]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm/memcg: Remove soft_limit_tree_node()
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
b69408e8 56#include <linux/mm_inline.h>
5d1ea48b 57#include <linux/swap_cgroup.h>
cdec2e42 58#include <linux/cpu.h>
158e0a2d 59#include <linux/oom.h>
0056f4e6 60#include <linux/lockdep.h>
79bd9814 61#include <linux/file.h>
b23afb93 62#include <linux/tracehook.h>
0e4b01df 63#include <linux/psi.h>
c8713d0b 64#include <linux/seq_buf.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
f35c3a8e 68#include "slab.h"
8cdea7c0 69
7c0f6ba6 70#include <linux/uaccess.h>
8697d331 71
cc8e970c
KM
72#include <trace/events/vmscan.h>
73
073219e9
TH
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 76
7d828602
JW
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
37d5985c
RG
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 82
f7e1cb6e 83/* Socket memory accounting disabled? */
0f0cace3 84static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 85
04823c83 86/* Kernel memory accounting disabled? */
e267992f 87bool cgroup_memory_nokmem __ro_after_init;
04823c83 88
21afa38e 89/* Whether the swap controller is active */
c255a458 90#ifdef CONFIG_MEMCG_SWAP
0f0cace3 91bool cgroup_memory_noswap __ro_after_init;
c077719b 92#else
eccb52e7 93#define cgroup_memory_noswap 1
2d1c4980 94#endif
c077719b 95
97b27821
TH
96#ifdef CONFIG_CGROUP_WRITEBACK
97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98#endif
99
7941d214
JW
100/* Whether legacy memory+swap accounting is active */
101static bool do_memsw_account(void)
102{
eccb52e7 103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
104}
105
aa48e47e
SB
106/* memcg and lruvec stats flushing */
107static void flush_memcg_stats_dwork(struct work_struct *w);
108static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
aa48e47e
SB
109static DEFINE_SPINLOCK(stats_flush_lock);
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 113
bb4cc1a8
AM
114/*
115 * Cgroups above their limits are maintained in a RB-Tree, independent of
116 * their hierarchy representation
117 */
118
ef8f2327 119struct mem_cgroup_tree_per_node {
bb4cc1a8 120 struct rb_root rb_root;
fa90b2fd 121 struct rb_node *rb_rightmost;
bb4cc1a8
AM
122 spinlock_t lock;
123};
124
bb4cc1a8
AM
125struct mem_cgroup_tree {
126 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
127};
128
129static struct mem_cgroup_tree soft_limit_tree __read_mostly;
130
9490ff27
KH
131/* for OOM */
132struct mem_cgroup_eventfd_list {
133 struct list_head list;
134 struct eventfd_ctx *eventfd;
135};
2e72b634 136
79bd9814
TH
137/*
138 * cgroup_event represents events which userspace want to receive.
139 */
3bc942f3 140struct mem_cgroup_event {
79bd9814 141 /*
59b6f873 142 * memcg which the event belongs to.
79bd9814 143 */
59b6f873 144 struct mem_cgroup *memcg;
79bd9814
TH
145 /*
146 * eventfd to signal userspace about the event.
147 */
148 struct eventfd_ctx *eventfd;
149 /*
150 * Each of these stored in a list by the cgroup.
151 */
152 struct list_head list;
fba94807
TH
153 /*
154 * register_event() callback will be used to add new userspace
155 * waiter for changes related to this event. Use eventfd_signal()
156 * on eventfd to send notification to userspace.
157 */
59b6f873 158 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 159 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
160 /*
161 * unregister_event() callback will be called when userspace closes
162 * the eventfd or on cgroup removing. This callback must be set,
163 * if you want provide notification functionality.
164 */
59b6f873 165 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 166 struct eventfd_ctx *eventfd);
79bd9814
TH
167 /*
168 * All fields below needed to unregister event when
169 * userspace closes eventfd.
170 */
171 poll_table pt;
172 wait_queue_head_t *wqh;
ac6424b9 173 wait_queue_entry_t wait;
79bd9814
TH
174 struct work_struct remove;
175};
176
c0ff4b85
R
177static void mem_cgroup_threshold(struct mem_cgroup *memcg);
178static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 179
7dc74be0
DN
180/* Stuffs for move charges at task migration. */
181/*
1dfab5ab 182 * Types of charges to be moved.
7dc74be0 183 */
1dfab5ab
JW
184#define MOVE_ANON 0x1U
185#define MOVE_FILE 0x2U
186#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 187
4ffef5fe
DN
188/* "mc" and its members are protected by cgroup_mutex */
189static struct move_charge_struct {
b1dd693e 190 spinlock_t lock; /* for from, to */
264a0ae1 191 struct mm_struct *mm;
4ffef5fe
DN
192 struct mem_cgroup *from;
193 struct mem_cgroup *to;
1dfab5ab 194 unsigned long flags;
4ffef5fe 195 unsigned long precharge;
854ffa8d 196 unsigned long moved_charge;
483c30b5 197 unsigned long moved_swap;
8033b97c
DN
198 struct task_struct *moving_task; /* a task moving charges */
199 wait_queue_head_t waitq; /* a waitq for other context */
200} mc = {
2bd9bb20 201 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
202 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
203};
4ffef5fe 204
4e416953
BS
205/*
206 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
207 * limit reclaim to prevent infinite loops, if they ever occur.
208 */
a0db00fc 209#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 210#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 211
8c7c6e34 212/* for encoding cft->private value on file */
86ae53e1
GC
213enum res_type {
214 _MEM,
215 _MEMSWAP,
216 _OOM_TYPE,
510fc4e1 217 _KMEM,
d55f90bf 218 _TCP,
86ae53e1
GC
219};
220
a0db00fc
KS
221#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
222#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 223#define MEMFILE_ATTR(val) ((val) & 0xffff)
f0953a1b 224/* Used for OOM notifier */
9490ff27 225#define OOM_CONTROL (0)
8c7c6e34 226
b05706f1
KT
227/*
228 * Iteration constructs for visiting all cgroups (under a tree). If
229 * loops are exited prematurely (break), mem_cgroup_iter_break() must
230 * be used for reference counting.
231 */
232#define for_each_mem_cgroup_tree(iter, root) \
233 for (iter = mem_cgroup_iter(root, NULL, NULL); \
234 iter != NULL; \
235 iter = mem_cgroup_iter(root, iter, NULL))
236
237#define for_each_mem_cgroup(iter) \
238 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
239 iter != NULL; \
240 iter = mem_cgroup_iter(NULL, iter, NULL))
241
7775face
TH
242static inline bool should_force_charge(void)
243{
244 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
245 (current->flags & PF_EXITING);
246}
247
70ddf637
AV
248/* Some nice accessors for the vmpressure. */
249struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250{
251 if (!memcg)
252 memcg = root_mem_cgroup;
253 return &memcg->vmpressure;
254}
255
9647875b 256struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 257{
9647875b 258 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
259}
260
84c07d11 261#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
262extern spinlock_t css_set_lock;
263
4d5c8aed
RG
264bool mem_cgroup_kmem_disabled(void)
265{
266 return cgroup_memory_nokmem;
267}
268
f1286fae
MS
269static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
270 unsigned int nr_pages);
c1a660de 271
bf4f0599
RG
272static void obj_cgroup_release(struct percpu_ref *ref)
273{
274 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
275 unsigned int nr_bytes;
276 unsigned int nr_pages;
277 unsigned long flags;
278
279 /*
280 * At this point all allocated objects are freed, and
281 * objcg->nr_charged_bytes can't have an arbitrary byte value.
282 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
283 *
284 * The following sequence can lead to it:
285 * 1) CPU0: objcg == stock->cached_objcg
286 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
287 * PAGE_SIZE bytes are charged
288 * 3) CPU1: a process from another memcg is allocating something,
289 * the stock if flushed,
290 * objcg->nr_charged_bytes = PAGE_SIZE - 92
291 * 5) CPU0: we do release this object,
292 * 92 bytes are added to stock->nr_bytes
293 * 6) CPU0: stock is flushed,
294 * 92 bytes are added to objcg->nr_charged_bytes
295 *
296 * In the result, nr_charged_bytes == PAGE_SIZE.
297 * This page will be uncharged in obj_cgroup_release().
298 */
299 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
300 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
301 nr_pages = nr_bytes >> PAGE_SHIFT;
302
bf4f0599 303 if (nr_pages)
f1286fae 304 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1
MS
305
306 spin_lock_irqsave(&css_set_lock, flags);
bf4f0599 307 list_del(&objcg->list);
bf4f0599
RG
308 spin_unlock_irqrestore(&css_set_lock, flags);
309
310 percpu_ref_exit(ref);
311 kfree_rcu(objcg, rcu);
312}
313
314static struct obj_cgroup *obj_cgroup_alloc(void)
315{
316 struct obj_cgroup *objcg;
317 int ret;
318
319 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
320 if (!objcg)
321 return NULL;
322
323 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
324 GFP_KERNEL);
325 if (ret) {
326 kfree(objcg);
327 return NULL;
328 }
329 INIT_LIST_HEAD(&objcg->list);
330 return objcg;
331}
332
333static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
334 struct mem_cgroup *parent)
335{
336 struct obj_cgroup *objcg, *iter;
337
338 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
339
340 spin_lock_irq(&css_set_lock);
341
9838354e
MS
342 /* 1) Ready to reparent active objcg. */
343 list_add(&objcg->list, &memcg->objcg_list);
344 /* 2) Reparent active objcg and already reparented objcgs to parent. */
345 list_for_each_entry(iter, &memcg->objcg_list, list)
346 WRITE_ONCE(iter->memcg, parent);
347 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
348 list_splice(&memcg->objcg_list, &parent->objcg_list);
349
350 spin_unlock_irq(&css_set_lock);
351
352 percpu_ref_kill(&objcg->refcnt);
353}
354
55007d84 355/*
9855609b 356 * This will be used as a shrinker list's index.
b8627835
LZ
357 * The main reason for not using cgroup id for this:
358 * this works better in sparse environments, where we have a lot of memcgs,
359 * but only a few kmem-limited. Or also, if we have, for instance, 200
360 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
361 * 200 entry array for that.
55007d84 362 *
dbcf73e2
VD
363 * The current size of the caches array is stored in memcg_nr_cache_ids. It
364 * will double each time we have to increase it.
55007d84 365 */
dbcf73e2
VD
366static DEFINE_IDA(memcg_cache_ida);
367int memcg_nr_cache_ids;
749c5415 368
05257a1a
VD
369/* Protects memcg_nr_cache_ids */
370static DECLARE_RWSEM(memcg_cache_ids_sem);
371
372void memcg_get_cache_ids(void)
373{
374 down_read(&memcg_cache_ids_sem);
375}
376
377void memcg_put_cache_ids(void)
378{
379 up_read(&memcg_cache_ids_sem);
380}
381
55007d84
GC
382/*
383 * MIN_SIZE is different than 1, because we would like to avoid going through
384 * the alloc/free process all the time. In a small machine, 4 kmem-limited
385 * cgroups is a reasonable guess. In the future, it could be a parameter or
386 * tunable, but that is strictly not necessary.
387 *
b8627835 388 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
389 * this constant directly from cgroup, but it is understandable that this is
390 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 391 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
392 * increase ours as well if it increases.
393 */
394#define MEMCG_CACHES_MIN_SIZE 4
b8627835 395#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 396
d7f25f8a
GC
397/*
398 * A lot of the calls to the cache allocation functions are expected to be
272911a4 399 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
400 * conditional to this static branch, we'll have to allow modules that does
401 * kmem_cache_alloc and the such to see this symbol as well
402 */
ef12947c 403DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 404EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 405#endif
17cc4dfe 406
ad7fa852
TH
407/**
408 * mem_cgroup_css_from_page - css of the memcg associated with a page
409 * @page: page of interest
410 *
411 * If memcg is bound to the default hierarchy, css of the memcg associated
412 * with @page is returned. The returned css remains associated with @page
413 * until it is released.
414 *
415 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
416 * is returned.
ad7fa852
TH
417 */
418struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
419{
420 struct mem_cgroup *memcg;
421
bcfe06bf 422 memcg = page_memcg(page);
ad7fa852 423
9e10a130 424 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
425 memcg = root_mem_cgroup;
426
ad7fa852
TH
427 return &memcg->css;
428}
429
2fc04524
VD
430/**
431 * page_cgroup_ino - return inode number of the memcg a page is charged to
432 * @page: the page
433 *
434 * Look up the closest online ancestor of the memory cgroup @page is charged to
435 * and return its inode number or 0 if @page is not charged to any cgroup. It
436 * is safe to call this function without holding a reference to @page.
437 *
438 * Note, this function is inherently racy, because there is nothing to prevent
439 * the cgroup inode from getting torn down and potentially reallocated a moment
440 * after page_cgroup_ino() returns, so it only should be used by callers that
441 * do not care (such as procfs interfaces).
442 */
443ino_t page_cgroup_ino(struct page *page)
444{
445 struct mem_cgroup *memcg;
446 unsigned long ino = 0;
447
448 rcu_read_lock();
bcfe06bf 449 memcg = page_memcg_check(page);
286e04b8 450
2fc04524
VD
451 while (memcg && !(memcg->css.flags & CSS_ONLINE))
452 memcg = parent_mem_cgroup(memcg);
453 if (memcg)
454 ino = cgroup_ino(memcg->css.cgroup);
455 rcu_read_unlock();
456 return ino;
457}
458
ef8f2327
MG
459static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
460 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 461 unsigned long new_usage_in_excess)
bb4cc1a8
AM
462{
463 struct rb_node **p = &mctz->rb_root.rb_node;
464 struct rb_node *parent = NULL;
ef8f2327 465 struct mem_cgroup_per_node *mz_node;
fa90b2fd 466 bool rightmost = true;
bb4cc1a8
AM
467
468 if (mz->on_tree)
469 return;
470
471 mz->usage_in_excess = new_usage_in_excess;
472 if (!mz->usage_in_excess)
473 return;
474 while (*p) {
475 parent = *p;
ef8f2327 476 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 477 tree_node);
fa90b2fd 478 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 479 p = &(*p)->rb_left;
fa90b2fd 480 rightmost = false;
378876b0 481 } else {
bb4cc1a8 482 p = &(*p)->rb_right;
378876b0 483 }
bb4cc1a8 484 }
fa90b2fd
DB
485
486 if (rightmost)
487 mctz->rb_rightmost = &mz->tree_node;
488
bb4cc1a8
AM
489 rb_link_node(&mz->tree_node, parent, p);
490 rb_insert_color(&mz->tree_node, &mctz->rb_root);
491 mz->on_tree = true;
492}
493
ef8f2327
MG
494static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
495 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
496{
497 if (!mz->on_tree)
498 return;
fa90b2fd
DB
499
500 if (&mz->tree_node == mctz->rb_rightmost)
501 mctz->rb_rightmost = rb_prev(&mz->tree_node);
502
bb4cc1a8
AM
503 rb_erase(&mz->tree_node, &mctz->rb_root);
504 mz->on_tree = false;
505}
506
ef8f2327
MG
507static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
508 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 509{
0a31bc97
JW
510 unsigned long flags;
511
512 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 513 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 514 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
515}
516
3e32cb2e
JW
517static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
518{
519 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 520 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
521 unsigned long excess = 0;
522
523 if (nr_pages > soft_limit)
524 excess = nr_pages - soft_limit;
525
526 return excess;
527}
bb4cc1a8 528
658b69c9 529static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
bb4cc1a8 530{
3e32cb2e 531 unsigned long excess;
ef8f2327
MG
532 struct mem_cgroup_per_node *mz;
533 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 534
2ab082ba 535 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
536 if (!mctz)
537 return;
bb4cc1a8
AM
538 /*
539 * Necessary to update all ancestors when hierarchy is used.
540 * because their event counter is not touched.
541 */
542 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
658b69c9 543 mz = memcg->nodeinfo[nid];
3e32cb2e 544 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
545 /*
546 * We have to update the tree if mz is on RB-tree or
547 * mem is over its softlimit.
548 */
549 if (excess || mz->on_tree) {
0a31bc97
JW
550 unsigned long flags;
551
552 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
553 /* if on-tree, remove it */
554 if (mz->on_tree)
cf2c8127 555 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
556 /*
557 * Insert again. mz->usage_in_excess will be updated.
558 * If excess is 0, no tree ops.
559 */
cf2c8127 560 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 561 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
562 }
563 }
564}
565
566static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
567{
ef8f2327
MG
568 struct mem_cgroup_tree_per_node *mctz;
569 struct mem_cgroup_per_node *mz;
570 int nid;
bb4cc1a8 571
e231875b 572 for_each_node(nid) {
a3747b53 573 mz = memcg->nodeinfo[nid];
2ab082ba 574 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
575 if (mctz)
576 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
577 }
578}
579
ef8f2327
MG
580static struct mem_cgroup_per_node *
581__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 582{
ef8f2327 583 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
584
585retry:
586 mz = NULL;
fa90b2fd 587 if (!mctz->rb_rightmost)
bb4cc1a8
AM
588 goto done; /* Nothing to reclaim from */
589
fa90b2fd
DB
590 mz = rb_entry(mctz->rb_rightmost,
591 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
592 /*
593 * Remove the node now but someone else can add it back,
594 * we will to add it back at the end of reclaim to its correct
595 * position in the tree.
596 */
cf2c8127 597 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 598 if (!soft_limit_excess(mz->memcg) ||
8965aa28 599 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
600 goto retry;
601done:
602 return mz;
603}
604
ef8f2327
MG
605static struct mem_cgroup_per_node *
606mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 607{
ef8f2327 608 struct mem_cgroup_per_node *mz;
bb4cc1a8 609
0a31bc97 610 spin_lock_irq(&mctz->lock);
bb4cc1a8 611 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 612 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
613 return mz;
614}
615
db9adbcb
JW
616/**
617 * __mod_memcg_state - update cgroup memory statistics
618 * @memcg: the memory cgroup
619 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
620 * @val: delta to add to the counter, can be negative
621 */
622void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
623{
db9adbcb
JW
624 if (mem_cgroup_disabled())
625 return;
626
2d146aa3
JW
627 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
628 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
db9adbcb
JW
629}
630
2d146aa3 631/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
632static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
633{
634 long x = 0;
635 int cpu;
636
637 for_each_possible_cpu(cpu)
2d146aa3 638 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
639#ifdef CONFIG_SMP
640 if (x < 0)
641 x = 0;
642#endif
643 return x;
644}
645
eedc4e5a
RG
646void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
647 int val)
db9adbcb
JW
648{
649 struct mem_cgroup_per_node *pn;
42a30035 650 struct mem_cgroup *memcg;
db9adbcb 651
db9adbcb 652 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 653 memcg = pn->memcg;
db9adbcb
JW
654
655 /* Update memcg */
42a30035 656 __mod_memcg_state(memcg, idx, val);
db9adbcb 657
b4c46484 658 /* Update lruvec */
7e1c0d6f 659 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
db9adbcb
JW
660}
661
eedc4e5a
RG
662/**
663 * __mod_lruvec_state - update lruvec memory statistics
664 * @lruvec: the lruvec
665 * @idx: the stat item
666 * @val: delta to add to the counter, can be negative
667 *
668 * The lruvec is the intersection of the NUMA node and a cgroup. This
669 * function updates the all three counters that are affected by a
670 * change of state at this level: per-node, per-cgroup, per-lruvec.
671 */
672void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
673 int val)
674{
675 /* Update node */
676 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
677
678 /* Update memcg and lruvec */
679 if (!mem_cgroup_disabled())
680 __mod_memcg_lruvec_state(lruvec, idx, val);
681}
682
c47d5032
SB
683void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
684 int val)
685{
686 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 687 struct mem_cgroup *memcg;
c47d5032
SB
688 pg_data_t *pgdat = page_pgdat(page);
689 struct lruvec *lruvec;
690
b4e0b68f
MS
691 rcu_read_lock();
692 memcg = page_memcg(head);
c47d5032 693 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 694 if (!memcg) {
b4e0b68f 695 rcu_read_unlock();
c47d5032
SB
696 __mod_node_page_state(pgdat, idx, val);
697 return;
698 }
699
d635a69d 700 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 701 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 702 rcu_read_unlock();
c47d5032 703}
f0c0c115 704EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 705
da3ceeff 706void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 707{
4f103c63 708 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
709 struct mem_cgroup *memcg;
710 struct lruvec *lruvec;
711
712 rcu_read_lock();
4f103c63 713 memcg = mem_cgroup_from_obj(p);
ec9f0238 714
8faeb1ff
MS
715 /*
716 * Untracked pages have no memcg, no lruvec. Update only the
717 * node. If we reparent the slab objects to the root memcg,
718 * when we free the slab object, we need to update the per-memcg
719 * vmstats to keep it correct for the root memcg.
720 */
721 if (!memcg) {
ec9f0238
RG
722 __mod_node_page_state(pgdat, idx, val);
723 } else {
867e5e1d 724 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
725 __mod_lruvec_state(lruvec, idx, val);
726 }
727 rcu_read_unlock();
728}
729
55927114
WL
730/*
731 * mod_objcg_mlstate() may be called with irq enabled, so
732 * mod_memcg_lruvec_state() should be used.
733 */
68ac5b3c
WL
734static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
735 struct pglist_data *pgdat,
736 enum node_stat_item idx, int nr)
fdbcb2a6
WL
737{
738 struct mem_cgroup *memcg;
739 struct lruvec *lruvec;
740
741 rcu_read_lock();
742 memcg = obj_cgroup_memcg(objcg);
743 lruvec = mem_cgroup_lruvec(memcg, pgdat);
55927114 744 mod_memcg_lruvec_state(lruvec, idx, nr);
fdbcb2a6
WL
745 rcu_read_unlock();
746}
747
db9adbcb
JW
748/**
749 * __count_memcg_events - account VM events in a cgroup
750 * @memcg: the memory cgroup
751 * @idx: the event item
f0953a1b 752 * @count: the number of events that occurred
db9adbcb
JW
753 */
754void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
755 unsigned long count)
756{
db9adbcb
JW
757 if (mem_cgroup_disabled())
758 return;
759
2d146aa3
JW
760 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
761 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
db9adbcb
JW
762}
763
42a30035 764static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 765{
2d146aa3 766 return READ_ONCE(memcg->vmstats.events[event]);
e9f8974f
JW
767}
768
42a30035
JW
769static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
770{
815744d7
JW
771 long x = 0;
772 int cpu;
773
774 for_each_possible_cpu(cpu)
2d146aa3 775 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
815744d7 776 return x;
42a30035
JW
777}
778
c0ff4b85 779static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
3fba69a5 780 int nr_pages)
d52aa412 781{
e401f176
KH
782 /* pagein of a big page is an event. So, ignore page size */
783 if (nr_pages > 0)
c9019e9b 784 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 785 else {
c9019e9b 786 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
787 nr_pages = -nr_pages; /* for event */
788 }
e401f176 789
871789d4 790 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
791}
792
f53d7ce3
JW
793static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
794 enum mem_cgroup_events_target target)
7a159cc9
JW
795{
796 unsigned long val, next;
797
871789d4
CD
798 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
799 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 800 /* from time_after() in jiffies.h */
6a1a8b80 801 if ((long)(next - val) < 0) {
f53d7ce3
JW
802 switch (target) {
803 case MEM_CGROUP_TARGET_THRESH:
804 next = val + THRESHOLDS_EVENTS_TARGET;
805 break;
bb4cc1a8
AM
806 case MEM_CGROUP_TARGET_SOFTLIMIT:
807 next = val + SOFTLIMIT_EVENTS_TARGET;
808 break;
f53d7ce3
JW
809 default:
810 break;
811 }
871789d4 812 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 813 return true;
7a159cc9 814 }
f53d7ce3 815 return false;
d2265e6f
KH
816}
817
818/*
819 * Check events in order.
820 *
821 */
c0ff4b85 822static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
823{
824 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
825 if (unlikely(mem_cgroup_event_ratelimit(memcg,
826 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 827 bool do_softlimit;
f53d7ce3 828
bb4cc1a8
AM
829 do_softlimit = mem_cgroup_event_ratelimit(memcg,
830 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 831 mem_cgroup_threshold(memcg);
bb4cc1a8 832 if (unlikely(do_softlimit))
658b69c9 833 mem_cgroup_update_tree(memcg, page_to_nid(page));
0a31bc97 834 }
d2265e6f
KH
835}
836
cf475ad2 837struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 838{
31a78f23
BS
839 /*
840 * mm_update_next_owner() may clear mm->owner to NULL
841 * if it races with swapoff, page migration, etc.
842 * So this can be called with p == NULL.
843 */
844 if (unlikely(!p))
845 return NULL;
846
073219e9 847 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 848}
33398cf2 849EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 850
04f94e3f
DS
851static __always_inline struct mem_cgroup *active_memcg(void)
852{
55a68c82 853 if (!in_task())
04f94e3f
DS
854 return this_cpu_read(int_active_memcg);
855 else
856 return current->active_memcg;
857}
858
d46eb14b
SB
859/**
860 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
861 * @mm: mm from which memcg should be extracted. It can be NULL.
862 *
04f94e3f
DS
863 * Obtain a reference on mm->memcg and returns it if successful. If mm
864 * is NULL, then the memcg is chosen as follows:
865 * 1) The active memcg, if set.
866 * 2) current->mm->memcg, if available
867 * 3) root memcg
868 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
869 */
870struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 871{
d46eb14b
SB
872 struct mem_cgroup *memcg;
873
874 if (mem_cgroup_disabled())
875 return NULL;
0b7f569e 876
2884b6b7
MS
877 /*
878 * Page cache insertions can happen without an
879 * actual mm context, e.g. during disk probing
880 * on boot, loopback IO, acct() writes etc.
881 *
882 * No need to css_get on root memcg as the reference
883 * counting is disabled on the root level in the
884 * cgroup core. See CSS_NO_REF.
885 */
04f94e3f
DS
886 if (unlikely(!mm)) {
887 memcg = active_memcg();
888 if (unlikely(memcg)) {
889 /* remote memcg must hold a ref */
890 css_get(&memcg->css);
891 return memcg;
892 }
893 mm = current->mm;
894 if (unlikely(!mm))
895 return root_mem_cgroup;
896 }
2884b6b7 897
54595fe2
KH
898 rcu_read_lock();
899 do {
2884b6b7
MS
900 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
901 if (unlikely(!memcg))
df381975 902 memcg = root_mem_cgroup;
00d484f3 903 } while (!css_tryget(&memcg->css));
54595fe2 904 rcu_read_unlock();
c0ff4b85 905 return memcg;
54595fe2 906}
d46eb14b
SB
907EXPORT_SYMBOL(get_mem_cgroup_from_mm);
908
4127c650
RG
909static __always_inline bool memcg_kmem_bypass(void)
910{
911 /* Allow remote memcg charging from any context. */
912 if (unlikely(active_memcg()))
913 return false;
914
915 /* Memcg to charge can't be determined. */
6126891c 916 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
4127c650
RG
917 return true;
918
919 return false;
920}
921
5660048c
JW
922/**
923 * mem_cgroup_iter - iterate over memory cgroup hierarchy
924 * @root: hierarchy root
925 * @prev: previously returned memcg, NULL on first invocation
926 * @reclaim: cookie for shared reclaim walks, NULL for full walks
927 *
928 * Returns references to children of the hierarchy below @root, or
929 * @root itself, or %NULL after a full round-trip.
930 *
931 * Caller must pass the return value in @prev on subsequent
932 * invocations for reference counting, or use mem_cgroup_iter_break()
933 * to cancel a hierarchy walk before the round-trip is complete.
934 *
05bdc520
ML
935 * Reclaimers can specify a node in @reclaim to divide up the memcgs
936 * in the hierarchy among all concurrent reclaimers operating on the
937 * same node.
5660048c 938 */
694fbc0f 939struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 940 struct mem_cgroup *prev,
694fbc0f 941 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 942{
3f649ab7 943 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 944 struct cgroup_subsys_state *css = NULL;
9f3a0d09 945 struct mem_cgroup *memcg = NULL;
5ac8fb31 946 struct mem_cgroup *pos = NULL;
711d3d2c 947
694fbc0f
AM
948 if (mem_cgroup_disabled())
949 return NULL;
5660048c 950
9f3a0d09
JW
951 if (!root)
952 root = root_mem_cgroup;
7d74b06f 953
9f3a0d09 954 if (prev && !reclaim)
5ac8fb31 955 pos = prev;
14067bb3 956
542f85f9 957 rcu_read_lock();
5f578161 958
5ac8fb31 959 if (reclaim) {
ef8f2327 960 struct mem_cgroup_per_node *mz;
5ac8fb31 961
a3747b53 962 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 963 iter = &mz->iter;
5ac8fb31
JW
964
965 if (prev && reclaim->generation != iter->generation)
966 goto out_unlock;
967
6df38689 968 while (1) {
4db0c3c2 969 pos = READ_ONCE(iter->position);
6df38689
VD
970 if (!pos || css_tryget(&pos->css))
971 break;
5ac8fb31 972 /*
6df38689
VD
973 * css reference reached zero, so iter->position will
974 * be cleared by ->css_released. However, we should not
975 * rely on this happening soon, because ->css_released
976 * is called from a work queue, and by busy-waiting we
977 * might block it. So we clear iter->position right
978 * away.
5ac8fb31 979 */
6df38689
VD
980 (void)cmpxchg(&iter->position, pos, NULL);
981 }
5ac8fb31
JW
982 }
983
984 if (pos)
985 css = &pos->css;
986
987 for (;;) {
988 css = css_next_descendant_pre(css, &root->css);
989 if (!css) {
990 /*
991 * Reclaimers share the hierarchy walk, and a
992 * new one might jump in right at the end of
993 * the hierarchy - make sure they see at least
994 * one group and restart from the beginning.
