put(event->eventfd);
5791 kfree(event);
59b6f873 5792 css_put(&memcg->css);
79bd9814
TH
5793}
5794
5795/*
5796 * Gets called on POLLHUP on eventfd when user closes it.
5797 *
5798 * Called with wqh->lock held and interrupts disabled.
5799 */
3bc942f3
TH
5800static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5801 int sync, void *key)
79bd9814 5802{
3bc942f3
TH
5803 struct mem_cgroup_event *event =
5804 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 5805 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5806 unsigned long flags = (unsigned long)key;
5807
5808 if (flags & POLLHUP) {
5809 /*
5810 * If the event has been detached at cgroup removal, we
5811 * can simply return knowing the other side will cleanup
5812 * for us.
5813 *
5814 * We can't race against event freeing since the other
5815 * side will require wqh->lock via remove_wait_queue(),
5816 * which we hold.
5817 */
fba94807 5818 spin_lock(&memcg->event_list_lock);
79bd9814
TH
5819 if (!list_empty(&event->list)) {
5820 list_del_init(&event->list);
5821 /*
5822 * We are in atomic context, but cgroup_event_remove()
5823 * may sleep, so we have to call it in workqueue.
5824 */
5825 schedule_work(&event->remove);
5826 }
fba94807 5827 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5828 }
5829
5830 return 0;
5831}
5832
3bc942f3 5833static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
5834 wait_queue_head_t *wqh, poll_table *pt)
5835{
3bc942f3
TH
5836 struct mem_cgroup_event *event =
5837 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
5838
5839 event->wqh = wqh;
5840 add_wait_queue(wqh, &event->wait);
5841}
5842
5843/*
3bc942f3
TH
5844 * DO NOT USE IN NEW FILES.
5845 *
79bd9814
TH
5846 * Parse input and register new cgroup event handler.
5847 *
5848 * Input must be in format '<event_fd> <control_fd> <args>'.
5849 * Interpretation of args is defined by control file implementation.
5850 */
3bc942f3 5851static int memcg_write_event_control(struct cgroup_subsys_state *css,
4d3bb511 5852 struct cftype *cft, char *buffer)
79bd9814 5853{
fba94807 5854 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5855 struct mem_cgroup_event *event;
79bd9814
TH
5856 struct cgroup_subsys_state *cfile_css;
5857 unsigned int efd, cfd;
5858 struct fd efile;
5859 struct fd cfile;
fba94807 5860 const char *name;
79bd9814
TH
5861 char *endp;
5862 int ret;
5863
5864 efd = simple_strtoul(buffer, &endp, 10);
5865 if (*endp != ' ')
5866 return -EINVAL;
5867 buffer = endp + 1;
5868
5869 cfd = simple_strtoul(buffer, &endp, 10);
5870 if ((*endp != ' ') && (*endp != '\0'))
5871 return -EINVAL;
5872 buffer = endp + 1;
5873
5874 event = kzalloc(sizeof(*event), GFP_KERNEL);
5875 if (!event)
5876 return -ENOMEM;
5877
59b6f873 5878 event->memcg = memcg;
79bd9814 5879 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
5880 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5881 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5882 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
5883
5884 efile = fdget(efd);
5885 if (!efile.file) {
5886 ret = -EBADF;
5887 goto out_kfree;
5888 }
5889
5890 event->eventfd = eventfd_ctx_fileget(efile.file);
5891 if (IS_ERR(event->eventfd)) {
5892 ret = PTR_ERR(event->eventfd);
5893 goto out_put_efile;
5894 }
5895
5896 cfile = fdget(cfd);
5897 if (!cfile.file) {
5898 ret = -EBADF;
5899 goto out_put_eventfd;
5900 }
5901
5902 /* the process need read permission on control file */
5903 /* AV: shouldn't we check that it's been opened for read instead? */
5904 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5905 if (ret < 0)
5906 goto out_put_cfile;
5907
fba94807
TH
5908 /*
5909 * Determine the event callbacks and set them in @event. This used
5910 * to be done via struct cftype but cgroup core no longer knows
5911 * about these events. The following is crude but the whole thing
5912 * is for compatibility anyway.
3bc942f3
TH
5913 *
5914 * DO NOT ADD NEW FILES.
fba94807
TH
5915 */
5916 name = cfile.file->f_dentry->d_name.name;
5917
5918 if (!strcmp(name, "memory.usage_in_bytes")) {
5919 event->register_event = mem_cgroup_usage_register_event;
5920 event->unregister_event = mem_cgroup_usage_unregister_event;
5921 } else if (!strcmp(name, "memory.oom_control")) {
5922 event->register_event = mem_cgroup_oom_register_event;
5923 event->unregister_event = mem_cgroup_oom_unregister_event;
5924 } else if (!strcmp(name, "memory.pressure_level")) {
5925 event->register_event = vmpressure_register_event;
5926 event->unregister_event = vmpressure_unregister_event;
5927 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
5928 event->register_event = memsw_cgroup_usage_register_event;
5929 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
5930 } else {
5931 ret = -EINVAL;
5932 goto out_put_cfile;
5933 }
5934
79bd9814 5935 /*
b5557c4c
TH
5936 * Verify @cfile should belong to @css. Also, remaining events are
5937 * automatically removed on cgroup destruction but the removal is
5938 * asynchronous, so take an extra ref on @css.