995 */
996 if (!prev)
997 continue;
998 break;
527a5ec9 999 }
7d74b06f 1000
5ac8fb31
JW
1001 /*
1002 * Verify the css and acquire a reference. The root
1003 * is provided by the caller, so we know it's alive
1004 * and kicking, and don't take an extra reference.
1005 */
1006 memcg = mem_cgroup_from_css(css);
14067bb3 1007
5ac8fb31
JW
1008 if (css == &root->css)
1009 break;
14067bb3 1010
0b8f73e1
JW
1011 if (css_tryget(css))
1012 break;
9f3a0d09 1013
5ac8fb31 1014 memcg = NULL;
9f3a0d09 1015 }
5ac8fb31
JW
1016
1017 if (reclaim) {
5ac8fb31 1018 /*
6df38689
VD
1019 * The position could have already been updated by a competing
1020 * thread, so check that the value hasn't changed since we read
1021 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1022 */
6df38689
VD
1023 (void)cmpxchg(&iter->position, pos, memcg);
1024
5ac8fb31
JW
1025 if (pos)
1026 css_put(&pos->css);
1027
1028 if (!memcg)
1029 iter->generation++;
1030 else if (!prev)
1031 reclaim->generation = iter->generation;
9f3a0d09 1032 }
5ac8fb31 1033
542f85f9
MH
1034out_unlock:
1035 rcu_read_unlock();
c40046f3
MH
1036 if (prev && prev != root)
1037 css_put(&prev->css);
1038
9f3a0d09 1039 return memcg;
14067bb3 1040}
7d74b06f 1041
5660048c
JW
1042/**
1043 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1044 * @root: hierarchy root
1045 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1046 */
1047void mem_cgroup_iter_break(struct mem_cgroup *root,
1048 struct mem_cgroup *prev)
9f3a0d09
JW
1049{
1050 if (!root)
1051 root = root_mem_cgroup;
1052 if (prev && prev != root)
1053 css_put(&prev->css);
1054}
7d74b06f 1055
54a83d6b
MC
1056static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1057 struct mem_cgroup *dead_memcg)
6df38689 1058{
6df38689 1059 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1060 struct mem_cgroup_per_node *mz;
1061 int nid;
6df38689 1062
54a83d6b 1063 for_each_node(nid) {
a3747b53 1064 mz = from->nodeinfo[nid];
9da83f3f
YS
1065 iter = &mz->iter;
1066 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1067 }
1068}
1069
54a83d6b
MC
1070static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1071{
1072 struct mem_cgroup *memcg = dead_memcg;
1073 struct mem_cgroup *last;
1074
1075 do {
1076 __invalidate_reclaim_iterators(memcg, dead_memcg);
1077 last = memcg;
1078 } while ((memcg = parent_mem_cgroup(memcg)));
1079
1080 /*
1081 * When cgruop1 non-hierarchy mode is used,
1082 * parent_mem_cgroup() does not walk all the way up to the
1083 * cgroup root (root_mem_cgroup). So we have to handle
1084 * dead_memcg from cgroup root separately.
1085 */
1086 if (last != root_mem_cgroup)
1087 __invalidate_reclaim_iterators(root_mem_cgroup,
1088 dead_memcg);
1089}
1090
7c5f64f8
VD
1091/**
1092 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1093 * @memcg: hierarchy root
1094 * @fn: function to call for each task
1095 * @arg: argument passed to @fn
1096 *
1097 * This function iterates over tasks attached to @memcg or to any of its
1098 * descendants and calls @fn for each task. If @fn returns a non-zero
1099 * value, the function breaks the iteration loop and returns the value.
1100 * Otherwise, it will iterate over all tasks and return 0.
1101 *
1102 * This function must not be called for the root memory cgroup.
1103 */
1104int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1105 int (*fn)(struct task_struct *, void *), void *arg)
1106{
1107 struct mem_cgroup *iter;
1108 int ret = 0;
1109
1110 BUG_ON(memcg == root_mem_cgroup);
1111
1112 for_each_mem_cgroup_tree(iter, memcg) {
1113 struct css_task_iter it;
1114 struct task_struct *task;
1115
f168a9a5 1116 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1117 while (!ret && (task = css_task_iter_next(&it)))
1118 ret = fn(task, arg);
1119 css_task_iter_end(&it);
1120 if (ret) {
1121 mem_cgroup_iter_break(memcg, iter);
1122 break;
1123 }
1124 }
1125 return ret;
1126}
1127
6168d0da
AS
1128#ifdef CONFIG_DEBUG_VM
1129void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1130{
1131 struct mem_cgroup *memcg;
1132
1133 if (mem_cgroup_disabled())
1134 return;
1135
1136 memcg = page_memcg(page);
1137
1138 if (!memcg)
1139 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1140 else
1141 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1142}
1143#endif
1144
6168d0da
AS
1145/**
1146 * lock_page_lruvec - lock and return lruvec for a given page.
1147 * @page: the page
1148 *
d7e3aba5
AS
1149 * These functions are safe to use under any of the following conditions:
1150 * - page locked
1151 * - PageLRU cleared
1152 * - lock_page_memcg()
1153 * - page->_refcount is zero
6168d0da
AS
1154 */
1155struct lruvec *lock_page_lruvec(struct page *page)
1156{
1157 struct lruvec *lruvec;
6168d0da 1158
a984226f 1159 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1160 spin_lock(&lruvec->lru_lock);
6168d0da
AS
1161
1162 lruvec_memcg_debug(lruvec, page);
1163
1164 return lruvec;
1165}
1166
1167struct lruvec *lock_page_lruvec_irq(struct page *page)
1168{
1169 struct lruvec *lruvec;
6168d0da 1170
a984226f 1171 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1172 spin_lock_irq(&lruvec->lru_lock);
6168d0da
AS
1173
1174 lruvec_memcg_debug(lruvec, page);
1175
1176 return lruvec;
1177}
1178
1179struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1180{
1181 struct lruvec *lruvec;
6168d0da 1182
a984226f 1183 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1184 spin_lock_irqsave(&lruvec->lru_lock, *flags);
6168d0da
AS
1185
1186 lruvec_memcg_debug(lruvec, page);
1187
1188 return lruvec;
1189}
1190
925b7673 1191/**
fa9add64
HD
1192 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1193 * @lruvec: mem_cgroup per zone lru vector
1194 * @lru: index of lru list the page is sitting on
b4536f0c 1195 * @zid: zone id of the accounted pages
fa9add64 1196 * @nr_pages: positive when adding or negative when removing
925b7673 1197 *
ca707239
HD
1198 * This function must be called under lru_lock, just before a page is added
1199 * to or just after a page is removed from an lru list (that ordering being
1200 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1201 */
fa9add64 1202void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1203 int zid, int nr_pages)
3f58a829 1204{
ef8f2327 1205 struct mem_cgroup_per_node *mz;
fa9add64 1206 unsigned long *lru_size;
ca707239 1207 long size;
3f58a829
MK
1208
1209 if (mem_cgroup_disabled())
1210 return;
1211
ef8f2327 1212 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1213 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1214
1215 if (nr_pages < 0)
1216 *lru_size += nr_pages;
1217
1218 size = *lru_size;
b4536f0c
MH
1219 if (WARN_ONCE(size < 0,
1220 "%s(%p, %d, %d): lru_size %ld\n",
1221 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1222 VM_BUG_ON(1);
1223 *lru_size = 0;
1224 }
1225
1226 if (nr_pages > 0)
1227 *lru_size += nr_pages;
08e552c6 1228}
544122e5 1229
19942822 1230/**
9d11ea9f 1231 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1232 * @memcg: the memory cgroup
19942822 1233 *
9d11ea9f 1234 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1235 * pages.
19942822 1236 */
c0ff4b85 1237static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1238{
3e32cb2e
JW
1239 unsigned long margin = 0;
1240 unsigned long count;
1241 unsigned long limit;
9d11ea9f 1242
3e32cb2e 1243 count = page_counter_read(&memcg->memory);
bbec2e15 1244 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1245 if (count < limit)
1246 margin = limit - count;
1247
7941d214 1248 if (do_memsw_account()) {
3e32cb2e 1249 count = page_counter_read(&memcg->memsw);
bbec2e15 1250 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1251 if (count < limit)
3e32cb2e 1252 margin = min(margin, limit - count);
cbedbac3
LR
1253 else
1254 margin = 0;
3e32cb2e
JW
1255 }
1256
1257 return margin;
19942822
JW
1258}
1259
32047e2a 1260/*
bdcbb659 1261 * A routine for checking "mem" is under move_account() or not.
32047e2a 1262 *
bdcbb659
QH
1263 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1264 * moving cgroups. This is for waiting at high-memory pressure
1265 * caused by "move".
32047e2a 1266 */
c0ff4b85 1267static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1268{
2bd9bb20
KH
1269 struct mem_cgroup *from;
1270 struct mem_cgroup *to;
4b534334 1271 bool ret = false;
2bd9bb20
KH
1272 /*
1273 * Unlike task_move routines, we access mc.to, mc.from not under
1274 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1275 */
1276 spin_lock(&mc.lock);
1277 from = mc.from;
1278 to = mc.to;
1279 if (!from)
1280 goto unlock;
3e92041d 1281
2314b42d
JW
1282 ret = mem_cgroup_is_descendant(from, memcg) ||
1283 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1284unlock:
1285 spin_unlock(&mc.lock);
4b534334
KH
1286 return ret;
1287}
1288
c0ff4b85 1289static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1290{
1291 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1292 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1293 DEFINE_WAIT(wait);
1294 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1295 /* moving charge context might have finished. */
1296 if (mc.moving_task)
1297 schedule();
1298 finish_wait(&mc.waitq, &wait);
1299 return true;
1300 }
1301 }
1302 return false;
1303}
1304
5f9a4f4a
MS
1305struct memory_stat {
1306 const char *name;
5f9a4f4a
MS
1307 unsigned int idx;
1308};
1309
57b2847d 1310static const struct memory_stat memory_stats[] = {
fff66b79
MS
1311 { "anon", NR_ANON_MAPPED },
1312 { "file", NR_FILE_PAGES },
1313 { "kernel_stack", NR_KERNEL_STACK_KB },
1314 { "pagetables", NR_PAGETABLE },
1315 { "percpu", MEMCG_PERCPU_B },
1316 { "sock", MEMCG_SOCK },
1317 { "shmem", NR_SHMEM },
1318 { "file_mapped", NR_FILE_MAPPED },
1319 { "file_dirty", NR_FILE_DIRTY },
1320 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1321#ifdef CONFIG_SWAP
1322 { "swapcached", NR_SWAPCACHE },
1323#endif
5f9a4f4a 1324#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1325 { "anon_thp", NR_ANON_THPS },
1326 { "file_thp", NR_FILE_THPS },
1327 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1328#endif
fff66b79
MS
1329 { "inactive_anon", NR_INACTIVE_ANON },
1330 { "active_anon", NR_ACTIVE_ANON },
1331 { "inactive_file", NR_INACTIVE_FILE },
1332 { "active_file", NR_ACTIVE_FILE },
1333 { "unevictable", NR_UNEVICTABLE },
1334 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1335 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1336
1337 /* The memory events */
fff66b79
MS
1338 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1339 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1340 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1341 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1342 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1343 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1344 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1345};
1346
fff66b79
MS
1347/* Translate stat items to the correct unit for memory.stat output */
1348static int memcg_page_state_unit(int item)
1349{
1350 switch (item) {
1351 case MEMCG_PERCPU_B:
1352 case NR_SLAB_RECLAIMABLE_B:
1353 case NR_SLAB_UNRECLAIMABLE_B:
1354 case WORKINGSET_REFAULT_ANON:
1355 case WORKINGSET_REFAULT_FILE:
1356 case WORKINGSET_ACTIVATE_ANON:
1357 case WORKINGSET_ACTIVATE_FILE:
1358 case WORKINGSET_RESTORE_ANON:
1359 case WORKINGSET_RESTORE_FILE:
1360 case WORKINGSET_NODERECLAIM:
1361 return 1;
1362 case NR_KERNEL_STACK_KB:
1363 return SZ_1K;
1364 default:
1365 return PAGE_SIZE;
1366 }
1367}
1368
1369static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1370 int item)
1371{
1372 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1373}
1374
c8713d0b
JW
1375static char *memory_stat_format(struct mem_cgroup *memcg)
1376{
1377 struct seq_buf s;
1378 int i;
71cd3113 1379
c8713d0b
JW
1380 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1381 if (!s.buffer)
1382 return NULL;
1383
1384 /*
1385 * Provide statistics on the state of the memory subsystem as
1386 * well as cumulative event counters that show past behavior.
1387 *
1388 * This list is ordered following a combination of these gradients:
1389 * 1) generic big picture -> specifics and details
1390 * 2) reflecting userspace activity -> reflecting kernel heuristics
1391 *
1392 * Current memory state:
1393 */
2d146aa3 1394 cgroup_rstat_flush(memcg->css.cgroup);
c8713d0b 1395
5f9a4f4a
MS
1396 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1397 u64 size;
c8713d0b 1398
fff66b79 1399 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1400 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1401
5f9a4f4a 1402 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1403 size += memcg_page_state_output(memcg,
1404 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1405 seq_buf_printf(&s, "slab %llu\n", size);
1406 }
1407 }
c8713d0b
JW
1408
1409 /* Accumulated memory events */
1410
ebc5d83d
KK
1411 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1412 memcg_events(memcg, PGFAULT));
1413 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1414 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1415 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1416 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1417 seq_buf_printf(&s, "pgscan %lu\n",
1418 memcg_events(memcg, PGSCAN_KSWAPD) +
1419 memcg_events(memcg, PGSCAN_DIRECT));
1420 seq_buf_printf(&s, "pgsteal %lu\n",
1421 memcg_events(memcg, PGSTEAL_KSWAPD) +
1422 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1423 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1424 memcg_events(memcg, PGACTIVATE));
1425 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1426 memcg_events(memcg, PGDEACTIVATE));
1427 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1428 memcg_events(memcg, PGLAZYFREE));
1429 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1430 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1431
1432#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1433 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1434 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1435 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1436 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1437#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1438
1439 /* The above should easily fit into one page */
1440 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1441
1442 return s.buffer;
1443}
71cd3113 1444
58cf188e 1445#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1446/**
f0c867d9 1447 * mem_cgroup_print_oom_context: Print OOM information relevant to
1448 * memory controller.
e222432b
BS
1449 * @memcg: The memory cgroup that went over limit
1450 * @p: Task that is going to be killed
1451 *
1452 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1453 * enabled
1454 */
f0c867d9 1455void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1456{
e222432b
BS
1457 rcu_read_lock();
1458
f0c867d9 1459 if (memcg) {
1460 pr_cont(",oom_memcg=");
1461 pr_cont_cgroup_path(memcg->css.cgroup);
1462 } else
1463 pr_cont(",global_oom");
2415b9f5 1464 if (p) {
f0c867d9 1465 pr_cont(",task_memcg=");
2415b9f5 1466 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1467 }
e222432b 1468 rcu_read_unlock();
f0c867d9 1469}
1470
1471/**
1472 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1473 * memory controller.
1474 * @memcg: The memory cgroup that went over limit
1475 */
1476void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1477{
c8713d0b 1478 char *buf;
e222432b 1479
3e32cb2e
JW
1480 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1481 K((u64)page_counter_read(&memcg->memory)),
15b42562 1482 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1483 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1484 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1485 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1486 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1487 else {
1488 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1489 K((u64)page_counter_read(&memcg->memsw)),
1490 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1491 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1492 K((u64)page_counter_read(&memcg->kmem)),
1493 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1494 }
c8713d0b
JW
1495
1496 pr_info("Memory cgroup stats for ");
1497 pr_cont_cgroup_path(memcg->css.cgroup);
1498 pr_cont(":");
1499 buf = memory_stat_format(memcg);
1500 if (!buf)
1501 return;
1502 pr_info("%s", buf);
1503 kfree(buf);
e222432b
BS
1504}
1505
a63d83f4
DR
1506/*
1507 * Return the memory (and swap, if configured) limit for a memcg.
1508 */
bbec2e15 1509unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1510{
8d387a5f
WL
1511 unsigned long max = READ_ONCE(memcg->memory.max);
1512
1513 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1514 if (mem_cgroup_swappiness(memcg))
1515 max += min(READ_ONCE(memcg->swap.max),
1516 (unsigned long)total_swap_pages);
1517 } else { /* v1 */
1518 if (mem_cgroup_swappiness(memcg)) {
1519 /* Calculate swap excess capacity from memsw limit */
1520 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1521
1522 max += min(swap, (unsigned long)total_swap_pages);
1523 }
9a5a8f19 1524 }
bbec2e15 1525 return max;
a63d83f4
DR
1526}
1527
9783aa99
CD
1528unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1529{
1530 return page_counter_read(&memcg->memory);
1531}
1532
b6e6edcf 1533static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1534 int order)
9cbb78bb 1535{
6e0fc46d
DR
1536 struct oom_control oc = {
1537 .zonelist = NULL,
1538 .nodemask = NULL,
2a966b77 1539 .memcg = memcg,
6e0fc46d
DR
1540 .gfp_mask = gfp_mask,
1541 .order = order,
6e0fc46d 1542 };
1378b37d 1543 bool ret = true;
9cbb78bb 1544
7775face
TH
1545 if (mutex_lock_killable(&oom_lock))
1546 return true;
1378b37d
YS
1547
1548 if (mem_cgroup_margin(memcg) >= (1 << order))
1549 goto unlock;
1550
7775face
TH
1551 /*
1552 * A few threads which were not waiting at mutex_lock_killable() can
1553 * fail to bail out. Therefore, check again after holding oom_lock.
1554 */
1555 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1556
1557unlock:
dc56401f 1558 mutex_unlock(&oom_lock);
7c5f64f8 1559 return ret;
9cbb78bb
DR
1560}
1561
0608f43d 1562static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1563 pg_data_t *pgdat,
0608f43d
AM
1564 gfp_t gfp_mask,
1565 unsigned long *total_scanned)
1566{
1567 struct mem_cgroup *victim = NULL;
1568 int total = 0;
1569 int loop = 0;
1570 unsigned long excess;
1571 unsigned long nr_scanned;
1572 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1573 .pgdat = pgdat,
0608f43d
AM
1574 };
1575
3e32cb2e 1576 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1577
1578 while (1) {
1579 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1580 if (!victim) {
1581 loop++;
1582 if (loop >= 2) {
1583 /*
1584 * If we have not been able to reclaim
1585 * anything, it might because there are
1586 * no reclaimable pages under this hierarchy
1587 */
1588 if (!total)
1589 break;
1590 /*
1591 * We want to do more targeted reclaim.
1592 * excess >> 2 is not to excessive so as to
1593 * reclaim too much, nor too less that we keep
1594 * coming back to reclaim from this cgroup
1595 */
1596 if (total >= (excess >> 2) ||
1597 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1598 break;
1599 }
1600 continue;
1601 }
a9dd0a83 1602 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1603 pgdat, &nr_scanned);
0608f43d 1604 *total_scanned += nr_scanned;
3e32cb2e 1605 if (!soft_limit_excess(root_memcg))
0608f43d 1606 break;
6d61ef40 1607 }
0608f43d
AM
1608 mem_cgroup_iter_break(root_memcg, victim);
1609 return total;
6d61ef40
BS
1610}
1611
0056f4e6
JW
1612#ifdef CONFIG_LOCKDEP
1613static struct lockdep_map memcg_oom_lock_dep_map = {
1614 .name = "memcg_oom_lock",
1615};
1616#endif
1617
fb2a6fc5
JW
1618static DEFINE_SPINLOCK(memcg_oom_lock);
1619
867578cb
KH
1620/*
1621 * Check OOM-Killer is already running under our hierarchy.
1622 * If someone is running, return false.
1623 */
fb2a6fc5 1624static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1625{
79dfdacc 1626 struct mem_cgroup *iter, *failed = NULL;
a636b327 1627
fb2a6fc5
JW
1628 spin_lock(&memcg_oom_lock);
1629
9f3a0d09 1630 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1631 if (iter->oom_lock) {
79dfdacc
MH
1632 /*
1633 * this subtree of our hierarchy is already locked
1634 * so we cannot give a lock.
1635 */
79dfdacc 1636 failed = iter;
9f3a0d09
JW
1637 mem_cgroup_iter_break(memcg, iter);
1638 break;
23751be0
JW
1639 } else
1640 iter->oom_lock = true;
7d74b06f 1641 }
867578cb 1642
fb2a6fc5
JW
1643 if (failed) {
1644 /*
1645 * OK, we failed to lock the whole subtree so we have
1646 * to clean up what we set up to the failing subtree
1647 */
1648 for_each_mem_cgroup_tree(iter, memcg) {
1649 if (iter == failed) {
1650 mem_cgroup_iter_break(memcg, iter);
1651 break;
1652 }
1653 iter->oom_lock = false;
79dfdacc 1654 }
0056f4e6
JW
1655 } else
1656 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1657
1658 spin_unlock(&memcg_oom_lock);
1659
1660 return !failed;
a636b327 1661}
0b7f569e 1662
fb2a6fc5 1663static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1664{
7d74b06f
KH
1665 struct mem_cgroup *iter;
1666
fb2a6fc5 1667 spin_lock(&memcg_oom_lock);
5facae4f 1668 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1669 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1670 iter->oom_lock = false;
fb2a6fc5 1671 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1672}
1673
c0ff4b85 1674static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1675{
1676 struct mem_cgroup *iter;
1677
c2b42d3c 1678 spin_lock(&memcg_oom_lock);
c0ff4b85 1679 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1680 iter->under_oom++;
1681 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1682}
1683
c0ff4b85 1684static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1685{
1686 struct mem_cgroup *iter;
1687
867578cb 1688 /*
f0953a1b 1689 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1690 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1691 */
c2b42d3c 1692 spin_lock(&memcg_oom_lock);
c0ff4b85 1693 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1694 if (iter->under_oom > 0)
1695 iter->under_oom--;
1696 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1697}
1698
867578cb
KH
1699static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1700
dc98df5a 1701struct oom_wait_info {
d79154bb 1702 struct mem_cgroup *memcg;
ac6424b9 1703 wait_queue_entry_t wait;
dc98df5a
KH
1704};
1705
ac6424b9 1706static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1707 unsigned mode, int sync, void *arg)
1708{
d79154bb
HD
1709 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1710 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1711 struct oom_wait_info *oom_wait_info;
1712
1713 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1714 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1715
2314b42d
JW
1716 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1717 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1718 return 0;
dc98df5a
KH
1719 return autoremove_wake_function(wait, mode, sync, arg);
1720}
1721
c0ff4b85 1722static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1723{
c2b42d3c
TH
1724 /*
1725 * For the following lockless ->under_oom test, the only required
1726 * guarantee is that it must see the state asserted by an OOM when
1727 * this function is called as a result of userland actions
1728 * triggered by the notification of the OOM. This is trivially
1729 * achieved by invoking mem_cgroup_mark_under_oom() before
1730 * triggering notification.
1731 */
1732 if (memcg && memcg->under_oom)
f4b90b70 1733 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1734}
1735
29ef680a
MH
1736enum oom_status {
1737 OOM_SUCCESS,
1738 OOM_FAILED,
1739 OOM_ASYNC,
1740 OOM_SKIPPED
1741};
1742
1743static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1744{
7056d3a3
MH
1745 enum oom_status ret;
1746 bool locked;
1747
29ef680a
MH
1748 if (order > PAGE_ALLOC_COSTLY_ORDER)
1749 return OOM_SKIPPED;
1750
7a1adfdd
RG
1751 memcg_memory_event(memcg, MEMCG_OOM);
1752
867578cb 1753 /*
49426420
JW
1754 * We are in the middle of the charge context here, so we
1755 * don't want to block when potentially sitting on a callstack
1756 * that holds all kinds of filesystem and mm locks.
1757 *
29ef680a
MH
1758 * cgroup1 allows disabling the OOM killer and waiting for outside
1759 * handling until the charge can succeed; remember the context and put
1760 * the task to sleep at the end of the page fault when all locks are
1761 * released.
49426420 1762 *
29ef680a
MH
1763 * On the other hand, in-kernel OOM killer allows for an async victim
1764 * memory reclaim (oom_reaper) and that means that we are not solely
1765 * relying on the oom victim to make a forward progress and we can
1766 * invoke the oom killer here.
1767 *
1768 * Please note that mem_cgroup_out_of_memory might fail to find a
1769 * victim and then we have to bail out from the charge path.
867578cb 1770 */
29ef680a
MH
1771 if (memcg->oom_kill_disable) {
1772 if (!current->in_user_fault)
1773 return OOM_SKIPPED;
1774 css_get(&memcg->css);
1775 current->memcg_in_oom = memcg;
1776 current->memcg_oom_gfp_mask = mask;
1777 current->memcg_oom_order = order;
1778
1779 return OOM_ASYNC;
1780 }
1781
7056d3a3
MH
1782 mem_cgroup_mark_under_oom(memcg);
1783
1784 locked = mem_cgroup_oom_trylock(memcg);
1785
1786 if (locked)
1787 mem_cgroup_oom_notify(memcg);
1788
1789 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1790 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1791 ret = OOM_SUCCESS;
1792 else
1793 ret = OOM_FAILED;
1794
1795 if (locked)
1796 mem_cgroup_oom_unlock(memcg);
29ef680a 1797
7056d3a3 1798 return ret;
3812c8c8
JW
1799}
1800
1801/**
1802 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1803 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1804 *
49426420
JW
1805 * This has to be called at the end of a page fault if the memcg OOM
1806 * handler was enabled.
3812c8c8 1807 *
49426420 1808 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1809 * sleep on a waitqueue until the userspace task resolves the
1810 * situation. Sleeping directly in the charge context with all kinds
1811 * of locks held is not a good idea, instead we remember an OOM state
1812 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1813 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1814 *
1815 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1816 * completed, %false otherwise.
3812c8c8 1817 */
49426420 1818bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1819{
626ebc41 1820 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1821 struct oom_wait_info owait;
49426420 1822 bool locked;
3812c8c8
JW
1823
1824 /* OOM is global, do not handle */
3812c8c8 1825 if (!memcg)
49426420 1826 return false;
3812c8c8 1827
7c5f64f8 1828 if (!handle)
49426420 1829 goto cleanup;
3812c8c8
JW
1830
1831 owait.memcg = memcg;
1832 owait.wait.flags = 0;
1833 owait.wait.func = memcg_oom_wake_function;
1834 owait.wait.private = current;
2055da97 1835 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1836
3812c8c8 1837 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1838 mem_cgroup_mark_under_oom(memcg);
1839
1840 locked = mem_cgroup_oom_trylock(memcg);
1841
1842 if (locked)
1843 mem_cgroup_oom_notify(memcg);
1844
1845 if (locked && !memcg->oom_kill_disable) {
1846 mem_cgroup_unmark_under_oom(memcg);
1847 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1848 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1849 current->memcg_oom_order);
49426420 1850 } else {
3812c8c8 1851 schedule();
49426420
JW
1852 mem_cgroup_unmark_under_oom(memcg);
1853 finish_wait(&memcg_oom_waitq, &owait.wait);
1854 }
1855
1856 if (locked) {
fb2a6fc5
JW
1857 mem_cgroup_oom_unlock(memcg);
1858 /*
1859 * There is no guarantee that an OOM-lock contender
1860 * sees the wakeups triggered by the OOM kill
f0953a1b 1861 * uncharges. Wake any sleepers explicitly.
fb2a6fc5
JW
1862 */
1863 memcg_oom_recover(memcg);
1864 }
49426420 1865cleanup:
626ebc41 1866 current->memcg_in_oom = NULL;
3812c8c8 1867 css_put(&memcg->css);
867578cb 1868 return true;
0b7f569e
KH
1869}
1870
3d8b38eb
RG
1871/**
1872 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1873 * @victim: task to be killed by the OOM killer
1874 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1875 *
1876 * Returns a pointer to a memory cgroup, which has to be cleaned up
1877 * by killing all belonging OOM-killable tasks.
1878 *
1879 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1880 */
1881struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1882 struct mem_cgroup *oom_domain)
1883{
1884 struct mem_cgroup *oom_group = NULL;
1885 struct mem_cgroup *memcg;
1886
1887 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1888 return NULL;
1889
1890 if (!oom_domain)
1891 oom_domain = root_mem_cgroup;
1892
1893 rcu_read_lock();
1894
1895 memcg = mem_cgroup_from_task(victim);
1896 if (memcg == root_mem_cgroup)
1897 goto out;
1898
48fe267c
RG
1899 /*
1900 * If the victim task has been asynchronously moved to a different
1901 * memory cgroup, we might end up killing tasks outside oom_domain.
1902 * In this case it's better to ignore memory.group.oom.
1903 */
1904 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1905 goto out;
1906
3d8b38eb
RG
1907 /*
1908 * Traverse the memory cgroup hierarchy from the victim task's
1909 * cgroup up to the OOMing cgroup (or root) to find the
1910 * highest-level memory cgroup with oom.group set.