79bd9814 5939 */
5a17f543
TH
5940 cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
5941 &memory_cgrp_subsys);
79bd9814 5942 ret = -EINVAL;
5a17f543 5943 if (IS_ERR(cfile_css))
79bd9814 5944 goto out_put_cfile;
5a17f543
TH
5945 if (cfile_css != css) {
5946 css_put(cfile_css);
79bd9814 5947 goto out_put_cfile;
5a17f543 5948 }
79bd9814 5949
59b6f873 5950 ret = event->register_event(memcg, event->eventfd, buffer);
79bd9814
TH
5951 if (ret)
5952 goto out_put_css;
5953
5954 efile.file->f_op->poll(efile.file, &event->pt);
5955
fba94807
TH
5956 spin_lock(&memcg->event_list_lock);
5957 list_add(&event->list, &memcg->event_list);
5958 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5959
5960 fdput(cfile);
5961 fdput(efile);
5962
5963 return 0;
5964
5965out_put_css:
b5557c4c 5966 css_put(css);
79bd9814
TH
5967out_put_cfile:
5968 fdput(cfile);
5969out_put_eventfd:
5970 eventfd_ctx_put(event->eventfd);
5971out_put_efile:
5972 fdput(efile);
5973out_kfree:
5974 kfree(event);
5975
5976 return ret;
5977}
5978
8cdea7c0
BS
5979static struct cftype mem_cgroup_files[] = {
5980 {
0eea1030 5981 .name = "usage_in_bytes",
8c7c6e34 5982 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5983 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5984 },
c84872e1
PE
5985 {
5986 .name = "max_usage_in_bytes",
8c7c6e34 5987 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5988 .trigger = mem_cgroup_reset,
791badbd 5989 .read_u64 = mem_cgroup_read_u64,
c84872e1 5990 },
8cdea7c0 5991 {
0eea1030 5992 .name = "limit_in_bytes",
8c7c6e34 5993 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5994 .write_string = mem_cgroup_write,
791badbd 5995 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5996 },
296c81d8
BS
5997 {
5998 .name = "soft_limit_in_bytes",
5999 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6000 .write_string = mem_cgroup_write,
791badbd 6001 .read_u64 = mem_cgroup_read_u64,
296c81d8 6002 },
8cdea7c0
BS
6003 {
6004 .name = "failcnt",
8c7c6e34 6005 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6006 .trigger = mem_cgroup_reset,
791badbd 6007 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6008 },
d2ceb9b7
KH
6009 {
6010 .name = "stat",
2da8ca82 6011 .seq_show = memcg_stat_show,
d2ceb9b7 6012 },
c1e862c1
KH
6013 {
6014 .name = "force_empty",
6015 .trigger = mem_cgroup_force_empty_write,
6016 },
18f59ea7
BS
6017 {
6018 .name = "use_hierarchy",
f00baae7 6019 .flags = CFTYPE_INSANE,
18f59ea7
BS
6020 .write_u64 = mem_cgroup_hierarchy_write,
6021 .read_u64 = mem_cgroup_hierarchy_read,
6022 },
79bd9814 6023 {
3bc942f3
TH
6024 .name = "cgroup.event_control", /* XXX: for compat */
6025 .write_string = memcg_write_event_control,
79bd9814
TH
6026 .flags = CFTYPE_NO_PREFIX,
6027 .mode = S_IWUGO,
6028 },
a7885eb8
KM
6029 {
6030 .name = "swappiness",
6031 .read_u64 = mem_cgroup_swappiness_read,
6032 .write_u64 = mem_cgroup_swappiness_write,
6033 },
7dc74be0
DN
6034 {
6035 .name = "move_charge_at_immigrate",
6036 .read_u64 = mem_cgroup_move_charge_read,
6037 .write_u64 = mem_cgroup_move_charge_write,
6038 },
9490ff27
KH
6039 {
6040 .name = "oom_control",
2da8ca82 6041 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 6042 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6043 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6044 },
70ddf637
AV
6045 {
6046 .name = "pressure_level",
70ddf637 6047 },
406eb0c9
YH
6048#ifdef CONFIG_NUMA
6049 {
6050 .name = "numa_stat",
2da8ca82 6051 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
6052 },
6053#endif
510fc4e1
GC
6054#ifdef CONFIG_MEMCG_KMEM
6055 {
6056 .name = "kmem.limit_in_bytes",
6057 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6058 .write_string = mem_cgroup_write,
791badbd 6059 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6060 },
6061 {
6062 .name = "kmem.usage_in_bytes",
6063 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 6064 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6065 },
6066 {
6067 .name = "kmem.failcnt",
6068 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6069 .trigger = mem_cgroup_reset,
791badbd 6070 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6071 },
6072 {
6073 .name = "kmem.max_usage_in_bytes",
6074 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6075 .trigger = mem_cgroup_reset,
791badbd 6076 .read_u64 = mem_cgroup_read_u64,
510fc4e1 6077 },
749c5415
GC
6078#ifdef CONFIG_SLABINFO
6079 {
6080 .name = "kmem.slabinfo",
2da8ca82 6081 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
6082 },
6083#endif
8c7c6e34 6084#endif
6bc10349 6085 { }, /* terminate */
af36f906 6086};
8c7c6e34 6087
2d11085e
MH
6088#ifdef CONFIG_MEMCG_SWAP
6089static struct cftype memsw_cgroup_files[] = {
6090 {
6091 .name = "memsw.usage_in_bytes",
6092 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 6093 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6094 },
6095 {
6096 .name = "memsw.max_usage_in_bytes",
6097 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6098 .trigger = mem_cgroup_reset,
791badbd 6099 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6100 },
6101 {
6102 .name = "memsw.limit_in_bytes",
6103 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6104 .write_string = mem_cgroup_write,
791badbd 6105 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6106 },
6107 {
6108 .name = "memsw.failcnt",
6109 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6110 .trigger = mem_cgroup_reset,
791badbd 6111 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6112 },
6113 { }, /* terminate */
6114};
6115#endif
c0ff4b85 6116static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6117{
6118 struct mem_cgroup_per_node *pn;
1ecaab2b 6119 struct mem_cgroup_per_zone *mz;
41e3355d 6120 int zone, tmp = node;
1ecaab2b
KH
6121 /*
6122 * This routine is called against possible nodes.
6123 * But it's BUG to call kmalloc() against offline node.
6124 *
6125 * TODO: this routine can waste much memory for nodes which will
6126 * never be onlined. It's better to use memory hotplug callback
6127 * function.
6128 */
41e3355d
KH
6129 if (!node_state(node, N_NORMAL_MEMORY))
6130 tmp = -1;
17295c88 6131 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6132 if (!pn)
6133 return 1;
1ecaab2b 6134
1ecaab2b
KH
6135 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6136 mz = &pn->zoneinfo[zone];
bea8c150 6137 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6138 mz->usage_in_excess = 0;
6139 mz->on_tree = false;
d79154bb 6140 mz->memcg = memcg;
1ecaab2b 6141 }
54f72fe0 6142 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6143 return 0;
6144}
6145
c0ff4b85 6146static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6147{
54f72fe0 6148 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6149}
6150
33327948
KH
6151static struct mem_cgroup *mem_cgroup_alloc(void)
6152{
d79154bb 6153 struct mem_cgroup *memcg;
8ff69e2c 6154 size_t size;
33327948 6155
8ff69e2c
VD
6156 size = sizeof(struct mem_cgroup);
6157 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 6158
8ff69e2c 6159 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 6160 if (!memcg)
e7bbcdf3
DC
6161 return NULL;
6162
d79154bb
HD
6163 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6164 if (!memcg->stat)
d2e61b8d 6165 goto out_free;
d79154bb
HD
6166 spin_lock_init(&memcg->pcp_counter_lock);
6167 return memcg;
d2e61b8d
DC
6168
6169out_free:
8ff69e2c 6170 kfree(memcg);
d2e61b8d 6171 return NULL;
33327948
KH
6172}
6173
59927fb9 6174/*
c8b2a36f
GC
6175 * At destroying mem_cgroup, references from swap_cgroup can remain.
6176 * (scanning all at force_empty is too costly...)
6177 *
6178 * Instead of clearing all references at force_empty, we remember
6179 * the number of reference from swap_cgroup and free mem_cgroup when
6180 * it goes down to 0.
6181 *
6182 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6183 */
c8b2a36f
GC
6184
6185static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6186{
c8b2a36f 6187 int node;
59927fb9 6188
bb4cc1a8 6189 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6190
6191 for_each_node(node)
6192 free_mem_cgroup_per_zone_info(memcg, node);
6193
6194 free_percpu(memcg->stat);
6195
3f134619
GC
6196 /*
6197 * We need to make sure that (at least for now), the jump label
6198 * destruction code runs outside of the cgroup lock. This is because
6199 * get_online_cpus(), which is called from the static_branch update,
6200 * can't be called inside the cgroup_lock. cpusets are the ones
6201 * enforcing this dependency, so if they ever change, we might as well.
6202 *
6203 * schedule_work() will guarantee this happens. Be careful if you need
6204 * to move this code around, and make sure it is outside
6205 * the cgroup_lock.
6206 */
a8964b9b 6207 disarm_static_keys(memcg);
8ff69e2c 6208 kfree(memcg);
59927fb9 6209}
3afe36b1 6210
7bcc1bb1
DN
6211/*
6212 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6213 */
e1aab161 6214struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6215{
c0ff4b85 6216 if (!memcg->res.parent)
7bcc1bb1 6217 return NULL;
c0ff4b85 6218 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6219}
e1aab161 6220EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6221
bb4cc1a8
AM
6222static void __init mem_cgroup_soft_limit_tree_init(void)
6223{
6224 struct mem_cgroup_tree_per_node *rtpn;
6225 struct mem_cgroup_tree_per_zone *rtpz;
6226 int tmp, node, zone;
6227
6228 for_each_node(node) {
6229 tmp = node;
6230 if (!node_state(node, N_NORMAL_MEMORY))
6231 tmp = -1;
6232 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6233 BUG_ON(!rtpn);
6234
6235 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6236
6237 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6238 rtpz = &rtpn->rb_tree_per_zone[zone];
6239 rtpz->rb_root = RB_ROOT;
6240 spin_lock_init(&rtpz->lock);
6241 }
6242 }
6243}
6244
0eb253e2 6245static struct cgroup_subsys_state * __ref
eb95419b 6246mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6247{
d142e3e6 6248 struct mem_cgroup *memcg;
04046e1a 6249 long error = -ENOMEM;
6d12e2d8 6250 int node;
8cdea7c0 6251
c0ff4b85
R
6252 memcg = mem_cgroup_alloc();
6253 if (!memcg)
04046e1a 6254 return ERR_PTR(error);
78fb7466 6255
3ed28fa1 6256 for_each_node(node)
c0ff4b85 6257 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6258 goto free_out;
f64c3f54 6259
c077719b 6260 /* root ? */
eb95419b 6261 if (parent_css == NULL) {
a41c58a6 6262 root_mem_cgroup = memcg;
d142e3e6
GC
6263 res_counter_init(&memcg->res, NULL);
6264 res_counter_init(&memcg->memsw, NULL);
6265 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6266 }
28dbc4b6 6267
d142e3e6
GC
6268 memcg->last_scanned_node = MAX_NUMNODES;
6269 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6270 memcg->move_charge_at_immigrate = 0;
6271 mutex_init(&memcg->thresholds_lock);
6272 spin_lock_init(&memcg->move_lock);
70ddf637 6273 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6274 INIT_LIST_HEAD(&memcg->event_list);
6275 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6276
6277 return &memcg->css;
6278
6279free_out:
6280 __mem_cgroup_free(memcg);
6281 return ERR_PTR(error);
6282}
6283
6284static int
eb95419b 6285mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6286{
eb95419b
TH
6287 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6288 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6 6289
4219b2da
LZ
6290 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6291 return -ENOSPC;
6292
63876986 6293 if (!parent)
d142e3e6
GC
6294 return 0;
6295
0999821b 6296 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6297
6298 memcg->use_hierarchy = parent->use_hierarchy;
6299 memcg->oom_kill_disable = parent->oom_kill_disable;
6300 memcg->swappiness = mem_cgroup_swappiness(parent);
6301
6302 if (parent->use_hierarchy) {
c0ff4b85
R
6303 res_counter_init(&memcg->res, &parent->res);
6304 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6305 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6306
7bcc1bb1 6307 /*
8d76a979
LZ
6308 * No need to take a reference to the parent because cgroup
6309 * core guarantees its existence.