1911 */
1912 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1913 if (memcg->oom_group)
1914 oom_group = memcg;
1915
1916 if (memcg == oom_domain)
1917 break;
1918 }
1919
1920 if (oom_group)
1921 css_get(&oom_group->css);
1922out:
1923 rcu_read_unlock();
1924
1925 return oom_group;
1926}
1927
1928void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1929{
1930 pr_info("Tasks in ");
1931 pr_cont_cgroup_path(memcg->css.cgroup);
1932 pr_cont(" are going to be killed due to memory.oom.group set\n");
1933}
1934
d7365e78 1935/**
bcfe06bf 1936 * lock_page_memcg - lock a page and memcg binding
81f8c3a4 1937 * @page: the page
32047e2a 1938 *
81f8c3a4 1939 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1940 * another cgroup.
1941 *
1c824a68
JW
1942 * It ensures lifetime of the locked memcg. Caller is responsible
1943 * for the lifetime of the page.
d69b042f 1944 */
1c824a68 1945void lock_page_memcg(struct page *page)
89c06bd5 1946{
9da7b521 1947 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 1948 struct mem_cgroup *memcg;
6de22619 1949 unsigned long flags;
89c06bd5 1950
6de22619
JW
1951 /*
1952 * The RCU lock is held throughout the transaction. The fast
1953 * path can get away without acquiring the memcg->move_lock
1954 * because page moving starts with an RCU grace period.
739f79fc 1955 */
d7365e78
JW
1956 rcu_read_lock();
1957
1958 if (mem_cgroup_disabled())
1c824a68 1959 return;
89c06bd5 1960again:
bcfe06bf 1961 memcg = page_memcg(head);
29833315 1962 if (unlikely(!memcg))
1c824a68 1963 return;
d7365e78 1964
20ad50d6
AS
1965#ifdef CONFIG_PROVE_LOCKING
1966 local_irq_save(flags);
1967 might_lock(&memcg->move_lock);
1968 local_irq_restore(flags);
1969#endif
1970
bdcbb659 1971 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 1972 return;
89c06bd5 1973
6de22619 1974 spin_lock_irqsave(&memcg->move_lock, flags);
bcfe06bf 1975 if (memcg != page_memcg(head)) {
6de22619 1976 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1977 goto again;
1978 }
6de22619
JW
1979
1980 /*
1c824a68
JW
1981 * When charge migration first begins, we can have multiple
1982 * critical sections holding the fast-path RCU lock and one
1983 * holding the slowpath move_lock. Track the task who has the
1984 * move_lock for unlock_page_memcg().
6de22619
JW
1985 */
1986 memcg->move_lock_task = current;
1987 memcg->move_lock_flags = flags;
89c06bd5 1988}
81f8c3a4 1989EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1990
1c824a68 1991static void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1992{
6de22619
JW
1993 if (memcg && memcg->move_lock_task == current) {
1994 unsigned long flags = memcg->move_lock_flags;
1995
1996 memcg->move_lock_task = NULL;
1997 memcg->move_lock_flags = 0;
1998
1999 spin_unlock_irqrestore(&memcg->move_lock, flags);
2000 }
89c06bd5 2001
d7365e78 2002 rcu_read_unlock();
89c06bd5 2003}
739f79fc
JW
2004
2005/**
bcfe06bf 2006 * unlock_page_memcg - unlock a page and memcg binding
739f79fc
JW
2007 * @page: the page
2008 */
2009void unlock_page_memcg(struct page *page)
2010{
9da7b521
JW
2011 struct page *head = compound_head(page);
2012
bcfe06bf 2013 __unlock_page_memcg(page_memcg(head));
739f79fc 2014}
81f8c3a4 2015EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2016
55927114 2017struct obj_stock {
bf4f0599
RG
2018#ifdef CONFIG_MEMCG_KMEM
2019 struct obj_cgroup *cached_objcg;
68ac5b3c 2020 struct pglist_data *cached_pgdat;
bf4f0599 2021 unsigned int nr_bytes;
68ac5b3c
WL
2022 int nr_slab_reclaimable_b;
2023 int nr_slab_unreclaimable_b;
55927114
WL
2024#else
2025 int dummy[0];
bf4f0599 2026#endif
55927114
WL
2027};
2028
2029struct memcg_stock_pcp {
2030 struct mem_cgroup *cached; /* this never be root cgroup */
2031 unsigned int nr_pages;
2032 struct obj_stock task_obj;
2033 struct obj_stock irq_obj;
bf4f0599 2034
cdec2e42 2035 struct work_struct work;
26fe6168 2036 unsigned long flags;
a0db00fc 2037#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2038};
2039static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2040static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2041
bf4f0599 2042#ifdef CONFIG_MEMCG_KMEM
55927114 2043static void drain_obj_stock(struct obj_stock *stock);
bf4f0599
RG
2044static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2045 struct mem_cgroup *root_memcg);
2046
2047#else
55927114 2048static inline void drain_obj_stock(struct obj_stock *stock)
bf4f0599
RG
2049{
2050}
2051static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2052 struct mem_cgroup *root_memcg)
2053{
2054 return false;
2055}
2056#endif
2057
55927114
WL
2058/*
2059 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2060 * sequence used in this case to access content from object stock is slow.
2061 * To optimize for user context access, there are now two object stocks for
2062 * task context and interrupt context access respectively.
2063 *
2064 * The task context object stock can be accessed by disabling preemption only
2065 * which is cheap in non-preempt kernel. The interrupt context object stock
2066 * can only be accessed after disabling interrupt. User context code can
2067 * access interrupt object stock, but not vice versa.
2068 */
2069static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2070{
2071 struct memcg_stock_pcp *stock;
2072
2073 if (likely(in_task())) {
2074 *pflags = 0UL;
2075 preempt_disable();
2076 stock = this_cpu_ptr(&memcg_stock);
2077 return &stock->task_obj;
2078 }
2079
2080 local_irq_save(*pflags);
2081 stock = this_cpu_ptr(&memcg_stock);
2082 return &stock->irq_obj;
2083}
2084
2085static inline void put_obj_stock(unsigned long flags)
2086{
2087 if (likely(in_task()))
2088 preempt_enable();
2089 else
2090 local_irq_restore(flags);
2091}
2092
a0956d54
SS
2093/**
2094 * consume_stock: Try to consume stocked charge on this cpu.
2095 * @memcg: memcg to consume from.
2096 * @nr_pages: how many pages to charge.
2097 *
2098 * The charges will only happen if @memcg matches the current cpu's memcg
2099 * stock, and at least @nr_pages are available in that stock. Failure to
2100 * service an allocation will refill the stock.
2101 *
2102 * returns true if successful, false otherwise.
cdec2e42 2103 */
a0956d54 2104static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2105{
2106 struct memcg_stock_pcp *stock;
db2ba40c 2107 unsigned long flags;
3e32cb2e 2108 bool ret = false;
cdec2e42 2109
a983b5eb 2110 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2111 return ret;
a0956d54 2112
db2ba40c
JW
2113 local_irq_save(flags);
2114
2115 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2116 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2117 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2118 ret = true;
2119 }
db2ba40c
JW
2120
2121 local_irq_restore(flags);
2122
cdec2e42
KH
2123 return ret;
2124}
2125
2126/*
3e32cb2e 2127 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2128 */
2129static void drain_stock(struct memcg_stock_pcp *stock)
2130{
2131 struct mem_cgroup *old = stock->cached;
2132
1a3e1f40
JW
2133 if (!old)
2134 return;
2135
11c9ea4e 2136 if (stock->nr_pages) {
3e32cb2e 2137 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2138 if (do_memsw_account())
3e32cb2e 2139 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2140 stock->nr_pages = 0;
cdec2e42 2141 }
1a3e1f40
JW
2142
2143 css_put(&old->css);
cdec2e42 2144 stock->cached = NULL;
cdec2e42
KH
2145}
2146
cdec2e42
KH
2147static void drain_local_stock(struct work_struct *dummy)
2148{
db2ba40c
JW
2149 struct memcg_stock_pcp *stock;
2150 unsigned long flags;
2151
72f0184c 2152 /*
5c49cf9a
MH
2153 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2154 * drain_stock races is that we always operate on local CPU stock
2155 * here with IRQ disabled
72f0184c 2156 */
db2ba40c
JW
2157 local_irq_save(flags);
2158
2159 stock = this_cpu_ptr(&memcg_stock);
55927114
WL
2160 drain_obj_stock(&stock->irq_obj);
2161 if (in_task())
2162 drain_obj_stock(&stock->task_obj);
cdec2e42 2163 drain_stock(stock);
26fe6168 2164 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2165
2166 local_irq_restore(flags);
cdec2e42
KH
2167}
2168
2169/*
3e32cb2e 2170 * Cache charges(val) to local per_cpu area.
320cc51d 2171 * This will be consumed by consume_stock() function, later.
cdec2e42 2172 */
c0ff4b85 2173static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2174{
db2ba40c
JW
2175 struct memcg_stock_pcp *stock;
2176 unsigned long flags;
2177
2178 local_irq_save(flags);
cdec2e42 2179
db2ba40c 2180 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2181 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2182 drain_stock(stock);
1a3e1f40 2183 css_get(&memcg->css);
c0ff4b85 2184 stock->cached = memcg;
cdec2e42 2185 }
11c9ea4e 2186 stock->nr_pages += nr_pages;
db2ba40c 2187
a983b5eb 2188 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2189 drain_stock(stock);
2190
db2ba40c 2191 local_irq_restore(flags);
cdec2e42
KH
2192}
2193
2194/*
c0ff4b85 2195 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2196 * of the hierarchy under it.
cdec2e42 2197 */
6d3d6aa2 2198static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2199{
26fe6168 2200 int cpu, curcpu;
d38144b7 2201
6d3d6aa2
JW
2202 /* If someone's already draining, avoid adding running more workers. */
2203 if (!mutex_trylock(&percpu_charge_mutex))
2204 return;
72f0184c
MH
2205 /*
2206 * Notify other cpus that system-wide "drain" is running
2207 * We do not care about races with the cpu hotplug because cpu down
2208 * as well as workers from this path always operate on the local
2209 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2210 */
5af12d0e 2211 curcpu = get_cpu();
cdec2e42
KH
2212 for_each_online_cpu(cpu) {
2213 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2214 struct mem_cgroup *memcg;
e1a366be 2215 bool flush = false;
26fe6168 2216
e1a366be 2217 rcu_read_lock();
c0ff4b85 2218 memcg = stock->cached;
e1a366be
RG
2219 if (memcg && stock->nr_pages &&
2220 mem_cgroup_is_descendant(memcg, root_memcg))
2221 flush = true;
27fb0956 2222 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2223 flush = true;
e1a366be
RG
2224 rcu_read_unlock();
2225
2226 if (flush &&
2227 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2228 if (cpu == curcpu)
2229 drain_local_stock(&stock->work);
2230 else
2231 schedule_work_on(cpu, &stock->work);
2232 }
cdec2e42 2233 }
5af12d0e 2234 put_cpu();
9f50fad6 2235 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2236}
2237
2cd21c89
JW
2238static int memcg_hotplug_cpu_dead(unsigned int cpu)
2239{
2240 struct memcg_stock_pcp *stock;
a3d4c05a 2241
2cd21c89
JW
2242 stock = &per_cpu(memcg_stock, cpu);
2243 drain_stock(stock);
a3d4c05a 2244
308167fc 2245 return 0;
cdec2e42
KH
2246}
2247
b3ff9291
CD
2248static unsigned long reclaim_high(struct mem_cgroup *memcg,
2249 unsigned int nr_pages,
2250 gfp_t gfp_mask)
f7e1cb6e 2251{
b3ff9291
CD
2252 unsigned long nr_reclaimed = 0;
2253
f7e1cb6e 2254 do {
e22c6ed9
JW
2255 unsigned long pflags;
2256
d1663a90
JK
2257 if (page_counter_read(&memcg->memory) <=
2258 READ_ONCE(memcg->memory.high))
f7e1cb6e 2259 continue;
e22c6ed9 2260
e27be240 2261 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2262
2263 psi_memstall_enter(&pflags);
b3ff9291
CD
2264 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2265 gfp_mask, true);
e22c6ed9 2266 psi_memstall_leave(&pflags);
4bf17307
CD
2267 } while ((memcg = parent_mem_cgroup(memcg)) &&
2268 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2269
2270 return nr_reclaimed;
f7e1cb6e
JW
2271}
2272
2273static void high_work_func(struct work_struct *work)
2274{
2275 struct mem_cgroup *memcg;
2276
2277 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2278 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2279}
2280
0e4b01df
CD
2281/*
2282 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2283 * enough to still cause a significant slowdown in most cases, while still
2284 * allowing diagnostics and tracing to proceed without becoming stuck.
2285 */
2286#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2287
2288/*
2289 * When calculating the delay, we use these either side of the exponentiation to
2290 * maintain precision and scale to a reasonable number of jiffies (see the table
2291 * below.
2292 *
2293 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2294 * overage ratio to a delay.
ac5ddd0f 2295 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2296 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2297 * to produce a reasonable delay curve.
2298 *
2299 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2300 * reasonable delay curve compared to precision-adjusted overage, not
2301 * penalising heavily at first, but still making sure that growth beyond the
2302 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2303 * example, with a high of 100 megabytes:
2304 *
2305 * +-------+------------------------+
2306 * | usage | time to allocate in ms |
2307 * +-------+------------------------+
2308 * | 100M | 0 |
2309 * | 101M | 6 |
2310 * | 102M | 25 |
2311 * | 103M | 57 |
2312 * | 104M | 102 |
2313 * | 105M | 159 |
2314 * | 106M | 230 |
2315 * | 107M | 313 |
2316 * | 108M | 409 |
2317 * | 109M | 518 |
2318 * | 110M | 639 |
2319 * | 111M | 774 |
2320 * | 112M | 921 |
2321 * | 113M | 1081 |
2322 * | 114M | 1254 |
2323 * | 115M | 1439 |
2324 * | 116M | 1638 |
2325 * | 117M | 1849 |
2326 * | 118M | 2000 |
2327 * | 119M | 2000 |
2328 * | 120M | 2000 |
2329 * +-------+------------------------+
2330 */
2331 #define MEMCG_DELAY_PRECISION_SHIFT 20
2332 #define MEMCG_DELAY_SCALING_SHIFT 14
2333
8a5dbc65 2334static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2335{
8a5dbc65 2336 u64 overage;
b23afb93 2337
8a5dbc65
JK
2338 if (usage <= high)
2339 return 0;
e26733e0 2340
8a5dbc65
JK
2341 /*
2342 * Prevent division by 0 in overage calculation by acting as if
2343 * it was a threshold of 1 page
2344 */
2345 high = max(high, 1UL);
9b8b1754 2346
8a5dbc65
JK
2347 overage = usage - high;
2348 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2349 return div64_u64(overage, high);
2350}
e26733e0 2351
8a5dbc65
JK
2352static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2353{
2354 u64 overage, max_overage = 0;
e26733e0 2355
8a5dbc65
JK
2356 do {
2357 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2358 READ_ONCE(memcg->memory.high));
8a5dbc65 2359 max_overage = max(overage, max_overage);
e26733e0
CD
2360 } while ((memcg = parent_mem_cgroup(memcg)) &&
2361 !mem_cgroup_is_root(memcg));
2362
8a5dbc65
JK
2363 return max_overage;
2364}
2365
4b82ab4f
JK
2366static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2367{
2368 u64 overage, max_overage = 0;
2369
2370 do {
2371 overage = calculate_overage(page_counter_read(&memcg->swap),
2372 READ_ONCE(memcg->swap.high));
2373 if (overage)
2374 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2375 max_overage = max(overage, max_overage);
2376 } while ((memcg = parent_mem_cgroup(memcg)) &&
2377 !mem_cgroup_is_root(memcg));
2378
2379 return max_overage;
2380}
2381
8a5dbc65
JK
2382/*
2383 * Get the number of jiffies that we should penalise a mischievous cgroup which
2384 * is exceeding its memory.high by checking both it and its ancestors.
2385 */
2386static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2387 unsigned int nr_pages,
2388 u64 max_overage)
2389{
2390 unsigned long penalty_jiffies;
2391
e26733e0
CD
2392 if (!max_overage)
2393 return 0;
0e4b01df
CD
2394
2395 /*
0e4b01df
CD
2396 * We use overage compared to memory.high to calculate the number of
2397 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2398 * fairly lenient on small overages, and increasingly harsh when the
2399 * memcg in question makes it clear that it has no intention of stopping
2400 * its crazy behaviour, so we exponentially increase the delay based on
2401 * overage amount.
2402 */
e26733e0
CD
2403 penalty_jiffies = max_overage * max_overage * HZ;
2404 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2405 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2406
2407 /*
2408 * Factor in the task's own contribution to the overage, such that four
2409 * N-sized allocations are throttled approximately the same as one
2410 * 4N-sized allocation.
2411 *
2412 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2413 * larger the current charge patch is than that.
2414 */
ff144e69 2415 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2416}
2417
2418/*
2419 * Scheduled by try_charge() to be executed from the userland return path
2420 * and reclaims memory over the high limit.
2421 */
2422void mem_cgroup_handle_over_high(void)
2423{
2424 unsigned long penalty_jiffies;
2425 unsigned long pflags;
b3ff9291 2426 unsigned long nr_reclaimed;
e26733e0 2427 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2428 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2429 struct mem_cgroup *memcg;
b3ff9291 2430 bool in_retry = false;
e26733e0
CD
2431
2432 if (likely(!nr_pages))
2433 return;
2434
2435 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2436 current->memcg_nr_pages_over_high = 0;
2437
b3ff9291
CD
2438retry_reclaim:
2439 /*
2440 * The allocating task should reclaim at least the batch size, but for
2441 * subsequent retries we only want to do what's necessary to prevent oom
2442 * or breaching resource isolation.
2443 *
2444 * This is distinct from memory.max or page allocator behaviour because
2445 * memory.high is currently batched, whereas memory.max and the page
2446 * allocator run every time an allocation is made.
2447 */
2448 nr_reclaimed = reclaim_high(memcg,
2449 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2450 GFP_KERNEL);
2451
e26733e0
CD
2452 /*
2453 * memory.high is breached and reclaim is unable to keep up. Throttle
2454 * allocators proactively to slow down excessive growth.
2455 */
8a5dbc65
JK
2456 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2457 mem_find_max_overage(memcg));
0e4b01df 2458
4b82ab4f
JK
2459 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2460 swap_find_max_overage(memcg));
2461
ff144e69
JK
2462 /*
2463 * Clamp the max delay per usermode return so as to still keep the
2464 * application moving forwards and also permit diagnostics, albeit
2465 * extremely slowly.
2466 */
2467 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2468
0e4b01df
CD
2469 /*
2470 * Don't sleep if the amount of jiffies this memcg owes us is so low
2471 * that it's not even worth doing, in an attempt to be nice to those who
2472 * go only a small amount over their memory.high value and maybe haven't
2473 * been aggressively reclaimed enough yet.
2474 */
2475 if (penalty_jiffies <= HZ / 100)
2476 goto out;
2477
b3ff9291
CD
2478 /*
2479 * If reclaim is making forward progress but we're still over
2480 * memory.high, we want to encourage that rather than doing allocator
2481 * throttling.
2482 */
2483 if (nr_reclaimed || nr_retries--) {
2484 in_retry = true;
2485 goto retry_reclaim;
2486 }
2487
0e4b01df
CD
2488 /*
2489 * If we exit early, we're guaranteed to die (since
2490 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2491 * need to account for any ill-begotten jiffies to pay them off later.
2492 */
2493 psi_memstall_enter(&pflags);
2494 schedule_timeout_killable(penalty_jiffies);
2495 psi_memstall_leave(&pflags);
2496
2497out:
2498 css_put(&memcg->css);
b23afb93
TH
2499}
2500
c5c8b16b
MS
2501static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2502 unsigned int nr_pages)
8a9f3ccd 2503{
a983b5eb 2504 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2505 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2506 struct mem_cgroup *mem_over_limit;
3e32cb2e 2507 struct page_counter *counter;
e22c6ed9 2508 enum oom_status oom_status;
6539cc05 2509 unsigned long nr_reclaimed;
b70a2a21
JW
2510 bool may_swap = true;
2511 bool drained = false;
e22c6ed9 2512 unsigned long pflags;
a636b327 2513
6539cc05 2514retry:
b6b6cc72 2515 if (consume_stock(memcg, nr_pages))
10d53c74 2516 return 0;
8a9f3ccd 2517
7941d214 2518 if (!do_memsw_account() ||
6071ca52
JW
2519 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2520 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2521 goto done_restock;
7941d214 2522 if (do_memsw_account())
3e32cb2e
JW
2523 page_counter_uncharge(&memcg->memsw, batch);
2524 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2525 } else {
3e32cb2e 2526 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2527 may_swap = false;
3fbe7244 2528 }
7a81b88c 2529
6539cc05
JW
2530 if (batch > nr_pages) {
2531 batch = nr_pages;
2532 goto retry;
2533 }
6d61ef40 2534
869712fd
JW
2535 /*
2536 * Memcg doesn't have a dedicated reserve for atomic
2537 * allocations. But like the global atomic pool, we need to
2538 * put the burden of reclaim on regular allocation requests
2539 * and let these go through as privileged allocations.
2540 */
2541 if (gfp_mask & __GFP_ATOMIC)
2542 goto force;
2543
06b078fc
JW
2544 /*
2545 * Unlike in global OOM situations, memcg is not in a physical
2546 * memory shortage. Allow dying and OOM-killed tasks to
2547 * bypass the last charges so that they can exit quickly and
2548 * free their memory.
2549 */
7775face 2550 if (unlikely(should_force_charge()))
10d53c74 2551 goto force;
06b078fc 2552
89a28483
JW
2553 /*
2554 * Prevent unbounded recursion when reclaim operations need to
2555 * allocate memory. This might exceed the limits temporarily,
2556 * but we prefer facilitating memory reclaim and getting back
2557 * under the limit over triggering OOM kills in these cases.
2558 */
2559 if (unlikely(current->flags & PF_MEMALLOC))
2560 goto force;
2561
06b078fc
JW
2562 if (unlikely(task_in_memcg_oom(current)))
2563 goto nomem;
2564
d0164adc 2565 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2566 goto nomem;
4b534334 2567
e27be240 2568 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2569
e22c6ed9 2570 psi_memstall_enter(&pflags);
b70a2a21
JW
2571 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2572 gfp_mask, may_swap);
e22c6ed9 2573 psi_memstall_leave(&pflags);
6539cc05 2574
61e02c74 2575 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2576 goto retry;
28c34c29 2577
b70a2a21 2578 if (!drained) {
6d3d6aa2 2579 drain_all_stock(mem_over_limit);
b70a2a21
JW
2580 drained = true;
2581 goto retry;
2582 }
2583
28c34c29
JW
2584 if (gfp_mask & __GFP_NORETRY)
2585 goto nomem;
6539cc05
JW
2586 /*
2587 * Even though the limit is exceeded at this point, reclaim
2588 * may have been able to free some pages. Retry the charge
2589 * before killing the task.
2590 *
2591 * Only for regular pages, though: huge pages are rather
2592 * unlikely to succeed so close to the limit, and we fall back
2593 * to regular pages anyway in case of failure.
2594 */
61e02c74 2595 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2596 goto retry;
2597 /*
2598 * At task move, charge accounts can be doubly counted. So, it's
2599 * better to wait until the end of task_move if something is going on.
2600 */
2601 if (mem_cgroup_wait_acct_move(mem_over_limit))
2602 goto retry;
2603
9b130619
JW
2604 if (nr_retries--)
2605 goto retry;
2606
38d38493 2607 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2608 goto nomem;
2609
6539cc05 2610 if (fatal_signal_pending(current))
10d53c74 2611 goto force;
6539cc05 2612
29ef680a
MH
2613 /*
2614 * keep retrying as long as the memcg oom killer is able to make
2615 * a forward progress or bypass the charge if the oom killer
2616 * couldn't make any progress.
2617 */
2618 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2619 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2620 switch (oom_status) {
2621 case OOM_SUCCESS:
d977aa93 2622 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2623 goto retry;
2624 case OOM_FAILED:
2625 goto force;
2626 default:
2627 goto nomem;
2628 }
7a81b88c 2629nomem:
6d1fdc48 2630 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2631 return -ENOMEM;
10d53c74
TH
2632force:
2633 /*
2634 * The allocation either can't fail or will lead to more memory
2635 * being freed very soon. Allow memory usage go over the limit
2636 * temporarily by force charging it.
2637 */
2638 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2639 if (do_memsw_account())
10d53c74 2640 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2641
2642 return 0;
6539cc05
JW
2643
2644done_restock:
2645 if (batch > nr_pages)
2646 refill_stock(memcg, batch - nr_pages);
b23afb93 2647
241994ed 2648 /*
b23afb93
TH
2649 * If the hierarchy is above the normal consumption range, schedule
2650 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2651 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2652 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2653 * not recorded as it most likely matches current's and won't
2654 * change in the meantime. As high limit is checked again before
2655 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2656 */
2657 do {
4b82ab4f
JK
2658 bool mem_high, swap_high;
2659
2660 mem_high = page_counter_read(&memcg->memory) >
2661 READ_ONCE(memcg->memory.high);
2662 swap_high = page_counter_read(&memcg->swap) >
2663 READ_ONCE(memcg->swap.high);
2664
2665 /* Don't bother a random interrupted task */
2666 if (in_interrupt()) {
2667 if (mem_high) {
f7e1cb6e
JW
2668 schedule_work(&memcg->high_work);
2669 break;
2670 }
4b82ab4f
JK
2671 continue;
2672 }
2673
2674 if (mem_high || swap_high) {
2675 /*
2676 * The allocating tasks in this cgroup will need to do
2677 * reclaim or be throttled to prevent further growth
2678 * of the memory or swap footprints.
2679 *
2680 * Target some best-effort fairness between the tasks,
2681 * and distribute reclaim work and delay penalties
2682 * based on how much each task is actually allocating.
2683 */
9516a18a 2684 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2685 set_notify_resume(current);
2686 break;
2687 }
241994ed 2688 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2689
2690 return 0;
7a81b88c 2691}
8a9f3ccd 2692
c5c8b16b
MS
2693static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2694 unsigned int nr_pages)
2695{
2696 if (mem_cgroup_is_root(memcg))
2697 return 0;
2698
2699 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2700}
2701
f0e45fb4 2702#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2703static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2704{
ce00a967
JW
2705 if (mem_cgroup_is_root(memcg))
2706 return;
2707
3e32cb2e 2708 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2709 if (do_memsw_account())
3e32cb2e 2710 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2711}
f0e45fb4 2712#endif
d01dd17f 2713
d9eb1ea2 2714static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2715{
bcfe06bf 2716 VM_BUG_ON_PAGE(page_memcg(page), page);
0a31bc97 2717 /*
a5eb011a 2718 * Any of the following ensures page's memcg stability:
0a31bc97 2719 *
a0b5b414
JW
2720 * - the page lock
2721 * - LRU isolation
2722 * - lock_page_memcg()
2723 * - exclusive reference
0a31bc97 2724 */
bcfe06bf 2725 page->memcg_data = (unsigned long)memcg;
7a81b88c 2726}
66e1707b 2727
e74d2259
MS
2728static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2729{
2730 struct mem_cgroup *memcg;
2731
2732 rcu_read_lock();
2733retry:
2734 memcg = obj_cgroup_memcg(objcg);
2735 if (unlikely(!css_tryget(&memcg->css)))
2736 goto retry;
2737 rcu_read_unlock();
2738
2739 return memcg;
2740}
2741
84c07d11 2742#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2743/*
2744 * The allocated objcg pointers array is not accounted directly.
2745 * Moreover, it should not come from DMA buffer and is not readily
2746 * reclaimable. So those GFP bits should be masked off.
2747 */
2748#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2749
10befea9 2750int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2e9bd483 2751 gfp_t gfp, bool new_page)
10befea9
RG
2752{
2753 unsigned int objects = objs_per_slab_page(s, page);
2e9bd483 2754 unsigned long memcg_data;
10befea9
RG
2755 void *vec;
2756
41eb5df1 2757 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9
RG
2758 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2759 page_to_nid(page));
2760 if (!vec)
2761 return -ENOMEM;
2762
2e9bd483
RG
2763 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2764 if (new_page) {
2765 /*
2766 * If the slab page is brand new and nobody can yet access
2767 * it's memcg_data, no synchronization is required and
2768 * memcg_data can be simply assigned.
2769 */
2770 page->memcg_data = memcg_data;
2771 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2772 /*
2773 * If the slab page is already in use, somebody can allocate
2774 * and assign obj_cgroups in parallel. In this case the existing
2775 * objcg vector should be reused.
2776 */
10befea9 2777 kfree(vec);
2e9bd483
RG
2778 return 0;
2779 }
10befea9 2780
2e9bd483 2781 kmemleak_not_leak(vec);
10befea9
RG
2782 return 0;
2783}
2784
8380ce47
RG
2785/*
2786 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2787 *
bcfe06bf
RG
2788 * A passed kernel object can be a slab object or a generic kernel page, so
2789 * different mechanisms for getting the memory cgroup pointer should be used.
2790 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2791 * can not know for sure how the kernel object is implemented.
2792 * mem_cgroup_from_obj() can be safely used in such cases.
2793 *
8380ce47
RG
2794 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2795 * cgroup_mutex, etc.
2796 */
2797struct mem_cgroup *mem_cgroup_from_obj(void *p)
2798{
2799 struct page *page;
2800
2801 if (mem_cgroup_disabled())
2802 return NULL;
2803
2804 page = virt_to_head_page(p);
2805
2806 /*
9855609b
RG
2807 * Slab objects are accounted individually, not per-page.
2808 * Memcg membership data for each individual object is saved in
2809 * the page->obj_cgroups.