7bcc1bb1 6310 */
18f59ea7 6311 } else {
c0ff4b85
R
6312 res_counter_init(&memcg->res, NULL);
6313 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6314 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6315 /*
6316 * Deeper hierachy with use_hierarchy == false doesn't make
6317 * much sense so let cgroup subsystem know about this
6318 * unfortunate state in our controller.
6319 */
d142e3e6 6320 if (parent != root_mem_cgroup)
073219e9 6321 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 6322 }
0999821b 6323 mutex_unlock(&memcg_create_mutex);
d6441637 6324
073219e9 6325 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
8cdea7c0
BS
6326}
6327
5f578161
MH
6328/*
6329 * Announce all parents that a group from their hierarchy is gone.
6330 */
6331static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6332{
6333 struct mem_cgroup *parent = memcg;
6334
6335 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6336 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6337
6338 /*
6339 * if the root memcg is not hierarchical we have to check it
6340 * explicitely.
6341 */
6342 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6343 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6344}
6345
eb95419b 6346static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6347{
eb95419b 6348 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6349 struct mem_cgroup_event *event, *tmp;
4fb1a86f 6350 struct cgroup_subsys_state *iter;
79bd9814
TH
6351
6352 /*
6353 * Unregister events and notify userspace.
6354 * Notify userspace about cgroup removing only after rmdir of cgroup
6355 * directory to avoid race between userspace and kernelspace.
6356 */
fba94807
TH
6357 spin_lock(&memcg->event_list_lock);
6358 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6359 list_del_init(&event->list);
6360 schedule_work(&event->remove);
6361 }
fba94807 6362 spin_unlock(&memcg->event_list_lock);
ec64f515 6363
10d5ebf4
LZ
6364 kmem_cgroup_css_offline(memcg);
6365
5f578161 6366 mem_cgroup_invalidate_reclaim_iterators(memcg);
4fb1a86f
FB
6367
6368 /*
6369 * This requires that offlining is serialized. Right now that is
6370 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6371 */
6372 css_for_each_descendant_post(iter, css)
6373 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6374
1f458cbf 6375 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6376 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6377}
6378
eb95419b 6379static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6380{
eb95419b 6381 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
6382 /*
6383 * XXX: css_offline() would be where we should reparent all
6384 * memory to prepare the cgroup for destruction. However,
6385 * memcg does not do css_tryget() and res_counter charging
6386 * under the same RCU lock region, which means that charging
6387 * could race with offlining. Offlining only happens to
6388 * cgroups with no tasks in them but charges can show up
6389 * without any tasks from the swapin path when the target
6390 * memcg is looked up from the swapout record and not from the
6391 * current task as it usually is. A race like this can leak
6392 * charges and put pages with stale cgroup pointers into
6393 * circulation:
6394 *
6395 * #0 #1
6396 * lookup_swap_cgroup_id()
6397 * rcu_read_lock()
6398 * mem_cgroup_lookup()
6399 * css_tryget()
6400 * rcu_read_unlock()
6401 * disable css_tryget()
6402 * call_rcu()
6403 * offline_css()
6404 * reparent_charges()
6405 * res_counter_charge()
6406 * css_put()
6407 * css_free()
6408 * pc->mem_cgroup = dead memcg
6409 * add page to lru
6410 *
6411 * The bulk of the charges are still moved in offline_css() to
6412 * avoid pinning a lot of pages in case a long-term reference
6413 * like a swapout record is deferring the css_free() to long
6414 * after offlining. But this makes sure we catch any charges
6415 * made after offlining:
6416 */
6417 mem_cgroup_reparent_charges(memcg);
c268e994 6418
10d5ebf4 6419 memcg_destroy_kmem(memcg);
465939a1 6420 __mem_cgroup_free(memcg);
8cdea7c0
BS
6421}
6422
02491447 6423#ifdef CONFIG_MMU
7dc74be0 6424/* Handlers for move charge at task migration. */
854ffa8d
DN
6425#define PRECHARGE_COUNT_AT_ONCE 256
6426static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6427{
854ffa8d
DN
6428 int ret = 0;
6429 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6430 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6431
c0ff4b85 6432 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6433 mc.precharge += count;
6434 /* we don't need css_get for root */
6435 return ret;
6436 }
6437 /* try to charge at once */
6438 if (count > 1) {
6439 struct res_counter *dummy;
6440 /*
c0ff4b85 6441 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6442 * by cgroup_lock_live_cgroup() that it is not removed and we
6443 * are still under the same cgroup_mutex. So we can postpone
6444 * css_get().
6445 */
c0ff4b85 6446 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6447 goto one_by_one;
c0ff4b85 6448 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6449 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6450 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6451 goto one_by_one;
6452 }
6453 mc.precharge += count;
854ffa8d
DN
6454 return ret;
6455 }
6456one_by_one:
6457 /* fall back to one by one charge */
6458 while (count--) {
6459 if (signal_pending(current)) {
6460 ret = -EINTR;
6461 break;
6462 }
6463 if (!batch_count--) {
6464 batch_count = PRECHARGE_COUNT_AT_ONCE;
6465 cond_resched();
6466 }
6d1fdc48 6467 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
38c5d72f 6468 if (ret)
854ffa8d 6469 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6470 return ret;
854ffa8d
DN
6471 mc.precharge++;
6472 }
4ffef5fe
DN
6473 return ret;
6474}
6475
6476/**
8d32ff84 6477 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6478 * @vma: the vma the pte to be checked belongs
6479 * @addr: the address corresponding to the pte to be checked
6480 * @ptent: the pte to be checked
02491447 6481 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6482 *
6483 * Returns
6484 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6485 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6486 * move charge. if @target is not NULL, the page is stored in target->page
6487 * with extra refcnt got(Callers should handle it).
02491447
DN
6488 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6489 * target for charge migration. if @target is not NULL, the entry is stored
6490 * in target->ent.
4ffef5fe
DN
6491 *
6492 * Called with pte lock held.
6493 */
4ffef5fe
DN
6494union mc_target {
6495 struct page *page;
02491447 6496 swp_entry_t ent;
4ffef5fe
DN
6497};
6498
4ffef5fe 6499enum mc_target_type {
8d32ff84 6500 MC_TARGET_NONE = 0,
4ffef5fe 6501 MC_TARGET_PAGE,
02491447 6502 MC_TARGET_SWAP,
4ffef5fe
DN
6503};
6504
90254a65
DN
6505static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6506 unsigned long addr, pte_t ptent)
4ffef5fe 6507{
90254a65 6508 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6509
90254a65
DN
6510 if (!page || !page_mapped(page))
6511 return NULL;
6512 if (PageAnon(page)) {
6513 /* we don't move shared anon */
4b91355e 6514 if (!move_anon())
90254a65 6515 return NULL;
87946a72
DN
6516 } else if (!move_file())
6517 /* we ignore mapcount for file pages */
90254a65
DN
6518 return NULL;
6519 if (!get_page_unless_zero(page))
6520 return NULL;
6521
6522 return page;
6523}
6524
4b91355e 6525#ifdef CONFIG_SWAP
90254a65
DN
6526static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6527 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6528{
90254a65
DN
6529 struct page *page = NULL;
6530 swp_entry_t ent = pte_to_swp_entry(ptent);
6531
6532 if (!move_anon() || non_swap_entry(ent))
6533 return NULL;
4b91355e
KH
6534 /*
6535 * Because lookup_swap_cache() updates some statistics counter,
6536 * we call find_get_page() with swapper_space directly.
6537 */
33806f06 6538 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6539 if (do_swap_account)
6540 entry->val = ent.val;
6541
6542 return page;
6543}
4b91355e
KH
6544#else
6545static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6546 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6547{
6548 return NULL;
6549}
6550#endif
90254a65 6551
87946a72
DN
6552static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6553 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6554{
6555 struct page *page = NULL;
87946a72
DN
6556 struct address_space *mapping;
6557 pgoff_t pgoff;
6558
6559 if (!vma->vm_file) /* anonymous vma */
6560 return NULL;
6561 if (!move_file())
6562 return NULL;
6563
87946a72
DN
6564 mapping = vma->vm_file->f_mapping;
6565 if (pte_none(ptent))
6566 pgoff = linear_page_index(vma, addr);
6567 else /* pte_file(ptent) is true */
6568 pgoff = pte_to_pgoff(ptent);
6569
6570 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6571#ifdef CONFIG_SWAP
6572 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
6573 if (shmem_mapping(mapping)) {
6574 page = find_get_entry(mapping, pgoff);
6575 if (radix_tree_exceptional_entry(page)) {
6576 swp_entry_t swp = radix_to_swp_entry(page);
6577 if (do_swap_account)
6578 *entry = swp;
6579 page = find_get_page(swap_address_space(swp), swp.val);
6580 }
6581 } else
6582 page = find_get_page(mapping, pgoff);
6583#else
6584 page = find_get_page(mapping, pgoff);
aa3b1895 6585#endif
87946a72
DN
6586 return page;
6587}
6588
8d32ff84 6589static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6590 unsigned long addr, pte_t ptent, union mc_target *target)
6591{
6592 struct page *page = NULL;
6593 struct page_cgroup *pc;
8d32ff84 6594 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6595 swp_entry_t ent = { .val = 0 };
6596
6597 if (pte_present(ptent))
6598 page = mc_handle_present_pte(vma, addr, ptent);
6599 else if (is_swap_pte(ptent))
6600 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6601 else if (pte_none(ptent) || pte_file(ptent))
6602 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6603
6604 if (!page && !ent.val)
8d32ff84 6605 return ret;
02491447
DN
6606 if (page) {
6607 pc = lookup_page_cgroup(page);
6608 /*
6609 * Do only loose check w/o page_cgroup lock.