8380ce47 2810 */
270c6a71 2811 if (page_objcgs_check(page)) {
9855609b
RG
2812 struct obj_cgroup *objcg;
2813 unsigned int off;
2814
2815 off = obj_to_index(page->slab_cache, page, p);
270c6a71 2816 objcg = page_objcgs(page)[off];
10befea9
RG
2817 if (objcg)
2818 return obj_cgroup_memcg(objcg);
2819
2820 return NULL;
9855609b 2821 }
8380ce47 2822
bcfe06bf
RG
2823 /*
2824 * page_memcg_check() is used here, because page_has_obj_cgroups()
2825 * check above could fail because the object cgroups vector wasn't set
2826 * at that moment, but it can be set concurrently.
2827 * page_memcg_check(page) will guarantee that a proper memory
2828 * cgroup pointer or NULL will be returned.
2829 */
2830 return page_memcg_check(page);
8380ce47
RG
2831}
2832
bf4f0599
RG
2833__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2834{
2835 struct obj_cgroup *objcg = NULL;
2836 struct mem_cgroup *memcg;
2837
279c3393
RG
2838 if (memcg_kmem_bypass())
2839 return NULL;
2840
bf4f0599 2841 rcu_read_lock();
37d5985c
RG
2842 if (unlikely(active_memcg()))
2843 memcg = active_memcg();
bf4f0599
RG
2844 else
2845 memcg = mem_cgroup_from_task(current);
2846
2847 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2848 objcg = rcu_dereference(memcg->objcg);
2849 if (objcg && obj_cgroup_tryget(objcg))
2850 break;
2f7659a3 2851 objcg = NULL;
bf4f0599
RG
2852 }
2853 rcu_read_unlock();
2854
2855 return objcg;
2856}
2857
f3bb3043 2858static int memcg_alloc_cache_id(void)
55007d84 2859{
f3bb3043
VD
2860 int id, size;
2861 int err;
2862
dbcf73e2 2863 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2864 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2865 if (id < 0)
2866 return id;
55007d84 2867
dbcf73e2 2868 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2869 return id;
2870
2871 /*
2872 * There's no space for the new id in memcg_caches arrays,
2873 * so we have to grow them.
2874 */
05257a1a 2875 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2876
2877 size = 2 * (id + 1);
55007d84
GC
2878 if (size < MEMCG_CACHES_MIN_SIZE)
2879 size = MEMCG_CACHES_MIN_SIZE;
2880 else if (size > MEMCG_CACHES_MAX_SIZE)
2881 size = MEMCG_CACHES_MAX_SIZE;
2882
9855609b 2883 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2884 if (!err)
2885 memcg_nr_cache_ids = size;
2886
2887 up_write(&memcg_cache_ids_sem);
2888
f3bb3043 2889 if (err) {
dbcf73e2 2890 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2891 return err;
2892 }
2893 return id;
2894}
2895
2896static void memcg_free_cache_id(int id)
2897{
dbcf73e2 2898 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2899}
2900
f1286fae
MS
2901/*
2902 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2903 * @objcg: object cgroup to uncharge
2904 * @nr_pages: number of pages to uncharge
2905 */
e74d2259
MS
2906static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2907 unsigned int nr_pages)
2908{
2909 struct mem_cgroup *memcg;
2910
2911 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 2912
f1286fae
MS
2913 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2914 page_counter_uncharge(&memcg->kmem, nr_pages);
2915 refill_stock(memcg, nr_pages);
e74d2259 2916
e74d2259 2917 css_put(&memcg->css);
e74d2259
MS
2918}
2919
f1286fae
MS
2920/*
2921 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2922 * @objcg: object cgroup to charge
45264778 2923 * @gfp: reclaim mode
92d0510c 2924 * @nr_pages: number of pages to charge
45264778
VD
2925 *
2926 * Returns 0 on success, an error code on failure.
2927 */
f1286fae
MS
2928static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2929 unsigned int nr_pages)
7ae1e1d0 2930{
f3ccb2c4 2931 struct page_counter *counter;
f1286fae 2932 struct mem_cgroup *memcg;
7ae1e1d0
GC
2933 int ret;
2934
f1286fae
MS
2935 memcg = get_mem_cgroup_from_objcg(objcg);
2936
c5c8b16b 2937 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 2938 if (ret)
f1286fae 2939 goto out;
52c29b04
JW
2940
2941 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2942 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2943
2944 /*
2945 * Enforce __GFP_NOFAIL allocation because callers are not
2946 * prepared to see failures and likely do not have any failure
2947 * handling code.
2948 */
2949 if (gfp & __GFP_NOFAIL) {
2950 page_counter_charge(&memcg->kmem, nr_pages);
f1286fae 2951 goto out;
e55d9d9b 2952 }
52c29b04 2953 cancel_charge(memcg, nr_pages);
f1286fae 2954 ret = -ENOMEM;
7ae1e1d0 2955 }
f1286fae
MS
2956out:
2957 css_put(&memcg->css);
4b13f64d 2958
f1286fae 2959 return ret;
4b13f64d
RG
2960}
2961
45264778 2962/**
f4b00eab 2963 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
2964 * @page: page to charge
2965 * @gfp: reclaim mode
2966 * @order: allocation order
2967 *
2968 * Returns 0 on success, an error code on failure.
2969 */
f4b00eab 2970int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2971{
b4e0b68f 2972 struct obj_cgroup *objcg;
fcff7d7e 2973 int ret = 0;
7ae1e1d0 2974
b4e0b68f
MS
2975 objcg = get_obj_cgroup_from_current();
2976 if (objcg) {
2977 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 2978 if (!ret) {
b4e0b68f 2979 page->memcg_data = (unsigned long)objcg |
18b2db3b 2980 MEMCG_DATA_KMEM;
1a3e1f40 2981 return 0;
4d96ba35 2982 }
b4e0b68f 2983 obj_cgroup_put(objcg);
c4159a75 2984 }
d05e83a6 2985 return ret;
7ae1e1d0 2986}
49a18eae 2987
45264778 2988/**
f4b00eab 2989 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
2990 * @page: page to uncharge
2991 * @order: allocation order
2992 */
f4b00eab 2993void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 2994{
b4e0b68f 2995 struct obj_cgroup *objcg;
f3ccb2c4 2996 unsigned int nr_pages = 1 << order;
7ae1e1d0 2997
b4e0b68f 2998 if (!PageMemcgKmem(page))
7ae1e1d0
GC
2999 return;
3000
b4e0b68f
MS
3001 objcg = __page_objcg(page);
3002 obj_cgroup_uncharge_pages(objcg, nr_pages);
bcfe06bf 3003 page->memcg_data = 0;
b4e0b68f 3004 obj_cgroup_put(objcg);
60d3fd32 3005}
bf4f0599 3006
68ac5b3c
WL
3007void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3008 enum node_stat_item idx, int nr)
3009{
68ac5b3c 3010 unsigned long flags;
55927114 3011 struct obj_stock *stock = get_obj_stock(&flags);
68ac5b3c
WL
3012 int *bytes;
3013
68ac5b3c
WL
3014 /*
3015 * Save vmstat data in stock and skip vmstat array update unless
3016 * accumulating over a page of vmstat data or when pgdat or idx
3017 * changes.
3018 */
3019 if (stock->cached_objcg != objcg) {
3020 drain_obj_stock(stock);
3021 obj_cgroup_get(objcg);
3022 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3023 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3024 stock->cached_objcg = objcg;
3025 stock->cached_pgdat = pgdat;
3026 } else if (stock->cached_pgdat != pgdat) {
3027 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3028 struct pglist_data *oldpg = stock->cached_pgdat;
3029
68ac5b3c 3030 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3031 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3032 stock->nr_slab_reclaimable_b);
3033 stock->nr_slab_reclaimable_b = 0;
3034 }
3035 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3036 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3037 stock->nr_slab_unreclaimable_b);
3038 stock->nr_slab_unreclaimable_b = 0;
3039 }
3040 stock->cached_pgdat = pgdat;
3041 }
3042
3043 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3044 : &stock->nr_slab_unreclaimable_b;
3045 /*
3046 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3047 * cached locally at least once before pushing it out.
3048 */
3049 if (!*bytes) {
3050 *bytes = nr;
3051 nr = 0;
3052 } else {
3053 *bytes += nr;
3054 if (abs(*bytes) > PAGE_SIZE) {
3055 nr = *bytes;
3056 *bytes = 0;
3057 } else {
3058 nr = 0;
3059 }
3060 }
3061 if (nr)
3062 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3063
55927114 3064 put_obj_stock(flags);
68ac5b3c
WL
3065}
3066
bf4f0599
RG
3067static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3068{
bf4f0599 3069 unsigned long flags;
55927114 3070 struct obj_stock *stock = get_obj_stock(&flags);
bf4f0599
RG
3071 bool ret = false;
3072
bf4f0599
RG
3073 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3074 stock->nr_bytes -= nr_bytes;
3075 ret = true;
3076 }
3077
55927114 3078 put_obj_stock(flags);
bf4f0599
RG
3079
3080 return ret;
3081}
3082
55927114 3083static void drain_obj_stock(struct obj_stock *stock)
bf4f0599
RG
3084{
3085 struct obj_cgroup *old = stock->cached_objcg;
3086
3087 if (!old)
3088 return;
3089
3090 if (stock->nr_bytes) {
3091 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3092 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3093
e74d2259
MS
3094 if (nr_pages)
3095 obj_cgroup_uncharge_pages(old, nr_pages);
bf4f0599
RG
3096
3097 /*
3098 * The leftover is flushed to the centralized per-memcg value.
3099 * On the next attempt to refill obj stock it will be moved
3100 * to a per-cpu stock (probably, on an other CPU), see
3101 * refill_obj_stock().
3102 *
3103 * How often it's flushed is a trade-off between the memory
3104 * limit enforcement accuracy and potential CPU contention,
3105 * so it might be changed in the future.
3106 */
3107 atomic_add(nr_bytes, &old->nr_charged_bytes);
3108 stock->nr_bytes = 0;
3109 }
3110
68ac5b3c
WL
3111 /*
3112 * Flush the vmstat data in current stock
3113 */
3114 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3115 if (stock->nr_slab_reclaimable_b) {
3116 mod_objcg_mlstate(old, stock->cached_pgdat,
3117 NR_SLAB_RECLAIMABLE_B,
3118 stock->nr_slab_reclaimable_b);
3119 stock->nr_slab_reclaimable_b = 0;
3120 }
3121 if (stock->nr_slab_unreclaimable_b) {
3122 mod_objcg_mlstate(old, stock->cached_pgdat,
3123 NR_SLAB_UNRECLAIMABLE_B,
3124 stock->nr_slab_unreclaimable_b);
3125 stock->nr_slab_unreclaimable_b = 0;
3126 }
3127 stock->cached_pgdat = NULL;
3128 }
3129
bf4f0599
RG
3130 obj_cgroup_put(old);
3131 stock->cached_objcg = NULL;
3132}
3133
3134static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3135 struct mem_cgroup *root_memcg)
3136{
3137 struct mem_cgroup *memcg;
3138
55927114
WL
3139 if (in_task() && stock->task_obj.cached_objcg) {
3140 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3141 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3142 return true;
3143 }
3144 if (stock->irq_obj.cached_objcg) {
3145 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
bf4f0599
RG
3146 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3147 return true;
3148 }
3149
3150 return false;
3151}
3152
5387c904
WL
3153static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3154 bool allow_uncharge)
bf4f0599 3155{
bf4f0599 3156 unsigned long flags;
55927114 3157 struct obj_stock *stock = get_obj_stock(&flags);
5387c904 3158 unsigned int nr_pages = 0;
bf4f0599 3159
bf4f0599
RG
3160 if (stock->cached_objcg != objcg) { /* reset if necessary */
3161 drain_obj_stock(stock);
3162 obj_cgroup_get(objcg);
3163 stock->cached_objcg = objcg;
5387c904
WL
3164 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3165 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3166 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3167 }
3168 stock->nr_bytes += nr_bytes;
3169
5387c904
WL
3170 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3171 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3172 stock->nr_bytes &= (PAGE_SIZE - 1);
3173 }
bf4f0599 3174
55927114 3175 put_obj_stock(flags);
5387c904
WL
3176
3177 if (nr_pages)
3178 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3179}
3180
3181int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3182{
bf4f0599
RG
3183 unsigned int nr_pages, nr_bytes;
3184 int ret;
3185
3186 if (consume_obj_stock(objcg, size))
3187 return 0;
3188
3189 /*
5387c904 3190 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3191 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3192 * flushing objcg->nr_charged_bytes requires two atomic
3193 * operations, and objcg->nr_charged_bytes can't be big.
3194 * The shared objcg->nr_charged_bytes can also become a
3195 * performance bottleneck if all tasks of the same memcg are
3196 * trying to update it. So it's better to ignore it and try
3197 * grab some new pages. The stock's nr_bytes will be flushed to
3198 * objcg->nr_charged_bytes later on when objcg changes.
3199 *
3200 * The stock's nr_bytes may contain enough pre-charged bytes
3201 * to allow one less page from being charged, but we can't rely
3202 * on the pre-charged bytes not being changed outside of
3203 * consume_obj_stock() or refill_obj_stock(). So ignore those
3204 * pre-charged bytes as well when charging pages. To avoid a
3205 * page uncharge right after a page charge, we set the
3206 * allow_uncharge flag to false when calling refill_obj_stock()
3207 * to temporarily allow the pre-charged bytes to exceed the page
3208 * size limit. The maximum reachable value of the pre-charged
3209 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3210 * race.
bf4f0599 3211 */
bf4f0599
RG
3212 nr_pages = size >> PAGE_SHIFT;
3213 nr_bytes = size & (PAGE_SIZE - 1);
3214
3215 if (nr_bytes)
3216 nr_pages += 1;
3217
e74d2259 3218 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3219 if (!ret && nr_bytes)
5387c904 3220 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3221
bf4f0599
RG
3222 return ret;
3223}
3224
3225void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3226{
5387c904 3227 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3228}
3229
84c07d11 3230#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3231
ca3e0214 3232/*
be6c8982 3233 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3234 */
be6c8982 3235void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3236{
bcfe06bf 3237 struct mem_cgroup *memcg = page_memcg(head);
e94c8a9c 3238 int i;
ca3e0214 3239
be6c8982 3240 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3241 return;
b070e65c 3242
be6c8982
ZG
3243 for (i = 1; i < nr; i++)
3244 head[i].memcg_data = head->memcg_data;
b4e0b68f
MS
3245
3246 if (PageMemcgKmem(head))
3247 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3248 else
3249 css_get_many(&memcg->css, nr - 1);
ca3e0214 3250}
ca3e0214 3251
c255a458 3252#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3253/**
3254 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3255 * @entry: swap entry to be moved
3256 * @from: mem_cgroup which the entry is moved from
3257 * @to: mem_cgroup which the entry is moved to
3258 *
3259 * It succeeds only when the swap_cgroup's record for this entry is the same
3260 * as the mem_cgroup's id of @from.
3261 *
3262 * Returns 0 on success, -EINVAL on failure.
3263 *
3e32cb2e 3264 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3265 * both res and memsw, and called css_get().
3266 */
3267static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3268 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3269{
3270 unsigned short old_id, new_id;
3271
34c00c31
LZ
3272 old_id = mem_cgroup_id(from);
3273 new_id = mem_cgroup_id(to);
02491447
DN
3274
3275 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3276 mod_memcg_state(from, MEMCG_SWAP, -1);
3277 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3278 return 0;
3279 }
3280 return -EINVAL;
3281}
3282#else
3283static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3284 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3285{
3286 return -EINVAL;
3287}
8c7c6e34 3288#endif
d13d1443 3289
bbec2e15 3290static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3291
bbec2e15
RG
3292static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3293 unsigned long max, bool memsw)
628f4235 3294{
3e32cb2e 3295 bool enlarge = false;
bb4a7ea2 3296 bool drained = false;
3e32cb2e 3297 int ret;
c054a78c
YZ
3298 bool limits_invariant;
3299 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3300
3e32cb2e 3301 do {
628f4235
KH
3302 if (signal_pending(current)) {
3303 ret = -EINTR;
3304 break;
3305 }
3e32cb2e 3306
bbec2e15 3307 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3308 /*
3309 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3310 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3311 */
15b42562 3312 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3313 max <= memcg->memsw.max;
c054a78c 3314 if (!limits_invariant) {
bbec2e15 3315 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3316 ret = -EINVAL;
8c7c6e34
KH
3317 break;
3318 }
bbec2e15 3319 if (max > counter->max)
3e32cb2e 3320 enlarge = true;
bbec2e15
RG
3321 ret = page_counter_set_max(counter, max);
3322 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3323
3324 if (!ret)
3325 break;
3326
bb4a7ea2
SB
3327 if (!drained) {
3328 drain_all_stock(memcg);
3329 drained = true;
3330 continue;
3331 }
3332
1ab5c056
AR
3333 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3334 GFP_KERNEL, !memsw)) {
3335 ret = -EBUSY;
3336 break;
3337 }
3338 } while (true);
3e32cb2e 3339
3c11ecf4
KH
3340 if (!ret && enlarge)
3341 memcg_oom_recover(memcg);
3e32cb2e 3342
628f4235
KH
3343 return ret;
3344}
3345
ef8f2327 3346unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3347 gfp_t gfp_mask,
3348 unsigned long *total_scanned)
3349{
3350 unsigned long nr_reclaimed = 0;
ef8f2327 3351 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3352 unsigned long reclaimed;
3353 int loop = 0;
ef8f2327 3354 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3355 unsigned long excess;
0608f43d
AM
3356 unsigned long nr_scanned;
3357
3358 if (order > 0)
3359 return 0;
3360
2ab082ba 3361 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
d6507ff5
MH
3362
3363 /*
3364 * Do not even bother to check the largest node if the root
3365 * is empty. Do it lockless to prevent lock bouncing. Races
3366 * are acceptable as soft limit is best effort anyway.
3367 */
bfc7228b 3368 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3369 return 0;
3370
0608f43d
AM
3371 /*
3372 * This loop can run a while, specially if mem_cgroup's continuously
3373 * keep exceeding their soft limit and putting the system under
3374 * pressure
3375 */
3376 do {
3377 if (next_mz)
3378 mz = next_mz;
3379 else
3380 mz = mem_cgroup_largest_soft_limit_node(mctz);
3381 if (!mz)
3382 break;
3383
3384 nr_scanned = 0;
ef8f2327 3385 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3386 gfp_mask, &nr_scanned);
3387 nr_reclaimed += reclaimed;
3388 *total_scanned += nr_scanned;
0a31bc97 3389 spin_lock_irq(&mctz->lock);
bc2f2e7f 3390 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3391
3392 /*
3393 * If we failed to reclaim anything from this memory cgroup
3394 * it is time to move on to the next cgroup
3395 */
3396 next_mz = NULL;
bc2f2e7f
VD
3397 if (!reclaimed)
3398 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3399
3e32cb2e 3400 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3401 /*
3402 * One school of thought says that we should not add
3403 * back the node to the tree if reclaim returns 0.
3404 * But our reclaim could return 0, simply because due
3405 * to priority we are exposing a smaller subset of
3406 * memory to reclaim from. Consider this as a longer
3407 * term TODO.
3408 */
3409 /* If excess == 0, no tree ops */
cf2c8127 3410 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3411 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3412 css_put(&mz->memcg->css);
3413 loop++;
3414 /*
3415 * Could not reclaim anything and there are no more
3416 * mem cgroups to try or we seem to be looping without
3417 * reclaiming anything.
3418 */
3419 if (!nr_reclaimed &&
3420 (next_mz == NULL ||
3421 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3422 break;
3423 } while (!nr_reclaimed);
3424 if (next_mz)
3425 css_put(&next_mz->memcg->css);
3426 return nr_reclaimed;
3427}
3428
c26251f9 3429/*
51038171 3430 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3431 *
3432 * Caller is responsible for holding css reference for memcg.
3433 */
3434static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3435{
d977aa93 3436 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3437
c1e862c1
KH
3438 /* we call try-to-free pages for make this cgroup empty */
3439 lru_add_drain_all();
d12c60f6
JS
3440
3441 drain_all_stock(memcg);
3442
f817ed48 3443 /* try to free all pages in this cgroup */
3e32cb2e 3444 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3445 int progress;
c1e862c1 3446
c26251f9
MH
3447 if (signal_pending(current))
3448 return -EINTR;
3449
b70a2a21
JW
3450 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3451 GFP_KERNEL, true);
c1e862c1 3452 if (!progress) {
f817ed48 3453 nr_retries--;
c1e862c1 3454 /* maybe some writeback is necessary */
8aa7e847 3455 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3456 }
f817ed48
KH
3457
3458 }
ab5196c2
MH
3459
3460 return 0;
cc847582
KH
3461}
3462
6770c64e
TH
3463static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3464 char *buf, size_t nbytes,
3465 loff_t off)
c1e862c1 3466{
6770c64e 3467 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3468
d8423011
MH
3469 if (mem_cgroup_is_root(memcg))
3470 return -EINVAL;
6770c64e 3471 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3472}
3473
182446d0
TH
3474static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3475 struct cftype *cft)
18f59ea7 3476{
bef8620c 3477 return 1;
18f59ea7
BS
3478}
3479
182446d0
TH
3480static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3481 struct cftype *cft, u64 val)
18f59ea7 3482{
bef8620c 3483 if (val == 1)
0b8f73e1 3484 return 0;
567fb435 3485
bef8620c
RG
3486 pr_warn_once("Non-hierarchical mode is deprecated. "
3487 "Please report your usecase to linux-mm@kvack.org if you "
3488 "depend on this functionality.\n");
567fb435 3489
bef8620c 3490 return -EINVAL;
18f59ea7
BS
3491}
3492
6f646156 3493static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3494{
42a30035 3495 unsigned long val;
ce00a967 3496
3e32cb2e 3497 if (mem_cgroup_is_root(memcg)) {
30def935
JW
3498 /* mem_cgroup_threshold() calls here from irqsafe context */
3499 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
0d1c2072 3500 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3501 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3502 if (swap)
3503 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3504 } else {
ce00a967 3505 if (!swap)
3e32cb2e 3506 val = page_counter_read(&memcg->memory);
ce00a967 3507 else
3e32cb2e 3508 val = page_counter_read(&memcg->memsw);
ce00a967 3509 }
c12176d3 3510 return val;
ce00a967
JW
3511}
3512
3e32cb2e
JW
3513enum {
3514 RES_USAGE,
3515 RES_LIMIT,
3516 RES_MAX_USAGE,
3517 RES_FAILCNT,
3518 RES_SOFT_LIMIT,
3519};
ce00a967 3520
791badbd 3521static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3522 struct cftype *cft)
8cdea7c0 3523{
182446d0 3524 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3525 struct page_counter *counter;
af36f906 3526
3e32cb2e 3527 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3528 case _MEM:
3e32cb2e
JW
3529 counter = &memcg->memory;
3530 break;
8c7c6e34 3531 case _MEMSWAP:
3e32cb2e
JW
3532 counter = &memcg->memsw;
3533 break;
510fc4e1 3534 case _KMEM:
3e32cb2e 3535 counter = &memcg->kmem;
510fc4e1 3536 break;
d55f90bf 3537 case _TCP:
0db15298 3538 counter = &memcg->tcpmem;
d55f90bf 3539 break;
8c7c6e34
KH
3540 default:
3541 BUG();
8c7c6e34 3542 }
3e32cb2e
JW
3543
3544 switch (MEMFILE_ATTR(cft->private)) {
3545 case RES_USAGE:
3546 if (counter == &memcg->memory)
c12176d3 3547 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3548 if (counter == &memcg->memsw)
c12176d3 3549 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3550 return (u64)page_counter_read(counter) * PAGE_SIZE;
3551 case RES_LIMIT:
bbec2e15 3552 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3553 case RES_MAX_USAGE:
3554 return (u64)counter->watermark * PAGE_SIZE;
3555 case RES_FAILCNT:
3556 return counter->failcnt;
3557 case RES_SOFT_LIMIT:
3558 return (u64)memcg->soft_limit * PAGE_SIZE;
3559 default:
3560 BUG();
3561 }
8cdea7c0 3562}
510fc4e1 3563
84c07d11 3564#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3565static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3566{
bf4f0599 3567 struct obj_cgroup *objcg;
d6441637
VD
3568 int memcg_id;
3569
b313aeee
VD
3570 if (cgroup_memory_nokmem)
3571 return 0;
3572
2a4db7eb 3573 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3574 BUG_ON(memcg->kmem_state);
d6441637 3575
f3bb3043 3576 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3577 if (memcg_id < 0)
3578 return memcg_id;
d6441637 3579
bf4f0599
RG
3580 objcg = obj_cgroup_alloc();
3581 if (!objcg) {
3582 memcg_free_cache_id(memcg_id);
3583 return -ENOMEM;
3584 }
3585 objcg->memcg = memcg;
3586 rcu_assign_pointer(memcg->objcg, objcg);
3587
d648bcc7
RG
3588 static_branch_enable(&memcg_kmem_enabled_key);
3589
900a38f0 3590 memcg->kmemcg_id = memcg_id;
567e9ab2 3591 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3592
3593 return 0;
d6441637
VD
3594}
3595
8e0a8912
JW
3596static void memcg_offline_kmem(struct mem_cgroup *memcg)
3597{
3598 struct cgroup_subsys_state *css;
3599 struct mem_cgroup *parent, *child;
3600 int kmemcg_id;
3601
3602 if (memcg->kmem_state != KMEM_ONLINE)
3603 return;
9855609b 3604
8e0a8912
JW
3605 memcg->kmem_state = KMEM_ALLOCATED;
3606
8e0a8912
JW
3607 parent = parent_mem_cgroup(memcg);
3608 if (!parent)
3609 parent = root_mem_cgroup;
3610
bf4f0599 3611 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3612
3613 kmemcg_id = memcg->kmemcg_id;
3614 BUG_ON(kmemcg_id < 0);
3615
8e0a8912
JW
3616 /*
3617 * Change kmemcg_id of this cgroup and all its descendants to the
3618 * parent's id, and then move all entries from this cgroup's list_lrus
3619 * to ones of the parent. After we have finished, all list_lrus
3620 * corresponding to this cgroup are guaranteed to remain empty. The
3621 * ordering is imposed by list_lru_node->lock taken by
3622 * memcg_drain_all_list_lrus().
3623 */
3a06bb78 3624 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3625 css_for_each_descendant_pre(css, &memcg->css) {
3626 child = mem_cgroup_from_css(css);
3627 BUG_ON(child->kmemcg_id != kmemcg_id);
3628 child->kmemcg_id = parent->kmemcg_id;
8e0a8912 3629 }
3a06bb78
TH
3630 rcu_read_unlock();
3631
9bec5c35 3632 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3633
3634 memcg_free_cache_id(kmemcg_id);
3635}
3636
3637static void memcg_free_kmem(struct mem_cgroup *memcg)
3638{
0b8f73e1
JW
3639 /* css_alloc() failed, offlining didn't happen */
3640 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3641 memcg_offline_kmem(memcg);
8e0a8912 3642}
d6441637 3643#else
0b8f73e1 3644static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3645{
3646 return 0;
3647}
3648static void memcg_offline_kmem(struct mem_cgroup *memcg)
3649{
3650}
3651static void memcg_free_kmem(struct mem_cgroup *memcg)
3652{
3653}
84c07d11 3654#endif /* CONFIG_MEMCG_KMEM */
127424c8 3655
bbec2e15
RG
3656static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3657 unsigned long max)
d6441637 3658{
b313aeee 3659 int ret;
127424c8 3660
bbec2e15
RG
3661 mutex_lock(&memcg_max_mutex);
3662 ret = page_counter_set_max(&memcg->kmem, max);
3663 mutex_unlock(&memcg_max_mutex);
127424c8 3664 return ret;
d6441637 3665}
510fc4e1 3666
bbec2e15 3667static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3668{
3669 int ret;
3670
bbec2e15 3671 mutex_lock(&memcg_max_mutex);
d55f90bf 3672
bbec2e15 3673 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3674 if (ret)
3675 goto out;
3676
0db15298 3677 if (!memcg->tcpmem_active) {
d55f90bf
VD
3678 /*
3679 * The active flag needs to be written after the static_key
3680 * update. This is what guarantees that the socket activation
2d758073
JW
3681 * function is the last one to run. See mem_cgroup_sk_alloc()
3682 * for details, and note that we don't mark any socket as
3683 * belonging to this memcg until that flag is up.
d55f90bf
VD
3684 *
3685 * We need to do this, because static_keys will span multiple
3686 * sites, but we can't control their order. If we mark a socket
3687 * as accounted, but the accounting functions are not patched in
3688 * yet, we'll lose accounting.
3689 *
2d758073 3690 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3691 * because when this value change, the code to process it is not
3692 * patched in yet.
3693 */
3694 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3695 memcg->tcpmem_active = true;
d55f90bf
VD
3696 }
3697out:
bbec2e15 3698 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3699 return ret;
3700}
d55f90bf 3701
628f4235
KH
3702/*
3703 * The user of this function is...
3704 * RES_LIMIT.