6610 * mem_cgroup_move_account() checks the pc is valid or not under
6611 * the lock.
6612 */
6613 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6614 ret = MC_TARGET_PAGE;
6615 if (target)
6616 target->page = page;
6617 }
6618 if (!ret || !target)
6619 put_page(page);
6620 }
90254a65
DN
6621 /* There is a swap entry and a page doesn't exist or isn't charged */
6622 if (ent.val && !ret &&
34c00c31 6623 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6624 ret = MC_TARGET_SWAP;
6625 if (target)
6626 target->ent = ent;
4ffef5fe 6627 }
4ffef5fe
DN
6628 return ret;
6629}
6630
12724850
NH
6631#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6632/*
6633 * We don't consider swapping or file mapped pages because THP does not
6634 * support them for now.
6635 * Caller should make sure that pmd_trans_huge(pmd) is true.
6636 */
6637static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6638 unsigned long addr, pmd_t pmd, union mc_target *target)
6639{
6640 struct page *page = NULL;
6641 struct page_cgroup *pc;
6642 enum mc_target_type ret = MC_TARGET_NONE;
6643
6644 page = pmd_page(pmd);
309381fe 6645 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
6646 if (!move_anon())
6647 return ret;
6648 pc = lookup_page_cgroup(page);
6649 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6650 ret = MC_TARGET_PAGE;
6651 if (target) {
6652 get_page(page);
6653 target->page = page;
6654 }
6655 }
6656 return ret;
6657}
6658#else
6659static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6660 unsigned long addr, pmd_t pmd, union mc_target *target)
6661{
6662 return MC_TARGET_NONE;
6663}
6664#endif
6665
4ffef5fe
DN
6666static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6667 unsigned long addr, unsigned long end,
6668 struct mm_walk *walk)
6669{
6670 struct vm_area_struct *vma = walk->private;
6671 pte_t *pte;
6672 spinlock_t *ptl;
6673
bf929152 6674 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6675 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6676 mc.precharge += HPAGE_PMD_NR;
bf929152 6677 spin_unlock(ptl);
1a5a9906 6678 return 0;
12724850 6679 }
03319327 6680
45f83cef
AA
6681 if (pmd_trans_unstable(pmd))
6682 return 0;
4ffef5fe
DN
6683 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6684 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6685 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6686 mc.precharge++; /* increment precharge temporarily */
6687 pte_unmap_unlock(pte - 1, ptl);
6688 cond_resched();
6689
7dc74be0
DN
6690 return 0;
6691}
6692
4ffef5fe
DN
6693static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6694{
6695 unsigned long precharge;
6696 struct vm_area_struct *vma;
6697
dfe076b0 6698 down_read(&mm->mmap_sem);
4ffef5fe
DN
6699 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6700 struct mm_walk mem_cgroup_count_precharge_walk = {
6701 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6702 .mm = mm,
6703 .private = vma,
6704 };
6705 if (is_vm_hugetlb_page(vma))
6706 continue;
4ffef5fe
DN
6707 walk_page_range(vma->vm_start, vma->vm_end,
6708 &mem_cgroup_count_precharge_walk);
6709 }
dfe076b0 6710 up_read(&mm->mmap_sem);
4ffef5fe
DN
6711
6712 precharge = mc.precharge;
6713 mc.precharge = 0;
6714
6715 return precharge;
6716}
6717
4ffef5fe
DN
6718static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6719{
dfe076b0
DN
6720 unsigned long precharge = mem_cgroup_count_precharge(mm);
6721
6722 VM_BUG_ON(mc.moving_task);
6723 mc.moving_task = current;
6724 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6725}
6726
dfe076b0
DN
6727/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6728static void __mem_cgroup_clear_mc(void)
4ffef5fe 6729{
2bd9bb20
KH
6730 struct mem_cgroup *from = mc.from;
6731 struct mem_cgroup *to = mc.to;
4050377b 6732 int i;
2bd9bb20 6733
4ffef5fe 6734 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6735 if (mc.precharge) {
6736 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6737 mc.precharge = 0;
6738 }
6739 /*
6740 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6741 * we must uncharge here.
6742 */
6743 if (mc.moved_charge) {
6744 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6745 mc.moved_charge = 0;
4ffef5fe 6746 }
483c30b5
DN
6747 /* we must fixup refcnts and charges */
6748 if (mc.moved_swap) {
483c30b5
DN
6749 /* uncharge swap account from the old cgroup */
6750 if (!mem_cgroup_is_root(mc.from))
6751 res_counter_uncharge(&mc.from->memsw,
6752 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6753
6754 for (i = 0; i < mc.moved_swap; i++)
6755 css_put(&mc.from->css);
483c30b5
DN
6756
6757 if (!mem_cgroup_is_root(mc.to)) {
6758 /*
6759 * we charged both to->res and to->memsw, so we should
6760 * uncharge to->res.
6761 */
6762 res_counter_uncharge(&mc.to->res,
6763 PAGE_SIZE * mc.moved_swap);
483c30b5 6764 }
4050377b 6765 /* we've already done css_get(mc.to) */
483c30b5
DN
6766 mc.moved_swap = 0;
6767 }
dfe076b0
DN
6768 memcg_oom_recover(from);
6769 memcg_oom_recover(to);
6770 wake_up_all(&mc.waitq);
6771}
6772
6773static void mem_cgroup_clear_mc(void)
6774{
6775 struct mem_cgroup *from = mc.from;
6776
6777 /*
6778 * we must clear moving_task before waking up waiters at the end of
6779 * task migration.
6780 */
6781 mc.moving_task = NULL;
6782 __mem_cgroup_clear_mc();
2bd9bb20 6783 spin_lock(&mc.lock);
4ffef5fe
DN
6784 mc.from = NULL;
6785 mc.to = NULL;
2bd9bb20 6786 spin_unlock(&mc.lock);
32047e2a 6787 mem_cgroup_end_move(from);
4ffef5fe
DN
6788}
6789
eb95419b 6790static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6791 struct cgroup_taskset *tset)
7dc74be0 6792{
2f7ee569 6793 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6794 int ret = 0;
eb95419b 6795 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6796 unsigned long move_charge_at_immigrate;
7dc74be0 6797
ee5e8472
GC
6798 /*
6799 * We are now commited to this value whatever it is. Changes in this
6800 * tunable will only affect upcoming migrations, not the current one.
6801 * So we need to save it, and keep it going.
6802 */
6803 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6804 if (move_charge_at_immigrate) {
7dc74be0
DN
6805 struct mm_struct *mm;
6806 struct mem_cgroup *from = mem_cgroup_from_task(p);
6807
c0ff4b85 6808 VM_BUG_ON(from == memcg);
7dc74be0
DN
6809
6810 mm = get_task_mm(p);
6811 if (!mm)
6812 return 0;
7dc74be0 6813 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6814 if (mm->owner == p) {
6815 VM_BUG_ON(mc.from);
6816 VM_BUG_ON(mc.to);
6817 VM_BUG_ON(mc.precharge);
854ffa8d 6818 VM_BUG_ON(mc.moved_charge);
483c30b5 6819 VM_BUG_ON(mc.moved_swap);
32047e2a 6820 mem_cgroup_start_move(from);
2bd9bb20 6821 spin_lock(&mc.lock);
4ffef5fe 6822 mc.from = from;
c0ff4b85 6823 mc.to = memcg;
ee5e8472 6824 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6825 spin_unlock(&mc.lock);
dfe076b0 6826 /* We set mc.moving_task later */
4ffef5fe
DN
6827
6828 ret = mem_cgroup_precharge_mc(mm);
6829 if (ret)
6830 mem_cgroup_clear_mc();
dfe076b0
DN
6831 }
6832 mmput(mm);
7dc74be0
DN
6833 }
6834 return ret;
6835}
6836
eb95419b 6837static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6838 struct cgroup_taskset *tset)
7dc74be0 6839{
4ffef5fe 6840 mem_cgroup_clear_mc();
7dc74be0
DN
6841}
6842
4ffef5fe
DN
6843static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6844 unsigned long addr, unsigned long end,
6845 struct mm_walk *walk)
7dc74be0 6846{
4ffef5fe
DN
6847 int ret = 0;
6848 struct vm_area_struct *vma = walk->private;
6849 pte_t *pte;
6850 spinlock_t *ptl;
12724850
NH
6851 enum mc_target_type target_type;
6852 union mc_target target;
6853 struct page *page;
6854 struct page_cgroup *pc;
4ffef5fe 6855
12724850
NH
6856 /*
6857 * We don't take compound_lock() here but no race with splitting thp
6858 * happens because:
6859 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6860 * under splitting, which means there's no concurrent thp split,
6861 * - if another thread runs into split_huge_page() just after we
6862 * entered this if-block, the thread must wait for page table lock
6863 * to be unlocked in __split_huge_page_splitting(), where the main
6864 * part of thp split is not executed yet.
6865 */
bf929152 6866 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 6867 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6868 spin_unlock(ptl);
12724850
NH
6869 return 0;
6870 }
6871 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6872 if (target_type == MC_TARGET_PAGE) {
6873 page = target.page;
6874 if (!isolate_lru_page(page)) {
6875 pc = lookup_page_cgroup(page);
6876 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6877 pc, mc.from, mc.to)) {
12724850
NH
6878 mc.precharge -= HPAGE_PMD_NR;
6879 mc.moved_charge += HPAGE_PMD_NR;
6880 }
6881 putback_lru_page(page);
6882 }
6883 put_page(page);
6884 }
bf929152 6885 spin_unlock(ptl);
1a5a9906 6886 return 0;
12724850
NH
6887 }
6888
45f83cef
AA
6889 if (pmd_trans_unstable(pmd))
6890 return 0;
4ffef5fe
DN
6891retry:
6892 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6893 for (; addr != end; addr += PAGE_SIZE) {
6894 pte_t ptent = *(pte++);
02491447 6895 swp_entry_t ent;
4ffef5fe
DN
6896
6897 if (!mc.precharge)
6898 break;
6899
8d32ff84 6900 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6901 case MC_TARGET_PAGE:
6902 page = target.page;
6903 if (isolate_lru_page(page))
6904 goto put;
6905 pc = lookup_page_cgroup(page);
7ec99d62 6906 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6907 mc.from, mc.to)) {
4ffef5fe 6908 mc.precharge--;
854ffa8d
DN
6909 /* we uncharge from mc.from later. */
6910 mc.moved_charge++;
4ffef5fe
DN
6911 }
6912 putback_lru_page(page);
8d32ff84 6913put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6914 put_page(page);
6915 break;
02491447
DN
6916 case MC_TARGET_SWAP:
6917 ent = target.ent;
e91cbb42 6918 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6919 mc.precharge--;
483c30b5
DN
6920 /* we fixup refcnts and charges later. */
6921 mc.moved_swap++;
6922 }
02491447 6923 break;
4ffef5fe
DN
6924 default:
6925 break;
6926 }
6927 }
6928 pte_unmap_unlock(pte - 1, ptl);
6929 cond_resched();
6930
6931 if (addr != end) {
6932 /*
6933 * We have consumed all precharges we got in can_attach().