3705 */
451af504
TH
3706static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3707 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3708{
451af504 3709 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3710 unsigned long nr_pages;
628f4235
KH
3711 int ret;
3712
451af504 3713 buf = strstrip(buf);
650c5e56 3714 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3715 if (ret)
3716 return ret;
af36f906 3717
3e32cb2e 3718 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3719 case RES_LIMIT:
4b3bde4c
BS
3720 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3721 ret = -EINVAL;
3722 break;
3723 }
3e32cb2e
JW
3724 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3725 case _MEM:
bbec2e15 3726 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3727 break;
3e32cb2e 3728 case _MEMSWAP:
bbec2e15 3729 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3730 break;
3e32cb2e 3731 case _KMEM:
0158115f
MH
3732 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3733 "Please report your usecase to linux-mm@kvack.org if you "
3734 "depend on this functionality.\n");
bbec2e15 3735 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3736 break;
d55f90bf 3737 case _TCP:
bbec2e15 3738 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3739 break;
3e32cb2e 3740 }
296c81d8 3741 break;
3e32cb2e
JW
3742 case RES_SOFT_LIMIT:
3743 memcg->soft_limit = nr_pages;
3744 ret = 0;
628f4235
KH
3745 break;
3746 }
451af504 3747 return ret ?: nbytes;
8cdea7c0
BS
3748}
3749
6770c64e
TH
3750static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3751 size_t nbytes, loff_t off)
c84872e1 3752{
6770c64e 3753 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3754 struct page_counter *counter;
c84872e1 3755
3e32cb2e
JW
3756 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3757 case _MEM:
3758 counter = &memcg->memory;
3759 break;
3760 case _MEMSWAP:
3761 counter = &memcg->memsw;
3762 break;
3763 case _KMEM:
3764 counter = &memcg->kmem;
3765 break;
d55f90bf 3766 case _TCP:
0db15298 3767 counter = &memcg->tcpmem;
d55f90bf 3768 break;
3e32cb2e
JW
3769 default:
3770 BUG();
3771 }
af36f906 3772
3e32cb2e 3773 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3774 case RES_MAX_USAGE:
3e32cb2e 3775 page_counter_reset_watermark(counter);
29f2a4da
PE
3776 break;
3777 case RES_FAILCNT:
3e32cb2e 3778 counter->failcnt = 0;
29f2a4da 3779 break;
3e32cb2e
JW
3780 default:
3781 BUG();
29f2a4da 3782 }
f64c3f54 3783
6770c64e 3784 return nbytes;
c84872e1
PE
3785}
3786
182446d0 3787static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3788 struct cftype *cft)
3789{
182446d0 3790 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3791}
3792
02491447 3793#ifdef CONFIG_MMU
182446d0 3794static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3795 struct cftype *cft, u64 val)
3796{
182446d0 3797 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3798
1dfab5ab 3799 if (val & ~MOVE_MASK)
7dc74be0 3800 return -EINVAL;
ee5e8472 3801
7dc74be0 3802 /*
ee5e8472
GC
3803 * No kind of locking is needed in here, because ->can_attach() will
3804 * check this value once in the beginning of the process, and then carry
3805 * on with stale data. This means that changes to this value will only
3806 * affect task migrations starting after the change.
7dc74be0 3807 */
c0ff4b85 3808 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3809 return 0;
3810}
02491447 3811#else
182446d0 3812static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3813 struct cftype *cft, u64 val)
3814{
3815 return -ENOSYS;
3816}
3817#endif
7dc74be0 3818
406eb0c9 3819#ifdef CONFIG_NUMA
113b7dfd
JW
3820
3821#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3822#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3823#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3824
3825static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3826 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3827{
867e5e1d 3828 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3829 unsigned long nr = 0;
3830 enum lru_list lru;
3831
3832 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3833
3834 for_each_lru(lru) {
3835 if (!(BIT(lru) & lru_mask))
3836 continue;
dd8657b6
SB
3837 if (tree)
3838 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3839 else
3840 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3841 }
3842 return nr;
3843}
3844
3845static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3846 unsigned int lru_mask,
3847 bool tree)
113b7dfd
JW
3848{
3849 unsigned long nr = 0;
3850 enum lru_list lru;
3851
3852 for_each_lru(lru) {
3853 if (!(BIT(lru) & lru_mask))
3854 continue;
dd8657b6
SB
3855 if (tree)
3856 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3857 else
3858 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3859 }
3860 return nr;
3861}
3862
2da8ca82 3863static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3864{
25485de6
GT
3865 struct numa_stat {
3866 const char *name;
3867 unsigned int lru_mask;
3868 };
3869
3870 static const struct numa_stat stats[] = {
3871 { "total", LRU_ALL },
3872 { "file", LRU_ALL_FILE },
3873 { "anon", LRU_ALL_ANON },
3874 { "unevictable", BIT(LRU_UNEVICTABLE) },
3875 };
3876 const struct numa_stat *stat;
406eb0c9 3877 int nid;
aa9694bb 3878 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3879
2d146aa3
JW
3880 cgroup_rstat_flush(memcg->css.cgroup);
3881
25485de6 3882 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3883 seq_printf(m, "%s=%lu", stat->name,
3884 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3885 false));
3886 for_each_node_state(nid, N_MEMORY)
3887 seq_printf(m, " N%d=%lu", nid,
3888 mem_cgroup_node_nr_lru_pages(memcg, nid,
3889 stat->lru_mask, false));
25485de6 3890 seq_putc(m, '\n');
406eb0c9 3891 }
406eb0c9 3892
071aee13 3893 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3894
3895 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3896 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3897 true));
3898 for_each_node_state(nid, N_MEMORY)
3899 seq_printf(m, " N%d=%lu", nid,
3900 mem_cgroup_node_nr_lru_pages(memcg, nid,
3901 stat->lru_mask, true));
071aee13 3902 seq_putc(m, '\n');
406eb0c9 3903 }
406eb0c9 3904
406eb0c9
YH
3905 return 0;
3906}
3907#endif /* CONFIG_NUMA */
3908
c8713d0b 3909static const unsigned int memcg1_stats[] = {
0d1c2072 3910 NR_FILE_PAGES,
be5d0a74 3911 NR_ANON_MAPPED,
468c3982
JW
3912#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3913 NR_ANON_THPS,
3914#endif
c8713d0b
JW
3915 NR_SHMEM,
3916 NR_FILE_MAPPED,
3917 NR_FILE_DIRTY,
3918 NR_WRITEBACK,
3919 MEMCG_SWAP,
3920};
3921
3922static const char *const memcg1_stat_names[] = {
3923 "cache",
3924 "rss",
468c3982 3925#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 3926 "rss_huge",
468c3982 3927#endif
c8713d0b
JW
3928 "shmem",
3929 "mapped_file",
3930 "dirty",
3931 "writeback",
3932 "swap",
3933};
3934
df0e53d0 3935/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3936static const unsigned int memcg1_events[] = {
df0e53d0
JW
3937 PGPGIN,
3938 PGPGOUT,
3939 PGFAULT,
3940 PGMAJFAULT,
3941};
3942
2da8ca82 3943static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3944{
aa9694bb 3945 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3946 unsigned long memory, memsw;
af7c4b0e
JW
3947 struct mem_cgroup *mi;
3948 unsigned int i;
406eb0c9 3949
71cd3113 3950 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3951
2d146aa3
JW
3952 cgroup_rstat_flush(memcg->css.cgroup);
3953
71cd3113 3954 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
3955 unsigned long nr;
3956
71cd3113 3957 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3958 continue;
468c3982 3959 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
468c3982 3960 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 3961 }
7b854121 3962
df0e53d0 3963 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3964 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3965 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3966
3967 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3968 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3969 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3970 PAGE_SIZE);
af7c4b0e 3971
14067bb3 3972 /* Hierarchical information */
3e32cb2e
JW
3973 memory = memsw = PAGE_COUNTER_MAX;
3974 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
3975 memory = min(memory, READ_ONCE(mi->memory.max));
3976 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 3977 }
3e32cb2e
JW
3978 seq_printf(m, "hierarchical_memory_limit %llu\n",
3979 (u64)memory * PAGE_SIZE);
7941d214 3980 if (do_memsw_account())
3e32cb2e
JW
3981 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3982 (u64)memsw * PAGE_SIZE);
7f016ee8 3983
8de7ecc6 3984 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 3985 unsigned long nr;
3986
71cd3113 3987 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3988 continue;
7de2e9f1 3989 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 3990 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 3991 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
3992 }
3993
8de7ecc6 3994 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
3995 seq_printf(m, "total_%s %llu\n",
3996 vm_event_name(memcg1_events[i]),
dd923990 3997 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3998
8de7ecc6 3999 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4000 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4001 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4002 PAGE_SIZE);
14067bb3 4003
7f016ee8 4004#ifdef CONFIG_DEBUG_VM
7f016ee8 4005 {
ef8f2327
MG
4006 pg_data_t *pgdat;
4007 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4008 unsigned long anon_cost = 0;
4009 unsigned long file_cost = 0;
7f016ee8 4010
ef8f2327 4011 for_each_online_pgdat(pgdat) {
a3747b53 4012 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4013
1431d4d1
JW
4014 anon_cost += mz->lruvec.anon_cost;
4015 file_cost += mz->lruvec.file_cost;
ef8f2327 4016 }
1431d4d1
JW
4017 seq_printf(m, "anon_cost %lu\n", anon_cost);
4018 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4019 }
4020#endif
4021
d2ceb9b7
KH
4022 return 0;
4023}
4024
182446d0
TH
4025static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4026 struct cftype *cft)
a7885eb8 4027{
182446d0 4028 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4029
1f4c025b 4030 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4031}
4032
182446d0
TH
4033static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4034 struct cftype *cft, u64 val)
a7885eb8 4035{
182446d0 4036 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4037
37bc3cb9 4038 if (val > 200)
a7885eb8
KM
4039 return -EINVAL;
4040
a4792030 4041 if (!mem_cgroup_is_root(memcg))
3dae7fec
JW
4042 memcg->swappiness = val;
4043 else
4044 vm_swappiness = val;
068b38c1 4045
a7885eb8
KM
4046 return 0;
4047}
4048
2e72b634
KS
4049static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4050{
4051 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4052 unsigned long usage;
2e72b634
KS
4053 int i;
4054
4055 rcu_read_lock();
4056 if (!swap)
2c488db2 4057 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4058 else
2c488db2 4059 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4060
4061 if (!t)
4062 goto unlock;
4063
ce00a967 4064 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4065
4066 /*
748dad36 4067 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4068 * If it's not true, a threshold was crossed after last
4069 * call of __mem_cgroup_threshold().
4070 */
5407a562 4071 i = t->current_threshold;
2e72b634
KS
4072
4073 /*
4074 * Iterate backward over array of thresholds starting from
4075 * current_threshold and check if a threshold is crossed.
4076 * If none of thresholds below usage is crossed, we read
4077 * only one element of the array here.
4078 */
4079 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4080 eventfd_signal(t->entries[i].eventfd, 1);
4081
4082 /* i = current_threshold + 1 */
4083 i++;
4084
4085 /*
4086 * Iterate forward over array of thresholds starting from
4087 * current_threshold+1 and check if a threshold is crossed.
4088 * If none of thresholds above usage is crossed, we read
4089 * only one element of the array here.
4090 */
4091 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4092 eventfd_signal(t->entries[i].eventfd, 1);
4093
4094 /* Update current_threshold */
5407a562 4095 t->current_threshold = i - 1;
2e72b634
KS
4096unlock:
4097 rcu_read_unlock();
4098}
4099
4100static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4101{
ad4ca5f4
KS
4102 while (memcg) {
4103 __mem_cgroup_threshold(memcg, false);
7941d214 4104 if (do_memsw_account())
ad4ca5f4
KS
4105 __mem_cgroup_threshold(memcg, true);
4106
4107 memcg = parent_mem_cgroup(memcg);
4108 }
2e72b634
KS
4109}
4110
4111static int compare_thresholds(const void *a, const void *b)
4112{
4113 const struct mem_cgroup_threshold *_a = a;
4114 const struct mem_cgroup_threshold *_b = b;
4115
2bff24a3
GT
4116 if (_a->threshold > _b->threshold)
4117 return 1;
4118
4119 if (_a->threshold < _b->threshold)
4120 return -1;
4121
4122 return 0;
2e72b634
KS
4123}
4124
c0ff4b85 4125static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4126{
4127 struct mem_cgroup_eventfd_list *ev;
4128
2bcf2e92
MH
4129 spin_lock(&memcg_oom_lock);
4130
c0ff4b85 4131 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4132 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4133
4134 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4135 return 0;
4136}
4137
c0ff4b85 4138static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4139{
7d74b06f
KH
4140 struct mem_cgroup *iter;
4141
c0ff4b85 4142 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4143 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4144}
4145
59b6f873 4146static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4147 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4148{
2c488db2
KS
4149 struct mem_cgroup_thresholds *thresholds;
4150 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4151 unsigned long threshold;
4152 unsigned long usage;
2c488db2 4153 int i, size, ret;
2e72b634 4154
650c5e56 4155 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4156 if (ret)
4157 return ret;
4158
4159 mutex_lock(&memcg->thresholds_lock);
2c488db2 4160
05b84301 4161 if (type == _MEM) {
2c488db2 4162 thresholds = &memcg->thresholds;
ce00a967 4163 usage = mem_cgroup_usage(memcg, false);
05b84301 4164 } else if (type == _MEMSWAP) {
2c488db2 4165 thresholds = &memcg->memsw_thresholds;
ce00a967 4166 usage = mem_cgroup_usage(memcg, true);
05b84301 4167 } else
2e72b634
KS
4168 BUG();
4169
2e72b634 4170 /* Check if a threshold crossed before adding a new one */
2c488db2 4171 if (thresholds->primary)
2e72b634
KS
4172 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4173
2c488db2 4174 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4175
4176 /* Allocate memory for new array of thresholds */
67b8046f 4177 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4178 if (!new) {
2e72b634
KS
4179 ret = -ENOMEM;
4180 goto unlock;
4181 }
2c488db2 4182 new->size = size;
2e72b634
KS
4183
4184 /* Copy thresholds (if any) to new array */
e90342e6
GS
4185 if (thresholds->primary)
4186 memcpy(new->entries, thresholds->primary->entries,
4187 flex_array_size(new, entries, size - 1));
2c488db2 4188
2e72b634 4189 /* Add new threshold */
2c488db2
KS
4190 new->entries[size - 1].eventfd = eventfd;
4191 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4192
4193 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4194 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4195 compare_thresholds, NULL);
4196
4197 /* Find current threshold */
2c488db2 4198 new->current_threshold = -1;
2e72b634 4199 for (i = 0; i < size; i++) {
748dad36 4200 if (new->entries[i].threshold <= usage) {
2e72b634 4201 /*
2c488db2
KS
4202 * new->current_threshold will not be used until
4203 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4204 * it here.
4205 */
2c488db2 4206 ++new->current_threshold;
748dad36
SZ
4207 } else
4208 break;
2e72b634
KS
4209 }
4210
2c488db2
KS
4211 /* Free old spare buffer and save old primary buffer as spare */
4212 kfree(thresholds->spare);
4213 thresholds->spare = thresholds->primary;
4214
4215 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4216
907860ed 4217 /* To be sure that nobody uses thresholds */
2e72b634
KS
4218 synchronize_rcu();
4219
2e72b634
KS
4220unlock:
4221 mutex_unlock(&memcg->thresholds_lock);
4222
4223 return ret;
4224}
4225
59b6f873 4226static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4227 struct eventfd_ctx *eventfd, const char *args)
4228{
59b6f873 4229 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4230}
4231
59b6f873 4232static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4233 struct eventfd_ctx *eventfd, const char *args)
4234{
59b6f873 4235 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4236}
4237
59b6f873 4238static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4239 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4240{
2c488db2
KS
4241 struct mem_cgroup_thresholds *thresholds;
4242 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4243 unsigned long usage;
7d36665a 4244 int i, j, size, entries;
2e72b634
KS
4245
4246 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4247
4248 if (type == _MEM) {
2c488db2 4249 thresholds = &memcg->thresholds;
ce00a967 4250 usage = mem_cgroup_usage(memcg, false);
05b84301 4251 } else if (type == _MEMSWAP) {
2c488db2 4252 thresholds = &memcg->memsw_thresholds;
ce00a967 4253 usage = mem_cgroup_usage(memcg, true);
05b84301 4254 } else
2e72b634
KS
4255 BUG();
4256
371528ca
AV
4257 if (!thresholds->primary)
4258 goto unlock;
4259
2e72b634
KS
4260 /* Check if a threshold crossed before removing */
4261 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4262
4263 /* Calculate new number of threshold */
7d36665a 4264 size = entries = 0;
2c488db2
KS
4265 for (i = 0; i < thresholds->primary->size; i++) {
4266 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4267 size++;
7d36665a
CX
4268 else
4269 entries++;
2e72b634
KS
4270 }
4271
2c488db2 4272 new = thresholds->spare;
907860ed 4273
7d36665a
CX
4274 /* If no items related to eventfd have been cleared, nothing to do */
4275 if (!entries)
4276 goto unlock;
4277
2e72b634
KS
4278 /* Set thresholds array to NULL if we don't have thresholds */
4279 if (!size) {
2c488db2
KS
4280 kfree(new);
4281 new = NULL;
907860ed 4282 goto swap_buffers;
2e72b634
KS
4283 }
4284
2c488db2 4285 new->size = size;
2e72b634
KS
4286
4287 /* Copy thresholds and find current threshold */
2c488db2
KS
4288 new->current_threshold = -1;
4289 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4290 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4291 continue;
4292
2c488db2 4293 new->entries[j] = thresholds->primary->entries[i];
748dad36 4294 if (new->entries[j].threshold <= usage) {
2e72b634 4295 /*
2c488db2 4296 * new->current_threshold will not be used
2e72b634
KS
4297 * until rcu_assign_pointer(), so it's safe to increment
4298 * it here.
4299 */
2c488db2 4300 ++new->current_threshold;
2e72b634
KS
4301 }
4302 j++;
4303 }
4304
907860ed 4305swap_buffers:
2c488db2
KS
4306 /* Swap primary and spare array */
4307 thresholds->spare = thresholds->primary;
8c757763 4308
2c488db2 4309 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4310
907860ed 4311 /* To be sure that nobody uses thresholds */
2e72b634 4312 synchronize_rcu();
6611d8d7
MC
4313
4314 /* If all events are unregistered, free the spare array */
4315 if (!new) {
4316 kfree(thresholds->spare);
4317 thresholds->spare = NULL;
4318 }
371528ca 4319unlock:
2e72b634 4320 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4321}
c1e862c1 4322
59b6f873 4323static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4324 struct eventfd_ctx *eventfd)
4325{
59b6f873 4326 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4327}
4328
59b6f873 4329static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4330 struct eventfd_ctx *eventfd)
4331{
59b6f873 4332 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4333}
4334
59b6f873 4335static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4336 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4337{
9490ff27 4338 struct mem_cgroup_eventfd_list *event;
9490ff27 4339
9490ff27
KH
4340 event = kmalloc(sizeof(*event), GFP_KERNEL);
4341 if (!event)
4342 return -ENOMEM;
4343
1af8efe9 4344 spin_lock(&memcg_oom_lock);
9490ff27
KH
4345
4346 event->eventfd = eventfd;
4347 list_add(&event->list, &memcg->oom_notify);
4348
4349 /* already in OOM ? */
c2b42d3c 4350 if (memcg->under_oom)
9490ff27 4351 eventfd_signal(eventfd, 1);
1af8efe9 4352 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4353
4354 return 0;
4355}
4356
59b6f873 4357static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4358 struct eventfd_ctx *eventfd)
9490ff27 4359{
9490ff27 4360 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4361
1af8efe9 4362 spin_lock(&memcg_oom_lock);
9490ff27 4363
c0ff4b85 4364 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4365 if (ev->eventfd == eventfd) {
4366 list_del(&ev->list);
4367 kfree(ev);
4368 }
4369 }
4370
1af8efe9 4371 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4372}
4373
2da8ca82 4374static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4375{
aa9694bb 4376 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4377
791badbd 4378 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4379 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4380 seq_printf(sf, "oom_kill %lu\n",
4381 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4382 return 0;
4383}
4384
182446d0 4385static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4386 struct cftype *cft, u64 val)
4387{
182446d0 4388 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4389
4390 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4391 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4392 return -EINVAL;
4393
c0ff4b85 4394 memcg->oom_kill_disable = val;
4d845ebf 4395 if (!val)
c0ff4b85 4396 memcg_oom_recover(memcg);
3dae7fec 4397
3c11ecf4
KH
4398 return 0;
4399}
4400
52ebea74
TH
4401#ifdef CONFIG_CGROUP_WRITEBACK
4402
3a8e9ac8
TH
4403#include <trace/events/writeback.h>
4404
841710aa
TH
4405static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4406{
4407 return wb_domain_init(&memcg->cgwb_domain, gfp);
4408}
4409
4410static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4411{
4412 wb_domain_exit(&memcg->cgwb_domain);
4413}
4414
2529bb3a
TH
4415static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4416{
4417 wb_domain_size_changed(&memcg->cgwb_domain);
4418}
4419
841710aa
TH
4420struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4421{
4422 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4423
4424 if (!memcg->css.parent)
4425 return NULL;
4426
4427 return &memcg->cgwb_domain;
4428}
4429
c2aa723a
TH
4430/**
4431 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4432 * @wb: bdi_writeback in question
c5edf9cd
TH
4433 * @pfilepages: out parameter for number of file pages
4434 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4435 * @pdirty: out parameter for number of dirty pages
4436 * @pwriteback: out parameter for number of pages under writeback
4437 *
c5edf9cd
TH
4438 * Determine the numbers of file, headroom, dirty, and writeback pages in
4439 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4440 * is a bit more involved.
c2aa723a 4441 *
c5edf9cd
TH
4442 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4443 * headroom is calculated as the lowest headroom of itself and the
4444 * ancestors. Note that this doesn't consider the actual amount of
4445 * available memory in the system. The caller should further cap
4446 * *@pheadroom accordingly.
c2aa723a 4447 */
c5edf9cd
TH
4448void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4449 unsigned long *pheadroom, unsigned long *pdirty,
4450 unsigned long *pwriteback)
c2aa723a
TH
4451{
4452 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4453 struct mem_cgroup *parent;
c2aa723a 4454
2d146aa3 4455 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
c2aa723a 4456
2d146aa3
JW
4457 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4458 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4459 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4460 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4461
2d146aa3 4462 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4463 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4464 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4465 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4466 unsigned long used = page_counter_read(&memcg->memory);
4467
c5edf9cd 4468 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4469 memcg = parent;
4470 }
c2aa723a
TH
4471}
4472
97b27821
TH
4473/*
4474 * Foreign dirty flushing
4475 *
4476 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4477 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4478 * deliberate design decision because honoring per-page ownership in the
4479 * writeback path is complicated, may lead to higher CPU and IO overheads
4480 * and deemed unnecessary given that write-sharing an inode across
4481 * different cgroups isn't a common use-case.
4482 *
4483 * Combined with inode majority-writer ownership switching, this works well
4484 * enough in most cases but there are some pathological cases. For
4485 * example, let's say there are two cgroups A and B which keep writing to
4486 * different but confined parts of the same inode. B owns the inode and
4487 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4488 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4489 * triggering background writeback. A will be slowed down without a way to
4490 * make writeback of the dirty pages happen.
4491 *
f0953a1b 4492 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4493 * severely throttled after making some progress after each
f0953a1b 4494 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4495 * completely idle.
4496 *
4497 * Solving this problem completely requires matching the ownership tracking
4498 * granularities between memcg and writeback in either direction. However,
4499 * the more egregious behaviors can be avoided by simply remembering the
4500 * most recent foreign dirtying events and initiating remote flushes on
4501 * them when local writeback isn't enough to keep the memory clean enough.
4502 *
4503 * The following two functions implement such mechanism. When a foreign
4504 * page - a page whose memcg and writeback ownerships don't match - is
4505 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4506 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4507 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4508 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4509 * foreign bdi_writebacks which haven't expired. Both the numbers of
4510 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4511 * limited to MEMCG_CGWB_FRN_CNT.
4512 *
4513 * The mechanism only remembers IDs and doesn't hold any object references.
4514 * As being wrong occasionally doesn't matter, updates and accesses to the
4515 * records are lockless and racy.
4516 */
4517void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4518 struct bdi_writeback *wb)
4519{
bcfe06bf 4520 struct mem_cgroup *memcg = page_memcg(page);
97b27821
TH
4521 struct memcg_cgwb_frn *frn;
4522 u64 now = get_jiffies_64();
4523 u64 oldest_at = now;
4524 int oldest = -1;
4525 int i;
4526
3a8e9ac8
TH
4527 trace_track_foreign_dirty(page, wb);
4528
97b27821
TH
4529 /*
4530 * Pick the slot to use. If there is already a slot for @wb, keep
4531 * using it. If not replace the oldest one which isn't being
4532 * written out.
4533 */
4534 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4535 frn = &memcg->cgwb_frn[i];
4536 if (frn->bdi_id == wb->bdi->id &&
4537 frn->memcg_id == wb->memcg_css->id)
4538 break;
4539 if (time_before64(frn->at, oldest_at) &&
4540 atomic_read(&frn->done.cnt) == 1) {
4541 oldest = i;
4542 oldest_at = frn->at;
4543 }
4544 }
4545
4546 if (i < MEMCG_CGWB_FRN_CNT) {
4547 /*
4548 * Re-using an existing one. Update timestamp lazily to
4549 * avoid making the cacheline hot. We want them to be
4550 * reasonably up-to-date and significantly shorter than
4551 * dirty_expire_interval as that's what expires the record.
4552 * Use the shorter of 1s and dirty_expire_interval / 8.
4553 */
4554 unsigned long update_intv =
4555 min_t(unsigned long, HZ,
4556 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4557
4558 if (time_before64(frn->at, now - update_intv))
4559 frn->at = now;
4560 } else if (oldest >= 0) {
4561 /* replace the oldest free one */
4562 frn = &memcg->cgwb_frn[oldest];
4563 frn->bdi_id = wb->bdi->id;
4564 frn->memcg_id = wb->memcg_css->id;
4565 frn->at = now;
4566 }
4567}
4568
4569/* issue foreign writeback flushes for recorded foreign dirtying events */
4570void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4571{
4572 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4573 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4574 u64 now = jiffies_64;
4575 int i;
4576
4577 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4578 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4579
4580 /*
4581 * If the record is older than dirty_expire_interval,
4582 * writeback on it has already started. No need to kick it
4583 * off again. Also, don't start a new one if there's
4584 * already one in flight.
4585 */
4586 if (time_after64(frn->at, now - intv) &&
4587 atomic_read(&frn->done.cnt) == 1) {
4588 frn->at = 0;
3a8e9ac8 4589 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4590 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4591 WB_REASON_FOREIGN_FLUSH,
4592 &frn->done);
4593 }
4594 }
4595}
4596
841710aa
TH
4597#else /* CONFIG_CGROUP_WRITEBACK */
4598
4599static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4600{
4601 return 0;
4602}
4603
4604static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4605{
4606}
4607
2529bb3a
TH
4608static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4609{
4610}
4611
52ebea74
TH
4612#endif /* CONFIG_CGROUP_WRITEBACK */
4613
3bc942f3
TH
4614/*
4615 * DO NOT USE IN NEW FILES.
4616 *
4617 * "cgroup.event_control" implementation.
4618 *
4619 * This is way over-engineered. It tries to support fully configurable
4620 * events for each user. Such level of flexibility is completely
4621 * unnecessary especially in the light of the planned unified hierarchy.
4622 *
4623 * Please deprecate this and replace with something simpler if at all
4624 * possible.
4625 */
4626
79bd9814
TH
4627/*
4628 * Unregister event and free resources.
4629 *
4630 * Gets called from workqueue.
4631 */
3bc942f3 4632static void memcg_event_remove(struct work_struct *work)
79bd9814 4633{
3bc942f3
TH
4634 struct mem_cgroup_event *event =
4635 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4636 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4637
4638 remove_wait_queue(event->wqh, &event->wait);
4639
59b6f873 4640 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4641
4642 /* Notify userspace the event is going away. */
4643 eventfd_signal(event->eventfd, 1);
4644
4645 eventfd_ctx_put(event->eventfd);
4646 kfree(event);
59b6f873 4647 css_put(&memcg->css);
79bd9814
TH
4648}
4649
4650/*
a9a08845 4651 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4652 *
4653 * Called with wqh->lock held and interrupts disabled.
4654 */
ac6424b9 4655static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4656 int sync, void *key)
79bd9814 4657{
3bc942f3
TH
4658 struct mem_cgroup_event *event =
4659 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4660 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4661 __poll_t flags = key_to_poll(key);
79bd9814 4662
a9a08845 4663 if (flags & EPOLLHUP) {
79bd9814
TH
4664 /*
4665 * If the event has been detached at cgroup removal, we
4666 * can simply return knowing the other side will cleanup
4667 * for us.
4668 *
4669 * We can't race against event freeing since the other
4670 * side will require wqh->lock via remove_wait_queue(),
4671 * which we hold.
4672 */
fba94807 4673 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4674 if (!list_empty(&event->list)) {
4675 list_del_init(&event->list);
4676 /*
4677 * We are in atomic context, but cgroup_event_remove()
4678 * may sleep, so we have to call it in workqueue.
4679 */
4680 schedule_work(&event->remove);
4681 }
fba94807 4682 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4683 }
4684
4685 return 0;
4686}
4687
3bc942f3 4688static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4689 wait_queue_head_t *wqh, poll_table *pt)
4690{
3bc942f3
TH
4691 struct mem_cgroup_event *event =
4692 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4693
4694 event->wqh = wqh;
4695 add_wait_queue(wqh, &event->wait);
4696}
4697
4698/*
3bc942f3
TH
4699 * DO NOT USE IN NEW FILES.
4700 *
79bd9814
TH
4701 * Parse input and register new cgroup event handler.