6934 * We try charge one by one, but don't do any additional
6935 * charges to mc.to if we have failed in charge once in attach()
6936 * phase.
6937 */
854ffa8d 6938 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6939 if (!ret)
6940 goto retry;
6941 }
6942
6943 return ret;
6944}
6945
6946static void mem_cgroup_move_charge(struct mm_struct *mm)
6947{
6948 struct vm_area_struct *vma;
6949
6950 lru_add_drain_all();
dfe076b0
DN
6951retry:
6952 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6953 /*
6954 * Someone who are holding the mmap_sem might be waiting in
6955 * waitq. So we cancel all extra charges, wake up all waiters,
6956 * and retry. Because we cancel precharges, we might not be able
6957 * to move enough charges, but moving charge is a best-effort
6958 * feature anyway, so it wouldn't be a big problem.
6959 */
6960 __mem_cgroup_clear_mc();
6961 cond_resched();
6962 goto retry;
6963 }
4ffef5fe
DN
6964 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6965 int ret;
6966 struct mm_walk mem_cgroup_move_charge_walk = {
6967 .pmd_entry = mem_cgroup_move_charge_pte_range,
6968 .mm = mm,
6969 .private = vma,
6970 };
6971 if (is_vm_hugetlb_page(vma))
6972 continue;
4ffef5fe
DN
6973 ret = walk_page_range(vma->vm_start, vma->vm_end,
6974 &mem_cgroup_move_charge_walk);
6975 if (ret)
6976 /*
6977 * means we have consumed all precharges and failed in
6978 * doing additional charge. Just abandon here.
6979 */
6980 break;
6981 }
dfe076b0 6982 up_read(&mm->mmap_sem);
7dc74be0
DN
6983}
6984
eb95419b 6985static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6986 struct cgroup_taskset *tset)
67e465a7 6987{
2f7ee569 6988 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6989 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6990
dfe076b0 6991 if (mm) {
a433658c
KM
6992 if (mc.to)
6993 mem_cgroup_move_charge(mm);
dfe076b0
DN
6994 mmput(mm);
6995 }
a433658c
KM
6996 if (mc.to)
6997 mem_cgroup_clear_mc();
67e465a7 6998}
5cfb80a7 6999#else /* !CONFIG_MMU */
eb95419b 7000static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7001 struct cgroup_taskset *tset)
5cfb80a7
DN
7002{
7003 return 0;
7004}
eb95419b 7005static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7006 struct cgroup_taskset *tset)
5cfb80a7
DN
7007{
7008}
eb95419b 7009static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7010 struct cgroup_taskset *tset)
5cfb80a7
DN
7011{
7012}
7013#endif
67e465a7 7014
f00baae7
TH
7015/*
7016 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7017 * to verify sane_behavior flag on each mount attempt.
7018 */
eb95419b 7019static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7020{
7021 /*
7022 * use_hierarchy is forced with sane_behavior. cgroup core
7023 * guarantees that @root doesn't have any children, so turning it
7024 * on for the root memcg is enough.
7025 */
eb95419b
TH
7026 if (cgroup_sane_behavior(root_css->cgroup))
7027 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7028}
7029
073219e9 7030struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 7031 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7032 .css_online = mem_cgroup_css_online,
92fb9748
TH
7033 .css_offline = mem_cgroup_css_offline,
7034 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7035 .can_attach = mem_cgroup_can_attach,
7036 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7037 .attach = mem_cgroup_move_task,
f00baae7 7038 .bind = mem_cgroup_bind,
6bc10349 7039 .base_cftypes = mem_cgroup_files,
6d12e2d8 7040 .early_init = 0,
8cdea7c0 7041};
c077719b 7042
c255a458 7043#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7044static int __init enable_swap_account(char *s)
7045{
a2c8990a 7046 if (!strcmp(s, "1"))
a42c390c 7047 really_do_swap_account = 1;
a2c8990a 7048 else if (!strcmp(s, "0"))
a42c390c
MH
7049 really_do_swap_account = 0;
7050 return 1;
7051}
a2c8990a 7052__setup("swapaccount=", enable_swap_account);
c077719b 7053
2d11085e
MH
7054static void __init memsw_file_init(void)
7055{
073219e9 7056 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
6acc8b02
MH
7057}
7058
7059static void __init enable_swap_cgroup(void)
7060{
7061 if (!mem_cgroup_disabled() && really_do_swap_account) {
7062 do_swap_account = 1;
7063 memsw_file_init();
7064 }
2d11085e 7065}
6acc8b02 7066
2d11085e 7067#else
6acc8b02 7068static void __init enable_swap_cgroup(void)
2d11085e
MH
7069{
7070}
c077719b 7071#endif
2d11085e
MH
7072
7073/*
1081312f
MH
7074 * subsys_initcall() for memory controller.
7075 *
7076 * Some parts like hotcpu_notifier() have to be initialized from this context
7077 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7078 * everything that doesn't depend on a specific mem_cgroup structure should
7079 * be initialized from here.
2d11085e
MH
7080 */
7081static int __init mem_cgroup_init(void)
7082{
7083 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7084 enable_swap_cgroup();
bb4cc1a8 7085 mem_cgroup_soft_limit_tree_init();
e4777496 7086 memcg_stock_init();
2d11085e
MH
7087 return 0;
7088}
7089subsys_initcall(mem_cgroup_init);