4702 *
4703 * Input must be in format '<event_fd> <control_fd> <args>'.
4704 * Interpretation of args is defined by control file implementation.
4705 */
451af504
TH
4706static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4707 char *buf, size_t nbytes, loff_t off)
79bd9814 4708{
451af504 4709 struct cgroup_subsys_state *css = of_css(of);
fba94807 4710 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4711 struct mem_cgroup_event *event;
79bd9814
TH
4712 struct cgroup_subsys_state *cfile_css;
4713 unsigned int efd, cfd;
4714 struct fd efile;
4715 struct fd cfile;
fba94807 4716 const char *name;
79bd9814
TH
4717 char *endp;
4718 int ret;
4719
451af504
TH
4720 buf = strstrip(buf);
4721
4722 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4723 if (*endp != ' ')
4724 return -EINVAL;
451af504 4725 buf = endp + 1;
79bd9814 4726
451af504 4727 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4728 if ((*endp != ' ') && (*endp != '\0'))
4729 return -EINVAL;
451af504 4730 buf = endp + 1;
79bd9814
TH
4731
4732 event = kzalloc(sizeof(*event), GFP_KERNEL);
4733 if (!event)
4734 return -ENOMEM;
4735
59b6f873 4736 event->memcg = memcg;
79bd9814 4737 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4738 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4739 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4740 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4741
4742 efile = fdget(efd);
4743 if (!efile.file) {
4744 ret = -EBADF;
4745 goto out_kfree;
4746 }
4747
4748 event->eventfd = eventfd_ctx_fileget(efile.file);
4749 if (IS_ERR(event->eventfd)) {
4750 ret = PTR_ERR(event->eventfd);
4751 goto out_put_efile;
4752 }
4753
4754 cfile = fdget(cfd);
4755 if (!cfile.file) {
4756 ret = -EBADF;
4757 goto out_put_eventfd;
4758 }
4759
4760 /* the process need read permission on control file */
4761 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4762 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4763 if (ret < 0)
4764 goto out_put_cfile;
4765
fba94807
TH
4766 /*
4767 * Determine the event callbacks and set them in @event. This used
4768 * to be done via struct cftype but cgroup core no longer knows
4769 * about these events. The following is crude but the whole thing
4770 * is for compatibility anyway.
3bc942f3
TH
4771 *
4772 * DO NOT ADD NEW FILES.
fba94807 4773 */
b583043e 4774 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4775
4776 if (!strcmp(name, "memory.usage_in_bytes")) {
4777 event->register_event = mem_cgroup_usage_register_event;
4778 event->unregister_event = mem_cgroup_usage_unregister_event;
4779 } else if (!strcmp(name, "memory.oom_control")) {
4780 event->register_event = mem_cgroup_oom_register_event;
4781 event->unregister_event = mem_cgroup_oom_unregister_event;
4782 } else if (!strcmp(name, "memory.pressure_level")) {
4783 event->register_event = vmpressure_register_event;
4784 event->unregister_event = vmpressure_unregister_event;
4785 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4786 event->register_event = memsw_cgroup_usage_register_event;
4787 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4788 } else {
4789 ret = -EINVAL;
4790 goto out_put_cfile;
4791 }
4792
79bd9814 4793 /*
b5557c4c
TH
4794 * Verify @cfile should belong to @css. Also, remaining events are
4795 * automatically removed on cgroup destruction but the removal is
4796 * asynchronous, so take an extra ref on @css.
79bd9814 4797 */
b583043e 4798 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4799 &memory_cgrp_subsys);
79bd9814 4800 ret = -EINVAL;
5a17f543 4801 if (IS_ERR(cfile_css))
79bd9814 4802 goto out_put_cfile;
5a17f543
TH
4803 if (cfile_css != css) {
4804 css_put(cfile_css);
79bd9814 4805 goto out_put_cfile;
5a17f543 4806 }
79bd9814 4807
451af504 4808 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4809 if (ret)
4810 goto out_put_css;
4811
9965ed17 4812 vfs_poll(efile.file, &event->pt);
79bd9814 4813
4ba9515d 4814 spin_lock_irq(&memcg->event_list_lock);
fba94807 4815 list_add(&event->list, &memcg->event_list);
4ba9515d 4816 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
4817
4818 fdput(cfile);
4819 fdput(efile);
4820
451af504 4821 return nbytes;
79bd9814
TH
4822
4823out_put_css:
b5557c4c 4824 css_put(css);
79bd9814
TH
4825out_put_cfile:
4826 fdput(cfile);
4827out_put_eventfd:
4828 eventfd_ctx_put(event->eventfd);
4829out_put_efile:
4830 fdput(efile);
4831out_kfree:
4832 kfree(event);
4833
4834 return ret;
4835}
4836
241994ed 4837static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4838 {
0eea1030 4839 .name = "usage_in_bytes",
8c7c6e34 4840 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4841 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4842 },
c84872e1
PE
4843 {
4844 .name = "max_usage_in_bytes",
8c7c6e34 4845 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4846 .write = mem_cgroup_reset,
791badbd 4847 .read_u64 = mem_cgroup_read_u64,
c84872e1 4848 },
8cdea7c0 4849 {
0eea1030 4850 .name = "limit_in_bytes",
8c7c6e34 4851 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4852 .write = mem_cgroup_write,
791badbd 4853 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4854 },
296c81d8
BS
4855 {
4856 .name = "soft_limit_in_bytes",
4857 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4858 .write = mem_cgroup_write,
791badbd 4859 .read_u64 = mem_cgroup_read_u64,
296c81d8 4860 },
8cdea7c0
BS
4861 {
4862 .name = "failcnt",
8c7c6e34 4863 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4864 .write = mem_cgroup_reset,
791badbd 4865 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4866 },
d2ceb9b7
KH
4867 {
4868 .name = "stat",
2da8ca82 4869 .seq_show = memcg_stat_show,
d2ceb9b7 4870 },
c1e862c1
KH
4871 {
4872 .name = "force_empty",
6770c64e 4873 .write = mem_cgroup_force_empty_write,
c1e862c1 4874 },
18f59ea7
BS
4875 {
4876 .name = "use_hierarchy",
4877 .write_u64 = mem_cgroup_hierarchy_write,
4878 .read_u64 = mem_cgroup_hierarchy_read,
4879 },
79bd9814 4880 {
3bc942f3 4881 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4882 .write = memcg_write_event_control,
7dbdb199 4883 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4884 },
a7885eb8
KM
4885 {
4886 .name = "swappiness",
4887 .read_u64 = mem_cgroup_swappiness_read,
4888 .write_u64 = mem_cgroup_swappiness_write,
4889 },
7dc74be0
DN
4890 {
4891 .name = "move_charge_at_immigrate",
4892 .read_u64 = mem_cgroup_move_charge_read,
4893 .write_u64 = mem_cgroup_move_charge_write,
4894 },
9490ff27
KH
4895 {
4896 .name = "oom_control",
2da8ca82 4897 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4898 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4899 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4900 },
70ddf637
AV
4901 {
4902 .name = "pressure_level",
70ddf637 4903 },
406eb0c9
YH
4904#ifdef CONFIG_NUMA
4905 {
4906 .name = "numa_stat",
2da8ca82 4907 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4908 },
4909#endif
510fc4e1
GC
4910 {
4911 .name = "kmem.limit_in_bytes",
4912 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4913 .write = mem_cgroup_write,
791badbd 4914 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4915 },
4916 {
4917 .name = "kmem.usage_in_bytes",
4918 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4919 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4920 },
4921 {
4922 .name = "kmem.failcnt",
4923 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4924 .write = mem_cgroup_reset,
791badbd 4925 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4926 },
4927 {
4928 .name = "kmem.max_usage_in_bytes",
4929 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4930 .write = mem_cgroup_reset,
791badbd 4931 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4932 },
a87425a3
YS
4933#if defined(CONFIG_MEMCG_KMEM) && \
4934 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
4935 {
4936 .name = "kmem.slabinfo",
b047501c 4937 .seq_show = memcg_slab_show,
749c5415
GC
4938 },
4939#endif
d55f90bf
VD
4940 {
4941 .name = "kmem.tcp.limit_in_bytes",
4942 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4943 .write = mem_cgroup_write,
4944 .read_u64 = mem_cgroup_read_u64,
4945 },
4946 {
4947 .name = "kmem.tcp.usage_in_bytes",
4948 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4949 .read_u64 = mem_cgroup_read_u64,
4950 },
4951 {
4952 .name = "kmem.tcp.failcnt",
4953 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4954 .write = mem_cgroup_reset,
4955 .read_u64 = mem_cgroup_read_u64,
4956 },
4957 {
4958 .name = "kmem.tcp.max_usage_in_bytes",
4959 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4960 .write = mem_cgroup_reset,
4961 .read_u64 = mem_cgroup_read_u64,
4962 },
6bc10349 4963 { }, /* terminate */
af36f906 4964};
8c7c6e34 4965
73f576c0
JW
4966/*
4967 * Private memory cgroup IDR
4968 *
4969 * Swap-out records and page cache shadow entries need to store memcg
4970 * references in constrained space, so we maintain an ID space that is
4971 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4972 * memory-controlled cgroups to 64k.
4973 *
b8f2935f 4974 * However, there usually are many references to the offline CSS after
73f576c0
JW
4975 * the cgroup has been destroyed, such as page cache or reclaimable
4976 * slab objects, that don't need to hang on to the ID. We want to keep
4977 * those dead CSS from occupying IDs, or we might quickly exhaust the
4978 * relatively small ID space and prevent the creation of new cgroups
4979 * even when there are much fewer than 64k cgroups - possibly none.
4980 *
4981 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4982 * be freed and recycled when it's no longer needed, which is usually
4983 * when the CSS is offlined.
4984 *
4985 * The only exception to that are records of swapped out tmpfs/shmem
4986 * pages that need to be attributed to live ancestors on swapin. But
4987 * those references are manageable from userspace.
4988 */
4989
4990static DEFINE_IDR(mem_cgroup_idr);
4991
7e97de0b
KT
4992static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4993{
4994 if (memcg->id.id > 0) {
4995 idr_remove(&mem_cgroup_idr, memcg->id.id);
4996 memcg->id.id = 0;
4997 }
4998}
4999
c1514c0a
VF
5000static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5001 unsigned int n)
73f576c0 5002{
1c2d479a 5003 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5004}
5005
615d66c3 5006static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5007{
1c2d479a 5008 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5009 mem_cgroup_id_remove(memcg);
73f576c0
JW
5010
5011 /* Memcg ID pins CSS */
5012 css_put(&memcg->css);
5013 }
5014}
5015
615d66c3
VD
5016static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5017{
5018 mem_cgroup_id_put_many(memcg, 1);
5019}
5020
73f576c0
JW
5021/**
5022 * mem_cgroup_from_id - look up a memcg from a memcg id
5023 * @id: the memcg id to look up
5024 *
5025 * Caller must hold rcu_read_lock().
5026 */
5027struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5028{
5029 WARN_ON_ONCE(!rcu_read_lock_held());
5030 return idr_find(&mem_cgroup_idr, id);
5031}
5032
ef8f2327 5033static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5034{
5035 struct mem_cgroup_per_node *pn;
ef8f2327 5036 int tmp = node;
1ecaab2b
KH
5037 /*
5038 * This routine is called against possible nodes.
5039 * But it's BUG to call kmalloc() against offline node.
5040 *
5041 * TODO: this routine can waste much memory for nodes which will
5042 * never be onlined. It's better to use memory hotplug callback
5043 * function.
5044 */
41e3355d
KH
5045 if (!node_state(node, N_NORMAL_MEMORY))
5046 tmp = -1;
17295c88 5047 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5048 if (!pn)
5049 return 1;
1ecaab2b 5050
7e1c0d6f
SB
5051 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5052 GFP_KERNEL_ACCOUNT);
5053 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5054 kfree(pn);
5055 return 1;
5056 }
5057
ef8f2327
MG
5058 lruvec_init(&pn->lruvec);
5059 pn->usage_in_excess = 0;
5060 pn->on_tree = false;
5061 pn->memcg = memcg;
5062
54f72fe0 5063 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5064 return 0;
5065}
5066
ef8f2327 5067static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5068{
00f3ca2c
JW
5069 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5070
4eaf431f
MH
5071 if (!pn)
5072 return;
5073
7e1c0d6f 5074 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5075 kfree(pn);
1ecaab2b
KH
5076}
5077
40e952f9 5078static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5079{
c8b2a36f 5080 int node;
59927fb9 5081
c8b2a36f 5082 for_each_node(node)
ef8f2327 5083 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5084 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5085 kfree(memcg);
59927fb9 5086}
3afe36b1 5087
40e952f9
TE
5088static void mem_cgroup_free(struct mem_cgroup *memcg)
5089{
5090 memcg_wb_domain_exit(memcg);
5091 __mem_cgroup_free(memcg);
5092}
5093
0b8f73e1 5094static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5095{
d142e3e6 5096 struct mem_cgroup *memcg;
b9726c26 5097 unsigned int size;
6d12e2d8 5098 int node;
97b27821 5099 int __maybe_unused i;
11d67612 5100 long error = -ENOMEM;
8cdea7c0 5101
0b8f73e1
JW
5102 size = sizeof(struct mem_cgroup);
5103 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5104
5105 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5106 if (!memcg)
11d67612 5107 return ERR_PTR(error);
0b8f73e1 5108
73f576c0
JW
5109 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5110 1, MEM_CGROUP_ID_MAX,
5111 GFP_KERNEL);
11d67612
YS
5112 if (memcg->id.id < 0) {
5113 error = memcg->id.id;
73f576c0 5114 goto fail;
11d67612 5115 }
73f576c0 5116
3e38e0aa
RG
5117 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5118 GFP_KERNEL_ACCOUNT);
871789d4 5119 if (!memcg->vmstats_percpu)
0b8f73e1 5120 goto fail;
78fb7466 5121
3ed28fa1 5122 for_each_node(node)
ef8f2327 5123 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5124 goto fail;
f64c3f54 5125
0b8f73e1
JW
5126 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5127 goto fail;
28dbc4b6 5128
f7e1cb6e 5129 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5130 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5131 mutex_init(&memcg->thresholds_lock);
5132 spin_lock_init(&memcg->move_lock);
70ddf637 5133 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5134 INIT_LIST_HEAD(&memcg->event_list);
5135 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5136 memcg->socket_pressure = jiffies;
84c07d11 5137#ifdef CONFIG_MEMCG_KMEM
900a38f0 5138 memcg->kmemcg_id = -1;
bf4f0599 5139 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5140#endif
52ebea74
TH
5141#ifdef CONFIG_CGROUP_WRITEBACK
5142 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5143 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5144 memcg->cgwb_frn[i].done =
5145 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5146#endif
5147#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5148 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5149 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5150 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5151#endif
73f576c0 5152 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5153 return memcg;
5154fail:
7e97de0b 5155 mem_cgroup_id_remove(memcg);
40e952f9 5156 __mem_cgroup_free(memcg);
11d67612 5157 return ERR_PTR(error);
d142e3e6
GC
5158}
5159
0b8f73e1
JW
5160static struct cgroup_subsys_state * __ref
5161mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5162{
0b8f73e1 5163 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5164 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5165 long error = -ENOMEM;
d142e3e6 5166
b87d8cef 5167 old_memcg = set_active_memcg(parent);
0b8f73e1 5168 memcg = mem_cgroup_alloc();
b87d8cef 5169 set_active_memcg(old_memcg);
11d67612
YS
5170 if (IS_ERR(memcg))
5171 return ERR_CAST(memcg);
d142e3e6 5172
d1663a90 5173 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5174 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5175 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5176 if (parent) {
5177 memcg->swappiness = mem_cgroup_swappiness(parent);
5178 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5179
3e32cb2e 5180 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5181 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5182 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5183 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5184 } else {
bef8620c
RG
5185 page_counter_init(&memcg->memory, NULL);
5186 page_counter_init(&memcg->swap, NULL);
5187 page_counter_init(&memcg->kmem, NULL);
5188 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5189
0b8f73e1
JW
5190 root_mem_cgroup = memcg;
5191 return &memcg->css;
5192 }
5193
bef8620c 5194 /* The following stuff does not apply to the root */
b313aeee 5195 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5196 if (error)
5197 goto fail;
127424c8 5198
f7e1cb6e 5199 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5200 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5201
0b8f73e1
JW
5202 return &memcg->css;
5203fail:
7e97de0b 5204 mem_cgroup_id_remove(memcg);
0b8f73e1 5205 mem_cgroup_free(memcg);
11d67612 5206 return ERR_PTR(error);
0b8f73e1
JW
5207}
5208
73f576c0 5209static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5210{
58fa2a55
VD
5211 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5212
0a4465d3 5213 /*
e4262c4f 5214 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5215 * by the time the maps are allocated. So, we allocate maps
5216 * here, when for_each_mem_cgroup() can't skip it.
5217 */
e4262c4f 5218 if (alloc_shrinker_info(memcg)) {
0a4465d3
KT
5219 mem_cgroup_id_remove(memcg);
5220 return -ENOMEM;
5221 }
5222
73f576c0 5223 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5224 refcount_set(&memcg->id.ref, 1);
73f576c0 5225 css_get(css);
aa48e47e
SB
5226
5227 if (unlikely(mem_cgroup_is_root(memcg)))
5228 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5229 2UL*HZ);
2f7dd7a4 5230 return 0;
8cdea7c0
BS
5231}
5232
eb95419b 5233static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5234{
eb95419b 5235 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5236 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5237
5238 /*
5239 * Unregister events and notify userspace.
5240 * Notify userspace about cgroup removing only after rmdir of cgroup
5241 * directory to avoid race between userspace and kernelspace.
5242 */
4ba9515d 5243 spin_lock_irq(&memcg->event_list_lock);
fba94807 5244 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5245 list_del_init(&event->list);
5246 schedule_work(&event->remove);
5247 }
4ba9515d 5248 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5249
bf8d5d52 5250 page_counter_set_min(&memcg->memory, 0);
23067153 5251 page_counter_set_low(&memcg->memory, 0);
63677c74 5252
567e9ab2 5253 memcg_offline_kmem(memcg);
a178015c 5254 reparent_shrinker_deferred(memcg);
52ebea74 5255 wb_memcg_offline(memcg);
73f576c0 5256
591edfb1
RG
5257 drain_all_stock(memcg);
5258
73f576c0 5259 mem_cgroup_id_put(memcg);
df878fb0
KH
5260}
5261
6df38689
VD
5262static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5263{
5264 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5265
5266 invalidate_reclaim_iterators(memcg);
5267}
5268
eb95419b 5269static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5270{
eb95419b 5271 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5272 int __maybe_unused i;
c268e994 5273
97b27821
TH
5274#ifdef CONFIG_CGROUP_WRITEBACK
5275 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5276 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5277#endif
f7e1cb6e 5278 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5279 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5280
0db15298 5281 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5282 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5283
0b8f73e1
JW
5284 vmpressure_cleanup(&memcg->vmpressure);
5285 cancel_work_sync(&memcg->high_work);
5286 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5287 free_shrinker_info(memcg);
d886f4e4 5288 memcg_free_kmem(memcg);
0b8f73e1 5289 mem_cgroup_free(memcg);
8cdea7c0
BS
5290}
5291
1ced953b
TH
5292/**
5293 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5294 * @css: the target css
5295 *
5296 * Reset the states of the mem_cgroup associated with @css. This is
5297 * invoked when the userland requests disabling on the default hierarchy
5298 * but the memcg is pinned through dependency. The memcg should stop
5299 * applying policies and should revert to the vanilla state as it may be
5300 * made visible again.
5301 *
5302 * The current implementation only resets the essential configurations.
5303 * This needs to be expanded to cover all the visible parts.
5304 */
5305static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5306{
5307 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5308
bbec2e15
RG
5309 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5310 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5311 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5312 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5313 page_counter_set_min(&memcg->memory, 0);
23067153 5314 page_counter_set_low(&memcg->memory, 0);
d1663a90 5315 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5316 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5317 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5318 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5319}
5320
aa48e47e
SB
5321void mem_cgroup_flush_stats(void)
5322{
5323 if (!spin_trylock(&stats_flush_lock))
5324 return;
5325
5326 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
5327 spin_unlock(&stats_flush_lock);
5328}
5329
5330static void flush_memcg_stats_dwork(struct work_struct *w)
5331{
5332 mem_cgroup_flush_stats();
5333 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
5334}
5335
2d146aa3
JW
5336static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5337{
5338 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5339 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5340 struct memcg_vmstats_percpu *statc;
5341 long delta, v;
7e1c0d6f 5342 int i, nid;
2d146aa3
JW
5343
5344 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5345
5346 for (i = 0; i < MEMCG_NR_STAT; i++) {
5347 /*
5348 * Collect the aggregated propagation counts of groups
5349 * below us. We're in a per-cpu loop here and this is
5350 * a global counter, so the first cycle will get them.
5351 */
5352 delta = memcg->vmstats.state_pending[i];
5353 if (delta)
5354 memcg->vmstats.state_pending[i] = 0;
5355
5356 /* Add CPU changes on this level since the last flush */
5357 v = READ_ONCE(statc->state[i]);
5358 if (v != statc->state_prev[i]) {
5359 delta += v - statc->state_prev[i];
5360 statc->state_prev[i] = v;
5361 }
5362
5363 if (!delta)
5364 continue;
5365
5366 /* Aggregate counts on this level and propagate upwards */
5367 memcg->vmstats.state[i] += delta;
5368 if (parent)
5369 parent->vmstats.state_pending[i] += delta;
5370 }
5371
5372 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5373 delta = memcg->vmstats.events_pending[i];
5374 if (delta)
5375 memcg->vmstats.events_pending[i] = 0;
5376
5377 v = READ_ONCE(statc->events[i]);
5378 if (v != statc->events_prev[i]) {
5379 delta += v - statc->events_prev[i];
5380 statc->events_prev[i] = v;
5381 }
5382
5383 if (!delta)
5384 continue;
5385
5386 memcg->vmstats.events[i] += delta;
5387 if (parent)
5388 parent->vmstats.events_pending[i] += delta;
5389 }
7e1c0d6f
SB
5390
5391 for_each_node_state(nid, N_MEMORY) {
5392 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5393 struct mem_cgroup_per_node *ppn = NULL;
5394 struct lruvec_stats_percpu *lstatc;
5395
5396 if (parent)
5397 ppn = parent->nodeinfo[nid];
5398
5399 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5400
5401 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5402 delta = pn->lruvec_stats.state_pending[i];
5403 if (delta)
5404 pn->lruvec_stats.state_pending[i] = 0;
5405
5406 v = READ_ONCE(lstatc->state[i]);
5407 if (v != lstatc->state_prev[i]) {
5408 delta += v - lstatc->state_prev[i];
5409 lstatc->state_prev[i] = v;
5410 }
5411
5412 if (!delta)
5413 continue;
5414
5415 pn->lruvec_stats.state[i] += delta;
5416 if (ppn)
5417 ppn->lruvec_stats.state_pending[i] += delta;
5418 }
5419 }
2d146aa3
JW
5420}
5421
02491447 5422#ifdef CONFIG_MMU
7dc74be0 5423/* Handlers for move charge at task migration. */
854ffa8d 5424static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5425{
05b84301 5426 int ret;
9476db97 5427
d0164adc
MG
5428 /* Try a single bulk charge without reclaim first, kswapd may wake */
5429 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5430 if (!ret) {
854ffa8d 5431 mc.precharge += count;
854ffa8d
DN
5432 return ret;
5433 }
9476db97 5434
3674534b 5435 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5436 while (count--) {
3674534b 5437 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5438 if (ret)
38c5d72f 5439 return ret;
854ffa8d 5440 mc.precharge++;
9476db97 5441 cond_resched();
854ffa8d 5442 }
9476db97 5443 return 0;
4ffef5fe
DN
5444}
5445
4ffef5fe
DN
5446union mc_target {
5447 struct page *page;
02491447 5448 swp_entry_t ent;
4ffef5fe
DN
5449};
5450
4ffef5fe 5451enum mc_target_type {
8d32ff84 5452 MC_TARGET_NONE = 0,
4ffef5fe 5453 MC_TARGET_PAGE,
02491447 5454 MC_TARGET_SWAP,
c733a828 5455 MC_TARGET_DEVICE,
4ffef5fe
DN
5456};
5457
90254a65
DN
5458static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5459 unsigned long addr, pte_t ptent)
4ffef5fe 5460{
25b2995a 5461 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5462
90254a65
DN
5463 if (!page || !page_mapped(page))
5464 return NULL;
5465 if (PageAnon(page)) {
1dfab5ab 5466 if (!(mc.flags & MOVE_ANON))
90254a65 5467 return NULL;
1dfab5ab
JW
5468 } else {
5469 if (!(mc.flags & MOVE_FILE))
5470 return NULL;
5471 }
90254a65
DN
5472 if (!get_page_unless_zero(page))
5473 return NULL;
5474
5475 return page;
5476}
5477
c733a828 5478#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5479static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5480 pte_t ptent, swp_entry_t *entry)
90254a65 5481{
90254a65
DN
5482 struct page *page = NULL;
5483 swp_entry_t ent = pte_to_swp_entry(ptent);
5484
9a137153 5485 if (!(mc.flags & MOVE_ANON))
90254a65 5486 return NULL;
c733a828
JG
5487
5488 /*
5489 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5490 * a device and because they are not accessible by CPU they are store
5491 * as special swap entry in the CPU page table.
5492 */
5493 if (is_device_private_entry(ent)) {
af5cdaf8 5494 page = pfn_swap_entry_to_page(ent);
c733a828
JG
5495 /*
5496 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5497 * a refcount of 1 when free (unlike normal page)
5498 */
5499 if (!page_ref_add_unless(page, 1, 1))
5500 return NULL;
5501 return page;
5502 }
5503
9a137153
RC
5504 if (non_swap_entry(ent))
5505 return NULL;
5506
4b91355e
KH
5507 /*
5508 * Because lookup_swap_cache() updates some statistics counter,
5509 * we call find_get_page() with swapper_space directly.
5510 */
f6ab1f7f 5511 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5512 entry->val = ent.val;
90254a65
DN
5513
5514 return page;
5515}
4b91355e
KH
5516#else
5517static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5518 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5519{
5520 return NULL;
5521}
5522#endif
90254a65 5523
87946a72
DN
5524static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5525 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5526{
87946a72
DN
5527 if (!vma->vm_file) /* anonymous vma */
5528 return NULL;
1dfab5ab 5529 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5530 return NULL;
5531
87946a72 5532 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5533 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5534 return find_get_incore_page(vma->vm_file->f_mapping,
5535 linear_page_index(vma, addr));
87946a72
DN
5536}
5537
b1b0deab
CG
5538/**
5539 * mem_cgroup_move_account - move account of the page
5540 * @page: the page
25843c2b 5541 * @compound: charge the page as compound or small page
b1b0deab
CG
5542 * @from: mem_cgroup which the page is moved from.
5543 * @to: mem_cgroup which the page is moved to. @from != @to.
5544 *
3ac808fd 5545 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5546 *
5547 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5548 * from old cgroup.
5549 */
5550static int mem_cgroup_move_account(struct page *page,
f627c2f5 5551 bool compound,
b1b0deab
CG
5552 struct mem_cgroup *from,
5553 struct mem_cgroup *to)
5554{
ae8af438
KK
5555 struct lruvec *from_vec, *to_vec;
5556 struct pglist_data *pgdat;
6c357848 5557 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5558 int ret;
5559
5560 VM_BUG_ON(from == to);
5561 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5562 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5563
5564 /*
6a93ca8f 5565 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5566 * page's memory cgroup of its source page while we change it.
b1b0deab 5567 */
f627c2f5 5568 ret = -EBUSY;
b1b0deab
CG
5569 if (!trylock_page(page))
5570 goto out;
5571
5572 ret = -EINVAL;
bcfe06bf 5573 if (page_memcg(page) != from)
b1b0deab
CG
5574 goto out_unlock;
5575
ae8af438 5576 pgdat = page_pgdat(page);
867e5e1d
JW
5577 from_vec = mem_cgroup_lruvec(from, pgdat);
5578 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5579
abb242f5 5580 lock_page_memcg(page);
b1b0deab 5581
be5d0a74
JW
5582 if (PageAnon(page)) {
5583 if (page_mapped(page)) {
5584 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5585 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982 5586 if (PageTransHuge(page)) {
69473e5d
MS
5587 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5588 -nr_pages);
5589 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5590 nr_pages);
468c3982 5591 }
be5d0a74
JW
5592 }
5593 } else {
0d1c2072
JW
5594 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5595 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5596
5597 if (PageSwapBacked(page)) {
5598 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5599 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5600 }
5601
49e50d27
JW
5602 if (page_mapped(page)) {
5603 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5604 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5605 }
b1b0deab 5606
49e50d27
JW
5607 if (PageDirty(page)) {
5608 struct address_space *mapping = page_mapping(page);
c4843a75 5609
f56753ac 5610 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5611 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5612 -nr_pages);
5613 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5614 nr_pages);
5615 }
c4843a75
GT
5616 }
5617 }
5618
b1b0deab 5619 if (PageWriteback(page)) {
ae8af438
KK
5620 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5621 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5622 }
5623
5624 /*
abb242f5
JW
5625 * All state has been migrated, let's switch to the new memcg.
5626 *
bcfe06bf 5627 * It is safe to change page's memcg here because the page
abb242f5
JW
5628 * is referenced, charged, isolated, and locked: we can't race
5629 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5630 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5631 *
5632 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5633 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5634 * new memcg that isn't locked, the above state can change
5635 * concurrently again. Make sure we're truly done with it.
b1b0deab 5636 */
abb242f5 5637 smp_mb();
b1b0deab 5638
1a3e1f40
JW
5639 css_get(&to->css);
5640 css_put(&from->css);
5641
bcfe06bf 5642 page->memcg_data = (unsigned long)to;
87eaceb3 5643
abb242f5 5644 __unlock_page_memcg(from);
b1b0deab
CG
5645
5646 ret = 0;
5647
5648 local_irq_disable();
6e0110c2 5649 mem_cgroup_charge_statistics(to, nr_pages);
b1b0deab 5650 memcg_check_events(to, page);
6e0110c2 5651 mem_cgroup_charge_statistics(from, -nr_pages);
b1b0deab
CG
5652 memcg_check_events(from, page);
5653 local_irq_enable();
5654out_unlock:
5655 unlock_page(page);
5656out:
5657 return ret;
5658}
5659
7cf7806c
LR
5660/**
5661 * get_mctgt_type - get target type of moving charge
5662 * @vma: the vma the pte to be checked belongs
5663 * @addr: the address corresponding to the pte to be checked
5664 * @ptent: the pte to be checked
5665 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5666 *
5667 * Returns
5668 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5669 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5670 * move charge. if @target is not NULL, the page is stored in target->page
5671 * with extra refcnt got(Callers should handle it).
5672 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5673 * target for charge migration. if @target is not NULL, the entry is stored
5674 * in target->ent.
25b2995a
CH
5675 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5676 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5677 * For now we such page is charge like a regular page would be as for all
5678 * intent and purposes it is just special memory taking the place of a
5679 * regular page.
c733a828
JG
5680 *
5681 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5682 *
5683 * Called with pte lock held.
5684 */
5685
8d32ff84 5686static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5687 unsigned long addr, pte_t ptent, union mc_target *target)
5688{
5689 struct page *page = NULL;
8d32ff84 5690 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5691 swp_entry_t ent = { .val = 0 };
5692
5693 if (pte_present(ptent))
5694 page = mc_handle_present_pte(vma, addr, ptent);
5695 else if (is_swap_pte(ptent))
48406ef8 5696 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5697 else if (pte_none(ptent))
87946a72 5698 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5699
5700 if (!page && !ent.val)
8d32ff84 5701 return ret;
02491447 5702 if (page) {
02491447 5703 /*
0a31bc97 5704 * Do only loose check w/o serialization.
1306a85a 5705 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5706 * not under LRU exclusion.
02491447 5707 */
bcfe06bf 5708 if (page_memcg(page) == mc.from) {
02491447 5709 ret = MC_TARGET_PAGE;
25b2995a 5710 if (is_device_private_page(page))
c733a828 5711 ret = MC_TARGET_DEVICE;
02491447
DN
5712 if (target)
5713 target->page = page;
5714 }
5715 if (!ret || !target)
5716 put_page(page);
5717 }
3e14a57b
HY
5718 /*
5719 * There is a swap entry and a page doesn't exist or isn't charged.
5720 * But we cannot move a tail-page in a THP.
5721 */
5722 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5723 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5724 ret = MC_TARGET_SWAP;
5725 if (target)
5726 target->ent = ent;
4ffef5fe 5727 }
4ffef5fe
DN
5728 return ret;
5729}
5730
12724850
NH
5731#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5732/*
d6810d73
HY
5733 * We don't consider PMD mapped swapping or file mapped pages because THP does
5734 * not support them for now.
12724850
NH
5735 * Caller should make sure that pmd_trans_huge(pmd) is true.
5736 */
5737static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5738 unsigned long addr, pmd_t pmd, union mc_target *target)
5739{
5740 struct page *page = NULL;
12724850
NH
5741 enum mc_target_type ret = MC_TARGET_NONE;
5742
84c3fc4e
ZY
5743 if (unlikely(is_swap_pmd(pmd))) {
5744 VM_BUG_ON(thp_migration_supported() &&
5745 !is_pmd_migration_entry(pmd));
5746 return ret;
5747 }
12724850 5748 page = pmd_page(pmd);
309381fe 5749 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5750 if (!(mc.flags & MOVE_ANON))
12724850 5751 return ret;
bcfe06bf 5752 if (page_memcg(page) == mc.from) {
12724850
NH
5753 ret = MC_TARGET_PAGE;
5754 if (target) {
5755 get_page(page);
5756 target->page = page;
5757 }
5758 }
5759 return ret;
5760}
5761#else
5762static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5763 unsigned long addr, pmd_t pmd, union mc_target *target)
5764{
5765 return MC_TARGET_NONE;
5766}
5767#endif
5768
4ffef5fe
DN
5769static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5770 unsigned long addr, unsigned long end,
5771 struct mm_walk *walk)
5772{
26bcd64a 5773 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5774 pte_t *pte;
5775 spinlock_t *ptl;
5776
b6ec57f4
KS
5777 ptl = pmd_trans_huge_lock(pmd, vma);
5778 if (ptl) {
c733a828
JG
5779 /*
5780 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5781 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5782 * this might change.
c733a828 5783 */
12724850
NH
5784 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5785 mc.precharge += HPAGE_PMD_NR;
bf929152 5786 spin_unlock(ptl);
1a5a9906 5787 return 0;
12724850 5788 }
03319327 5789
45f83cef
AA
5790 if (pmd_trans_unstable(pmd))
5791 return 0;
4ffef5fe
DN
5792 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5793 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5794 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5795 mc.precharge++; /* increment precharge temporarily */
5796 pte_unmap_unlock(pte - 1, ptl);
5797 cond_resched();
5798
7dc74be0
DN
5799 return 0;
5800}
5801
7b86ac33
CH
5802static const struct mm_walk_ops precharge_walk_ops = {
5803 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5804};
5805
4ffef5fe
DN
5806static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5807{
5808 unsigned long precharge;
4ffef5fe 5809
d8ed45c5 5810 mmap_read_lock(mm);
7b86ac33 5811 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5812 mmap_read_unlock(mm);
4ffef5fe
DN
5813
5814 precharge = mc.precharge;
5815 mc.precharge = 0;
5816
5817 return precharge;
5818}
5819
4ffef5fe
DN
5820static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5821{
dfe076b0
DN
5822 unsigned long precharge = mem_cgroup_count_precharge(mm);
5823
5824 VM_BUG_ON(mc.moving_task);
5825 mc.moving_task = current;
5826 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5827}
5828
dfe076b0
DN
5829/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5830static void __mem_cgroup_clear_mc(void)
4ffef5fe 5831{
2bd9bb20
KH
5832 struct mem_cgroup *from = mc.from;
5833 struct mem_cgroup *to = mc.to;
5834
4ffef5fe 5835 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5836 if (mc.precharge) {
00501b53 5837 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5838 mc.precharge = 0;
5839 }
5840 /*
5841 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5842 * we must uncharge here.
5843 */
5844 if (mc.moved_charge) {
00501b53 5845 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5846 mc.moved_charge = 0;
4ffef5fe 5847 }
483c30b5
DN
5848 /* we must fixup refcnts and charges */
5849 if (mc.moved_swap) {
483c30b5 5850 /* uncharge swap account from the old cgroup */
ce00a967 5851 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5852 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5853
615d66c3
VD
5854 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5855
05b84301 5856 /*
3e32cb2e
JW
5857 * we charged both to->memory and to->memsw, so we
5858 * should uncharge to->memory.
05b84301 5859 */
ce00a967 5860 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5861 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5862
483c30b5
DN
5863 mc.moved_swap = 0;
5864 }
dfe076b0
DN
5865 memcg_oom_recover(from);
5866 memcg_oom_recover(to);
5867 wake_up_all(&mc.waitq);
5868}
5869
5870static void mem_cgroup_clear_mc(void)
5871{
264a0ae1
TH
5872 struct mm_struct *mm = mc.mm;
5873
dfe076b0
DN
5874 /*
5875 * we must clear moving_task before waking up waiters at the end of
5876 * task migration.
5877 */
5878 mc.moving_task = NULL;
5879 __mem_cgroup_clear_mc();
2bd9bb20 5880 spin_lock(&mc.lock);
4ffef5fe
DN
5881 mc.from = NULL;
5882 mc.to = NULL;
264a0ae1 5883 mc.mm = NULL;
2bd9bb20 5884 spin_unlock(&mc.lock);
264a0ae1
TH
5885
5886 mmput(mm);
4ffef5fe
DN
5887}
5888
1f7dd3e5 5889static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5890{
1f7dd3e5 5891 struct cgroup_subsys_state *css;
eed67d75 5892 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5893 struct mem_cgroup *from;
4530eddb 5894 struct task_struct *leader, *p;
9f2115f9 5895 struct mm_struct *mm;
1dfab5ab 5896 unsigned long move_flags;
9f2115f9 5897 int ret = 0;
7dc74be0 5898
1f7dd3e5
TH
5899 /* charge immigration isn't supported on the default hierarchy */
5900 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5901 return 0;
5902
4530eddb
TH
5903 /*
5904 * Multi-process migrations only happen on the default hierarchy
5905 * where charge immigration is not used. Perform charge
5906 * immigration if @tset contains a leader and whine if there are
5907 * multiple.
5908 */
5909 p = NULL;
1f7dd3e5 5910 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5911 WARN_ON_ONCE(p);
5912 p = leader;
1f7dd3e5 5913 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5914 }
5915 if (!p)
5916 return 0;
5917
1f7dd3e5 5918 /*
f0953a1b 5919 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
5920 * tunable will only affect upcoming migrations, not the current one.
5921 * So we need to save it, and keep it going.
5922 */
5923 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5924 if (!move_flags)
5925 return 0;
5926
9f2115f9
TH
5927 from = mem_cgroup_from_task(p);
5928
5929 VM_BUG_ON(from == memcg);
5930
5931 mm = get_task_mm(p);
5932 if (!mm)
5933 return 0;
5934 /* We move charges only when we move a owner of the mm */
5935 if (mm->owner == p) {
5936 VM_BUG_ON(mc.from);
5937 VM_BUG_ON(mc.to);
5938 VM_BUG_ON(mc.precharge);
5939 VM_BUG_ON(mc.moved_charge);
5940 VM_BUG_ON(mc.moved_swap);
5941
5942 spin_lock(&mc.lock);
264a0ae1 5943 mc.mm = mm;
9f2115f9
TH
5944 mc.from = from;
5945 mc.to = memcg;
5946 mc.flags = move_flags;
5947 spin_unlock(&mc.lock);
5948 /* We set mc.moving_task later */
5949
5950 ret = mem_cgroup_precharge_mc(mm);
5951 if (ret)
5952 mem_cgroup_clear_mc();
264a0ae1
TH
5953 } else {
5954 mmput(mm);
7dc74be0
DN
5955 }
5956 return ret;
5957}
5958
1f7dd3e5 5959static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5960{
4e2f245d
JW
5961 if (mc.to)
5962 mem_cgroup_clear_mc();
7dc74be0
DN
5963}
5964
4ffef5fe
DN
5965static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5966 unsigned long addr, unsigned long end,
5967 struct mm_walk *walk)
7dc74be0 5968{
4ffef5fe 5969 int ret = 0;
26bcd64a 5970 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5971 pte_t *pte;
5972 spinlock_t *ptl;
12724850
NH
5973 enum mc_target_type target_type;
5974 union mc_target target;
5975 struct page *page;
4ffef5fe 5976
b6ec57f4
KS
5977 ptl = pmd_trans_huge_lock(pmd, vma);
5978 if (ptl) {
62ade86a 5979 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5980 spin_unlock(ptl);
12724850
NH
5981 return 0;
5982 }
5983 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5984 if (target_type == MC_TARGET_PAGE) {
5985 page = target.page;
5986 if (!isolate_lru_page(page)) {
f627c2f5 5987 if (!mem_cgroup_move_account(page, true,
1306a85a 5988 mc.from, mc.to)) {
12724850
NH
5989 mc.precharge -= HPAGE_PMD_NR;
5990 mc.moved_charge += HPAGE_PMD_NR;
5991 }
5992 putback_lru_page(page);
5993 }
5994 put_page(page);
c733a828
JG
5995 } else if (target_type == MC_TARGET_DEVICE) {
5996 page = target.page;
5997 if (!mem_cgroup_move_account(page, true,
5998 mc.from, mc.to)) {
5999 mc.precharge -= HPAGE_PMD_NR;
6000 mc.moved_charge += HPAGE_PMD_NR;
6001 }
6002 put_page(page);
12724850 6003 }
bf929152 6004 spin_unlock(ptl);
1a5a9906 6005 return 0;
12724850
NH
6006 }
6007
45f83cef
AA
6008 if (pmd_trans_unstable(pmd))
6009 return 0;
4ffef5fe
DN
6010retry:
6011 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6012 for (; addr != end; addr += PAGE_SIZE) {
6013 pte_t ptent = *(pte++);
c733a828 6014 bool device = false;
02491447 6015 swp_entry_t ent;
4ffef5fe
DN
6016
6017 if (!mc.precharge)
6018 break;
6019
8d32ff84 6020 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6021 case MC_TARGET_DEVICE:
6022 device = true;
e4a9bc58 6023 fallthrough;
4ffef5fe
DN
6024 case MC_TARGET_PAGE:
6025 page = target.page;
53f9263b
KS
6026 /*
6027 * We can have a part of the split pmd here. Moving it
6028 * can be done but it would be too convoluted so simply
6029 * ignore such a partial THP and keep it in original
6030 * memcg. There should be somebody mapping the head.
6031 */
6032 if (PageTransCompound(page))
6033 goto put;
c733a828 6034 if (!device && isolate_lru_page(page))
4ffef5fe 6035 goto put;
f627c2f5
KS
6036 if (!mem_cgroup_move_account(page, false,
6037 mc.from, mc.to)) {
4ffef5fe 6038 mc.precharge--;
854ffa8d
DN
6039 /* we uncharge from mc.from later. */
6040 mc.moved_charge++;
4ffef5fe 6041 }
c733a828
JG
6042 if (!device)
6043 putback_lru_page(page);
8d32ff84 6044put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6045 put_page(page);
6046 break;
02491447
DN
6047 case MC_TARGET_SWAP:
6048 ent = target.ent;
e91cbb42 6049 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6050 mc.precharge--;
8d22a935
HD
6051 mem_cgroup_id_get_many(mc.to, 1);
6052 /* we fixup other refcnts and charges later. */
483c30b5
DN
6053 mc.moved_swap++;
6054 }
02491447 6055 break;
4ffef5fe
DN
6056 default:
6057 break;
6058 }
6059 }
6060 pte_unmap_unlock(pte - 1, ptl);
6061 cond_resched();
6062
6063 if (addr != end) {
6064 /*
6065 * We have consumed all precharges we got in can_attach().
6066 * We try charge one by one, but don't do any additional
6067 * charges to mc.to if we have failed in charge once in attach()
6068 * phase.
6069 */
854ffa8d 6070 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6071 if (!ret)
6072 goto retry;
6073 }
6074
6075 return ret;
6076}
6077
7b86ac33
CH
6078static const struct mm_walk_ops charge_walk_ops = {
6079 .pmd_entry = mem_cgroup_move_charge_pte_range,
6080};
6081
264a0ae1 6082static void mem_cgroup_move_charge(void)
4ffef5fe 6083{
4ffef5fe 6084 lru_add_drain_all();
312722cb 6085 /*
81f8c3a4
JW
6086 * Signal lock_page_memcg() to take the memcg's move_lock
6087 * while we're moving its pages to another memcg. Then wait
6088 * for already started RCU-only updates to finish.
312722cb
JW
6089 */
6090 atomic_inc(&mc.from->moving_account);
6091 synchronize_rcu();
dfe076b0 6092retry:
d8ed45c5 6093 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6094 /*
c1e8d7c6 6095 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6096 * waitq. So we cancel all extra charges, wake up all waiters,
6097 * and retry. Because we cancel precharges, we might not be able
6098 * to move enough charges, but moving charge is a best-effort
6099 * feature anyway, so it wouldn't be a big problem.
6100 */
6101 __mem_cgroup_clear_mc();
6102 cond_resched();
6103 goto retry;
6104 }
26bcd64a
NH
6105 /*
6106 * When we have consumed all precharges and failed in doing
6107 * additional charge, the page walk just aborts.
6108 */
7b86ac33
CH
6109 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6110 NULL);
0247f3f4 6111
d8ed45c5 6112 mmap_read_unlock(mc.mm);
312722cb 6113 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6114}
6115
264a0ae1 6116static void mem_cgroup_move_task(void)
67e465a7 6117{
264a0ae1
TH
6118 if (mc.to) {
6119 mem_cgroup_move_charge();
a433658c 6120 mem_cgroup_clear_mc();
264a0ae1 6121 }
67e465a7 6122}
5cfb80a7 6123#else /* !CONFIG_MMU */
1f7dd3e5 6124static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6125{
6126 return 0;
6127}
1f7dd3e5 6128static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6129{
6130}
264a0ae1 6131static void mem_cgroup_move_task(void)
5cfb80a7
DN
6132{
6133}
6134#endif
67e465a7 6135
677dc973
CD
6136static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6137{
6138 if (value == PAGE_COUNTER_MAX)
6139 seq_puts(m, "max\n");
6140 else
6141 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6142
6143 return 0;
6144}
6145
241994ed
JW
6146static u64 memory_current_read(struct cgroup_subsys_state *css,
6147 struct cftype *cft)
6148{
f5fc3c5d
JW
6149 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6150
6151 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6152}
6153
bf8d5d52
RG
6154static int memory_min_show(struct seq_file *m, void *v)
6155{
677dc973
CD
6156 return seq_puts_memcg_tunable(m,
6157 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6158}
6159
6160static ssize_t memory_min_write(struct kernfs_open_file *of,
6161 char *buf, size_t nbytes, loff_t off)
6162{
6163 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6164 unsigned long min;
6165 int err;
6166
6167 buf = strstrip(buf);
6168 err = page_counter_memparse(buf, "max", &min);
6169 if (err)
6170 return err;
6171
6172 page_counter_set_min(&memcg->memory, min);
6173
6174 return nbytes;
6175}
6176
241994ed
JW
6177static int memory_low_show(struct seq_file *m, void *v)
6178{
677dc973
CD
6179 return seq_puts_memcg_tunable(m,
6180 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6181}
6182
6183static ssize_t memory_low_write(struct kernfs_open_file *of,
6184 char *buf, size_t nbytes, loff_t off)
6185{
6186 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6187 unsigned long low;
6188 int err;
6189
6190 buf = strstrip(buf);
d2973697 6191 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6192 if (err)
6193 return err;
6194
23067153 6195 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6196
6197 return nbytes;
6198}
6199
6200static int memory_high_show(struct seq_file *m, void *v)
6201{
d1663a90
JK
6202 return seq_puts_memcg_tunable(m,
6203 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6204}
6205
6206static ssize_t memory_high_write(struct kernfs_open_file *of,
6207 char *buf, size_t nbytes, loff_t off)
6208{
6209 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6210 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6211 bool drained = false;
241994ed
JW
6212 unsigned long high;
6213 int err;
6214
6215 buf = strstrip(buf);
d2973697 6216 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6217 if (err)
6218 return err;
6219
e82553c1
JW
6220 page_counter_set_high(&memcg->memory, high);
6221
8c8c383c
JW
6222 for (;;) {
6223 unsigned long nr_pages = page_counter_read(&memcg->memory);
6224 unsigned long reclaimed;
6225
6226 if (nr_pages <= high)
6227 break;
6228
6229 if (signal_pending(current))
6230 break;
6231
6232 if (!drained) {
6233 drain_all_stock(memcg);
6234 drained = true;
6235 continue;
6236 }
6237
6238 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6239 GFP_KERNEL, true);
6240
6241 if (!reclaimed && !nr_retries--)
6242 break;
6243 }
588083bb 6244
19ce33ac 6245 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6246 return nbytes;
6247}
6248
6249static int memory_max_show(struct seq_file *m, void *v)
6250{
677dc973
CD
6251 return seq_puts_memcg_tunable(m,
6252 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6253}
6254
6255static ssize_t memory_max_write(struct kernfs_open_file *of,
6256 char *buf, size_t nbytes, loff_t off)
6257{
6258 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6259 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6260 bool drained = false;
241994ed
JW
6261 unsigned long max;
6262 int err;
6263
6264 buf = strstrip(buf);
d2973697 6265 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6266 if (err)
6267 return err;
6268
bbec2e15 6269 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6270
6271 for (;;) {
6272 unsigned long nr_pages = page_counter_read(&memcg->memory);
6273
6274 if (nr_pages <= max)
6275 break;
6276
7249c9f0 6277 if (signal_pending(current))
b6e6edcf 6278 break;
b6e6edcf
JW
6279
6280 if (!drained) {
6281 drain_all_stock(memcg);
6282 drained = true;
6283 continue;
6284 }
6285
6286 if (nr_reclaims) {
6287 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6288 GFP_KERNEL, true))
6289 nr_reclaims--;
6290 continue;
6291 }
6292
e27be240 6293 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6294 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6295 break;
6296 }
241994ed 6297
2529bb3a 6298 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6299 return nbytes;
6300}
6301
1e577f97
SB
6302static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6303{
6304 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6305 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6306 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6307 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6308 seq_printf(m, "oom_kill %lu\n",
6309 atomic_long_read(&events[MEMCG_OOM_KILL]));
6310}
6311
241994ed
JW
6312static int memory_events_show(struct seq_file *m, void *v)
6313{
aa9694bb 6314 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6315
1e577f97
SB
6316 __memory_events_show(m, memcg->memory_events);
6317 return 0;
6318}
6319
6320static int memory_events_local_show(struct seq_file *m, void *v)
6321{
6322 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6323
1e577f97 6324 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6325 return 0;
6326}
6327
587d9f72
JW
6328static int memory_stat_show(struct seq_file *m, void *v)
6329{
aa9694bb 6330 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6331 char *buf;
1ff9e6e1 6332
c8713d0b
JW
6333 buf = memory_stat_format(memcg);
6334 if (!buf)
6335 return -ENOMEM;
6336 seq_puts(m, buf);
6337 kfree(buf);
587d9f72
JW
6338 return 0;
6339}
6340
5f9a4f4a 6341#ifdef CONFIG_NUMA
fff66b79
MS
6342static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6343 int item)
6344{
6345 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6346}
6347
5f9a4f4a
MS
6348static int memory_numa_stat_show(struct seq_file *m, void *v)
6349{
6350 int i;
6351 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6352
7e1c0d6f
SB
6353 cgroup_rstat_flush(memcg->css.cgroup);
6354
5f9a4f4a
MS
6355 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6356 int nid;
6357
6358 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6359 continue;
6360
6361 seq_printf(m, "%s", memory_stats[i].name);
6362 for_each_node_state(nid, N_MEMORY) {
6363 u64 size;
6364 struct lruvec *lruvec;
6365
6366 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6367 size = lruvec_page_state_output(lruvec,
6368 memory_stats[i].idx);
5f9a4f4a
MS
6369 seq_printf(m, " N%d=%llu", nid, size);
6370 }
6371 seq_putc(m, '\n');
6372 }
6373
6374 return 0;
6375}
6376#endif
6377
3d8b38eb
RG
6378static int memory_oom_group_show(struct seq_file *m, void *v)
6379{
aa9694bb 6380 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6381
6382 seq_printf(m, "%d\n", memcg->oom_group);
6383
6384 return 0;
6385}
6386
6387static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6388 char *buf, size_t nbytes, loff_t off)
6389{
6390 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6391 int ret, oom_group;
6392
6393 buf = strstrip(buf);
6394 if (!buf)
6395 return -EINVAL;
6396
6397 ret = kstrtoint(buf, 0, &oom_group);
6398 if (ret)
6399 return ret;
6400
6401 if (oom_group != 0 && oom_group != 1)
6402 return -EINVAL;
6403
6404 memcg->oom_group = oom_group;
6405
6406 return nbytes;
6407}
6408
241994ed
JW
6409static struct cftype memory_files[] = {
6410 {
6411 .name = "current",
f5fc3c5d 6412 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6413 .read_u64 = memory_current_read,
6414 },
bf8d5d52
RG
6415 {
6416 .name = "min",
6417 .flags = CFTYPE_NOT_ON_ROOT,
6418 .seq_show = memory_min_show,
6419 .write = memory_min_write,
6420 },
241994ed
JW
6421 {
6422 .name = "low",
6423 .flags = CFTYPE_NOT_ON_ROOT,
6424 .seq_show = memory_low_show,
6425 .write = memory_low_write,
6426 },
6427 {
6428 .name = "high",
6429 .flags = CFTYPE_NOT_ON_ROOT,
6430 .seq_show = memory_high_show,
6431 .write = memory_high_write,
6432 },
6433 {
6434 .name = "max",
6435 .flags = CFTYPE_NOT_ON_ROOT,
6436 .seq_show = memory_max_show,
6437 .write = memory_max_write,
6438 },
6439 {
6440 .name = "events",
6441 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6442 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6443 .seq_show = memory_events_show,
6444 },
1e577f97
SB
6445 {
6446 .name = "events.local",
6447 .flags = CFTYPE_NOT_ON_ROOT,
6448 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6449 .seq_show = memory_events_local_show,
6450 },
587d9f72
JW
6451 {
6452 .name = "stat",
587d9f72
JW
6453 .seq_show = memory_stat_show,
6454 },
5f9a4f4a
MS
6455#ifdef CONFIG_NUMA
6456 {
6457 .name = "numa_stat",
6458 .seq_show = memory_numa_stat_show,
6459 },
6460#endif
3d8b38eb
RG
6461 {
6462 .name = "oom.group",
6463 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6464 .seq_show = memory_oom_group_show,
6465 .write = memory_oom_group_write,
6466 },
241994ed
JW
6467 { } /* terminate */
6468};
6469
073219e9 6470struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6471 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6472 .css_online = mem_cgroup_css_online,
92fb9748 6473 .css_offline = mem_cgroup_css_offline,
6df38689 6474 .css_released = mem_cgroup_css_released,
92fb9748 6475 .css_free = mem_cgroup_css_free,
1ced953b 6476 .css_reset = mem_cgroup_css_reset,
2d146aa3 6477 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0
DN
6478 .can_attach = mem_cgroup_can_attach,
6479 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6480 .post_attach = mem_cgroup_move_task,
241994ed
JW
6481 .dfl_cftypes = memory_files,
6482 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6483 .early_init = 0,
8cdea7c0 6484};
c077719b 6485
bc50bcc6
JW
6486/*
6487 * This function calculates an individual cgroup's effective
6488 * protection which is derived from its own memory.min/low, its
6489 * parent's and siblings' settings, as well as the actual memory
6490 * distribution in the tree.
6491 *
6492 * The following rules apply to the effective protection values:
6493 *
6494 * 1. At the first level of reclaim, effective protection is equal to
6495 * the declared protection in memory.min and memory.low.
6496 *
6497 * 2. To enable safe delegation of the protection configuration, at
6498 * subsequent levels the effective protection is capped to the
6499 * parent's effective protection.
6500 *
6501 * 3. To make complex and dynamic subtrees easier to configure, the
6502 * user is allowed to overcommit the declared protection at a given
6503 * level. If that is the case, the parent's effective protection is
6504 * distributed to the children in proportion to how much protection
6505 * they have declared and how much of it they are utilizing.
6506 *
6507 * This makes distribution proportional, but also work-conserving:
6508 * if one cgroup claims much more protection than it uses memory,
6509 * the unused remainder is available to its siblings.
6510 *
6511 * 4. Conversely, when the declared protection is undercommitted at a
6512 * given level, the distribution of the larger parental protection
6513 * budget is NOT proportional. A cgroup's protection from a sibling
6514 * is capped to its own memory.min/low setting.
6515 *
8a931f80
JW
6516 * 5. However, to allow protecting recursive subtrees from each other
6517 * without having to declare each individual cgroup's fixed share
6518 * of the ancestor's claim to protection, any unutilized -
6519 * "floating" - protection from up the tree is distributed in
6520 * proportion to each cgroup's *usage*. This makes the protection
6521 * neutral wrt sibling cgroups and lets them compete freely over
6522 * the shared parental protection budget, but it protects the
6523 * subtree as a whole from neighboring subtrees.
6524 *
6525 * Note that 4. and 5. are not in conflict: 4. is about protecting
6526 * against immediate siblings whereas 5. is about protecting against
6527 * neighboring subtrees.
bc50bcc6
JW
6528 */
6529static unsigned long effective_protection(unsigned long usage,
8a931f80 6530 unsigned long parent_usage,
bc50bcc6
JW
6531 unsigned long setting,
6532 unsigned long parent_effective,
6533 unsigned long siblings_protected)
6534{
6535 unsigned long protected;
8a931f80 6536 unsigned long ep;
bc50bcc6
JW
6537
6538 protected = min(usage, setting);
6539 /*
6540 * If all cgroups at this level combined claim and use more
6541 * protection then what the parent affords them, distribute
6542 * shares in proportion to utilization.
6543 *
6544 * We are using actual utilization rather than the statically
6545 * claimed protection in order to be work-conserving: claimed
6546 * but unused protection is available to siblings that would
6547 * otherwise get a smaller chunk than what they claimed.
6548 */
6549 if (siblings_protected > parent_effective)
6550 return protected * parent_effective / siblings_protected;
6551
6552 /*
6553 * Ok, utilized protection of all children is within what the
6554 * parent affords them, so we know whatever this child claims
6555 * and utilizes is effectively protected.
6556 *
6557 * If there is unprotected usage beyond this value, reclaim
6558 * will apply pressure in proportion to that amount.
6559 *
6560 * If there is unutilized protection, the cgroup will be fully
6561 * shielded from reclaim, but we do return a smaller value for
6562 * protection than what the group could enjoy in theory. This
6563 * is okay. With the overcommit distribution above, effective
6564 * protection is always dependent on how memory is actually
6565 * consumed among the siblings anyway.
6566 */
8a931f80
JW
6567 ep = protected;
6568
6569 /*
6570 * If the children aren't claiming (all of) the protection
6571 * afforded to them by the parent, distribute the remainder in
6572 * proportion to the (unprotected) memory of each cgroup. That
6573 * way, cgroups that aren't explicitly prioritized wrt each
6574 * other compete freely over the allowance, but they are
6575 * collectively protected from neighboring trees.
6576 *
6577 * We're using unprotected memory for the weight so that if
6578 * some cgroups DO claim explicit protection, we don't protect
6579 * the same bytes twice.
cd324edc
JW
6580 *
6581 * Check both usage and parent_usage against the respective
6582 * protected values. One should imply the other, but they
6583 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6584 */
6585 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6586 return ep;
cd324edc
JW
6587 if (parent_effective > siblings_protected &&
6588 parent_usage > siblings_protected &&
6589 usage > protected) {
8a931f80
JW
6590 unsigned long unclaimed;
6591
6592 unclaimed = parent_effective - siblings_protected;
6593 unclaimed *= usage - protected;
6594 unclaimed /= parent_usage - siblings_protected;
6595
6596 ep += unclaimed;
6597 }
6598
6599 return ep;
bc50bcc6
JW
6600}
6601
241994ed 6602/**
05395718 6603 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 6604 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6605 * @memcg: the memory cgroup to check
6606 *
23067153
RG
6607 * WARNING: This function is not stateless! It can only be used as part
6608 * of a top-down tree iteration, not for isolated queries.
241994ed 6609 */
45c7f7e1
CD
6610void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6611 struct mem_cgroup *memcg)
241994ed 6612{
8a931f80 6613 unsigned long usage, parent_usage;
23067153
RG
6614 struct mem_cgroup *parent;
6615
241994ed 6616 if (mem_cgroup_disabled())
45c7f7e1 6617 return;
241994ed 6618
34c81057
SC
6619 if (!root)
6620 root = root_mem_cgroup;
22f7496f
YS
6621
6622 /*
6623 * Effective values of the reclaim targets are ignored so they
6624 * can be stale. Have a look at mem_cgroup_protection for more
6625 * details.
6626 * TODO: calculation should be more robust so that we do not need
6627 * that special casing.
6628 */
34c81057 6629 if (memcg == root)
45c7f7e1 6630 return;
241994ed 6631
23067153 6632 usage = page_counter_read(&memcg->memory);
bf8d5d52 6633 if (!usage)
45c7f7e1 6634 return;
bf8d5d52 6635
bf8d5d52 6636 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6637 /* No parent means a non-hierarchical mode on v1 memcg */
6638 if (!parent)
45c7f7e1 6639 return;
df2a4196 6640
bc50bcc6 6641 if (parent == root) {
c3d53200 6642 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6643 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6644 return;
bf8d5d52
RG
6645 }
6646
8a931f80
JW
6647 parent_usage = page_counter_read(&parent->memory);
6648
b3a7822e 6649 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6650 READ_ONCE(memcg->memory.min),
6651 READ_ONCE(parent->memory.emin),
b3a7822e 6652 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6653
b3a7822e 6654 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6655 READ_ONCE(memcg->memory.low),
6656 READ_ONCE(parent->memory.elow),
b3a7822e 6657 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6658}
6659
2c8d8f97 6660static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp)
0add0c77
SB
6661{
6662 unsigned int nr_pages = thp_nr_pages(page);
6663 int ret;
6664
6665 ret = try_charge(memcg, gfp, nr_pages);
6666 if (ret)
6667 goto out;
6668
6669 css_get(&memcg->css);
6670 commit_charge(page, memcg);
6671
6672 local_irq_disable();
6e0110c2 6673 mem_cgroup_charge_statistics(memcg, nr_pages);
0add0c77
SB
6674 memcg_check_events(memcg, page);
6675 local_irq_enable();
6676out:
6677 return ret;
6678}
6679
00501b53 6680/**
2c8d8f97 6681 * __mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6682 * @page: page to charge
6683 * @mm: mm context of the victim
6684 * @gfp_mask: reclaim mode
00501b53
JW
6685 *
6686 * Try to charge @page to the memcg that @mm belongs to, reclaiming
04f94e3f
DS
6687 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6688 * charge to the active memcg.
00501b53 6689 *
0add0c77
SB
6690 * Do not use this for pages allocated for swapin.
6691 *
f0e45fb4 6692 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6693 */
2c8d8f97
SB
6694int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
6695 gfp_t gfp_mask)
00501b53 6696{
0add0c77
SB
6697 struct mem_cgroup *memcg;
6698 int ret;
00501b53 6699
0add0c77 6700 memcg = get_mem_cgroup_from_mm(mm);
2c8d8f97 6701 ret = charge_memcg(page, memcg, gfp_mask);
0add0c77 6702 css_put(&memcg->css);
2d1c4980 6703
0add0c77
SB
6704 return ret;
6705}
e993d905 6706
0add0c77
SB
6707/**
6708 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6709 * @page: page to charge
6710 * @mm: mm context of the victim
6711 * @gfp: reclaim mode
6712 * @entry: swap entry for which the page is allocated
6713 *
6714 * This function charges a page allocated for swapin. Please call this before
6715 * adding the page to the swapcache.
6716 *
6717 * Returns 0 on success. Otherwise, an error code is returned.
6718 */
6719int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6720 gfp_t gfp, swp_entry_t entry)
6721{
6722 struct mem_cgroup *memcg;
6723 unsigned short id;
6724 int ret;
00501b53 6725
0add0c77
SB
6726 if (mem_cgroup_disabled())
6727 return 0;
00501b53 6728
0add0c77
SB
6729 id = lookup_swap_cgroup_id(entry);
6730 rcu_read_lock();
6731 memcg = mem_cgroup_from_id(id);
6732 if (!memcg || !css_tryget_online(&memcg->css))
6733 memcg = get_mem_cgroup_from_mm(mm);
6734 rcu_read_unlock();
00501b53 6735
2c8d8f97 6736 ret = charge_memcg(page, memcg, gfp);
6abb5a86 6737
0add0c77
SB
6738 css_put(&memcg->css);
6739 return ret;
6740}
00501b53 6741
0add0c77
SB
6742/*
6743 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6744 * @entry: swap entry for which the page is charged
6745 *
6746 * Call this function after successfully adding the charged page to swapcache.
6747 *
6748 * Note: This function assumes the page for which swap slot is being uncharged
6749 * is order 0 page.
6750 */
6751void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6752{
cae3af62
MS
6753 /*
6754 * Cgroup1's unified memory+swap counter has been charged with the
6755 * new swapcache page, finish the transfer by uncharging the swap
6756 * slot. The swap slot would also get uncharged when it dies, but
6757 * it can stick around indefinitely and we'd count the page twice
6758 * the entire time.
6759 *
6760 * Cgroup2 has separate resource counters for memory and swap,
6761 * so this is a non-issue here. Memory and swap charge lifetimes
6762 * correspond 1:1 to page and swap slot lifetimes: we charge the
6763 * page to memory here, and uncharge swap when the slot is freed.
6764 */
0add0c77 6765 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
6766 /*
6767 * The swap entry might not get freed for a long time,
6768 * let's not wait for it. The page already received a
6769 * memory+swap charge, drop the swap entry duplicate.
6770 */
0add0c77 6771 mem_cgroup_uncharge_swap(entry, 1);
00501b53 6772 }
3fea5a49
JW
6773}
6774
a9d5adee
JG
6775struct uncharge_gather {
6776 struct mem_cgroup *memcg;
b4e0b68f 6777 unsigned long nr_memory;
a9d5adee 6778 unsigned long pgpgout;
a9d5adee 6779 unsigned long nr_kmem;
a9d5adee
JG
6780 struct page *dummy_page;
6781};
6782
6783static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6784{
a9d5adee
JG
6785 memset(ug, 0, sizeof(*ug));
6786}
6787
6788static void uncharge_batch(const struct uncharge_gather *ug)
6789{
747db954
JW
6790 unsigned long flags;
6791
b4e0b68f
MS
6792 if (ug->nr_memory) {
6793 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 6794 if (do_memsw_account())
b4e0b68f 6795 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a9d5adee
JG
6796 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6797 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6798 memcg_oom_recover(ug->memcg);
ce00a967 6799 }
747db954
JW
6800
6801 local_irq_save(flags);
c9019e9b 6802 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 6803 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
a9d5adee 6804 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6805 local_irq_restore(flags);
f1796544
MH
6806
6807 /* drop reference from uncharge_page */
6808 css_put(&ug->memcg->css);
a9d5adee
JG
6809}
6810
6811static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6812{
9f762dbe 6813 unsigned long nr_pages;
b4e0b68f
MS
6814 struct mem_cgroup *memcg;
6815 struct obj_cgroup *objcg;
55927114 6816 bool use_objcg = PageMemcgKmem(page);
9f762dbe 6817
a9d5adee 6818 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee 6819
a9d5adee
JG
6820 /*
6821 * Nobody should be changing or seriously looking at
b4e0b68f 6822 * page memcg or objcg at this point, we have fully
a9d5adee
JG
6823 * exclusive access to the page.
6824 */
55927114 6825 if (use_objcg) {
b4e0b68f
MS
6826 objcg = __page_objcg(page);
6827 /*
6828 * This get matches the put at the end of the function and
6829 * kmem pages do not hold memcg references anymore.
6830 */
6831 memcg = get_mem_cgroup_from_objcg(objcg);
6832 } else {
6833 memcg = __page_memcg(page);
6834 }
a9d5adee 6835
b4e0b68f
MS
6836 if (!memcg)
6837 return;
6838
6839 if (ug->memcg != memcg) {
a9d5adee
JG
6840 if (ug->memcg) {
6841 uncharge_batch(ug);
6842 uncharge_gather_clear(ug);
6843 }
b4e0b68f 6844 ug->memcg = memcg;
7ab345a8 6845 ug->dummy_page = page;
f1796544
MH
6846
6847 /* pairs with css_put in uncharge_batch */
b4e0b68f 6848 css_get(&memcg->css);
a9d5adee
JG
6849 }
6850
9f762dbe 6851 nr_pages = compound_nr(page);
a9d5adee 6852
55927114 6853 if (use_objcg) {
b4e0b68f 6854 ug->nr_memory += nr_pages;
9f762dbe 6855 ug->nr_kmem += nr_pages;
b4e0b68f
MS
6856
6857 page->memcg_data = 0;
6858 obj_cgroup_put(objcg);
6859 } else {
6860 /* LRU pages aren't accounted at the root level */
6861 if (!mem_cgroup_is_root(memcg))
6862 ug->nr_memory += nr_pages;
18b2db3b 6863 ug->pgpgout++;
a9d5adee 6864
b4e0b68f
MS
6865 page->memcg_data = 0;
6866 }
6867
6868 css_put(&memcg->css);
747db954
JW
6869}
6870
0a31bc97 6871/**
2c8d8f97 6872 * __mem_cgroup_uncharge - uncharge a page
0a31bc97
JW
6873 * @page: page to uncharge
6874 *
2c8d8f97 6875 * Uncharge a page previously charged with __mem_cgroup_charge().
0a31bc97 6876 */
2c8d8f97 6877void __mem_cgroup_uncharge(struct page *page)
0a31bc97 6878{
a9d5adee
JG
6879 struct uncharge_gather ug;
6880
747db954 6881 /* Don't touch page->lru of any random page, pre-check: */
bcfe06bf 6882 if (!page_memcg(page))
0a31bc97
JW
6883 return;
6884
a9d5adee
JG
6885 uncharge_gather_clear(&ug);
6886 uncharge_page(page, &ug);
6887 uncharge_batch(&ug);
747db954 6888}
0a31bc97 6889
747db954 6890/**
2c8d8f97 6891 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
6892 * @page_list: list of pages to uncharge
6893 *
6894 * Uncharge a list of pages previously charged with
2c8d8f97 6895 * __mem_cgroup_charge().
747db954 6896 */
2c8d8f97 6897void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 6898{
c41a40b6
MS
6899 struct uncharge_gather ug;
6900 struct page *page;
6901
c41a40b6
MS
6902 uncharge_gather_clear(&ug);
6903 list_for_each_entry(page, page_list, lru)
6904 uncharge_page(page, &ug);
6905 if (ug.memcg)
6906 uncharge_batch(&ug);
0a31bc97
JW
6907}
6908
6909/**
6a93ca8f
JW
6910 * mem_cgroup_migrate - charge a page's replacement
6911 * @oldpage: currently circulating page
6912 * @newpage: replacement page
0a31bc97 6913 *
6a93ca8f
JW
6914 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6915 * be uncharged upon free.
0a31bc97
JW
6916 *
6917 * Both pages must be locked, @newpage->mapping must be set up.
6918 */
6a93ca8f 6919void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6920{
29833315 6921 struct mem_cgroup *memcg;
44b7a8d3 6922 unsigned int nr_pages;
d93c4130 6923 unsigned long flags;
0a31bc97
JW
6924
6925 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6926 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6927 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6928 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6929 newpage);
0a31bc97
JW
6930
6931 if (mem_cgroup_disabled())
6932 return;
6933
6934 /* Page cache replacement: new page already charged? */
bcfe06bf 6935 if (page_memcg(newpage))
0a31bc97
JW
6936 return;
6937
bcfe06bf 6938 memcg = page_memcg(oldpage);
a4055888 6939 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
29833315 6940 if (!memcg)
0a31bc97
JW
6941 return;
6942
44b7a8d3 6943 /* Force-charge the new page. The old one will be freed soon */
6c357848 6944 nr_pages = thp_nr_pages(newpage);
44b7a8d3 6945
8dc87c7d
MS
6946 if (!mem_cgroup_is_root(memcg)) {
6947 page_counter_charge(&memcg->memory, nr_pages);
6948 if (do_memsw_account())
6949 page_counter_charge(&memcg->memsw, nr_pages);
6950 }
0a31bc97 6951
1a3e1f40 6952 css_get(&memcg->css);
d9eb1ea2 6953 commit_charge(newpage, memcg);
44b7a8d3 6954
d93c4130 6955 local_irq_save(flags);
6e0110c2 6956 mem_cgroup_charge_statistics(memcg, nr_pages);
44b7a8d3 6957 memcg_check_events(memcg, newpage);
d93c4130 6958 local_irq_restore(flags);
0a31bc97
JW
6959}
6960
ef12947c 6961DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6962EXPORT_SYMBOL(memcg_sockets_enabled_key);
6963
2d758073 6964void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6965{
6966 struct mem_cgroup *memcg;
6967
2d758073
JW
6968 if (!mem_cgroup_sockets_enabled)
6969 return;
6970
e876ecc6
SB
6971 /* Do not associate the sock with unrelated interrupted task's memcg. */
6972 if (in_interrupt())
6973 return;
6974
11092087
JW
6975 rcu_read_lock();
6976 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6977 if (memcg == root_mem_cgroup)
6978 goto out;
0db15298 6979 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6980 goto out;
8965aa28 6981 if (css_tryget(&memcg->css))
11092087 6982 sk->sk_memcg = memcg;
f7e1cb6e 6983out:
11092087
JW
6984 rcu_read_unlock();
6985}
11092087 6986
2d758073 6987void mem_cgroup_sk_free(struct sock *sk)
11092087 6988{
2d758073
JW
6989 if (sk->sk_memcg)
6990 css_put(&sk->sk_memcg->css);
11092087
JW
6991}
6992
6993/**
6994 * mem_cgroup_charge_skmem - charge socket memory
6995 * @memcg: memcg to charge
6996 * @nr_pages: number of pages to charge
4b1327be 6997 * @gfp_mask: reclaim mode
11092087
JW
6998 *
6999 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 7000 * @memcg's configured limit, %false if it doesn't.
11092087 7001 */
4b1327be
WW
7002bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7003 gfp_t gfp_mask)
11092087 7004{
f7e1cb6e 7005 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7006 struct page_counter *fail;
f7e1cb6e 7007
0db15298
JW
7008 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7009 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7010 return true;
7011 }
0db15298 7012 memcg->tcpmem_pressure = 1;
4b1327be
WW
7013 if (gfp_mask & __GFP_NOFAIL) {
7014 page_counter_charge(&memcg->tcpmem, nr_pages);
7015 return true;
7016 }
f7e1cb6e 7017 return false;
11092087 7018 }
d886f4e4 7019
4b1327be
WW
7020 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7021 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7022 return true;
4b1327be 7023 }
f7e1cb6e 7024
11092087
JW
7025 return false;
7026}
7027
7028/**
7029 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7030 * @memcg: memcg to uncharge
7031 * @nr_pages: number of pages to uncharge
11092087
JW
7032 */
7033void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7034{
f7e1cb6e 7035 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7036 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7037 return;
7038 }
d886f4e4 7039
c9019e9b 7040 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7041
475d0487 7042 refill_stock(memcg, nr_pages);
11092087
JW
7043}
7044
f7e1cb6e
JW
7045static int __init cgroup_memory(char *s)
7046{
7047 char *token;
7048
7049 while ((token = strsep(&s, ",")) != NULL) {
7050 if (!*token)
7051 continue;
7052 if (!strcmp(token, "nosocket"))
7053 cgroup_memory_nosocket = true;
04823c83
VD
7054 if (!strcmp(token, "nokmem"))
7055 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7056 }
7057 return 0;
7058}
7059__setup("cgroup.memory=", cgroup_memory);
11092087 7060
2d11085e 7061/*
1081312f
MH
7062 * subsys_initcall() for memory controller.
7063 *
308167fc
SAS
7064 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7065 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7066 * basically everything that doesn't depend on a specific mem_cgroup structure
7067 * should be initialized from here.
2d11085e
MH
7068 */
7069static int __init mem_cgroup_init(void)
7070{
95a045f6
JW
7071 int cpu, node;
7072
f3344adf
MS
7073 /*
7074 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7075 * used for per-memcg-per-cpu caching of per-node statistics. In order
7076 * to work fine, we should make sure that the overfill threshold can't
7077 * exceed S32_MAX / PAGE_SIZE.
7078 */
7079 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7080
308167fc
SAS
7081 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7082 memcg_hotplug_cpu_dead);
95a045f6
JW
7083
7084 for_each_possible_cpu(cpu)
7085 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7086 drain_local_stock);
7087
7088 for_each_node(node) {
7089 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7090
7091 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7092 node_online(node) ? node : NUMA_NO_NODE);
7093
ef8f2327 7094 rtpn->rb_root = RB_ROOT;
fa90b2fd 7095 rtpn->rb_rightmost = NULL;
ef8f2327 7096 spin_lock_init(&rtpn->lock);
95a045f6
JW
7097 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7098 }
7099
2d11085e
MH
7100 return 0;
7101}
7102subsys_initcall(mem_cgroup_init);
21afa38e
JW
7103
7104#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7105static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7106{
1c2d479a 7107 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7108 /*
7109 * The root cgroup cannot be destroyed, so it's refcount must
7110 * always be >= 1.
7111 */
7112 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7113 VM_BUG_ON(1);
7114 break;
7115 }
7116 memcg = parent_mem_cgroup(memcg);
7117 if (!memcg)
7118 memcg = root_mem_cgroup;
7119 }
7120 return memcg;
7121}
7122
21afa38e
JW
7123/**
7124 * mem_cgroup_swapout - transfer a memsw charge to swap
7125 * @page: page whose memsw charge to transfer
7126 * @entry: swap entry to move the charge to
7127 *
7128 * Transfer the memsw charge of @page to @entry.
7129 */
7130void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7131{
1f47b61f 7132 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7133 unsigned int nr_entries;
21afa38e
JW
7134 unsigned short oldid;
7135
7136 VM_BUG_ON_PAGE(PageLRU(page), page);
7137 VM_BUG_ON_PAGE(page_count(page), page);
7138
76358ab5
AS
7139 if (mem_cgroup_disabled())
7140 return;
7141
2d1c4980 7142 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7143 return;
7144
bcfe06bf 7145 memcg = page_memcg(page);
21afa38e 7146
a4055888 7147 VM_WARN_ON_ONCE_PAGE(!memcg, page);
21afa38e
JW
7148 if (!memcg)
7149 return;
7150
1f47b61f
VD
7151 /*
7152 * In case the memcg owning these pages has been offlined and doesn't
7153 * have an ID allocated to it anymore, charge the closest online
7154 * ancestor for the swap instead and transfer the memory+swap charge.
7155 */
7156 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7157 nr_entries = thp_nr_pages(page);
d6810d73
HY
7158 /* Get references for the tail pages, too */
7159 if (nr_entries > 1)
7160 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7161 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7162 nr_entries);
21afa38e 7163 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7164 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7165
bcfe06bf 7166 page->memcg_data = 0;
21afa38e
JW
7167
7168 if (!mem_cgroup_is_root(memcg))
d6810d73 7169 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7170
2d1c4980 7171 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7172 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7173 page_counter_charge(&swap_memcg->memsw, nr_entries);
7174 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7175 }
7176
ce9ce665
SAS
7177 /*
7178 * Interrupts should be disabled here because the caller holds the
b93b0163 7179 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7180 * important here to have the interrupts disabled because it is the
b93b0163 7181 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7182 */
7183 VM_BUG_ON(!irqs_disabled());
6e0110c2 7184 mem_cgroup_charge_statistics(memcg, -nr_entries);
21afa38e 7185 memcg_check_events(memcg, page);
73f576c0 7186
1a3e1f40 7187 css_put(&memcg->css);
21afa38e
JW
7188}
7189
38d8b4e6 7190/**
01c4b28c 7191 * __mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7192 * @page: page being added to swap
7193 * @entry: swap entry to charge
7194 *
38d8b4e6 7195 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7196 *
7197 * Returns 0 on success, -ENOMEM on failure.
7198 */
01c4b28c 7199int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
37e84351 7200{
6c357848 7201 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7202 struct page_counter *counter;
38d8b4e6 7203 struct mem_cgroup *memcg;
37e84351
VD
7204 unsigned short oldid;
7205
2d1c4980 7206 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7207 return 0;
7208
bcfe06bf 7209 memcg = page_memcg(page);
37e84351 7210
a4055888 7211 VM_WARN_ON_ONCE_PAGE(!memcg, page);
37e84351
VD
7212 if (!memcg)
7213 return 0;
7214
f3a53a3a
TH
7215 if (!entry.val) {
7216 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7217 return 0;
f3a53a3a 7218 }
bb98f2c5 7219
1f47b61f
VD
7220 memcg = mem_cgroup_id_get_online(memcg);
7221
2d1c4980 7222 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7223 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7224 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7225 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7226 mem_cgroup_id_put(memcg);
37e84351 7227 return -ENOMEM;
1f47b61f 7228 }
37e84351 7229
38d8b4e6
HY
7230 /* Get references for the tail pages, too */
7231 if (nr_pages > 1)
7232 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7233 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7234 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7235 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7236
37e84351
VD
7237 return 0;
7238}
7239
21afa38e 7240/**
01c4b28c 7241 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7242 * @entry: swap entry to uncharge
38d8b4e6 7243 * @nr_pages: the amount of swap space to uncharge
21afa38e 7244 */
01c4b28c 7245void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7246{
7247 struct mem_cgroup *memcg;
7248 unsigned short id;
7249
38d8b4e6 7250 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7251 rcu_read_lock();
adbe427b 7252 memcg = mem_cgroup_from_id(id);
21afa38e 7253 if (memcg) {
2d1c4980 7254 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7255 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7256 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7257 else
38d8b4e6 7258 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7259 }
c9019e9b 7260 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7261 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7262 }
7263 rcu_read_unlock();
7264}
7265
d8b38438
VD
7266long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7267{
7268 long nr_swap_pages = get_nr_swap_pages();
7269
eccb52e7 7270 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7271 return nr_swap_pages;
7272 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7273 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7274 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7275 page_counter_read(&memcg->swap));
7276 return nr_swap_pages;
7277}
7278
5ccc5aba
VD
7279bool mem_cgroup_swap_full(struct page *page)
7280{
7281 struct mem_cgroup *memcg;
7282
7283 VM_BUG_ON_PAGE(!PageLocked(page), page);
7284
7285 if (vm_swap_full())
7286 return true;
eccb52e7 7287 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7288 return false;
7289
bcfe06bf 7290 memcg = page_memcg(page);
5ccc5aba
VD
7291 if (!memcg)
7292 return false;
7293
4b82ab4f
JK
7294 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7295 unsigned long usage = page_counter_read(&memcg->swap);
7296
7297 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7298 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7299 return true;
4b82ab4f 7300 }
5ccc5aba
VD
7301
7302 return false;
7303}
7304
eccb52e7 7305static int __init setup_swap_account(char *s)
21afa38e
JW
7306{
7307 if (!strcmp(s, "1"))
5ab92901 7308 cgroup_memory_noswap = false;
21afa38e 7309 else if (!strcmp(s, "0"))
5ab92901 7310 cgroup_memory_noswap = true;
21afa38e
JW
7311 return 1;
7312}
eccb52e7 7313__setup("swapaccount=", setup_swap_account);
21afa38e 7314
37e84351
VD
7315static u64 swap_current_read(struct cgroup_subsys_state *css,
7316 struct cftype *cft)
7317{
7318 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7319
7320 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7321}
7322
4b82ab4f
JK
7323static int swap_high_show(struct seq_file *m, void *v)
7324{
7325 return seq_puts_memcg_tunable(m,
7326 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7327}
7328
7329static ssize_t swap_high_write(struct kernfs_open_file *of,
7330 char *buf, size_t nbytes, loff_t off)
7331{
7332 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7333 unsigned long high;
7334 int err;
7335
7336 buf = strstrip(buf);
7337 err = page_counter_memparse(buf, "max", &high);
7338 if (err)
7339 return err;
7340
7341 page_counter_set_high(&memcg->swap, high);
7342
7343 return nbytes;
7344}
7345
37e84351
VD
7346static int swap_max_show(struct seq_file *m, void *v)
7347{
677dc973
CD
7348 return seq_puts_memcg_tunable(m,
7349 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7350}
7351
7352static ssize_t swap_max_write(struct kernfs_open_file *of,
7353 char *buf, size_t nbytes, loff_t off)
7354{
7355 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7356 unsigned long max;
7357 int err;
7358
7359 buf = strstrip(buf);
7360 err = page_counter_memparse(buf, "max", &max);
7361 if (err)
7362 return err;
7363
be09102b 7364 xchg(&memcg->swap.max, max);
37e84351
VD
7365
7366 return nbytes;
7367}
7368
f3a53a3a
TH
7369static int swap_events_show(struct seq_file *m, void *v)
7370{
aa9694bb 7371 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7372
4b82ab4f
JK
7373 seq_printf(m, "high %lu\n",
7374 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7375 seq_printf(m, "max %lu\n",
7376 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7377 seq_printf(m, "fail %lu\n",
7378 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7379
7380 return 0;
7381}
7382
37e84351
VD
7383static struct cftype swap_files[] = {
7384 {
7385 .name = "swap.current",
7386 .flags = CFTYPE_NOT_ON_ROOT,
7387 .read_u64 = swap_current_read,
7388 },
4b82ab4f
JK
7389 {
7390 .name = "swap.high",
7391 .flags = CFTYPE_NOT_ON_ROOT,
7392 .seq_show = swap_high_show,
7393 .write = swap_high_write,
7394 },
37e84351
VD
7395 {
7396 .name = "swap.max",
7397 .flags = CFTYPE_NOT_ON_ROOT,
7398 .seq_show = swap_max_show,
7399 .write = swap_max_write,
7400 },
f3a53a3a
TH
7401 {
7402 .name = "swap.events",
7403 .flags = CFTYPE_NOT_ON_ROOT,
7404 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7405 .seq_show = swap_events_show,
7406 },
37e84351
VD
7407 { } /* terminate */
7408};
7409
eccb52e7 7410static struct cftype memsw_files[] = {
21afa38e
JW
7411 {
7412 .name = "memsw.usage_in_bytes",
7413 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7414 .read_u64 = mem_cgroup_read_u64,
7415 },
7416 {
7417 .name = "memsw.max_usage_in_bytes",
7418 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7419 .write = mem_cgroup_reset,
7420 .read_u64 = mem_cgroup_read_u64,
7421 },
7422 {
7423 .name = "memsw.limit_in_bytes",
7424 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7425 .write = mem_cgroup_write,
7426 .read_u64 = mem_cgroup_read_u64,
7427 },
7428 {
7429 .name = "memsw.failcnt",
7430 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7431 .write = mem_cgroup_reset,
7432 .read_u64 = mem_cgroup_read_u64,
7433 },
7434 { }, /* terminate */
7435};
7436
82ff165c
BS
7437/*
7438 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7439 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7440 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7441 * boot parameter. This may result in premature OOPS inside
7442 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7443 */
21afa38e
JW
7444static int __init mem_cgroup_swap_init(void)
7445{
2d1c4980
JW
7446 /* No memory control -> no swap control */
7447 if (mem_cgroup_disabled())
7448 cgroup_memory_noswap = true;
7449
7450 if (cgroup_memory_noswap)
eccb52e7
JW
7451 return 0;
7452
7453 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7454 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7455
21afa38e
JW
7456 return 0;
7457}
82ff165c 7458core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7459
7460#endif /* CONFIG_MEMCG_SWAP */